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Moduli space of quadratic differentials

A holomorphic (resp. meromorphic) quadratic differential q on a
smooth complex curve C of genus g is a holomorphic (resp.
meromorphic) section of T ∗C⊗2. The moduli space of quadratic
differentials with n ≥ 0 simple poles is

Qg ,n = {(C , q)|C ∈ Mg ,n, q ∈ H0(C ,T ∗C⊗2 ⊗O(x1 + . . .+ xn))}

i.e. Qg ,n
∼= T ∗Mg ,n.

The space Qg ,n is naturally stratified according to the sets of
multiplicities of zeros of q.

The principal stratum Q(14g−4+n,−1n) (here we assume that both
zeros and poles of q are labeled) is a (ramified) cover of its image
in Qg ,n of degree (4g − 4 + n)! (the image is open and dense in
Qg ,n).



Period (or homological) coordinates on Q(14g−4+n,−1n) are
introduced via the canonical 2-fold cover

Ĉ = {(x , ω(x)) | x ∈ C , ω(x) ∈ T ∗
x C , ω(x)

2 = q(x)}

ramified precisely over zeros and poles of q. The curve Ĉ is
smooth of genus 4g − 3 + n, and ω is a holomorphic 1-form on Ĉ .

Decompose

H1(Ĉ ,C) = H+
1 (Ĉ ,C)⊕ H−

1 (Ĉ ,C)

into the sum of even and odd subspaces with respect to the action
of the covering involution of Ĉ , and put

H−
1 (Ĉ ,Z) = H1(Ĉ ,Z) ∩ H−

1 (Ĉ ,C).



The period map Q(14g−4+n,−1n) → H1
−(Ĉ ,C) is defined by

(C , q) 7→
∫
α
ω, α ∈ H−

1 (Ĉ ,Z),

and provides coordinates on Q(14g−4+n,−1n).

The Masur-Veech volume form dV is the linear volume form on
H1
−(Ĉ ,C) normalized by the condition Vol(H1

−(Ĉ ,C)/L) = 1,

where L = Hom(H−
1 (Ĉ ,Z),Z⊕

√
−1Z).

The volume form dV induces volume forms on the level sets

QA=a
g ,n = {(C , q) ∈ Qg ,n | A(C , q) = a}

of the area function A(C , q) =
∫
C |q|. By definition,

VolQ(14g−4+n,−1n) = VolQA=1/2(14g−4+n,−1n)

= 2(6g − 6 + 2n) VolQA≤1/2(14g−4+n,−1n).



Square-tiled surfaces, multicurves, and stable graphs

A square-tiled surface C is a connected oriented compact surface
without boundary built of squares of size 1

2 ×
1
2 . Each square has a

pair of opposite sides called horizontal and another pair of sides
called vertical, so that horizontal sides are glued to horizontal ones,
and vertical sides to vertical ones.

Quadratic differential dz2 on each square is compatible with gluing
and endows C with a complex structure and a meromorphic
quadratic differential q with at most simple poles.

Fact: There is a bijection between the set of square-tiled surfaces
in the principal stratum Q(14g−4+n,−1n) and the lattice
L = Hom(H−

1 (Ĉ ,Z),Z⊕
√
−1Z) in H1

−(Ĉ ,C). In particular,

VolQ(14g−4+n,−1n)

= 2(6g − 6 + 2n) lim
N→∞

|ST (Q(14g−4+n,−1n), 2N)|
N6g−6+2n

.
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Figure 1: A square-tiled surface in Q(13,−17) made up of 54 squares
with 3 conical singularities of angle 3π (corresponding to simple zeros of
q) and 7 conical points of angle π (corresponding to simple poles of q).

A square-tiled surface admits a decomposition into maximal
horizontal cylinders encoded by γ =

∑k
i=1 hiγi , where γi are the

waist curves and hi are the cylinder heights (in units of 1/2).



2γ1
γ2

γ3

2γ4

Figure 2: The multicurve and stable graph associated with the
square-tiled surface on Fig. 1.

