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Homological algebraic geometry

Algebraic geometry is a fusion of geometry and algebra:

geometry gives intuition and a way of thinking,

algebra provides machinery for proving theorems.

Likewise, homological algebraic geometry is a fusion of

algebraic geometry with

homological algebra.

The main object of HAG is the derived category of coherent sheaves .

Other nicknames : categorical , derived , noncommutative , . . .

Why do we study HAG?

New interesting “noncommutative varieties” to be studied.

Many classical results become more straightforward and better behaved

when considered from the viewpoint of HAG.
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§1. Derived category
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Brief history

A very incomplete timeline:

A. Grothendieck devised derived categories for proving duality;

J.-L. Verdier (student of Grothendieck) developed the notion in the 60’s;

A. Beilinson in the late 70’s observed that the derived category
of a projective space has a particularly nice structure;

M. Kapranov in the late 80’s found that the derived categories
of quadrics and Grassmannians have a similar structure;

A. Bondal and D. Orlov in the 90’s initiated a fullscale study
of derived categories and proved many important results,
presented in their ICM talk in 2002.
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Definition

The derived category of an algebraic variety X is defined as the Verdier quotient

D(X ) := Com(X )/Acycl(X ).

Com(X ) is the category of complexes of vector bundles over X

· · · → E i−1 d i−1

−−−−→ E i d i

−−−→ E i+1 → . . . ,

where d i are fiberwise linear morphisms such that d i ◦ d i−1 = 0 for all i ,

Acycl(X ) ⊂ Com(X ) is the subcategory of acyclic complexes, i.e.,

Acycl(X ) := {(E•, d•) | Hi (E•) := Ker(d i )/ Im(d i−1) = 0 for all i}.

The bounded derived category:

Db(X ) := {E ∈ D(X ) | Hi (E ) = 0 for |i | � 0}.
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Geometric objects in the derived category

Basic geometric objects are represented in the derived category:

A vector bundle E corresponds to the complex

· · · → 0→ E → 0→ . . .

Morphisms of varieties f : X → Y give derived pullback and pushforward
functors

f ∗ : D(Y )→ D(X ), f∗ : D(X )→ D(Y ).

Under appropriate finiteness assumptions they preserve boundedness;
this holds, e.g., when both X and Y are smooth and proper.
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Triangulated structure

The derived category is triangulated, i.e.,

Morphisms Hom(F1,F2) in D(X ) are vector spaces.

The composition Hom(F2,F3)⊗ Hom(F1,F2)→ Hom(F1,F3) is bilinear.

D(X ) is endowed with an action of Z by shift autoequivalences:

[k] : D(X )→ D(X ), k ∈ Z,

such that [k1] ◦ [k2] = [k1 + k2].

Any morphism φ : F1 → F2 extends to a distinguished triangle

F1
φ−−→ F2 −−→ Cone(φ) −−→ F1[1].

If F1 → F2 → F3 → F1[1] is distinguished, one gets long exact sequences

· · · → Hom(F ,F1)→ Hom(F ,F2)→ Hom(F ,F3)→ Hom(F ,F1[1])→ . . . ,

· · · → Hom(F1[1],F )→ Hom(F3,F )→ Hom(F2,F )→ Hom(F1,F )→ . . . .

Other axioms . . .
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§2. Noncommutative varieties
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Semiorthogonal decompositions

A semiorthogonal decomposition is a splitting of Db(X ) into simpler pieces.

Definition

A semiorthogonal decomposition

Db(X ) = 〈A,B〉

is a pair of triangulated subcategories A,B ⊂ Db(X ) such that

Hom(B,A) = 0 for all A ∈ A, B ∈ B;

for any F ∈ Db(X ) there is a distinguished triangle

B → F → A→ B[1], A ∈ A, B ∈ B.

Similarly, one defines semiorthogonal decompositions with many components.

Semiorthogonal components of Db(X ) are noncommutative varieties.
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Exceptional objects

Definition

E ∈ Db(X ) is an exceptional object if dim Hom(E ,E [k]) =

{
1, k = 0

0, k 6= 0

Example

H>0(X ,OX ) = 0 ⇐⇒ any line bundle is exceptional.

