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The Haar measure on compact groups

▶ A compact group G admits a unique left and right invariant
probability measure µG , the Haar measure:
µG (G ) = 1, and for any Borel subset A of G and g ∈ G ,

µG (Ag) = µG (gA) = µG (A)

(Ag = {hg , h ∈ A}; gA = {gh, h ∈ A}).
▶ left & right invariance + uniqueness of µG =⇒

µG (A
−1) = µG (A).

▶ How to integrate functions w.r.t µG?



Polynomial functions on a matrix group

▶ We focus on matrix unitary compact groups

G ⊂ Un ⊂ Mn(C) = R2n2 .

U = (uij)i ,∈{1,...n} ∈ G ; we view uij : G → C and their
conjugates as variables of a polynomial function.

▶ Moment formulation:

E(X k1
1 . . .X kn

n ), k1, . . . , kn ≥ 0

for a random variable X = (X1, . . . ,Xn) ∈ Rn

▶ w.r.t µG , uij is a complex random variable. We are interested
in computing the moments of

(Re(uij), Im(uij))i ,j∈{1,n}



The Haar measure

▶ Reformulation with conjugates: compute∫
U∈G

ui1j1 . . . uik jkui ′1j ′1 . . . ui ′k′ j
′
k′
dµG (U).

▶ Remark: the moments determine the measure (Riesz’ theorem
+ Stone-Weierstrass).

▶ Matrix notation: compute

Z k,k ′

G =

∫
U∈G

U⊗k ⊗ U
⊗k ′

dµG (U) ∈ Mn(C)⊗k+k ′
.



The Haar measure

▶ V = Cn the fundamental representation of G ,
V the contragredient representation.

▶ For any representation (ρ,W ) of G ,
Fixρ(G ,W ) = {x ∈ W ,∀U ∈ G , ρ(U)x = x}.

▶ Proposition: The matrix Z k,k ′

G is the orthogonal projection

onto Fix(G ,V⊗k ⊗ V
⊗k ′

).



Fundamental integration formula

▶ (E1, . . . ,En): canonical o.n.b of V = Cn.
For I = (i1, . . . , ik) ∈ {1, . . . n}k , let EI = ei1 ⊗ . . .⊗ eik be the
canonical o.n.b. of V⊗k .

▶ Repeat for V⊗k ⊗ V
⊗k ′

: Let I = (i1, . . . , ik , i
′
1, . . . , i

′
k ′),

J = (j1, . . . , jk , j
′
1, . . . , j

′
k ′) be k + k ′-indices, i.e. elements of

{1, . . . , n}k+k ′
.

▶ Let y1, . . . , yl generate Fix(G ,V⊗k ⊗ V
⊗k ′

),
Gr = (gij)i ,j∈{1,...,l} = (< yi , yj >)ij be its Gram matrix;
W = (wij)ij pseudo-inverse of Gr .

▶ Theorem (Integration formula)∫
U∈G

ui1j1 . . . uik jkui ′1j ′1 . . . ui ′k′ j
′
k′
dµG =

∑
i ,j∈{1,...,l}

〈EI , yi 〉〈yj ,EJ〉wij



Historical remarks and comments

▶ wij is called the Weingarten function. It was first described by
’t Hooft and Weingarten in the 70’s for large unitary and
orthogonal groups. Rediscovered/reused sporadically for 20
years.

▶ For interesting applications to be derived, the following
conditions must be met:

1. y1, . . . , yl must be easy to describe (Schur-Weyl,
Tannaka-Krein duality).

2. Gr should be easy to compute – and if possible, meaningful
(geometric interpretation, loops, etc)

3. 〈EI , yi 〉 should be easy to compute (generalized Kronecked
delta)

4. Computing/understanding wij is the hard part (...how to
compute the inverse of a matrix...?)



Specific choice of groups: On and Un

▶ Let P2(k) be the collection of pair partitions on {1, . . . , k}
(empty if k is odd, and has 1 · 3 · . . . · (k − 1) = k!! elements if
k is even). A typical π ∈ P2(k): π = {V1, . . . ,Vk/2}.

