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Reynolds experiment in 1883

Figure: Reynolds experiment

The state of the flow is determined
by a dimensionless constant called
Reynolds number:

Re = ρLU/µ

where ρ density, L diameter, U ve-
locity, µ viscosity.
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Mathematical model

Navier-Stokes equations:

(NS)


∂tv − ν∆v + v · ∇v + ∇P = 0 in R+ × Ω,

∇ · v = 0 in R+ × Ω,

v = 0 on ∂Ω,

where v is the velocity, P is the pressure, and ν = Re−1 is the
viscosity coefficient.

Fluid domain Ω:
Channel domain:

Ω =
{
(x , y , z) : x ∈ TorR, z ∈ T, y ∈ (−1,1)

}
.

Pipe domain:

Ω =
{
x = (x , y , z) : r =

√
x2 + y2 < 1, z ∈ Tor z ∈ R

}
.
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Examples of laminar flow

Plane Couette flow: (y ,0,0)

Plane Poiseuille flow:(1 − y2,0,0)

Pipe Poiseuille flow:(0,0,1 − r2)

Our task is to study the stability and instability of laminar flows
at high Reynolds number.
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Eigenvalue analysis

Consider the linearized NS system around the laminar flow:

∂tu − Lνu = 0.

Seek the solution eλtU, where U solves the eigenvalue problem:

LνU = λU.

The system is stable if Reλ < 0 and unstable if Reλ > 0.

Plane Couette flow: stable for any Reynolds number(Romanov,

Funk. Anal. 1973).
Plane Poiseuille flow: stable for Reynolds number less than
5772(Orszag, JFM 1971).
Pipe Poiseuille flow: stable at high Reynolds number(Chen-

Wei-Zhang, CPAM online).
Conjecture: Pipe Poiseuille flow is stable for any Reynolds number.
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Subcritical transition

Experiment and numerical simulation indicated that these flows
could transit to turbulence when Reynolds number exceeds a
certain critical number. For example,

Plane Couette flow: transition at Re = 350.

Plane Poiseuille flow: transition at Re = 1000.

This transition number is much smaller than the critical num-
ber predicted by eigenvalue analysis. This kind of transition
is called subcritical transition(Sommerfeld paradox). Under-
standing this transition mechanism is of great interest in fluid
mechanics.
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Transition threshold problem

To shed some light on the transition mechanism, Trefethen et
al(Science 1993) proposed Transition threshold problem:
How much disturbance will lead to the instability of the flow and the
dependence of disturbance on Reynolds number?

Mathematical formulation(Bedrossian-Germain-Masmoudi, BAMS 2019):

Given a norm ‖ · ‖X , find a β = β(X) such that

‖u0‖X � Re−β =⇒ Stability ,

‖u0‖X � Re−β =⇒ Instability .

The exponent β is referred to as the transition threshold.
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Numerics and asymptotic analysis results

The following table shows numerical result (Lundbladh et al, Transition,

Turbulence and Combustion 1994) and asymptotic analysis result (Chap-

man, JFM 2002) for Couette flow and Poiseuille flow:

Laminar flow Perturbation Numerical analysis Asymptotic analysis

Couette
flow

streamwise
perturbation β = 1 β = 1

oblique
perturbation β = 5

4 β = 1

Poiseuille
flow

streamwise
perturbation β = 7

4 β = 3
2

oblique
perturbation β = 7

4 β = 5
4
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Mathematical analysis results

3-D Couette flow in Ω = T ×R × T:

If X is Gevrey class, then β ≤ 1(Bedrossian-Germain-Masmoudi, Mem

AMS 2021).
If X = HN, then β ≤ 3

2 (Bedrossian-Germain-Masmoudi, Ann Math 2017).
If X = H2, then β ≤ 1(Wei-Zhang, CPAM 2021).

3-D Couette flow in Ω = T × [−1,1] × T:

If X = H2, then β ≤ 1(Chen-Wei-Zhang, Mem AMS in press).

