Homological algebraic geometry

Alexander Kuznetsov

Steklov Mathematical Institute of Russian Academy of Sciences

ICM 2022, July 08, 2022

Homological algebraic geometry

Algebraic geometry is a fusion of geometry and algebra:

- geometry gives intuition and a way of thinking,
- algebra provides machinery for proving theorems.

Likewise, homological algebraic geometry is a fusion of

- algebraic geometry with
- homological algebra.

The main object of HAG is the derived category of coherent sheaves.

Other nicknames : categorical , derived , noncommutative , ...

Why do we study HAG?

- New interesting "noncommutative varieties" to be studied.
- Many classical results become more straightforward and better behaved when considered from the viewpoint of HAG.

§1. Derived category

A very incomplete timeline:

- A. Grothendieck devised derived categories for proving duality;
- J.-L. Verdier (student of Grothendieck) developed the notion in the 60's;
- A. Beilinson in the late 70's observed that the derived category of a projective space has a particularly nice structure;
- M. Kapranov in the late 80's found that the derived categories of quadrics and Grassmannians have a similar structure;
- A. Bondal and D. Orlov in the 90's initiated a fullscale study of derived categories and proved many important results, presented in their ICM talk in 2002.

Definition

The derived category of an algebraic variety X is defined as the Verdier quotient

 $\mathbf{D}(X) \coloneqq \operatorname{Com}(X) / \operatorname{Acycl}(X).$

• Com(X) is the category of complexes of vector bundles over X

$$\cdots \to E^{i-1} \xrightarrow{d^{i-1}} E^i \xrightarrow{d^i} E^{i+1} \to \ldots,$$

where d^i are fiberwise linear morphisms such that $d^i \circ d^{i-1} = 0$ for all i, • Acycl $(X) \subset Com(X)$ is the subcategory of acyclic complexes, i.e.,

 $\mathsf{Acycl}(X) \coloneqq \{ (E^{\bullet}, d^{\bullet}) \mid \mathfrak{H}^{i}(E^{\bullet}) \coloneqq \mathsf{Ker}(d^{i}) / \mathsf{Im}(d^{i-1}) = 0 \text{ for all } i \}.$

The bounded derived category:

 $\mathbf{D}^{\mathrm{b}}(X) \coloneqq \{E \in \mathbf{D}(X) \mid \mathfrak{H}^{i}(E) = 0 \text{ for } |i| \gg 0\}.$

Geometric objects in the derived category

Basic geometric objects are represented in the derived category:

• A vector bundle *E* corresponds to the complex

 $\cdots \rightarrow 0 \rightarrow E \rightarrow 0 \rightarrow \ldots$

Morphisms of varieties *f* : *X* → *Y* give derived pullback and pushforward functors

 $f^* \colon \mathbf{D}(Y) \to \mathbf{D}(X), \qquad f_* \colon \mathbf{D}(X) \to \mathbf{D}(Y).$

Under appropriate finiteness assumptions they preserve boundedness; this holds, e.g., when both X and Y are smooth and proper.

Triangulated structure

The derived category is triangulated, i.e.,

- Morphisms $Hom(F_1, F_2)$ in D(X) are vector spaces.
- The composition $\operatorname{Hom}(F_2, F_3) \otimes \operatorname{Hom}(F_1, F_2) \to \operatorname{Hom}(F_1, F_3)$ is bilinear.
- D(X) is endowed with an action of \mathbb{Z} by shift autoequivalences:

 $[k]: \mathbf{D}(X) \to \mathbf{D}(X), \qquad k \in \mathbb{Z},$

such that $[k_1] \circ [k_2] = [k_1 + k_2]$.

• Any morphism $\phi \colon F_1 \to F_2$ extends to a distinguished triangle

$$F_1 \xrightarrow{\phi} F_2 \longrightarrow \operatorname{Cone}(\phi) \longrightarrow F_1[1].$$

• If $F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow F_1[1]$ is distinguished, one gets long exact sequences

 $\cdots \rightarrow \mathsf{Hom}(\mathsf{F},\mathsf{F}_1) \rightarrow \mathsf{Hom}(\mathsf{F},\mathsf{F}_2) \rightarrow \mathsf{Hom}(\mathsf{F},\mathsf{F}_3) \rightarrow \mathsf{Hom}(\mathsf{F},\mathsf{F}_1[1]) \rightarrow \ldots,$

- $\cdots \rightarrow \mathsf{Hom}(F_1[1], F) \rightarrow \mathsf{Hom}(F_3, F) \rightarrow \mathsf{Hom}(F_2, F) \rightarrow \mathsf{Hom}(F_1, F) \rightarrow \ldots.$
- Other axioms ...