With an exceptional object E ∈ Db(X ) one associates subcategories

triangulated envelope 〈E 〉 := {⊕(E [i ]⊕ni )} ' Db(point),

right orthogonal E⊥ := {F | Hom(E [k],F ) = 0 ∀k},
left orthogonal ⊥E := {F | Hom(F ,E [k]) = 0 ∀k},

that combine into semiorthogonal decompositions

Db(X ) = 〈E ,⊥E 〉 and Db(X ) = 〈E⊥,E 〉.

Categorically, an exceptional object is a “noncommutative embedding of a point” .
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Exceptional collections

Iterating this construction, we obtain the notion of an exceptional collection.

Definition

A collection E1, . . . ,En ∈ Db(X ) is an exceptional collection if

each object Ei is exceptional and

Hom(Ei ,Ej [k]) = 0 for i > j and all k .

An exceptional collection induces a semiorthogonal decomposition

Db(X ) = 〈A,E1, . . . ,En〉, where A := 〈E1, . . . ,En〉⊥.

An exceptional collection is full if A = 0, i.e., Db(X ) = 〈E1, . . . ,En〉.

Example (Beilinson, ’78)

Db(Pn) = 〈O,O(1), . . . ,O(n)〉.
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Residual categories

Typically, we have an exceptional collection and its complement. Let

X ⊂ Pn, a hypersurface of degree d , or

X ⊂ Pn, a complete intersection of type (d1, . . . , dk), d :=
∑

di ,

and d ≤ n (Fano condition). Then

Db(X ) = 〈RX ,OX ,OX (1), . . . ,OX (n − d)〉,

where RX := 〈OX ,OX (1), . . . ,OX (n − d)〉⊥ is the residual category.

RX is an interesting example of a noncommutative variety.

Example (Bondal–Orlov, ’95)

If X is a smooth complete intersection of type (2, 2) in P2g+1 then

RX ' Db(Cg ),

where Cg is a hyperelliptic curve of genus g .
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Serre functor

Serre duality: if X is smooth projective and ωX := det(Ω1
X ), then

Hom(F ,G )∨ ∼= Hom(G ,F ⊗ ωX [dimX ]) for F ,G ∈ Db(X ).

Definition ([Bondal–Kapranov, ’89])

A Serre functor of a triangulated category T is an autoequivalence ST such that

Hom(F ,G )∨ ∼= Hom(G ,ST(F )).

If a Serre functor exists, it is unique.

The Serre functor exists for all smooth and proper noncommutative varieties.

The Serre functor of Db(X ) has the form

SDb(X )(F ) = F ⊗ ωX [dimX ].

Thus, the Serre functor of Db(X ) encodes the canonical class and dimension of X .
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Examples of residual categories

Let X ⊂ Pn be a hypersurface of degree d ≤ n. Then

if d = 1 then RX = 0;

if d = 2 then RX ' Db(C̀ 0), where C̀ 0 is the even part of the

(noncommutative!) Clifford algebra of the quadratic form of X ;

in particular SRX
∼= id;

if d = 3 then SRX
∼=

[
dim(X )+2

3

]
or S3

RX

∼= [dim(X ) + 2];

if d ≥ 4 then Sd
RX

∼= [(dim(X ) + 2)(d − 2)].

Most noncommutative varieties among RX have fractional dimension .

Remark ([-, Perry, ’21])

The residual category of a complete intersection has more complicated structure:
it is “stratified” with strata of different fractional dimensions.
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Residual category of a cubic fourfold

Let X ⊂ P5 be a hypersurface of degree 3. Then

Db(X ) = 〈RX ,OX ,OX (1),OX (2)〉.

The noncommutative variety RX is particularly interesting.

RX is a noncommutative K3 surface ;

SRX
∼= [2], similarly to the case of K3 surfaces;

for special X one may have RX ' Db(S), where S is a K3 surface;
for a very general X the category RX is not commutative.

RX gives rise to various hyper-Kähler varieties.

RX (conjecturally) encodes birational properties of X .

