Gradient descent on infinitely wide neural networks

Francis Bach

INRIA - Ecole Normale Sup´erieure, Paris, France

Joint work with Lénaïc Chizat *International Congress of Mathematicians - July 2022*

Machine learning Scientific context

- Proliferation of digital data
	- Personal data
	- Industry
	- Scientific: from bioinformatics to humanities
- Need for automated processing of massive data

Machine learning Scientific context

- Proliferation of digital data
	- Personal data
	- Industry
	- Scientific: from bioinformatics to humanities
- Need for automated processing of massive data
- Recent progress in perception tasks (vision, audio, text)
	- Fueled by machine learning algorithms run on massive data

- \bullet Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathcal{Y}, \ i = 1, \ldots, n$
- \bullet Prediction function $h(x,\theta)\in\mathbb{R}$ parameterized by $\theta\in\mathbb{R}^d$

- \bullet Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathcal{Y}, \ i = 1, \ldots, n$
- \bullet Prediction function $h(x,\theta)\in\mathbb{R}$ parameterized by $\theta\in\mathbb{R}^d$

- \bullet Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathcal{Y}, \ i = 1, \ldots, n$
- \bullet Prediction function $h(x,\theta)\in\mathbb{R}$ parameterized by $\theta\in\mathbb{R}^d$

 $y_1 = 1$ $y_2 = 1$ $y_3 = 1$ $y_4 = -1$ $y_5 = -1$ $y_6 = -1$

 $-$ Neural networks $(n,d>10^6)$: $h(x,\theta)=\theta_{r}^{\top}$ $\frac{\top}{r} \sigma(\theta_r^{\top})$ $_{r-1}^\top \sigma(\cdots \theta_2^\top)$ $\frac{\top}{2} \sigma(\theta_1^\top)$ $\frac{1}{1}$ x))

- \bullet Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathcal{Y}, \ i = 1, \ldots, n$
- \bullet Prediction function $h(x,\theta)\in\mathbb{R}$ parameterized by $\theta\in\mathbb{R}^d$
- (regularized) empirical risk minimization:

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)
$$

data fitting term $+$ regularizer

- \bullet Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathcal{Y}, \ i = 1, \ldots, n$
- \bullet Prediction function $h(x,\theta)\in\mathbb{R}$ parameterized by $\theta\in\mathbb{R}^d$
- (regularized) empirical risk minimization:

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{2n} \sum_{i=1}^n (y_i - h(x_i, \theta))^2 \quad + \quad \lambda \Omega(\theta)
$$

(least-squares regression)

- \bullet Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathcal{Y}, \ i = 1, \ldots, n$
- \bullet Prediction function $h(x,\theta)\in\mathbb{R}$ parameterized by $\theta\in\mathbb{R}^d$
- (regularized) empirical risk minimization:

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(-y_i h(x_i, \theta)) \right) \quad + \quad \lambda \Omega(\theta)
$$

(logistic regression)

- \bullet Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathcal{Y}, \ i = 1, \ldots, n$
- \bullet Prediction function $h(x,\theta)\in\mathbb{R}$ parameterized by $\theta\in\mathbb{R}^d$
- (regularized) empirical risk minimization:

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)
$$

data fitting term $+$ regularizer

 \bullet Actual goal: minimize test error $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$

Convex optimization problems

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)
$$

- \bullet Conditions: Convex loss and "linear" predictions $h(x,\theta)=\theta^\top\Phi(x)$
- Consequences
	- Efficient algorithms (typically gradient-based)
	- Quantitative runtime and prediction performance guarantees

Convex optimization problems

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)
$$

- \bullet Conditions: Convex loss and "linear" predictions $h(x,\theta)=\theta^\top\Phi(x)$
- Consequences
	- Efficient algorithms (typically gradient-based)
	- Quantitative runtime and prediction performance guarantees
- Golden years of convexity in machine learning (1995 to 2020)
	- Support vector machines and kernel methods
	- Sparsity / low-rank models with first-order methods
	- Stochastic methods for large-scale learning and online learning – etc.

Convex optimization problems

$$
\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)
$$

- \bullet Conditions: Convex loss and "linear" predictions $h(x,\theta)=\theta^\top\Phi(x)$
- Consequences
	- Efficient algorithms (typically gradient-based)
	- Quantitative runtime and prediction performance guarantees

• Golden years of convexity in machine learning (1995 to 2020)

- Support vector machines and kernel methods
- Sparsity / low-rank models with first-order methods
- Stochastic methods for large-scale learning and online learning
- etc.
- What about deep learning?