3-D Kolmogorov flow in Ω = T2πδ × T × T, δ < 1:

If X = H2, then β ≤ 7
4 (Li-Wei-Zhang, CPAM 2020).
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Key factors influencing the threshold

The following factors play a crucial role in determining the tran-
sition threshold:

3-D lift-up: instability mechanism.
Boundary layer: wall modes and also central modes for
the Poiseuille flow.
Inviscid damping: vorticity mixing
Enhanced dissipation: vorticity mixing
Null structure of nonlinear terms

The main difficulty of this problem is to reveal how these bad
effects and good effects influence nonlinear stability via complex
nonlinear interactions.
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Linear inviscid damping

Consider the linearized 2-D Euler equation around shear flow
(U(y),0) in a finite channel:

∂tω+Lω = 0,

where ω = ∂xv2
− ∂yv1 is the vorticity and

L = U(y)∂x + U′′(y)∂x(−∆)−1.

In particular, for the Couette flow, we have

∂tω+ y∂xω = 0.

In 1907, Orr found that the velocity could decay to zero as t →
∞. This phenomenon is so called inviscid damping, which is
similar to Landau damping in plasma physics.
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Linear inviscid damping: monotone flow

Theorem. (Wei-Zhang-Zhao, CPAM 2018)

Let U(y) ∈ C4([0,1]) be a monotone function. Assume that
the linearized operator L has no embedding eigenvalues. If∫
T
ω0(x , y)dx = 0 and Pdω0 = 0, where Pd is the spectral pro-

jection to σd(L), then it holds that
1. if ω0(x , y) ∈ H−1

x H1
y , then

‖v(t)‖L2 ≤ C〈t〉−1
‖ω0‖H−1

x H1
y
;

2. if ω0(x , y) ∈ H−1
x H2

y , then

‖v2(t)‖L2 ≤ C〈t〉−2
‖ω0‖H−1

x H2
y
.

Remark.The spectral assumption holds automatically when the flow
has no inflection points.
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Linear inviscid damping: symmetric flow

Consider a class of symmetric flow(Poiseuille flow y2 ):

U(y) = U(−y), U′(y) > 0 for y > 0, U′(0) = 0 and U′′(0) > 0.

Theorem.(Wei-Zhang-Zhao, Ann PDE 2019)

Assume that L has no embedding eigenvalues.
If

∫
T
ω0(x , y)dx = 0 and Pdω0 = 0, then it holds that

‖v(t)‖L2 ≤ C〈t〉−1
‖ω0‖H−1/2

x H1
y
,

‖v2(t)‖L2 ≤ C〈t〉−2
‖ω0‖H1/2

x H2
y
.

Remark. For general non-monotone shear flows, we can prove linear
inviscid damping in the sense of ‖̂v(·, α, ·)‖L2

t ,y
≤ C for any α , 0.
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Linear inviscid damping: Kolmogorov flow

Consider the Kolmogorov flow U(y) = sin y or cos y in Ω ={
(x , y) : x ∈ T2πδ, y ∈ T

}
with δ < 1.

Theorem.(Wei-Zhang-Zhao, Adv Math 2020)

If
∫
T
ω0(x , y)dx = 0, then it holds

‖v(t)‖L2 ≤ C〈t〉−1
‖ω0‖H−1/2

x H1
y
,

‖v2(t)‖L2 ≤ C〈t〉−2
‖ω0‖H1/2

x H2
y
.

Remark. For non-monotone shear flows, except the vorticity mix-
ing, a new dynamical phenomenon called vorticity depletion(Bouchet-
Morita, Physics D 2010) has a crucial effect:

lim
t→∞

ω(t , x , yc) = 0 when U′(yc) = 0.

See [Wei-Zhang-Zhao, Ann PDE 2019] for rigorous proof.
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Linear inviscid damping: methods of the proof

The key ingredient of the proof is to solve the inhomogeneous
Rayleigh equation: for c = cr ± iε, cr ∈ RanU, ε > 0

(U − c)(Φ′′ − α2Φ) − U′′Φ = F , Φ(−1) = Φ(1) = 0.

