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The Limits of What We Can Compute

n × n matrix prob.: rounding error bound f (n)u .

⋆ Problem dimension n
⋆ Unit roundoff u

both getting larger.

Increasingly mixed precision world:
u < u1 < u2 · · · .

What can we guarantee about the
computed solution?

NLA Group
Manchester Nick Higham Numerical Stability of Algorithms 2 / 38



The Limits of What We Can Compute

n × n matrix prob.: rounding error bound f (n)u .

⋆ Problem dimension n
⋆ Unit roundoff u

both getting larger.

Increasingly mixed precision world:
u < u1 < u2 · · · .

What can we guarantee about the
computed solution?

NLA Group
Manchester Nick Higham Numerical Stability of Algorithms 2 / 38



TOP500: June 2022

Frontier at Oak Ridge.
AMD EPYC 64C 2GHz,
AMD Radeon Instinct GPU.
8,730,112 cores
Peak > 1.5 exaflops.
IEEE double u ≈ 10−16,
half u ≈ 10−3 or u ≈ 10−4.

Rate n

HPL 1.10 exaflops 2.4× 107

HPL-AI 6.86 “exaflops” 2.7× 107

Petaflops = 1015 flops, Exaflops = 1018 flops
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Growth of Problem Size in TOP500

Dimension of matrix for #1 machine.

Machine Date n

Fugaku 2020 2.0× 107

Jaguar 2010 6.3× 106

ASCI RED 2000 3.6× 105

CM-5/1024 1993 5.2× 104

Growing by roughly a factor 10 every decade.
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Today’s Floating-Point Arithmetics

Bits
Type Name Signif. (t) Exp. Range u = 2−t

Quarter fp8-e5m2 3 5 10±5 1.2× 10−1

Quarter fp8-e4m3 4 4 10±2 6.2× 10−2

Half bfloat16 8 8 10±38 3.9× 10−3

Half fp16 11 5 10±5 4.9× 10−4

Single fp32 24 8 10±38 6.0× 10−8

Double fp64 53 11 10±308 1.1× 10−16

Last three types are IEEE standard.
fp8 types introduced on NVIDIA H100 (2022).
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Backward Error Analysis for LU Factorization

Let γn =
nu

1− nu
= nu + O(u2).

Theorem

Computed solution x̂ to Ax = b where A ∈ Rn×n satisfies

(A +∆A)x̂ = b, |∆A| ≤ γ3n|L̂||Û|.

Then for n ≈ 107:
in IEEE double precision, nu ≈ 2.3× 10−9.
in IEEE single precision, nu ≈ 1.25.
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Sharper Bound

Proof uses A +∆A1 = L̂Û, where (recall γn ≈ nu),

|∆A1| ≤


γ1 γ1 . . . . . . γ1
γ1 γ2 . . . . . . γ2
...

... . . . . . .
...

...
... . . . γn−1 γn−1

γ1 γ2 . . . γn−1 γn

 ◦ |L̂||Û|. (∗)

Not fruitful to try to use (∗).
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Low Precision in Deep Learning

“We find that very low precision is sufficient not just for
running trained networks but also for training them.”
—Courbariaux, Benji & David (2015)

“Deep learning models . . . are very tolerant of
reduced-precision computations.”—Dean (2019).

| f l(xT y)− xT y | ≤ nu|x |T |y |.

fp16: nu = 1 for n = 2048
bfloat16: nu = 1 for n = 256

Yet deep learning successfully uses half precision.
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The (Partial) Explanation

Inner products not computed in the obvious way but
are blocked⇒ much smaller error bounds possible.

We use blocked algorithms.

Hardware features automatically boost accuracy.

The rounding error bounds are worst-case and very
pessimistic. Probabilistic error bounds are more
insightful.

Blocking is done for speed but also improves accuracy.
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Blocked Inner Products: 2 Pieces

Original

s =
n∑

i=1

xiyi ⇒ |s − ŝ| ≤ nu|x |T |y |.

