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When Erdés forgot to ask the general question
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PAUL ERDOS.

ON SEQUENCES OF INTEGERS NO ONE OF
WHICH DIVIDES THE PRODUCT OF TWO
OTHERS AND ON SOME RELATED PROBLEMS
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When Erdés forgot to ask the general question

The argument was really based upon the following theorem fo
graphs. Let 2% points be given. We split them into two classes eac
containing & of them. The points of the two classes are connected b
segments such that the segments form no closed quadrilateral. The
the number of segments is less than 3%%. Putting #=n"" we obtai
our result.
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Turan's problem

For a graph F and ne IN set

ex(n, F) = max{e(G): |V(G)| = n and G is F-free}
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Turan's problem

For a graph F and ne IN set

ex(n, F) = max{e(G): |V(G)| = n and G is F-free}

and
. ex(n,F)
7(F) = lim —2—~.
F ==
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Turan's problem

For a graph F and ne IN set

ex(n, F) = max{e(G): |V(G)| = n and G is F-free}
and

7(F) = lim
F=mm

Theorem (Mantel, Turan, Erdés, Stone, Simonovits)

For every graph F (with at least one edge) we have

x(F)—2

k) = x(F)—1
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Turan's problem

For a graph F and ne IN set

ex(n, F) = max{e(G): |V(G)| = n and G is F-free}

and

Theorem (Mantel, Turan, Erdés, Stone, Simonovits)

For every graph F (with at least one edge) we have

x(F)—2
w(F) = .
(F) x(F) -1
m set of possible Turan-densities 1 = {0, %, %, %, ,—::f, }
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Hypergraphs

Uniform hypergraphs
m H=(V,E) where V is finite and E < V(K = {X < V: |X| = k}
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Hypergraphs

Uniform hypergraphs
m H=(V,E) where V is finite and E < V(K = {X < V: |X| = k}
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Hypergraphs

Uniform hypergraphs
m H=(V,E) where V is finite and E < V(K = {X < V: |X| = k}
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Turan-type problems for hypergraphs

Basic definitions easily extend:

ex(n, F) = max{e(H): [V(H)| = n and H is F-free}

and (n. F)
a(F) = lim 2%
=m0
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Turan-type problems for hypergraphs

Basic definitions easily extend:

ex(n, F) = max{e(H): [V(H)| = n and H is F-free}

and (n. F)
a(F) = lim 2%
=m0

m Erdés 1964: w(F) = 0 < F is k-partite k-uniform
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Turan-type problems for hypergraphs
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ex(n, F) = max{e(H): [V(H)| = n and H is F-free}

and (n. F)
a(F) = lim 2%
=m0

m Erdés 1964: w(F) = 0 < F is k-partite k-uniform

m only few results are known
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Turan-type problems for hypergraphs

Basic definitions easily extend:

ex(n, F) = max{e(H): [V(H)| = n and H is F-free}

and (n. F)
a(F) = lim 2%
=m0

m Erdés 1964: w(F) = 0 < F is k-partite k-uniform

m only few results are known

Example: de Caen & Fiiredi 2000
m(Fano) = 3 Fiiredi & Simonovits 2005

Keevash & Sudakov 2005

Reiher & Bellmann 2019
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Prominent open problems

K™
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Prominent open problems

e
X
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Prominent open problems

Frankl & Furedi 1984 and Baber & Talbot 2011

W
/A 2/7 = 0.285714 < n(K\¥7) < 0.2871
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Prominent open problems

K™ Frankl & Fiiredi 1984 and Baber & Talbot 2011

W
/A 2/7 = 0.285714 < m(K}?™) < 0.2871

o
S
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Prominent open problems

K™ Frankl & Fiiredi 1984 and Baber & Talbot 2011
/ 2/7 = 0.285714 < 7(K\Y™) < 0.2871
KAE:J’) Turan 1941 and Razborov/Baber 2010

5/9 = 05 < m(K®) < 0.5615

N
S
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Uniformly dense hypergraphs
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Uniformly dense hypergraphs

m since Turan-problems for hypergraphs are hard, we restrict to the class
of uniformly dense hypergraphs,
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Uniformly dense hypergraphs

m since Turan-problems for hypergraphs are hard, we restrict to the class
of uniformly dense hypergraphs, i.e.,

exy.d.(n, F) = max{e(H): |V(H)| = n, His F-free,

and H is “uniformly dense"}

and =
Tud. (F) = lim supiexu'd‘(n’ )

n—o (k)
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Uniformly dense hypergraphs

m since Turan-problems for hypergraphs are hard, we restrict to the class
of uniformly dense hypergraphs, i.e.,

exy.d.(n, F) = max{e(H): |V(H)| = n, His F-free,

and H is “uniformly dense"}

and =
Tud. (F) = lim supiexu'd‘(n’ )