Direct method(Wei-Zhang-Zhao, CPAM 2018): construct linearly
independent solutions for homogeneous Rayleigh equation.
Compactness method(Wei-Zhang-Zhao, Ann PDE 2019):

‖Φ‖H1(−1,1) ≤ C‖F‖H1(−1,1).

Contradiction-compactness argument and blow-up analysis
near critical points of U(y).
Vector field method(Wei-Zhang-Zhu, CMP 2020):

[∂t + U∂x ,X ] = 0, X =
1
U′
∂y + t∂x .

Z. Zhang Peking University Hydrodynamic stability and transition threshold problem



Nonlinear inviscid damping

Nonlinear inviscid damping in Gevrey class 2:

Couette flow(Bedrossian-Masmoudi, Publ Math IHES 2015)
Stable monotone shear flow(Ionescu-Jia, arXiv 2020 Acta Math)
Stable monotone shear flow(Masmoudi-Zhao, arXiv 2020)

Negative results:

Existence of steady non-shear solution near Couette flow in
Sobolev space(Lin-Zeng, ARMA 2011).
Nonlinear instability in Gevrey class 2+(Deng-Masmoudi, arXiv

2018 CPAM).
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Linear enhanced dissipation

The linearized 2-D NS equation around Couette flow:

∂tω − ν∆ω+ y∂xω = 0, ω(0) = ω0.

If x ∈ T and y ∈ R, then we have

ω̂(t , k , η) = e−ν
∫ t
0 (k

2+(η−kτ)2)dτω̂0(k , η).

Due to
∫ t

0 (k 2 + (η − kτ)2)dτ ≥ ck 2t3, if
∫
T
ω0(x , y)dx = 0, then

‖ω(t)‖L2 ≤ Ce−cν
1
3 t
‖ω0‖L2 .

This decay rate ν
1
3 is much bigger than the diffusion rate ν. This

phenomenon is so called enhanced dissipation.
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LInear enhanced dissipation

The linearized 2-D NS equation around Kolmogorov flow:

∂tω+Lν(t)ω = 0, ω(0) = ω0,

where

Lν(t) = −ν∆ + cos y∂x(1 + ∆−1).

Beck and Wayne’s conjecture(Proc Roy Soc Edinburgh Sect A 2013):

If
∫
T2πδ

ω0(x , y)dx = 0 and δ < 1, then it holds that

‖ω(t)‖L2 ≤ Ce−cν
1
2 t
‖ω0‖L2 .
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Linear enhanced dissipation

Three approaches solving Beck and Wayne’s conjecture:

1. Wave operator method(Wei-Zhao-Zhang, Adv Math 2020): con-
struct a wave operator D so that

D cos y
(
1 + (∂2

y − α
2)−1

)
ω = cos yDω.

2. Resolvent estimate method (Li-Wei-Zhang, CPAM 2020):

‖(Lν − iλ)w‖L2 ≥ Cν
1
2 |β|

1
2 (1 − β−2)‖w‖L2 ,

where |β| > 1 and

Lνw = −ν∂2
yw + iβ cos y

(
w + ϕ

)
, (∂2

y − β
2)ϕ = w.

Enhanced dissipation estimate by Gearhart-Prüss type lemma
for m-accretive operator(Wei, SCM 2020).
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Linear enhanced dissipation

3. Hypocoercivity method(Wei-Zhang, SCM 2019):

∂tω+ ν(−∂2
y + β2)ω − iβBω = 0, B = cos y

(
1 + (∂2

y − β
2)−1

)
.

The key idea is to introduce the energy functional

Φ(t) = E0(t) + α0νtE1(t) + β0νt2
E1(t) + γ0νt3

E2(t),

where α0, β0, γ0 are suitable positive constants and

E0(t) = ‖ω(t)‖2∗ , E1(t) = ‖∂yω(t)‖2∗ , E2(t) = ‖ω(t)‖2∗ − ‖Bω(t)‖2∗ ,

E1(t) = Re〈∂yω(t), iCω(t)〉∗, C = −[∂y ,B],

with new inner product 〈u,w〉∗ = 〈u,w − (β2
− ∂2

y)−1w〉.

