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The Congruent Number Problem

Definition (Congruent number)

A positive integer is called a congruent number if it is the area of a right angled
triangle with rational side lengths.
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The Congruent Number Problem

Definition (Congruent number)

A positive integer is called a congruent number if it is the area of a right angled
triangle with rational side lengths.

@ 5,6, 7 are congruent numbers (Fibonacci),

@ 1, 2, 3 are non-congruent numbers (Fermat).
Example
The number 2022 is congruent with the “simplest” triangle having side lengths

51897851719 359297551080  2693576182377580134961
88847070 ° 51897851719’ 4610972064527613330
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The Congruent Number Problem

Definition (Congruent number)

A positive integer is called a congruent number if it is the area of a right angled
triangle with rational side lengths.

@ 5, 6, 7 are congruent numbers (Fibonacci),

@ 1, 2, 3 are non-congruent numbers (Fermat).
Example
The number 2022 is congruent with the “simplest” triangle having side lengths

51897851719 359297551080  2693576182377580134961
88847070 ° 51897851719’ 4610972064527613330

The Congruent Number Problem

The congruent number problem is to determine whether or not a given positive
integer is congruent number.
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Theorem (Heegner 1952)

Any prime or twice of prime congruent to 5,6,7 mod 8 is a congruent number.
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Theorem (Heegner 1952)

Any prime or twice of prime congruent to 5,6,7 mod 8 is a congruent number.

Theorem (T 2012)

For any k > 1, there are infinitely many congruent numbers among square-free
integers =5 mod 8 (resp. 6 mod 8, 7 mod 8) with exact k odd prime factors.
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Theorem (Heegner 1952)

Any prime or twice of prime congruent to 5,6,7 mod 8 is a congruent number.

Theorem (T 2012)

For any k > 1, there are infinitely many congruent numbers among square-free
integers =5 mod 8 (resp. 6 mod 8, 7 mod 8) with exact k odd prime factors.

Theorem (Smith, Yuan-Zhang-T 2014)

At least half of square-free positive integers = 5,6,7 mod 8 are congruent numbers.
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Theorem (Heegner 1952)

Any prime or twice of prime congruent to 5,6,7 mod 8 is a congruent number.

Theorem (T 2012)

For any k > 1, there are infinitely many congruent numbers among square-free
integers =5 mod 8 (resp. 6 mod 8, 7 mod 8) with exact k odd prime factors.

Theorem (Smith, Yuan-Zhang-T 2014)

At least half of square-free positive integers = 5,6,7 mod 8 are congruent numbers.

Remark

Our generalization of Heegner's results by introduce an induction argument (on the
number k of prime factors), which involves L-functions and Gross-Zagier and
Waldspurger formulae.
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Quadratic twists of elliptic curves over Q

3

Congruent number problem is essentially about the quadratic family ny? = x3 — x.
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Quadratic twists of elliptic curves over Q

Congruent number problem is essentially about the quadratic family ny? = x3 — x.
In general, for an elliptic curve over Q given by: y? = x3 + ax + b, let . denote the

set of all isomorphism classes of its quadratic twists:

ny? = x3 + ax + b, neQ*/Q*2

As A € of varies, we are interested in the distribution of
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Quadratic twists of elliptic curves over Q

Congruent number problem is essentially about the quadratic family ny? = x3 — x.

In general, for an elliptic curve over Q given by: y? = x3 + ax + b, let . denote the
set of all isomorphism classes of its quadratic twists:

ny? = x3 + ax + b, neQ*/Q*2

As A € of varies, we are interested in the distribution of
o rank A(Q), #II(A/Q)[p™], dimg, Sel,(A/Q), corankz, Selp=(A/Q).
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Quadratic twists of elliptic curves over Q

Congruent number problem is essentially about the quadratic family ny? = x3

— X.

In general, for an elliptic curve over Q given by: y? = x3 + ax + b, let . denote the

set of all isomorphism classes of its quadratic twists:
ny? = x3 + ax + b, neQ*/Q*2

As A € of varies, we are interested in the distribution of

o rank A(Q), #II(A/Q)[p™], dimg, Sel,(A/Q), corankz, Selp=(A/Q).
o leading term of L(A,s): ords—1 L(A,s), I1°"(A/Q).
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Quadratic twists of elliptic curves over Q

Congruent number problem is essentially about the quadratic family ny? = x3 — x.

