Hodge theory, between algebraicity and transcendence

B. Klingler

Humboldt Universität zu Berlin

ICM 2022

KO K K Ø K K E K K E K V K K K K K K K K K

Hodge theory in a nutshell: a linearization principle

 \blacktriangleright Algebraic variety = space of solutions of a system of algebraic equations, e.g.

$$
X/k = \{ \underline{z} = [z_0, \dots, z_n] \in \mathbb{P}_k^n \mid f_1(\underline{z}) = \dots = f_r(\underline{z}) = 0 \},
$$

where the f_i 's are homogeneous polynomials with coefficients in a field k .

KO K K Ø K K E K K E K V K K K K K K K K K

Hodge theory in a nutshell: a linearization principle

 \blacktriangleright Algebraic variety = space of solutions of a system of algebraic equations, e.g.

$$
X/k = \{ \underline{z} = [z_0, \dots, z_n] \in \mathbb{P}_k^n \mid f_1(\underline{z}) = \dots = f_r(\underline{z}) = 0 \},
$$

where the f_i 's are homogeneous polynomials with coefficients in a field k .

 \blacktriangleright Hodge theory is the art of "linearizing" such algebraic varieties when $k = \mathbb{C}$.

Hodge theory in a nutshell: a linearization principle

 \blacktriangleright Algebraic variety = space of solutions of a system of algebraic equations, e.g.

$$
X/k = \{ \underline{z} = [z_0, \dots, z_n] \in \mathbb{P}_k^n \mid f_1(\underline{z}) = \dots = f_r(\underline{z}) = 0 \},
$$

where the f_i 's are homogeneous polynomials with coefficients in a field k .

 \blacktriangleright Hodge theory is the art of "linearizing" such algebraic varieties when $k = \mathbb{C}$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \blacktriangleright How do we construct the Hodge filtration?

 \blacktriangleright How do we construct the Hodge filtration?

$$
H^{\bullet}(X^{\text{an}}, \Omega^{\bullet}_{X^{\text{an}}}) \xrightarrow{\cong} H^{\bullet}_{dR}(X^{\text{an}}, \mathbb{C})
$$

$$
\cong \qquad \qquad \downarrow \cong
$$

$$
H^{\bullet}(X/\mathbb{C}, \Omega^{\bullet}_{X/\mathbb{C}}) \xrightarrow{\cong} H^{\bullet}_{B}(X^{\text{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright How do we construct the Hodge filtration?

$$
H^{\bullet}(X^{\text{an}}, \Omega^{\bullet}_{X^{\text{an}}}) \xrightarrow{\cong} H^{\bullet}_{dR}(X^{\text{an}}, \mathbb{C})
$$

$$
\cong \qquad \qquad \downarrow \cong
$$

$$
H^{\bullet}(X/\mathbb{C}, \Omega^{\bullet}_{X/\mathbb{C}}) \xrightarrow{\cong} H^{\bullet}_{B}(X^{\text{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

$$
F^{p} := \text{Im}(H^{\bullet}(X/\mathbb{C}, \Omega^{\bullet \geq p}_{X/\mathbb{C}}))
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright How do we construct the Hodge filtration?

$$
H^{\bullet}(X^{\text{an}}, \Omega^{\bullet}_{X^{\text{an}}}) \xrightarrow{\cong} H^{\bullet}_{dR}(X^{\text{an}}, \mathbb{C})
$$

\n
$$
\cong \qquad \qquad \downarrow \cong
$$

\n
$$
H^{\bullet}(X/\mathbb{C}, \Omega^{\bullet}_{X/\mathbb{C}}) \xrightarrow{\cong} H^{\bullet}_{B}(X^{\text{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

\n
$$
\downarrow
$$

\n
$$
F^p := \text{Im}(H^{\bullet}(X/\mathbb{C}, \Omega^{\bullet \geq p}_{X/\mathbb{C}}))
$$

KO K K Ø K K E K K E K V K K K K K K K K K

► Hodge classes: $F^p \cap H^{2p}_B(X^{\text{an}}, \mathbb{Q}) \subset H^{2p}_B(X^{\text{an}}, \mathbb{C}).$

 \blacktriangleright How do we construct the Hodge filtration?

$$
H^{\bullet}(X^{\text{an}}, \Omega^{\bullet}_{X^{\text{an}}}) \xrightarrow{\cong} H^{\bullet}_{dR}(X^{\text{an}}, \mathbb{C})
$$

\n
$$
\cong \qquad \qquad \downarrow \cong
$$

\n
$$
H^{\bullet}(X/\mathbb{C}, \Omega^{\bullet}_{X/\mathbb{C}}) \xrightarrow{\cong} H^{\bullet}_{B}(X^{\text{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}
$$

\n
$$
\downarrow
$$

\n
$$
F^p := \text{Im}(H^{\bullet}(X/\mathbb{C}, \Omega^{\bullet \geq p}_{X/\mathbb{C}}))
$$

