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Abstract

The Proper Forcing Axiom is a powerful extension of the Baire Category Theo-
rem which has proved highly effective in settling mathematical statements which
are independent of ZFC. In contrast to the Continuum Hypothesis, it eliminates
a large number of the pathological constructions which can be carried out using
additional axioms of set theory.
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1. Introduction

Forcing is a general method introduced by Cohen and further developed by
Solovay for generating new generic objects. While the initial motivation was to
generate a counterexample to the Continuum Hypothesis, more sophisticated
forcing notions can be used both to generate morphisms between structures
and also obstructions to morphisms between structures.

Forcing axioms assert that the universe of all sets has some strong degree
of closure under the formation of such generic objects by forcings which are
sufficiently non pathological. Since forcings can in general add generic bijec-
tions between countable and uncountable sets, non pathological should include
preserves uncountability at a minimum. The exact quantification of non patho-
logical yields the different strengths of the forcings axioms. The first and among
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the weakest of these axioms is Martin’s Axiom which was abstracted by Martin
from Solovay and Tennenbaum’s proof of the independence of Souslin’s Hypoth-
esis [59]. Progressively stronger axioms were formulated and proved consistent
as advances were made in set theory in the 1970s. The culmination of this
progression was [22], where the strongest forcing axiom was isolated.

Forcing axioms have proved very effective in classifying and developing the
theory of objects of an uncountable or non separable nature. More generally
they serve to reduce the complexity of set-theoretic difficulties to a level more
approachable by the non specialist. The central goal in this area is to establish
the consistency of a structure theory for uncountable sets while at the same
time working within a single axiomatic framework.

In this article, I will focus attention on the Proper Forcing Axiom (PFA):

If Q is a proper forcing and A is a collection of maximal antichains
in Q with |A | ≤ ℵ1, then there is a filter G ⊆ Q which meets each
element of A .

This axiom was formulated and proved consistent relative to the existence of a
supercompact cardinal by Baumgartner using Shelah’s Proper Forcing Iteration
Lemma. The details of the formulation of this axiom need not concern us at
the moment (see Section 5 below). I will begin by mentioning two applications
of PFA.

Theorem 1.1. [7] Assume PFA. Every two ℵ1-dense sets of reals are isomor-
phic.

Theorem 1.2. [57] Assume PFA. If Φ is an automorphism of the Boolean
algebra P(N)/Fin, then Φ is induced by a function φ : N → N.

The role of PFA in these two theorems is quite different. In the first case,
PFA is used to build isomorphisms between ℵ1-dense sets of reals (here a linear
order is κ-dense if each of its proper intervals is of cardinality κ). The procedure
for doing this can be viewed as a higher cardinal analog of Cantor’s back-
and-forth argument which is used to establish that any two ℵ0-dense linear
orders are isomorphic. As we will see in Section 3.1, however, the situation
is fundamentally more complicated than in the countable case since there are
many non isomorphic ℵ1-dense linear orders.

In the second theorem, PFA is used to build an obstruction to any non
trivial automorphism of P(N)/Fin. This grew out of Shelah’s seminal result in
which he established the consistency of the conclusion of Theorem 1.2 [56, Ch.
IV]. The difference between Theorems 1.1 and 1.2 is that one can generically
introduce new elements to the quotient P(N)/Fin. This can moreover be done
in such a way that it may be impossible to extend the function Φ to these new
generic elements of the domain.

In both of the above theorems, there is a strong contrast with the influence of

the Continuum Hypothesis (CH). CH implies that there are 22
ℵ0

isomorphism
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types of ℵ1-dense sets of reals [14] and 22
ℵ0

automorphisms of P(N)/Fin [52]
(notice that there are only 2ℵ0 functions from φ : N → N). This is in fact a
common theme in the study of forcing axioms.

I will finish the introduction by saying that there was a great temptation
to title this article Martin’s Maximum. Martin’s Maximum (MM) is a natu-
ral strengthening of PFA in which proper is replaced by preserves stationary
subsets of ω1. This is the broadest class of forcings for which a forcing axiom
is consistent. This axiom was proved consistent relative to the existence of a
supercompact cardinal in [22].

I have chosen to focus on PFA instead for a number of reasons. First, when
applying forcing axioms to problems arising outside of set theory, experience
has shown that PFA is nearly if not always sufficient for applications. Second,
we have a better (although still limited) understanding of how to apply PFA.
(Of course this is an equally strong argument for why we need to develop the
theory of MM more completely and understand its advantages over PFA.)

Finally, and most importantly, a wealth of new mathematical ideas and
proofs have come out of reducing the hypothesis of MM in existing theorems
to that of PFA. In every instance in which this has been possible, there have
been significant advances in set theory of independent interest. For example
the technical accomplishments of [45] led to the solution of the basis problem
for the uncountable linear orders in [46] soon after. Thus while MM is trivially
sufficient to derive any consequence of PFA, working within the more limited
framework of PFA has led to the discovery of new consequences of MM and
new consistency results.

