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The Congruent Number Problem

Definition (Congruent number)

A positive integer is called a congruent number if it is the area of a right angled
triangle with rational side lengths.

5, 6, 7 are congruent numbers (Fibonacci),

1, 2, 3 are non-congruent numbers (Fermat).

Example

The number 2022 is congruent with the “simplest” triangle having side lengths

51897851719

88847070
,

359297551080

51897851719
,

2693576182377580134961

4610972064527613330
.

The Congruent Number Problem

The congruent number problem is to determine whether or not a given positive
integer is congruent number.
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Theorem (Heegner 1952)

Any prime or twice of prime congruent to 5, 6, 7 mod 8 is a congruent number.

Theorem (T 2012)

For any k ≥ 1, there are infinitely many congruent numbers among square-free
integers ≡ 5 mod 8 (resp. 6 mod 8, 7 mod 8) with exact k odd prime factors.

Theorem (Smith, Yuan-Zhang-T 2014)

At least half of square-free positive integers ≡ 5, 6, 7 mod 8 are congruent numbers.

Remark

Our generalization of Heegner’s results by introduce an induction argument (on the
number k of prime factors), which involves L-functions and Gross-Zagier and
Waldspurger formulae.
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Quadratic twists of elliptic curves over Q

Congruent number problem is essentially about the quadratic family ny2 = x3 − x .
In general, for an elliptic curve over Q given by: y2 = x3 + ax + b, let A denote the
set of all isomorphism classes of its quadratic twists:

ny2 = x3 + ax + b, n ∈ Q×/Q×2.

As A ∈ A varies, we are interested in the distribution of

rankA(Q), #X(A/Q)[p∞], dimFp Selp(A/Q), corankZp Selp∞(A/Q).

leading term of L(A, s): ords=1 L(A, s), Xan(A/Q).

In this talk, we focus on the L-function side, although some of the discussions are
related to Selmer groups.
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Conjectures on Leading terms of L-series under Quadratic Twists

Conjecture (Goldfeld)

Let A be a quadratic twist family of elliptic curves over Q. Then for r ∈ {0, 1}

Prob (ords=1 L(A, s) = r | A ∈ A , ε(A) = (−1)r ) = 1.

We call the case with r = 0 (resp 1) the even (resp. odd) parity Goldfeld conjecture.

The behavior for Xan is subtle. However, Kolyvagin proposed the following

Conjecture (Kolyvagin)

Let A be a quadratic twist family of elliptic curves over Q and p any prime. There
exists A ∈ A such that

ords=1 L(A, s) = 0 (resp. 1).

p - Xan(A/Q).
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Goldfeld Conjecture for CM Families

Theorem A

For quadratic twist families of CM elliptic curves over Q, we have the following

1 the even parity Goldfeld conjecture holds if the CM field is not Q(
√
−2);

2 the odd parity Goldfeld conjecture holds if 2 splits in the CM field.

Thus the Goldfeld conjecture holds for the family containing the conductor 49 curve.

The proof of the result consists of two parts.

Theorem A1 (Burungale-T, Burungale-Castella-Skinner-T)

Let A be a CM elliptic curve over Q, p a prime and r = 0, 1. Then the rank r
p-converse holds:

corankZp Selp∞(A/Q) = r =⇒ ords=1 L(A, s) = r ,

provided that p is ordinary if r = 1.

Theorem A2 (Smith)

The 2∞-Selmer analogue Goldfeld conjecture holds for families A over Q satisfying
the following assumption S.
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Assumption S: There is A ∈ A such that one of the following holds:

A(Q)[2] = 0; or

A(Q)[2] ∼= Z/2Z and for the unique Q-degree 2 isogeny A→ A0,
Q(A0[2]) 6= Q,Q(A[2]); or

A(Q)[2] ∼= (Z/2Z)2 and A has no cyclic degree 4 isogeny over Q.

Actually, in many cases Smith proved the Selmer analogue Goldfeld conjecture via
establishing that the distribution of 2∞-Selmer groups in A follows the same
principle in the BKLPR conjecture for p = 2.

Conjecture (Bhargava-Kane-Lenstra-Poonen-Rains)

Let AF be the set of all isomorphism classes of elliptic curves over a fixed number field F ,
ordered by height. For r = 0, 1 and any G finite symplectic p-group,

Prob
(

Selp∞(A/F ) ' (Qp/Zp)r
⊕

G
∣∣ A ∈ AF , ε(A) = (−1)r

)
= (#G)1−r

#Sp(G) ·
∏

i≥r (1− p1−2i ).

