Homological algebraic geometry

Alexander Kuznetsov

Steklov Mathematical Institute of Russian Academy of Sciences

ICM 2022, July 08, 2022

Homological algebraic geometry

Algebraic geometry is a fusion of geometry and algebra:

- **•** geometry gives intuition and a way of thinking,
- algebra provides machinery for proving theorems.

Likewise, **homological algebraic geometry** is a fusion of

- algebraic geometry with
- homological algebra.

The main object of HAG is the derived category of coherent sheaves.

Other nicknames : categorical, derived, noncommutative, ...

Why do we study HAG?

- New interesting "noncommutative varieties" to be studied. \bullet
- Many classical results become more straightforward and better behaved \bullet when considered from the viewpoint of HAG.

§1. Derived category

A very incomplete timeline:

- A. Grothendieck devised derived categories for proving duality;
- J.-L. Verdier (student of Grothendieck) developed the notion in the 60's;
- A. Beilinson in the late 70's observed that the derived category of a projective space has a particularly nice structure;
- M. Kapranov in the late 80's found that the derived categories of quadrics and Grassmannians have a similar structure;
- A. Bondal and D. Orlov in the 90's initiated a fullscale study of derived categories and proved many important results, presented in their ICM talk in 2002.

Definition

The derived category of an algebraic variety X is defined as the Verdier quotient

 $D(X) := \text{Com}(X)/\text{Acycl}(X)$.

• Com(X) is the category of complexes of vector bundles over X

$$
\cdots \to E^{i-1} \xrightarrow{d^{i-1}} E^i \xrightarrow{d^i} E^{i+1} \to \ldots,
$$

where d^i are fiberwise linear morphisms such that $d^i \circ d^{i-1} = 0$ for all $i,$ • Acycl $(X) \subset \text{Com}(X)$ is the subcategory of acyclic complexes, i.e.,

 $\mathsf{Acycl}(X) \coloneqq \{ (E^\bullet, d^\bullet) \mid \mathfrak{H}^i(E^\bullet) \coloneqq \mathsf{Ker}(d^i) / \mathsf{Im}(d^{i-1}) = 0 \,\, \text{for all} \,\, i \}.$

The bounded derived category:

 ${\bf D}^{\rm b}(X)\coloneqq \{E\in {\bf D}(X)\mid \mathfrak{H}^i(E)=0\,\,\text{for}\,\, |i|\gg 0\}.$

Geometric objects in the derived category

Basic geometric objects are represented in the derived category:

 \bullet A vector bundle E corresponds to the complex

 $\cdots \rightarrow 0 \rightarrow F \rightarrow 0 \rightarrow \ldots$

• Morphisms of varieties $f: X \rightarrow Y$ give derived pullback and pushforward functors

 $f^* \colon \mathbf{D}(Y) \to \mathbf{D}(X), \qquad f_* \colon \mathbf{D}(X) \to \mathbf{D}(Y).$

Under appropriate finiteness assumptions they preserve boundedness; this holds, e.g., when both X and Y are smooth and proper.

Triangulated structure

The derived category is triangulated, i.e.,

- Morphisms $Hom(F_1, F_2)$ in $D(X)$ are vector spaces.
- The composition $Hom(F_2, F_3) \otimes Hom(F_1, F_2) \rightarrow Hom(F_1, F_3)$ is bilinear.
- \bullet $\mathbf{D}(X)$ is endowed with an action of $\mathbb Z$ by shift autoequivalences:

 $[k]: \mathbf{D}(X) \to \mathbf{D}(X), \qquad k \in \mathbb{Z},$

such that $[k_1] \circ [k_2] = [k_1 + k_2]$.

• Any morphism $\phi: F_1 \to F_2$ extends to a distinguished triangle

$$
\mathsf{F}_1 \stackrel{\phi}{\longrightarrow} \mathsf{F}_2 \longrightarrow \mathsf{Cone}(\phi) \longrightarrow \mathsf{F}_1[1].
$$

• If $F_1 \rightarrow F_2 \rightarrow F_3 \rightarrow F_1[1]$ is distinguished, one gets long exact sequences

 $\cdots \rightarrow Hom(F, F_1) \rightarrow Hom(F, F_2) \rightarrow Hom(F, F_3) \rightarrow Hom(F, F_1[1]) \rightarrow \ldots$

- $\cdots \rightarrow Hom(F_1[1], F) \rightarrow Hom(F_3, F) \rightarrow Hom(F_2, F) \rightarrow Hom(F_1, F) \rightarrow \ldots$
- **.** Other axioms

§2. Noncommutative varieties

Semiorthogonal decompositions

A semiorthogonal decomposition is a splitting of $\mathbf{D}^{\mathrm{b}}(X)$ into simpler pieces.

