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Scientific context

• Proliferation of digital data

– Personal data

– Industry

– Scientific: from bioinformatics to humanities

• Need for automated processing of massive data

• Recent progress in perception tasks (vision, audio, text)

– Fueled by machine learning algorithms run on massive data
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– h(x, θ) = θ⊤Φ(x)

• E.g., advertising: n > 109

– Φ(x) ∈ {0, 1}d, d > 109

– Navigation history + ad
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Parametric supervised machine learning

• Data: n observations (xi, yi) ∈ X× Y, i = 1, . . . , n

• Prediction function h(x, θ) ∈ R parameterized by θ ∈ R
d

• (regularized) empirical risk minimization:

min
θ∈Rd

1
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ℓ
(
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)

+ λΩ(θ)
}

=
1
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n
∑
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fi(θ)

data fitting term + regularizer

• Actual goal: minimize test error Ep(x,y)ℓ(y, h(x, θ))
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- Support vector machines and kernel methods

- Sparsity / low-rank models with first-order methods

- Stochastic methods for large-scale learning and online learning

- etc.

- What about deep learning?
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– NB: already a simplification

• Main difficulties

1. Non-convex optimization problems

2. Generalization guarantees in the overparameterized regime



Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points
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– Bad initialization
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• Generic local theoretical guarantees

– Convergence to stationary points or local minima

– See, e.g., Lee et al. (2016); Jin et al. (2017)
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• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points
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• General global performance guarantees impossible to obtain
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– Overparameterized models withm large ≈ measure µ with densities

– Barron (1993); Kurkova and Sanguineti (2001); Bengio et al.

(2006); Rosset et al. (2007); Bach (2017)
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Many particle limit and global convergence

(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m

m
∑

j=1

Ψ(wj)
)

– Gradient flow Ẇ = −m∇Fm(W ), with W = (w1, . . . , wm)

– Idealization of (stochastic) gradient descent

• Limit when m tends to infinity

– Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and

Bach, 2018; Song, Montanari, and Nguyen, 2018; Sirignano and

Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)

• NB: for more details on gradient flows, see Ambrosio et al. (2008)
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• Mean potential for minimizing F (µ) = R
(
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Ψ(v)dµ(v)
)

J(w|µ) =
〈

Ψ(w),∇R
(

∫
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Ψ(v)dµ(v)
)〉

– Gradient flow: ẇj = −∇J(wj|µ) with µ = 1
m

∑m

j=1 δwj

• Partial differential equation: ∂tµt(w) = div(µt(w)∇J(w|µt))

• Theorem (Chizat and Bach, 2018)

– Assume R and Ψ are (Fréchet) differentiable with Lipschitz

differentials and R Lipschitz on its sublevel sets

– Initial weights (wj(0))j≥1 in a compact subset of Rd+1

– Let µt,m = 1
m

∑m

j=1wj(t) with (w1(t), . . . , wm(t)) solving the ODE

– If µ0,m weakly converges to some µ0 ∈ P(Rd+1) then µt,m weakly

converges to µt where (µt)t≥0 is the unique weakly continuous

solution to the PDE initialized with µ0
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Many particle limit and global convergence

(Chizat and Bach, 2018)

• (informal) theorem: when the number of particles tends to infinity,

the gradient flow converges to the global optimum

– See precise definitions and statement in paper

– Two key ingredients: homogeneity and initialization

• Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

– Full or partial, e.g., Ψ(wj)(x) = mθ2(j) · σ
[

θ1(·, j)
⊤x

]

– Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions

• Only qualititative!



Simple simulations with neural networks

• ReLU units with d = 2 (optimal predictor has 5 neurons)
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+

(plotting |θ2(j)|θ1(·, j) for each hidden neuron j)

NB : also applies to spike deconvolution
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• ReLU units with d = 2 (optimal predictor has 5 neurons)

5 neurons 10 neurons 100 neurons

h(x) =
1

m

m
∑

j=1

Ψ(wi)(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, i)
⊤x

)

+

( |θ2(j)|θ1(·, j) video!