KORKARYKERKER POLO

► Hodge classes: $F^p \cap H^{2p}_B(X^{\text{an}}, \mathbb{Q}) \subset H^{2p}_B(X^{\text{an}}, \mathbb{C}).$ \blacktriangleright $Z^p(X)_{\mathbb Q} \stackrel{\text{cycle map}}{\rightarrow} F^p \cap H^{2p}_B(X^{\text{an}}, {\mathbb Q})$

Hodge structure and Mumford-Tate group

Theorem (Hodge, Frölicher, Deligne)

 $V=(V_{\mathbb Z}:=H^i_B(X^{\mathrm{an}},\mathbb Z),F^\bullet)$ is a polarizable $\mathbb Z$ -Hodge structure of weight i:

(a)
$$
V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = F^p \oplus \overline{F^{i+1-p}} \iff V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=i} (F^p \cap \overline{F^q}).
$$

(b) $Q: V_{\mathbb{Z}}\otimes_{\mathbb{Z}} V_{\mathbb{Z}}\to \mathbb{Z}$, $(-1)^i$ -symmetric, $Q_{\mathbb{C}}(F^p,F^{i+1-p})=0$ and $Q_{\mathbb{C}}(Cv,\overline{v})>0.$

KORKARYKERKER POLO

Hodge structure and Mumford-Tate group

Theorem (Hodge, Frölicher, Deligne)

 $V=(V_{\mathbb Z}:=H^i_B(X^{\mathrm{an}},\mathbb Z),F^\bullet)$ is a polarizable $\mathbb Z$ -Hodge structure of weight i:

(a)
$$
V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = F^p \oplus \overline{F^{i+1-p}} \iff V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=i} (F^p \cap \overline{F^q}).
$$

(b) $Q: V_{\mathbb{Z}}\otimes_{\mathbb{Z}} V_{\mathbb{Z}}\to \mathbb{Z}$, $(-1)^i$ -symmetric, $Q_{\mathbb{C}}(F^p,F^{i+1-p})=0$ and $Q_{\mathbb{C}}(Cv,\overline{v})>0.$

KORKARYKERKER POLO

$$
\blacktriangleright \underbrace{X/\mathbb{C}}_{\text{smooth projective}} \leadsto \underbrace{V = (H^{\bullet}_B(X^{\text{an}}, \mathbb{Z}) \otimes_{\mathbb{Z}} \mathbb{C}, F^{\bullet})}_{\text{polarizable } \mathbb{Z} \text{HS}}
$$

Hodge structure and Mumford-Tate group

Theorem (Hodge, Frölicher, Deligne)

 $V=(V_{\mathbb Z}:=H^i_B(X^{\mathrm{an}},\mathbb Z),F^\bullet)$ is a polarizable $\mathbb Z$ -Hodge structure of weight i:

(a)
$$
V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = F^p \oplus \overline{F^{i+1-p}} \iff V_{\mathbb{Z}} \otimes_{\mathbb{Z}} \mathbb{C} = \bigoplus_{p+q=i} (F^p \cap \overline{F^q}).
$$

(b) $Q: V_{\mathbb{Z}}\otimes_{\mathbb{Z}} V_{\mathbb{Z}}\to \mathbb{Z}$, $(-1)^i$ -symmetric, $Q_{\mathbb{C}}(F^p,F^{i+1-p})=0$ and $Q_{\mathbb{C}}(Cv,\overline{v})>0.$

 \mathbf{G}_V is the Tannaka group of $\langle V_{\mathbb{O}}^\otimes \rangle \subset \mathbb{Q}$ HS; equivalently, the fixator in $\mathsf{GL}(V_\mathbb{Q})$ of all Hodge tensors in $V^\otimes.$

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

KOKK@KKEKKEK E 1990

 \blacktriangleright $f : X \rightarrow S$ smooth projective \leadsto polarizable ZVHS

 $\mathbb{V} = (\mathbb{V}_{\mathbb{Z}} = \{H^{\bullet}_{B}(X^{\text{an}}_{s}, \mathbb{Z})\}, (\mathcal{V} = \{H^{\bullet}(X_{s}/\mathbb{C}, \Omega^{\bullet}_{X_{s}/\mathbb{C}})\}, F^{\bullet}), \nabla, Q)$

KO K K Ø K K E K K E K V K K K K K K K K K

with $\nabla F^{\bullet} \subset F^{\bullet-1} \otimes \Omega^1_S$ (Griffiths transversality).

 \triangleright $f : X \to S$ smooth projective \rightsquigarrow polarizable ZVHS

 $\mathbb{V} = (\mathbb{V}_{\mathbb{Z}} = \{H^{\bullet}_{B}(X^{\text{an}}_{s}, \mathbb{Z})\}, (\mathcal{V} = \{H^{\bullet}(X_{s}/\mathbb{C}, \Omega^{\bullet}_{X_{s}/\mathbb{C}})\}, F^{\bullet}), \nabla, Q)$

with $\nabla F^{\bullet} \subset F^{\bullet-1} \otimes \Omega^1_S$ (Griffiths transversality).