)

m by definition m, 4 (F) < 7(F) for every F
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Uniformly dense hypergraphs

m since Turan-problems for hypergraphs are hard, we restrict to the class
of uniformly dense hypergraphs, i.e.,

exud.(n, F) = max{e(H): |V(H)| =n, His F-free,
and H is “uniformly dense"}
and

F
T (F) = limsup exud.(n, F)

o (k)
m by definition 7, q.(F) < w(F) for every F
m we shall consider different notions of uniformly dense hypergraphs
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Uniformly dense graphs
Definition
A graph G = (V,E) is (e, p)-bidense, if
ec(U, W) = p|U||W| —¢|V|?

for all subsets U, W < V.
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Uniformly dense graphs
Definition
A graph G = (V,E) is (e, p)-bidense, if
ec(U, W) = p|U||W| - e |V

for all subsets U, W < V.

We may consider:

Tu.a.(F) = sup {p € [0,1]: forall ¢ > 0 and n € IN there is an
F-free, (e, p)-bidense graph G with |V (G)| = n}

Mathias Schacht Restricted extremal problems for hypergraphs July 2022



Uniformly dense graphs
Definition
A graph G = (V,E) is (e, p)-bidense, if
ec(U, W) = p|U||W| - e |V

for all subsets U, W < V.

We may consider:

Tu.a.(F) = sup {p € [0,1]: forall ¢ > 0 and n € IN there is an
F-free, (e, p)-bidense graph G with |V (G)| = n}

However:
Tu.d.(F) = 0 for every graph F
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Weakly dense hypergraphs

Definition
A 3-uniform hypergraph H = (V, E) is weakly (e, p)-dense, if for all sets X,
Y, Z < V we have

en(X,Y,2) > p|X||Y]|Z| - |VP.
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Weakly dense hypergraphs

Definition
A 3-uniform hypergraph H = (V, E) is weakly (e, p)-dense, if for all sets X,
Y, Z < V we have

WX, Y, Z) > pIX||Y]|1Z| - |V
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Weakly dense hypergraphs

Definition

A 3-uniform hypergraph H = (V, E) is weakly (e, p)-dense, if for all sets X,
Y, Z < V we have

en(X,Y,2) > p|X||Y]|Z| - |VP.

Consider: The “largest density” p such that for every € > 0 there exists a
weakly (e, p)-dense hypergraph H that contains no copy of F.
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Weakly dense hypergraphs

Definition

A 3-uniform hypergraph H = (V, E) is weakly (e, p)-dense, if for all sets X,
Y, Z < V we have

en(X,Y,2) > p|X||Y]|Z| - |VP.

Consider: The “largest density” p such that for every € > 0 there exists a
weakly (e, p)-dense hypergraph H that contains no copy of F.

m.(F) = sup {p € [0,1]: forall £ > 0 and n € IN there is an F-free,
weakly (g, p)-dense hypergraph H with |V (H n}
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Weakly dense hypergraphs

Definition

A 3-uniform hypergraph H = (V, E) is weakly (e, p)-dense, if for all sets X,
Y, Z < V we have

en(X,Y,2) > p|X||Y]|Z| - |VP.

Consider: The “largest density” p such that for every € > 0 there exists a
weakly (e, p)-dense hypergraph H that contains no copy of F.

m.(F) = sup {p € [0,1]: forall £ > 0 and n € IN there is an F-free,
weakly (g, p)-dense hypergraph H with |V (H n}

m The three dots .~ in the subscript of 7., stand symbolically for the
possible witness sets X, Y, and Z.
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Examples of weakly dense hypergraphs
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Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972

m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)

Mathias Schacht Restricted extremal problems for hypergraphs July 2022



Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972

m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)

= cyclically oriented triangles appear with probability 1/4
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Examples of weakly dense hypergraphs

Random tournament construction Erd6s & Hajnal 1972
m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)
= cyclically oriented triangles appear with probability 1/4
m let Hr = (V, E) with E corresponding to those triangles
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Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972
m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)
= cyclically oriented triangles appear with probability 1/4
m let Hr = (V, E) with E corresponding to those triangles
= for all ¢ > 0 w.h.p. Hr is weakly (g,1/4)-dense
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Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972
m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)
= cyclically oriented triangles appear with probability 1/4
m let Hr = (V, E) with E corresponding to those triangles
= for all ¢ > 0 w.h.p. Hr is weakly (g,1/4)-dense

