Hodge theory, between algebraicity and transcendence

B. Klingler

Humboldt Universität zu Berlin

ICM 2022

Hodge theory in a nutshell: a linearization principle

► Algebraic variety = space of solutions of a system of algebraic equations, e.g.

$$X/k = \{\underline{z} = [z_0, \dots, z_n] \in \mathbb{P}_k^n \mid f_1(\underline{z}) = \dots = f_r(\underline{z}) = 0\},\$$

where the f_i 's are homogeneous polynomials with coefficients in a field k.

Hodge theory in a nutshell: a linearization principle

Algebraic variety = space of solutions of a system of algebraic equations, e.g.

$$X/k = \{\underline{z} = [z_0, \dots, z_n] \in \mathbb{P}_k^n \mid f_1(\underline{z}) = \dots = f_r(\underline{z}) = 0\},\$$

where the f_i 's are homogeneous polynomials with coefficients in a field k.

▶ Hodge theory is the art of "linearizing" such algebraic varieties when $k = \mathbb{C}$.

$$\underbrace{X/\mathbb{C}}_{\text{smooth projective variety}} \leadsto \underbrace{\left(H_B^{\bullet}(X^{\mathrm{an}},\mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}, F^{\bullet}\right)}_{\text{filtered complex vector space}}$$

Hodge theory in a nutshell: a linearization principle

Algebraic variety = space of solutions of a system of algebraic equations, e.g.

$$X/k = \{\underline{z} = [z_0, \dots, z_n] \in \mathbb{P}_k^n \mid f_1(\underline{z}) = \dots = f_r(\underline{z}) = 0\},\$$

where the f_i 's are homogeneous polynomials with coefficients in a field k.

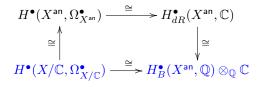
▶ Hodge theory is the art of "linearizing" such algebraic varieties when $k = \mathbb{C}$.

$$\underbrace{X/\mathbb{C}}_{\text{smooth projective variety}} \leadsto \underbrace{\left(H_B^\bullet(X^{\mathrm{an}},\mathbb{Z})\otimes_{\mathbb{Z}}\mathbb{C},F^\bullet\right)}_{\text{filtered complex vector space}}$$

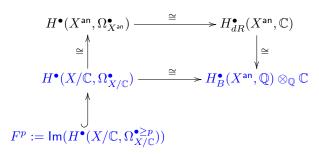
$$\underbrace{f:X\to S}_{\text{smooth projective}} \leadsto \underbrace{\Phi:S^{\text{an}}\to \Gamma\backslash D}_{\mathbb{C}-\text{analytic period map}}$$

► How do we construct the Hodge filtration?

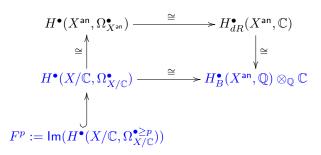
▶ How do we construct the Hodge filtration?



► How do we construct the Hodge filtration?

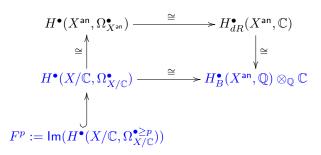


► How do we construct the Hodge filtration?



▶ Hodge classes: $F^p \cap H^{2p}_B(X^{\mathrm{an}}, \mathbb{Q}) \subset H^{2p}_B(X^{\mathrm{an}}, \mathbb{C}).$

How do we construct the Hodge filtration?



- ▶ Hodge classes: $F^p \cap H^{2p}_B(X^{\mathrm{an}}, \mathbb{Q}) \subset H^{2p}_B(X^{\mathrm{an}}, \mathbb{C}).$
- $\blacktriangleright \ Z^p(X)_{\mathbb Q} \stackrel{\text{cycle map}}{\to} F^p \cap H^{2p}_B(X^{\text{an}},{\mathbb Q})$

Hodge structure and Mumford-Tate group

Theorem (Hodge, Frölicher, Deligne)

 $V=(V_{\mathbb{Z}}:=H^i_B(X^{\mathrm{an}},\mathbb{Z}),F^{ullet})$ is a polarizable \mathbb{Z} -Hodge structure of weight i:

- (a) $V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = F^p \oplus \overline{F^{i+1-p}} (\iff V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=i} (F^p \cap \overline{F^q})).$
- (b) $Q:V_{\mathbb{Z}}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}\to\mathbb{Z}$, $(-1)^i$ -symmetric, $Q_{\mathbb{C}}(F^p,F^{i+1-p})=0$ and $Q_{\mathbb{C}}(Cv,\overline{v})>0$.

