Stable homotopy groups of spheres and motivic homotopy theory

Guozhen Wang¹ Zhouli Xu²

¹SCMS, Fudan University

²University of California San Diego

July 13, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Dedicated to Mark Mahowald

◆□ > < 個 > < E > < E > E の < @</p>

- Dedicated to Mark Mahowald
- Outline:
 - 1. smooth structures on spheres

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

- Dedicated to Mark Mahowald
- Outline:
 - $1. \ \ \text{smooth structures on spheres}$
 - 2. stable homotopy groups of spheres

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Dedicated to Mark Mahowald
- Outline:
 - $1. \ \ \text{smooth structures on spheres}$
 - 2. stable homotopy groups of spheres

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

3. motivic homotopy theory

- Dedicated to Mark Mahowald
- Outline:
 - 1. smooth structures on spheres
 - 2. stable homotopy groups of spheres

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 3. motivic homotopy theory
- 4. questions and conjectures

- Dedicated to Mark Mahowald
- Outline:
 - 1. smooth structures on spheres
 - 2. stable homotopy groups of spheres
 - 3. motivic homotopy theory
 - 4. questions and conjectures
- This talk is partially supported by the NSF

・ロト (母) (日) (日) (日) (0) (0)

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer: Yes. Perelman 2003.

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopic to S^n . Is *M* homeomorphic to S^n ?

Question (Poincaré, 1904)

M: closed manifold, dim = 3, $\pi_0 M = \pi_1 M = 0$. Is *M* homeomorphic to S^3 ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopic to S^n . Is *M* homeomorphic to S^n ?

Answer: Yes.

Question (Poincaré, 1904)

```
M: closed manifold, dim = 3, \pi_0 M = \pi_1 M = 0.
Is M homeomorphic to S^3?
```

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopic to S^n . Is *M* homeomorphic to S^n ?

Answer: Yes.

▶ *n* = 4, Freedman 1982.

Question (Poincaré, 1904)

```
M: closed manifold, dim = 3, \pi_0 M = \pi_1 M = 0.
Is M homeomorphic to S^3?
```

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopic to S^n . Is *M* homeomorphic to S^n ?

Answer: Yes.

- ▶ *n* = 4, Freedman 1982.
- ▶ $n \ge 5$, Smale (smooth), Newman, Connell. 1960's.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Question

M: closed, smooth, dim= *n*. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer:

▶ *n* = 3. Yes. Moise 1952.

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- n = 4. Wildly open.

Question

M: closed, smooth, dim = n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- n = 4. Wildly open.
- n = 5, 6. Yes. Kervaire–Milnor.

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- n = 4. Wildly open.
- n = 5, 6. Yes. Kervaire–Milnor.
- n = 7. No. Milnor's exotic 7-sphere.

Question

M: closed, smooth, dim = n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- n = 4. Wildly open.
- n = 5, 6. Yes. Kervaire–Milnor.
- n = 7. No. Milnor's exotic 7-sphere.

Questions

1. For which n, is there a unique smooth structure on S^n ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Question

M: closed, smooth, dim= n. *M* is homeomorphic to S^n . Is *M* diffeomorphic to S^n ?

Answer:

- ▶ *n* = 3. Yes. Moise 1952.
- n = 4. Wildly open.
- n = 5, 6. Yes. Kervaire–Milnor.
- n = 7. No. Milnor's exotic 7-sphere.

Questions

1. For which n, is there a unique smooth structure on S^n ?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

2. How many smooth structures are there on S^n ?

Kervaire–Milnor $n \ge 5$

- Θ_n = smooth structures on S^n
 - = *h*-cobordism classes of homotopy *n*-spheres

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

Kervaire–Milnor $n \ge 5$

- $\Theta_n =$ smooth structures on S^n
 - = *h*-cobordism classes of homotopy *n*-spheres
- Θ_n^{bp} = homotopy spheres that bound parallelizable manifolds

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Kervaire–Milnor $n \ge 5$

• $\Theta_n =$ smooth structures on S^n

- = h-cobordism classes of homotopy n-spheres
- Θ_n^{bp} = homotopy spheres that bound parallelizable manifolds

Theorem (Kervaire–Milnor)

For $n \ge 5$, the subgroup Θ_n^{bp} is cyclic,

$$|\Theta_n^{bp}| = \begin{cases} 1, & \text{if } n \text{ is even,} \\ 1 & \text{or } 2, & \text{if } n = 4k + 1, \\ b_k, & \text{if } n = 4k - 1. \end{cases}$$

うして ふゆう ふほう ふほう うらつ

 $b_k = 2^{2k-2}(2^{2k-1}-1)$ the numerator of $\frac{4B_{2k}}{k}$, B_{2k} : Bernoulli number.

Theorem (Kervaire–Milnor)

(continued) Suppose $n \ge 5$.

1. For $n \not\equiv 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \to 0.$$

◆□▶ ◆帰▶ ◆□▶ ◆□▶ □ のQ@

 π_n : n-th stable homotopy groups of spheres, π_n/J : cokernel of the J-homomorphism.

Theorem (Kervaire–Milnor)

(continued) Suppose $n \ge 5$.

1. For $n \neq 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \to 0.$$

 π_n : n-th stable homotopy groups of spheres, π_n/J : cokernel of the J-homomorphism.

2. For $n \equiv 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \xrightarrow{\Phi_n} \mathbb{Z}/2 \to \Theta_{n-1}^{bp} \to 0.$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

 Φ : the Kervaire invariant.

Theorem (Kervaire–Milnor)

(continued) Suppose $n \ge 5$.

1. For $n \not\equiv 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \to 0.$$

 π_n : n-th stable homotopy groups of spheres, π_n/J : cokernel of the J-homomorphism.

2. For $n \equiv 2 \pmod{4}$, there is an exact sequence

$$0 \to \Theta_n^{bp} \to \Theta_n \to \pi_n/J \xrightarrow{\Phi_n} \mathbb{Z}/2 \to \Theta_{n-1}^{bp} \to 0.$$

 Φ : the Kervaire invariant.