Theoretical analysis of deep learning

• Multi-layer neural network $h(x, \theta) = \theta_{r}^{\top}$ $\frac{\top}{r} \sigma(\theta_r^{\top})$ $_{r-1}^\top \sigma(\cdots \theta_2^\top)$ $\frac{\top}{2} \sigma(\theta_1^\top)$ $\frac{1}{1}$ x))

– NB: already ^a simplification

Theoretical analysis of deep learning

• Multi-layer neural network $h(x, \theta) = \theta_{r}^{\top}$ $\frac{\top}{r} \sigma(\theta_r^{\top})$ $_{r-1}^\top \sigma(\cdots \theta_2^\top)$ $\frac{\top}{2} \sigma(\theta_1^\top)$ $\frac{1}{1}$ x))

– NB: already ^a simplification

• Main difficulties

- 1. Non-convex optimization problems
- 2. Generalization guarantees in the overparameterized regime

Optimization for multi-layer neural networks

- What can go wrong with non-convex optimization problems?
	- Local minima
	- Stationary points
	- Plateaux
	- Bad initialization
	- $-$ etc...

Optimization for multi-layer neural networks

- What can go wrong with non-convex optimization problems?
	- Local minima
	- Stationary points
	- Plateaux
	- Bad initialization
	- $-$ etc...

- Generic local theoretical guarantees
	- Convergence to stationary points or local minima
	- See, e.g., Lee et al. (2016); Jin et al. (2017)

Optimization for multi-layer neural networks

- What can go wrong with non-convex optimization problems?
	- Local minima
	- Stationary points
	- Plateaux
	- Bad initialization
	- $-$ etc...

• General global performance guarantees impossible to obtain

 \bullet Predictor: $h(x) = \frac{1}{m}$ \overline{m} θ_{2}^{\top} $\frac{\top}{2} \sigma(\theta_1^\top)$ $\frac{1}{1}x) = \frac{1}{n}$ $\frac{1}{m}\sum$ \overline{m} $j=1$ $\theta_2(j) \cdot \sigma \big[\theta_1(\cdot, j)^\top$ $\overline{}$ \overline{x}

 \bullet Goal: minimize $R(h) = \mathbb{E}_{p(x,y)} \ell(y,h(x))$, with R convex

 \bullet Predictor: $h(x) = \frac{1}{m}$ \overline{m} θ_{2}^{\top} $\frac{\top}{2} \sigma(\theta_1^\top)$ $\frac{1}{1}x) = \frac{1}{n}$ $\frac{1}{m}\sum$ \overline{m} $j=1$ $\theta_2(j) \cdot \sigma \big[\theta_1(\cdot, j)^\top$ $\overline{}$ \overline{x}

$$
\textbf{- Family: } h = \frac{1}{m} \sum_{j=1}^{m} \Psi(w_j) \quad \text{ with } \Psi(w_j)(x) = \theta_2(j) \cdot \sigma \big[\theta_1(\cdot, j)^\top x \big]
$$

 \bullet Goal: minimize $R(h) = \mathbb{E}_{p(x,y)} \ell(y,h(x))$, with R convex

• **Predictor**:
$$
h(x) = \frac{1}{m} \theta_2^{\top} \sigma(\theta_1^{\top} x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) \cdot \sigma[\theta_1(\cdot, j)^{\top} x]
$$

$$
\text{ - Family: } h = \frac{1}{m} \sum_{j=1}^{m} \Psi(w_j) \quad \text{ with } \Psi(w_j)(x) = \theta_2(j) \cdot \sigma \big[\theta_1(\cdot, j)^\top x \big]
$$

- \bullet Goal: minimize $R(h) = \mathbb{E}_{p(x,y)} \ell(y,h(x))$, with R convex
- Main insight

• **Predictor**:
$$
h(x) = \frac{1}{m} \theta_2^{\top} \sigma(\theta_1^{\top} x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) \cdot \sigma[\theta_1(\cdot, j)^{\top} x]
$$

$$
\textbf{- Family: } h = \frac{1}{m} \sum_{j=1}^{m} \Psi(w_j) \quad \text{ with } \Psi(w_j)(x) = \theta_2(j) \cdot \sigma \big[\theta_1(\cdot, j)^\top x \big]
$$