Blocked, 2 pieces
Let n = 2b.

s1 = x(1:b)T y(1:b)
s2 = x(b + 1:n)T y(b + 1:n)
s = s1 + s2

|s − ŝ| ≤
(n

2
+ 1

)
u|x |T |y |.
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Blocked Inner Products; k Pieces

Original

s =
n∑

i=1

xiyi ⇒ |s − ŝ| ≤ nu|x |T |y |.

Blocked, k pieces
Let n = kb.

si = x((i − 1)b + 1: ib)T y((i − 1)b + 1: ib), i = 1: k
s = s1 + s2 + · · ·+ sk

|s − ŝ| ≤
(n

k
+ k − 1

)
u|x |T |y |.

Optimal k =
√

n:

|s − ŝ| ≤ 2
√

nu|x |T |y |.
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Block Summation

Recursive summation of x1, . . . , xn:
1 s = 0
2 for i = 1:n, s = s + xi , end

Standard block summation:
1 sum blocks of size b by recursive summation:

(b − 1)n/b = n − n/b additions
2 sum n/b partial sums by recursive summation:

n/b − 1 additions

Idea: use a more accurate method in step 2.
E.g., recursive summation at higher precision,
compensated summation.
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FABsum

Blanchard, H & Mary (2020).

Input: n-vector x , block size b,
algs FastSum, AccurateSum.

1: for i = 1 : n/b do
2: Compute si =

∑ib
j=(i−1)b+1 xj with FastSum.

3: end for
4: Compute s =

∑n/b
i=1 si with AccurateSum.

FastSum is doing n − n/b additions.
AccurateSum is doing n/b − 1 additions.
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FABsum Error Bound

FastSum : ŝ =
n∑

i=1

xi(1 + µf
i ), |µf

i | ≤ ϵf (n),

AccurateSum : ŝ =
n∑

i=1

xi(1 + µa
i ), |µa

i | ≤ ϵa(n).

Theorem

The computed ŝ from FABsum satisfies

ŝ =
n∑

i=1

xi(1 + µi),

|µi | ≤ ϵ(n,b) = ϵf (b) + ϵa(n/b) + ϵf (b)ϵa(n/b).
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Error Bound for Recursive/Compensated

Take FastSum = recursive summation,
AccurateSum = compensated summation. Then

ϵ(n,b) = (b + 1)u

+
[
4n/b + 2 + (b − 1)2 + 2(b − 1)

]
u2 + O(u3).

Recall error bound is
nu + O(u2) for recursive summation,
(n/b)u + O(u2) for blocked summation.

FABsum error bound independent of n to first order.
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Random Uniform [0,1], b = 128, fp32

103 104 105 106 107 108

n

10-8

10-7

10-6

10-5

10-4

Backward
error    

Recursive
Blocked
Compensated
FABsum
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Blocked Matrix Multiplication

Let A,B ∈ Rn×n be partitioned into b × b blocks Aij and Bij ,
where p = n/b is assumed to be an integer. This algorithm
computes C = AB.

1 for i = 1:p
2 for j = 1:p
3 Cij = 0
4 for k = 1:p
5 X = AikBkj

6 Cij = Cij + X
7 end
8 end
9 end

Compare crs ← crs + arkbks.
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Blocked Algorithms

LAPACK philosophy: blocked matrix factorizations with a
block size b = 128 or b = 256.
⇒ Reduction in error bounds by factor b.
At block level, apply block inner products giving further
reduction!

LAPACK manual states error bounds p(n)u, where
“p(n) is a modestly growing function of n”.

Standard NLA refs don’t mention b in error bounds.
Optimizing constants not the point (Wilkinson).

Constants depend on the block alg.

Analysis is more complicated.
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Extended Precision Registers

Intel x86-64 processors include 80-bit floating point
registers with 64-bit significand (but not used by SSE2).

Registers have u = 2−64 rather than u = 2−53 for
double precision. Error bounds smaller by a factor up to
211 = 2048.

Caveat: extra precision registers can lead to strange
rounding effects, including double rounding!
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Fused Multiply-Add (FMA)

Computes x + yz at same speed as “+” or “∗” with just one
rounding error.

