Counting lattice points in moduli spaces of quadratic differentials (after a joint work with V. Delecroix, É. Goujard and A. Zorich)

Peter Zograf

Euler International Mathematical Institute, St.Petersburg

International Congress of Mathematicians July 6–14, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Moduli space of quadratic differentials

A holomorphic (resp. meromorphic) quadratic differential q on a smooth complex curve C of genus g is a holomorphic (resp. meromorphic) section of $T^*C^{\otimes 2}$. The *moduli space* of quadratic differentials with $n \ge 0$ simple poles is

$$\mathcal{Q}_{g,n} = \{(C,q) | C \in \mathcal{M}_{g,n}, q \in H^0(C, T^*C^{\otimes 2} \otimes \mathcal{O}(x_1 + \ldots + x_n))\}$$

i.e.
$$\mathcal{Q}_{g,n}\cong T^*\mathcal{M}_{g,n}$$
.

The space $Q_{g,n}$ is naturally stratified according to the sets of multiplicities of zeros of q.

The principal stratum $\mathcal{Q}(1^{4g-4+n}, -1^n)$ (here we assume that both zeros and poles of q are labeled) is a (ramified) cover of its image in $\mathcal{Q}_{g,n}$ of degree (4g - 4 + n)! (the image is open and dense in $\mathcal{Q}_{g,n}$).

Period (or *homological*) coordinates on $\mathcal{Q}(1^{4g-4+n}, -1^n)$ are introduced via the canonical 2-fold cover

$$\widehat{\mathcal{C}} = \{(x,\omega(x)) ~|~ x \in \mathcal{C}, ~\omega(x) \in \mathcal{T}^*_x\mathcal{C}, ~\omega(x)^2 = q(x)\}$$

ramified precisely over zeros and poles of q. The curve \widehat{C} is smooth of genus 4g - 3 + n, and ω is a holomorphic 1-form on \widehat{C} . Decompose

$$H_1(\widehat{C},\mathbb{C}) = H_1^+(\widehat{C},\mathbb{C}) \oplus H_1^-(\widehat{C},\mathbb{C})$$

into the sum of even and odd subspaces with respect to the action of the covering involution of \hat{C} , and put

$$H_1^-(\widehat{C},\mathbb{Z})=H_1(\widehat{C},\mathbb{Z})\cap H_1^-(\widehat{C},\mathbb{C}).$$

The period map $\mathcal{Q}(1^{4g-4+n},-1^n) o H^1_-(\widehat{\mathcal{C}},\mathbb{C})$ is defined by

$$(\mathcal{C}, q) \mapsto \int_{\alpha} \omega, \quad \alpha \in H_1^-(\widehat{\mathcal{C}}, \mathbb{Z}),$$

and provides coordinates on $\mathcal{Q}(1^{4g-4+n}, -1^n)$.

The *Masur-Veech volume form* dV is the linear volume form on $H^1_-(\widehat{C}, \mathbb{C})$ normalized by the condition $Vol(H^1_-(\widehat{C}, \mathbb{C})/L) = 1$, where $L = Hom(H^-_1(\widehat{C}, \mathbb{Z}), \mathbb{Z} \oplus \sqrt{-1}\mathbb{Z})$.

The volume form dV induces volume forms on the level sets

$$\mathcal{Q}_{g,n}^{A=a} = \{(C,q) \in \mathcal{Q}_{g,n} \mid A(C,q) = a\}$$

of the area function $A(C,q) = \int_C |q|$. By definition,

$$\begin{aligned} \operatorname{Vol} \mathcal{Q}(1^{4g-4+n}, -1^n) &= \operatorname{Vol} \mathcal{Q}^{A=1/2}(1^{4g-4+n}, -1^n) \\ &= 2(6g-6+2n) \operatorname{Vol} \mathcal{Q}^{A\leq 1/2}(1^{4g-4+n}, -1^n). \end{aligned}$$

Square-tiled surfaces, multicurves, and stable graphs

A square-tiled surface C is a connected oriented compact surface without boundary built of squares of size $\frac{1}{2} \times \frac{1}{2}$. Each square has a pair of opposite sides called *horizontal* and another pair of sides called *vertical*, so that horizontal sides are glued to horizontal ones, and vertical sides to vertical ones.