Remark. An independent proof (Ibrahim-Maekawa-Masmoudi, Ann PDE 2019);
Compactness and resolvent method for general monotone flows(Chen-

Wei-Zhang, preprint).
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Chapman toy model
Consider a toy model introduced by Chapman(JFM 2002):

dψ1

dt
+ εψ1 = φ2

2,

dφ1

dt
+ εφ1 − ψ1 = 0,

dψ2

dt
+ δψ2 = φ1φ2,

dφ2

dt
+ δφ2 − ψ2 = 0.

In physics, ψ1: streamwise vorticity, φ1: streamwise streak,
(ψ2, φ2): oblique modes.

Enhanced dissipation: 0 < ε� δ� 1(Couette flow δ = ε
1
3 ).

φ1 undergoes a transient growth due to lift-up term ψ1:

|φ1(t)| . te−εt . ε−1 for t ≤ ε−1.
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Chapman toy model: scaling analysis

We introduce the following scaling:

t = ε−1 t̂ , φ1 = δ2φ̂1, ψ1 = εδ2ψ̂1, φ2 = εδφ̂2, ψ2 = εδ2ψ̂2.

The rescaled toy system takes as follows

dψ̂1

dt̂
+ ψ̂1 = φ̂2

2,

dφ̂1

dt̂
+ φ̂1 − ψ̂1 = 0,

ε
δ

dψ̂2

dt̂
+ ψ̂2 = φ̂1φ̂2,

ε
δ

dφ̂2

dt̂
+ φ̂2 − ψ̂2 = 0.
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Chapman toy model: secondary instability

We rewrite the system of oblique modes as follows

∂t

(
ψ̂2

φ̂2

)
=
δ
ε

(
−1 φ̂1
1 − 1

) (
ψ̂2

φ̂2

)
.

Secondary instability of oblique modes:

if φ̂1 > 1, the system has an unstable eigenvalue.

if φ̂1 < 1, the system is stable and the oblique modes will
rapidly decay to zero due to δ

ε � 1.

This scaling analysis indicates that the transition amplitude of
this toy model is εδ2.
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Chapman toy model: transition route

Transition route: Streamwise vorticity→ Streamwise streak→ Sec-
ondary instability of oblique modes.

streamwise vorticity
ψ1 ∼ εδ2

streamwise streak
φ1 ∼ δ2

obique modes
ψ2 ∼ εδ2, φ2 ∼ εδ

secondary instability
of obique modes

×ε−1 (lift up)

φ2
2 × ε

−1

(nonlinear
interaction)

φ1 � δ2 φ1 � δ2

Z. Zhang Peking University Hydrodynamic stability and transition threshold problem



Perturbation NS system

We introduce the perturbation around Couette flow (y ,0,0):

v = (y ,0,0) + u, ∇ × v = (0,0,−1) + ω.

Consider the coupled system of (∆u2, ω2):
∂t (∆u2) − ν∆2u2 + y∂x∆u2 = F1,

∂tω
2
− ν∆ω2 + y∂xω

2 + ∂zu2 = F2,

u2(t , x ,±1, z) = ∂yu2(t , x ,±1, z) = ω2(x ,±1, z) = 0,

where

F1 = −(∂2
x + ∂2

z)(u · ∇u2) + ∂y
[
∂x(u · ∇u1) + ∂z(u · ∇u3)

]
,

F2 = −∂z(u · ∇u1) + ∂x(u · ∇u3).
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Perturbation NS system

Let k 2 = α2 + β2. Then (u2
αβ, ω

2
αβ) satisfies

(
∂t + iαy + ν(−∂2

y + k 2)
)
(−∂2

y + k 2)u2
αβ = Fα,β1 ,(

∂t + iαy + ν(−∂2
y + k 2)

)
ω2
αβ + iβu2

αβ = Fα,β2 .