Hodge structure and Mumford-Tate group

Theorem (Hodge, Frölicher, Deligne)

 $V=(V_{\mathbb{Z}}:=H^i_B(X^{\mathrm{an}},\mathbb{Z}),F^{ullet})$ is a polarizable \mathbb{Z} -Hodge structure of weight i:

- (a) $V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = F^p \oplus \overline{F^{i+1-p}} (\iff V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=i} (F^p \cap \overline{F^q})).$
- (b) $Q:V_{\mathbb{Z}}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}\to\mathbb{Z}$, $(-1)^i$ -symmetric, $Q_{\mathbb{C}}(F^p,F^{i+1-p})=0$ and $Q_{\mathbb{C}}(Cv,\overline{v})>0$.

$$\underbrace{X/\mathbb{C}}_{\text{smooth projective}} \leadsto \underbrace{V = (H_B^\bullet(X^{\mathsf{an}}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}, F^\bullet)}_{\text{polarizable } \mathbb{Z} \mathsf{HS}}$$

Hodge structure and Mumford-Tate group

Theorem (Hodge, Frölicher, Deligne)

 $V=(V_{\mathbb{Z}}:=H^i_B(X^{\mathrm{an}},\mathbb{Z}),F^{ullet})$ is a polarizable \mathbb{Z} -Hodge structure of weight i:

- (a) $V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = F^p \oplus \overline{F^{i+1-p}} (\iff V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=i} (F^p \cap \overline{F^q})).$
- (b) $Q:V_{\mathbb{Z}}\otimes_{\mathbb{Z}}V_{\mathbb{Z}}\to\mathbb{Z}$, $(-1)^i$ -symmetric, $Q_{\mathbb{C}}(F^p,F^{i+1-p})=0$ and $Q_{\mathbb{C}}(Cv,\overline{v})>0$.

$$\underbrace{X/\mathbb{C}}_{\text{smooth projective}} \leadsto \underbrace{V = (H_B^{\bullet}(X^{\mathsf{an}}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}, F^{\bullet})}_{\text{polarizable } \mathbb{Z}\mathsf{HS}} \leadsto \underbrace{\mathbf{G}_V}_{\mathbb{Q}-\text{reductive group}}$$

 \mathbf{G}_V is the Tannaka group of $\langle V_{\mathbb{Q}}^{\otimes} \rangle \subset \mathbb{Q}$ HS; equivalently, the fixator in $\mathbf{GL}(V_{\mathbb{Q}})$ of all Hodge tensors in V^{\otimes} .

• $f: X \to S$ smooth projective \leadsto polarizable $\mathbb{Z}VHS$

$$\mathbb{V} = (\mathbb{V}_{\mathbb{Z}} = \{H^{\bullet}_B(X^{\mathrm{an}}_s, \mathbb{Z})\}, (\mathcal{V} = \{H^{\bullet}(X_s/\mathbb{C}, \Omega^{\bullet}_{X_s/\mathbb{C}})\}, F^{\bullet}), \nabla, Q)$$

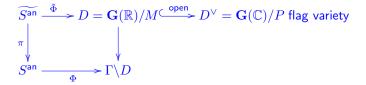
with $\nabla F^{\bullet} \subset F^{\bullet-1} \otimes \Omega^1_S$ (Griffiths transversality).

▶ $f: X \to S$ smooth projective \longrightarrow polarizable $\mathbb{Z}VHS$

$$\mathbb{V} = (\mathbb{V}_{\mathbb{Z}} = \{H_B^{\bullet}(X_s^{\mathrm{an}}, \mathbb{Z})\}, (\mathcal{V} = \{H^{\bullet}(X_s/\mathbb{C}, \Omega_{X_s/\mathbb{C}}^{\bullet})\}, F^{\bullet}), \nabla, Q)$$

with $\nabla F^{\bullet} \subset F^{\bullet - 1} \otimes \Omega^1_S$ (Griffiths transversality).

Period map:



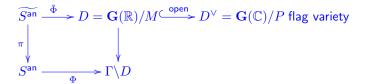
where G is the generic Mumford-Tate group, and $\Gamma = G(\mathbb{Z})$.

▶ $f: X \to S$ smooth projective \longrightarrow polarizable $\mathbb{Z}VHS$

$$\mathbb{V} = (\mathbb{V}_{\mathbb{Z}} = \{H_B^{\bullet}(X_s^{\mathrm{an}}, \mathbb{Z})\}, (\mathcal{V} = \{H^{\bullet}(X_s/\mathbb{C}, \Omega_{X_s/\mathbb{C}}^{\bullet})\}, F^{\bullet}), \nabla, Q)$$

with $\nabla F^{\bullet} \subset F^{\bullet - 1} \otimes \Omega^1_S$ (Griffiths transversality).

Period map:



where G is the generic Mumford-Tate group, and $\Gamma = G(\mathbb{Z})$.

▶ The period map Φ is \mathbb{C} -analytic, and severely constrained:

$$d\Phi(TS_s^{\mathsf{an}}) \subset \mathfrak{g}_{\Phi(s)}^{-1,1} \subset T_{\Phi(s)}(\Gamma \backslash D) = \mathfrak{g}_{\Phi(s)}^{-1,1} \oplus \cdots \oplus \mathfrak{g}_{\Phi(s)}^{-l,l}.$$

$$l = \mathsf{level}(\mathbb{V}).$$

Hodge loci

$$\begin{split} \mathsf{HL}(S,\mathbb{V}^\otimes) &= \{s \in S^{\mathsf{an}} \,|\, \mathbb{V}_s \text{ admits "exceptional" Hodge tensors}\} \\ &= \{s \in S^{\mathsf{an}} \,|\, \mathbf{G}_s \subsetneq \mathbf{G} \text{ generic Mumford-Tate group}\} \end{split}$$

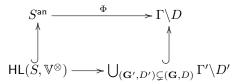
This is a meager set of S^{an} .