Passing from the flat metric |q| on C to the compatible hyperbolic
metric with cusps at the poles of q, we get a geodesic multicurve
γ =

∑k
i=1 hiγi , where γi are simple closed geodesics and hi are the

corresponding multiplicities.



To each square-tiled surface or, equivalently, each multicurve
γ =

∑k
i=1 hiγi we associate its stable graph Γ(γ):

▶ vertices of Γ(γ) represent the components of
C \ {γ1 ∪ . . . ∪ γk} labeled with the genus of the
corresponding component;

▶ edges of Γ(γ) correspond to the curves γi and connect the
vertices representing the components of C \ {γ1 ∪ . . . ∪ γk}
adjacent to γi ;

▶ Γ(γ) has n “legs” (or half-edges) labeled from 1 to n, where
the ith leg is incident to the vertex that represents the
component that contains the i-th pole of q;

▶ at each vertex v the stability condition 2g(v)− 2 + n(v) > 0
is satisfied, where g(v) is the genus assigned to v and n(v) is
the degree (or valency) of v .

The genus of a stable graph Γ is defined as
g =

∑
v∈V (Γ) g(v) + b1(Γ), where V (Γ) is the set of vertices and

b1(Γ) is the first Betty number of the graph Γ).



For a pair of non-negative integers g and n with 2g − 2 + n > 0,
denote by Gg ,n the set of isomorphism classes of stable graphs of
genus g with n legs.

For a stable graph Γ in Gg ,n, consider the subset
STΓ,h(Q(14g−4+n,−1n), 2N) of square-tiled surfaces with at most
2N squares, having Γ as the associated stable graph and
h = (h1, . . . , hk) as the set of heights of the cylinders. Its
contribution to VolQ(14g−4+n,−1n) is

Vol(Γ, h) = 2d · lim
N→∞

|STΓ,h(Q(14g−4+n,−1n), 2N)|
Nd

,

where d = 6g − 6 + 2n. The limit exists, is positive, and

VolQ(14g−4+n,−1n) =
∑

Γ∈Gg,n

∑
h∈N|E(Γ)|

Vol(Γ, h),

where E (Γ) is the number of edges of Γ.



Formula for Masur–Veech volumes

Put

Ng ,n(b1, . . . , bn) =
1

25g−6+2n

∑
d1,...,dn

b2d11 . . . b2dnn

d1! . . . dn!

∫
Mg,n

ψd1
1 . . . ψdn

n ,

where ψ1, . . . , ψn are the tautological classes on the
Deligne–Mumford moduli space Mg ,n and
d1 + . . .+ dn = 3g − 3 + n.

Consider the linear operator Yh defined on monomials by

Yh :
k∏

i=1

bmi
i 7−→

k∏
i=1

mi !

hmi+1
i

and extended to arbitrary polynomials in b1, . . . , bk by linearity.



For a stable graph Γ with vertex set V (Γ) and edge set E (Γ) we
associate a homogeneous polynomial PΓ of degree 6g − 6 + 2n by

PΓ(b1, . . . , bk) = c(Γ) ·
∏

e∈E(Γ)

be ·
∏

v∈V (Γ)

Ng(v),n(v)(bv ) ,

where k = |E (Γ)| and

c(Γ) =
26g−5+2n · (4g − 4 + n)!

(6g − 7 + 2n)!
· 1

2|V (Γ)|−1
· 1

|Aut Γ|
.

Teorem 1. The Masur–Veech volume of the principal stratum is

VolQ(14g−4+n,−1n) =
∑

Γ∈Gg,n

∑
h∈N|E(Γ)|

Yh(PΓ) .

Alternative approach: Chen–Möller–Sauvaget



Statistical geometry of random multicurves

Let C be a hyperbolic surface of genus g with n cusps. Let
γ =

∑k
i=1 hiγi be a multicurve on C consisting of pairwise disjoint

primitive simple closed geodesics γi . Denote by ℓ the hyperbolic
length function, and put L =

∑k
i=1 hi ℓ(γi ) to be the total length

of γ.

