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Statistical mechanics and universality

Universality in equilibrium statistical mechanics:
robustness of macroscopic behavior of interacting
many-body w.r.t. microscopic details of the model.

Particularly subtle and deep notion at critical point,
need to understand averages of algebraically correl.
random variables: non-Gaussian scaling limit?

Wilsonian RG provides right framework for studying
scaling limit at Tc and prove universality.

Idea: integrate out the small-scale d.o.f., rescale, define flow

of effective Hamiltonian. Show that there exists a choice of Tc

at which flow converges to non-trivial (conformal inv.) FP.
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The program. A concrete setting

Challenge: Prove universality at Tc starting from an
explicit class of microscopic Hamiltonians.

Known rigorous results beyond mean-field
universality class mostly limited to 2D.

Strongest results concern Ising and dimer models:
in both cases, standard models solvable in terms of
Pfaffians or determinants (exact solution⇔ free Fermi

gas – provides bulk scaling limit of some correlations ‘easily’).
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Known results on critical 2D Ising and dimers

Universality of scaling limit proven w.r.t

geometric perturb. via discrete holomorph.

interaction perturb. via fermionic RG.

1 Planar solvable case
(Kenyon, Smirnov, Sheffield, Okounkov, Chelkak, Hongler, Izyurov,
Dubedat, Duminil-Copin, Aggarwal, ...)

scaling limit of spin/energy correl. and of interfaces (Ising)
GFF scaling limit of height correlations (dimers)
conformal covariance w.r.t. Riemann mapping of domain
universality w.r.t. lattice

2 ‘Interacting’ or weakly non-planar case
(Spencer, Mastropietro, Benfatto, Falco, Giuliani, Greenblatt,
Toninelli, Aizenman–Duminil-Copin–Tassion–Warzel, ...)

scaling limit of energy correl. in plane, torus, cylinder (Ising)
universal sub-leading corrections to critical free energy (Ising)
GFF scaling limit of height correlations (dimers)
universal scaling relations (dimers)
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Irrelevant and marginal, standard and weak universality

Ising and dimer cases deeply different: Wilsonian
RG predicts that weak short range perturbations are
irrelevant for Ising and marginal for dimers, as well
as for coupled pairs of Ising layers (AT, 8V, 6V, ...)

In the marginal case, effect of perturbations does
not scale to zero at large distances, due to vanishing
of Beta function (Benfatto-Gallavotti-Procacci-Scoppola,

Benfatto-Mastropietro): critical exponents change
continuously with interaction strength.

Universality in naive sense fails, right notion is weak
universality (Kadanoff): model characterized by
universal scaling relations, all critical exponents
can be deduced by just one of them.
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Non-solvable Ising and dimer models

In this talk: review selected results on weak
universality for weakly non-planar dimer models.
Setting motivated by question by Sheffield.

Summary:
We consider perturbations of standard dimer model with
additional non-planar edges with small weight.

We define height difference via paths avoiding to pass
under non-planar edges.

We prove that at large scales height scales to massless
GFF with stiffness coefficient related to anomalous
dimer-dimer critical exponent via Kadanoff relation.

Resulting picture compatible with bosonization.
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Dimer models

2D dimer models are highly simplified models of
liquids of anisotropic molecules or random surfaces

We consider dimers at close packing = criticality.

There is a whole critical manifold, parametrized by
dimer weights, changing which we can pass from
crystalline/frozen to liquid/rough phase.

Universality of liquid/rough phase?
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Weakly non-planar dimers

We consider an Lm × Lm
portion of Z2 w. periodic
b.c., called GL = (VL,E

0
L ),

consisting of L2 cells of
size m2, m ≥ 4 even

In each cell we arbitrarily:
1 add non-planar bonds connecting b to w,
2 assign positive weights t̃e to all edges,
3 rescale by λ weights of long edges.

Then repeat periodically over cells.



Probability measure of weakly non-planar dimers

Let GL be graph with EL = E 0
L ∪ NL.

Let te = t̃e for e ∈ E 0, and te = λt̃e for e ∈ NL.

Let ΩL be set of dimer configurations on GL.

Probability weight of D ∈ ΩL:

PL,λ(D) = Z−1
L,λ

∏
e∈D

te

with ZL,λ =
∑

D∈ΩL

∏
e∈D te the partition function.