@ —— O
H+ contains no Kf)_
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Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972
m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)
= cyclically oriented triangles appear with probability 1/4
m let Hr = (V, E) with E corresponding to those triangles
= for all ¢ > 0 w.h.p. Hr is weakly (g,1/4)-dense

H+ contains no Kf)_

|
W...(K‘P)_) > 1/4
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Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972
m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)
= cyclically oriented triangles appear with probability 1/4
m let Hr = (V, E) with E corresponding to those triangles
= for all ¢ > 0 w.h.p. Hr is weakly (g,1/4)-dense

Ht contains no Kf)_
U
W...(K‘P)_) >1/4

m Erdés & Sés 1982 conjectured 7r_-_(K4(3)7) =1/4
m proved by Glebov, Kral & Volec 2016
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Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972
m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)
= cyclically oriented triangles appear with probability 1/4
m let Hr = (V, E) with E corresponding to those triangles
= for all ¢ > 0 w.h.p. Hr is weakly (g,1/4)-dense

Ht contains no Kf)_
U
W...(K‘P)_) >1/4

m Erdés & Sés 1982 conjectured 7r_-_(K4(3)7) =1/4
m proved by Glebov, Kral & Volec 2016
m Link graphs in the example are bipartite and not uniformly dense itself!
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Examples of weakly dense hypergraphs

Random tournament construction Erdés & Hajnal 1972
m let T = (V,A) be a random tournament on n vertices
(orientation of the edges of the complete graph)
= cyclically oriented triangles appear with probability 1/4
m let Hr = (V, E) with E corresponding to those triangles
= for all ¢ > 0 w.h.p. Hr is weakly (g,1/4)-dense

H+ contains no Kf)_

|
W...(K‘P)_) > 1/4

Erdés & Sés 1982 conjectured 7r_-_(K4(3)7) =1/4

proved by Glebov, Kral & Volec 2016

Link graphs in the example are bipartite and not uniformly dense itself!
Open problem (Erdés): Density > 1/4 guarantees some non-bipartite link ?
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without K\ Rodl 1986
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without K\ Rodl 1986

m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf‘) Rodl 1986

m let V = [n] and consider a random colouring ¢: [n]®) — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf‘) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]®) — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)

= the right link of every vertex is bipartite
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)

= the right link of every vertex is bipartite
= for all € > 0 w.h.p. H,, is weakly (¢,1/2)-dense
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf) Rodl 1986
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)

= the right link of every vertex is bipartite
= for all € > 0 w.h.p. H,, is weakly (¢,1/2)-dense

- ® H,, contains no Kf})

L
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)

= the right link of every vertex is bipartite
= for all € > 0 w.h.p. H,, is weakly (¢,1/2)-dense

e H, contains no KP)
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
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= for all € > 0 w.h.p. H,, is weakly (¢,1/2)-dense

H, contains no Kf})

Mathias Schacht Restricted extremal problems for hypergraphs July 2022



Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without K£3) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)

= the right link of every vertex is bipartite
= for all € > 0 w.h.p. H,, is weakly (e,1/2)-dense

H,, contains no KP)
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without K£3) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)

= the right link of every vertex is bipartite
= for all € > 0 w.h.p. H,, is weakly (e,1/2)-dense

H,, contains no KP)

y
7r.-.(K£3)) >1/2
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n]® — {red, blue}
mlet H, = (V,E) with {i <j < k} € E < o(ij) # ¢(ik)

= the right link of every vertex is bipartite
= for all € > 0 w.h.p. H,, is weakly (¢,1/2)-dense

H, contains no KP)

y
(K3 > 1/2

m These examples led to the more technical notions in the hypergraph
regularity projects of Gowers and Rodl et al.
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Examples of weakly dense hypergraphs cont'd

Weakly dense hypergraph without Kf) Rodl 1986
m let V = [n] and consider a random colouring ¢: [n](®) — {red, blue}
mlet H, = (V,E) with {i <j < k} € E <= o(ij) # ¢(ik)

= the right link of every vertex is bipartite

= for all e > 0 w.h.p.