Conjecture

A smooth cubic hypersurface X ⊂ P5 is rational if and only if RX ' Db(S).
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§3. Classical versus homological
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Resolutions of singularities

If X is singular, a resolution is a proper morphism π : X̃ → X such that

X̃ is smooth;

there is an open subset U ⊂ X such that π−1(U) ∼= U.

Example

X X̃

On the level of categories we have adjoint functors

Dperf(X )
π∗

−−−→ Dperf(X̃ ) = Db(X̃ )
π∗−−−→ Db(X ),

and if the singularites of X are rational, we have π∗ ◦ π∗ ∼= id.
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Categorical resolutions

Definition ([–, ’08])

A categorical resolution of singularities of X is a triple (D, π∗, π∗), where

D is a smooth and proper noncommutative variety;

π∗ : Dperf(X )→ D and π∗ : D→ Db(X ) are adjoint functors;

π∗ ◦ π∗ ∼= id.

Theorem ([–, Lunts, ’15])

Any separable scheme of finite type over a field of characteristic zero
has a categorical resolution of singularities.

Categorical resolutions exist in higher generality.

All singularities are “derived rational”.
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Simultaneous resolutions of singularities

Let f : X → B be a flat proper morphism, smooth over B \ {o} for o ∈ B.

A simultaneous resolution of singularities is a resolution π : X̃ → X
such that X̃ is smooth over B, i.e.,

X̃ is smooth, and

X̃o := (f ◦ π)−1(o) is smooth.

Usually one also assumes that π is an isomorphism over B \ {o}.

Theorem ([Brieskorn, ’70], [Tjurina, ’70])

If f : X → B is a deformation of a surface Xo with rational double points,
there is a finite covering B ′ → B such that X ′ := X ×B B ′ → B ′ has
a simultaneous resolution of singularites.

This result does not extend to higher dimensions.
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Simultaneous categorical resolutions

Let f : X → B be as before.

Definition ([–, ’22])

A simultaneous categorical resolution of singularities of f : X → B
is a triple (D, π∗, π∗), where

D is a smooth and proper over B noncommutative variety;

π∗ : Dperf(X )→ D, π∗ : D→ Db(X ) are B-linear adjoint functors;

π∗ ◦ π∗ ∼= id.

Theorem ([–, ’22])

If B is a smooth curve, X and Xo have an ordinary double point at x ∈ Xo ,
and dim(Xo) is even then f has a simultaneous categorical resolution.

Thus, D is a smooth and proper over B noncommutative variety ;

it provides a smooth extension of X \ Xo → B \ {o} across the point o.
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Categorical absorption of singularities

Definition ([–, Shinder, ’22])

A semiorthogonal component P ⊂ Db(Xo) absorbs singularites of Xo

if both orthogonals P⊥ ' ⊥P ⊂ Db(Xo) are smooth and proper.

Example

Assume Y is smooth and proper and Z ⊂ Y is a singular local complete
intersection of codimension 2. Then Xo := BlZ (Y ) is singular and

Db(Xo) = 〈Db(Y ),Db(Z )〉.

Thus P := Db(Z ) ⊂ Db(Xo) absorbs singularities of Xo with

P⊥ ' ⊥P ' Db(Y ).

This example shows the idea: absorption is a “categorical contraction”

of Db(Xo) to a smooth and proper noncommutative variety.
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Absorption for nodal varieties

Theorem ([–, Shinder, ’22])

Let Xo be a variety with a single ordinary double point x ∈ Xo .
Let π : X̃o → Xo be the blowup of x with the exceptional divisor E ⊂ X̃o .
Assume there is an exceptional object E on X̃o such that E|E is a spinor bundle.
Then the subcategory P := 〈π∗E〉 absorbs singularities of Xo .

Assume, moreover, f : X → B is a smoothing of Xo , i.e.,

Xo
∼= f −1(o)

ι
↪−→ X;

X is smooth and f is smooth over B \ o;

If dim(Xo) is odd then ι∗π∗E ∈ Db(X ) is exceptional,

Db(X ) = 〈ι∗π∗E,D〉,

and D is a smooth and proper over B noncommutative variety.

Again, D provides a smooth extension of X \ Xo → B \ {o} across the point o.
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Thanks for your attention!
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