When k , 0, nonlinear terms Fαβ1 and Fαβ2 behave as

Fαβ1 ∼
{
(u2u2

yyy + u2
yu2

yy) + (ω2u2
yy + u2ω2

yy + u2
yω

2
y)

+ (u2u2
y + ω2ω2

y + u2ω2)
}
αβ
,

Fαβ2 ∼
(
ω2ω2 + u2u2

yy + u2ω2
y + u2

yω
2
)
αβ
.

For Fαβ1 , the middle part is the worst nonlinear interaction.
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Secondary instability of wall mode

Consider the linearized NS system
(
∂t + iαy + ν(−∂2

y + k 2)
)
(−∂2

y + k 2)u2
αβ = 0,(

∂t + iαy + ν(−∂2
y + k 2)

)
ω2
αβ + iβu2

αβ = 0.

Seek the solution u2
αβ = e−iαλtv , ω2

αβ = e−iαλtη. Then (v , η)

solves the following eigenvalue system(R = ν−1):
i(λ − y)(∂2

y − k 2)v +
1

Rα
(∂2

y − k 2)2v = 0,

− i(λ − y)η −
1

Rα
(∂2

y − k 2)η+
iβ
α

v = 0.

Question: how large the perturbation induced by nonlinear interac-
tions could excite unstable eigenvalues?

Z. Zhang Peking University Hydrodynamic stability and transition threshold problem



Secondary instability of wall mode

Following Chapman’s asymptotic analysis, we consider a class
of eigenvalues with imaginary part of order (αR)−

1
3 . This class

is called wall modes, whose eigenfunctions are localized in a
region of order (αR)−

1
3 near the boundary.

To excite unstable eigenvalues, we introduce a perturbation F
into the eigenvalue equation of v:

i(λ − y)(∂2
y − k 2)v +

1
Rα

(∂2
y − k 2)2v = F .

For wall modes, in the inner layer, we have

i(λ − y)(∂2
y − k 2)v +

1
Rα

(∂2
y − k 2)2v

∼ (αR)−
1
3 (αR)

2
3 v + (Rα)−1(Rα)

4
3 v ∼ (αR)

1
3 v .
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Secondary instability of wall mode

The worst nonlinear interaction:

F ∼ η̄vyy ∼ η̄(αR)
2
3 v , η̄ ∼ ω2

0β.

To excite unstable eigenvalues, F should have the same scale
as the left hand side. So, η̄ should be of order (αR)−

1
3 in the

inner layer, which requires η̄ ∼ O(1) in the outer layer due to
∂y η̄ ∼ η̄ and η̄(−1) = 0.
On the other hand, due to the lift-up effect, we have

Rv̄ ∼ η̄ = O(1) =⇒ v̄ ∼ R−1.

This scaling analysis suggests that the transition threshold β = 1
for the Couette flow.
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Transition threshold for 3-D Couette flow

Theorem.(Chen-Wei-Zhang, Mem AMS in press)

There exist constants c,C > 0 independent of ν so that if
‖u0‖H2 ≤ c0ν, then it holds

1. Uniform bounds of streamwise modes:

‖ū1(t)‖H2 + ‖ū1(t)‖L∞ ≤ Cν−1 min(νt + ν2/3,e−νt )‖u0‖H2 ,

‖ū2(t)‖H2 + ‖ū3(t)‖H1 + ‖(ū2, ū3)(t)‖L∞ ≤ Ce−νt‖u0‖H2 .

2. Uniform bounds of oblique modes:

‖(∂x , ∂z)∂xu,(t)‖L2 + ν1/6
‖(u1
,,u

3
,)(t)‖L∞ ≤ Ce−cν1/3t

‖u0‖H2 ,

‖(∂x , ∂z)∇x ,y ,zu2
,(t)‖L2 + ‖u2

,(t)‖L∞ ≤ Ce−cν1/3t
‖u0‖H2 .