Period map:

KORKARYKERKER POLO

where G is the generic Mumford-Tate group, and $\Gamma = \mathbf{G}(\mathbb{Z})$.

 \triangleright $f : X \to S$ smooth projective \rightsquigarrow polarizable ZVHS

 $\mathbb{V} = (\mathbb{V}_{\mathbb{Z}} = \{H^{\bullet}_{B}(X^{\text{an}}_{s}, \mathbb{Z})\}, (\mathcal{V} = \{H^{\bullet}(X_{s}/\mathbb{C}, \Omega^{\bullet}_{X_{s}/\mathbb{C}})\}, F^{\bullet}), \nabla, Q)$

with $\nabla F^{\bullet} \subset F^{\bullet-1} \otimes \Omega^1_S$ (Griffiths transversality).

Period map:

KORKAR KERKER SAGA

where G is the generic Mumford-Tate group, and $\Gamma = \mathbf{G}(\mathbb{Z})$. \blacktriangleright The period map Φ is C-analytic, and severely constrained: $d\Phi(TS^{ \texttt{an}}_s)\subset \mathfrak{g}_{\Phi(s)}^{-1,1}\subset T_{\Phi(s)}(\Gamma\backslash D)=\mathfrak{g}_{\Phi(s)}^{-1,1}\oplus\cdots\oplus\mathfrak{g}_{\Phi(s)}^{-l,l}$ $\frac{-\iota,\iota}{\Phi(s)}$. $l = level(\mathbb{V}).$

Hodge loci

 \blacktriangleright

 $\mathsf{HL}(S, \mathbb V^\otimes)=\{s\in S^\textnormal{an}\,|\,\mathbb V_s\,\textnormal{admits}$ "exceptional" Hodge tensors $\}$ $=\{s\in S^{\mathsf{an}}\,|\, \mathbf{G}_{s}\subsetneq \mathbf{G}$ generic Mumford-Tate group $\}$

KO K K Ø K K E K K E K V K K K K K K K K K

This is a meager set of S^{an} .

Hodge loci

 \blacktriangleright

 $\mathsf{HL}(S, \mathbb V^\otimes)=\{s\in S^\textnormal{an}\,|\,\mathbb V_s\,\textnormal{admits}$ "exceptional" Hodge tensors $\}$ $=\{s\in S^{\mathsf{an}}\,|\, \mathbf{G}_{s}\subsetneq \mathbf{G}$ generic Mumford-Tate group $\}$

This is a meager set of S^{an} .

 \blacktriangleright Cartesian diagram:

KORKARYKERKER POLO

 \circ $g : E \longrightarrow S = \frac{1}{2}$ elliptic curve f universed elliptic univers

 \blacktriangleright The proof that $V = (V_{\mathbb Z} := H^i_B(X^{\rm an}, {\mathbb Z}), F^{\bullet})$ is a polarizable ${\mathbb Z} H S$ of weight i is transcendental.

 \blacktriangleright The proof that $V = (V_{\mathbb Z} := H^i_B(X^{\rm an}, {\mathbb Z}), F^{\bullet})$ is a polarizable ${\mathbb Z} H S$ of weight i is transcendental.

If X/K , $K \subset \mathbb{C}$ number field,

 $H_{dR}^{\bullet}(X/K) \otimes_K \mathbb{C} \simeq H_B^{\bullet}(X^{\text{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}.$

 $\rightsquigarrow k_X := \langle$ periods of $X/K \rangle \subset \mathbb{C}$.

 \blacktriangleright The proof that $V = (V_{\mathbb Z} := H^i_B(X^{\rm an}, {\mathbb Z}), F^{\bullet})$ is a polarizable ${\mathbb Z} H S$ of weight i is transcendental.

If X/K , $K \subset \mathbb{C}$ number field,

 $H_{dR}^{\bullet}(X/K) \otimes_K \mathbb{C} \simeq H_B^{\bullet}(X^{\text{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}.$

 $\rightsquigarrow k_X := \langle$ periods of $X/K \rangle \subset \mathbb{C}$.

tr deg_{α} $k_X > 0$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \blacktriangleright The proof that $V = (V_{\mathbb Z} := H^i_B(X^{\rm an}, {\mathbb Z}), F^{\bullet})$ is a polarizable ${\mathbb Z} H S$ of weight i is transcendental.

If X/K , $K \subset \mathbb{C}$ number field,

 $H_{dR}^{\bullet}(X/K) \otimes_K \mathbb{C} \simeq H_B^{\bullet}(X^{\text{an}}, \mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{C}.$

 $\rightsquigarrow k_X := \langle$ periods of $X/K \rangle \subset \mathbb{C}$.

tr deg_{0} $k_X > 0$.

 $\blacktriangleright \mathbb{V} \mathbb{Z} \mathsf{V} \mathsf{H} \mathsf{S} \leadsto \Phi : S^{\mathsf{an}} \to \Gamma \backslash D.$

If level(V) = 1 then $\Gamma \backslash D$ is a Shimura variety and Φ is algebraic; but as soon as level(V) > 1 then $\Gamma \backslash D$ has no algebraic structure and Φ is a mere complex analytic map.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Conjecture (Grothendieck '66)

tr deg_{Ω} $k_X = \dim G_X$.