In general, for an elliptic curve over Q given by: y? = x3 + ax + b, let . denote the
set of all isomorphism classes of its quadratic twists:

ny? = x3 + ax + b, neQ*/Q*2

As A € of varies, we are interested in the distribution of

o rank A(Q), #II(A/Q)[p™], dimg, Sel,(A/Q), corankz, Selp=(A/Q).
o leading term of L(A,s): ords—1 L(A,s), I1°"(A/Q).

In this talk, we focus on the L-function side, although some of the discussions are
related to Selmer groups.
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Conjectures on Leading terms of L-series under Quadratic Twists
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Conjectures on Leading terms of L-series under Quadratic Twists

Conjecture (Goldfeld)
Let o/ be a quadratic twist family of elliptic curves over Q. Then for r € {0,1}

Prob (ords—1 L(A,s) =r | A€ o7, e(A) = (—1)") = 1.

We call the case with r = 0 (resp 1) the even (resp. odd) parity Goldfeld conjecture.
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Let o be a quadratic twist family of elliptic curves over Q. Then for r € {0,1}

Prob (ords—1 L(A,s) =r | A€ o7, e(A) = (—1)") = 1.

We call the case with r = 0 (resp 1) the even (resp. odd) parity Goldfeld conjecture.

The behavior for I11°" is subtle. However, Kolyvagin proposed the following

Conjecture (Kolyvagin)

Let o/ be a quadratic twist family of elliptic curves over Q and p any prime. There
exists A € o/ such that
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Conjectures on Leading terms of L-series under Quadratic Twists

Conjecture (Goldfeld)
Let o be a quadratic twist family of elliptic curves over Q. Then for r € {0,1}

Prob (ords—1 L(A,s) =r | A€ o7, e(A) = (—1)") = 1.

We call the case with r = 0 (resp 1) the even (resp. odd) parity Goldfeld conjecture.

The behavior for I11°" is subtle. However, Kolyvagin proposed the following

Conjecture (Kolyvagin)
Let o/ be a quadratic twist family of elliptic curves over Q and p any prime. There
exists A € o/ such that

@ ords—1 L(A,s) =0 (resp. 1).

o p{II*"(A/Q).
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Goldfeld Conjecture for CM Families
Theorem A

For quadratic twist families of CM elliptic curves over Q, we have the following

@ the even parity Goldfeld conjecture holds if the CM field is not Q(+/—2);
@ the odd parity Goldfeld conjecture holds if 2 splits in the CM field.

Thus the Goldfeld conjecture holds for the family containing the conductor 49 curve.

v
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Goldfeld Conjecture for CM Families
Theorem A

For quadratic twist families of CM elliptic curves over Q, we have the following

@ the even parity Goldfeld conjecture holds if the CM field is not Q(+/—2);
@ the odd parity Goldfeld conjecture holds if 2 splits in the CM field.

Thus the Goldfeld conjecture holds for the family containing the conductor 49 curve.

v

The proof of the result consists of two parts.
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Goldfeld Conjecture for CM Families
Theorem A

For quadratic twist families of CM elliptic curves over Q, we have the following
@ the even parity Goldfeld conjecture holds if the CM field is not Q(v/—2);
@ the odd parity Goldfeld conjecture holds if 2 splits in the CM field.
Thus the Goldfeld conjecture holds for the family containing the conductor 49 curve.

v

The proof of the result consists of two parts.

Theorem Al (Burungale-T, Burungale-Castella-Skinner-T)

Let A be a CM elliptic curve over Q, p a prime and r = 0,1. Then the rank r
p-converse holds:

corankz, Selp<(A/Q) = r = ords—1 L(A,s) =r,

provided that p is ordinary if r = 1.
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Goldfeld Conjecture for CM Families
Theorem A

For quadratic twist families of CM elliptic curves over Q, we have the following
@ the even parity Goldfeld conjecture holds if the CM field is not Q(+/—2);
@ the odd parity Goldfeld conjecture holds if 2 splits in the CM field.

Thus the Goldfeld conjecture holds for the family containing the conductor 49 curve.

v

The proof of the result consists of two parts.