Goal: discuss large scale properties of

Pλ = lim
L→∞

PL,λ

for {te}e∈E 0
L

chosen so that P0 is in the liquid phase.
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Height function

At λ = 0 exhaustive classification of phases in terms
of fluctuation properties of the height:

h(η)− h(ξ) =
∑

e∈Cξ→η

σe(1e − 1/4)

where σe = ±1 if e crossed with white on the right/left.
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Liquid, gaseous and frozen phases

Look at fluctuations of h(η)− h(ξ) w.r.t. P0:

frozen phase: h(η)− h(ξ) deterministic

gaseous phase: bounded Var(h(η)− h(ξ)) 6= 0

liquid phase: unbounded Var(h(η)− h(ξ))

Phases characterized in terms of κ(p) = det K̂ (p),
K̂ (p) Fourier symbol of Kasteleyn matrix K (b,w).

Liquid phase ⇔ κ(p) has two simple zeros.

Corresponding set of {te}e∈E 0 open and non-trivial.
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Liquid phase at λ = 0

At λ = 0 the liquid, or rough, phase is very well
characterized both in terms of dimer correlations
and of height fluctuations.

Dimer correlations expressed in terms of the inverse
Kasteleyn’s matrix: if e = (b,w) and e ′ = (b′,w ′):

E0(1e1e′) = K (b,w)K (b′,w ′) det

(
K−1(w , b) K−1(w , b′)
K−1(w ′, b) K−1(w ′, b′)

)
If w = (x , `) and b = (y , `′):

K−1(w , b) =

∫
[−π,π]2

dp

(2π)2
[K̂ (p)−1]`,`′e

−ip·(x−y)
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Liquid phase at λ = 0

In particular, if κ(p) has two simple zeros pω0 ,
K−1 ∝ (dist)−1 at large distances, from which:

E0(1e ;1e′) =
∑
ω=±

K 0
ω,j ,`K

0
ω,j ′,`′

(φ0
ω(x − x ′))2

+
∑
ω=±

H0
−ω,j ,`H

0
ω,j ′,`′

|φ0
ω(x − x ′)|2

e2ipω0 ·(x−x ′) + O(|x |−3) ,

where φ0
ω(x) = β0

ωx1 − α0
ωx2 with

α0
ω = ∂k1κ(pω0 ), β0

ω = ∂k2κ(pω0 ).



Liquid phase at λ = 0

One can also compute height fluctuations:

E0

(
h(ηx)−h(ηy); h(ηw)−h(ηz)

)
=

∑
e∈Cηx→ηy
e′∈Cηw→ηz

σeσe′E0(1e ;1e′)

where ηx is a representative face of the cell Bx .

Deforming paths and using asympt. of dimer corr.
one finds (Kenyon, Kenyon-Okounkov-Sheffield)

E0

(
h(ηx)− h(ηy); h(ηw)− h(ηz)

)
=

=
1

2π2
Re log

φ0
+(z − x)φ0

+(w − y)

φ0
+(z − y)φ0

+(w − x)
.

Note: universal ‘stiffness’ coeff. 1
2π2 , indep. of {te}.

Building upon this: GFF scaling limit of the height.
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Interacting liquid phase?

How is this picture modified for λ 6= 0?

Problems:
exact determinant formulas for dimer correl. do not hold,

naive perturbation theory in λ is divergent as L→∞.

What is the asymptotics of Eλ(1e ;1e′)?
Same critical exponents?

Does variance of height
diff. diverge logarithm.?
Is scaling limit still GFF?
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Main result, I: interacting dimer-dimer correlation

Theorem 1 [G.-Mastropietro-Toninelli (2015, 2017, 2020)],

[G.-Renzi-Toninelli (2022)]

Let {te}e∈E0
L

be s.t. κ(p) has two simple zeros p±0 . Then, for λ

small enough, if e, e ′ are in cells Bx , Bx ′ , of type (j , `), (j ′, `′):

Eλ(1e ;1e′) =
∑
ω=±

Kω,j ,`Kω,j ′,`′

(φω(x − x ′))2

+
∑
ω=±

H−ω,j ,`Hω,j ′,`′

|φω(x − x ′)|2ν
e2ipω·(x−x ′) + O(|x |−3+O(λ)) ,

where: φω(x) = βωx1 − αωx2 and Kω,j ,`, Hω,j ,`, αω, βω, pω, ν

are all analytic in λ. Moreover, ν = 1 + c1λ + · · · and,

generically, c1 6= 0.
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Height fluctuations

From Eλ(1e ;1e′) can compute height covariance:

Eλ
(
h(ηx)−h(ηy); h(ηw)−h(ηz)

)
=

∑
e∈Cηx→ηy
e′∈Cηw→ηz

σeσe′Eλ(1e ;1e′)

Deforming the paths and using Thm. 1 gives

Eλ
(
h(ηx)− h(ηy); h(ηw)− h(ηz)