Theorem (Browder, Barratt–Jones–Mahowald–Tangora, Hill–Hopkins–Ravenel)

 $\Phi_n \neq 0$ if and only if n = 2, 6, 14, 30, 62 and possibly 126.

Question

For which n, does S^n have a unique smooth structure?

Question

For which n, does S^n have a unique smooth structure?

• n = 4k - 1, never unique since $|\Theta_n^{bp}|$ is large.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Question

For which n, does S^n have a unique smooth structure?

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem:

Question

For which n, does S^n have a unique smooth structure?

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem: $\Theta_n^{bp} = 0$ if and only if $\Phi_{n+1} \neq 0$

$$0 \to \Theta_{n+1}^{bp} \to \Theta_{n+1} \to \pi_{n+1}/J \xrightarrow{\Phi_{n+1}} \mathbb{Z}/2 \to \Theta_n^{bp} \to 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ◎ ● ●

Question

For which n, does S^n have a unique smooth structure?

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem: $\Theta_n^{bp} = 0$ if and only if $\Phi_{n+1} \neq 0$

$$0 \to \Theta_{n+1}^{bp} \to \Theta_{n+1} \to \pi_{n+1}/J \xrightarrow{\Phi_{n+1}} \mathbb{Z}/2 \to \Theta_n^{bp} \to 0.$$

Therefore the only odd dimensional spheres that could have a unique smooth structure are

$$S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$$

Question

For which n, does S^n have a unique smooth structure?

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem: $\Theta_n^{bp} = 0$ if and only if $\Phi_{n+1} \neq 0$

$$0 \to \Theta_{n+1}^{bp} \to \Theta_{n+1} \to \pi_{n+1}/J \xrightarrow{\Phi_{n+1}} \mathbb{Z}/2 \to \Theta_n^{bp} \to 0.$$

Therefore the only odd dimensional spheres that could have a unique smooth structure are

$$S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$$

うして ふゆう ふほう ふほう うらつ

▶ S¹³, S²⁹: not unique, May 1960's.

Question

For which n, does S^n have a unique smooth structure?

- n = 4k 1, never unique since $|\Theta_n^{bp}|$ is large.
- n = 4k + 1, it depends on the Kervaire invariant problem: $\Theta_n^{bp} = 0$ if and only if $\Phi_{n+1} \neq 0$

$$0 \to \Theta_{n+1}^{bp} \to \Theta_{n+1} \to \pi_{n+1}/J \xrightarrow{\Phi_{n+1}} \mathbb{Z}/2 \to \Theta_n^{bp} \to 0.$$

Therefore the only odd dimensional spheres that could have a unique smooth structure are

$$S^1, S^3, S^5, S^{13}, S^{29}, S^{61}, S^{125}$$

- ► S¹³, S²⁹: not unique, May 1960's.
- ► S¹²⁵: not unique, Hurewicz image of *tmf* (the spectrum of topological modular forms).

Theorem (Wang-Xu)

 $\pi_{61} = 0$, and therefore S^{61} has a unique smooth structure.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Theorem (Wang–Xu)

 $\pi_{61} = 0$, and therefore S^{61} has a unique smooth structure.

Based on work of Kervaire-Milnor, Browder, Hill-Hopkins-Ravenel,

Corollary

The only odd dimensional spheres with a unique smooth structure are S^1, S^3, S^5, S^{61} .

Theorem (Wang–Xu)

 $\pi_{61} = 0$, and therefore S^{61} has a unique smooth structure.

Based on work of Kervaire-Milnor, Browder, Hill-Hopkins-Ravenel,

Corollary

The only odd dimensional spheres with a unique smooth structure are S^1, S^3, S^5, S^{61} .

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

・ロト ・ 日 ・ モ ト ・ 田 ・ うへで
Theorem (Wang–Xu)

 $\pi_{61} = 0$, and therefore S^{61} has a unique smooth structure.

Based on work of Kervaire-Milnor, Browder, Hill-Hopkins-Ravenel,

Corollary

The only odd dimensional spheres with a unique smooth structure are S^1, S^3, S^5, S^{61} .

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

- ► S⁶, S¹²: Kervaire–Milnor
- ► S⁵⁶: Isaksen

Theorem (Wang-Xu)

 $\pi_{61} = 0$, and therefore S^{61} has a unique smooth structure.

Based on work of Kervaire-Milnor, Browder, Hill-Hopkins-Ravenel,

Corollary

The only odd dimensional spheres with a unique smooth structure are S^1, S^3, S^5, S^{61} .

Conjecture

For dim at least 6, the only even dimensional spheres with a unique smooth structure are S^6, S^{12}, S^{56} .

- S^6, S^{12} : Kervaire–Milnor
- ► S⁵⁶: Isaksen
- no more: confirmed by Behrens, Hill, Hopkins, Mahowald, Quigley for more than half of the even dimensions.

Definition

 $\pi_k(S^0) = \operatorname{colim}_n[S^{n+k}, S^n]$: k-th stem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

 $\pi_k(S^0) = \operatorname{colim}_n[S^{n+k}, S^n]$: k-th stem.

(Serre) finite abelian groups: k ≥ 1.
 ⇒ compute one prime at a time

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Definition

 $\pi_k(S^0) = \operatorname{colim}_n[S^{n+k}, S^n]$: k-th stem.

• (Serre) finite abelian groups: $k \ge 1$. \Rightarrow compute one prime at a time

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

•
$$\pi_k(S^0) \otimes \pi_l(S^0) \longrightarrow \pi_{k+l}(S^0)$$

Definition

 $\pi_k(S^0) = \operatorname{colim}_n[S^{n+k}, S^n]$: k-th stem.

- (Serre) finite abelian groups: $k \ge 1$. \Rightarrow compute one prime at a time
- $\pi_k(S^0) \otimes \pi_l(S^0) \longrightarrow \pi_{k+l}(S^0)$
- higher products: (matric) Toda brackets

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ・ うへつ

Definition

 $\pi_k(S^0) = \operatorname{colim}_n[S^{n+k}, S^n]$: k-th stem.