Theorem Al (Burungale-T, Burungale-Castella-Skinner-T)

Let A be a CM elliptic curve over Q, p a prime and r = 0,1. Then the rank r
p-converse holds:

corankz, Selp<(A/Q) = r = ords—1 L(A,s) =r,

provided that p is ordinary if r = 1.

Theorem A2 (Smith)

The 2°°-Selmer analogue Goldfeld conjecture holds for families <7 over Q satisfying
the following assumption S.

&
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Assumption S: There is A € &7 such that one of the following holds:
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o A(Q)2] =0; or

Assumption S: There is A € &7 such that one of the following holds:
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Assumption S: There is A € &7 such that one of the following holds:
e A(Q)[2] =0; or
o A(Q)[2] = Z/2Z and for the unique Q-degree 2 isogeny A — Ay,
Q(Ao[2]) # Q, Q(A[2]); or
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o A(Q)[2] = Z/2Z and for the unique Q-degree 2 isogeny A — Ay,
Q(Ao[2]) # Q. Q(A[2]); or
o A(Q)[2] = (Z/27)? and A has no cyclic degree 4 isogeny over Q.
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Assumption S: There is A € &7 such that one of the following holds:
o A(Q)2] =0; or
e A(Q)[2] = Z/2Z and for the unique Q-degree 2 isogeny A — Ay,
Q(Ao[2]) # Q, Q(A[2]); or
o A(Q)[2] = (Z/27)? and A has no cyclic degree 4 isogeny over Q.

Actually, in many cases Smith proved the Selmer analogue Goldfeld conjecture via
establishing that the distribution of 2°°-Selmer groups in <7 follows the same
principle in the BKLPR conjecture for p = 2.
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Assumption S: There is A € &7 such that one of the following holds:
o A(Q)2] =0; or
e A(Q)[2] = Z/2Z and for the unique Q-degree 2 isogeny A — Ay,
Q(Ao[2]) # Q, Q(A[2]); or
e A(Q)[2] = (Z/27)? and A has no cyclic degree 4 isogeny over Q.

Actually, in many cases Smith proved the Selmer analogue Goldfeld conjecture via
establishing that the distribution of 2°°-Selmer groups in <7 follows the same
principle in the BKLPR conjecture for p = 2.

Conjecture (Bhargava-Kane-Lenstra-Poonen-Rains)

Let A be the set of all isomorphism classes of elliptic curves over a fixed number field F,
ordered by height. For r = 0,1 and any G finite symplectic p-group,

Prob ( Selpe< (A/F) = (Qp/Z,)" B G | A€ Ur,e(A) = (1)) = Yoy  [T15, (1 — P2,
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o A(Q)2] =0; or
e A(Q)[2] = Z/2Z and for the unique Q-degree 2 isogeny A — Ay,
Q(Ao[2]) # Q, Q(A[2]); or
e A(Q)[2] = (Z/27)? and A has no cyclic degree 4 isogeny over Q.

Actually, in many cases Smith proved the Selmer analogue Goldfeld conjecture via
establishing that the distribution of 2°°-Selmer groups in <7 follows the same
principle in the BKLPR conjecture for p = 2.

Conjecture (Bhargava-Kane-Lenstra-Poonen-Rains)

Let A be the set of all isomorphism classes of elliptic curves over a fixed number field F,
ordered by height. For r = 0,1 and any G finite symplectic p-group,

Prob ( Selpe< (A/F) = (Qp/Z,)" B G | A€ Ur,e(A) = (1)) = Yoy  [T15, (1 — P2,

In particular, the average of # Sel,(A/F) is 3 and

Prob (rank A(F) = r | A€ Ar,e(A) = (-1)") = 1.
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Equivalence relation for quadratic twist families

For general quadratic twist families of elliptic curves over @, the distribution of
Selmer groups does not follow the BKLPR's principle.
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Equivalence relation for quadratic twist families

For general quadratic twist families of elliptic curves over @, the distribution of
Selmer groups does not follow the BKLPR's principle.

For 7 a quadratic twist family of elliptic curves over QQ, let ¥ be a finite set of places

Y D {p|any A€ o has bad reduction at p} U {2,00}.
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Equivalence relation for quadratic twist families

For general quadratic twist families of elliptic curves over @, the distribution of
Selmer groups does not follow the BKLPR's principle.