Definition

A semiorthogonal decomposition

 $\mathbf{D}^{\mathrm{b}}(X)=\langle A,\mathcal{B}\rangle$

is a pair of triangulated subcategories $\mathcal{A},\mathcal{B}\subset \mathsf{D}^{\mathrm{b}}(\mathcal{X})$ such that

- \bullet Hom(B, A) = 0 for all $A \in \mathcal{A}$, $B \in \mathcal{B}$;
- for any $F\in \mathbf{D}^{\mathrm{b}}(X)$ there is a distinguished triangle

 $B \to F \to A \to B[1], \qquad A \in \mathcal{A}, B \in \mathcal{B}.$

Similarly, one defines semiorthogonal decompositions with many components.

Semiorthogonal components of $\mathbf{D}^{\mathrm{b}}(X)$ are noncommutative varieties.

Definition

 $E \in {\bf D}^{\rm b}(X)$ is an exceptional object if dim Hom $(E,E[k]) = \begin{cases} 1, & k = 0, 0, \ldots, k, 0, \end{cases}$ $0, \quad k \neq 0$

Example

 $H^{>0}(X, \mathbb{O}_X) = 0 \iff$ any line bundle is exceptional.

With an exceptional object $E\in\mathbf{D}^{\mathrm{b}}(X)$ one associates subcategories

- triangulated envelope $\langle E \rangle \coloneqq \{\oplus(E[i]^{\oplus n_i})\} \simeq \mathbf{D}^{\operatorname{b}}(\mathrm{point}),$
- right orthogonal $E^{\perp} \coloneqq \{F \mid \text{Hom}(E[k], F) = 0 \ \forall k\},$
- left orthogonal $\perp E := \{F \mid \text{Hom}(F, E[k]) = 0 \ \forall k\},$

that combine into semiorthogonal decompositions

 $\mathbf{D}^{\mathrm{b}}(X) = \langle E, {}^{\perp}E \rangle$ and $\mathbf{D}^{\mathrm{b}}(X) = \langle E^{\perp}, E \rangle$.

Categorically, an exceptional object is a "noncommutative embedding of a point" .

Exceptional collections

Iterating this construction, we obtain the notion of an exceptional collection.

Definition

A collection $E_1,\ldots,E_n\in\mathbf{D}^\mathrm{b}(X)$ is an exceptional collection if

- each object \boldsymbol{E}_i is exceptional and
- $\mathsf{Hom}(\mathsf{E}_i,\mathsf{E}_j[k])=0$ for $i>j$ and all k.

An exceptional collection induces a semiorthogonal decomposition

 $\mathbf{D}^{\mathrm{b}}(X) = \langle A, E_1, \ldots, E_n \rangle, \qquad \text{where } A := \langle E_1, \ldots, E_n \rangle^{\perp}.$

An exceptional collection is full if $\mathcal{A}=0$, i.e., $\mathbf{D}^{\mathrm{b}}(X)=\langle E_1,\ldots,E_n\rangle.$

Example (Beilinson, '78)

 $\mathbf{D}^{\mathrm{b}}(\mathbb{P}^n) = \langle \mathcal{O}, \mathcal{O}(1), \ldots, \mathcal{O}(n) \rangle.$

Residual categories

Typically, we have an exceptional collection and its complement. Let

 $X \subset \mathbb{P}^n$, a hypersurface of degree d, or

 $X\subset \mathbb{P}^n$, a complete intersection of type (d_1,\ldots,d_k) , $d\coloneqq\sum d_i,$ and $d \leq n$ (Fano condition). Then

$$
\mathbf{D}^{\mathrm{b}}(X)=\langle \mathcal{R}_X,\mathcal{O}_X,\mathcal{O}_X(1),\ldots,\mathcal{O}_X(n-d)\rangle,
$$

where $\mathcal{R}_X\coloneqq \langle \mathcal{O}_X, \mathcal{O}_X(1),\ldots, \mathcal{O}_X (n-d)\rangle^\perp$ is the residual category.

 \mathcal{R}_X is an interesting example of a noncommutative variety.

Example (Bondal–Orlov, '95)

If X is a smooth complete intersection of type $(2,2)$ in \mathbb{P}^{2g+1} then

 $\mathcal{R}_X \simeq \mathbf{D}^{\mathrm{b}}(\mathcal{C}_g),$

where C_g is a hyperelliptic curve of genus g .