- (Serre) finite abelian groups: $k \ge 1$. \Rightarrow compute one prime at a time
- $\pi_k(S^0) \otimes \pi_l(S^0) \longrightarrow \pi_{k+l}(S^0)$
- higher products: (matric) Toda brackets
- (Serre) Serre spectral sequence: up to 8-stem (unstable).

うして ふゆう ふほう ふほう うらつ

Definition

 $\pi_k(S^0) = \operatorname{colim}_n[S^{n+k}, S^n]$: k-th stem.

- (Serre) finite abelian groups: $k \ge 1$. \Rightarrow compute one prime at a time
- $\pi_k(S^0) \otimes \pi_l(S^0) \longrightarrow \pi_{k+l}(S^0)$
- higher products: (matric) Toda brackets
- ▶ (Serre) Serre spectral sequence: up to 8-stem (unstable).
- (Toda) EHP-(spectral) sequence: up to 19-stem (unstable).

Stable range computations

(Adams) Adams spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{A_*}^{s,t}(\mathbb{F}_\rho, \mathbb{F}_\rho) \Longrightarrow \pi_{t-s}(S^0)_\rho^{\wedge}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 $A_* = H\mathbb{F}_{p*}H\mathbb{F}_p$: dual Steenrod algebra

Stable range computations

(Adams) Adams spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{A_*}^{s,t}(\mathbb{F}_\rho, \mathbb{F}_\rho) \Longrightarrow \pi_{t-s}(S^0)^{\wedge}_{\rho}$$

 $A_* = H\mathbb{F}_{p*}H\mathbb{F}_p$: dual Steenrod algebra

(Novikov) Adams–Novikov spectral sequence

$$E_2^{s,t} = \mathsf{Ext}_{\mathsf{MU}_*\mathsf{MU}}^{s,t}(\mathsf{MU}_*,\mathsf{MU}_*)_\rho^{\wedge} \Longrightarrow \pi_{t-s}(S^0)_\rho^{\wedge}$$

うして ふゆう ふほう ふほう うらつ

MU: complex cobordism spectrum

The Mahowald Uncertainty Principles

The Mahowald Uncertainty Principles

The First Mahowald Uncertainty Principle:

Any spectral sequence converging to the homotopy groups of spheres with an E_2 -page that can be named using homological algebra will be infinitely far from the actual answer.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The Mahowald Uncertainty Principles

• The First Mahowald Uncertainty Principle:

Any spectral sequence converging to the homotopy groups of spheres with an E_2 -page that can be named using homological algebra will be infinitely far from the actual answer.

The Second Mahowald Uncertainty Principle:

Any method that computes nontrivial differentials in such a spectral sequence will leave infinitely many differentials undecided.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Φ is induced by the Thom reduction $MU \to H\mathbb{F}_p$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Φ is induced by the Thom reduction $MU \to H\mathbb{F}_p$
- Jump of filtrations!

Miller's square

Miller's square

Theorem (Miller)

Adams d_2 differentials $\leftrightarrow \rightarrow$ algebraic Novikov d_2 differentials

◆□▶
◆□▶
●□▶
●□▶
●□▶
●□▶
●□▶

 p = 3 Nakamura, Tangora, Ravenel: around 108-stem

 p = 3 Nakamura, Tangora, Ravenel: around 108-stem

(ロ)、

▶ p = 5 Ravenel: around 1000-stem

 p = 3 Nakamura, Tangora, Ravenel: around 108-stem

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- ▶ p = 5 Ravenel: around 1000-stem
- About dimension $p^3(2p-2)$

• (May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_*}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}_{A_*}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

(May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_*}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}_{A_*}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• (Barratt–Mahowald–Tangora) up to 45-stem.

• (May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_{\boldsymbol{*}}}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})\Longrightarrow\mathsf{Ext}_{A_{\boldsymbol{*}}}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- (Barratt–Mahowald–Tangora) up to 45-stem.
 - Massey products
 - Toda brackets

(May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_*}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}_{A_*}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

- (Barratt–Mahowald–Tangora) up to 45-stem.
 - Massey products
 - Toda brackets
 - finite CW complexes: differentials \longleftrightarrow extension problems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

(May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_*}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho}) \Longrightarrow \mathsf{Ext}_{A_*}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

- ▶ (Barratt–Mahowald–Tangora) up to 45-stem.
 - Massey products
 - Toda brackets
 - \blacktriangleright finite CW complexes: differentials \longleftrightarrow extension problems

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• (Bruner) power operations in the Adams spectral sequence

(May) May spectral sequence: up to 28-stem.

$$\mathsf{Ext}_{E^0A_{\boldsymbol{*}}}^{*,*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})\Longrightarrow\mathsf{Ext}_{A_{\boldsymbol{*}}}^{*,*}(\mathbb{F}_{\rho},\mathbb{F}_{\rho})$$

(Barratt–Mahowald–Tangora) up to 45-stem.

- Massey products
- Toda brackets
- \blacktriangleright finite CW complexes: differentials \longleftrightarrow extension problems

うして ふゆう ふほう ふほう うらつ

- (Bruner) power operations in the Adams spectral sequence
- (Kochman) Atiyah–Hirzebruch spectral sequence for BP theory

 ▶ (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem

▲□▶ ▲圖▶ ▲ 臣▶ ▲臣▶ ― 臣 … のへぐ

 ▶ (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

► (Wang-Xu 2015) RP[∞]-method: 60 and 61-stem

- (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem
- ► (Wang-Xu 2015) RP[∞]-method: 60 and 61-stem
- (2016 now)
 - → (Gheorghe–Wang–Xu) motivic cofiber of τ method

- ▶ (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem
- (Wang−Xu 2015) *RP[∞]*-method: 60 and 61-stem
- (2016 now)
 - (Gheorghe–Wang–Xu) motivic cofiber of *τ* method
 - (Isaksen-Wang-Xu) to the 90-stem with few exceptions,

- (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem
- (Wang−Xu 2015) *RP[∞]*-method: 60 and 61-stem
- (2016 now)
 - (Gheorghe–Wang–Xu) motivic cofiber of *τ* method
 - (Isaksen-Wang-Xu) to the 90-stem with few exceptions, and ongoing progress up to 110-stem.