Here ū =
∫
T

udx and u, = u − ū.
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Key ingredients(I): space-time estimates

To control ∆u2 and ω2, we need to consider the linearized NS
system with Navier-slip boundary condition:∂tω − ν(∂2

y − k 2)ω+ iαyω = iαf1 + ∂y f2 + iβf3,

ω|y=±1 = 0, ω|t=0 = ωin,
(1)

and with non-slip boundary condition:
∂tω − ν(∂2

y − k 2)ω+ iαyω = iαf1 + ∂y f2 + iβf3,

(∂2
y − k 2)ϕ = ω, ∂yϕ|y=±1 = ϕ|y=±1 = 0,

ω|t=0 = ωin.

(2)
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Key ingredients(I): space-time estimates

For the linearized system (2), we prove that

|η|‖eaν
1
3 t (∂y , k )ϕ‖L∞L2 + ν

1
4 ‖eaν

1
3 tω‖L∞L2 + |αk |

1
2 ‖eaν

1
3 t (∂y , k )ϕ‖L2L2

+ ν
3
4 ‖eaν

1
3 t∂yω‖L2L2 + ν

1
2 |k |‖eaν

1
3 tω‖L2L2

≤ C
(
|k |−1
‖∂yωin‖L2 + ‖ωin‖L2

)
+ Cν−

1
2 ‖eaν

1
3 t (f1, f2, f3)‖L2L2 .

Remarks.

The rapid decay eaν
1
3 t is due to enhanced dissipation.

|αk |
1
2 ‖eaν

1
3 t (∂y , k )ϕ‖L2L2 is due to inviscid damping.

The loss ν
1
4 in front of ‖eaν

1
3 tω‖L∞L2 is due to the boundary

layer effect.
The proof is based on resolvent estimate method developed
in [Chen-Li-Wei-Zhang, ARAM 2020].
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Key ingredients(II): exclude secondary instability

Consider the linearized NS system around the flow
(
V(y , z),0,0

)
,

which is a small perturbation of Couette flow, i.e.,

‖V − y‖H4 ≤ ε0, V(y , z) − y |y=±1 = 0,

with ε0 small enough but independent of ν. We denote

Aν,Vu = P
(
ν∆u − V∂xu −

(
∂yV(u2 + κu3),0,0

))
,

here P is the Leray projection and κ = ∂zV/∂yV . The linearized
NS system takes

∂tu, −Aν,Vu, = F .

The key point is to exclude the existence of unstable eigenval-
ues of Aν,V .
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Key ingredients(II): exclude secondary instability

Motived by [Wei-Zhang, CPAM 2021], the key idea is to introduce W =
u2 + κu3 and U = u3. The problem is reduced to solving the
following OS system:
− ν∆W + iα(V(y , z) − λ)W + (∂y + κ∂z)pL1

= G1 − ν(∆κ)U − 2ν∇κ · ∇U,

− ν∆U + iα(V(y , z) − λ)U + ∂zpL1 = G2,

∆pL1 = −2iα∂yVW , W = ∂yW = U = 0 on y = ±1,

where λ ∈ R. It holds that

ν
1
3

(
‖∂2

xU‖2L2 + ‖∂x(∂z − κ∂y)U‖2L2

)
+ ν

(
‖∇∂2

xU‖2L2 + ‖∇∂x(∂z − κ∂y)U‖2L2

)
+ ν

1
3 ‖∂x∇W‖2L2 + ν‖∂x∆W‖2L2 + ν

5
3 ‖∂x∆U‖2L2

≤ Cν−1
(
‖∇G1‖

2
L2 + ‖∂xG2‖

2
L2

)
.
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Key ingredients(III): energy functional

(1) Energy functional of streamwise modes.

A key decomposition: u1
= u1,0

+ u1,, with
(∂t − ν∆)ū1,0 + ū2 + ū2∂y ū1,0 + ū3∂z ū1,0 = 0,

(∂t − ν∆)ū1,, + ū2∂y ū1,, + ū3∂z ū1,, + u, · ∇u1
, = 0,

ū1,0
|y=±1 = ū1,,

|y=±1 = 0,

ū1,0
|t=0 = 0, ū1,,

|t=0 = ū1(0).