KO K K Ø K K E K K E K V K K K K K K K K K

```
Conjecture (Grothendieck '66)
```
tr deg_{Ω} $k_X = \dim G_X$.

Conjecture (Hodge '50)

$$
Z^k(X)_{\mathbb{Q}} \twoheadrightarrow F^k \cap H^{2k}(X, \mathbb{Q}).
$$

```
Conjecture (Grothendieck '66)
```

```
tr deg<sub>\Omega</sub> k_X = \dim G_X.
```
Conjecture (Hodge '50)

$$
Z^k(X)_{\mathbb{Q}} \twoheadrightarrow F^k \cap H^{2k}(X, \mathbb{Q}).
$$

(Weil 1979): If $f: X \to S$, the Hodge conjecture implies that $HL(S, \mathbb{V}^{\otimes})$ is a countable union of algebraic subvarieties of S .

```
Conjecture (Grothendieck '66)
```

```
tr deg<sub>\Omega</sub>k_X = \dim G_X.
```
Conjecture (Hodge '50)

$$
Z^k(X)_{\mathbb{Q}} \twoheadrightarrow F^k \cap H^{2k}(X, \mathbb{Q}).
$$

Theorem (Cattani-Deligne-Kaplan '95)

Let V be a polarizable $ZVHS$ on a smooth quasi-projective variety S . Then $HL(S, V^{\otimes})$ is a countable union of irreducible algebraic subvarieties of S : the special subvarieties of S for V .

KORKAR KERKER SAGA

If level(V) > 1 then $\Gamma \backslash D$ has no algebraic structure and $\Phi:S^{\mathsf{an}}\to \Gamma\backslash D$ is a mere complex analytic map."

KO KKOKKEKKEK E DAG

If level(V) > 1 then $\Gamma \backslash D$ has no algebraic structure and $\Phi:S^{\mathsf{an}}\to \Gamma\backslash D$ is a mere complex analytic map."

Or maybe not ? Maybe Φ "looks like" an algebraic map? Maybe Φ is "tame"?

If level(V) > 1 then $\Gamma \backslash D$ has no algebraic structure and $\Phi:S^{\mathsf{an}}\to \Gamma\backslash D$ is a mere complex analytic map."

Or maybe not ? Maybe Φ "looks like" an algebraic map? Maybe Φ is "tame"?

► To be discarded: $\Gamma = \text{graph of } (x \mapsto \sin \frac{1}{x}), x > 0.$

$$
\overline{\Gamma} = I \cup \Gamma
$$

KORKAR KERKER SAGA

Γ is not tame for at least three reasons:

(a) $\overline{\Gamma}$ is connected but not arc-connected;

- (b) dim $\partial \Gamma = \dim \Gamma$;
- (c) $\Gamma \cap \mathbb{R}$ is "not of finite type".

- A structure is a collection $S = (S_n)_{n \in \mathbb{N}}$, where S_n is a set of subsets of \mathbb{R}^n such that:
	- (1) algebraic subsets of \mathbb{R}^n belong to S_n .
	- (2) S_n is stable under intersection, finite union and complement.
	- (3) $A \in S_p$, $B \in S_q \Rightarrow A \times B \in S_{p+q}$.
	- (4) If $p: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is a linear projection and $A \in S_{n+1}$ then $p(A) \in S_n$.

The elements of S_n are called the S-definable subsets of \mathbb{R}^n .

 $f: A \to B$ is S-definable if A, B and $\Gamma(f)$ are S-definable.

KORKARYKERKER POLO

- A structure is a collection $S = (S_n)_{n \in \mathbb{N}}$, where S_n is a set of subsets of \mathbb{R}^n such that:
	- (1) algebraic subsets of \mathbb{R}^n belong to S_n .
	- (2) S_n is stable under intersection, finite union and complement.
	- (3) $A \in S_p$, $B \in S_q \Rightarrow A \times B \in S_{p+q}$.
	- (4) If $p: \mathbb{R}^{n+1} \to \mathbb{R}^n$ is a linear projection and $A \in S_{n+1}$ then $p(A) \in S_n$.
	- The elements of S_n are called the S-definable subsets of \mathbb{R}^n .
	- $f: A \to B$ is S-definable if A, B and $\Gamma(f)$ are S-definable.

 \blacktriangleright Examples:

- $\blacktriangleright \mathbb{R}_{\text{ale}}$
- $\blacktriangleright \mathbb{R}^m$ for F a collection of functions $f : \mathbb{R}^n \to \mathbb{R}$ and of subsets of \mathbb{R}^n (e.g. \mathbb{R}_{exp} , \mathbb{R}_{an} , \mathbb{R}_{sin}).

KORKARYKERKER POLO

A structure S is o-minimal if in addition

(5) the definable subsets of $\mathbb R$ are the semi-algebraic sets.