- \bullet Goal: minimize $R(h) = \mathbb{E}_{p(x,y)} \ell(y,h(x))$, with R convex
- Main insight

$$
- h = \frac{1}{m} \sum_{j=1}^{m} \Psi(w_j) = \int_{W} \Psi(w) d\mu(w)
$$
 with $d\mu(w) = \frac{1}{m} \sum_{j=1}^{m} \delta_{w_j}$

- $-$ Overparameterized models with m large \approx measure μ with densities
- Barron (1993); Kurkova and Sanguineti (2001); Bengio et al. (2006); Rosset et al. (2007); Bach (2017)

• General framework: minimize $F(\mu)=R$ $\Big(\int_{\mathcal{W}}$ $\Psi(w) d\mu(w)$ $\left.\rule{0pt}{12pt}\right)$

$$
- \text{ Algorithm: minimizing } F_m(w_1, \ldots, w_m) = R \Big(\frac{1}{m} \sum_{j=1}^m \Psi(w_j) \Big)
$$

- General framework: minimize $F(\mu)=R$ $\Big(\int_{\mathcal{W}}$ $\Psi(w) d\mu(w)$ $\left.\rule{0pt}{12pt}\right)$
	- Algorithm: minimizing $F_m(w_1,\ldots,w_m)=R$ $\left(\right)$ 1 $\frac{1}{m} \sum_{i=1}^{m}$ $j=1$ $\Psi(w_j)$ $\left.\rule{0pt}{12pt}\right)$
	- $-$ Gradient flow $\dot{W} = -m \nabla F_m(W)$, with $W = (w_1, \ldots, w_m)$
	- Idealization of (stochastic) gradient descent

• General framework: minimize $F(\mu)=R$ $\Big(\int_{\mathcal{W}}$ $\Psi(w) d\mu(w)$ $\left.\rule{0pt}{12pt}\right)$

- Algorithm: minimizing
$$
F_m(w_1, \ldots, w_m) = R\left(\frac{1}{m} \sum_{j=1}^m \Psi(w_j)\right)
$$

 $-$ Gradient flow $\dot{W} = -m \nabla F_m(W)$, with $W = (w_1, \ldots, w_m)$

– Idealization of (stochastic) gradient descent

- \bullet Limit when m tends to infinity
	- Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Song, Montanari, and Nguyen, 2018; Sirignano an d Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)
- NB: for more details on gradient flows, see Ambrosio et al. (2008)

Wasserstein gradient flow

• Mean potential for minimizing $F(\mu) = R$ $\Big(\int_{\mathcal{W}}$ $\Psi(v)d\mu(v)$ $\left.\rule{0pt}{12pt}\right)$ $J(w|\mu) =$ $\bigg\langle \Psi($ $(w), \nabla R$ $\left(\int_{\mathcal{W}}\right)$ $\Psi(v)d\mu(v)$ $)\Big)\Bigg\rangle$

– Gradient flow: $\dot{w}_j = -\nabla J(w_j | \mu)$ with $\mu = \frac{1}{m}$ $\frac{1}{m}\sum$ \overline{m} $j=1$ δ_{w_j}

Wasserstein gradient flow

• Mean potential for minimizing $F(\mu) = R$ $\Big(\int_{\mathcal{W}}$ $\Psi(v)d\mu(v)$ $\left.\rule{0pt}{12pt}\right)$ $J(w|\mu) =$ $\bigg\langle \Psi($ $(w), \nabla R$ $\left(\int_{\mathcal{W}}\right)$ $\Psi(v)d\mu(v)$ $)\Big)\Bigg\rangle$

– Gradient flow: $\dot{w}_j = -\nabla J(w_j | \mu)$ with $\mu = \frac{1}{m}$ $\frac{1}{m}\sum$ \overline{m} $j=1$ δ_{w_j}

• Partial differential equation: $\partial_t \mu_t(w) = \text{div}(\mu_t(w) \nabla J(w|\mu_t))$

Wasserstein gradient flow

• Mean potential for minimizing $F(\mu) = R$ $\Big(\int_{\mathcal{W}}$ $\Psi(v)d\mu(v)$ $\left.\rule{0pt}{12pt}\right)$ $J(w|\mu) =$ $\bigg\langle \Psi($ $(w), \nabla R$ $\left(\int_{\mathcal{W}}\right)$ $\Psi(v)d\mu(v)$ $)\Big)\Bigg\rangle$

