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Is M homeomorphic to S$3?

Answer: Yes. Perelman 2003.

Question

M: closed, dim = n, homotopic to S".
Is M homeomorphic to S"7?

Answer: Yes.
» n =4, Freedman 1982.

» n>5, Smale (smooth), Newman, Connell. 1960’s.



(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?



(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?

Answer:

» n = 3. Yes. Moise 1952.



(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?

Answer:
» n = 3. Yes. Moise 1952.
» n = 4. Wildly open.



(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?

Answer:
» n = 3. Yes. Moise 1952.
» n = 4. Wildly open.

» n=5,6. Yes. Kervaire—-Milnor.



(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?

Answer:
» n= 3. Yes. Moise 1952.
» n = 4. Wildly open.
» n=5,6. Yes. Kervaire—-Milnor.

» n=7. No. Milnor's exotic 7-sphere.



(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?

Answer:
» n= 3. Yes. Moise 1952.
» n = 4. Wildly open.
» n=5,6. Yes. Kervaire—-Milnor.

» n=7. No. Milnor's exotic 7-sphere.
Questions

1. For which n, is there a unique smooth structure on 5"?7



(Generalized) Poincaré conjecture

Question

M: closed, smooth, dim= n. M is homeomorphic to S”".
Is M diffeomorphic to S"?

Answer:
» n= 3. Yes. Moise 1952.
» n = 4. Wildly open.
» n=5,6. Yes. Kervaire—-Milnor.

» n=7. No. Milnor's exotic 7-sphere.
Questions

1. For which n, is there a unique smooth structure on 5"?7

2. How many smooth structures are there on S"?
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» ©, = smooth structures on S"
= h-cobordism classes of homotopy n-spheres

» ©P = homotopy spheres that bound parallelizable manifolds

Theorem (Kervaire-Milnor)
For n =5, the subgroup ©% is cyclic,
1, if n is even,
|©%| = {1 or 2, if n=4k+1,
bi, if n=4k—1.

by = 22k=2(22k=1 _ 1) the numerator of B,
By : Bernoulli number.
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Theorem (Kervaire-Milnor)
(continued) Suppose n = 5.
1. For n=2 (mod 4), there is an exact sequence

0—-0%-0,-mnr,/]—0.

Tn: n-th stable homotopy groups of spheres,
mn/J: cokernel of the J-homomorphism.

2. For n=2 (mod 4), there is an exact sequence
0> 0% 50,mr/J2z/2-0% o
®: the Kervaire invariant.

Theorem (Browder, Barratt—Jones—Mahowald-Tangora,
Hill-Hopkins—Ravenel)

®, # 0 ifand only if n = 2,6,14,30,62 and possibly 126.
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Uniqueness of smooth structures

Question

For which n, does S” have a unique smooth structure?

» n = 4k — 1, never unique since |©2| is large.
» n =4k + 1, it depends on the Kervaire invariant problem:
©b" =0 if and only if ®,,; # 0
0 0%, 0,41 > w1/~ 7,2 — 08 5 0,

Therefore the only odd dimensional spheres that could have a unique
smooth structure are

51 53 55 513 529 561 5125

» S13.529: not unique, May 1960's.

» S125: not unique, Hurewicz image of tmf (the spectrum of
topological modular forms).
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Theorem (Wang—Xu)

761 = 0, and therefore S®! has a unique smooth structure.

Based on work of Kervaire—Milnor, Browder, Hill-Hopkins—Ravenel,
Corollary

The only odd dimensional spheres with a unique smooth structure are
St S8, 55, 561,

Conjecture

For dim at least 6, the only even dimensional spheres with a unique
smooth structure are S°, S12, 5%

» 56 S'2: Kervaire-Milnor
» 556 |saksen

» no more: confirmed by Behrens, Hill, Hopkins, Mahowald, Quigley
for more than half of the even dimensions.
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Stable homotopy groups of spheres

Definition
7 (S%) = colim,[S"*k S"]: k-th stem.

» (Serre) finite abelian groups: k > 1.
=> compute one prime at a time

> 1k (S%) @/ (S%) —> mhpi(S°)
» higher products: (matric) Toda brackets
» (Serre) Serre spectral sequence: up to 8-stem (unstable).

» (Toda) EHP-(spectral) sequence: up to 19-stem (unstable).