Hodge loci

$$\begin{split} \mathsf{HL}(S,\mathbb{V}^\otimes) &= \{s \in S^{\mathsf{an}} \,|\, \mathbb{V}_s \text{ admits "exceptional" Hodge tensors}\} \\ &= \{s \in S^{\mathsf{an}} \,|\, \mathbf{G}_s \subsetneq \mathbf{G} \text{ generic Mumford-Tate group}\} \end{split}$$

This is a meager set of S^{an} .

► Cartesian diagram:



· g: \(= > = = 6 elliptic curve) uniqual elliptic curve

Second Elliphic curve of
$$A_{1}(E^{can}, Z) = Z_{01} \oplus Z_{02}$$

$$A_{1}(E^{can}, Z) = Z_{01} \oplus Z_{02}$$

$$A_{2}(E^{can}, Z) = Z_{01} \oplus Z_{02}$$

$$A_{3}(E^{can}, Z) = Z_{01} \oplus Z_{02}$$

$$A_{4}(E^{can}, Z) = Z_{01} \oplus Z_{02}$$

$$A_{$$

. End $H^1(E_z,Z) = \int \frac{\text{order in Q(I)}}{ZHS} if I imaginary quadratic ZI otherwise$

• HL(S,g) = Gj(z), z imaginary quadratic $G \subset \mathcal{B} \subset \mathcal{C} = S^{an}$

▶ The proof that $V = (V_{\mathbb{Z}} := H^i_B(X^{\mathrm{an}}, \mathbb{Z}), F^{\bullet})$ is a polarizable $\mathbb{Z}HS$ of weight i is transcendental.

- ▶ The proof that $V = (V_{\mathbb{Z}} := H^i_B(X^{\mathrm{an}}, \mathbb{Z}), F^{\bullet})$ is a polarizable $\mathbb{Z}\mathsf{HS}$ of weight i is transcendental.
- ▶ If X/K, $K \subset \mathbb{C}$ number field,

$$H^{\bullet}_{dR}(X/K) \otimes_K \mathbb{C} \simeq H^{\bullet}_{B}(X^{\mathrm{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}.$$

 $\rightsquigarrow k_X := \langle \text{periods of } X/K \rangle \subset \mathbb{C}.$

- ▶ The proof that $V = (V_{\mathbb{Z}} := H^i_B(X^{\mathrm{an}}, \mathbb{Z}), F^{\bullet})$ is a polarizable $\mathbb{Z}\mathsf{HS}$ of weight i is transcendental.
- ▶ If X/K, $K \subset \mathbb{C}$ number field,

$$H^{\bullet}_{dR}(X/K) \otimes_K \mathbb{C} \simeq H^{\bullet}_B(X^{\mathrm{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}.$$

 $\leadsto k_X := \langle \mathsf{periods} \ \mathsf{of} \ X/K \rangle \subset \mathbb{C}.$

 $\operatorname{tr} \operatorname{deg}_{\mathbb{Q}} k_X > 0.$

- The proof that $V=(V_{\mathbb{Z}}:=H^i_B(X^{\mathrm{an}},\mathbb{Z}),F^{\bullet})$ is a polarizable $\mathbb{Z}\mathsf{HS}$ of weight i is transcendental.
- ▶ If X/K, $K \subset \mathbb{C}$ number field,

$$H^{\bullet}_{dR}(X/K) \otimes_K \mathbb{C} \simeq H^{\bullet}_B(X^{\mathrm{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}.$$

 $\rightsquigarrow k_X := \langle \text{periods of } X/K \rangle \subset \mathbb{C}.$

$$\operatorname{tr} \operatorname{deg}_{\mathbb{Q}} k_X > 0.$$

 $ightharpoonup \mathbb{V} \ \mathbb{Z}VHS \leadsto \Phi: S^{an} \to \Gamma \backslash D.$

If $\operatorname{level}(\mathbb{V})=1$ then $\Gamma \backslash D$ is a Shimura variety and Φ is algebraic; but as soon as $\operatorname{level}(\mathbb{V})>1$ then $\Gamma \backslash D$ has no algebraic structure and Φ is a mere complex analytic map.