Quadratic differential dz^2 on each square is compatible with gluing and endows *C* with a complex structure and a meromorphic quadratic differential *q* with at most simple poles.

Fact: There is a bijection between the set of square-tiled surfaces in the principal stratum $\mathcal{Q}(1^{4g-4+n}, -1^n)$ and the lattice $L = \operatorname{Hom}(H_1^-(\widehat{C}, \mathbb{Z}), \mathbb{Z} \oplus \sqrt{-1}\mathbb{Z})$ in $H_1^-(\widehat{C}, \mathbb{C})$. In particular,

Vol
$$Q(1^{4g-4+n}, -1^n)$$

= 2(6g - 6 + 2n) $\lim_{N \to \infty} \frac{|ST(Q(1^{4g-4+n}, -1^n), 2N)|}{N^{6g-6+2n}}$

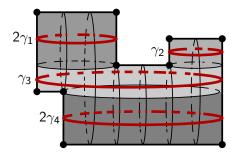


Figure 1: A square-tiled surface in $Q(1^3, -1^7)$ made up of 54 squares with 3 conical singularities of angle 3π (corresponding to simple zeros of q) and 7 conical points of angle π (corresponding to simple poles of q).

A square-tiled surface admits a decomposition into maximal horizontal cylinders encoded by $\gamma = \sum_{i=1}^{k} h_i \gamma_i$, where γ_i are the waist curves and h_i are the cylinder heights (in units of 1/2).

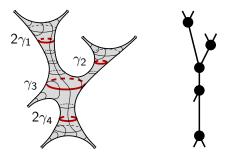


Figure 2: The multicurve and stable graph associated with the square-tiled surface on Fig. 1.

Passing from the flat metric |q| on *C* to the compatible hyperbolic metric with cusps at the poles of *q*, we get a geodesic *multicurve* $\gamma = \sum_{i=1}^{k} h_i \gamma_i$, where γ_i are simple closed geodesics and h_i are the corresponding multiplicities.

To each square-tiled surface or, equivalently, each multicurve $\gamma = \sum_{i=1}^{k} h_i \gamma_i$ we associate its *stable graph* $\Gamma(\gamma)$:

- vertices of Γ(γ) represent the components of C \ {γ₁ ∪ . . . ∪ γ_k} labeled with the genus of the corresponding component;
- edges of Γ(γ) correspond to the curves γ_i and connect the vertices representing the components of C \ {γ₁ ∪ ... ∪ γ_k} adjacent to γ_i;
- Γ(γ) has n "legs" (or half-edges) labeled from 1 to n, where the *i*th leg is incident to the vertex that represents the component that contains the *i*-th pole of q;
- ► at each vertex v the stability condition 2g(v) 2 + n(v) > 0 is satisfied, where g(v) is the genus assigned to v and n(v) is the degree (or valency) of v.

The genus of a stable graph Γ is defined as $g = \sum_{v \in V(\Gamma)} g(v) + b_1(\Gamma)$, where $V(\Gamma)$ is the set of vertices and $b_1(\Gamma)$ is the first Betty number of the graph Γ). For a pair of non-negative integers g and n with 2g - 2 + n > 0, denote by $\mathcal{G}_{g,n}$ the set of isomorphism classes of stable graphs of genus g with n legs.

For a stable graph Γ in $\mathcal{G}_{g,n}$, consider the subset $ST_{\Gamma,h}(\mathcal{Q}(1^{4g-4+n}, -1^n), 2N)$ of square-tiled surfaces with at most 2N squares, having Γ as the associated stable graph and $h = (h_1, \ldots, h_k)$ as the set of heights of the cylinders. Its contribution to Vol $\mathcal{Q}(1^{4g-4+n}, -1^n)$ is

$$\operatorname{Vol}(\Gamma,h) = 2d \cdot \lim_{N \to \infty} \frac{|ST_{\Gamma,h}(\mathcal{Q}(1^{4g-4+n},-1^n),2N)|}{N^d},$$

where d = 6g - 6 + 2n. The limit exists, is positive, and

$$\operatorname{Vol} \mathcal{Q}(1^{4g-4+n}, -1^n) = \sum_{\Gamma \in \mathcal{G}_{g,n}} \sum_{h \in \mathbb{N}^{|\mathcal{E}(\Gamma)|}} \operatorname{Vol}(\Gamma, h),$$

where $E(\Gamma)$ is the number of edges of Γ .