Stable range computations

» (Adams) Adams spectral sequence

E" = Exty, (Fp, Fp) = 1 o(S°))

Ay = HFpHF,: dual Steenrod algebra



Stable range computations

» (Adams) Adams spectral sequence

E" = Exty, (Fp, Fp) = 1 o(S°))

Ay = HFpHF,: dual Steenrod algebra

» (Novikov) Adams—Novikov spectral sequence

E>" = Extyy,mu(MUs, MUy) ) = me5(S%)

MU: complex cobordism spectrum
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» The First Mahowald Uncertainty Principle:
Any spectral sequence converging to the homotopy groups of
spheres with an E>-page that can be named using homological
algebra will be infinitely far from the actual answer.

» The Second Mahowald Uncertainty Principle:
Any method that computes nontrivial differentials in such a spectral
sequence will leave infinitely many differentials undecided.
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» ® is induced by the Thom reduction MU — HF,

» Jump of filtrations!
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7.(.*(50)/\

p

Ad m/ X&

Ext}y* (F,, Fy) Extiye, vu(MUx, MU,))

/5N

Cartan-Eilenberg SS algebraic Novikov SS

collapses . A
at odd primes! EXtP* (Fm/ /1 )

Theorem (Miller)

Adams d, differentials «<—— algebraic Novikov d> differentials
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> p= 3

Nakamura, Tangora, Ravenel: around 108-stem
> p= 5

Ravenel: around 1000-stem

» About dimension p3(2p — 2)
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p = 2 computations

» (May) May spectral sequence: up to 28-stem.

Eth;]*A’: (Fp,Fp) = Ext:’: (Fp,Fp)

» (Barratt—-Mahowald—Tangora) up to 45-stem.

» Massey products
» Toda brackets
» finite CW complexes: differentials «<—— extension problems

» (Bruner) power operations in the Adams spectral sequence

» (Kochman) Atiyah—Hirzebruch spectral sequence for BP theory
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Recent methods

» (Isaksen 2014)
motivic Adams spectral sequence over C:
up to 59-stem

» (Wang—Xu 2015)
RP*-method: 60 and 61-stem

» (2016 - now)

» (Gheorghe-Wang—Xu)
motivic cofiber of 7 method
> (Isaksen—-Wang—Xu)
to the 90-stem with few exceptions,
and ongoing progress up to 110-stem.
» (Burklund—Isaksen—Xu)
Pstragowski's synthetic homotopy theory
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Classical Adams Spectral Sequence up to 90-stem
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Kochman-Mahowald, Wz

Isaksen-Wang-Xu




Classical Adams E..-page up to 90-stem
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» SH: stable homotopy category
» SH(k): motivic stable homotopy category over k

[ SH \ SH(K)

|
building blocks simplices simplices, smooth varieties
model category presheaves over A | simplicial presheaves over Sm(k)
topology trivial Nisnevich/étale
homotopy [0,1] AT
basic spheres st ST0 St =G,
stabilization invert ST invert both S0 and ST1
sphere spectrum SO 50,0
homotopy groups Ty Ty s
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Motivic Stable Homotopy Groups of Spheres

» (Morel): For an arbitrary field k,
TpnS%0 = KMW (k): Milnor-Witt K-groups

» (Rondigs—Spitzweck—@stvaer): For any field k, char k # 2
7Tn+1)n50’0 and ’/T,H_z,nso’o
in terms of motivic cohomology, hermitian and Milnor K-groups of k

» (Isaksen-Wang—Xu): k = C, WSVW@ for s <90
» (Belmont-Isaksen): k =R, 7r57W§’7) fors —w <11

» (Wilson, Wilson-@stvaer): k = finite fields, 750590 for s < 18
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Motivic generalized homology theory

Generalized homology theory for algebraic varieties are represented by

motivic spectra.

] I SH \ SH(k)
ordinary homology symmetric powers symmetric powers
char(k) =0 of spheres of motivic spheres
K theory Grassmannians Grassmannian varieties
MU: MGL:
cobordism Thom construction Thom construction over

over Grassmannians

Grassmannian varieties

Motivic analogue of classical computational tools exist:

> motivic dual Steenrod algebra A7

mot

» motivic Adams spectral sequence

» motivic Adams—Novikov spectral sequence




Motivic homotopy theory over Spec C

» Betti realization: SH(C) — SH



Motivic homotopy theory over Spec C

» Betti realization: SH(C) — SH
» (Voevodsky): my «HF, = F,[7], |7| = (0,—1)