KO K K Ø K K E K K E K V K K K K K K K K K

A structure S is o-minimal if in addition (5) the definable subsets of $\mathbb R$ are the semi-algebraic sets.

 \triangleright Sets definable in an o-minimal structure enjoy the same tameness properties as semi-algebraic sets!

 \triangleright A structure S is o-minimal if in addition (5) the definable subsets of $\mathbb R$ are the semi-algebraic sets.

 \triangleright Sets definable in an o-minimal structure enjoy the same tameness properties as semi-algebraic sets!

KORKARYKERKER POLO

 \blacktriangleright Examples:

- $\blacktriangleright \mathbb{R}_{\text{ale}}$
- $\blacktriangleright \mathbb{R}_{\text{an}}$ (Losajiewicz, Gabrielov)
- $\blacktriangleright \mathbb{R}_{\text{exp}}$ (Khovanskii, Wilkie),
- \blacktriangleright $\mathbb{R}_{an, exp}$ (Miller-Van den Dries)

 \triangleright A structure S is o-minimal if in addition (5) the definable subsets of $\mathbb R$ are the semi-algebraic sets.

 \triangleright Sets definable in an o-minimal structure enjoy the same tameness properties as semi-algebraic sets!

KORKARYKERKER POLO

 \blacktriangleright Examples:

- $\blacktriangleright \mathbb{R}_{\text{ale}}$
- $\blacktriangleright \mathbb{R}_{\text{an}}$ (Losajiewicz, Gabrielov)
- $\blacktriangleright \mathbb{R}_{\text{exp}}$ (Khovanskii, Wilkie),
- $\blacktriangleright \mathbb{R}_{\text{an,exp}}$ (Miller-Van den Dries)

 \triangleright Globalization: S-definable topological spaces

Tame geometry and algebraization

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Tame geometry and algebraization

Theorem (Pila-Wilkie '06)

Let $Z \subset \mathbb{R}^n$ be definable in some o-minimal structure. Let $Z^{\mathsf{alg}} \subset Z$ be the union of all positive-dimensional connected semi-algebraic subsets of Z. Then:

$$
\forall \varepsilon > 0, \ \exists C_{\varepsilon} > 0 \ / \ \left| \{ x \in (Z - Z^{\text{alg}}) \cap \mathbb{Q}^n, \ H(x) \leq T \} \right| < C_{\varepsilon} T^{\varepsilon} \ .
$$

KORK ERKER ADAM ADA

Tame geometry and algebraization

Theorem (Pila-Wilkie '06)

Let $Z \subset \mathbb{R}^n$ be definable in some o-minimal structure. Let $Z^{\mathsf{alg}} \subset Z$ be the union of all positive-dimensional connected semi-algebraic subsets of Z. Then:

$$
\forall \varepsilon > 0, \ \exists C_{\varepsilon} > 0 \ / \ \left| \{ x \in (Z - Z^{\text{alg}}) \cap \mathbb{Q}^n, \ H(x) \leq T \} \right| < C_{\varepsilon} T^{\varepsilon} \ .
$$

Theorem (Peterzil-Starchenko '09, o-minimal Chow)

Let S be a quasi-projective variety over \mathbb{C} , e.g. $S = \mathbb{C}^n$. Let $Z \subset S$ ^{an} be a closed analytic subset. If Z is definable in some o-minimal structure extending \mathbb{R}_{an} then $Z \subset S$ is algebraic.

KORKARYKERKER POLO

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of \mathbb{R}_{alg} -definable manifold. Each $\Gamma'\backslash D' \subset \Gamma\backslash D$ coming from $(\mathbf{G}',D')\subset (\mathbf{G},D)$ is a definable subspace.

KORK ERKER ADAM ADA

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of \mathbb{R}_{alg} -definable manifold. Each $\Gamma'\backslash D' \subset \Gamma\backslash D$ coming from $(\mathbf{G}',D')\subset (\mathbf{G},D)$ is a definable subspace.

KORKARYKERKER POLO

Theorem (Bakker-K.-Tsimerman '20)

Any period map $\Phi: S^{\text{an}} \to \Gamma \backslash D$ is $\mathbb{R}_{\text{an,exp}}$ -definable.

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of \mathbb{R}_{alg} -definable manifold. Each $\Gamma'\backslash D' \subset \Gamma\backslash D$ coming from $(\mathbf{G}',D')\subset (\mathbf{G},D)$ is a definable subspace.

Theorem (Bakker-K.-Tsimerman '20)

Any period map $\Phi: S^{\text{an}} \to \Gamma \backslash D$ is $\mathbb{R}_{\text{an,exp}}$ -definable.

Corollary (Cattani-Deligne-Kaplan '95)

Let V be a polarizable $\mathbb Z$ VHS on a smooth quasi-projective variety S. Then $HL(S, V^{\otimes})$ is a countable union of irreducible algebraic subvarieties of S : the special subvarieties of S for V .