▶ Let δπ,I be the multi-index Kronecker function whose value is
1 if, for any block V = {k < k ′} of π, ik = ik ′ , and zero in all
other cases. For example:

δ∩∩,I = δi1,i2δi3,i4

▶ Likewise, we call Eπ =
∑

I EI δπ,I ∈ V⊗k . For example:

E∩∩ =
∑
i ,j

Ei ⊗ Ei ⊗ Ej ⊗ Ej ∈ V⊗4



Specific choice of groups: On and Un

The entries of Gr have a simple geometric interpretation:

〈Eπ,Eπ′〉 = nloops(π,π
′),

and we have
〈EI ,Eπ〉 = δπ,I .

▶ The orthogonal case: For On, Eπ, π ∈ P2(k) is a generating

family of the image of Z k,0
On

▶ The unitary case: Let 2k ′ = k . The subset of P2(k) of pair
partitions such that each block pairs one of the first k ′

elements with one of the last k ′ elements (in bijection with

Sk ′) is the generating family of the image of Z k ′,k ′

Un
.



Representation theoretic formulas (unitary case)

▶ For σ ∈ Sk , let #σ the number of cycles in its cycle product
decomposition. Define the function

G =
∑
σ∈Sk

n#σλσ ∈ C[Sk ],

and its pseudo-inverse W = G−1 =
∑

σ∈Sk w(σ)λσ.

▶ Theorem: (C, Śniady) G is positive in C[Sk ], and

WgU(n, τσ
−1) := w(σ, τ) = w(τσ−1)

has the following character expansion:

WgU(n, σ) =
1

k!2

∑
λ⊢k

χλ(e)
2χλ(σ)

dimVλ
.



Combinatorial formulations

▶ Let P(σ, l) to be the set of solutions to the equation
σ = (i1j1) . . . (il jl) with ip < jp, jp ≤ jp+1.

▶ The number of solutions to this problem is related to Hurwitz
numbers.

▶ Theorem: (C, Matsumoto; Novak) We have the expansion

WgU(n, σ) = n−k
∑
l≥0

#P(σ, l)(−n−1)l . (1)

▶ The orthogonal and symplectic cases were done by (C,
Matsumoto) [representation theoretic expansions, and
combinatorial expansions]



Digression: the quantum group case

▶ Woronowicz introduced compact matrix quantum groups in
the 80’s. He proved the existence and uniqueness of a Haar
measure (non-constructive, non-explicit except for characters).

▶ The Weingarten formula extends mutatis mutandis to
Woronwicz’s quantum groups (Banica, C)

▶ In the case of O+
n ,U+

n , we obtained free Borel type theorems,
i.e. asymptotic freeness results for entries of free quantum
orthogonal groups (Banica, C)

▶ The character expansion does not extend to quantum
compact groups. However, the combinatorial expansion does
in some cases – e.g. O+

n (Brannan, C). Pair partitions are
replaced by non-crossing pair partitions.

▶ We obtain explicit formulas to solve a problem of Jones of
positivity of coefficients of the dual of the Temperley Lieb
basis (Brannan, C).



Leading order Asymptotics of Wg (Un case)

▶ The full cycle explicit formula (C 2003):

Wg(n, (1 · · · k)) = (−1)k+1ck
(n − k + 1) . . . (n + k − 1)

,

where ck = 1
k+1

(2k
k

)
is the Catalan number.

▶ In addition, Wg is almost multiplicative in the following sense:
if σ is a disjoint product of two permutations σ = σ1 tσ2 then

Wg(n, σ) = Wg(n, σ1)Wg(n, σ2)(1 + O(n−2))

▶ [Biane 1998] The leading order is given by Biane-Speicher’s
Moebius function Moeb : tk≥1Sk 7→ Z− {0} satisfying

Wg(n, σ) = n−k−|σ|Moeb(σ)(1 + O(n−2)).



Applications of the asymptotics (a subjective selection)

1. Pointwise, leading order: asymptotic freeness, Quantum
Information Theory.

2. Arbitrary order: matrix integrals + tensors

3. Uniform: QIT

4. Centered: operator norm convergence + Random RT.



Asymptotic freeness (pointwise, leading order)

▶ For matrix models A
(n)
i ∈ Mn(C), i ∈ I assume the existence

of limn trA
(n)
i1

. . .A
(n)
il

for any sequence i1, i2, . . . ∈ I
This is called an asymptotic distribution in Voiculescu’s sense
of non-commutative distributions.