Motivic homotopy theory over Spec C

» Betti realization: SH(C) — SH
» (Voevodsky): my «HF, = F,[7], |7| = (0,—1)

» 7 :¥0%71600 , §00 1 reglizes to 1



Motivic homotopy theory over Spec C

» Betti realization: SH(C) — SH
» (Voevodsky): my «HF, = F,[7], |7| = (0,—1)
> 7 ¥0-1500 _, @, T realizes to 1

» (Dugger—Isaksen): Tflﬁ—Modce” ~ SH;



Motivic homotopy theory over Spec C

» Betti realization: SH(C) — SH

» (Voevodsky): my «HF, = F,[7], |7| = (0,—1)
» 7 ¥0-1500 _, G007 realizes to 1

» (Dugger—Isaksen): Tflﬁ—Modce” ~ SH;

> s (SO0 [ =y (50) 7]



Motivic homotopy theory over Spec C

» Betti realization: SH(C) — SH

» (Voevodsky): my «HF, = F,[7], |7| = (0,—1)
» 7 ¥0-1500 _, G007 realizes to 1

» (Dugger—Isaksen): Tflﬁ—Modce” ~ SH;

b T (SO0)[r 1] = 7y (S9) 7]

> @/TZ the cofiber of 7.

» (Isaksen): motAdamsNovikovSS for §07)/T collapses
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» Betti realization: SH(C) — SH

» (Voevodsky): my «HF, = F,[7], |7| = (0,—1)

» 7 ¥0-1500 _, G007 realizes to 1

» (Dugger—Isaksen): Tflﬁ—Modce” ~ SH,

» T (SO0 [771] = 7 (S0) 7]

> @/TZ the cofiber of 7.

» (Isaksen): motAdamsNovikovSS for §07)/T collapses

> Ty xS00/T =~ Ex’cf\;l’[’;*MU(MU*7 MUy),



motivic $%0/7-method

EXtih%JM;MU(MU*a MU*)S ; WZW—S,w(SO’O/T)
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motivic $%0/7-method

Exti u (MUs, MUy) ) — > . (500/7)
algebraic Hovikov ss motivic Adams SS
Ext;;>|2<v'/(]F‘,,7 [2=s/13=s+1) EXtaA’rE:{k_s+a7W(Fp7 Fpl7])
Wang's Isaksen's computation
computer program up to 60-stem

The same data!



motivic $%0/7-method

52w = 00
EXtMU*Mu(MU*’MU*)S > 7T2W—S,W(50’0/7')
algebraic Hovikov SS motivic Adams SS

s,2w a—s /Ja—s ~ a,2w—s+a,w
ExtP* (]Fm/ /1 +1)—>ExtA,*,.?; - (vaFp[T])

Theorem (Gheorghe-Wang—Xu)

The above two spectral sequences are isomorphic.
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7 as a deformation parameter

Theorem (Gheorghe—Wang—Xu)

There is an equivalence of stable co-categories:

@/T'Mc’dcell ~ D(MU4MU-Comod,)

» 50.0/7-Modg: cellular modules over S%0/7

D(MU;MU-Comod, ):
Hovey's derived category of comodules over MU,MU,

» Quillen, Morava: MU,MU-Comod ~ QCoh(Mgs)

v

» alternative proofs: Krause, and Pstragowski

» 7: parameter of a motivic deformation of stable co-categories:

1 $0,0 S0,0 50,0/T
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Exty* (F,, 1*/1%+0)

Theorem (Miller)
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EXt:: (va FP) ~ EthEt: (Fp [T]v F, [T]) - EXt:;n;t: (IFP [T] ) FP)

Adaﬂs SS motAdamsSS motAdamsSS

— —

LN () JP— S (TX.) PR

Algebraic Novikov d, differentials (for any r) for MU,
«— Motivic Adams d, differentials for 500 /7
— Motivic Adams d,- differentials for 500 (for r' <'r)

—— Classical Adams d, differentials for gB (for r' <r)
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Strategy of Stem-wise Computations

» Compute Ext over C.

» Compute algNovikovSS(MU.,,), including all differentials.
» algNovikovSS(MU,,) ~ motAdamsSS(5°9/7)

550, 500/, y1-1500
pull back and pushforward Adams differentials from @/7—,
» Apply ad hoc arguments such as shuffling Toda brackets.

> Invert 7.
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Some Adams differentials

We can reprove many hard Adams differentials using this method.

>

May:
d3(h0h4) = hpdp in the 15-stem.
Compare with Toda's unstable computations. Compare with J.