§2. Noncommutative varieties

Semiorthogonal decompositions

A semiorthogonal decomposition is a splitting of $D^{b}(X)$ into simpler pieces.

Definition

A semiorthogonal decomposition

 $\mathbf{D}^{\mathrm{b}}(X) = \langle \mathcal{A}, \mathcal{B} \rangle$

is a pair of triangulated subcategories $\mathcal{A}, \mathcal{B} \subset \mathsf{D}^{\mathrm{b}}(X)$ such that

- Hom(B, A) = 0 for all $A \in A$, $B \in \mathcal{B}$;
- for any $F \in \mathbf{D}^{\mathrm{b}}(X)$ there is a distinguished triangle

 $B \to F \to A \to B[1], \qquad A \in \mathcal{A}, \ B \in \mathcal{B}.$

Similarly, one defines semiorthogonal decompositions with many components.

Semiorthogonal components of $D^{b}(X)$ are noncommutative varieties.

Definition

 $E \in \mathbf{D}^{\mathrm{b}}(X)$ is an exceptional object if dim Hom $(E, E[k]) = \begin{cases} 1, & k = 0 \\ 0, & k \neq 0 \end{cases}$

Example

 $H^{>0}(X, \mathcal{O}_X) = 0 \iff$ any line bundle is exceptional.

With an exceptional object $E \in \mathbf{D}^{\mathrm{b}}(X)$ one associates subcategories

- triangulated envelope $\langle E \rangle \coloneqq \{ \oplus (E[i]^{\oplus n_i}) \} \simeq \mathbf{D}^{\mathrm{b}}(\mathrm{point}),$
- right orthogonal $E^{\perp} \coloneqq \{F \mid \text{Hom}(E[k], F) = 0 \ \forall k\},\$
- left orthogonal $^{\perp}E \coloneqq \{F \mid \operatorname{Hom}(F, E[k]) = 0 \; \forall k\},\$

that combine into semiorthogonal decompositions

 $\mathbf{D}^{\mathrm{b}}(X) = \langle E, {}^{\perp}E \rangle$ and $\mathbf{D}^{\mathrm{b}}(X) = \langle E^{\perp}, E \rangle$.

Categorically, an exceptional object is a "noncommutative embedding of a point" .

Exceptional collections

Iterating this construction, we obtain the notion of an exceptional collection.

Definition

A collection $E_1, \ldots, E_n \in \mathbf{D}^{\mathbf{b}}(X)$ is an exceptional collection if

- each object E_i is exceptional and
- Hom $(E_i, E_j[k]) = 0$ for i > j and all k.

An exceptional collection induces a semiorthogonal decomposition

 $\mathbf{D}^{\mathrm{b}}(X) = \langle \mathcal{A}, \mathcal{E}_1, \dots, \mathcal{E}_n \rangle, \quad \text{where } \mathcal{A} := \langle \mathcal{E}_1, \dots, \mathcal{E}_n \rangle^{\perp}.$

An exceptional collection is full if $\mathcal{A} = 0$, i.e., $\mathbf{D}^{\mathrm{b}}(X) = \langle E_1, \ldots, E_n \rangle$.

Example (Beilinson, '78)

 $\mathbf{D}^{\mathrm{b}}(\mathbb{P}^n) = \langle \mathbb{O}, \mathbb{O}(1), \ldots, \mathbb{O}(n) \rangle.$

Residual categories

Typically, we have an exceptional collection and its complement. Let

• $X \subset \mathbb{P}^n$, a hypersurface of degree d, or

• $X \subset \mathbb{P}^n$, a complete intersection of type (d_1, \ldots, d_k) , $d := \sum d_i$, and $d \leq n$ (Fano condition). Then

$$\mathbf{D}^{\mathrm{b}}(X) = \langle \mathfrak{R}_X, \mathfrak{O}_X, \mathfrak{O}_X(1), \dots, \mathfrak{O}_X(n-d) \rangle,$$

where $\Re_X := \langle \mathbb{O}_X, \mathbb{O}_X(1), \dots, \mathbb{O}_X(n-d) \rangle^{\perp}$ is the residual category.

 \Re_X is an interesting example of a noncommutative variety.

Example (Bondal–Orlov, '95)

If X is a smooth complete intersection of type (2,2) in \mathbb{P}^{2g+1} then

 $\mathfrak{R}_X \simeq \mathbf{D}^{\mathrm{b}}(\mathcal{C}_g),$

where C_g is a hyperelliptic curve of genus g.