▶ Make the same assumption for an additional family B
(n)
i .

▶ Theorem: (Voiculescu 82, 98)
Almost surely, the same holds true for the extended family

(A
(n)
i )i∈I t (UB

(n)
j U∗)j∈J after a global rotation of B by a

Haar unitary matrix:
it admits an asymptotic distribution governed by asymptotic
freeness.
The most general versions of this result can be proved with
Weingarten calculus.



Asymptotic freeness: quantum (pointwise, leading order)

▶ In Mn(C)⊗ U(GLn(C))⊗2, consider

A
(1)
n =

∑
ij

Eij ⊗ eij ⊗ 1 , A
(2)
n =

∑
ij

Eij ⊗ 1⊗ eij .

▶ Theorem (C, Novak, Śniady):
Consider two sequences of characters χ1,n, χ2,n associated to
irreducible f.d. representations of GLn(C) and assume that

A
(1)
n ,A

(2)
n have a joint limiting distribution w.r.t to

tr ⊗ χ1,n ⊗ χ2,n. Then, A
(1)
m ,A

(2)
n are asymptotically free.

▶ Weingarten calculus for this purpose generalizes character
techniques developed by Biane in the 90’s and gives new
information about the statistical properties of factors in the
decomposition of two irreducible representation of GLn(C).



Quantum Information (pointwise, leading order)
▶ Matrix model:

k ∈ N, t ∈ (0, 1) fixed. For each n, Un : Cpn → Ck ⊗ Cn a
random Haar isometry, with pn/(nk) ∼ t. Let
Φ : Mpn(C) → Mn(C) given by Φ(X ) = Trk(U

∗
nXUn).

Let Bell be the Bell state on Mpn(C)⊗2 – the o.n. projection
onto

∑
Ei ⊗ Ei

▶ Theorem (C, Nechita)
Almost surely, as n → ∞, the random matrix
Φ⊗ Φ(Bell) ∈ Mn2(C) has non-zero eigenvalues converging
towards

γ(t) =

t +
1− t

k2
,
1− t

k2
, . . . ,

1− t

k2︸ ︷︷ ︸
k2−1 times

 .

This result plays an important role in the understanding of the
sub-additivity of the minimum output entropy.



Higher order asymptotic freeness (higher order)

▶ Let Ck be the classical cumulants in non-normalized traces of
random matrices.
Assume the existence of
limn n

2k−2Ck(A
(n)
i11

. . .A
(n)
il11

, . . . ,A
(n)
i1k

. . .A
(n)
ilk k

) for any sequence

of indices. This set of limits is called the higher order limit.
Make the same assumption for an additional family B.

▶ Theorem (C, Mingo, Speicher, Śniady)

The extended family (A
(n)
i )i∈I t (UB

(n)
j U∗)j∈J admits a higher

order limit. In addition, there exists a combinatorial rule to
construct the joint asymptotic correlations from the
asymptotic correlations of each family.
This rule extends freeness, and is called higher order freeness.



Matrix integrals and random tensors (higher order)

▶ Theorem (C, 2003) This implies the formal convergence of
arbitrary matrix integrals in non-commuting polynomials.

▶ Remark: this extends convergence results for HCIZ integrals.

▶ Theorem (C, Gurau, Lionni, 2020 + WIP) This extends to
random tensors U = U1 ⊗ . . .⊗UD where Ui ∈ Mn(C) are iid.

▶ This is linked to a new notion of generalized Hurwitz numbers.



Uniform estimates

▶ Theorem (C, Matsumoto, 2018) For any σ ∈ Sk and
n >

√
6k7/4,

1

1− k−1
n2

≤ nk+|σ|Wg(n, σ)

Moeb(σ)
≤ 1

1− 6k7/2

n2

.