For 7 a quadratic twist family of elliptic curves over QQ, let ¥ be a finite set of places

Y D {p|any A€ o has bad reduction at p} U {2,00}.

Definition

Two elliptic curves in of are called ¥-equivalent if they are isomorphic over Q, for
allvekx.
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Equivalence relation for quadratic twist families

For general quadratic twist families of elliptic curves over @, the distribution of
Selmer groups does not follow the BKLPR's principle.

For 7 a quadratic twist family of elliptic curves over QQ, let ¥ be a finite set of places

Y D {p|any A€ o has bad reduction at p} U {2,00}.

Definition
Two elliptic curves in of are called ¥-equivalent if they are isomorphic over Q, for
allvekx.

The root numbers of elliptic curves in a fixed class X are the same, denoted by €(X).

Ye Tian (AMSS) The arithmetic of quadratic twists of elliptic curves| 2022/07/13 8/16



Elliptic curves with full rational 2-torsion
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Elliptic curves with full rational 2-torsion

Families .« over Q with full rational 2-torsion points are divided into three types:
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Elliptic curves with full rational 2-torsion

Families .« over Q with full rational 2-torsion points are divided into three types:

(A) < does not have a rational cyclic 4-isogeny, e.g. the congruent number curves

ny? = x3 — x.
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Elliptic curves with full rational 2-torsion

Families .« over Q with full rational 2-torsion points are divided into three types:

(A) < does not have a rational cyclic 4-isogeny, e.g. the congruent number curves

ny? = x3 — x.

(B) < has a rational cyclic 4-isogeny, and A[4] ¢ A(Q(v/—1)) for any A € 7,
e.g. ny? = x(x —3)(x +1).
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Elliptic curves with full rational 2-torsion

Families .« over Q with full rational 2-torsion points are divided into three types:

(A) < does not have a rational cyclic 4-isogeny, e.g. the congruent number curves

ny? = x3 — x.

(B) < has a rational cyclic 4-isogeny, and A[4] ¢ A(Q(v/—1)) for any A € 7,
e.g. ny? = x(x —3)(x +1).

(C) o has a rational cyclic 4-isogeny, and A[4] C A(Q(+/—1)) for some A € 7.
e.g. ny? = x(x — 9)(x — 25).
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Elliptic curves with full rational 2-torsion

Families .« over Q with full rational 2-torsion points are divided into three types:

(A) o does not have a rational cyclic 4-isogeny, e.g. the congruent number curves

ny? = x3 — x.

(B) < has a rational cyclic 4-isogeny, and A[4] ¢ A(Q(v/—1)) for any A € 7,
e.g. ny? = x(x —3)(x +1).

(C) & has a rational cyclic 4-isogeny, and A[4] C A(Q(v/—1)) for some A € 7.

e.g. ny? = x(x —9)(x — 25).
We now discuss the distribution of 2-Selmer group Sel2(A/Q).

Ye Tian (AMSS) The arithmetic of quadratic twists of elliptic curves| 2022/07/13 9/16



Distribution of 2-Selmer groups for type (A)
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Distribution of 2-Selmer groups for type (A)

For type (A), the distribution of 2°°-Selmer groups is independent of equivalence
classes X C .
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Distribution of 2-Selmer groups for type (A)

For type (A), the distribution of 2°°-Selmer groups is independent of equivalence
classes X C .

Theorem (Heath-Brown, Swinnetron-Dyer, Kane)

Let &/ be a quadratic twist family of type (A) and X C </ an equivalence class.
Then for any d € Z>o with (—1)9 = ¢(X),

9] d
Prob (dims, Selx(A/Q)/A@)[2] = d | A€ %) = 22)(1 +27) ] %

i=1
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Distribution of 2-Selmer groups for type (A)

For type (A), the distribution of 2°°-Selmer groups is independent of equivalence
classes X C & .

Theorem (Heath-Brown, Swinnetron-Dyer, Kane)

Let &/ be a quadratic twist family of type (A) and X C </ an equivalence class.
Then for any d € Z>o with (—1)9 = ¢(X),

9] d
Prob (dims, Selx(A/Q)/A@)[2] = d | A€ %) = 21_]1)(1 4oyt Hl %

1=

The above result is the starting point of Smith's work on 2°°-Selmer groups.
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Distribution of 2-Selmer groups for type (A)

For type (A), the distribution of 2°°-Selmer groups is independent of equivalence
classes X C & .