Serre functor

Serre duality: if X is smooth projective and $\omega_X := \det(\Omega^1_X)$, then

 $\operatorname{Hom}(F,G)^{\vee} \cong \operatorname{Hom}(G,F \otimes \omega_X[\dim X]) \quad \text{for } F,G \in \mathbf{D}^{\mathrm{b}}(X).$

Definition ([Bondal-Kapranov, '89])

A Serre functor of a triangulated category ${\mathfrak T}$ is an autoequivalence ${\boldsymbol S}_{{\mathfrak T}}$ such that

 $\operatorname{Hom}(F,G)^{\vee} \cong \operatorname{Hom}(G,\mathbf{S}_{\mathfrak{T}}(F)).$

- If a Serre functor exists, it is unique.
- The Serre functor exists for all smooth and proper noncommutative varieties.
- The Serre functor of $D^{b}(X)$ has the form

 $\mathbf{S}_{\mathbf{D}^{\mathrm{b}}(X)}(F) = F \otimes \omega_X[\dim X].$

Thus, the Serre functor of $D^{b}(X)$ encodes the canonical class and dimension of X.

Examples of residual categories

Let $X \subset \mathbb{P}^n$ be a hypersurface of degree $d \leq n$. Then

- if d = 1 then $\Re_X = 0$;
- if d = 2 then R_X ≃ D^b(𝔄₀), where 𝔄₀ is the even part of the (noncommutative!) Clifford algebra of the quadratic form of X; in particular S_{R_X} ≅ id;
- if d = 3 then $\mathbf{S}_{\mathcal{R}_X} \cong \left[\frac{\dim(X)+2}{3}\right]$ or $\mathbf{S}^3_{\mathcal{R}_X} \cong [\dim(X)+2]$;
- if $d \ge 4$ then $\mathbf{S}^d_{\mathcal{R}_X} \cong [(\dim(X) + 2)(d 2)].$

Most noncommutative varieties among \Re_X have fractional dimension .

Remark ([-, Perry, '21])

The residual category of a complete intersection has more complicated structure: it is "stratified" with strata of different fractional dimensions.

Residual category of a cubic fourfold

Let $X \subset \mathbb{P}^5$ be a hypersurface of degree 3. Then

 $\mathbf{D}^{\mathrm{b}}(X) = \langle \mathfrak{R}_X, \mathfrak{O}_X, \mathfrak{O}_X(1), \mathfrak{O}_X(2) \rangle.$

The noncommutative variety \Re_X is particularly interesting.

- \Re_X is a noncommutative K3 surface;
 - $S_{\mathcal{R}_{\chi}} \cong [2]$, similarly to the case of K3 surfaces;
 - for special X one may have $\Re_X \simeq \mathbf{D}^{\mathrm{b}}(S)$, where S is a K3 surface;
 - for a very general X the category \Re_X is not commutative.
- \Re_X gives rise to various hyper-Kähler varieties.
- \Re_X (conjecturally) encodes birational properties of X.

Conjecture

A smooth cubic hypersurface $X \subset \mathbb{P}^5$ is rational if and only if $\mathfrak{R}_X \simeq \mathbf{D}^{\mathrm{b}}(S)$.

$\S3$. Classical versus homological

Resolutions of singularities

- If X is singular, a resolution is a proper morphism $\pi: \widetilde{X} \to X$ such that
 - \tilde{X} is smooth;
 - there is an open subset $U \subset X$ such that $\pi^{-1}(U) \cong U$.

Example

On the level of categories we have adjoint functors

$$\mathbf{D}^{\mathrm{perf}}(X) \xrightarrow{\pi^*} \mathbf{D}^{\mathrm{perf}}(\widetilde{X}) = \mathbf{D}^{\mathrm{b}}(\widetilde{X}) \xrightarrow{\pi_*} \mathbf{D}^{\mathrm{b}}(X)$$

and if the singularites of X are rational, we have $\pi_* \circ \pi^* \cong id$.

Categorical resolutions

Definition ([-, '08])

A categorical resolution of singularities of X is a triple $(\mathcal{D}, \pi^*, \pi_*)$, where

- \mathcal{D} is a smooth and proper noncommutative variety;
- $\pi^* : \mathbf{D}^{\operatorname{perf}}(X) \to \mathcal{D}$ and $\pi_* : \mathcal{D} \to \mathbf{D}^{\operatorname{b}}(X)$ are adjoint functors;
- $\pi_* \circ \pi^* \cong \mathsf{id}.$

Theorem ([-, Lunts, '15])

Any separable scheme of finite type over a field of characteristic zero has a categorical resolution of singularities.