うして ふゆう ふほう ふほう うらつ
Recent methods

- (Isaksen 2014) motivic Adams spectral sequence over C: up to 59-stem
- (Wang−Xu 2015) *RP[∞]*-method: 60 and 61-stem
- (2016 now)
 - (Gheorghe–Wang–Xu) motivic cofiber of *τ* method
 - (Isaksen–Wang–Xu) to the 90-stem with few exceptions, and ongoing progress up to 110-stem.
 - (Burklund–Isaksen–Xu)
 Pstrągowski's synthetic homotopy theory

うして ふゆう ふほう ふほう うらう

Classical Adams Spectral Sequence up to 90-stem

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ - 国 - 釣�?

Classical Adams Spectral Sequence up to 90-stem

▲ロト ▲園 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @ ♪

Classical Adams E_∞ -page up to 90-stem

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● の�?

Motivic homotopy theory

SH: stable homotopy category

Motivic homotopy theory

- SH: stable homotopy category
- SH(k): motivic stable homotopy category over k

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Motivic homotopy theory

- SH: stable homotopy category
- ▶ SH(k): motivic stable homotopy category over k

	SH	SH(k)
building blocks	simplices	simplices, smooth varieties
model category	presheaves over Δ	simplicial presheaves over $Sm(k)$
topology	trivial	Nisnevich/étale
homotopy	[0,1]	\mathbb{A}^1
basic spheres	S ¹	$S^{1,0}$, $S^{1,1}=\mathbb{G}_m$
stabilization	invert S ¹	invert both $\mathcal{S}^{1,0}$ and $\mathcal{S}^{1,1}$
sphere spectrum	<i>S</i> ⁰	S ^{0,0}
homotopy groups	π_*	$\pi_{*,*}$

• (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups

- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char $k \neq 2$ $\pi_{n+1,n}S^{0,0}$ and $\pi_{n+2,n}S^{0,0}$ in terms of motivic cohomology, hermitian and Milnor K-groups of k

うして ふゆう ふほう ふほう うらう

- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char $k \neq 2$ $\pi_{n+1,n}S^{0,0}$ and $\pi_{n+2,n}S^{0,0}$ in terms of motivic cohomology, hermitian and Milnor K-groups of k

ション ふゆ く 山 マ ふ し マ うくの

• (Isaksen–Wang–Xu): $k = \mathbb{C}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s \leq 90$

- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char $k \neq 2$ $\pi_{n+1,n}S^{0,0}$ and $\pi_{n+2,n}S^{0,0}$ in terms of motivic cohomology, hermitian and Milnor K-groups of k

うして ふゆう ふほう ふほう うらう

- (Isaksen–Wang–Xu): $k = \mathbb{C}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s \leq 90$
- (Belmont–Isaksen): $k = \mathbb{R}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s w \leq 11$

- (Morel): For an arbitrary field k, $\pi_{n,n}S^{0,0} = K_n^{MW}(k)$: Milnor–Witt K-groups
- (Röndigs–Spitzweck–Østvær): For any field k, char $k \neq 2$ $\pi_{n+1,n}S^{0,0}$ and $\pi_{n+2,n}S^{0,0}$ in terms of motivic cohomology, hermitian and Milnor K-groups of k
- (Isaksen–Wang–Xu): $k = \mathbb{C}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s \leq 90$
- (Belmont–Isaksen): $k = \mathbb{R}$, $\pi_{s,w}\widehat{S^{0,0}}$ for $s w \leq 11$
- (Wilson, Wilson–Østvær): $k = \text{finite fields}, \pi_{s,0}\widehat{S^{0,0}}$ for $s \leq 18$

Motivic generalized homology theory

Generalized homology theory for algebraic varieties are represented by motivic spectra.

Motivic generalized homology theory

Generalized homology theory for algebraic varieties are represented by motivic spectra.

	SH	SH(k)
ordinary homology	symmetric powers	symmetric powers
char(k) = 0	of spheres	of motivic spheres
K theory	Grassmannians	Grassmannian varieties
	MU:	MGL:
cobordism	Thom construction	Thom construction over
	over Grassmannians	Grassmannian varieties

Motivic generalized homology theory

Generalized homology theory for algebraic varieties are represented by motivic spectra.

	SH	SH(k)
ordinary homology	symmetric powers	symmetric powers
char(k) = 0	of spheres	of motivic spheres
K theory	Grassmannians	Grassmannian varieties
	MU:	MGL:
cobordism	Thom construction	Thom construction over
	over Grassmannians	Grassmannian varieties

Motivic analogue of classical computational tools exist:

- motivic dual Steenrod algebra A^{mot}_{***}
- motivic Adams spectral sequence
- motivic Adams–Novikov spectral sequence

• Betti realization: $SH(\mathbb{C}) \longrightarrow SH$

◆□ > < 個 > < E > < E > E の < @</p>

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho}\cong\mathbb{F}_{\rho}[\tau], \ |\tau|=(0,-1)$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho}\cong\mathbb{F}_{\rho}[\tau], \ |\tau|=(0,-1)$

• $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho}\cong\mathbb{F}_{\rho}[\tau], \ |\tau|=(0,-1)$

- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho} \cong \mathbb{F}_{\rho}[\tau], \ |\tau| = (0, -1)$

- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

•
$$\pi_{*,*}(\widehat{S^{0,0}})[\tau^{-1}] \cong \pi_*(\widehat{S^0})[\tau^{\pm}]$$

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho} \cong \mathbb{F}_{\rho}[\tau], \ |\tau| = (0, -1)$
- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

•
$$\pi_{*,*}(\widehat{S^{0,0}})[\tau^{-1}] \cong \pi_*(\widehat{S^0})[\tau^{\pm}]$$

•
$$\widehat{S^{0,0}}/\tau$$
: the cofiber of τ .