– Gradient flow: $\dot{w}_j = -\nabla J(w_j | \mu)$ with $\mu = \frac{1}{m}$ $\frac{1}{m}\sum$ \overline{m} $j=1$ δ_{w_j}

- Partial differential equation: $\partial_t \mu_t(w) = \text{div}(\mu_t(w) \nabla J(w|\mu_t))$
- Theorem (Chizat and Bach, 2018)
	- $-$ Assume R and Ψ are (Fréchet) differentiable with Lipschitz differentials and R Lipschitz on its sublevel sets
	- $-$ Initial weights $(w_j(0))_{j\geq 1}$ in a compact subset of \mathbb{R}^{d+1}
	- Let $\mu_{t,m}=\frac{1}{m}$ $\displaystyle{\hbox{hts}~(\imath \ \ \frac{1}{m}\sum}$ $\frac{J}{m}$ $j=1$ $w_j(t)$ with $(w_1(t),\ldots,w_m(t))$ solving the ODE $-$ If $\mu_{0,m}$ weakly converges to some $\mu_0 \in \mathcal{P}(\mathbb{R}^{d+1})$ then $\mu_{t,m}$ weakly converges to μ_t where $(\mu_t)_{t\geq 0}$ is the unique weakly continuous solution to the PDE initialized with μ_0

• (informal) theorem: when the number of particles tends to infinity, the gradient flow converges to the global optimum

- (informal) theorem: when the number of particles tends to infinity, the gradient flow converges to the global optimum
	- See precise definitions and statement in paper
	- Two key ingredients: homogeneity and initialization

- (informal) theorem: when the number of particles tends to infinity, the gradient flow converges to the global optimum
	- See precise definitions and statement in paper
	- Two key ingredients: homogeneity and initialization
- Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)
	- $-$ Full or partial, e.g., $\Psi(w_j)(x) = m\theta_2(j)\cdot \sigma\big[\theta_1(\cdot,j)^\top$ $\overline{\mathsf{L}}$ \overline{x} $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	- Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions

- (informal) theorem: when the number of particles tends to infinity, the gradient flow converges to the global optimum
	- See precise definitions and statement in paper
	- Two key ingredients: homogeneity and initialization
- Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)
	- $-$ Full or partial, e.g., $\Psi(w_j)(x) = m\theta_2(j)\cdot \sigma\big[\theta_1(\cdot,j)^\top$ $\overline{\mathsf{L}}$ \overline{x} $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	- Applies to rectified linear units (but also to sigmoid activations)
- Sufficiently spread initial measure
	- Needs to cover the entire sphere of directions
- Only qualititative!

Simple simulations with neural networks

 \bullet ReLU units with $d=2$ (optimal predictor has 5 neurons)

$$
h(x) = \frac{1}{m} \sum_{j=1}^{m} \Psi(w_j)(x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) (\theta_1(\cdot, j)^{\top} x)_+
$$

(plotting $|\theta_2(j)|\theta_1(\cdot, j)$ for each hidden neuron j)

NB : also applies to spike deconvolution

Simple simulations with neural networks

 \bullet ReLU units with $d=2$ (optimal predictor has 5 neurons)

NB : also applies to spike deconvolution

From optimization to statistics

- \bullet Summary: with $h(x) =$ 1 $\frac{1}{m}\sum^m$ $j=1$ $\Psi(w_j)(x) =$ 1 $\frac{1}{m}\sum^m$ $j=1$ $\theta_2(j)$ ${\theta_1(\cdot,j)}^\top$ \overline{x} $\left.\rule{-2pt}{10pt}\right)$ $+$
	- $-$ If m tends to infinity, the gradient flow converges to a global minimizer of the risk $R(h) = \mathbb{E}_{p(x,y)} \ell(y,h(x))$
	- Requires well-spread initialization, no quantitative results

From optimization to statistics

• **Summary**: with
$$
h(x) = \frac{1}{m} \sum_{j=1}^{m} \Psi(w_j)(x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) (\theta_1(\cdot, j)^{\top} x)_+
$$

- $-$ If m tends to infinity, the gradient flow converges to a global minimizer of the risk $R(h) = \mathbb{E}_{p(x,y)} \ell(y,h(x))$
- Requires well-spread initialization, no quantitative results
- \bullet Single-pass SGD with R the (unobserved) expected risk
	- Converges to an optimal predictor on the testing distribution
	- Tends to underfit