Theorem (Bakker-K.-Tsimerman '20)

 $\Gamma \backslash D$ has a canonical structure of \mathbb{R}_{alg} -definable manifold. Each $\Gamma'\backslash D' \subset \Gamma\backslash D$ coming from $(\mathbf{G}',D')\subset (\mathbf{G},D)$ is a definable subspace.

Theorem (Bakker-K.-Tsimerman '20)

Any period map $\Phi: S^{\text{an}} \to \Gamma \backslash D$ is $\mathbb{R}_{\text{an,exp}}$ -definable.

Corollary (Cattani-Deligne-Kaplan '95)

Let V be a polarizable $\mathbb Z$ VHS on a smooth quasi-projective variety S. Then $HL(S, V^{\otimes})$ is a countable union of irreducible algebraic subvarieties of S : the special subvarieties of S for V .

KID KA KERKER KID KO

Theorem (Brunebarbe-Bakker-Tsimerman)

Images of period maps have a natural algebraic structure.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright Bi-algebraic format: the diagram

emulates an algebraic structure on \widetilde{S} ^{an}:

 \blacktriangleright Bi-algebraic format: the diagram

$$
\widetilde{S^{an}} \xrightarrow{\tilde{\Phi}} D^{\text{Open}} D^{\vee} \text{ flag variety}
$$
\n
$$
\pi \downarrow
$$
\n
$$
S^{an}
$$

emulates an algebraic structure on S^{an} :

► $Y \subset \widetilde{S^{an}}$ is algebraic for Φ if $Y = \tilde{\Phi}^{-1}$ (algebraic in $D^{\vee})^0$. $W \subset S$ is bi-algebraic for Φ if W is algebraic and $W = \pi(Y)$, with $Y \subset \widetilde{S^{an}}$ algebraic.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \blacktriangleright Bi-algebraic format: the diagram

$$
\widetilde{S^{an}} \xrightarrow{\tilde{\Phi}} D^{\text{Open}} D^{\vee} \text{ flag variety}
$$
\n
$$
\pi \downarrow
$$
\n
$$
S^{an}
$$

emulates an algebraic structure on S^{an} :

► $Y \subset \widetilde{S^{an}}$ is algebraic for Φ if $Y = \tilde{\Phi}^{-1}$ (algebraic in $D^{\vee})^0$. $W \subset S$ is bi-algebraic for Φ if W is algebraic and $W = \pi(Y)$, with $Y \subset \widetilde{S^{an}}$ algebraic.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

 \triangleright We want to study the transcendence of π with respect to the algebraic structure on S and the emulated one on S^{an} .

 \triangleright Bi-algebraic format: the diagram

$$
\widetilde{S^{an}} \xrightarrow{\tilde{\Phi}} D^{\text{Open}} D^{\vee} \text{ flag variety}
$$
\n
$$
\pi \downarrow
$$
\n
$$
S^{an}
$$

emulates an algebraic structure on \widetilde{S} ^{an}:

- ► $Y \subset \widetilde{S^{an}}$ is algebraic for Φ if $Y = \tilde{\Phi}^{-1}$ (algebraic in $D^{\vee})^0$. $W \subset S$ is bi-algebraic for Φ if W is algebraic and $W = \pi(Y)$, with $Y \subset \widetilde{S^{an}}$ algebraic.
- \triangleright We want to study the transcendence of π with respect to the algebraic structure on S and the emulated one on S^{an} .
- \triangleright Generalizes the case of tori, abelian varieties, Shimura varieties.

Hodge theory and functional transcendence

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Hodge theory and functional transcendence

Proposition (K.-Otwinowska '21)

Let $\Phi: S^{\text{an}} \to \Gamma \backslash D$ be a period map. The bi-algebraic subvarieties of S for Φ are the weakly special ones.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Hodge theory and functional transcendence

Proposition (K.-Otwinowska '21)

Let $\Phi: S^{\text{an}} \to \Gamma \backslash D$ be a period map. The bi-algebraic subvarieties of S for Φ are the weakly special ones.

Theorem (Ax-Schanuel conjecture for ZVHS, conjectured by K. '17; Bakker-Tsimerman '19)

Let $Z \subset S \times D^{\vee}$ be a closed algebraic subvariety.

(a) If the intersection of Z^{an} with $\Delta := S^{\text{an}} \times_{\Gamma \backslash D} D$ is atypical, i.e.

 $\operatorname{codim}_{S^{\operatorname{an}}\times D} Z^{\operatorname{an}} \cap \Delta < \operatorname{codim}_{S^{\operatorname{an}}\times D} Z^{\operatorname{an}} + \operatorname{codim}_{S^{\operatorname{an}}\times D} \Delta$,

then $p(Z^{\text{an}} \cap \Delta)$ is contained in a strictly weakly special subvariety of S.

(b) In particular: if $Z \subset \widetilde{S}$ ^{an} is algebraic then $\overline{p(Z)}^{Zar}$ is weakly special $(Ax-Lindemann conjecture for ZVHS).$

Distribution of the Hodge loci

 \blacktriangleright What can we say about the distribution of the special subvarieties, for instance about $\overline {\sf HL(\overline S, \mathbb V^{\otimes})}^{\sf Zar}$?