Conjecture (Grothendieck '66)

 $\operatorname{tr\,deg}_{\mathbb{Q}} k_X = \dim \mathbf{G}_X.$

Conjecture (Grothendieck '66)

$$\operatorname{tr} \operatorname{deg}_{\mathbb{Q}} k_X = \dim \mathbf{G}_X.$$

Conjecture (Hodge '50)

$$Z^k(X)_{\mathbb{O}} \xrightarrow{\longrightarrow} F^k \cap H^{2k}(X, \mathbb{Q}).$$

Conjecture (Grothendieck '66)

$$\operatorname{tr} \operatorname{deg}_{\mathbb{Q}} k_X = \dim \mathbf{G}_X.$$

Conjecture (Hodge '50)

$$Z^k(X)_{\mathbb{Q}} \xrightarrow{\longrightarrow} F^k \cap H^{2k}(X, \mathbb{Q}).$$

(Weil 1979): If $f:X\to S$, the Hodge conjecture implies that $\mathrm{HL}(S,\mathbb{V}^\otimes)$ is a countable union of algebraic subvarieties of S.

Conjecture (Grothendieck '66)

$$\operatorname{tr}\,\operatorname{deg}_{\mathbb{Q}}k_X=\dim\mathbf{G}_X.$$

Conjecture (Hodge '50)

$$Z^k(X)_{\mathbb{Q}} \xrightarrow{\longrightarrow} F^k \cap H^{2k}(X, \mathbb{Q}).$$

Theorem (Cattani-Deligne-Kaplan '95)

Let $\mathbb V$ be a polarizable $\mathbb ZVHS$ on a smooth quasi-projective variety S. Then $\mathsf{HL}(S,\mathbb V^\otimes)$ is a countable union of irreducible algebraic subvarieties of S: the special subvarieties of S for $\mathbb V$.

• "If level(\mathbb{V}) > 1 then $\Gamma \backslash D$ has no algebraic structure and $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ is a mere complex analytic map."

• "If level(\mathbb{V}) > 1 then $\Gamma \backslash D$ has no algebraic structure and $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ is a mere complex analytic map."

Or maybe not ? Maybe Φ "looks like" an algebraic map? Maybe Φ is "tame"?

• "If level($\mathbb V$) >1 then $\Gamma \backslash D$ has no algebraic structure and $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ is a mere complex analytic map."

Or maybe not ? Maybe Φ "looks like" an algebraic map? Maybe Φ is "tame"?

▶ To be discarded: $\Gamma = \text{graph of } (x \mapsto \sin \frac{1}{x}), x > 0.$

$$\overline{\Gamma} = \mathsf{I} \cup \Gamma$$

 Γ is not tame for at least three reasons:

- (a) $\overline{\Gamma}$ is connected but not arc-connected;
- (b) $\dim \partial \Gamma = \dim \Gamma$;
- (c) $\Gamma \cap \mathbb{R}$ is "not of finite type".

- ▶ A structure is a collection $S = (S_n)_{n \in \mathbb{N}}$, where S_n is a set of subsets of \mathbb{R}^n such that:
 - (1) algebraic subsets of \mathbb{R}^n belong to S_n .
 - (2) S_n is stable under intersection, finite union and complement.
 - (3) $A \in S_p, B \in S_q \Rightarrow A \times B \in S_{p+q}$.
 - (4) If $p: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is a linear projection and $A \in S_{n+1}$ then $p(A) \in S_n$.

The elements of S_n are called the S-definable subsets of \mathbb{R}^n . $f:A\to B$ is S-definable if A, B and $\Gamma(f)$ are S-definable.

- ▶ A structure is a collection $S = (S_n)_{n \in \mathbb{N}}$, where S_n is a set of subsets of \mathbb{R}^n such that:
 - (1) algebraic subsets of \mathbb{R}^n belong to S_n .
 - (2) S_n is stable under intersection, finite union and complement.
 - (3) $A \in S_p, B \in S_q \Rightarrow A \times B \in S_{p+q}$.
 - (4) If $p: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is a linear projection and $A \in S_{n+1}$ then $p(A) \in S_n$.

The elements of S_n are called the S-definable subsets of \mathbb{R}^n . $f:A\to B$ is S-definable if A, B and $\Gamma(f)$ are S-definable.

- Examples:
 - ightharpoons eal_{alg}
 - ▶ $\mathbb{R}_{\mathcal{F}}$ for \mathcal{F} a collection of functions $f: \mathbb{R}^n \to \mathbb{R}$ and of subsets of \mathbb{R}^n (e.g. \mathbb{R}_{\exp} , $\mathbb{R}_{\operatorname{an}}$, \mathbb{R}_{\sin}).

- \triangleright A structure S is o-minimal if in addition
 - (5) the definable subsets of $\mathbb R$ are the semi-algebraic sets.

- \triangleright A structure S is o-minimal if in addition
 - (5) the definable subsets of \mathbb{R} are the semi-algebraic sets.
- ➤ Sets definable in an o-minimal structure enjoy the same tameness properties as semi-algebraic sets!