Serre functor

Serre duality: if X is smooth projective and $\omega_X \coloneqq \mathsf{det}(\Omega^1_X)$, then

 $\mathsf{Hom}(\mathsf{F},\mathsf{G})^\vee \cong \mathsf{Hom}(\mathsf{G},\mathsf{F}\otimes \omega_X[\dim X]) \qquad \text{for F, $\mathsf{G}\in\mathbf{D}^{\operatorname{b}}(X)$}.$

Definition ([Bondal–Kapranov, '89])

A Serre functor of a triangulated category $\mathcal T$ is an autoequivalence $\mathbf S_{\mathcal T}$ such that

 $\mathsf{Hom}(F,G)^\vee \cong \mathsf{Hom}(G,\mathsf{S}_\mathfrak{T}(F)).$

- If a Serre functor exists, it is unique.
- **•** The Serre functor exists for all smooth and proper noncommutative varieties.
- The Serre functor of $\mathbf{D}^{\mathrm{b}}(X)$ has the form

 ${\sf S}_{{\sf D}^{\rm b}(X)}(\digamma) = \digamma \otimes \omega_X[\dim X].$

Thus, the Serre functor of $D^{\mathrm{b}}(X)$ encodes the canonical class and dimension of X.

Examples of residual categories

Let $X \subset \mathbb{P}^n$ be a hypersurface of degree $d \leq n$. Then

- if $d = 1$ then $\mathcal{R}_x = 0$:
- if $d=2$ then $\mathcal{R}_X\simeq \mathbf{D}^{\mathrm{b}}(\mathfrak{A}_0)$, where \mathfrak{A}_0 is the even part of the $(noncommutative!)$ Clifford algebra of the quadratic form of X; in particular $\textbf{S}_{\mathcal{R}_X}\cong \mathsf{id};$
- if $d=3$ then $\mathbf{S}_{\mathcal{R}_X}\cong \left[\frac{\dim(X)+2}{3}\right]$ $\left[\frac{X}{3}\right]^{1+2}$ or $\mathbf{S}_{\mathcal{R}_{X}}^{3} \cong [\dim(X)+2];$
- if $d \geq 4$ then $\mathbf{S}_{\mathcal{R}_{X}}^{d} \cong [(\dim(X) + 2)(d 2)].$

Most noncommutative varieties among \mathcal{R}_X have fractional dimension.

Remark ([-, Perry, '21])

The residual category of a complete intersection has more complicated structure: it is "stratified" with strata of different fractional dimensions.

Residual category of a cubic fourfold

Let $X \subset \mathbb{P}^5$ be a hypersurface of degree 3. Then

 $\mathbf{D}^{\mathrm{b}}(X) = \langle \mathcal{R}_X, \mathcal{O}_X, \mathcal{O}_X(1), \mathcal{O}_X(2) \rangle.$

The noncommutative variety \mathcal{R}_X is particularly interesting.

- \circ \mathcal{R}_X is a noncommutative K3 surface;
	- $\mathbf{S}_{\mathcal{R}_{X}} \cong [2]$, similarly to the case of K3 surfaces;
	- for special X one may have $\mathcal{R}_X\simeq \mathsf{D}^{\mathrm{b}}(\mathcal{S}),$ where $\mathcal S$ is a K3 surface;
	- for a very general X the category \mathcal{R}_X is not commutative.
- \mathcal{R}_X gives rise to various hyper-Kähler varieties.
- \mathcal{R}_X (conjecturally) encodes birational properties of X.

Conjecture

A smooth cubic hypersurface $X\subset \mathbb{P}^5$ is rational if and only if $\mathcal{R}_X\simeq \mathsf{D}^{\mathrm{b}}(\mathcal{S}).$

§3. Classical versus homological

Resolutions of singularities

- If X is singular, a resolution is a proper morphism $\pi: \widetilde{X} \to X$ such that
	- \bullet X is smooth;
	- there is an open subset $\,U\subset X$ such that $\pi^{-1}(U)\cong U.$

Example $X \left(\ldots \left(\begin{array}{c} \overbrace{\hspace{2.5cm} \cdots \hspace{2.5cm}} \left(\begin{array}{c$

On the level of categories we have adjoint functors

$$
D^{\operatorname{perf}\nolimits}\big(X\big) \xrightarrow{\ \pi^* \ } D^{\operatorname{perf}\nolimits}\big(\widetilde{X}\big) = D^{\operatorname{b}\nolimits}(\widetilde{X}) \xrightarrow{\ \pi_* \ } D^{\operatorname{b}\nolimits}(X),
$$

and if the singularites of X are rational, we have $\pi_* \circ \pi^* \cong \mathsf{id}.$

Categorical resolutions

Definition ([–, '08])

A categorical resolution of singularities of X is a triple $(\mathcal{D},\pi^*,\pi_*)$, where

- \bullet \mathcal{D} is a smooth and proper noncommutative variety;
- $\pi^*\colon \mathsf{D}^{\mathrm{perf}}(\mathsf{X}) \to \mathcal{D}$ and $\pi_*\colon \mathcal{D} \to \mathsf{D}^{\mathrm{b}}(\mathsf{X})$ are adjoint functors;
- $\pi_* \circ \pi^* \cong \mathsf{id}.$

Theorem ([–, Lunts, '15])

Any separable scheme of finite type over a field of characteristic zero has a categorical resolution of singularities.