Formula for Masur–Veech volumes

Put

$$N_{g,n}(b_1,\ldots,b_n) = \frac{1}{2^{5g-6+2n}} \sum_{d_1,\ldots,d_n} \frac{b_1^{2d_1}\ldots b_n^{2d_n}}{d_1!\ldots d_n!} \int_{\overline{\mathcal{M}}_{g,n}} \psi_1^{d_1}\ldots \psi_n^{d_n},$$

where ψ_1, \ldots, ψ_n are the tautological classes on the Deligne–Mumford moduli space $\overline{\mathcal{M}}_{g,n}$ and $d_1 + \ldots + d_n = 3g - 3 + n$.

Consider the linear operator Y_h defined on monomials by

$$Y_h: \prod_{i=1}^k b_i^{m_i} \longmapsto \prod_{i=1}^k \frac{m_i!}{h_i^{m_i+1}}$$

and extended to arbitrary polynomials in b_1, \ldots, b_k by linearity.

For a stable graph Γ with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$ we associate a homogeneous polynomial P_{Γ} of degree 6g - 6 + 2n by

$$P_{\Gamma}(b_1,\ldots,b_k)=c(\Gamma)\cdot\prod_{e\in E(\Gamma)}b_e\cdot\prod_{v\in V(\Gamma)}N_{g(v),n(v)}(\boldsymbol{b}_v),$$

where $k = |E(\Gamma)|$ and

$$c(\Gamma) = \frac{2^{6g-5+2n} \cdot (4g-4+n)!}{(6g-7+2n)!} \cdot \frac{1}{2^{|V(\Gamma)|-1}} \cdot \frac{1}{|\operatorname{Aut} \Gamma|}.$$

Teorem 1. The Masur–Veech volume of the principal stratum is

$$\mathsf{Vol}\,\mathcal{Q}(1^{4g-4+n},-1^n) = \sum_{\Gamma \in \mathcal{G}_{g,n}} \sum_{h \in \mathbb{N}^{|E(\Gamma)|}} Y_h(P_{\Gamma}) \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Alternative approach: Chen-Möller-Sauvaget

Statistical geometry of random multicurves

Let C be a hyperbolic surface of genus g with n cusps. Let $\gamma = \sum_{i=1}^{k} h_i \gamma_i$ be a multicurve on C consisting of pairwise disjoint primitive simple closed geodesics γ_i . Denote by ℓ the hyperbolic length function, and put $L = \sum_{i=1}^{k} h_i \ell(\gamma_i)$ to be the total length of γ .

Denote by $\mathcal{ML}_{g,n}(\mathbb{Z})$ the set of integer points in the space of measured laminations on *C*. Two multicurves have the same topological type if they belong to the same orbit of the mapping class group $\operatorname{Mod}_{g,n}$ in $\mathcal{ML}_{g,n}(\mathbb{Z})$. By definition, the asymptotic probability that a random multicurve belongs to the orbit $\operatorname{Mod}_{g,n} \cdot \gamma$ is

$$P_{g,n}(\gamma) = \lim_{L \to \infty} \frac{|\{\gamma' \in \operatorname{Mod}_{g,n} \cdot \gamma \mid \ell(\gamma') \leq L\}|}{|\{\gamma' \in \mathcal{ML}_{g,n}(\mathbb{Z}) \mid \ell(\gamma') \leq L\}|}.$$

The following is a refinement of a result of Mirzakhani: **Theorem 2.** The asymptotic probability $P_{g,n}(\gamma)$ is given by

$$P_{g,n}(\gamma) = rac{\operatorname{Vol}(\Gamma,h)}{\operatorname{Vol}\mathcal{Q}(1^{4g-4+n},-1^n)}$$

where Γ is the stable graph corresponding to the multicurve γ . For n = 0, $g \ge 2$ there is a single topological type of non-separating simple closed geodesics γ_0 as in Fig. 3 and [g/2]topological types of separating closed geodesics $\gamma_1, \ldots, \gamma_{[g/2]}$ as in Fig. 4, where γ_i cuts the complex curve *C* into two parts of genera *i* and g - i respectively.