Theorem (Heath-Brown, Swinnetron-Dyer, Kane)

Let &/ be a quadratic twist family of type (A) and X C </ an equivalence class.
Then for any d € Z>o with (—1)9 = ¢(X),

9] d
Prob (dims, Selx(A/Q)/A@)[2] = d | A€ %) = 21_]1)(1 42y 1;[1 %

The above result is the starting point of Smith's work on 2°°-Selmer groups.
Corollary
The average of # Sela(A/Q)/A(Q)[2] for A € X of type (A) is always 3. J
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Distribution of 2-Selmer groups for type (B) and (C)

Ye Tian (AMSS) The arithmetic of quadratic twists of elliptic curves|



Distribution of 2-Selmer groups for type (B) and (C)

Theorem (Pan-T)

Let o be a family of type (B) or (C) and X C </ an equivalence class. Then there
ist € 7 for type (B), t = (t1, t2) € Z? for type (C), only dependent on X, with

(1)t = €(X) for type (B), (-1t = €(X), t1 + ta <0 for type (C),

such that for any integer d > 0 with (—1)9 = (%),
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Distribution of 2-Selmer groups for type (B) and (C)
Theorem (Pan-T)

Let o be a family of type (B) or (C) and X C </ an equivalence class. Then there
ist € 7 for type (B), t = (t1, t2) € Z? for type (C), only dependent on X, with

(1)t = €(X) for type (B), (-1t = €(X), t1 + ta <0 for type (C),

such that for any integer d > 0 with (—1)9 = (%),

oo

Prob (dim, Sel2(A/Q)/A[2l =d | A€ X) = aq. [J(1 —27),
i=1
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Distribution of 2-Selmer groups for type (B) and (C)

Theorem (Pan-T)

Let o be a family of type (B) or (C) and X C </ an equivalence class. Then there
ist € 7 for type (B), t = (t1, t2) € Z? for type (C), only dependent on X, with

(=1) = e(X) for type (B),  (=1)% = €(X), t1+ t2 <0 for type (C),
such that for any integer d > 0 with (—1)9 = (%),

Prob (dims, Sela(A/Q)/A[2] = d | A€ X) = ad,tﬁ(l — 271,
i=1

where ag ¢ = 0 if d < t (max{t;}), otherwise ag+ € Qxo only dependent on d and t.
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Distribution of 2-Selmer groups for type (B) and (C)

Theorem (Pan-T)

Let o be a family of type (B) or (C) and X C </ an equivalence class. Then there
ist € 7 for type (B), t = (t1, t2) € Z? for type (C), only dependent on X, with

(=1) = e(X) for type (B),  (=1)% = €(X), t1+ t2 <0 for type (C),
such that for any integer d > 0 with (—1)9 = (%),

Prob (dim, Sel2(A/Q)/A[2l =d | A€ X) = aq. [J(1 —27),
i=1
where ag ¢ = 0 if d < t (max{t;}), otherwise ag+ € Qxo only dependent on d and t.
Moreover, if ¥ C ¥/, then any ¥'-equivalence class X' C X has the same t and a4 .
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Distribution of 2-Selmer groups for type (B) and (C)

Theorem (Pan-T)

Let o be a family of type (B) or (C) and X C </ an equivalence class. Then there
ist € 7 for type (B), t = (t1, t2) € Z? for type (C), only dependent on X, with

(1)t = €(X) for type (B), (-1t = €(X), t1 + ta <0 for type (C),

such that for any integer d > 0 with (—1)9 = (%),
Prob (dim, Sel2(A/Q)/A[2l =d | A€ X) = aq. [J(1 —27),
i=1
where ag ¢ = 0 if d < t (max{t;}), otherwise ag+ € Qxo only dependent on d and t.
Moreover, if ¥ C ¥/, then any ¥'-equivalence class X' C X has the same t and a4 .