Without an FMA,

f l(x + yz) =
(
x + yz(1 + δ1)

)
(1 + δ2), |δ1|, |δ2| ≤ u,

but with an FMA

f l(x + yz) = (x + yz)(1 + δ), |δ| ≤ u.

Error bounds for inner product-based computations
reduced by a factor 2.
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Mixed Precision Block FMA
Precisions ulow (fp8, bfloat16, fp16), uhigh (fp16, fp32).

Dimensions:
D︸︷︷︸

b1×b2

= C︸︷︷︸
b1×b2

+ A︸︷︷︸
b1×b

B︸︷︷︸
b×b2

.

Precisions:

D︸︷︷︸
ulow or uhigh

= C︸︷︷︸
ulow or uhigh

+ A︸︷︷︸
ulow

B︸︷︷︸
ulow

.

Computation:
f lhigh

(
C + flhigh(AB)

)
.

Can chain: C ← C + AB.
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Block FMA Hardware

Year Device Dimensions ulow uhigh

2020 Google TPU v4i 128× 128× 128 bfloat16 fp32
2017 NVIDIA V100 4× 4× 4 fp16 fp32
2019 ARMv8.6-A 2× 4× 2 bfloat16 fp32

2020 NVIDIA A100

8× 8× 4 bfloat16 fp32
8× 8× 4 fp16 fp32
8× 4× 4 TFloat-32 fp32
2× 4× 2 fp64 fp64

Note
Not necessarily IEEE compliant.
Very fast throughput (“one result per cycle” ) compared
with none block-FMA arithmetic.
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Error Analysis of Block FMAs

Blanchard, H , Lopez, Mary, & Pranesh (2020).

Analysis of algs for matrix mult C = AB based on block
FMA. Inherently multiprecision.

For A,B ∈ Rn×n using chained block b × b FMAs,

|C − Ĉ| ≤ f (n,b,ulow,uhigh)|A||B|,

where with A,B given in uhigh, f (·) is

Standard in precision ulow (n + 2)ulow

Block FMA, uhigh internally 2ulow + nuhigh

Standard in precision uhigh nuhigh

Similar results for LU factorization and Ax = b.
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NVIDIA V100
Matrix entries are rand unif [0,10−3].

In fp32, cmp’wise error maxi,j |Ĉ − C|ij/(|A||B|)ij :

104 105 106 107

10−7

10−5

10−3

10−1

101

Matrix size: n

fp16

TC32

fp32
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Probabilistic Error Analysis

Rounding error bounds above are worst-case.

“To be realistic, we must prune away the un-
likely. What is left is necessarily a probabilistic
statement.”

— Stewart, 1990
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Statistical Effects
“In general, the statistical distribution of the
rounding errors will reduce considerably the
function of n occurring in the relative errors.
We might expect in each case that this function
should be replaced by something which is no
bigger than its square root.”

— Wilkinson, 1961

Limitations of central limit theorem argument
Rounding errors independent random variables of
mean zero.
Applies only to first-order part of error.
n is sufficiently large.
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Standard Tool for Rounding Error Analysis

Theorem
If |δi | ≤ u for i = 1 : n and nu < 1 then

n∏
i=1

(1 + δi) = 1 + θn,

where

|θn| ≤ γn :=
nu

1− nu
= nu + O(u2).

The basis of most rounding error analyses.
We seek an analogous result with a smaller, but
probabilistic, bound on θn.
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Assumptions for Probabilistic Analysis

Model M

Rounding error bound:

f l(x opy) = (x opy)(1+δ), |δ| ≤ u, op ∈ {+,−, ∗, /}.

Mean independence:
The computation generates δ1, δ2, . . . that are random
variables of mean zero such that

E(δk+1 | δ1, . . . , δk) = E(δk+1) = 0.

Weaker than assuming the δi are independent.
The δi need not be from same distribution.
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Probabilistic Analysis
Theorem (Connolly, H & Mary, 2021)
Let δ1, . . . , δn satisfy Model M. For any constant λ > 0,

n∏
i=1

(1 + δi) = 1 + θn, |θn| ≤ γ̃n(λ) ≈ λ
√

nu ,

holds with probability at least 1− 2 exp(−λ2/2).

