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Hodge theory in a nutshell: a linearization principle
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Hodge theory in a nutshell: a linearization principle

» Algebraic variety = space of solutions of a system of algebraic
equations, e.g.

X/k={z=l20,-- -,z € Py | fi(2) = -+ = [fr(2) = O},
where the f;'s are homogeneous polynomials with coefficients in a
field k.
» Hodge theory is the art of “linearizing” such algebraic varieties when

k=C.

X/C ~  (Hp(X™,Z) ®z C, F*)

S~

smooth projective variety filtered complex vector space

f:X—=S ~ ®:55T\D
—_— —_———

smooth projective C—analytic period map
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The Hodge filtration

» How do we construct the Hodge filtration?

H* (X Q%) —————— H3,(X™",C)

:T l:

H*(X/C, 0% ) ——> Hy(X™,Q) 8g C

J

FP = Im(H*(X/C,Q557%))

> Hodge classes: F” N HP(X*", Q) C HZ(X?,C).

> Zp(X) cycle map Fp ﬂHQp(Xan Q)



Hodge structure and Mumford-Tate group

Theorem (Hodge, Frélicher, Deligne)
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weight .
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Hodge structure and Mumford-Tate group

Theorem (Hodge, Frélicher, Deligne)

V = (Vz:= H5(X?,Z), F*) is a polarizable Z-Hodge structure of
weight .

(a) V@2 C=FP @ Fitl-P(<—= V;®,C = ®p+q:i(Fp ﬂﬁ))
(b) Q:Vyz®z Vy — Z, (—1)'-symmetric, Qc(FP, F*1=P) = 0 and
Qc(Cv,v) > 0.

> X/(C WVZ(H%(X“,Z) ®Z(C,F.) ~ Gy
~—~— ~—
smooth projective polarizable ZHS Q—reductive group

Gy is the Tannaka group of (V(§> C QHS; equivalently, the fixator
in GL(Vg) of all Hodge tensors in V®.
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Hodge theory in families
» f: X — S smooth projective ~»  polarizable ZVHS

V= (Vz = {Hp(X3", 2)}, (V= {H*(X,/C, Q% /c)}, F*), V. Q)
with VF® C F*~1 ® QL (Griffiths transversality).

» Period map:

g _p_ G(R)/Mﬂ DY = G(C)/P flag variety

|

gan I\D

where G is the generic Mumford-Tate group, and I' = G(Z).
» The period map @ is C-analytic, and severely constrained:

dD(TST) € gg(3) C To)(T\D) = 8y @~ D 8y (l)-

[ = level(V).
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Hodge loci

HL(S,V®) = {s € S°" | V, admits " exceptional’ Hodge tensors}
= {s € 5" | G5 C G generic Mumford-Tate group}

This is a meager set of S°".

» Cartesian diagram:

San

r'\D

J

HL(S, V&) —= Uar prycia.p) I\D'
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Hodge theory is at heart transcendental...

» The proof that V = (V7 := H5(X?",Z), F*®) is a polarizable ZHS
of weight 4 is transcendental.

> If X/K, K C C number field,
Hip(X/K)®g C~ Hp(X*",Q) ®¢ C.
~ kx := (periods of X/K) C C.

tr degQ kx > 0.

> V ZVHS ~ & : 5" — T\ D.

If level(V) = 1 then T'\ D is a Shimura variety and ® is algebraic;
but as soon as level(V) > 1 then '\ D has no algebraic structure
and ® is a mere complex analytic map.
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Conjecture (Grothendieck '66)

tr degQ kx =dimGyx.

Conjecture (Hodge '50)
Z¥(X)q — F* N H*™(X, Q).

(Weil 1979): If f: X — S, the Hodge conjecture implies that HL(S, V®)
is a countable union of algebraic subvarieties of S.



. but this transcendence should be severely constrained!

Conjecture (Grothendieck '66)
tr degQ kx =dimGyx.
Conjecture (Hodge '50)

Z¥(X)q — F* N H*™(X, Q).

