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e Proliferation of digital data

— Personal data
— Industry
— Scientific: from bioinformatics to humanities

e Need for automated processing of massive data

e Recent progress in perception tasks (vision, audio, text)

— Fueled by machine learning algorithms run on massive data
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Parametric supervised machine learning

e Data: n observations (z;,y;) € X xY,1=1,...,n

e Prediction function h(z,0) € R parameterized by 0 ¢ R
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Parametric supervised machine learning

e Data: n observations (z;,y;) € X xY,1=1,...,n
e Prediction function h(z,0) € R parameterized by 0 ¢ R
e (regularized) empirical risk minimization:

min lz Cyis h(z,0)) +  AQ(6)

OcRd M “4
1=1

data fitting term + regularizer

e Actual goal: minimize test error E,, ,)¢(y, h(z,0))
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1 mn
min - =Y L(yi, h(2:,0)) +  AQ(6)

OcRd M 4
1=1
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e Consequences

— Efficient algorithms (typically gradient-based)
— Quantitative runtime and prediction performance guarantees
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Convex optimization problems

min lz C(yi, h(x:,0)) +  AQ(0)
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e Conditions: Convex loss and “linear” predictions h(x,0) = 0'®(x)

e Consequences

— Efficient algorithms (typically gradient-based)
— Quantitative runtime and prediction performance guarantees

e Golden years of convexity in machine learning (1995 to 2020)

— Support vector machines and kernel methods

— Sparsity / low-rank models with first-order methods

— Stochastic methods for large-scale learning and online learning
— etc.

— What about deep learning?
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Theoretical analysis of deep learning

e Multi-layer neural network h(z,0) =0'o(0'!_ o(---0,0(0] x))

— NB: already a simplification

e Main difficulties

1. Non-convex optimization problems
2. Generalization guarantees in the overparameterized regime
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e What can go wrong with non-convex optimization problems?
— Local minima
— Stationary points
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e What can go wrong with non-convex optimization problems?
— Local minima
— Stationary points
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— Bad initialization 05/
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e Generic local theoretical guarantees

— Convergence to stationary points or local minima
— See, e.g., Lee et al. (2016); Jin et al. (2017)



Optimization for multi-layer neural networks

e What can go wrong with non-convex optimization problems?
— Local minima
— Stationary points

. | Y
— Plateaux

— Bad initialization 05/

 etc... |\
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e General global performance guarantees impossible to obtain

e
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e Main insight
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Gradient descent for a single hidden layer

e Goal: minimize R(h) = E,(, ,){(y, h(x)), with R convex

e Main insight
1 m
—h=— g U (w;) :/ U(w)du(w) with du(w g Ow;
T “ W
=1

— Overpara_meterized models with m large ~ measure p Wlth densities
— Barron (1993); Kurkova and Sanguineti (2001); Bengio et al.
(2006); Rosset et al. (2007); Bach (2017)
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Many particle limit and global convergence
(Chizat and Bach, 2018)

e General framework: minimize F'(u) = R(/W\If(w)d,u(w))

1 m
— Algorithm: minimizing F.. (w1, .. . (— U (w )
gorithm: minimizing F,,(w; m;

— Gradient flow W = —mVF,,(W), with W = (w1, ..., wm)
— Idealization of (stochastic) gradient descent

e Limit when m tends to infinity

— Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and
Bach, 2018; Song, Montanari, and Nguyen, 2018; Sirignano and
Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)

e NB: for more details on gradient flows, see Ambrosio et al. (2008)
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Wasserstein gradient flow

e Mean potential for minimizing F'(u) = R(/ \I!(v)d,u(v))
W
Il = (¥(w). VE( [ ¥(@)dn(r))
W
— Gradient flow: w; = —VJ(w;|p) with p = %Z;n:l O,

e Partial differential equation: 0;u:(w) = div(pu(w)VJ(w|ut))

e Theorem (Chizat and Bach, 2018)

— Assume R and W are (Fréchet) differentiable with Lipschitz
differentials and R Lipschitz on its sublevel sets

— Initial weights (w,;(0));>1 in a compact subset of R%*!

— Let pig = — Z;n:l w;(t) with (wi(t),...,wn(t)) solving the ODE

— If 110, weakly converges to some po € P(R4T1) then iy, weakly
converges to p; where (u:)¢>o is the unique weakly continuous
solution to the PDE initialized with pg
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Many particle limit and global convergence
(Chizat and Bach, 2018)

e (informal) theorem: when the number of particles tends to infinity,
the gradient flow converges to the global optimum

— See precise definitions and statement in paper
— Two key ingredients: homogeneity and initialization

e Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

— Full or partial, e.g., ¥(w;)(z) = mb2(j) - o|61(-,4) ']
— Applies to rectified linear units (but also to sigmoid activations)

e Sufficiently spread initial measure

— Needs to cover the entire sphere of directions

e Only qualititative!