H, contains no Kf)
U
m.(KY) > 1/2

m These examples led to the more technical notions in the hypergraph
regularity projects of Gowers and Rodl et al.

m Hypergraph regularity method turned out to be a useful tool for
addressing extremal problems for uniformly dense hypergraphs
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Szemerédi's regularity lemma

Regularity Lemma (informal version)

i

Every large graph G can be decomposed into “relatively few,” mostly

random-like (uniform edge distribution) bipartite subgraphs.
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Szemerédi's regularity lemma

Regularity Lemma (informal version)

i

Every large graph G can be decomposed into “relatively few,” mostly

random-like (uniform edge distribution) bipartite subgraphs.
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Szemerédi's regularity lemma

Regularity Lemma (informal version)

i

Every large graph G can be decomposed into “relatively few,” mostly

random-like (uniform edge distribution) bipartite subgraphs.
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Regularity for 3-uniform hypergraphs

Vv Setup:
e given graph G = (V, Eg)
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Regularity for 3-uniform hypergraphs
Vv Setup:

e given graph G = (V, Eg)
triangles in G
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Regularity for 3-uniform hypergraphs
Vv Setup:

e given graph G = (V, Eg)
K3(G) = set of triangles in G
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Regularity for 3-uniform hypergraphs

Setup:
e given graph G = (V, Eg)
K3(G) = set of triangles in G
e 3-uniform hypergraph H = (V, Ey)
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Regularity for 3-uniform hypergraphs

Setup:
e given graph G = (V, Eg)
K3(G) = set of triangles in G
e 3-uniform hypergraph H = (V, Ey)
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Regularity for 3-uniform hypergraphs

Setup:
e given graph G = (V, Eg)
K3(G) = set of triangles in G
e 3-uniform hypergraph H = (V, Ey)
Density with respect to G:
|Ey 0 K3(G)

IKs(G)|
where d(H | G) = 0 if G is triangle-free.

d(H | G)
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Regularity for 3-uniform hypergraphs

Setup:
e given graph G = (V, Eg)
K3(G) = set of triangles in G
e 3-uniform hypergraph H = (V, Ey)
Density with respect to G:
|Ey 0 K3(G)

IKs(G)|
where d(H | G) = 0 if G is triangle-free.

d(H | G)

Definition (H is e-regular with respect to G)

For all subgraphs G’ = G with [K3(G’)| = ¢|K3(G)| we have
d(H | G) - d(H | G)| <e.
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Regularity for 3-uniform hypergraphs

Setup:
e given graph G = (V, Eg)
K3(G) = set of triangles in G
e 3-uniform hypergraph H = (V, Ey)
Density with respect to G:
|Ey 0 K3(G)

IKs(G)|
where d(H | G) = 0 if G is triangle-free.

d(H | G)

Definition (H is e-regular with respect to G)

For all subgraphs G’ = G with [K3(G’)| = ¢|K3(G)| we have
d(H | G) - d(H | G)| <e.

m Hypergraph regularity lemma provides partition Gy w ... w Gy of V()
so that H is e-regular w.r.t. most triads G; v G; v Gy
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Results and problems for weakly dense hypergraphs

Results
m Mubayi & Radl '06: examples of F with 7. ( ) < m(F)

m Glebov, Kral & Volec '16 / Reiher, Rédl & Sch. '18: 77( ) 1/4
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Results and problems for weakly dense hypergraphs

Results
m Mubayi & Radl '06: examples of F with 7. (F) < w(F)
m Glebov, Kral & Volec'16 / Reiher, RodI & Sch.'18: . (K\) ™) = 1/4
m Reiher, R6dl & Sch. '18: characterisation for F with 7. (F) =0
m Garbe, Kral & Lamaison '217: 1/27 is the smallest nonzero value
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Results and problems for weakly dense hypergraphs

Results
m Mubayi & RodI'06: examples of F with 7. (F) < 7 (F)
m Glebov, Kral & Volec'16 / Reiher, RodI & Sch.'18: . (K\) ™) = 1/4
m Reiher, R6dl & Sch. '18: characterisation for F with 7. (F) =0
m Garbe, Kral & Lamaison '217: 1/27 is the smallest nonzero value

m Buci¢, Cooper, Kral, Mohr & Munh4 Correia '21%:
7. (Cp) for tight cycles £ > 5

Balogh, Clemen & Lidicky ‘217 m(K®) < 5/9 < n(KP)
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Results and problems for weakly dense hypergraphs

