April 10, 2006
CONTENTS:
Three  years ago, a young Russian mathematician called Grisha Perelman surprised the  world by stating that he had solved one of the most famous problems of 20th  century mathematics, Poincaré’s Conjecture, which was first posed in 1904. The  most prestigious analysts appear to corroborate that the demonstration is  convincing, or at least until now they have either not found or not reported  finding any holes in it. 
   The  problem is so intricate that many brilliant mathematicians have attempted to  solve it and failed. There has been no lack of incentive, since it is one of  the 7 problems the solution of which carries a prize of one million dollars  offered by the Clay Institute in the year 2000.  
   However,  this was not the bait that led Grisha Perelman to tackle the problem, since he sequestered  himself away for that very purpose 1994, and for the following eight years gave  no signs of life until May, 2003, when he announced that he had managed to  solve it. Although three years have passed since that time, the final verdict  has still to be pronounced, and analysts are still at work checking the proof,  which is more extensive that Poincaré’s Conjecture itself.      
   The expectation aroused is understandable,  and everything is likely to be definitively clarified during the celebration of  the ICM2006, when two of the principle lectures will be devoted to this subject  and given by two of the leading experts, Richard Hamilton (who developed a tool  used by Perelman in his solution of the problem) and John Morgan, a recognized  specialist in topology. Although Perelman himself, reluctant at least until now  to appear at public events, will be absent, the subject will undoubtedly be the  highlight of the congress. The ICM2006 will in all probability go down in  history as the occasion when this conjecture became a theorem, a term used by  mathematicians to refer to a demonstrated hypothesis.
   Henry  Poincaré, who together with David Hilbert was the most famous and influential  mathematician of the late 19th and early 20th century, contributed especially  to the development of topology, which is according to his own definition, “what  remains of geometry when one forgets the notion of distance”. According to Vicente  Miquel, professor of Geometry and Topology at the University of Valencia,  topology is the study of what remains alter deforming and object without  breaking it, because what changes are the distances.  Thus in topology, a football, a rugby ball and  an orange are considered to be the same, but not a donut, which is the same as  a ring or the earth’s orbit. “There are properties of nature, in particle  physics, in DNA and in many other aspects”, explains Miquel, “which depend on  topology alone”. 
Perelman  says that he has not only solved the conjecture but has also completed this  classification. He has already published three papers on the subject, general  agreement having been reached on the fact that the first and much of the second  are correct, leaving a “technically more difficult” part still to be checked. “Everyone  understands the third paper, which together with the verified parts of the  first two would seem to provide a proof of the Poincaré Conjecture, and would  be enough for Perelman to receive the Clay Institute million-dollar prize”,  says  Miquel.
 
Problems  selected by the Clay Institute: 
   http://www.claymath.org/millennium/ 
Article by  Mark Brittenham (University   of Nebraska) about the  Poincaré Conjecture and the solution proposed by Perelman: 
   http://www.math.unl.edu/~mbrittenham2/ldt/poincare.html 
Article  by John Milnor, Fields Medal 1962:
   http://www.math.sunysb.edu/~jack/PREPRINTS/tpc.pdf 
Henri Poincaré’s biography
   http://www-groups.dcs.st-and.ac.uk/history/Biographies/Poincare.html
.jpg)
Manuel de León, mathematician and research professor at the IMAFF Department of Mathematics (CSIC), is currently facing the most ambitious and demanding challenge of his career: the organization of the ICM2006 World Congress of Mathematics, to be held in Madrid at the end of August. He chairs the committee responsible for organizing the congress, which will be attended by around 5,000 mathematicians from all over the world.
What’s  going to be pivotal theme of the Congress? 
   There’s  no doubt that the subject arousing most interest is Poincaré’s Conjecture,  because it’s a problem that’s been around for a century, and while its  demonstration has yet to be officially accepted, all the signs seem to be that  has indeed been solved. A good indication of this has been the two lectures  given on the subject, one plenary and one outside the programme. This latter  lecture was delivered by one of the leading experts in differential topology  and topology, John Morgan, which suggests that the demonstration has all but  been approved, and that it will be officially accepted during the congress in Madrid.
What  other important subjects will be addressed?
   There  are several. One of them will be debated in a round table discussion, and  that’s the relation been pure, basic mathematics and applied mathematics.  I think they are in the process of converging  again; much of the strength of mathematics lies in their unity, and a good  example of that is the fact that the congress still covers the whole of  mathematics. The ICM congresses are increasingly open to applications, and this  one more than ever before. This is an important subject because the false  separation between the two facets, this barrier, doesn’t really exist. In fact,  theoretical results are the ones most frequently being applied, and whereas in  the past they were arrived at with pencil and paper, now we need powerful  computers to obtain them. So we really can’t speak any longer of pure and  applied mathematics.  