NB : also applies to spike deconvolution
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– Requires well-spread initialization, no quantitative results
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∑
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θ2(j)
(

θ1(·, j)
⊤x

)

+

– If m tends to infinity, the gradient flow converges to a global

minimizer of the risk R(h) = Ep(x,y)ℓ(y, h(x))

– Requires well-spread initialization, no quantitative results

• Single-pass SGD with R the (unobserved) expected risk

– Converges to an optimal predictor on the testing distribution

– Tends to underfit

• Multiple-pass SGD or full GD with R the empirical risk

– Converges to an optimal predictor on the training distribution

– Should overfit?
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• MinimizingR(h) =
1
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∑

i=1

ℓ(yi, h(xi)) for h(x)=
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)
⊤x

)

+

– When m(d+ 1) > n, typically there exist many h such that

∀i ∈ {1, . . . , n}, h(xi) = yi (or ℓ(yi, h(xi)) = 0)

– See Belkin et al. (2018); Ma et al. (2018); Vaswani et al. (2019)

• Which h is the gradient flow converging to?

– Implicit bias of (stochastic) gradient descent

– Typically minimum Euclidean norm solution (Gunasekar et al.,

2017; Soudry et al., 2018; Gunasekar et al., 2018)



Logistic regression for two-layer neural networks
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• Overparameterized regime m → +∞

– Converges to a function h such that ∀i ∈ {1, . . . , n}, yih(xi) > 1

– With minimum norm



Logistic regression for two-layer neural networks

h(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)
⊤x

)

+

• Overparameterized regime m → +∞

– Converges to a function h such that ∀i ∈ {1, . . . , n}, yih(xi) > 1

– With minimum norm

• Two different regimes (Chizat and Bach, 2020)

1. Optimizing over output layer only θ2: kernel regime

2. Optimizing over all layers θ1, θ2: feature learning regime
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– Input weigths uniformly distributed on the sphere (Bach, 2017)

– Smooth functions (does not allow single hidden neuron)



From RKHS norm to variation norm

• RKHS norm

‖f‖2 = inf
a(·)

∫

Sd
|a(η)|2dτ(η) such that f(x) =

∫

Sd
(η⊤x)+a(η)dτ(η)

– Input weigths uniformly distributed on the sphere (Bach, 2017)

– Smooth functions (does not allow single hidden neuron)

• Variation norm (Kurkova and Sanguineti, 2001)

Ω(f) = inf
a(·)

∫

Sd
|a(η)|dτ(η) such that f(x) =

∫

Sd
(η⊤x)+a(η)dτ(η)

– Larger space including non-smooth functions

– Allows single hidden neuron
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+

– Optimize only over output weights θ2



Kernel regime

• Prediction function h(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)
⊤x

)

+

– Optimize only over output weights θ2

• (informal) theorem (Chizat and Bach, 2020): when m → +∞, the

gradient flow converges to the function that separates the data with

minimum RKHS norm

– Quantitative analysis available

– Letting m → +∞ is useless in practice

– See Montanari et al. (2019) for related work in the context of

“double descent”
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• Prediction function h(x) =
1
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m
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+

– Optimize over all weights θ1, θ2



Feature learning regime

• Prediction function h(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)
⊤x

)

+

– Optimize over all weights θ1, θ2

• (informal) theorem (Chizat and Bach, 2020): when m → +∞, the

gradient flow converges to the function that separates the data with

minimum variation norm

– Actual learning of representations

– Adaptivity to linear structures (see Chizat and Bach, 2020)

– No known convex optimization algorithms in polynomial time

– End of the curve of double descent (Belkin et al., 2018)



Optimizing over two layers

• Two-dimensional classification with “bias” term

Space of parameters

• Plot of |θ2(j)|θ1(·, j)

• Color depends on sign of θ2(j)

• “tanh” radial scale

Space of predictors

• (+/−) training set

• One color per class

• Line shows 0 level set of h





Comparison of kernel and feature learning regimes

• ℓ2 (left: kernel) vs. ℓ1 (right: feature learning and variation norm)





Comparison of kernel and feature learning regimes

• Adaptivity to linear structures

• Two-class classification in dimension d = 15

– Two first coordinates as shown below

– All other coordinates uniformly at random
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– Convergence to maximum margin separators in well-defined

function spaces
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• Summary
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– Global convergence with infinitely many neurons

– Convergence to maximum margin separators in well-defined

function spaces

– Only qualitative

• Open problems

– Quantitative analysis in terms of number of neurons m and time t

– Extension to convolutional neural networks

– Extension to deep neural networks
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Conclusion

• From convex optimization ...

– “Linear” models with quantitative guarantees

• ... to non-convex optimization

– Neural networks with qualitative guarantees

• (selected) Open problems

– Quantitative guarantees for deep convolutional models

– Distributed optimization

• Beyond optimization and statistics

– Partial differential equations

– Control theory
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