Theorem (Cattani-Deligne—KapIan '95)

Let V be a polarizable ZVHS on a smooth quasi-projective variety S.
Then HL(S,V®) is a countable union of irreducible algebraic subvarieties
of S: the special subvarieties of S for V.
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Tame geometry

> “If level(V) > 1 then T'\D has no algebraic structure and
®: 52" — T'\D is a mere complex analytic map.”

Or maybe not ? Maybe ® "“looks like” an algebraic map? Maybe ®
is “tame”?
> To be discarded: I' = graph of (z + sin 1),z > 0.

I'=1url

T" is not tame for at least three reasons:
(a) T is connected but not arc-connected;
(b) dim oI’ = dimT;

(c) TNRis “not of finite type”.



Tame geometry

» A structure is a collection § = (S, )nen, where S, is a set of subsets
of R™ such that:
(1) algebraic subsets of R™ belong to Si,.
(2) Sy is stable under intersection, finite union and complement.
(3) A€ Sp,BeSg=AXBE€ Spyq.
(4) If p: R™™ — R" is a linear projection and A € S,,41 then
p(A) € S.
The elements of S,, are called the S-definable subsets of R™.
f:A— B is S-definable if A, B and T'(f) are S-definable.
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» A structure is a collection § = (S, )nen, where S, is a set of subsets
of R™ such that:
(1) algebraic subsets of R™ belong to Si,.
(2) Sy is stable under intersection, finite union and complement.
(3) A€ Sp,BeSg=AXBE€ Spyq.
(4) If p: R™™ — R" is a linear projection and A € S,,41 then
p(A) € S.
The elements of S,, are called the S-definable subsets of R™.
f:A— B is S-definable if A, B and T'(f) are S-definable.

» Examples:
> IRalg
» R for F a collection of functions f : R™ — R and of subsets of R"
(e.8. Rexp, Ran, Rgin).
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Tame geometry

» A structure S is o-minimal if in addition
(5) the definable subsets of R are the semi-algebraic sets.

» Sets definable in an o-minimal structure enjoy the same tameness
properties as semi-algebraic sets!

» Examples:
> IRalg
> R.n (Losajiewicz, Gabrielov)
» Rexp (Khovanskii, Wilkie),
» Ran,exp (Miller-Van den Dries)

» Globalization: S-definable topological spaces
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Theorem (Pila-Wilkie '06)

Let Z C R™ be definable in some o-minimal structure.

Let Z?'e C Z be the union of all positive-dimensional connected
semi-algebraic subsets of Z. Then:
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Tame geometry and algebraization

Theorem (Pila-Wilkie '06)

Let Z C R™ be definable in some o-minimal structure.
Let Z?'e C Z be the union of all positive-dimensional connected
semi-algebraic subsets of Z. Then:

Ve>0,3C. >0/ |{z€(Z-2"NQ", H(z)<T} < C.T".

Theorem (PeterziI—Starchenko '09, o-minimal Chow)

Let S be a quasi-projective variety over C, e.g. S = C".

Let Z C 5°" be a closed analytic subset.

If Z is definable in some o-minimal structure extending R,, then Z C S
is algebraic.
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Tame geometry of period maps

Theorem (Bakker-K.-Tsimerman '20)

I'\D has a canonical structure of R,jg-definable manifold.

Each T'\D' c T\D coming from (G',D’) C (G, D) is a definable
subspace.

Theorem (Bakker-K.-Tsimerman '20)

Any period map ® : S*" — I'\D is R,y exp-definable.

Corollary (Cattani-Deligne-Kaplan '95)

Let V be a polarizable ZVHS on a smooth quasi-projective variety S.
Then HL(S, V®) is a countable union of irreducible algebraic subvarieties
of S: the special subvarieties of S for V.