• (Isaksen): motAdamsNovikovSS for $\widehat{S^{0,0}}/\tau$ collapses

- Betti realization: $SH(\mathbb{C}) \longrightarrow SH$
- (Voevodsky): $\pi_{*,*}\mathsf{H}\mathbb{F}_{\rho}\cong\mathbb{F}_{\rho}[\tau], \ |\tau|=(0,-1)$
- $\tau: \Sigma^{0,-1}\widehat{S^{0,0}} \to \widehat{S^{0,0}}, \ \tau$ realizes to 1
- (Dugger–Isaksen): $\tau^{-1}\widehat{S^{0,0}}$ -**Mod**_{cell} \simeq SH[^]_p

•
$$\pi_{*,*}(\widehat{S^{0,0}})[\tau^{-1}] \cong \pi_*(\widehat{S^0})[\tau^{\pm}]$$

- $\widehat{S^{0,0}}/\tau$: the cofiber of τ .
- (Isaksen): motAdamsNovikovSS for $\widehat{S^{0,0}}/\tau$ collapses

•
$$\pi_{*,*}\widehat{S}^{0,0}/\tau \cong \operatorname{Ext}_{\operatorname{MU}_*\operatorname{MU}}^{*,*}(\operatorname{MU}_*,\operatorname{MU}_*)_p^{\wedge}$$

$\mathrm{Ext}^{\mathfrak{s},\mathrm{2w}}_{\mathsf{MU}_{\bigstar}\mathsf{MU}}(\mathsf{MU}_{\ast},\mathsf{MU}_{\ast})_{\rho}^{\wedge} \stackrel{\cong}{\longrightarrow} \pi_{2w-\mathfrak{s},w}(\widehat{S^{0,0}}/\tau)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Isaksen's computation up to 60-stem

うして ふゆう ふほう ふほう うらう

Wang's computer program

Isaksen's computation up to 60-stem

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Wang's computer program

Isaksen's computation up to 60-stem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The same data!

Theorem (Gheorghe–Wang–Xu)

The above two spectral sequences are isomorphic.

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

$$\widehat{S^{0,0}}/\tau$$
-Mod_{cell} \simeq D(MU_{*}MU-Comod_p^)

・ロト ・ 日 ・ モ ト ・ 田 ・ うへで

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

$$\widehat{\mathcal{S}^{0,0}}/ au$$
-Mod_{cell} \simeq D(MU $_{*}$ MU-Comod $_{p}^{\wedge}$)

・ロト ・ 日 ・ モ ト ・ 田 ・ うへで

•
$$\widehat{S^{0,0}}/\tau$$
-**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

```
\widehat{S^{0,0}}/\tau\text{-}\mathsf{Mod}_{\mathsf{cell}}\simeq \mathsf{D}(\mathsf{MU}_*\mathsf{MU}\text{-}\mathsf{Comod}_p^\wedge)
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p):

Hovey's derived category of comodules over MU_{*}MU_p[^]

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

```
\widehat{S^{0,0}}/\tau\text{-}\mathsf{Mod}_{\mathsf{cell}}\simeq \mathsf{D}(\mathsf{MU}_*\mathsf{MU}\text{-}\mathsf{Comod}_p^\wedge)
```

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p): Hovey's derived category of comodules over MU_{*}MU[^]_p
- Quillen, Morava: MU_*MU -Comod $\simeq \mathbf{QCoh}(\mathcal{M}_{FG})$

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

```
\widehat{S^{0,0}}/\tau\text{-}\mathsf{Mod}_{\mathsf{cell}}\simeq \mathsf{D}(\mathsf{MU}_*\mathsf{MU}\text{-}\mathsf{Comod}_p^\wedge)
```

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p): Hovey's derived category of comodules over MU_{*}MU[^]_p
- Quillen, Morava: MU_*MU -Comod \simeq QCoh (\mathcal{M}_{FG})
- alternative proofs: Krause, and Pstragowski

Theorem (Gheorghe–Wang–Xu)

There is an equivalence of stable ∞ -categories:

```
\widehat{S^{0,0}}/\tau\text{-}\mathsf{Mod}_{\mathsf{cell}}\simeq \mathsf{D}(\mathsf{MU}_*\mathsf{MU}\text{-}\mathsf{Comod}_p^\wedge)
```

- $\widehat{S^{0,0}}/\tau$ -**Mod**_{cell}: cellular modules over $\widehat{S^{0,0}}/\tau$
- D(MU_{*}MU-Comod[^]_p): Hovey's derived category of comodules over MU_{*}MU[^]_p
- Quillen, Morava: MU_*MU -Comod $\simeq \mathbf{QCoh}(\mathcal{M}_{FG})$
- alternative proofs: Krause, and Pstragowski
- τ : parameter of a motivic deformation of stable ∞ -categories:

$$\tau^{-1}\widehat{S^{0,0}} \longleftrightarrow \widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau$$

Theorem (Miller)

Adams d_2 differentials $\leftrightarrow \rightarrow$ algebraic Novikov d_2 differentials

- * ロト * 昼 * * ミト * ヨト * ヨ * のへで

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・

э

Algebraic Novikov d_r differentials (for any r) for MU_{*}

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

э

Algebraic Novikov d_r differentials (for any r) for MU_{*}

 \longleftrightarrow Motivic Adams d_r differentials for $\widehat{S^{0,0}}/\tau$

Algebraic Novikov d_r differentials (for any r) for MU_{*}

- \longleftrightarrow Motivic Adams d_r differentials for $\widehat{S^{0,0}}/ au$
- \longrightarrow Motivic Adams $d_{r'}$ differentials for $\widehat{S^{0,0}}$ (for $r' \leq r$)

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

3

Algebraic Novikov d_r differentials (for any r) for MU_{*}

- \longleftrightarrow Motivic Adams d_r differentials for $\widehat{S^{0,0}}/ au$
- \longrightarrow Motivic Adams $d_{r'}$ differentials for $\widehat{S^{0,0}}$ (for $r' \leq r$)
- \longrightarrow Classical Adams $d_{r'}$ differentials for $\widehat{S^0}$ (for $r' \leq r$)

- Compute Ext over \mathbb{C} .
- Compute algNovikovSS(MU*), including all differentials.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

- Compute Ext over \mathbb{C} .
- Compute algNovikovSS(MU*), including all differentials.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• algNovikovSS(MU_{*}) \cong motAdamsSS($\widehat{S^{0,0}}/\tau$)

• Compute Ext over \mathbb{C} .

►

- Compute algNovikovSS(MU*), including all differentials.
- algNovikovSS(MU_{*}) \cong motAdamsSS($\widehat{S^{0,0}}/\tau$)

$$\widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau \longrightarrow \Sigma^{1,-1}\widehat{S^{0,0}}$$

pull back and pushforward Adams differentials from $\widehat{S}^{0,0}/\tau$.

Apply ad hoc arguments such as shuffling Toda brackets.

- Compute Ext over \mathbb{C} .
- Compute algNovikovSS(MU*), including all differentials.
- algNovikovSS(MU_{*}) \cong motAdamsSS($\widehat{S^{0,0}}/\tau$)

$$\widehat{S^{0,0}} \longrightarrow \widehat{S^{0,0}}/\tau \longrightarrow \Sigma^{1,-1}\widehat{S^{0,0}}$$

pull back and pushforward Adams differentials from $\widehat{S^{0,0}}/\tau$.

- Apply ad hoc arguments such as shuffling Toda brackets.
- Invert τ .

►

We can reprove many hard Adams differentials using this method.

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

(ロ)、

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

• Mahowald–Tangora: $d_4(h_3h_5) = h_0x$ in the 38-stem. Ad-hoc method using a certain finite CW spectrum.

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

- Mahowald–Tangora: *d*₄(*h*₃*h*₅) = *h*₀*x* in the 38-stem. Ad-hoc method using a certain finite CW spectrum.
- Bruner:

 $d_3(e_1) = h_1 t$ in the 38-stem.

Power operations in the Adams spectral sequence.

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

- Mahowald–Tangora:
 d₄(h₃h₅) = h₀x in the 38-stem.
 Ad-hoc method using a certain finite CW spectrum.
- Bruner:

 $d_3(e_1) = h_1 t$ in the 38-stem.

Power operations in the Adams spectral sequence.

• Wang-Xu: $d_3(D_3) = B_3$ in the 61-stem. RP^{∞} -technique.

We can reprove many hard Adams differentials using this method.

May:

 $d_3(h_0h_4) = h_0d_0$ in the 15-stem.

Compare with Toda's unstable computations. Compare with J.

- Mahowald–Tangora:
 d₄(h₃h₅) = h₀x in the 38-stem.
 Ad-hoc method using a certain finite CW spectrum.
- Bruner:

 $d_3(e_1) = h_1 t$ in the 38-stem.

Power operations in the Adams spectral sequence.

• Wang-Xu: $d_3(D_3) = B_3$ in the 61-stem. RP^{∞} -technique.

Re-compute early range very effectively

Classical Adams spectral sequence

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Classical Adams spectral sequence

▲ロト ▲暦 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q ()~

Motivic E3-page of $\widehat{\mathcal{S}^{0,0}}/ au$

(ロ > 〈母 > 〈臣 > 〈臣 > ― 臣 ― の々で

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Motivic E_∞ -page of $\widehat{\mathcal{S}^{0,0}}/ au$

So the motivic $\widehat{S^{0,0}}/\tau$ -method computes 5 out of the 6 harder differentials in the range up to the 45-stem!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ ● ● ● ●

So the motivic $\widehat{S^{0,0}}/\tau$ -method computes 5 out of the 6 harder differentials in the range up to the 45-stem!

(ロ)、

This leaves one left.

So the motivic $\widehat{S^{0,0}}/\tau$ -method computes 5 out of the 6 harder differentials in the range up to the 45-stem!

This leaves one left.

So it does not violate the Second Mahowald Uncertainty Principle!

・ロト ・四ト ・ヨト ・ヨー うへぐ

General Questions

Questions

• Can this $\widehat{S^{0,0}}/ au$ method be applied to other fields?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

General Questions

Questions

• Can this $\widehat{S^{0,0}}/\tau$ method be applied to other fields?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What about the non-cellular part?

► X: smooth proper scheme over k,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• ξ : virtual vector bundle over X,

