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Hodge theory in a nutshell: a linearization principle

I Algebraic variety = space of solutions of a system of algebraic
equations, e.g.

X/k = {z = [z0, . . . , zn] ∈ Pnk | f1(z) = · · · = fr(z) = 0},

where the fi’s are homogeneous polynomials with coefficients in a
field k.

I Hodge theory is the art of “linearizing” such algebraic varieties when
k = C.

X/C︸︷︷︸
smooth projective variety

 (H•B(Xan,Z)⊗Z C, F •)︸ ︷︷ ︸
filtered complex vector space

I
f : X → S︸ ︷︷ ︸

smooth projective

 Φ : San → Γ\D︸ ︷︷ ︸
C−analytic period map
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The Hodge filtration

I How do we construct the Hodge filtration?

H•(Xan,Ω•Xan)
∼= // H•dR(Xan,C)

∼=
��

H•(X/C,Ω•X/C)
∼= //

∼=

OO

H•B(Xan,Q)⊗Q C

H•(Xan,Ω•Xan)
∼= // H•dR(Xan,C)

∼=
��

H•(X/C,Ω•X/C)
∼= //

∼=

OO

H•B(Xan,Q)⊗Q C

F p := Im(H•(X/C,Ω•≥pX/C))
?�

OO

I Hodge classes: F p ∩H2p
B (Xan,Q) ⊂ H2p

B (Xan,C).

I Zp(X)Q
cycle map→ F p ∩H2p

B (Xan,Q)
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Hodge structure and Mumford-Tate group

Theorem (Hodge, Frölicher, Deligne)

V = (VZ := Hi
B(Xan,Z), F •) is a polarizable Z-Hodge structure of

weight i:

(a) VZ ⊗Z C = F p ⊕ F i+1−p(⇐⇒ VZ ⊗Z C =
⊕

p+q=i(F
p ∩ F q)).

(b) Q : VZ ⊗Z VZ → Z, (−1)i-symmetric, QC(F p, F i+1−p) = 0 and
QC(Cv, v) > 0.

I X/C︸︷︷︸
smooth projective

 V = (H•B(Xan,Z)⊗Z C, F •)︸ ︷︷ ︸
polarizable ZHS

 GV︸︷︷︸
Q−reductive group

GV is the Tannaka group of 〈V ⊗Q 〉 ⊂ QHS; equivalently, the fixator

in GL(VQ) of all Hodge tensors in V ⊗.
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V = (VZ := Hi
B(Xan,Z), F •) is a polarizable Z-Hodge structure of

weight i:

(a) VZ ⊗Z C = F p ⊕ F i+1−p(⇐⇒ VZ ⊗Z C =
⊕

p+q=i(F
p ∩ F q)).

(b) Q : VZ ⊗Z VZ → Z, (−1)i-symmetric, QC(F p, F i+1−p) = 0 and
QC(Cv, v) > 0.

I X/C︸︷︷︸
smooth projective

 V = (H•B(Xan,Z)⊗Z C, F •)︸ ︷︷ ︸
polarizable ZHS

 GV︸︷︷︸
Q−reductive group

GV is the Tannaka group of 〈V ⊗Q 〉 ⊂ QHS; equivalently, the fixator

in GL(VQ) of all Hodge tensors in V ⊗.



Hodge theory in families

I f : X → S smooth projective  polarizable ZVHS

V = (VZ = {H•B(Xan
s ,Z)}, (V = {H•(Xs/C,Ω•Xs/C)}, F •),∇, Q)

with ∇F • ⊂ F •−1 ⊗ Ω1
S (Griffiths transversality).

I Period map:

S̃an Φ̃ //

π

��

D = G(R)/M

��

� � open // D∨ = G(C)/P flag variety

San

Φ
// Γ\D

where G is the generic Mumford-Tate group, and Γ = G(Z).

I The period map Φ is C-analytic, and severely constrained:

dΦ(TSan
s ) ⊂ g−1,1

Φ(s) ⊂ TΦ(s)(Γ\D) = g−1,1
Φ(s) ⊕ · · · ⊕ g−l,lΦ(s).

l = level(V).
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Hodge loci

I

HL(S,V⊗) = {s ∈ San |Vs admits ”exceptional” Hodge tensors}
= {s ∈ San |Gs ( G generic Mumford-Tate group}

This is a meager set of San.

I Cartesian diagram:

San Φ // Γ\D

HL(S,V⊗)
?�

OO

// ⋃
(G′,D′)((G,D) Γ′\D′

?�

OO
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Hodge theory is at heart transcendental...