KO K K Ø K K E K K E K V K K K K K K K K K

Distribution of the Hodge loci

- \blacktriangleright What can we say about the distribution of the special subvarieties, for instance about $\overline {\sf HL(\overline S, \mathbb V^{\otimes})}^{\sf Zar}$?
- \blacktriangleright HL $(S, V^{\otimes})_{\text{pos}} :=$ union of special subvarieties of positive period dimension.

KO K K Ø K K E K K E K V K K K K K K K K K

Distribution of the Hodge loci

- \triangleright What can we say about the distribution of the special subvarieties, for instance about $\overline {\sf HL(\overline S, \mathbb V^{\otimes})}^{\sf Zar}$?
- \blacktriangleright HL $(S, V^{\otimes})_{\text{pos}} :=$ union of special subvarieties of positive period dimension.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Theorem (K-Otwinowska '21)

Assume for simplicity that G^{ad} is simple. Either $HL(S, V^{\otimes})_{pos}$ is Zariski-dense in S, or it is algebraic.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

▶ A special subvariety $Z = \Phi^{-1}(\Gamma_Z \backslash D_Z)^0 \subset S$ is said atypical if $\operatorname{codim}_{\Gamma\backslash D}\Phi(Z^{\rm an}) < \operatorname{codim}_{\Gamma\backslash D}\Phi(S^{\rm an}) + \operatorname{codim}_{\Gamma\backslash D}\Gamma_Z\backslash D_Z$.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

Otherwise it is typical.

▶ A special subvariety $Z = \Phi^{-1}(\Gamma_Z \backslash D_Z)^0 \subset S$ is said atypical if $\operatorname{codim}_{\Gamma\backslash D}\Phi(Z^{\rm an}) < \operatorname{codim}_{\Gamma\backslash D}\Phi(S^{\rm an}) + \operatorname{codim}_{\Gamma\backslash D}\Gamma_Z\backslash D_Z$. Otherwise it is typical.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

$$
\blacktriangleright \ \ \text{HL}(S,{\mathbb V}^\otimes)=\text{HL}(S,{\mathbb V}^\otimes)_{\text{atyp}}\coprod \text{HL}(S,{\mathbb V}^\otimes)_{\text{typ}}.
$$

▶ A special subvariety $Z = \Phi^{-1}(\Gamma_Z \backslash D_Z)^0 \subset S$ is said atypical if $\operatorname{codim}_{\Gamma\backslash D}\Phi(Z^{\rm an}) < \operatorname{codim}_{\Gamma\backslash D}\Phi(S^{\rm an}) + \operatorname{codim}_{\Gamma\backslash D}\Gamma_Z\backslash D_Z$. Otherwise it is typical.

$$
\blacktriangleright \ \mathsf{HL}(S,\mathbb V^\otimes)=\mathsf{HL}(S,\mathbb V^\otimes)_{\rm atyp}\coprod \mathsf{HL}(S,\mathbb V^\otimes)_{\rm typ}.
$$

Conjecture (Zilber-Pink for ZVHS; K'17; Baldi-K-Ullmo) (1) $HL(S, \mathbb{V}^{\otimes})_{\text{atyp}}$ is algebraic. (2) $HL(S, V^{\otimes})_{\text{typ}}$ is either empty, or analytically dense in S^{an} .

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

▶ A special subvariety $Z = \Phi^{-1}(\Gamma_Z \backslash D_Z)^0 \subset S$ is said atypical if $\operatorname{codim}_{\Gamma\backslash D}\Phi(Z^{\rm an}) < \operatorname{codim}_{\Gamma\backslash D}\Phi(S^{\rm an}) + \operatorname{codim}_{\Gamma\backslash D}\Gamma_Z\backslash D_Z$. Otherwise it is typical.

$$
\blacktriangleright \ \mathsf{HL}(S,\mathbb V^\otimes)=\mathsf{HL}(S,\mathbb V^\otimes)_{\rm atyp}\coprod \mathsf{HL}(S,\mathbb V^\otimes)_{\rm typ}.
$$

Conjecture (Zilber-Pink for ZVHS; K'17; Baldi-K-Ullmo) (1) $HL(S, \mathbb{V}^{\otimes})_{\text{atyp}}$ is algebraic. (2) $HL(S, V^{\otimes})_{\text{typ}}$ is either empty, or analytically dense in S^{an} .

This implies:

Conjecture (André-Oort for ZVHS; K'17)

If S contains a Zariski-dense set of CM-points for V , then

KORKAR KERKER SAGA

(a) level(
$$
\mathbb{V}
$$
) = 1, *i.e.* $\Gamma \backslash D$ is a Shimura variety;

(b) $\Phi: S^{an} \to \Gamma \backslash D$ is a dominant algebraic map.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Theorem (Baldi-K-Ullmo)

- (1) Suppose level(\mathbb{V}) ≥ 3 . Then $\mathsf{HL}(S,\mathbb{V}^{\otimes}) = \mathsf{HL}(S,\mathbb{V}^{\otimes})_{\mathsf{atyp}}$.
- (2) Suppose in addition that \mathbf{G}^{ad} is simple. Then $\mathsf{HL}(S, \mathbb{V}^{\otimes})_{\mathsf{pos}}$ is algebraic.