Proof uses martingales.
Valid for all n.
Valid to all orders.
Explicit probability P(λ) (pessimistic).
Earlier result by H & Mary (2020) assumes indep.
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Inner Products

Theorem
Let s = xT y, where x , y ∈ Rn. Under Model M, the
computed ŝ satisfies

ŝ = (x +∆x)T y ,

|∆x | ≤ γ̃n(λ)|x | ≈ λ
√

nu|x |,

with probability at least 1− 2n exp(−λ2/2).

Similar results by H & Mary (2020), Ipsen & Zhou (2020).
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Linear Systems

Theorem
Under Model M, the computed solution x̂ to Ax = b from LU
factorization satisfies

(A +∆A)x̂ = b, |∆A| ≤
(
3γ̃n(λ) + γ̃n(λ)

2)|L̂||Û|,
with probability at least 1− 2n3/3 exp(−λ2/2).
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Real-Life Matrices

Solution of Ax = b (fp64), b from Uniform [0,1],
for 943 matrices from SuiteSparse collection (λ = 1).

10
1
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2

10
3

10
4

10
-16
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-15
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-14
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-13

10
-12
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Probabilistic QR Error Bound

Theorem (Connolly & H, 2022)
Under Model M and a technical assumption, for the
computed R̂ ∈ Rm×n from Householder QR on A ∈ Rm×n

(m ≥ n), ∃ orthogonal Q ∈ Rm×m such that

A +∆A = QR̂,

∥∆aj∥2 ≤ cλ
√

mnu∥aj∥2 + O(u2), j = 1 : n,

holds with probability at least 1− 2mn exp(−λ2).

Uses a matrix concentration inequality of Tropp (2012).
Worst-case bound has mnu.
Square rooting of constant applies to Givens QR, too.
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Stochastic Rounding
Forsythe (1950), . . . , Croci et al. (2022).

x

a b

Theorem (Connolly, H & Mary, 2021)
The rounding errors δ1, δ2, . . . from stochastic rounding are
rand. vars of mean 0 s.t. E

(
δk | δ1, . . . , δk−1

)
= E(δk) = 0.

Stochastic rounding always satisfies the assumptions!

For SR, we can always replace nu by
√

nu in a worst-case
rounding error bound to obtain a probabilistic error bound.
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Stagnation
Harmonic sum

∑n
k=1 1/k in fp16.

Stochastic rounding avoids stagnation!
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Random Data

Model M’

dj , j = 1 : n, are independent random variables from a
distribution of mean µx s.t. |dj | ≤ ξd , j = 1 : n.
E(δk | δ1, . . . , δk−1,d1, . . . ,dn) = E(δk) = 0.

Theorem (H & Mary, 2020)
If A ∈ Rm×n and B ∈ Rn×p Model M’, with means µA, µB and
bounds ξA, ξB, and let C = AB. Under Model M’,

max
i,j
|(C − Ĉ)ij | ≤

(
λ|µAµB|n3/2 + (λ2 + 1)ξAξBn

)
u + O(u2)

with probability at least P(λ) = 1− 2mnp exp(−λ2/2).
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Putting It All Together

Block algs reduce error bound by factor b.

For blocking at multiple levels, the reduction factors can
accumulate.

Extended precision registers and (block) FMAs give
automatic accuracy boost.

Block size b = 256 and 80-bit registers reduces error
bound by factor 256× 2048 = 5.2× 105.

Prob error anal. says “f (n)u →
√

f (n)u”.

Prob. error anal. applies to blocked algs. Error constant
(b + n/b)u for a blocked inner product translates to
(
√

b +
√

n/b)u in a prob. bound.
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Conclusions

Classical analyses no longer guarantee the
numerical stability of classical algorithms for all n and
u of interest.

Block algs (designed for speed) & hardware features
give significant accuracy boosts.

New probabilistic bounds show “f (n)u →
√

f (n)u”.
Even these bounds often very pessimistic.

We often do better than we can currently explain.

Slides at https://bit.ly/icm-22
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