In particular, the average of # Sel2(A/F ) is 3 and

Prob
(
rankA(F ) = r

∣∣ A ∈ AF , ε(A) = (−1)r
)

= 1.
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Equivalence relation for quadratic twist families

For general quadratic twist families of elliptic curves over Q, the distribution of
Selmer groups does not follow the BKLPR’s principle.

For A a quadratic twist family of elliptic curves over Q, let Σ be a finite set of places

Σ ⊇ {p | any A ∈ A has bad reduction at p} ∪ {2,∞}.

Definition

Two elliptic curves in A are called Σ-equivalent if they are isomorphic over Qv for
all v ∈ Σ.

The root numbers of elliptic curves in a fixed class X are the same, denoted by ε(X).
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Elliptic curves with full rational 2-torsion

Families A over Q with full rational 2-torsion points are divided into three types:

(A) A does not have a rational cyclic 4-isogeny, e.g. the congruent number curves
ny2 = x3 − x .

(B) A has a rational cyclic 4-isogeny, and A[4] * A(Q(
√
−1)) for any A ∈ A ,

e.g. ny2 = x(x − 3)(x + 1).

(C) A has a rational cyclic 4-isogeny, and A[4] ⊆ A(Q(
√
−1)) for some A ∈ A .

e.g. ny2 = x(x − 9)(x − 25).

We now discuss the distribution of 2-Selmer group Sel2(A/Q).
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Distribution of 2-Selmer groups for type (A)

For type (A), the distribution of 2∞-Selmer groups is independent of equivalence
classes X ⊂ A .

Theorem (Heath-Brown, Swinnetron-Dyer, Kane)

Let A be a quadratic twist family of type (A) and X ⊂ A an equivalence class.
Then for any d ∈ Z≥0 with (−1)d = ε(X),

Prob
(

dimF2 Sel2(A/Q)/A(Q)[2] = d
∣∣∣ A ∈ X

)
= 2

∞∏
j=0

(1 + 2−j)−1
d∏

i=1

2

2i − 1
.

The above result is the starting point of Smith’s work on 2∞-Selmer groups.

Corollary

The average of # Sel2(A/Q)/A(Q)[2] for A ∈ X of type (A) is always 3.
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Distribution of 2-Selmer groups for type (B) and (C)

Theorem (Pan-T)

Let A be a family of type (B) or (C) and X ⊂ A an equivalence class. Then there
is t ∈ Z for type (B), t = (t1, t2) ∈ Z2 for type (C), only dependent on X, with

(−1)t = ε(X) for type (B), (−1)ti = ε(X), t1 + t2 ≤ 0 for type (C),

such that for any integer d ≥ 0 with (−1)d = ε(X),

Prob
(
dimF2 Sel2(A/Q)/A[2] = d

∣∣ A ∈ X
)

= αd ,t

∞∏
i=1

(1− 2−i ),

where αd ,t = 0 if d < t (max{ti}), otherwise αd ,t ∈ Q>0 only dependent on d and t.
Moreover, if Σ ⊂ Σ′, then any Σ′-equivalence class X′ ⊂ X has the same t and αd ,t .

We expect to establish the distribution of 2∞-Selmer groups starting from this result.

Corollary

The average of # Sel2(A/Q)/A[2] for A ∈ X is equal to 3 + 2t for type (B) and
3 + 2t1 + 2t2 for type (C).
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Kolyvagin’s Question

Now we are in the situation that

Kolyvagin’s conjecture predicts that for r = 0, 1,

min
A∈A ,sign(A)=(−1)r

dimF2 Sel2(A)/A[2] = r .

distribution has nicer behavior when restricted in equivalence classes, but for
some classes X, minA∈X dimF2 Sel2(A)/A[2] may not reach minimal (i.e. 0 or 1
according to sign).

It seems natural to consider the following variation of Kolyvagin’s problem:

Question

For an equivalence class X of quadratic twists of elliptic curves over Q and a prime
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Modularity of Heegner cycles

the classical theta lifting.

ψ : Q\A→ C×: a fixed non-trivial additive character;
B: a quaternion algebra over Q and V = Btr=0;

H = PB× and G = S̃L2(A);
S (VA): the Weil representation ω = ωψ of HA ×G.

For an automorphic π ⊂ A (HA), the theta kernels θφ :=
∑

x∈V (Q) ω(g , h)φ(x)
define its lifting θ(π) ⊂ A (G).

the arithmetic theta lifting:

B: an incoherent definite quaternion algebra over A and V = Btr=0.
S (V): the Weil representation of H×G, H = A×\B×.
X = lim←−U

XU : the Shimura curve over Q for H, and J its Jacobian.
πA := Hom(J,A)Q, where A/Q is an e.c. with sign −1 parameterized by X .