From optimization to statistics

• **Summary**: with
$$
h(x) = \frac{1}{m} \sum_{j=1}^{m} \Psi(w_j)(x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) (\theta_1(\cdot, j)^{\top} x)_+
$$

- $-$ If m tends to infinity, the gradient flow converges to a global minimizer of the risk $R(h) = \mathbb{E}_{p(x,y)} \ell(y,h(x))$
- Requires well-spread initialization, no quantitative results
- \bullet Single-pass SGD with R the (unobserved) expected risk
	- Converges to an optimal predictor on the testing distribution
	- Tends to underfit
- Multiple-pass SGD or full GD with R the empirical risk
	- Converges to an optimal predictor on the training distribution
	- Should overfit?

Interpolation regime

$$
\bullet\ \text{ Minimizing }R(h)=\frac{1}{n}\sum_{i=1}^n\ell(y_i,h(x_i))\text{ for }h(x)=\frac{1}{m}\!\!\sum_{j=1}^m\!\theta_2(j)\big(\theta_1(\cdot,j)^\top x\big)_+
$$

– When $m(d + 1) > n$, typically there exist many h such that

$$
\forall i \in \{1, \ldots, n\}, \quad h(x_i) = y_i \qquad \text{(or } \ell(y_i, h(x_i)) = 0\text{)}
$$

– See Belkin et al. (2018); Ma et al. (2018); Vaswani et al. (2019)

Interpolation regime

$$
\bullet\ \text{ Minimizing }R(h)=\frac{1}{n}\sum_{i=1}^n\ell(y_i,h(x_i))\text{ for }h(x)=\frac{1}{m}\!\!\sum_{j=1}^m\!\theta_2(j)\big(\theta_1(\cdot,j)^\top x\big)_+
$$

– When $m(d + 1) > n$, typically there exist many h such that

$$
\forall i \in \{1, \ldots, n\}, \quad h(x_i) = y_i \qquad (\text{or } \ell(y_i, h(x_i)) = 0)
$$

- See Belkin et al. (2018); Ma et al. (2018); Vaswani et al. (2019)
- Which h is the gradient flow converging to?
	- Implicit bias of (stochastic) gradient descent

Interpolation regime

$$
\bullet\ \text{ Minimizing }R(h)=\frac{1}{n}\sum_{i=1}^n\ell(y_i,h(x_i))\text{ for }h(x)=\frac{1}{m}\!\!\sum_{j=1}^m\!\theta_2(j)\big(\theta_1(\cdot,j)^\top x\big)_+
$$

– When $m(d + 1) > n$, typically there exist many h such that

$$
\forall i \in \{1, \ldots, n\}, \quad h(x_i) = y_i \qquad \text{(or } \ell(y_i, h(x_i)) = 0\text{)}
$$

- See Belkin et al. (2018); Ma et al. (2018); Vaswani et al. (2019)
- Which h is the gradient flow converging to?
	- Implicit bias of (stochastic) gradient descent
	- Typically minimum Euclidean norm solution (Gunasekar et al., 2017; Soudry et al., 2018; Gunasekar et al., 2018)

Logistic regression for two-layer neural networks

$$
h(x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) \left(\theta_1(\cdot, j)^\top x \right)_+
$$

- Overparameterized regime $m \to +\infty$
	- $-$ Converges to a function h such that $\forall i \in \{1, \ldots, n\}, \ y_i h(x_i) > 1$
	- With minimum norm

Logistic regression for two-layer neural networks

$$
h(x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) \left(\theta_1(\cdot, j)^\top x \right)_+
$$

- Overparameterized regime $m \to +\infty$
	- $-$ Converges to a function h such that $\forall i \in \{1, \ldots, n\}, \ y_i h(x_i) > 1$
	- With minimum norm
- Two different regimes (Chizat and Bach, 2020)
	- 1. Optimizing over output layer only θ_2 : $\;$ kernel regime
	- 2. Optimizing over all layers θ_1, θ_2 : $\qquad\qquad$ feature learning regime
-

From RKHS norm to variation norm

• RKHS norm

$$
||f||^2 = \inf_{a(\cdot)} \int_{\mathbb{S}^d} |a(\eta)|^2 d\tau(\eta) \text{ such that } f(x) = \int_{\mathbb{S}^d} (\eta^\top x)_+ a(\eta) d\tau(\eta)
$$