Theorem (Baldi-K-Ullmo)

(1) Suppose level(\mathbb{V}) ≥ 3 . Then $\mathsf{HL}(S,\mathbb{V}^{\otimes}) = \mathsf{HL}(S,\mathbb{V}^{\otimes})_{\mathsf{atyp}}$.

(2) Suppose in addition that \mathbf{G}^{ad} is simple. Then $\mathsf{HL}(S, \mathbb{V}^{\otimes})_{\mathsf{pos}}$ is algebraic.

Corollary (Baldi-K-Ullmo)

Let $f: H_{n,d}\to U_{n,d}\subset {\mathbb P} H^0({\mathbb P}^{n+1}_{\mathbb C},{\mathcal O}(d))$ be the family of smooth hypersurfaces of degree d in $\mathbb{P}^{n+1}_\mathbb{C}$. If $n \geq 3$ and $d > 5$ then $HL(U_{n,d},f)_{\text{pos}} \subset U_{n,d}$ is algebraic.

KORKARYKERKER POLO

Theorem (Baldi-K-Ullmo)

(1) Suppose level(\mathbb{V}) ≥ 3 . Then $\mathsf{HL}(S,\mathbb{V}^{\otimes}) = \mathsf{HL}(S,\mathbb{V}^{\otimes})_{\mathsf{atyp}}$.

(2) Suppose in addition that \mathbf{G}^{ad} is simple. Then $\mathsf{HL}(S, \mathbb{V}^{\otimes})_{\mathsf{pos}}$ is algebraic.

Corollary (Baldi-K-Ullmo)

Let $f: H_{n,d}\to U_{n,d}\subset {\mathbb P} H^0({\mathbb P}^{n+1}_{\mathbb C},{\mathcal O}(d))$ be the family of smooth hypersurfaces of degree d in $\mathbb{P}^{n+1}_\mathbb{C}$. If $n \geq 3$ and $d > 5$ then $HL(U_{n,d},f)_{\text{pos}} \subset U_{n,d}$ is algebraic.

Theorem (Baldi-K-Ullmo)

If $HL(S, \mathbb{V}^{\otimes})_{\text{typ}} \neq \emptyset$ (hence level(V) = 1 or 2) then $HL(S, \mathbb{V}^{\otimes})$ is analytically dense in S^{an} .

KORKAR KERKER SAGA

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Conjecture

Let $\mathbb{V} \to S$ be a \mathbb{Z} VHS defined over a number field $K \subset \mathbb{C}$. Then

KORK ERKER ADAM ADA

- (1) any special subvariety of S for ∇ is defined over $\overline{\mathbb{Q}}$;
- (2) any of its Gal($\overline{\mathbb{Q}}/L$)-conjugates is special.

Conjecture

Let $\mathbb{V} \to S$ be a \mathbb{Z} VHS defined over a number field $K \subset \mathbb{C}$. Then

- (1) any special subvariety of S for ∇ is defined over $\overline{\mathbb{Q}}$;
- (2) any of its Gal(\overline{Q}/L)-conjugates is special.

Theorem (K-Otwinowska-Urbanik '20)

- (a) Suppose that G^{ad} is simple. Then the conjecture above holds true for the maximal special subarieties of positive period dimension. In particular if level $(\mathbb{V}) \geq 3$ then $\mathsf{HL}(S, \mathbb{V}^{\otimes})_{\mathsf{pos}}$ is algebraic, defined over $\overline{\mathbb{O}}$.
- (b) The full conjecture holds true if and only if it holds true for special points.

Conjecture

Let $\mathbb{V} \to S$ be a \mathbb{Z} VHS defined over a number field $K \subset \mathbb{C}$. Then

- (1) any special subvariety of S for ∇ is defined over $\overline{\mathbb{Q}}$;
- (2) any of its Gal(\overline{Q}/L)-conjugates is special.

Theorem (K-Otwinowska-Urbanik '20)

- (a) Suppose that G^{ad} is simple. Then the conjecture above holds true for the maximal special subarieties of positive period dimension. In particular if level $(\mathbb{V}) \geq 3$ then $\mathsf{HL}(S, \mathbb{V}^{\otimes})_{\mathsf{pos}}$ is algebraic, defined over $\overline{\mathbb{O}}$.
- (b) The full conjecture holds true if and only if it holds true for special points.

Theorem (Kreutz)

Let $(\mathbb{V}^{\sigma})_{\sigma}$ be a (de Rham) motivic variation of Hodge structure on S. Suppose that G^{ad} is simple. Then any maximal special subvariety $Y \subset S$ of positive period dimension for V is absolutely special.
All the set of the