We expect to establish the distribution of 2°°-Selmer groups starting from this result.
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Distribution of 2-Selmer groups for type (B) and (C)

Theorem (Pan-T)
Let o be a family of type (B) or (C) and X C </ an equivalence class. Then there
ist € 7 for type (B), t = (t1, t2) € Z? for type (C), only dependent on X, with

(=1) = e(X) for type (B),  (=1)% = €(X), t1+ t2 <0 for type (C),

such that for any integer d > 0 with (—1)9 = (%),
Prob (dim, Sel2(A/Q)/A[2l =d | A€ X) = aq. [J(1 —27),
i=1
where ag ¢ = 0 if d < t (max{t;}), otherwise ag+ € Qxo only dependent on d and t.
Moreover, if ¥ C ¥/, then any ¥'-equivalence class X' C X has the same t and a4 .

We expect to establish the distribution of 2°°-Selmer groups starting from this result.

Corollary

The average of # Sel,(A/Q)/A[2] for A € X is equal to 3 + 2* for type (B) and
3+ 21 4+ 2% for type (C).
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according to sign).
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Now we are in the situation that
o Kolyvagin's conjecture predicts that for r =0, 1,

AGﬂ,sigT(IE):(_l)r dlm]F2 Se|2(A)/A[2] =r.

@ distribution has nicer behavior when restricted in equivalence classes, but for
some classes X, minacx dimp, Selo(A)/A[2] may not reach minimal (i.e. 0 or 1
according to sign).

It seems natural to consider the following variation of Kolyvagin's problem:

Question
For an equivalence class X of quadratic twists of elliptic curves over QQ and a prime
p, let r € {0,1} with (—1)" = €(X), what is the behavior of

min ord, II*"(A), as X C < varies?
AEX,ra=r
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Kolyvagin's Question
Now we are in the situation that
o Kolyvagin's conjecture predicts that for r =0, 1,

AGﬂ,sigT(IE):(_l)r dlm]F2 Se|2(A)/A[2] =r.

@ distribution has nicer behavior when restricted in equivalence classes, but for
some classes X, minacx dimp, Selo(A)/A[2] may not reach minimal (i.e. 0 or 1
according to sign).

It seems natural to consider the following variation of Kolyvagin's problem:

Question
For an equivalence class X of quadratic twists of elliptic curves over QQ and a prime
p, let r € {0,1} with (—1)" = €(X), what is the behavior of

min ord, II*"(A), as X C < varies?
AEX,ra=r

Suitable constructed (arithmetic) theta series on SL; have Fourier coefficients
basically I11®"(A) exactly for A € X with rq € {0,1} and (—1)" = ¢(X).
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Modularity of Heegner cycles

the classical theta lifting.

e ¢ : Q\A — C*: a fixed non-trivial additive character;
@ B: a quaternion algebra over Q and V = B"=0;

e H= PB* and stm);
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Modularity of Heegner cycles

the classical theta lifting.

¥ Q\A — C*: a fixed non-trivial additive character;
B: a quaternion algebra over Q and V = Btr=0.

H = PB* and G = SLy(A);

(Va): the Weil representation w = wy, of Hy x G.
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Modularity of Heegner cycles

the classical theta lifting.
e ¢ : Q\A — C*: a fixed non-trivial additive character;
e B: a quaternion algebra over Q and V = Bt=0;
e H= PB* and G = SLy(A);
e ./(Vy): the Weil representation w = wy, of Hy x G.

For an automorphic 7 C &/(Hy), the theta kernels 0, := 3", o \/(q) w(g, h)$(x)
define its lifting 6(7) C 7 (G).
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e ¢ : Q\A — C*: a fixed non-trivial additive character;
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e H= PB* and G = SLy(A);
e ./(Vy): the Weil representation w = wy, of Hy x G.
For an automorphic 7 C &/(Hy), the theta kernels 0, := 3", o \/(q) w(g, h)$(x)
define its lifting 6(7) C 7 (G).
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the classical theta lifting.

e ¢ : Q\A — C*: a fixed non-trivial additive character;
@ B: a quaternion algebra over Q and V = B"=0;

e H=PB* and G = Sm);

e ./(Vy): the Weil representation w = wy, of Hy x G.
For an automorphic 7 C &/(Hy), the theta kernels 0, := 3", o \/(q) w(g, h)$(x)
define its lifting 6(7) C 7 (G).
the arithmetic theta lifting:

@ B: an incoherent definite quaternion algebra over A and V = B"=0.
o .7(V): the Weil representation of H x G, H = A*\B*.
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Modularity of Heegner cycles

the classical theta lifting.