I The proof that V = (VZ := Hi
B(Xan,Z), F •) is a polarizable ZHS

of weight i is transcendental.

I If X/K, K ⊂ C number field,

H•dR(X/K)⊗K C ' H•B(Xan,Q)⊗Q C.

 kX := 〈periods ofX/K〉 ⊂ C.

tr degQ kX > 0.

I V ZVHS  Φ : San → Γ\D.

If level(V) = 1 then Γ\D is a Shimura variety and Φ is algebraic;
but as soon as level(V) > 1 then Γ\D has no algebraic structure
and Φ is a mere complex analytic map.
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... but this transcendence should be severely constrained!

Conjecture (Grothendieck ’66)

tr degQ kX = dimGX .

Conjecture (Hodge ’50)

Zk(X)Q � F k ∩H2k(X,Q).

(Weil 1979): If f : X → S, the Hodge conjecture implies that HL(S,V⊗)
is a countable union of algebraic subvarieties of S.
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... but this transcendence should be severely constrained!

Conjecture (Grothendieck ’66)

tr degQ kX = dimGX .

Conjecture (Hodge ’50)

Zk(X)Q � F k ∩H2k(X,Q).

(Weil 1979): If f : X → S, the Hodge conjecture implies that HL(S,V⊗)
is a countable union of algebraic subvarieties of S.

Theorem (Cattani-Deligne-Kaplan ’95)

Let V be a polarizable ZVHS on a smooth quasi-projective variety S.
Then HL(S,V⊗) is a countable union of irreducible algebraic subvarieties
of S: the special subvarieties of S for V.



Tame geometry

I “If level(V) > 1 then Γ\D has no algebraic structure and
Φ : San → Γ\D is a mere complex analytic map.”

Or maybe not ? Maybe Φ “looks like” an algebraic map? Maybe Φ
is “tame”?

I To be discarded: Γ = graph of (x 7→ sin 1
x ), x > 0.

Γ = I ∪ Γ

Γ is not tame for at least three reasons:

(a) Γ is connected but not arc-connected;
(b) dim ∂Γ = dim Γ;
(c) Γ ∩ R is “not of finite type”.
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Tame geometry

I A structure is a collection S = (Sn)n∈N, where Sn is a set of subsets
of Rn such that:

(1) algebraic subsets of Rn belong to Sn.
(2) Sn is stable under intersection, finite union and complement.
(3) A ∈ Sp, B ∈ Sq ⇒ A×B ∈ Sp+q.
(4) If p : Rn+1 → Rn is a linear projection and A ∈ Sn+1 then

p(A) ∈ Sn.

The elements of Sn are called the S-definable subsets of Rn.
f : A→ B is S-definable if A, B and Γ(f) are S-definable.

I Examples:
I Ralg

I RF for F a collection of functions f : Rn → R and of subsets of Rn

(e.g. Rexp, Ran, Rsin).
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Tame geometry

I A structure S is o-minimal if in addition

(5) the definable subsets of R are the semi-algebraic sets.

I Sets definable in an o-minimal structure enjoy the same tameness
properties as semi-algebraic sets!

I Examples:
I Ralg

I Ran ( Losajiewicz, Gabrielov)
I Rexp (Khovanskii, Wilkie),
I Ran,exp (Miller-Van den Dries)

I Globalization: S-definable topological spaces
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Tame geometry and algebraization

Theorem (Pila-Wilkie ’06)

Let Z ⊂ Rn be definable in some o-minimal structure.
Let Zalg ⊂ Z be the union of all positive-dimensional connected
semi-algebraic subsets of Z. Then:

∀ ε > 0, ∃Cε > 0 /
∣∣{x ∈ (Z − Zalg) ∩Qn, H(x) ≤ T}

∣∣ < CεT
ε .

Theorem (Peterzil-Starchenko ’09, o-minimal Chow)

Let S be a quasi-projective variety over C, e.g. S = Cn.
Let Z ⊂ San be a closed analytic subset.
If Z is definable in some o-minimal structure extending Ran then Z ⊂ S
is algebraic.
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Tame geometry of period maps

Theorem (Bakker-K.-Tsimerman ’20)

Γ\D has a canonical structure of Ralg-definable manifold.
Each Γ′\D′ ⊂ Γ\D coming from (G′, D′) ⊂ (G, D) is a definable
subspace.

Theorem (Bakker-K.-Tsimerman ’20)

Any period map Φ : San → Γ\D is Ran,exp-definable.

Corollary (Cattani-Deligne-Kaplan ’95)

Let V be a polarizable ZVHS on a smooth quasi-projective variety S.
Then HL(S,V⊗) is a countable union of irreducible algebraic subvarieties
of S: the special subvarieties of S for V.