Denote by MLg ,n(Z) the set of integer points in the space of
measured laminations on C . Two multicurves have the same
topological type if they belong to the same orbit of the mapping
class group Modg ,n in MLg ,n(Z). By definition, the asymptotic
probability that a random multicurve belongs to the orbit
Modg ,n ·γ is

Pg ,n(γ) = lim
L→∞

|{γ′ ∈ Modg ,n ·γ | ℓ(γ′) ≤ L}|
|{γ′ ∈ MLg ,n(Z) | ℓ(γ′) ≤ L}|

.



The following is a refinement of a result of Mirzakhani:
Theorem 2. The asymptotic probability Pg ,n(γ) is given by

Pg ,n(γ) =
Vol(Γ, h)

VolQ(14g−4+n,−1n)
,

where Γ is the stable graph corresponding to the multicurve γ.

For n = 0, g ≥ 2 there is a single topological type of
non-separating simple closed geodesics γ0 as in Fig. 3 and [g/2]
topological types of separating closed geodesics γ1, . . . , γ[g/2] as in
Fig. 4, where γi cuts the complex curve C into two parts of genera
i and g − i respectively.

Corollary. ∑[g/2]
i=1 Pg ,0(γi )

Pg ,0(γ0)
≈

√
2

3πg
· 1

22g
as g → ∞.
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Figure 3: Non-separating curve γ0 and the associated stable graph Γ0.
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Figure 4: Separating curve γ1 and the associated stable graph Γ1.

It means that on a compact hyperbolic surface of large genus
non-separating simple closed curves are exponentially more
frequent than separating ones.

Statistical geometry of multicurves on surfaces of large genus is
discussed in detail in [DGZZ, Invent. Math. (2022)].



Square-tiled surfaces and enumeration of meanders

A meander is a configuration in the plane that consists of a
straight line and a simple closed curve transversely intersecting it,
considered up to isotopy. Enumeration of meanders is a
long-standing difficult combinatorial problem.

Figure 5: A meander with 10 crossings and 6 minimal arcs (left), and the
corresponding square-tiled surface in Q(12, 0,−16) (right),where pairs of
sides connected with arrowed arcs are identified.



Let M(N) be the number of meanders with 2N crossings.
Conjecturally,

M(N) ≈ const · RNNα as N → ∞.

An arc is called minimal if it connects two adjacent intersections
(the maximal arc connecting the first and the last intersections, if
present, is treated as a minimal arc as well). Denote by Mn(N)
the number of meanders with 2N crossings and n minimal arcs.

To each meander with 2N crossings and n minimal arcs we
associate a genus 0 square-tiled surface made up of 2N squares
with one horizontal and one vertical cylinders of maximal
circumference, n simple poles and a marked point (this
correspondence is generically two-to-one for large N).



We have

|ST (Q(1n−4, 0,−1n), 2N)| = c(n)
Nd

2d
+ o(Nd)

N→∞
,

|ST1(Q(1n−4, 0,−1n), 2N)| = c1(n)
Nd

2d
+ o(Nd)

N→∞
,

|ST1,1(Q(1n−4, 0,−1n), 2N)| = c1,1(n)
Nd

2d
+ o(Nd)

N→∞
,

where d = 2n − 5. In particular,

Mn(N) =
2c1,1

n!(n − 4)!

Nd

2d
+ o(Nd)

N→∞
.

Here

c(n) = 8

(
π2

2

)n−3

is the Masur–Veech volume of Q(1n−4, 0,−1n),



c1(n) = 4

(
2n − 4

n − 2

)
,

and

c1,1(n)

c1(n)
=

c1(n)

c(n)
.

As a conclusion, we get

Theorem 3.

Mn(N) =
4

n!(n − 4)!

(
2

π2

)n−3(2n − 4

n − 2

)2 N2n−5

4n − 10
+ o(Nd)

N→∞
.

These techniques are also applicable to asymptotic enumeration of
pairs of transversal multicurves on surfaces of arbitrary genus
satisfying certain topological restrictions [DGZZ, to appear].