- Categorical resolutions exist in higher generality.
- All singularities are "derived rational".

Simultaneous resolutions of singularities

Let $f: X \to B$ be a flat proper morphism, smooth over $B \setminus \{o\}$ for $o \in B$. A simultaneous resolution of singularities is a resolution $\pi: \widetilde{X} \to X$ such that \widetilde{X} is smooth over B, i.e.,

- \tilde{X} is smooth, and
- $\widetilde{X}_o := (f \circ \pi)^{-1}(o)$ is smooth.

Usually one also assumes that π is an isomorphism over $B \setminus \{o\}$.

Theorem ([Brieskorn, '70], [Tjurina, '70])

If $f: X \to B$ is a deformation of a surface X_o with rational double points, there is a finite covering $B' \to B$ such that $X' := X \times_B B' \to B'$ has a simultaneous resolution of singularites.

This result does not extend to higher dimensions.

Simultaneous categorical resolutions

Let $f: X \to B$ be as before.

Definition ([-, '22])

A simultaneous categorical resolution of singularities of $f: X \to B$ is a triple $(\mathcal{D}, \pi^*, \pi_*)$, where

- \mathcal{D} is a smooth and proper over B noncommutative variety;
- π^{*}: D^{perf}(X) → D, π_{*}: D → D^b(X) are B-linear adjoint functors;
 π_{*} ∘ π^{*} ≃ id.

Theorem ([-, '22])

If B is a smooth curve, X and X_o have an ordinary double point at $x \in X_o$, and dim (X_o) is even then f has a simultaneous categorical resolution.

Thus, \mathcal{D} is a smooth and proper over *B* noncommutative variety; it provides a smooth extension of $X \setminus X_o \to B \setminus \{o\}$ across the point *o*.

Categorical absorption of singularities

Definition ([-, Shinder, '22])

A semiorthogonal component $\mathcal{P} \subset \mathbf{D}^{\mathrm{b}}(X_o)$ absorbs singularites of X_o if both orthogonals $\mathcal{P}^{\perp} \simeq {}^{\perp}\mathcal{P} \subset \mathbf{D}^{\mathrm{b}}(X_o)$ are smooth and proper.

Example

Assume Y is smooth and proper and $Z \subset Y$ is a singular local complete intersection of codimension 2. Then $X_o := Bl_Z(Y)$ is singular and

 $\mathbf{D}^{\mathrm{b}}(X_o) = \langle \mathbf{D}^{\mathrm{b}}(Y), \mathbf{D}^{\mathrm{b}}(Z) \rangle.$

Thus $\mathfrak{P} \coloneqq \mathbf{D}^{\mathrm{b}}(Z) \subset \mathbf{D}^{\mathrm{b}}(X_o)$ absorbs singularities of X_o with

 $\mathcal{P}^{\perp} \simeq {}^{\perp}\mathcal{P} \simeq \mathbf{D}^{\mathrm{b}}(Y).$

This example shows the idea: absorption is a "categorical contraction" of $\mathbf{D}^{\mathrm{b}}(X_o)$ to a smooth and proper noncommutative variety.

Absorption for nodal varieties

Theorem ([-, Shinder, '22])

Let X_o be a variety with a single ordinary double point $x \in X_o$. Let $\pi: \widetilde{X}_o \to X_o$ be the blowup of x with the exceptional divisor $E \subset \widetilde{X}_o$. Assume there is an exceptional object \mathcal{E} on \widetilde{X}_o such that $\mathcal{E}|_E$ is a spinor bundle. Then the subcategory $\mathcal{P} := \langle \pi_* \mathcal{E} \rangle$ absorbs singularities of X_o .

Assume, moreover, $f: X \rightarrow B$ is a smoothing of X_o , i.e.,

- $X_o \cong f^{-1}(o) \stackrel{\iota}{\hookrightarrow} X;$
- X is smooth and f is smooth over $B \setminus o$;

If dim(X_o) is odd then $\iota_*\pi_*\mathcal{E} \in \mathbf{D}^{\mathrm{b}}(X)$ is exceptional,

 $\mathbf{D}^{\mathrm{b}}(X) = \langle \iota_* \pi_* \mathcal{E}, \mathcal{D} \rangle,$

and \mathcal{D} is a smooth and proper over B noncommutative variety.

Again, \mathcal{D} provides a smooth extension of $X \setminus X_o \to B \setminus \{o\}$ across the point o.

Thanks for your attention!