e ¢ : Q\A — C*: a fixed non-trivial additive character;
@ B: a quaternion algebra over Q and V = B"=0;

e H=PB* and G = Sm);

e ./(Vy): the Weil representation w = wy, of Hy x G.
For an automorphic 7 C &/(Hy), the theta kernels 0, := 3", o \/(q) w(g, h)$(x)
define its lifting 6(7) C 7 (G).
the arithmetic theta lifting:

@ B: an incoherent definite quaternion algebra over A and V = B"=0.
o .7(V): the Weil representation of H x G, H = A*\B*.
o X = LI_TUXUZ the Shimura curve over Q for H, and J its Jacobian.
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Modularity of Heegner cycles

the classical theta lifting.
e ¢ : Q\A — C*: a fixed non-trivial additive character;
e B: a quaternion algebra over Q and V = Bt=0;
e H= PB* and G = SLy(A);
e ./(Vy): the Weil representation w = wy, of Hy x G.
For an automorphic 7 C &/(Hy), the theta kernels 0, := 3", o \/(q) w(g, h)$(x)
define its lifting 6(7) C 7 (G).
the arithmetic theta lifting:
B: an incoherent definite quaternion algebra over A and V = B'=0,
Z(V): the Weil representation of H x G, H = A*\B*.
X = IimUXU: the Shimura curve over Q for H, and J its Jacobian.
ma = Hom(J, A)g, where A/Q is an e.c. with sign —1 parameterized by X.
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Modularity of Heegner cycles

the classical theta lifting.
e ¢ : Q\A — C*: a fixed non-trivial additive character;
e B: a quaternion algebra over Q and V = Bt=0;
e H= PB* and G = SLy(A);
e ./(Vy): the Weil representation w = wy, of Hy x G.
For an automorphic 7 C &/(Hy), the theta kernels 0, := 3", o \/(q) w(g, h)$(x)
define its lifting 6(7) C 7 (G).
the arithmetic theta lifting:
@ B: an incoherent definite quaternion algebra over A and V = B"=0.
o .7(V): the Weil representation of H x G, H = A*\B*.
@ X =lim,  Xy: the Shimura curve over Q for H, and J its Jacobian.
e 14 := Hom(J, A)g, where A/Q is an e.c. with sign —1 parameterized by X.

Definition (Yuan-Zhang-Zhang, Arithmatic theta lifting)
There is the theta kernel ¥4 (using CM points) such that the arithmetic theta lifting of wa:

Wma) = {9, = Fo vy | £ € ma, 6 € #(V)} € #(G) 8o AQ,

is a representation of G with the pairing ( , )nT given by the Néron -Tate height.
— -

™7 i = = ot
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Arithmetic Rallis inner product formula
Fix Hy-invariant pairings ( , ), on m, such that for any pure tensors f; = (f; y)u,

Hv(ﬁ.,w f2,v)v = fl,U o f2\,/U (flxed TAC = ®7TV)-
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Arithmetic Rallis inner product formula
Fix Hy-invariant pairings ( , ), on m, such that for any pure tensors f; = (f; y)u,

Hv(ﬁ,w f2,v)v = f17U o f2\,/U (fIXed TAC = ®7TV).

Theorem C1 (He-Xiong-T)

For pure tensors fi,f, € ma and ¢1, ¢p € S (V), the following equality holds (with
standard measures):

L'(1/2,7a)
'l9f1 19f2 = . Zv % v fi % f. v
( 17 ¢2)NT L(271Q) lvT (¢1, 7@2527 s I vy 12, )a

L(2,1,)

where Z,(¢1,v, 92,vs frv, fov) = /2.7 (hé1,v, d2,v)v(hfry, f2.v)vdh.
) v H,
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Arithmetic Rallis inner product formula
Fix Hy-invariant pairings ( , ), on m, such that for any pure tensors f; = (f; y)u,

Hv(ﬁ.,w f2,v)v = fl,U o f2\,/U (leEd TA,C = ®7rv)-

Theorem C1 (He-Xiong-T)

For pure tensors fi,f, € ma and ¢1, ¢p € S (V), the following equality holds (with
standard measures):

L'(1/2,7)
19f1 19f2 = . Zv % v fi % f; v
( ¢1° ¢2)NT L(2,1Q) H (¢1, 7¢)27 s I vy 12, )7