- \triangleright A structure S is o-minimal if in addition
 - (5) the definable subsets of \mathbb{R} are the semi-algebraic sets.
- Sets definable in an o-minimal structure enjoy the same tameness properties as semi-algebraic sets!
- Examples:
 - ightharpoons $\mathbb{R}_{\mathsf{alg}}$
 - ► R_{an} (Łosajiewicz, Gabrielov)
 - $ightharpoonup \mathbb{R}_{\mathrm{exp}}$ (Khovanskii, Wilkie),
 - $ightharpoonup \mathbb{R}_{\mathsf{an},\mathrm{exp}}$ (Miller-Van den Dries)

Tame geometry

- \triangleright A structure S is o-minimal if in addition
 - (5) the definable subsets of \mathbb{R} are the semi-algebraic sets.
- Sets definable in an o-minimal structure enjoy the same tameness properties as semi-algebraic sets!
- Examples:
 - ightharpoons $\mathbb{R}_{\mathsf{alg}}$
 - ► R_{an} (Łosajiewicz, Gabrielov)
 - $ightharpoonup \mathbb{R}_{\mathrm{exp}}$ (Khovanskii, Wilkie),
 - $ightharpoonup \mathbb{R}_{\mathsf{an},\mathrm{exp}}$ (Miller-Van den Dries)
- \triangleright Globalization: S-definable topological spaces

Tame geometry and algebraization

Tame geometry and algebraization

Theorem (Pila-Wilkie '06)

Let $Z \subset \mathbb{R}^n$ be definable in some o-minimal structure. Let $Z^{\operatorname{alg}} \subset Z$ be the union of all positive-dimensional connected semi-algebraic subsets of Z. Then:

$$\forall \, \varepsilon > 0, \, \exists \, C_\varepsilon > 0 \, / \, \left| \left\{ x \in (Z - Z^{\mathsf{alg}}) \cap \mathbb{Q}^n, \, H(x) \leq T \right\} \right| < C_\varepsilon T^\varepsilon \, .$$

Tame geometry and algebraization

Theorem (Pila-Wilkie '06)

Let $Z \subset \mathbb{R}^n$ be definable in some o-minimal structure. Let $Z^{\operatorname{alg}} \subset Z$ be the union of all positive-dimensional connected semi-algebraic subsets of Z. Then:

$$\forall \, \varepsilon > 0, \, \exists \, C_\varepsilon > 0 \, / \, \left| \left\{ x \in (Z - Z^{\mathsf{alg}}) \cap \mathbb{Q}^n, \, H(x) \leq T \right\} \right| < C_\varepsilon T^\varepsilon \; .$$

Theorem (Peterzil-Starchenko '09, o-minimal Chow)

Let S be a quasi-projective variety over \mathbb{C} , e.g. $S=\mathbb{C}^n$.

Let $Z \subset S^{\operatorname{an}}$ be a closed analytic subset.

If Z is definable in some o-minimal structure extending \mathbb{R}_{an} then $Z\subset S$ is algebraic.

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of \mathbb{R}_{alg} -definable manifold. Each $\Gamma' \backslash D' \subset \Gamma \backslash D$ coming from $(\mathbf{G}', D') \subset (\mathbf{G}, D)$ is a definable subspace.

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of $\mathbb{R}_{\mathsf{alg}}$ -definable manifold. Each $\Gamma' \backslash D' \subset \Gamma \backslash D$ coming from $(\mathbf{G}', D') \subset (\mathbf{G}, D)$ is a definable subspace.

Theorem (Bakker-K.-Tsimerman '20)

Any period map $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ is $\mathbb{R}_{\mathsf{an}, \exp}$ -definable.

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of \mathbb{R}_{alg} -definable manifold. Each $\Gamma' \backslash D' \subset \Gamma \backslash D$ coming from $(\mathbf{G}', D') \subset (\mathbf{G}, D)$ is a definable subspace.

Theorem (Bakker-K.-Tsimerman '20)

Any period map $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ is $\mathbb{R}_{\mathsf{an}, \exp}$ -definable.

Corollary (Cattani-Deligne-Kaplan '95)

Let $\mathbb V$ be a polarizable $\mathbb Z VHS$ on a smooth quasi-projective variety S. Then $\mathsf{HL}(S,\mathbb V^\otimes)$ is a countable union of irreducible algebraic subvarieties of S: the special subvarieties of S for $\mathbb V$.

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of \mathbb{R}_{alg} -definable manifold. Each $\Gamma' \backslash D' \subset \Gamma \backslash D$ coming from $(\mathbf{G}', D') \subset (\mathbf{G}, D)$ is a definable subspace.

Theorem (Bakker-K.-Tsimerman '20)

Any period map $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ is $\mathbb{R}_{\mathsf{an}, \exp}$ -definable.

Corollary (Cattani-Deligne-Kaplan '95)

Let $\mathbb V$ be a polarizable $\mathbb Z VHS$ on a smooth quasi-projective variety S. Then $\mathsf{HL}(S,\mathbb V^\otimes)$ is a countable union of irreducible algebraic subvarieties of S: the special subvarieties of S for $\mathbb V$.

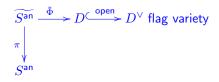
Theorem (Brunebarbe-Bakker-Tsimerman)

Images of period maps have a natural algebraic structure.