- Input weigths uniformly distributed on the sphere (Bach, 2017)
- Smooth functions (does not allow single hidden neuron)

From RKHS norm to variation norm

• RKHS norm

$$
||f||^2 = \inf_{a(\cdot)} \int_{\mathbb{S}^d} |a(\eta)|^2 d\tau(\eta) \text{ such that } f(x) = \int_{\mathbb{S}^d} (\eta^\top x)_+ a(\eta) d\tau(\eta)
$$

- Input weigths uniformly distributed on the sphere (Bach, 2017)
- Smooth functions (does not allow single hidden neuron)
- Variation norm (Kurkova and Sanguineti, 2001)

$$
\Omega(f) = \inf_{a(\cdot)} \int_{\mathbb{S}^d} |a(\eta)| d\tau(\eta) \text{ such that } f(x) = \int_{\mathbb{S}^d} (\eta^\top x)_+ a(\eta) d\tau(\eta)
$$

- Larger space including non-smooth functions
- Allows single hidden neuron

Kernel regime

• Prediction function $h(x) = \frac{1}{m}\sum_{m=1}^{m}$ $j=1$ $\theta_2(j)\big(\theta_1(\cdot,j)^\top x\big)_+$

– Optimize only over output weights θ_2

Kernel regime

• Prediction function $h(x) = \frac{1}{m}\sum_{m=1}^{m}$ $j=1$ $\theta_2(j)\big(\theta_1(\cdot,j)^\top x\big)_+$

– Optimize only over output weights θ_2

- (informal) theorem (Chizat and Bach, 2020): when $m \to +\infty$, the gradient flow converges to the function that separates the data with minimum RKHS norm
	- Quantitative analysis available
	- Letting $m \to +\infty$ is useless in practice
	- See Montanari et al. (2019) for related work in the context of "double descent"

Feature learning regime

• Prediction function
$$
h(x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) (\theta_1(\cdot, j)^{\top} x)_{+}
$$

 $-$ Optimize over all weights θ_1 , θ_2

Feature learning regime

• Prediction function
$$
h(x) = \frac{1}{m} \sum_{j=1}^{m} \theta_2(j) (\theta_1(\cdot, j)^{\top} x)_{+}
$$

 $-$ Optimize over all weights θ_1 , θ_2

- \bullet (informal) theorem (Chizat and Bach, 2020): when $m \to +\infty$, the gradient flow converges to the function that separates the data with minimum variation norm
	- Actual learning of representations
	- Adaptivity to linear structures (see Chizat and Bach, 2020)
	- No known convex optimization algorithms in polynomial time
	- End of the curve of double descent (Belkin et al., 2018)

Optimizing over two layers

• Two-dimensional classification with "bias" term

Space of parameters

- \bullet Plot of $|\theta_2(j)|\theta_1(\cdot,j)$
- \bullet Color depends on sign of $\theta_2(j)$
- "tanh" radial scale

Space of predictors

- \bullet $(+/-)$ training set
- One color per class
- $\bullet\,$ Line shows 0 level set of h

Comparison of kernel and feature learning regimes

 \bullet ℓ_2 (left: kernel) vs. ℓ_1 (right: feature learning and variation norm)

Comparison of kernel and feature learning regimes

- Adaptivity to linear structures
- \bullet Two-class classification in dimension $d=15$
	- Two first coordinates as shown below
	- All other coordinates uniformly at random

Discussion

• Summary

- Qualitative analysis of gradient descent for 2-layer neural networks
- Global convergence with infinitely many neurons
- Convergence to maximum margin separators in well-defined function spaces
- Only qualitative

Discussion

• Summary

- Qualitative analysis of gradient descent for 2-layer neural networks
- Global convergence with infinitely many neurons
- Convergence to maximum margin separators in well-defined function spaces
- Only qualitative

• Open problems

- Quantitative analysis in terms of number of neurons m and time t
- Extension to convolutional neural networks
- Extension to deep neural networks

Conclusion

• From convex optimization ...

– "Linear" models with quantitative guarantees

• ... to non-convex optimization

– Neural networks with qualitative guarantees

Conclusion

• From convex optimization ...

– "Linear" models with quantitative guarantees

• ... to non-convex optimization

- Neural networks with qualitative guarantees
- (selected) Open problems
	- Quantitative guarantees for deep convolutional models
	- Distributed optimization

Conclusion

• From convex optimization ...