Mahowald—Tangora:
dy(h3hs) = hox in the 38-stem.
Ad-hoc method using a certain finite CW spectrum.

Bruner:
ds(e1) = hit in the 38-stem.
Power operations in the Adams spectral sequence.

Wang—Xu:

d3(D3) = B3 in the 61-stem.
RP®-technique.

Re-compute early range very effectively
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Classical Adams spectral sequence
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So the motivic ~§)7)/7'—method computes 5 out of the 6 harder
differentials in the range up to the 45-stem!

This leaves one left.

So it does not violate the Second Mahowald Uncertainty Principle!
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General Questions

Questions

» Can this ,@/T method be applied to other fields?

» What about the non-cellular part?
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Chow t-structure on SH(k)

» X: smooth proper scheme over k,
» &: virtual vector bundle over X,

» Th(X,€): its Thom spectrum.
We will implicitly invert char(k) if it is not zero.

Definition (Chow t-structure)

» SH(k)c>o: full subcategory generated by Th(X,¢)
under colimits and extensions.

» SH(k)c<o: objects Y such that for any object X € SH(k)c>0,

[X, Ylsh = 0.

This defines a t-structure.
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The analog of @/T

» truncation (—)c—; : SH(k) — Z'SH(k)?

» MGL: algebraic cobordism spectrum

Theorem (Bachmann—-Kong—Wang—Xu)
Let E € SH(k).

TawEemi = Extie \yy(MUy, (MGL 4 E)c—)

» 7 does not exist as maps between spheres over a general field k

» S% in SH(k)® plays the role of S%9/7 over C
this is an integral object

> over C, my, SO0/7 = Exty vy (MUx, MUx))
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The Chow heart SH(k)"

Theorem (Bachmann—-Kong—Wang—Xu)

SH(k)" is equivalent to the category of enriched presheaves on
PMwcL (k) with values in MU,MU-comodules.

» PMwucL(k): pure motives over MGL
Restricting to cellular subcategories,

Theorem (Bachmann—-Kong—Wang—Xu)

» SH(k)Y, ~ MU;MU-Comod,

cell —

» 529 -Mod.. ~ D(MU,MU-Comod)

These equivalences are independent of the base field k!
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Postnikov—Whitehead Tower

Postnikov—Whitehead tower for S%0 w.r.t. the Chow t-structure:

0,0 0,0
Sc22 Sc=2

0,0 0,0
Sez1— 5S¢4

50,0

0,0 0,0
ST =35

> MGL>,<7>,<$£’0 is the Chow degree n part of MGL, .

=n

> e S0, = Extih MUy, (MGLy 1 )c—n)



—

Computing 7. .S%0 over k

Apply the motivic Adams spectral sequences:

motASS(S%,) > motASS(S%’,) = algNSS((MGLy, 4 )c—s)

motASS(S20,) ~ motASS(SX°,) = algNSS((MGLy )c—1)

motASS(5%%) = motASS(5%°) > motASS(S2%) =—— algNSS(MUy)
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Questions and Conjectures

» The spectrum tmf detects many classes above a line of slope 1/6 in
the Adams spectral sequence.

Just below this line, the Mahowald operator M(a) = (g, h3, a)
organizes many more classes.

Question (Mahowald Operator Detection Question)

Does there exist a ring spectrum whose Adams spectral sequence is
completely computable such that its E-page detects M"(a) for all n > 0
and all classes a that are detected by tmf?

» Baues, Jibladze, Nassau: Secondary Steenrod algebra leads to
Adams d»-differentials.

Chua obtains machine-generated values in a large range.

Question (Automated Differential Computation Question)

Are there effective algorithms for Adams ds3 or even dj-differentials?
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Questions and Conjectures

» On the Adams E,-page, Sq° : Ext™f — Ext®?t.

Conjecture (Minami's New Doomsday Conjecture)

For any Sq°-family {x, Sq°x, ---, (5q°)"x, ---}, in the Adams spectral
sequence, only finitely many classes survive to the E.,-page.

Conjecture (Sq°-Stablization Conjecture)

For any Sq°-family a,, d,(a,) = c - b,, when n is large enough.
Here b, is another Sq°-family and c is a fixed element in Ext.

In Adams filtrations 1 and 2, the New Doomsday Conjecture is
essentially equivalent to the Hopf invariant one problem and the
Kervaire invariant one problem respectively.



Thank you!