▶ Bi-algebraic format: the diagram

emulates an algebraic structure on $\widetilde{S^{\mathrm{an}}}$:

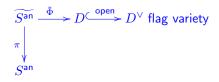
▶ Bi-algebraic format: the diagram



emulates an algebraic structure on $\widehat{S}^{\rm an}$:

 $\begin{array}{l} \blacktriangleright \ Y \subset \widetilde{S^{\rm an}} \ \ {\rm is \ algebraic \ for} \ \Phi \ \ {\rm if} \ Y = \tilde{\Phi}^{-1}({\rm algebraic \ in} \ D^\vee)^0. \\ W \subset S \ \ {\rm is \ bi-algebraic \ for} \ \Phi \ \ {\rm if} \ W \ \ {\rm is \ algebraic \ and} \ W = \pi(Y), \ {\rm with} \ Y \subset \widetilde{S^{\rm an}} \ \ {\rm algebraic}. \\ \end{array}$

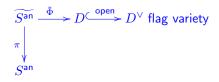
▶ Bi-algebraic format: the diagram



emulates an algebraic structure on $\widetilde{S^{\mathrm{an}}}$:

- $\begin{array}{l} \blacktriangleright \ Y \subset \widetilde{S^{\rm an}} \ \ {\rm is \ algebraic \ for} \ \Phi \ \ {\rm if} \ Y = \tilde{\Phi}^{-1}({\rm algebraic \ in} \ D^\vee)^0. \\ W \subset S \ \ {\rm is \ bi-algebraic \ for} \ \Phi \ \ {\rm if} \ W \ \ {\rm is \ algebraic \ and} \ W = \pi(Y), \ {\rm with} \ Y \subset \widetilde{S^{\rm an}} \ \ {\rm algebraic}. \\ \end{array}$
- We want to study the transcendence of π with respect to the algebraic structure on S and the emulated one on $\widetilde{S}^{\rm an}$.

Bi-algebraic format: the diagram



emulates an algebraic structure on $\widetilde{S^{\mathrm{an}}}$:

- $\begin{array}{l} \blacktriangleright \ Y \subset \widetilde{S^{\rm an}} \ \ {\rm is \ algebraic \ for} \ \Phi \ \ {\rm if} \ Y = \tilde{\Phi}^{-1}({\rm algebraic \ in} \ D^{\vee})^0. \\ W \subset S \ \ {\rm is \ bi-algebraic \ for} \ \Phi \ \ {\rm if} \ W \ \ {\rm is \ algebraic \ and} \ W = \pi(Y), \ {\rm with} \ Y \subset \widetilde{S^{\rm an}} \ \ {\rm algebraic}. \end{array}$
- We want to study the transcendence of π with respect to the algebraic structure on S and the emulated one on $\widetilde{S}^{\rm an}$.
- ▶ Generalizes the case of tori, abelian varieties, Shimura varieties.

Hodge theory and functional transcendence

Hodge theory and functional transcendence

Proposition (K.-Otwinowska '21)

Let $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ be a period map. The bi-algebraic subvarieties of S for Φ are the weakly special ones.

Hodge theory and functional transcendence

Proposition (K.-Otwinowska '21)

Let $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ be a period map. The bi-algebraic subvarieties of S for Φ are the weakly special ones.

Theorem (Ax-Schanuel conjecture for $\mathbb{Z}VHS$, conjectured by K. '17; Bakker-Tsimerman '19)

Let $Z \subset S \times D^{\vee}$ be a closed algebraic subvariety.

(a) If the intersection of Z^{an} with $\Delta:=S^{\mathrm{an}}\times_{\Gamma\setminus D}D$ is atypical, i.e.

$$\operatorname{codim}_{S^{\operatorname{an}} \times D} Z^{\operatorname{an}} \cap \Delta < \operatorname{codim}_{S^{\operatorname{an}} \times D} Z^{\operatorname{an}} + \operatorname{codim}_{S^{\operatorname{an}} \times D} \Delta ,$$

then $p(Z^{\mathrm{an}}\cap \Delta)$ is contained in a strictly weakly special subvariety of S.

(b) In particular: if $Z\subset\widetilde{S^{\mathrm{an}}}$ is algebraic then $\overline{p(Z)}^{\mathrm{Zar}}$ is weakly special (Ax-Lindemann conjecture for $\mathbb{Z}VHS$).

Distribution of the Hodge loci

▶ What can we say about the distribution of the special subvarieties, for instance about $\overline{\mathsf{HL}(S,\mathbb{V}^\otimes)}^{\mathsf{Zar}}$?

Distribution of the Hodge loci

- What can we say about the distribution of the special subvarieties, for instance about $\overline{\mathsf{HL}(S,\mathbb{V}^\otimes)}^{\mathsf{Zar}}$?
- $ightharpoonup \operatorname{HL}(S,\mathbb{V}^\otimes)_{\operatorname{pos}}:=\operatorname{union}$ of special subvarieties of positive period dimension.