Results
m Mubayi & RodI'06: examples of F with 7. (F) < 7 (F)
m Glebov, Kral & Volec'16 / Reiher, RodI & Sch.'18: . (K\) ™) = 1/4
m Reiher, R6dl & Sch. '18: characterisation for F with 7. (F) =0
m Garbe, Kral & Lamaison '217: 1/27 is the smallest nonzero value

m Buci¢, Cooper, Kral, Mohr & Munh4 Correia '21%:
7. (Cp) for tight cycles £ > 5

m Balogh, Clemen & Lidicky '21: m(K®) < 5/9 < n(KP)

Open problems
m Do we have 7r,.,(K§3)) =1/27
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Results and problems for weakly dense hypergraphs

Results
m Mubayi & RodI'06: examples of F with 7. (F) < 7 (F)
m Glebov, Kral & Volec'16 / Reiher, RodI & Sch.'18: . (K\) ™) = 1/4
m Reiher, R6dl & Sch. '18: characterisation for F with 7. (F) =0
m Garbe, Kral & Lamaison '217: 1/27 is the smallest nonzero value

m Buci¢, Cooper, Kral, Mohr & Munh4 Correia '21%:
7. (Cp) for tight cycles £ > 5

m Balogh, Clemen & Lidicky '21: m(K®) < 5/9 < n(KP)

Open problems
m Do we have 7r,.,(K§3)) =1/27

m More generally: Is 7T.-.(K£3)) = i:—g for all t > 47
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Results and problems for weakly dense hypergraphs

Results
m Mubayi & RodI'06: examples of F with 7. (F) < 7 (F)
m Glebov, Kral & Volec'16 / Reiher, RodI & Sch.'18: . (K\) ™) = 1/4
m Reiher, R6dl & Sch. '18: characterisation for F with 7. (F) =0
m Garbe, Kral & Lamaison '217: 1/27 is the smallest nonzero value

m Buci¢, Cooper, Kral, Mohr & Munh4 Correia '21%:
7. (Cp) for tight cycles £ > 5

m Balogh, Clemen & Lidicky '21: m(K®) < 5/9 < n(KP)

Open problems

m Do we have 7r,.,(K§3)) =1/27

m More generally: Is 7T.-.(K£3)) = i:—g for all t > 47

m Do we have 7. (F) < 7(F), whenever w(F) > 07
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Setup
Given a 3-uniform hypergraph H = (V,E) and X € V and P < V x V set
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z

Setup
Given a 3—uniform hypergraph H= (V E)and X € Vand P < V x V set
= |{(x,(u,v)) € X x P: {x,u,v} € E}|,
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Setup

Given a 3—uniform hypergraph H= (V E)and X € Vand P < V x V set
= |{(x,(u,v)) € X x P: {x,u,v} € E}|,

i.e., the number (counted with multlpI|C|ty) of hyperedges e € E “supported by”
vertices from X and pairs from P.
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Definition (=-dense)
A 3-uniform hypergraph H = (V, E) is (g, p,&)-dense, if for every X < V and
every P < V x V we have
e(X,P) = p|X||P| —e|V[.
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Definition (=-dense)
A 3-uniform hypergraph H = (V, E) is (g, p,&)-dense, if for every X < V and
every P < V x V we have
e(X,P) = p|X||P| —e|V[.
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Definition (=-dense)
A 3-uniform hypergraph H = (V, E) is (g, p,&)-dense, if for every X < V and
every P < V x V we have
e(X,P) = p|X||P| —e|V[.
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Definition (=-dense)
A 3-uniform hypergraph H = (V, E) is (g, p,&)-dense, if for every X < V and
every P < V x V we have
e(X,P) = p|X||P| —e|V[.

m .-dense = weakly dense (by setting P =Y x Z)
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Definition (=-dense)
A 3-uniform hypergraph H = (V, E) is (g, p,&)-dense, if for every X < V and
every P < V x V we have
e(X,P) = p|X||P| —e|V[.

m .-dense = weakly dense (by setting P =Y x Z)
m .-dense < “localised pair-degree” <= “min-degree in reduced hypergraph”
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Strengthening the denseness assumption

m weakly dense <= density induced on large vertex sets X, Y, Z
Definition (=-dense)
A 3-uniform hypergraph H = (V, E) is (g, p,&)-dense, if for every X < V and
every P < V x V we have
e(X,P) = p|X||P| —e|V[.

m .-dense = weakly dense (by setting P =Y x Z)
m .-dense < “localised pair-degree” <= “min-degree in reduced hypergraph”
m for this notion with Reiher and Rédl'16 we could show W;(Kis)) =1/2
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Hypergraphs with uniformly dense links
Definition

A hypergraph H = (V,E) is (g, p,A)-dense, if all but at most £|V/| vertices
have an (e, p)-bidense link graph.
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Hypergraphs with uniformly dense links
Definition

A hypergraph H = (V,E) is (g, p,A)-dense, if all but at most £|V/| vertices
have an (e, p)-bidense link graph.