Theorem (Brunebarbe—Bakker—Tsimerman)

Images of period maps have a natural algebraic structure.
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Hodge theory as bi-algebraic geometry

» Bi-algebraic format: the diagram

b open

Gan 2o P DV flag variety

|

San

emulates an algebraic structure on Gan:

> Y C S is algebraic for ® if Y = &~ (algebraic in DV)°.
W C S is bi-algebraic for ® if W is algebraic and W = 7(Y), with
Y C Gan algebraic.

> We want to study the transcendence of 7 with respect to the
algebraic structure on S and the emulated one on 52",

» Generalizes the case of tori, abelian varieties, Shimura varieties.
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Proposition (K.-Otwinowska '21)

Let @ : 5" — I'\D be a period map. The bi-algebraic subvarieties of S
for ® are the weakly special ones.

Theorem (Ax-Schanuel conjecture for ZVHS, conjectured by K. '17;
Bakker-Tsimerman '19)

Let Z C S x DY be a closed algebraic subvariety.
(a) If the intersection of Z*" with A := S®" xp\p D is atypical, i.e.

codimganyp Z2" N A < codimgany p Z2" + codimganyp A

then p(Z®" N A) is contained in a strictly weakly special subvariety
of S.
— ———Zar
(b) In particular: if Z C S2" is algebraic then p(Z) " is weakly special
(Ax-Lindemann conjecture for ZVHS).
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Distribution of the Hodge loci

» What can we say about the distribution of the special subvarieties,

for instance about Wzar?

> HL(S, V)0 := union of special subvarieties of positive period
dimension.

Theorem (K-Otwinowska '21)

Assume for simplicity that G4 is simple.
Either HL(S, V®),os is Zariski-dense in S, or it is algebraic.
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Hodge loci as (a)typical intersections: conjectures

» A special subvariety Z = ®~1(I'z\Dz)°? C S is said atypical if
codimpy p ®(Z?") < codimpy p ®(5°") + codimp\p I'z\ D7z .

Otherwise it is typical.

> HL(S,V®) = HL(S, V¥)ayp [THL(S, VE)yp.

Conjecture (Zilber—Pink for ZVHS; K'17; Baldi-K-Ullmo)
(1) HL(S,V®)ay,p is algebraic.
(2) HL(S,V®)y, is either empty, or analytically dense in S®".

This implies:

Conjecture (André-Oort for ZVHS; K'17)

If S contains a Zariski-dense set of CM-points for V, then
(a) level(V) =1, i.e. T\D is a Shimura variety;

(b) ®:5°" — T'\D is a dominant algebraic map.
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Hodge loci as (a)typical intersections: results

Theorem (Baldi-K-Ulimo)

(1) Suppose level(V) > 3. Then HL(S,V®) = HL(S, V¥).yp.
(2) Suppose in addition that G is simple. Then HL(S,V®),0s is
algebraic.

Corollary (Baldi-K-Ullmo)

Let f:Hyq—UpaC ]P’HO(PgH, O(d)) be the family of smooth
hypersurfaces of degree d in IP’EH.
Ifn >3 and d > 5 then HL(Uny, 4, f)pos C Un,a is algebraic.

Theorem (Baldi-K-Ulimo)

IfHL(S, V®)yyp # 0 (hence level(V) =1 or 2) then HL(S,V®) is
analytically dense in S°".
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(b) The full conjecture holds true if and only if it holds true for special
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Arithmetic aspects

Conjecture

Let V — S be a ZVHS defined over a number field K C C. Then
(1) any special subvariety of S for V is defined over Q;

(2) any of its Gal(Q/L)-conjugates is special.

Theorem (K-Otwinowska-Urbanik '20)

(a) Suppose that G is simple. Then the conjecture above holds true
for the maximal special subarieties of positive period dimension. In
particular if level(V) > 3 then HL(S,V®),. is algebraic, defined
over Q.

(b) The full conjecture holds true if and only if it holds true for special
points.

Theorem (Kreutz)

Let (V7), be a (de Rham) motivic variation of Hodge structure on S.
Suppose that G4 is simple. Then any maximal special subvariety Y C S
of positive period dimension for V is absolutely special.