The main reason making this decomposition is to avoid estimat-
ing high order derivatives of oblique modes.
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Key ingredients(III): energy functional

The energy E1 of ū1 is defined by

E1 =‖ū1,0
‖L∞H4 + ν−1

‖∂t ū1,0
‖L∞H2 + ν−

1
2 ‖∂t ū1,0

‖L2H3

+ ν−2/3
(
‖ū1,,

‖L∞H2 + ν
1
2 ‖∇ū1,,

‖L2H2

)
.

The energy E2 of (ū2, ū3) is defined by

E2 =‖∆ū2
‖L∞L2 + ν

1
2 ‖∇∆ū2

‖L2L2 + ν
1
2 ‖∆ū2

‖L2L2 + ν−
1
2 ‖∂t∇ū2

‖L2L2

+ ‖∇ū3
‖L∞L2 + ν

1
2 ‖∆ū3

‖L2L2 + ν
1
2 ‖∇ū3

‖L2L2 + ν−
1
2 ‖∂t ū3

‖L2L2

+ ‖min((ν
2
3 + νt)

1
2 ,1 − y2)∆ū3

‖L∞L2

+ ν−
1
2 ‖min((ν

2
3 + νt)

1
2 ,1 − y2)∇∂t ū3

‖L∞L2

+ ν
1
2 ‖min((ν

2
3 + νt)

1
2 ,1 − y2)∇∆ū3

‖L2L2 .

The estimates of E1,E2 are based on direct energy estimate for
the system of streamwise modes.
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Key ingredients(III): energy functional

(2) Energy functional of oblique modes(semilinear part):

E3 = E3,0 + E3,1,

where

E3,0 =ν
1
2 ‖e2εν

1
3 t (∂x , ∂z)∆u2

,‖L2L2 + ν
3
4 ‖e2εν

1
3 t
∇∆u2

,‖L2L2

+ ‖e2εν
1
3 t (∂x , ∂z)∇u2

,‖L∞L2 + ‖e2εν
1
3 t∂x∇u2

,‖L2L2

+ ‖e2εν
1
3 t (∂2

x + ∂2
z)u3
,‖L∞L2 + ν

1
2 ‖e2εν

1
3 t (∂2

x + ∂2
z)∇u3

,‖L2L2 ,

E3,1 =ν
1
3
(
‖e2εν

1
3 t
∇ω2
,‖L∞L2 + ν

1
2 ‖e2εν

1
3 t ∆ω2

,‖L2L2

)
.

The estimate of E3 is based on space-time estimates for the
linearized NS system (1) and (2).
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Key ingredients(III): energy functional

(3) Energy functional of oblique modes(quasilinear part):

E4 = ν1/6
‖e3εν1/3t∂2

xu2
,‖L2L2 + ν1/6

‖e3εν1/3t∂2
xu3
,‖L2L2 .

This part is crucial to control nonlinear interactions with lift-up
effect such as u1∂xuj

, and uj
,∂ju

1
(j = 2,3):

e2εν1/3t
∣∣∣u1∂xuj

,

∣∣∣ . (νt)e2εν1/3t
∣∣∣∂xuj

,

∣∣∣ . e3εν1/3t
∣∣∣∂xuj

,

∣∣∣.
The estimate of E4 is based on space-time estimates for the
coupled system of (U,W).

In conclusion:

E1 ∼ o(1), E2 ∼ o(ν), E3 ∼ o(ν), E4 ∼ o(ν).
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Open problems

Plane Couette flow in R × [−1,1] × T: conjecture: β < 1.

Plane Poiseuille flow in T × [−1,1] × T: conjecture: β = 3
2 .

Kolmogorov flow in T2πδ ×T×T, δ < 1: conjecture: β = 3
2 .

Known result β ≤ 7
4 (Li-Wei-Zhang, CPAM 2020).

Pipe Poiseuille flow:
Experiment result(Hof-Juel-Mullin, PRL 2004): β = 1;
Numerical result(Mellibovskya-Meseguer, Phys Fluids 2007): β = 1;
Asymptotic analysis result: β = 1.

Conjecture: β = 1.

Other physical system such as Boussinesq system, MHD,
Compressible NS etc.
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Thanks a lot for your attention!
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