Distribution of the Hodge loci

- ▶ What can we say about the distribution of the special subvarieties, for instance about $\overline{\mathsf{HL}(S,\mathbb{V}^{\otimes})}^{\mathsf{Zar}}$?
- $ightharpoonup \operatorname{HL}(S,\mathbb{V}^\otimes)_{\operatorname{pos}}:=\operatorname{union}$ of special subvarieties of positive period dimension.

Theorem (K-Otwinowska '21)

Assume for simplicity that G^{ad} is simple. Either $HL(S, \mathbb{V}^{\otimes})_{pos}$ is Zariski-dense in S, or it is algebraic.

·

A special subvariety $Z = \Phi^{-1}(\Gamma_Z \backslash D_Z)^0 \subset S$ is said atypical if $\operatorname{codim}_{\Gamma \backslash D} \Phi(Z^{\operatorname{an}}) < \operatorname{codim}_{\Gamma \backslash D} \Phi(S^{\operatorname{an}}) + \operatorname{codim}_{\Gamma \backslash D} \Gamma_Z \backslash D_Z$. Otherwise it is typical.

- A special subvariety $Z = \Phi^{-1}(\Gamma_Z \backslash D_Z)^0 \subset S$ is said atypical if $\operatorname{codim}_{\Gamma \backslash D} \Phi(Z^{\mathsf{an}}) < \operatorname{codim}_{\Gamma \backslash D} \Phi(S^{\mathsf{an}}) + \operatorname{codim}_{\Gamma \backslash D} \Gamma_Z \backslash D_Z$. Otherwise it is typical.
- $\blacktriangleright \ \operatorname{HL}(S,\mathbb{V}^{\otimes}) = \operatorname{HL}(S,\mathbb{V}^{\otimes})_{\operatorname{atyp}} \coprod \operatorname{HL}(S,\mathbb{V}^{\otimes})_{\operatorname{typ}}.$

- A special subvariety $Z=\Phi^{-1}(\Gamma_Z\backslash D_Z)^0\subset S$ is said atypical if $\operatorname{codim}_{\Gamma\backslash D}\Phi(Z^{\operatorname{an}})<\operatorname{codim}_{\Gamma\backslash D}\Phi(S^{\operatorname{an}})+\operatorname{codim}_{\Gamma\backslash D}\Gamma_Z\backslash D_Z$. Otherwise it is typical.
- $\blacktriangleright \ \operatorname{HL}(S,\mathbb{V}^{\otimes}) = \operatorname{HL}(S,\mathbb{V}^{\otimes})_{\operatorname{atyp}} \coprod \operatorname{HL}(S,\mathbb{V}^{\otimes})_{\operatorname{typ}}.$

Conjecture (Zilber-Pink for ZVHS; K'17; Baldi-K-Ullmo)

- (1) $\mathsf{HL}(S,\mathbb{V}^{\otimes})_{\mathsf{atyp}}$ is algebraic.
- (2) $\operatorname{HL}(S,\mathbb{V}^\otimes)_{\operatorname{typ}}$ is either empty, or analytically dense in S^{an} .

- A special subvariety $Z = \Phi^{-1}(\Gamma_Z \backslash D_Z)^0 \subset S$ is said atypical if $\operatorname{codim}_{\Gamma \backslash D} \Phi(Z^{\mathsf{an}}) < \operatorname{codim}_{\Gamma \backslash D} \Phi(S^{\mathsf{an}}) + \operatorname{codim}_{\Gamma \backslash D} \Gamma_Z \backslash D_Z$. Otherwise it is typical.
- $\blacktriangleright \ \operatorname{HL}(S,\mathbb{V}^{\otimes}) = \operatorname{HL}(S,\mathbb{V}^{\otimes})_{\operatorname{atyp}} \coprod \operatorname{HL}(S,\mathbb{V}^{\otimes})_{\operatorname{typ}}.$

Conjecture (Zilber-Pink for ZVHS; K'17; Baldi-K-Ullmo)

- (1) $\mathsf{HL}(S,\mathbb{V}^\otimes)_{\mathsf{atyp}}$ is algebraic.
- (2) $\mathsf{HL}(S,\mathbb{V}^\otimes)_{\mathsf{typ}}$ is either empty, or analytically dense in S^{an} .

This implies:

Conjecture (André-Oort for ZVHS; K'17)

If S contains a Zariski-dense set of CM-points for \mathbb{V} , then

- (a) level(\mathbb{V}) = 1, i.e. $\Gamma \backslash D$ is a Shimura variety;
- (b) $\Phi: S^{\mathsf{an}} \to \Gamma \backslash D$ is a dominant algebraic map.

Theorem (Baldi-K-Ullmo)

- (1) Suppose $level(\mathbb{V}) \geq 3$. Then $HL(S, \mathbb{V}^{\otimes}) = HL(S, \mathbb{V}^{\otimes})_{atyp}$.
- (2) Suppose in addition that \mathbf{G}^{ad} is simple. Then $\mathrm{HL}(S,\mathbb{V}^\otimes)_{\mathrm{pos}}$ is algebraic.