L(2,1,
where Z,(¢1,v, b2,v, fiv, fo,v) = [ ( )

m . Hv(h¢1,V7¢2,V)v(hfi7v7 f‘27v)vdh'

Remark

1. Previous work on RI were established by (arith.) Siegel-Weil formula and doubling
method. Our approach does not involve doubling method, but (i) a decomposition
formula of Whittaker periods and (ii) Gross-Zagier formula of Yuan-Zhang-Zhang.

v

™y o - = = et
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Arithmetic Rallis inner product formula
Fix Hy-invariant pairings ( , ), on m, such that for any pure tensors f; = (f; y)u,

Hv(ﬁ.,w f2,v)v = fl,U o f2\’/U (leEd TA,C = ®7rv)-

Theorem C1 (He-Xiong-T)

For pure tensors fi,f, € ma and ¢1, ¢p € S (V), the following equality holds (with
standard measures):

L'(1/2,74)
’19f1 19f2 = . Zv % v fi % f; v
( ¢1° ¢2)NT L(2,1Q) ]J (¢1, 7@1)27 s I vy 12, )7

L(2,1,
where Zv(¢l7va ¢2,v; fl,V7 fQ,V) = L ( )

m . Hv(h¢1,V7¢2,V)V(hfi7v, f‘27v)vdh.

Remark

1. Previous work on RI were established by (arith.) Siegel-Weil formula and doubling
method. Our approach does not involve doubling method, but (i) a decomposition
formula of Whittaker periods and (ii) Gross-Zagier formula of Yuan-Zhang-Zhang.

2. Certain form of ARI was first conjectured by Kudla, and proved by
Kudla-Rapoport-Yang etal via an arithmetic Siegel-Weil over Q in certain case. )

= = = =yt
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Application to Kolyvagin's Problem

Let @/ be a quadratic twist family of elliptic curves over Q.
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Application to Kolyvagin's Problem
Let &7 be a quadratic twist family of elliptic curves over Q.
] (%1,%2,/4): 6(%1) = -1, 6(3{2) =+1s.t D1Dy < 0 for A(D’) € X
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Let &7 be a quadratic twist family of elliptic curves over Q.
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e 74 on HX and V = Btr=9,
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Let &7 be a quadratic twist family of elliptic curves over Q.
] (%1,%2,/4): 6(%1) =-1, 6(3':2) =+1s.t D1Dy < 0 for A(D’) € X
e 74 on HX and V = Btr=9,
o (f ema, ¢ € F(V)) sutible test vector, (fp,, ¢p,) its twist.
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Application to Kolyvagin's Problem
Let &7 be a quadratic twist family of elliptic curves over Q.
o (%1,:{2,/4): 6(%1) = —1, 6(3':2) =+41s.t D1D, < 0 for ADi) e X;;
e 74 on HX and V = Btr=9,
o (f ema, ¢ € F(V)) sutible test vector, (fp,, ¢p,) its twist.
Consider the integral structure

f 1 N
19¢D;1 = pUD1 . 79D1,07 up, = 5 r‘%l;‘l Zi:ordp H_[an(A( /))7

and ¥p, o primitive.
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Application to Kolyvagin's Problem
Let &7 be a quadratic twist family of elliptic curves over Q.
o (X1,%2,A): e(¥1)=—1, €(X2) = +1st DiDy < 0 for AP € %
e 74 on HX and V = Btr=9,
o (f ema, ¢ € F(V)) sutible test vector, (fp,, ¢p,) its twist.
Consider the integral structure

f, 1 (D;
19¢DDll = p“P1 - Ip, 0, Dy = 5 mi nZord are"(A )),

and ¥p, o primitive. It follows from ARI and certain arithmetic Whittaker period
formula that

AP ex, P RA(DI)QZ/\/ D1 AD2)ex, P Q/EAZ/\/ D2 ’

where €; = signD;, is equal to

fo
QF Q- (U 4y VD1 ,0INT
1) +ordy(f,f) —~2—"2—+2 min ord = —,
( ) p( ) 2L(1 TA, ad) A1) ex, P (fDl, fDl)RA(Dl)QﬂlA

where (1) involves local integrals with test vectors, which can be made explicit.
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