▶ Uniform estimates has applications in Quantum information
(Area law, C, Perez-Garcia, Gonzalez-Guillen – see previous
works with Nechita, Zyczkowski in this domain too)



Centered version

▶ Centering of a random variable X : [X ] = X − E (X ).
We can write a Weingarten formula:

E
T∏
t=1

[
kt∏
l=1

Uεtl
xtlytl

] =
∑

σ,τ∈P2(k1+...+kT )

δσ,xδτ,yWg(σ, τ ; k1, . . . , kT ),

where the function Wg depends on the pairings and the
partition.

▶ A block of the partition is lonesome with respect to the
pairing (σ, τ) iff the group generated by σ, τ stabilizes it.
Theorem: (C, Bordenave)
Wg decays as n−k where
k = (k1 + . . .+ kT )/2 + d(σ, τ) + 2#lonesome blocks, and
this estimate is uniform on k ∼ Poly(n).



Strong Asymptotic freeness (Centering)

▶ Definition: (Voiculescu) Let X
(n)
1 , . . . ,X

(n)
d be elements of a

tracial NCPS (A(n), τ (n)) (Non-Commutative Probability
Space).
Let X1, . . . ,Xd be elements of a tracial NCPS (A, τ).
Convergence in NC distribution holds iff for any NC
polynomial P in d variables and its adjoint,

τ (n)P(X
(n)
i ) → τP(Xi )

▶ Definition: (C, Male) If, in addition,

||P(X (n)
i )|| → ||P(Xi )||,

then one speaks of strong convergence (or convergence in
operator norm).



Strong Asymptotic freeness (Centering)

▶ Fix integers q+, q−
Theorem: (C, Bordenave) (U

⊗q−
i ⊗U⊗q+

i )i=1,...,d are strongly
asymptotically free as n → ∞ on the orthogonal of fixed point
spaces.

▶ The same holds true for random orthogonal matrices.

▶ Remark: this has multiple consequences in representation
theory. The main obstruction to strong convergence (in
operator norm) seem to be the presence of a trivial
representation in a sequence of representations.



Outline of the proof

▶ The moment method:
For a positive matrix,

n−1Tr(Al) ≤ ||A||l ≤ Tr(Al).

Taking the l-th root,

n−1/l(Tr(Al))1/l ≤ ||A|| ≤ (Tr(Al))1/l .

If n−1/l ∼ 1, i.e. l >> log n, then the trace estimate is robust.

▶ The moment method with NC polynomials is too hard.

▶ Doing it with matrix valued linear polynomials in the variables

A =
∑

ai ⊗ U
(n)
i

(the linearization trick) is equivalent easier, but still too hard.



Non-Backtracking theory

▶ Let (b1, . . . , bl) ∈ B(H). The index set is endowed with an
involution i 7→ i∗ (and i∗∗ = i for all i). The non-backtracking
operator associated to the ℓ-tuple of matrices (b1, . . . , bl) is

B =
∑
j ̸=i∗

bj ⊗ Eij ∈ B(H⊗ Cl) (2)

▶ The matrix B works very well with moment techniques thanks
to its non-backtracking structure.
This strategy is viable is we manage to relate the spectrum of
B to that of A =

∑
ai ⊗ Un

i



Non-Backtracking theory

▶ The relation is as follows
Theorem: (Bordenave, C)
Let λ ∈ C satisfy λ2 /∈ ∪i∈{1,...,l}spec(bibi∗). Define the
operator Aλ on H through

Aλ = b0(λ) +
ℓ∑

i=1

bi (λ) , bi (λ) = λbi (λ
2 − bi∗bi )

−1

and

b0(λ) = −1−
ℓ∑

i=1

bi (λ
2 − bi∗bi )

−1bi∗ .

Then λ ∈ σ(B) if and only if 0 ∈ σ(Aλ).

▶ This relation can be inverted and allows to do the calculations
with the help of Weingarten estimates.



Concluding remarks

This was just a subjective overview of recent applications and
developments of Weingarten calculus.
Other applications:

▶ Finance (Saad,...)

▶ Algebra: e.g. Alon Tarski conjecture (Landsberg Kumar).

▶ Discrete group theory (Magee Puder)

▶ Random geometry (Magee,...)

▶ AI (Hayase,...)

Thank you!