Do  the solutions obtained for these historic problems mean that this is a good  time for mathematics?
   Yes, this is certainly a good time... three  important problems have been solved in the last ten years. The first was  Fermat’s Theorem, then Kepler’s Conjecture, which required an enormous amount  of computation, and now Poincaré’s Conjecture... One of the classical problems  still remains to be solved, and that’s Riemann’s Hypothesis, which is the great problem in mathematics, and  one that is proving to be a tough nut to crack. It’s been attempted from every  possible mathematical point of view, but without success. There’s no sign at  the moment that it can be resolved, and it’s important because it has to do  with the distribution of prime numbers, to see if there are any guidelines, not  mention its many practical implications in the technological field, such as  data encryption.  
Is  the scientific content of this ICM greater than on previous occasions?  In other words, is it increasing?
   There’s  one more section. There’s always some advance on previous congresses, although  the International Mathematical Union is very slow to make changes; it’s held  back by inertia. But in general I think the scientific content is slightly  greater in volume than in Beijing.  
How  is the programme structured?
   Well,  there are really two different programmes, one invited and one free, so to  speak. The first is made up of 20 plenary lectures, the 169 talks included in  the 20 sections, and the complementary activities, such as the four round tables,  three special lectures – the Emmy Nether, the Mandelbrot and the Morgan –  presentations by technological companies and cultural activities… That’s the  invited programme, while the in free one there are the short communications,  posters, and brief presentations of mathematical software, which is a type of  talk that began some years ago. The deadline for submissions was March 30th,  and as in all the congresses the selection process will last until the end of  April. I think there’ll be about 1,200 talks of this kind all together.  
How  have the invited speakers been chosen?
   A  scientific committee is responsible for the main programme.  Its composition is secret; only the name of  the chairperson is released. There are a dozen people on this committee, usually  including a member from the organizing country. We’ve managed to have two  people appointed to the committee, and all the members’ names will be made  public at the end of the congress.  
What  about the sections?
   The  subjects for the sections don’t vary. They are approved by the IMU executive  committee and later subjected to ratification at the General Assembly.  Generally speaking, there aren’t many changes between one congress and another  and the classical subjects are always on the list. This time a new section has  been included, mathematics applied to control and optimization. Then there are  recently introduced sections of growing importance, such as education and  dissemination, the history of mathematics and the applications of mathematics  to the sciences, which are achieving greater prominence, and will continue to  do so in the future. 
ICM2006: /
   Manuel  de León: president2@icm2006.org
   http://www.mat.csic.es/fichapersonal.php?id=2
“The  nucleus of the universe, a very small part right at the centre, about 10-35 metres in diameter”, says the mathematician  Jean-Pierre Demailly, “could be a Calabi-Yau manifold, which is a special  example of Kahler compact manifolds”. These exotic names refer to the complex  geometrical structures being studied by Demailly, who will give one of the  ICM2006 plenary lectures, during which he will present the latest advances in  the understanding of the geometrical structure of Kahler projective algebraic  manifolds. 
   Knowledge  of these structures provides potential applications in other fields of  mathematics such as algebra or topology. Demailly employs analytical methods, a  branch of mathematics, to solve problems in other areas of this science as well  as other sciences, since in his methods he includes the solution of the Monge-Ampère  equations, which are related to the general theory of relativity  equations.  
   Manifolds  are mathematical constructions that generalize the idea of curve and surface to  any dimension and any body.  Professor  Demailly’s talk will focus on the study of Kahler manifolds in the field of  complex numbers. These manifolds are a generalization of projective algebraic  manifolds, which are the solution to a system of polynomial homogeneous equations. 
   Jean-Pierre  Demailly was born in 1957 in  Péronne (France). He began his mathematical studies in 1973, and graduated from  the University of   Paris VII in 1976. Under  the supervision of Henri Skoda he wrote his doctoral thesis “On the Different  Aspects of Positivity in Complex Analysis” (“Sur differents aspects de la positivité en analse complexe”, which  he defended in 1982. He has been professor at the Joseph  Fourier University  in Grenoble  since 1983. In  1994 he was elected a member of the Academy   of Sciences, and in 2002 a senior member of the Institut  Universitaire de France (IUF). He has gained much recognition and won several  awards, the 1996 Humboldt Prize for International Collaboration from the Max  Planck Society among them. 