Simple simulations with neural networks

e RelLU units with d = 2 (optimal predictor has 5 neurons)

1T —— particle gradient flow REN
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(plotting |02(7)|01(-, j) for each hidden neuron j)

NB : also applies to spike deconvolution



Simple simulations with neural networks

e RelLU units with d = 2 (optimal predictor has 5 neurons)
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2 -1 0 1 2 3 2 -1 0 1 2 3 2 -1 0 1 2 3
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NB : also applies to spike deconvolution
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From optimization to statistics

o Summary: with h(z) = — 3 (w;)(z) = %Zeg(g’)(el(-,j)%)+
j=1 —

— If m tends to infinity, the gradient flow converges to a global
minimizer of the risk R(h) = E, ,4(y, h(x))
— Requires well-spread initialization, no quantitative results
e Single-pass SGD with R the (unobserved) expected risk
— Converges to an optimal predictor on the testing distribution
— Tends to underfit
e Multiple-pass SGD or full GD with R the empirical risk

— Converges to an optimal predictor on the training distribution
— Should overfit?



Interpolation regime

e Minimizing R(h Zﬁ i, h(x;)) for h(x ZOQ
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Interpolation regime

e Minimizing R(h Zﬁ i, h(x;)) for h(x ZOQ
— When m(d 4+ 1) > n, typically there exist many h such that
Vied{l,...,n}, h(z;)=vy; (or £(y;,h(z;)) = 0)
— See Belkin et al. (2018); Ma et al. (2018); Vaswani et al. (2019)

e Which £ is the gradient flow converging to?

— Implicit bias of (stochastic) gradient descent

— Typically minimum Euclidean norm solution (Gunasekar et al.,

2017; Soudry et al., 2018; Gunasekar et al., 2018)
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— With minimum norm



Logistic regression for two-layer neural networks

() = —30:7) (0:(,) ) ,

e Overparameterized regime m — +oo
— Converges to a function h such that Vi € {1,...,n}, y;h(x;) > 1
— With minimum norm

e Two different regimes (Chizat and Bach, 2020)

1. Optimizing over output layer only 65: kernel regime
2. Optimizing over all layers 61, 05: feature learning regime
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e RKHS norm
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— Input weigths uniformly distributed on the sphere (Bach, 2017)
— Smooth functions (does not allow single hidden neuron)



From RKHS norm to variation norm

e RKHS norm

I = inf [ lan)ldr(a) such that f(a) = | 0" o)-aln)ar(n

— Input weigths uniformly distributed on the sphere (Bach, 2017)
— Smooth functions (does not allow single hidden neuron)

e Variation norm (Kurkova and Sanguineti, 2001)

af) = int [ lalmldrtn) such that (@)= | (7o) aln)dr(n

— Larger space including non-smooth functions
— Allows single hidden neuron
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Kernel regime

1 m
e Prediction function h(z) = RE 05(5)(01(-4) ") ,
7=1

— Optimize only over output weights 65

e (informal) theorem (Chizat and Bach, 2020): when m — 400, the
gradient flow converges to the function that separates the data with
minimum RKHS norm

— Quantitative analysis available

— Letting m — +00 Is useless in practice

— See Montanari et al. (2019) for related work in the context of
“double descent”
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Feature learning regime

1 m
e Prediction function h(z) = RE 05(5)(01(-4) ") ,
7=1

— Optimize over all weights 61, 65

e (informal) theorem (Chizat and Bach, 2020): when m — 400, the
gradient flow converges to the function that separates the data with
minimum variation norm

— Actual learning of representations

— Adaptivity to linear structures (see Chizat and Bach, 2020)
— No known convex optimization algorithms in polynomial time
— End of the curve of double descent (Belkin et al., 2018)



Optimizing over two layers

e [wo-dimensional classification with “bias’ term

Space of parameters Space of predictors
e Plot of |62(5)[01(+,7) e (4+/—) training set
e Color depends on sign of 65(7) e One color per class

e ‘tanh” radial scale e Line shows 0O level set of h





Comparison of kernel and feature learning regimes

o /5 (left: kernel) vs. ¢ (right: feature learning and variation norm)





Comparison of kernel and feature learning regimes
e Adaptivity to linear structures

e Two-class classification in dimension d = 15

— Two first coordinates as shown below
— All other coordinates uniformly at random
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output layer
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Discussion

e Summary

— Qualitative analysis of gradient descent for 2-layer neural networks

— Global convergence with infinitely many neurons

— Convergence to maximum margin separators in well-defined
function spaces

— Only qualitative

e Open problems

— Quantitative analysis in terms of number of neurons m and time ¢
— Extension to convolutional neural networks
— Extension to deep neural networks
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Conclusion

e From convex optimization ...

— “Linear’” models with quantitative guarantees

e ... to non-convex optimization

— Neural networks with qualitative guarantees

e (selected) Open problems
— Quantitative guarantees for deep convolutional models
— Distributed optimization

e Beyond optimization and statistics

— Partial differential equations
— Control theory
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