Entropy in Mean Curvature Flow

Lu Wang

Yale University

ICM 2022 July 13, 2022

Lu Wang Entropy in Mean Curvature Flow

Outline

Background for mean curvature flow and entropy

Sharp lower bounds on entropy

Topological stability for entropy

A family of hypersurfaces in Euclidean space evolves under mean curvature flow if the velocity of every point on the evolving hypersurface is given by the mean curvature.

Figure: Convergence of a convex curve to a round circle under curve shortening flow, by courtesy of David Eppstein, via Wikimedia Commons

All blowups of a mean curvature flow at a given singularity are modeled by self-similarly shrinking solutions to the flow

$$M_t = \sqrt{-t} M_{-1}$$
 for $t < 0$;

in that case M_{-1} is called a self-shrinker. (Brakke, Huisken, Ilmanen, and White)

The simplest examples:

static planes, shrinking spheres and cylinders

are conjectured to be the only ones arising in the flow starting from a generic closed surface. (Angenent–Chopp–Ilmanen, Huisken)

Given $x_0 \in \mathbb{R}^{n+1}$ and $t_0 > 0$, define the functional $F_{x_0,t_0}(\Sigma)$ of a hypersurface $\Sigma \subset \mathbb{R}^{n+1}$ by

$$F_{x_0,t_0}(\Sigma) = (4\pi t_0)^{-\frac{n}{2}} \int_{\Sigma} e^{-\frac{|x-x_0|^2}{4t_0}} \, dV$$

A critical point of F_{x_0,t_0} is exactly the time $t = -t_0$ slice of a self-similarly shrinking solution to the mean curvature flow

$$M_t = \sqrt{-t} (M_{-1} - x_0) + x_0$$
 for $t < 0$.

Following Colding–Minicozzi, define the entropy $\lambda(\Sigma)$ of Σ by $\lambda(\Sigma) = \sup F_{x_0, t_0}(\Sigma).$

$$x_0, t_0$$

The entropy has the properties:

- It is invariant under rigid motions and dilations.
- It is nonincreasing under mean curvature flow.
- The critical points of entropy are self-shrinkers.

The only entropy stable self-shrinkers with polynomial volume growth are:

hyperplanes, the round sphere, and generalized cylinders.

(Colding-Minicozzi)

Figure: A truncated self-shrinker conjectured by Ilmanen and shown to exist by Kapouleas–Kleene–Møller and X.H. Nguyen

All smooth embedded self-shrinking curves in \mathbb{R}^2 are straight lines and the round circle. (Abresch–Langer)

Any simple, closed, smooth curve γ in \mathbb{R}^2 flows smoothly, eventually becomes convex and disappears in a round point. (Grayson, Gage–Hamilton)

Thus $\lambda(\gamma) \geq \lambda(\mathbb{S}^1)$ with equality if and only if γ is a round circle.

Two conjectures of Colding–Ilmanen–Minicozzi–White:

Conjecture A. For $n \leq 6$, there exists $\epsilon = \epsilon(n) > 0$ so that if $\Sigma \subset \mathbb{R}^{n+1}$ is a nonflat self-shrinker not equal to the round sphere, then $\lambda(\Sigma) \geq \lambda(\mathbb{S}^n) + \epsilon$.

Conjecture B. For $n \leq 6$, if M is a closed hypersurface in \mathbb{R}^{n+1} , then $\lambda(M) \geq \lambda(\mathbb{S}^n)$.

Given *n*, there exists $\epsilon = \epsilon(n) > 0$ so that if $\Sigma \subset \mathbb{R}^{n+1}$ is a *closed* self-shrinker not equal to the round sphere, then

$$\lambda(\Sigma) \geq \lambda(\mathbb{S}^n) + \epsilon.$$

(Colding–Ilmanen–Minicozzi–White)

There exists $\delta > 0$ so that if $\Sigma \subset \mathbb{R}^3$ is a self-shrinker not equal to a plane, round sphere or cylinder, then

$$\lambda(\Sigma) \geq \lambda(\mathbb{S}^1) + \delta.$$

(Bernstein–W.)

Ideas of proof: argue by contradiction

Perturb Σ to one side to produce a rescaled mean convex hypersurface $\tilde{\Sigma}.$

When Σ is closed, the flow starting from $\tilde{\Sigma}$ may develop spherical or cylindrical singularities.

When Σ is a noncompact surface, the flow starting from $\tilde{\Sigma}$ may either develop cylindrical singularities, or become star-shaped and so, by Brendle, Σ is a plane.

Given *n*, if *M* is a closed hypersurface in \mathbb{R}^{n+1} , then

 $\lambda(M) \geq \lambda(\mathbb{S}^n)$

with equality if and only if M is a round sphere. (Bernstein–W. for $n \le 6$, J. Zhu for general n)

Key observation:

Terminal singularities of low entropy are "collapsing".

If M is a closed hypersurface in \mathbb{R}^4 with

$$\lambda(M) \leq \lambda(\mathbb{S}^2),$$

then *M* is smoothly isotopic to the standard 3-sphere. (Bernstein–W., Chodosh–Choi–Mantoulidis–Schulze)

4D Smooth Schoenflies Conjecture in low-entropy setting

Question A. How does mean curvature flow resolve a conical singularity?

Question B. How to tackle the nonuniqueness of the mean curvature flow starting from a cone?

Figure: Cross-sections of self-similarly expanding evolutions by Angenent–Chopp–Ilmanen

Given a cone $C \subset \mathbb{R}^{n+1}$ with smooth embedded link, consider a mean curvature flow $\{M_t\}_{t \in (0,T)}$ so that $M_t \to C$ as $t \to 0$.

If M_t is trapped between two self-similarly expanding solutions to the flow

$$M_t^{\pm} = \sqrt{t} \ M^{\pm}, \quad M_t^{\pm} o C \quad ext{as } t o 0,$$

then all blowups at the vertex of the cone are modeled by self-similarly expanding solutions to the flow. (Bernstein–W.)

Idea: a notion of relative entropy motivated by self-expanders

For $2 \le n \le 6$, if $C \subset \mathbb{R}^{n+1}$ is a cone with smooth embedded link and if

$$\lambda(\mathcal{C}) < \lambda(\mathbb{S}^{n-1}),$$

then all self-expanders asymptotic to C are in the same smooth isotopy class. (Bernstein–W.)

Idea: construct Morse flow lines for the expander functional

Summary:

- On the one hand, entropy is a useful quantity in the study of singularities for mean curvature flow;
- On the other, mean curvature flow is a tool to study entropy as a natural measure of geometric complexity.

Future directions:

- Classify self-shrinkers of low entropy in dimension ≥ 3, or more generally ancient solutions to the mean curvature flow of low entropy. (e.g., Choi–Haslhofer–Hershkovits)
- Sharp lower bounds on entropy for submanifolds of higher codimensions (e.g., Colding–Minicozzi)