► X: smooth proper scheme over k,

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- ξ : virtual vector bundle over X,
- Th(X, ξ): its Thom spectrum.

- ► X: smooth proper scheme over k,
- ξ : virtual vector bundle over X,
- $Th(X, \xi)$: its Thom spectrum.

We will implicitly invert char(k) if it is not zero.

Definition (Chow *t*-structure)

SH(k)_{c≥0}: full subcategory generated by Th(X, ξ) under colimits and extensions.

うして ふゆう ふほう ふほう うらつ

- ► X: smooth proper scheme over k,
- ξ : virtual vector bundle over X,
- Th (X, ξ) : its Thom spectrum.

We will implicitly invert char(k) if it is not zero.

Definition (Chow *t*-structure)

- SH(k)_{c≥0}: full subcategory generated by Th(X, ξ) under colimits and extensions.
- ▶ $SH(k)_{c < 0}$: objects Y such that for any object $X \in SH(k)_{c \ge 0}$,

 $[X, Y]_{\mathsf{SH}(k)} = 0.$

- ► X: smooth proper scheme over k,
- ξ : virtual vector bundle over X,
- Th (X, ξ) : its Thom spectrum.

We will implicitly invert char(k) if it is not zero.

Definition (Chow *t*-structure)

- SH(k)_{c≥0}: full subcategory generated by Th(X, ξ) under colimits and extensions.
- ▶ $SH(k)_{c < 0}$: objects Y such that for any object $X \in SH(k)_{c \ge 0}$,

$$[X, Y]_{\mathsf{SH}(k)} = 0.$$

This defines a *t*-structure.

• truncation $(-)_{c=i} : SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$

• truncation $(-)_{c=i} : SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

MGL: algebraic cobordism spectrum

- truncation $(-)_{c=i} : SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$
- MGL: algebraic cobordism spectrum

Theorem (Bachmann–Kong–Wang–Xu) Let $E \in SH(k)$.

$$\pi_{*,*}E_{c=i} \cong \operatorname{Ext}_{\mathsf{MU}_*\mathsf{MU}}^{*,*}(\mathsf{MU}_*, (\mathsf{MGL}_{*,*}E)_{c=i})$$

- truncation $(-)_{c=i} : SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$
- MGL: algebraic cobordism spectrum

Theorem (Bachmann–Kong–Wang–Xu) Let $E \in SH(k)$. $\pi_{*,*}E_{c=i} \cong Ext_{MU_*MU}^{*,*}(MU_*, (MGL_{*,*}E)_{c=i})$

• τ does not exist as maps between spheres over a general field k

- truncation $(-)_{c=i} : SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$
- MGL: algebraic cobordism spectrum

Theorem (Bachmann–Kong–Wang–Xu) Let $E \in SH(k)$. $\pi_{*,*}E_{c=i} \cong Ext_{MU_*MU}^{*,*}(MU_*, (MGL_{*,*}E)_{c=i})$

• au does not exist as maps between spheres over a general field k

+ $S^{0,0}_{c=0}$ in $\mathrm{SH}(k)^{\heartsuit}$ plays the role of $\widehat{S^{0,0}}/ au$ over $\mathbb C$

- truncation $(-)_{c=i} : SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$
- MGL: algebraic cobordism spectrum

Theorem (Bachmann–Kong–Wang–Xu) Let $E \in SH(k)$. $\pi_{*,*}E_{c=i} \cong Ext_{MU_*MU}^{*,*}(MU_*, (MGL_{*,*}E)_{c=i})$

• au does not exist as maps between spheres over a general field k

▶ $S_{c=0}^{0,0}$ in SH(k)[♥] plays the role of $\widehat{S^{0,0}}/\tau$ over $\mathbb C$ this is an integral object
The analog of $\widehat{\mathcal{S}^{0,0}}/ au$

- truncation $(-)_{c=i} : SH(k) \longrightarrow \Sigma^i SH(k)^{\heartsuit}$
- MGL: algebraic cobordism spectrum

Theorem (Bachmann–Kong–Wang–Xu) Let $E \in SH(k)$. $\pi_{*,*}E_{c=i} \cong Ext_{MU,*MU}^{*,*}(MU_*, (MGL_{*,*}E)_{c=i})$

- au does not exist as maps between spheres over a general field k
- ▶ $S_{c=0}^{0,0}$ in SH(k)[♥] plays the role of $\widehat{S^{0,0}}/\tau$ over $\mathbb C$ this is an integral object
- ► over \mathbb{C} , $\pi_{*,*}\widehat{S^{0,0}}/\tau \cong \operatorname{Ext}_{\operatorname{MU}_*\operatorname{MU}}^{*,*}(\operatorname{MU}_*,\operatorname{MU}_*)_{\rho}^{\wedge}$

Theorem (Bachmann-Kong-Wang-Xu)

 $\mathsf{SH}(k)^\heartsuit$ is equivalent to the category of enriched presheaves on $\mathsf{PM}_{\mathsf{MGL}}(k)$ with values in $\mathsf{MU}_*\mathsf{MU}\text{-}comodules.$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Bachmann-Kong-Wang-Xu)

 $\mathsf{SH}(k)^\heartsuit$ is equivalent to the category of enriched presheaves on $\mathsf{PM}_{\mathsf{MGL}}(k)$ with values in $\mathsf{MU}_*\mathsf{MU}\text{-}comodules.$

・ロト ・ 日 ・ モート ・ 田 ・ うへで

► *PM*_{MGL}(*k*): pure motives over MGL

Theorem (Bachmann-Kong-Wang-Xu)

 $\mathsf{SH}(k)^\heartsuit$ is equivalent to the category of enriched presheaves on $\mathsf{PM}_{\mathsf{MGL}}(k)$ with values in $\mathsf{MU}_*\mathsf{MU}\text{-}comodules.$

うして ふゆう ふほう ふほう うらつ

► *PM*_{MGL}(*k*): pure motives over MGL

Restricting to cellular subcategories,

Theorem (Bachmann-Kong-Wang-Xu)

►
$$SH(k)_{cell}^{\heartsuit} \simeq MU_*MU$$
-**Comod**,

Theorem (Bachmann-Kong-Wang-Xu)

 $SH(k)^{\heartsuit}$ is equivalent to the category of enriched presheaves on $PM_{MGL}(k)$ with values in MU_{*}MU-comodules.

► *PM*_{MGL}(*k*): pure motives over MGL

Restricting to cellular subcategories,

Theorem (Bachmann-Kong-Wang-Xu)

- $SH(k)_{cell}^{\heartsuit} \simeq MU_*MU$ -Comod,
- $\blacktriangleright \ S^{0,0}_{c=0}\text{-}\mathbf{Mod}_{\mathsf{cell}}\simeq \mathsf{D}(\mathsf{MU}_*\mathsf{MU}\text{-}\mathbf{Comod})$

Theorem (Bachmann–Kong–Wang–Xu)

 $SH(k)^{\heartsuit}$ is equivalent to the category of enriched presheaves on $PM_{MGL}(k)$ with values in MU_{*}MU-comodules.

► *PM*_{MGL}(*k*): pure motives over MGL

Restricting to cellular subcategories,

Theorem (Bachmann-Kong-Wang-Xu)

- $SH(k)_{cell}^{\heartsuit} \simeq MU_{*}MU$ -Comod,
- $S_{c=0}^{0,0}$ -Mod_{cell} $\simeq D(MU_*MU$ -Comod)

These equivalences are independent of the base field k!

Postnikov–Whitehead Tower

Postnikov–Whitehead tower for $S^{0,0}$ w.r.t. the Chow *t*-structure:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Postnikov–Whitehead Tower

