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A family of hypersurfaces in Euclidean space evolves under
mean curvature flow if the velocity of every point on the
evolving hypersurface is given by the mean curvature.

Figure: Convergence of a convex curve to a round circle under
curve shortening flow, by courtesy of David Eppstein, via
Wikimedia Commons
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All blowups of a mean curvature flow at a given singularity are
modeled by self-similarly shrinking solutions to the flow

Mt =
√
−t M−1 for t < 0;

in that case M−1 is called a self-shrinker. (Brakke, Huisken,
Ilmanen, and White)

The simplest examples:

static planes, shrinking spheres and cylinders

are conjectured to be the only ones arising in the flow starting
from a generic closed surface. (Angenent–Chopp–Ilmanen,
Huisken)
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Given x0 ∈ Rn+1 and t0 > 0, define the functional Fx0,t0(Σ) of
a hypersurface Σ ⊂ Rn+1 by

Fx0,t0(Σ) = (4πt0)−
n
2

∫
Σ

e
− |x−x0|

2

4t0 dV

A critical point of Fx0,t0 is exactly the time t = −t0 slice of a
self-similarly shrinking solution to the mean curvature flow

Mt =
√
−t (M−1 − x0) + x0 for t < 0.
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Following Colding–Minicozzi, define the entropy λ(Σ) of Σ by

λ(Σ) = sup
x0,t0

Fx0,t0(Σ).

The entropy has the properties:

It is invariant under rigid motions and dilations.

It is nonincreasing under mean curvature flow.

The critical points of entropy are self-shrinkers.
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The only entropy stable self-shrinkers with polynomial volume
growth are:

hyperplanes, the round sphere, and generalized cylinders.

(Colding–Minicozzi)

Figure: A truncated self-shrinker conjectured by Ilmanen and
shown to exist by Kapouleas–Kleene–Møller and X.H. Nguyen
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All smooth embedded self-shrinking curves in R2 are straight
lines and the round circle. (Abresch–Langer)

Any simple, closed, smooth curve γ in R2 flows smoothly,
eventually becomes convex and disappears in a round point.
(Grayson, Gage–Hamilton)

Thus λ(γ) ≥ λ(S1) with equality if and only if γ is a round
circle.
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Two conjectures of Colding–Ilmanen–Minicozzi–White:

Conjecture A. For n ≤ 6, there exists ε = ε(n) > 0 so
that if Σ ⊂ Rn+1 is a nonflat self-shrinker not equal to
the round sphere, then λ(Σ) ≥ λ(Sn) + ε.

Conjecture B. For n ≤ 6, if M is a closed hypersurface
in Rn+1, then λ(M) ≥ λ(Sn).
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Given n, there exists ε = ε(n) > 0 so that if Σ ⊂ Rn+1 is a
closed self-shrinker not equal to the round sphere, then

λ(Σ) ≥ λ(Sn) + ε.

(Colding–Ilmanen–Minicozzi–White)

There exists δ > 0 so that if Σ ⊂ R3 is a self-shrinker not
equal to a plane, round sphere or cylinder, then

λ(Σ) ≥ λ(S1) + δ.

(Bernstein–W.)
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Ideas of proof: argue by contradiction

Perturb Σ to one side to produce a rescaled mean convex
hypersurface Σ̃.

When Σ is closed, the flow starting from Σ̃ may develop
spherical or cylindrical singularities.

When Σ is a noncompact surface, the flow starting from
Σ̃ may either develop cylindrical singularities, or become
star-shaped and so, by Brendle, Σ is a plane.
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Given n, if M is a closed hypersurface in Rn+1, then

λ(M) ≥ λ(Sn)

with equality if and only if M is a round sphere.
(Bernstein–W. for n ≤ 6, J. Zhu for general n)

Key observation:

Terminal singularities of low entropy are “collapsing”.
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If M is a closed hypersurface in R4 with

λ(M) ≤ λ(S2),

then M is smoothly isotopic to the standard 3-sphere.
(Bernstein–W., Chodosh–Choi–Mantoulidis–Schulze)

4D Smooth Schoenflies Conjecture in low-entropy setting
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Question A. How does mean curvature flow resolve a conical
singularity?

Question B. How to tackle the nonuniqueness of the mean
curvature flow starting from a cone?

Figure: Cross-sections of self-similarly expanding evolutions by
Angenent–Chopp–Ilmanen
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Given a cone C ⊂ Rn+1 with smooth embedded link, consider
a mean curvature flow {Mt}t∈(0,T ) so that Mt → C as t → 0.

If Mt is trapped between two self-similarly expanding solutions
to the flow

M±t =
√
t M±, M±t → C as t → 0,

then all blowups at the vertex of the cone are modeled by
self-similarly expanding solutions to the flow. (Bernstein–W.)

Idea: a notion of relative entropy motivated by self-expanders
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For 2 ≤ n ≤ 6, if C ⊂ Rn+1 is a cone with smooth embedded
link and if

λ(C ) < λ(Sn−1),

then all self-expanders asymptotic to C are in the same
smooth isotopy class. (Bernstein–W.)

Idea: construct Morse flow lines for the expander functional
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Summary:

On the one hand, entropy is a useful quantity in the study
of singularities for mean curvature flow;

On the other, mean curvature flow is a tool to study
entropy as a natural measure of geometric complexity.

Future directions:

Classify self-shrinkers of low entropy in dimension ≥ 3, or
more generally ancient solutions to the mean curvature
flow of low entropy. (e.g., Choi–Haslhofer–Hershkovits)

Sharp lower bounds on entropy for submanifolds of higher
codimensions (e.g., Colding–Minicozzi)
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