<" density condition on (P, Q)-cherries for every P, Q < V?
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Hypergraphs with uniformly dense links
Definition

A hypergraph H = (V,E) is (g, p,A)-dense, if all but at most £|V/| vertices
have an (e, p)-bidense link graph.

<" density condition on (P, Q)-cherries for every P, Q < V?

"<=" minimum codegree condition in the reduced hypergraph
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Hypergraphs with uniformly dense links
Definition

A hypergraph H = (V,E) is (g, p,A)-dense, if all but at most £|V/| vertices
have an (e, p)-bidense link graph.

<" density condition on (P, Q)-cherries for every P, Q < V?

"<=" minimum codegree condition in the reduced hypergraph

Theorem (Reiher, Rédl & Sch. '18)

For every t = 2 we have

which is tight for t = 2,3, 4.

0= ma(KP) < L < ma(K) < ma(KE)) = ma(KP) = ma(KY) = 1
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Hypergraphs with uniformly dense links

Definition

A hypergraph H = (V,E) is (g, p,A)-dense, if all but at most £|V/| vertices
have an (e, p)-bidense link graph.

“«=" density condition on (P, Q)-cherries for every P, Q < V?

"<=" minimum codegree condition in the reduced hypergraph

Theorem (Reiher, Rédl & Sch. '18)

For every t = 2 we have

which is tight for t = 2,3, 4.
0=ma(K") < § <ma(Ks®) <malKs?) = malKy?) = ma(Ks”) = 3

3 3
L<ma(K§Y) < ma(KY)

Mathias Schacht Restricted extremal problems for hypergraphs July 2022




Hypergraphs with uniformly dense links
Definition

A hypergraph H = (V,E) is (g, p,A)-dense, if all but at most £|V/| vertices
have an (e, p)-bidense link graph.

“«=" density condition on (P, Q)-cherries for every P, Q < V?

"<=" minimum codegree condition in the reduced hypergraph

Theorem (Reiher, Rédl & Sch. '18)

For every t = 2 we have

which is tight for t = 2,3, 4.

0=ma(KY) <1 < ma(KY) <malK) = ma(KY) = ma(KY) = 1

1 (3) (3) (3)y _ _ (3)y _ 2
3 STA(KG”) S Ta(Kyg') S a(Kyy') = = ma(Kig ) = 3 )
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New result

W[ =
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New result

N =

< ma(KY) <

W[ =

Lower bound for K5(3):
m random ¢: V) — 7/37Z

mxyze E < p(xy) + p(xz) + p(yz) =1
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New result

L (K9 <

w
N =

Lower bound for K5(3):
m random ¢: V) — 7/37Z

mxyze E < p(xy) + p(xz) + p(yz) =1

Theorem (Berger, Piga, Reiher, Rédl & Sch. '227")

_ !

ma(KsY) = 3
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New result

< ma(KY) <

W[ =
N+~

Lower bound for K5(3):

m random ¢: V) — 7/37Z
mxyze E < p(xy) + p(xz) + p(yz) =1

Theorem (Berger, Piga, Reiher, Rédl & Sch. '227")

_!

ma(K) = 3

Remarks:

m proof is based on hypergraph regularity method
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New result

< ma(KY) <

W[
N =

Lower bound for K5(3):

m random ¢: V) — 7/37Z
mxyze E < p(xy) + p(xz) + p(yz) =1

Theorem (Berger, Piga, Reiher, Rédl & Sch. '227")

_ !

ma(K) = 3

Remarks:

m proof is based on hypergraph regularity method

m analysis of the structure of “holes” in an alleged counterexample
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New result

< ma(KY) <

W[
N =

Lower bound for K5(3):
m random ¢: V) — 7/37Z
mxyze E < p(xy) + p(xz) + p(yz) =1

Theorem (Berger, Piga, Reiher, Rédl & Sch. '227")

_ !

ma(K) = 3

Remarks:
m proof is based on hypergraph regularity method
m analysis of the structure of “holes” in an alleged counterexample
m Open problems: determine 7rA(K§53)) and 7TA<K1(8))
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Thank you very much for your attention
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