Definition (Yuan-Zhang-Zhang, Arithmatic theta lifting)

There is the theta kernel ϑφ (using CM points) such that the arithmetic theta lifting of πA:

ϑ(πA) := {ϑfφ = f ◦ ϑφ
∣∣∣ f ∈ πA, φ ∈ S (V)} ⊂ A (G)⊗Q A(Q)Q,

is a representation of G with the pairing ( , )NT given by the Néron -Tate height.
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Ye Tian (AMSS) The arithmetic of quadratic twists of elliptic curves 2022/07/13 13 / 16



Modularity of Heegner cycles

the classical theta lifting.

ψ : Q\A→ C×: a fixed non-trivial additive character;
B: a quaternion algebra over Q and V = Btr=0;

H = PB× and G = S̃L2(A);

S (VA): the Weil representation ω = ωψ of HA ×G.

For an automorphic π ⊂ A (HA), the theta kernels θφ :=
∑

x∈V (Q) ω(g , h)φ(x)
define its lifting θ(π) ⊂ A (G).

the arithmetic theta lifting:

B: an incoherent definite quaternion algebra over A and V = Btr=0.
S (V): the Weil representation of H×G, H = A×\B×.
X = lim←−U

XU : the Shimura curve over Q for H, and J its Jacobian.
πA := Hom(J,A)Q, where A/Q is an e.c. with sign −1 parameterized by X .

Definition (Yuan-Zhang-Zhang, Arithmatic theta lifting)

There is the theta kernel ϑφ (using CM points) such that the arithmetic theta lifting of πA:

ϑ(πA) := {ϑfφ = f ◦ ϑφ
∣∣∣ f ∈ πA, φ ∈ S (V)} ⊂ A (G)⊗Q A(Q)Q,

is a representation of G with the pairing ( , )NT given by the Néron -Tate height.
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Arithmetic Rallis inner product formula

Fix Hv -invariant pairings ( , )v on πv such that for any pure tensors fi = (fi ,U)U ,∏
v (f1,v , f2,v )v

.
= f1,U ◦ f ∨2,U (fixed πA,C ∼= ⊗πv ).

Theorem C1 (He-Xiong-T)

For pure tensors f1, f2 ∈ πA and φ1, φ2 ∈ S (V), the following equality holds (with
standard measures):

(ϑf1φ1 , ϑ
f2
φ2

)NT =
L′(1/2, πA)

L(2, 1Q)
·
∏
v

Zv (φ1,v , φ2,v , f1,v , f2,v ),

where Zv (φ1,v , φ2,v , f1,v , f2,v ) =
L(2, 1v )

L(1/2, πv )
·
∫
Hv

(hφ1,v , φ2,v )v (hf1,v , f2,v )vdh.

Remark

1. Previous work on RI were established by (arith.) Siegel-Weil formula and doubling
method. Our approach does not involve doubling method, but (i) a decomposition
formula of Whittaker periods and (ii) Gross-Zagier formula of Yuan-Zhang-Zhang.
2. Certain form of ARI was first conjectured by Kudla, and proved by
Kudla-Rapoport-Yang etal via an arithmetic Siegel-Weil over Q in certain case.
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Application to Kolyvagin’s Problem

Let A be a quadratic twist family of elliptic curves over Q.

(X1,X2,A): ε(X1) = −1, ε(X2) = +1 s.t D1D2 < 0 for A(Di ) ∈ Xi ;

πA on H× and V = Btr=0,

(f ∈ πA, φ ∈ S (V)) sutible test vector, (fD1 , φD1) its twist.

Consider the integral structure

ϑ
fD1
φD1

= puD1 · ϑD1,0, uD1

.
=

1

2
min
D2

∑
i

ordp X
an(A(Di )),

and ϑD1,0 primitive. It follows from ARI and certain arithmetic Whittaker period
formula that

min
A(D1)∈X1

ordp
L′(A(D1), 1)

RA(D1)Ω
ε1
A /
√
D1
− min

A(D2)∈X2

ordp
L(A(D2), 1)

Ωε2
A /
√
D2

,

where εi = signDi , is equal to

(I) + ordp(f , f ) ·
Ω+
πA

Ω−πA

2L(1, πA, ad)
+ 2 min

A(D1)∈X1

ordp

(ϑ
fD1

φD1
, ϑD1,0)NT

(fD1 , fD1)RA(D1)Ω
ε1
πA

,

where (I) involves local integrals with test vectors, which can be made explicit.
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Thank You !
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