- Categorical resolutions exist in higher generality. \bullet
- All singularities are "derived rational". \bullet

Simultaneous resolutions of singularities

Let $f: X \to B$ be a flat proper morphism, smooth over $B \setminus \{o\}$ for $o \in B$. A simultaneous resolution of singularities is a resolution $\pi: X \to X$ such that X is smooth over B , i.e.,

- \bullet X is smooth, and
- $\widetilde{X}_o \coloneqq (f \circ \pi)^{-1}(o)$ is smooth.

Usually one also assumes that π is an isomorphism over $B \setminus \{o\}$.

Theorem ([Brieskorn, '70], [Tjurina, '70])

If $f: X \rightarrow B$ is a deformation of a surface X_o with rational double points, there is a finite covering $B' \to B$ such that $X' \coloneqq X \times_B B' \to B'$ has a simultaneous resolution of singularites.

This result does not extend to higher dimensions.

Simultaneous categorical resolutions

Let $f: X \rightarrow B$ be as before.

Definition ([–, '22])

A simultaneous categorical resolution of singularities of $f: X \rightarrow B$ is a triple $(\mathcal{D},\pi^*,\pi_*)$, where

- \bullet $\mathcal D$ is a smooth and proper over B noncommutative variety;
- $\pi^*\colon \mathsf{D}^\textup{perf}(X) \to \mathcal{D}, \ \pi_*\colon \mathcal{D} \to \mathsf{D}^{\mathrm{b}}(X)$ are $B\textup{-linear}$ adjoint functors; $\pi_* \circ \pi^* \cong \mathsf{id}.$

Theorem $([-, '22])$

If B is a smooth curve, X and X_0 have an ordinary double point at $x \in X_0$, and $\dim(X_{o})$ is even then f has a simultaneous categorical resolution.

Thus, \mathcal{D} is a smooth and proper over B noncommutative variety ; it provides a smooth extension of $X \setminus X_o \to B \setminus \{o\}$ across the point o.

Categorical absorption of singularities

Definition ([–, Shinder, '22])

A semiorthogonal component $\mathfrak{P}\subset \mathbf{D}^{\rm b}(X_o)$ absorbs singularites of X_o if both orthogonals $\mathfrak{P}^{\perp}\simeq {}^{\perp}\mathfrak{P}\subset \mathbf{D}^{\rm b}(\mathcal{X}_o)$ are smooth and proper.

Example

Assume Y is smooth and proper and $Z \subset Y$ is a singular local complete intersection of codimension 2. Then $X_0 := B|_{\mathcal{Z}}(Y)$ is singular and

 $\mathbf{D}^{\mathrm{b}}(X_o) = \langle \mathbf{D}^{\mathrm{b}}(Y), \mathbf{D}^{\mathrm{b}}(Z) \rangle.$

Thus $\mathcal{P} \coloneqq \mathbf{D}^{\mathrm{b}}(Z) \subset \mathbf{D}^{\mathrm{b}}(X_o)$ absorbs singularities of X_o with

 $\mathcal{P}^\perp \simeq {}^\perp\mathcal{P} \simeq \mathsf{D}^{\mathrm{b}}(\mathsf{Y}).$

This example shows the idea: absorption is a "categorical contraction" of $\mathbf{D}^{\mathrm{b}}(X_o)$ to a smooth and proper noncommutative variety.

Absorption for nodal varieties

Theorem ([–, Shinder, '22])

Let X_0 be a variety with a single ordinary double point $x \in X_0$. Let $\pi: X_{\alpha} \to X_{\alpha}$ be the blowup of x with the exceptional divisor $E \subset X_{\alpha}$. Assume there is an exceptional object $\mathcal E$ on X_0 such that $\mathcal E|_F$ is a spinor bundle. Then the subcategory $\mathcal{P} := \langle \pi_* \mathcal{E} \rangle$ absorbs singularities of X_0 .

Assume, moreover, $f: X \rightarrow B$ is a smoothing of X_0 , i.e.,

- $X_o \cong f^{-1}(o) \stackrel{\iota}{\longrightarrow} X,$
- \bullet X is smooth and f is smooth over $B \setminus o$;

If $\dim(X_{o})$ is odd then $\iota_{*}\pi_{*}\mathcal{E} \in \mathbf{D}^{b}(X)$ is exceptional,

 $\mathbf{D}^{\mathrm{b}}(X)=\langle\iota_*\pi_*\mathcal{E},\mathcal{D}\rangle,$

and $\mathcal D$ is a smooth and proper over B noncommutative variety.

Again, $\mathcal D$ provides a smooth extension of $X \setminus X_o \to B \setminus \{o\}$ across the point o.

Thanks for your attention!