Theorem (Brunebarbe-Bakker-Tsimerman)

Images of period maps have a natural algebraic structure.
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Hodge theory as bi-algebraic geometry

I Bi-algebraic format: the diagram

S̃an Φ̃ //

π

��

D �
� open // D∨ flag variety

San

emulates an algebraic structure on S̃an:

I Y ⊂ S̃an is algebraic for Φ if Y = Φ̃−1(algebraic inD∨)0.
W ⊂ S is bi-algebraic for Φ if W is algebraic and W = π(Y ), with

Y ⊂ S̃an algebraic.

I We want to study the transcendence of π with respect to the
algebraic structure on S and the emulated one on S̃an.

I Generalizes the case of tori, abelian varieties, Shimura varieties.
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Hodge theory and functional transcendence

Proposition (K.-Otwinowska ’21)

Let Φ : San → Γ\D be a period map. The bi-algebraic subvarieties of S
for Φ are the weakly special ones.

Theorem (Ax-Schanuel conjecture for ZVHS, conjectured by K. ’17;
Bakker-Tsimerman ’19)

Let Z ⊂ S ×D∨ be a closed algebraic subvariety.

(a) If the intersection of Zan with ∆ := San ×Γ\D D is atypical, i.e.

codimSan×D Z
an ∩∆ < codimSan×D Z

an + codimSan×D ∆ ,

then p(Zan ∩∆) is contained in a strictly weakly special subvariety
of S.

(b) In particular: if Z ⊂ S̃an is algebraic then p(Z)
Zar

is weakly special
(Ax-Lindemann conjecture for ZVHS).
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Distribution of the Hodge loci

I What can we say about the distribution of the special subvarieties,

for instance about HL(S,V⊗)
Zar

?

I HL(S,V⊗)pos := union of special subvarieties of positive period
dimension.

Theorem (K-Otwinowska ’21)

Assume for simplicity that Gad is simple.
Either HL(S,V⊗)pos is Zariski-dense in S, or it is algebraic.
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Hodge loci as (a)typical intersections: conjectures

I A special subvariety Z = Φ−1(ΓZ\DZ)0 ⊂ S is said atypical if
codimΓ\D Φ(Zan) < codimΓ\D Φ(San) + codimΓ\D ΓZ\DZ .

Otherwise it is typical.

I HL(S,V⊗) = HL(S,V⊗)atyp

∐
HL(S,V⊗)typ.

Conjecture (Zilber-Pink for ZVHS; K’17; Baldi-K-Ullmo)

(1) HL(S,V⊗)atyp is algebraic.

(2) HL(S,V⊗)typ is either empty, or analytically dense in San.

This implies:

Conjecture (André-Oort for ZVHS; K’17)

If S contains a Zariski-dense set of CM-points for V, then

(a) level(V) = 1, i.e. Γ\D is a Shimura variety;

(b) Φ : San → Γ\D is a dominant algebraic map.
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Hodge loci as (a)typical intersections: results

Theorem (Baldi-K-Ullmo)

(1) Suppose level(V) ≥ 3. Then HL(S,V⊗) = HL(S,V⊗)atyp.

(2) Suppose in addition that Gad is simple. Then HL(S,V⊗)pos is
algebraic.

Corollary (Baldi-K-Ullmo)

Let f : Hn,d → Un,d ⊂ PH0(Pn+1
C ,O(d)) be the family of smooth

hypersurfaces of degree d in Pn+1
C .

If n ≥ 3 and d > 5 then HL(Un,d, f)pos ⊂ Un,d is algebraic.

Theorem (Baldi-K-Ullmo)

If HL(S,V⊗)typ 6= ∅ (hence level(V) = 1 or 2) then HL(S,V⊗) is
analytically dense in San.
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Arithmetic aspects

Conjecture
Let V→ S be a ZVHS defined over a number field K ⊂ C. Then

(1) any special subvariety of S for V is defined over Q;

(2) any of its Gal(Q/L)-conjugates is special.

Theorem (K-Otwinowska-Urbanik ’20)

(a) Suppose that Gad is simple. Then the conjecture above holds true
for the maximal special subarieties of positive period dimension. In
particular if level(V) ≥ 3 then HL(S,V⊗)pos is algebraic, defined
over Q.

(b) The full conjecture holds true if and only if it holds true for special
points.

Theorem (Kreutz)

Let (Vσ)σ be a (de Rham) motivic variation of Hodge structure on S.
Suppose that Gad is simple. Then any maximal special subvariety Y ⊂ S
of positive period dimension for V is absolutely special.
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