Corollary.

$$\frac{\sum_{i=1}^{[g/2]}P_{g,0}(\gamma_i)}{P_{g,0}(\gamma_0)}\approx \sqrt{\frac{2}{3\pi g}}\cdot \frac{1}{2^{2g}} \quad \text{as }g\to\infty.$$

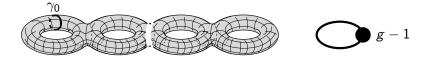


Figure 3: Non-separating curve γ_0 and the associated stable graph Γ_0 .

Figure 4: Separating curve γ_1 and the associated stable graph Γ_1 .

It means that on a compact hyperbolic surface of large genus non-separating simple closed curves are exponentially more frequent than separating ones.

Statistical geometry of multicurves on surfaces of large genus is discussed in detail in [DGZZ, Invent. Math. (2022)].

Square-tiled surfaces and enumeration of meanders

A *meander* is a configuration in the plane that consists of a straight line and a simple closed curve transversely intersecting it, considered up to isotopy. Enumeration of meanders is a long-standing difficult combinatorial problem.

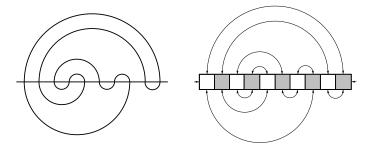


Figure 5: A meander with 10 crossings and 6 minimal arcs (left), and the corresponding square-tiled surface in $\mathcal{Q}(1^2, 0, -1^6)$ (right), where pairs of sides connected with arrowed arcs are identified.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ の

Let $\mathcal{M}(N)$ be the number of meanders with 2N crossings. Conjecturally,

$$\mathcal{M}(N) \approx \operatorname{const} \cdot R^N N^{\alpha}$$
 as $N \to \infty$.

An arc is called *minimal* if it connects two adjacent intersections (the maximal arc connecting the first and the last intersections, if present, is treated as a minimal arc as well). Denote by $\mathcal{M}_n(N)$ the number of meanders with 2N crossings and n minimal arcs. To each meander with 2N crossings and n minimal arcs we associate a genus 0 square-tiled surface made up of 2N squares with one horizontal and one vertical cylinders of maximal circumference, n simple poles and a marked point (this correspondence is generically two-to-one for large N).

We have

$$\begin{split} |ST(\mathcal{Q}(1^{n-4},0,-1^n),2N)| &= c(n) \, \frac{N^d}{2d} + \underset{N \to \infty}{o(N^d)}, \\ |ST_1(\mathcal{Q}(1^{n-4},0,-1^n),2N)| &= c_1(n) \, \frac{N^d}{2d} + \underset{N \to \infty}{o(N^d)}, \\ |ST_{1,1}(\mathcal{Q}(1^{n-4},0,-1^n),2N)| &= c_{1,1}(n) \, \frac{N^d}{2d} + \underset{N \to \infty}{o(N^d)}, \end{split}$$

where d = 2n - 5. In particular,

$$\mathcal{M}_n(N) = \frac{2c_{1,1}}{n!(n-4)!} \frac{N^d}{2d} + o(N^d).$$

Here

$$c(n) = 8\left(\frac{\pi^2}{2}\right)^{n-3}$$

is the Masur–Veech volume of $\mathcal{Q}(1^{n-4},0,-1^n)$,

$$c_1(n)=4\binom{2n-4}{n-2},$$

and

$$\frac{c_{1,1}(n)}{c_1(n)} = \frac{c_1(n)}{c(n)} \,.$$

As a conclusion, we get

Theorem 3.

$$\mathcal{M}_n(N) = \frac{4}{n!(n-4)!} \left(\frac{2}{\pi^2}\right)^{n-3} {\binom{2n-4}{n-2}}^2 \frac{N^{2n-5}}{4n-10} + o(N^d).$$

These techniques are also applicable to asymptotic enumeration of pairs of transversal multicurves on surfaces of arbitrary genus satisfying certain topological restrictions [DGZZ, to appear].