Postnikov–Whitehead tower for $S^{0,0}$ w.r.t. the Chow *t*-structure:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

▶ MGL_{*,*}S^{0,0}_{c=n} is the Chow degree n part of MGL_{*,*}

Postnikov–Whitehead Tower

Postnikov–Whitehead tower for $S^{0,0}$ w.r.t. the Chow *t*-structure:

▶ MGL_{*,*}S^{0,0}_{c=n} is the Chow degree n part of MGL_{*,*}

•
$$\pi_{*,*}S^{0,0}_{c=n} = \operatorname{Ext}^{*,*}_{\mathsf{MU}_*\mathsf{MU}}(\mathsf{MU}_*, (\mathsf{MGL}_{*,*})_{c=n})$$

Apply the motivic Adams spectral sequences:

$$\begin{array}{c} \bigvee \\ \mathsf{motASS}(S^{0,0}_{c \geq 2}) \Rightarrow \mathsf{motASS}(S^{0,0}_{c=2}) = \mathsf{algNSS}((\mathsf{MGL}_{*,*})_{c=2}) \\ \downarrow \\ \mathsf{motASS}(S^{0,0}_{c \geq 1}) \Rightarrow \mathsf{motASS}(S^{0,0}_{c=1}) = \mathsf{algNSS}((\mathsf{MGL}_{*,*})_{c=1}) \\ \downarrow \\ \mathsf{motASS}(S^{0,0}) = \mathsf{motASS}(S^{0,0}) \Rightarrow \mathsf{motASS}(S^{0,0}_{c=0}) = = \mathsf{algNSS}(\mathsf{MU}_{*}) \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The spectrum tmf detects many classes above a line of slope 1/6 in the Adams spectral sequence.

 The spectrum tmf detects many classes above a line of slope 1/6 in the Adams spectral sequence.

Just below this line, the Mahowald operator $M(a) = \langle g_2, h_0^3, a \rangle$ organizes many more classes.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 The spectrum tmf detects many classes above a line of slope 1/6 in the Adams spectral sequence.

Just below this line, the Mahowald operator $M(a) = \langle g_2, h_0^3, a \rangle$ organizes many more classes.

Question (Mahowald Operator Detection Question)

Does there exist a ring spectrum whose Adams spectral sequence is completely computable such that its E_2 -page detects $M^n(a)$ for all n > 0and all classes *a* that are detected by tmf?

うして ふゆう ふほう ふほう うらつ

 The spectrum tmf detects many classes above a line of slope 1/6 in the Adams spectral sequence.

Just below this line, the Mahowald operator $M(a) = \langle g_2, h_0^3, a \rangle$ organizes many more classes.

Question (Mahowald Operator Detection Question)

Does there exist a ring spectrum whose Adams spectral sequence is completely computable such that its E_2 -page detects $M^n(a)$ for all n > 0and all classes *a* that are detected by tmf?

 Baues, Jibladze, Nassau: Secondary Steenrod algebra leads to Adams d₂-differentials.

 The spectrum tmf detects many classes above a line of slope 1/6 in the Adams spectral sequence.

Just below this line, the Mahowald operator $M(a) = \langle g_2, h_0^3, a \rangle$ organizes many more classes.

Question (Mahowald Operator Detection Question)

Does there exist a ring spectrum whose Adams spectral sequence is completely computable such that its E_2 -page detects $M^n(a)$ for all n > 0and all classes *a* that are detected by tmf?

 Baues, Jibladze, Nassau: Secondary Steenrod algebra leads to Adams d₂-differentials.

Chua obtains machine-generated values in a large range.

 The spectrum tmf detects many classes above a line of slope 1/6 in the Adams spectral sequence.

Just below this line, the Mahowald operator $M(a) = \langle g_2, h_0^3, a \rangle$ organizes many more classes.

Question (Mahowald Operator Detection Question)

Does there exist a ring spectrum whose Adams spectral sequence is completely computable such that its E_2 -page detects $M^n(a)$ for all n > 0and all classes *a* that are detected by tmf?

 Baues, Jibladze, Nassau: Secondary Steenrod algebra leads to Adams d₂-differentials.

Chua obtains machine-generated values in a large range.

Question (Automated Differential Computation Question)

Are there effective algorithms for Adams d_3 or even d_4 -differentials?

• On the Adams E_2 -page, $Sq^0 : Ext^{s,t} \to Ext^{s,2t}$.

• On the Adams E_2 -page, $Sq^0 : Ext^{s,t} \to Ext^{s,2t}$.

Conjecture (Minami's New Doomsday Conjecture)

For any Sq^0 -family $\{x, Sq^0x, \dots, (Sq^0)^nx, \dots\}$, in the Adams spectral sequence, only finitely many classes survive to the E_{∞} -page.

• On the Adams E_2 -page, $Sq^0 : Ext^{s,t} \to Ext^{s,2t}$.

Conjecture (Minami's New Doomsday Conjecture)

For any Sq^0 -family $\{x, Sq^0x, \dots, (Sq^0)^nx, \dots\}$, in the Adams spectral sequence, only finitely many classes survive to the E_{∞} -page.

うして ふゆう ふほう ふほう うらつ

Conjecture (*Sq*⁰-Stablization Conjecture)

For any Sq⁰-family a_n , $d_r(a_n) = c \cdot b_n$, when n is large enough.

• On the Adams E_2 -page, $Sq^0 : Ext^{s,t} \to Ext^{s,2t}$.

Conjecture (Minami's New Doomsday Conjecture)

For any Sq^0 -family $\{x, Sq^0x, \dots, (Sq^0)^nx, \dots\}$, in the Adams spectral sequence, only finitely many classes survive to the E_{∞} -page.

うして ふゆう ふほう ふほう うらつ

Conjecture (*Sq*⁰-Stablization Conjecture)

For any Sq^0 -family a_n , $d_r(a_n) = c \cdot b_n$, when n is large enough. Here b_n is another Sq^0 -family and c is a fixed element in Ext.

• On the Adams E_2 -page, $Sq^0 : Ext^{s,t} \to Ext^{s,2t}$.

Conjecture (Minami's New Doomsday Conjecture)

For any Sq^0 -family $\{x, Sq^0x, \dots, (Sq^0)^nx, \dots\}$, in the Adams spectral sequence, only finitely many classes survive to the E_{∞} -page.

Conjecture (*Sq*⁰-Stablization Conjecture)

For any Sq^0 -family a_n , $d_r(a_n) = c \cdot b_n$, when n is large enough. Here b_n is another Sq^0 -family and c is a fixed element in Ext.

In Adams filtrations 1 and 2, the New Doomsday Conjecture is essentially equivalent to the Hopf invariant one problem and the Kervaire invariant one problem respectively.

Thank you!

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 のへで