– "Linear" models with quantitative guarantees

• ... to non-convex optimization

– Neural networks with qualitative guarantees

• (selected) Open problems

- Quantitative guarantees for deep convolutional models
- Distributed optimization

• Beyond optimization and statistics

- Partial differential equations
- Control theory

References

- Luigi Ambrosio, Nicola Gigli, and Giuseppe Savar´e. *Gradient flows: in metric spaces and in the space of probability measures*. Springer Science & Business Media, 2008.
- Francis Bach. Breaking the curse of dimensionality with convex neural networks. *Journal of Machine Learning Research*, 18(1):629–681, 2017.
- Francis Bach, Julien Mairal, and Jean Ponce. Convex sparse matrix factorizations. Technical Report 0812.1869, arXiv, 2008.
- A. R. Barron. Universal approximation bounds for superpositions of ^a sigmoidal function. *IEEE Transactions on Information Theory*, 39(3):930–945, 1993.
- Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine learning and the bias-variance trade-off. *arXiv preprint arXiv:1812.11118*, 2018.
- Y. Bengio, N. Le Roux, P. Vincent, O. Delalleau, and P. Marcotte. Convex neural networks. In *Advances in Neural Information Processing Systems (NIPS)*, 2006.
- Lénaïc Chizat and Francis Bach. On the global convergence of gradient descent for over-parameterized models using optimal transport. In *Advances in Neural Information Processing Systems*, pages 3036–3046, 2018.
- Lénaïc Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks trained with the logistic loss. *arXiv preprint arXiv:2002.04486*, 2020.
- Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, and Yann LeCun. The loss surfaces of multilayer networks. In *Artificial Intelligence and Statistics*, pages 192–204, 2015.
- Suriya Gunasekar, Blake E Woodworth, Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. Implicit regularization in matrix factorization. In *Advances in Neural Information Processing Systems*, pages 6151–6159, 2017.
- Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of optimization geometry. In *International Conference on Machine Learning*, pages 1832–1841, 2018.
- Benjamin D. Haeffele and René Vidal. Global optimality in neural network training. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 7331–7339, 2017.
- Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M. Kakade, and Michael I. Jordan. How to escape saddle points efficiently. In *International Conference on Machine Learning*, pages 1724–1732. PMLR, 2017.
- V. Kurkova and M. Sanguineti. Bounds on rates of variable-basis and neural-network approximation. *IEEE Transactions on Information Theory*, 47(6):2659–2665, Sep 2001.
- Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent only converges to minimizers. In *Conference on Learning Theory*, pages 1246–1257, 2016.
- Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the effectiveness of sgd in modern over-parametrized learning. In *International Conference on Machine Learning*, pages 3331–3340, 2018.
- Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime. *arXiv preprint arXiv:1911.01544*, 2019.

Atsushi Nitanda and Taiji Suzuki. Stochastic particle gradient descent for infinite ensembles. *arXiv*

preprint arXiv:1712.05438, 2017.

- S. Rosset, G. Swirszcz, N. Srebro, and J. Zhu. ℓ_1 -regularization in infinite dimensional feature spaces. In *Proceedings of the Conference on Learning Theory (COLT)*, 2007.
- Grant M. Rotskoff and Eric Vanden-Eijnden. Neural networks as interacting particle systems: Asymptotic convexity of the loss landscape and universal scaling of the approximation error. *arXiv preprint arXiv:1805.00915*, 2018.
- Justin Sirignano and Konstantinos Spiliopoulos. Mean field analysis of neural networks. *arXiv preprint arXiv:1805.01053*, 2018.
- Mahdi Soltanolkotabi, Adel Javanmard, and Jason D Lee. Theoretical insights into the optimization landscape of over-parameterized shallow neural networks. *IEEE Transactions on Information Theory*, 2018.
- Mei Song, Andrea Montanari, and P Nguyen. A mean field view of the landscape of two-layers neural networks. *Proceedings of the National Academy of Sciences*, 115:E7665–E7671, 2018.
- Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient descent on separable data. *The Journal of Machine Learning Research*, 19(1): 2822–2878, 2018.
- Sharan Vaswani, Francis Bach, and Mark Schmidt. Fast and faster convergence of sgd for overparameterized models and an accelerated perceptron. In *International Conference on Artificial Intelligence and Statistics*, 2019.