Speaker: Jean-Pierre Demailly
Title: “Compact  Kähler Manifolds and Transcendental Techniques
   in  Algebraic Geometry”
Date: Tuesday,  August 29th. 10:15-11:15
ICM2006  Scientific Programme
   /scientificprogram/plenarylectures/ 
Jean-Pierre  Demailly – personal web page:
   http://www-fourier.ujf-grenoble.fr/~demailly/ 
Mathematical  analysis has its origin in the formulation and solution of elementary equations  of physics. The movement of a particle or a star, the temperature of point on  the earth’s surface or inside an oven, or the growth of a particular population  of bacteria are phenomena which, like all those which occur around us in  nature, can be modelled by means of a differential equation. The solutions to  these equations are functions that depend on the number of variables and  implicit parameters included in the model (position, time, the materials and  quantities employed in a chemical reaction, etc). Mathematical analysis studies  the properties of these functions (their continuity, differentiability and integration),  the spaces they assume and the transformations that act upon them. 
   It is considered to be a breakaway discipline from  geometry and topology alter the formulation of differential and integral calculus  by Newton and Leibniz.  It shares with them numerous objects of study and similar techniques.  Thus when we speak of geometric function  theory and related applications, or of geometric measure theory, we are  referring to different aspects of analysis (of real or complex variables). An  important part of functional analysis also consists of the study the geometry  of the spaces of functions or the operators on them. Likewise, so called global  analysis is closely related to the differential geometry of variations.   
   Mathematical analysis is markedly interdisciplinary in  character, with numerous applications to other fields of mathematics such as  number theory, dynamic systems, probability and stochastic processes,  particularly by jeans of harmonic analysis, with the solution of partial  differential equations and applied mathematics in general. 
   The speakers invited to the ICM-2006 by the IMU  (International Mathematical Union) Committee to give talks on analysis are a  clear reflection of the variety of topics belonging to the subject:  Quasi-conformal geometry in fractal sets (M. Bonk), the solvability of differential  equations using techniques of harmonic analysis and the Carderón-Zygmund theory  (S. Hofmann), the convergence of series of functions with respect to classical  systems (S. Konyagin) and general systems (V. Temlyakov), complex dynamics, related  continuous and discrete applications (l. Rothschild, S. Smirnos y E. Straube),  and potential theory and analytical capacity (by the Spaniard Xavier Tolsa). Among  the plenary speakers, the IMU Committee has chosen Terence Tao, a specialist in  the field of harmonic analysis, who will present his work in collaboration with  B. Green on the structure of prime numbers.
Fernando  Soria
   Professor of  Analysis at the Universidad Autónoma de Madrid
Space-time  modelling has become a crucial tool in research concerning the statistical  analysis of natural processes, especially those related with environmental  studies (the concentration of contaminating particles in the air, salinity of  the oceans, the advance of deforestation, etc.).  In recent years its progress has been aided  by the availability of computers with an extraordinary capacity of calculation,  as well as by sophisticated algorithms developed by mathematicians.  
   The  workshop due to take place in Pamplona, the third on this subject to be held in  Spain in the last six years and the first at an international level, falls  within this framework and is aimed at giving impetus to the development and  application of spatial, temporal and above all space-time statistical methods  in fields concerning the environment.
   The  latest advances in theory, methods and applications will be presented during  the sessions of this conference, illustrated with statistical procedures based  on real data. Talks will also be given on the drawing up of epidemiological  maps, one of the fields of space-time modelling that has proved to be the most  productive.   
Internacional Workshop on Space-Time Modelling (METMA3), Pamplona, 27-29 September 2006
Venue: Escuela Universitaria de Estudios  Sanitarios
   Avda. de Barañáin s/n, 31008 - Pamplona (Navarra)
Further information: http://www.unavarra.es/metma3/ 
   Contact: Lola Ugarte, Universidad Pública de  Navarra
   e-mail:      lola@unavarra.es
   Tel.: 948169202/699 530 441 
A corpse, the scene of the crime, and a fingerprint on a bloodstained knife. All the forensic scientists have to do is gather the clues and check them in their data base for a suspect to come up on the screen. However, have we ever stopped to think about the enormous storage capacity required for recording digital versions of the millions of fingerprints on police files? Fingerprints on FBI files alone currently occupy 200 terabytes (200.000.000.000.000 bytes).
Mathematics  can also be of great assistance in this field.  Techniques for compressing information can  perform miracles.  If we take two digital  images of the same fingerprint, they will be identical, but one of them will be  composed of of 5% of data from the other.   The difference resides in mathematics.
   This  is possible thanks to the theory of Wavelets, which comes to say that every  image can be decomposed in simpler images. So what FBI does is reducing the  information to the minimum amount of data needed to rebuild the image. This not  only allows to store 20 fingerprints where there used to be room only for one;  it is also a great help in the process of checking millions of entries in  search for a suspect.
Ronald Coifman, of Yale University, an expert in this field and the autor of the algorithms used in the FBI fingerprint database, will attend the ICM2006.
For  more information: 
   Ronald  Coifman: coifman@math.yale.edu
   Fernando  Soria: fernando.soria@uam.es 
On  the FBI fingerprint database:
   http://www.c3.lanl.gov/~brislawn/FBI/FBI.html