)
=

=
A(λ)

2π2
Re log

φ+(z − x)φ+(w − y)

φ+(z − y)φ+(w − x)
.

thanks to special relation between Kω,j ,` and αω, βω
(recall: A(0) ≡ 1, indep. of {te})
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Main result, II: GFF scaling limit

Theorem 2 [G.-Mastropietro-Toninelli (2015, 2017, 2020)],

[G.-Renzi-Toninelli (2022)]

Same hypotheses as previous theorem. Then, for any
ψ ∈ C∞0 (R2;R) of zero average and α ∈ R,

lim
ε→0

Eλ
(
e iαhε(ψ)

)
= e

α2

4π2 A(λ)
∫
R2 dx

∫
R2 dy ψ(x)ψ(y) log |φ+(x−y)|

where hε(ψ) = ε2
∑

x∈V (ε) ψ(x)(h(η(x))− Eλ(h(η(x)))

and

A(λ) =
[∑
e∈E1

Kω,j(e),`(e)
iβω

]2
=
[∑
e∈E2

Kω,j(e),`(e)
iαω

]2
In general, A(λ) depends on {te}e∈EL

. Moreover,

A(λ) = ν(λ)
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Remarks

1 G.-Mastropietro-Toninelli proved earlier similar result for
planar model with finite-range interaction

2 Other examples of Kadanoff/Haldane scaling relations
proved earlier by Benfatto, Falco, Mastropietro for AT,
8V, and XXZ models. This is the first example for a
‘non-local’ observable like e iαhε(ψ)

3 Thm.1 & 2 can be read by saying that
h(η(x))↔ GFF φ(x) with stiffness A
1e ↔ linear combination of:
– ψ+

ω,xψ
−
ω,x ∝ (∂1 − iω∂2)φ(x)

– ψ+
ω,xψ

−
−ω,x ∝ :e2πiωφ(x) :

as predicted by formal bosonization.
4 Expectation of e iαhε(ψ) is technically similar to spin-spin

correl. in weakly non-planar Ising models. Could strategy
of Thm.2 be used to prove universality of 1/8 critical
exponents in Ising models with finite range interactions?
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Proof’s strategy, I

1 Free model  determinant sol. ⇒ free fermions

2 Non-solvable model ⇒ interacting fermions

3 Multiscale analysis for interacting fermions  
constructive RG (Gawedzki-Kupiainen, Battle-Brydges-

-Federbush, Lesniewski, Benfatto-Gallavotti-Mastropietro,

Feldman-Magnen-Rivasseau-Trubowitz, ...)

4 The fact that κ(p) has two simple zeros implies
that fermionic field has m2

2 − 1 massive comp.
and one complex, chiral, massless component

5 Effective theory is UV regularized version of
Luttinger model; it can be studied by multiscale
analysis via comparison with IR reference model
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Proof’s strategy, II

6 Theory of reference model developed by
Benfatto-Mastropietro. Key point: vanishing of
Beta function ⇒ strength of quartic interaction
tends to λ−∞ 6= 0 at large distances.

7 Proof of vanishing of Beta function in ref.
model follows from combination of:

chiral Ward Identities,
Schwinger-Dyson equation,
non-renormalization property of anomalies.

It implies asymptotic vanishing of Beta function
for dimer model, too ⇒ anomalous exponent ν

8 To prove A = ν compare asymptotic WIs of ref.
model with exact lattice WIs of dimer model
following from

∑
e→x 1e = 1. From this we find

that A/ν is protected by symmetry, no dressing.
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Summary

Non-solvable, non-planar, dimer models close to
their determinantal, free-Fermi, point, can be
studied via constructive, fermionic, RG methods

This approach allows us to construct scaling
limit of dimer correlations and height fluct.

Effective interaction is marginal: control at large
distances requires cancellations (vanishing of Beta

function) following from emergent chiral WIs

Universal scaling relations among critical
exponents follow from comparison of chiral WIs
of ref. model with exact lattice WI of dimers

Related results, via similar methods, for:
non-planar Ising, Ashkin-Teller, 8V , 6V , XXZ
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Open problems and perspectives

Compute E0

(
e iα(h(ηx)−h(ηy ))

)
w.o. coarse

graining (and possibly monomer-monomer correl.)

Understand KPZ-type fluctuations at the
boundary between liquid and frozen region

Understand effect of boundaries, compute
boundary critical exp.

Compute scaling limit in domains of arbitrary
shape, prove conformal covariance

Rough phase of 3D Ising w. Dobrushin b.c.

In Ising, scaling limit of spin-spin correlations



Thank you!
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