Theorem (Baldi-K-Ullmo)

- $(1) \ \ \textit{Suppose} \ \ \mathsf{level}(\mathbb{V}) \geq 3. \ \ \textit{Then} \ \ \mathsf{HL}(S,\mathbb{V}^{\otimes}) = \mathsf{HL}(S,\mathbb{V}^{\otimes})_{\mathsf{atyp}}.$
- (2) Suppose in addition that \mathbf{G}^{ad} is simple. Then $\mathsf{HL}(S,\mathbb{V}^\otimes)_{\mathsf{pos}}$ is algebraic.

Corollary (Baldi-K-Ullmo)

Let $f: H_{n,d} \to U_{n,d} \subset \mathbb{P}H^0(\mathbb{P}^{n+1}_{\mathbb{C}}, \mathcal{O}(d))$ be the family of smooth hypersurfaces of degree d in $\mathbb{P}^{n+1}_{\mathbb{C}}$. If $n \geq 3$ and d > 5 then $\mathsf{HL}(U_{n,d}, f)_{\mathsf{pos}} \subset U_{n,d}$ is algebraic.

Theorem (Baldi-K-Ullmo)

- $(1) \ \ \textit{Suppose} \ \ \mathsf{level}(\mathbb{V}) \geq 3. \ \ \textit{Then} \ \ \mathsf{HL}(S,\mathbb{V}^{\otimes}) = \mathsf{HL}(S,\mathbb{V}^{\otimes})_{\mathsf{atyp}}.$
- (2) Suppose in addition that \mathbf{G}^{ad} is simple. Then $\mathsf{HL}(S,\mathbb{V}^\otimes)_{\mathsf{pos}}$ is algebraic.

Corollary (Baldi-K-Ullmo)

Let $f: H_{n,d} \to U_{n,d} \subset \mathbb{P}H^0(\mathbb{P}^{n+1}_{\mathbb{C}}, \mathcal{O}(d))$ be the family of smooth hypersurfaces of degree d in $\mathbb{P}^{n+1}_{\mathbb{C}}$. If $n \geq 3$ and d > 5 then $\mathsf{HL}(U_{n,d}, f)_{\mathsf{pos}} \subset U_{n,d}$ is algebraic.

Theorem (Baldi-K-Ullmo)

If $\mathsf{HL}(S,\mathbb{V}^\otimes)_{\mathsf{typ}} \neq \emptyset$ (hence $\mathsf{level}(\mathbb{V}) = 1$ or 2) then $\mathsf{HL}(S,\mathbb{V}^\otimes)$ is analytically dense in S^{an} .

Conjecture

Let $\mathbb{V} \to S$ be a $\mathbb{Z} VHS$ defined over a number field $K \subset \mathbb{C}$. Then

- (1) any special subvariety of S for \mathbb{V} is defined over $\overline{\mathbb{Q}}$;
- (2) any of its $\operatorname{Gal}(\overline{\mathbb{Q}}/L)$ -conjugates is special.

Conjecture

Let $\mathbb{V} \to S$ be a $\mathbb{Z} VHS$ defined over a number field $K \subset \mathbb{C}$. Then

- (1) any special subvariety of S for \mathbb{V} is defined over $\overline{\mathbb{Q}}$;
- (2) any of its $\operatorname{Gal}(\overline{\mathbb{Q}}/L)$ -conjugates is special.

Theorem (K-Otwinowska-Urbanik '20)

- (a) Suppose that \mathbf{G}^{ad} is simple. Then the conjecture above holds true for the maximal special subarieties of positive period dimension. In particular if $\mathrm{level}(\mathbb{V}) \geq 3$ then $\mathrm{HL}(S,\mathbb{V}^\otimes)_{\mathrm{pos}}$ is algebraic, defined over $\overline{\mathbb{Q}}$.
- (b) The full conjecture holds true if and only if it holds true for special points.

Conjecture

Let $\mathbb{V} \to S$ be a $\mathbb{Z}VHS$ defined over a number field $K \subset \mathbb{C}$. Then

- (1) any special subvariety of S for \mathbb{V} is defined over $\overline{\mathbb{Q}}$;
- (2) any of its $\operatorname{Gal}(\overline{\mathbb{Q}}/L)$ -conjugates is special.

Theorem (K-Otwinowska-Urbanik '20)

- (a) Suppose that \mathbf{G}^{ad} is simple. Then the conjecture above holds true for the maximal special subarieties of positive period dimension. In particular if $\mathrm{level}(\mathbb{V}) \geq 3$ then $\mathrm{HL}(S,\mathbb{V}^\otimes)_{\mathrm{pos}}$ is algebraic, defined over $\overline{\mathbb{Q}}$.
- (b) The full conjecture holds true if and only if it holds true for special points.

Theorem (Kreutz)

Let $(\mathbb{V}^{\sigma})_{\sigma}$ be a (de Rham) motivic variation of Hodge structure on S. Suppose that \mathbf{G}^{ad} is simple. Then any maximal special subvariety $Y \subset S$ of positive period dimension for \mathbb{V} is absolutely special.