The reader is referred to [22] for the development of MM and to [9, pp. 57–
60] for a concise account of the typical consequences of MM which do not follow
from PFA. An additional noteworthy example can be found in [31]. Finally, the
reader is referred to [87] for a somewhat different axiomatic framework due
to Woodin for achieving some of the same end goals. It should be noted that
reconciling this alternate framework with MM (or even PFA) is a major open
problem in set theory.

This article is organized as follows. After reviewing some notation, I will
present a case study of how PFA was used to give a complete classification
of a certain class of linear orderings known as Aronszajn lines. After that, I
will present two combinatorial consequences of PFA and illustrate how they
can be applied through several different examples. These principles both have
a diverse array of consequences and at the same time are simple enough in
their formulation so as to be usable by a non specialist. In Section 5, I will
formulate PFA and illustrate Todorcevic’s method of building proper forcings.
I will utilize the combinatorial principles from the previous section as examples
to illustrate this technique. Section 6 presents some examples of how PFA has
been successfully used to solve problems arising outside of set theory. The role
of the equality 2ℵ0 = ℵ2, which follows from PFA, will be discussed in Section
7. Section 8 will give some examples of how the mathematics developed in the
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study of PFA has been used to prove theorems in ZFC. I will close the article
with some open problems.

With the possible exception of Section 5, I have made an effort to keep the
article accessible to a general audience with a casual interest in the material.
Needless to say, details are kept to a minimum and the reader is encouraged
to consult the many references contained throughout the article. In a number
of places I have presented examples and stated lemmas simply to hint at the
mathematics which is being omitted due to the nature of the article. It is my
hope that the curious reader will take a pen and paper and try to fill in some
of the details or else use this as an impetus to head to the library and consult
some of the many references.

2. Notation and Background

The reader with a general interest in set theory should consult [32]. Further
information on linear orders, trees, and coherent sequences can be found in [67]
and [79], respectively. Information on large cardinals and the determinacy of
games can be found in [29]. Further information on descriptive set theory can
be found in [30].

For the most part I will follow the conventions of [32]. N = ω will be taken
to include 0. An ordinal is a set α linearly ordered by ∈ such that if β is in
α, then β ⊆ α. Thus an ordinal is the set of its predecessors. In particular ω1,
which is the first uncountable ordinal, is the set of all countable ordinals. A
cardinal is the least ordinal of its cardinality. While ℵα is a synonym for ωα,
the former is generally used to measure cardinality while the latter is generally
used to measure length and when there is a need to refer to the set itself. Lower
case Greek letters will be used to denote ordinals, with κ, λ, µ, and θ denoting
cardinals.

IfX is a set, then [X]k denotes all subsets ofX of cardinality k. In particular,
[X]2 is the set of all unordered pairs of elements of X. A graph is a pair (G,X)
where X is a set and G ⊆ [X]2 (X is the vertex set and G is the edge set).

A tree is a partial order (T,≤) in which the predecessors of each element of
T are well ordered by <. The ordertype of the set of strict predecessors of a t
in T is the height of t; the collection of all elements of T of a fixed height is a
level of T . All trees will also be assumed to be Hausdorff : if s and t have limit
height and the same sets of predecessors, then they are equal. In particular,
trees are equipped with a well defined meet operation ∧ : T ×T → T . A subset
of a tree is an antichain if it consists of pairwise incomparable elements (in the
setting of trees this coincides with the notion of antichain in Section 5 below).

Generally a superscript of ∗ on a relation symbol is taken to mean “with
only a finite number of exceptions” (in a context in which this makes sense).
In particular, A ⊆∗ B means that A \B is finite.

An ideal I on a set S is a subset of P(S) which is closed under subsets
and finite unions. To avoid trivialities, all ideals in this article will be assumed
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to contain all of the finite subsets of the underlying set. Fin is the ideal of all
finite subsets of N. Fin × ∅ is the collection of all subsets of N × N in which
all but finitely many vertical sections are empty. ∅ × Fin is the collection of all
subsets of N × N in which all vertical sections are finite. An ideal I is a P-
ideal if (I ,⊆∗) is countably directed (i.e. every countable subset has an upper
bound). ∅×Fin is a P-ideal; Fin×∅ is not. If I is a collection of subsets of S,
then I ⊥ is the ideal of all subsets of S which have finite intersections with all
elements of I . Observe that (∅ × Fin)⊥ = Fin× ∅ and (Fin× ∅)⊥ = ∅ × Fin.

Throughout this article, all topological spaces are assumed to be T3. When
discussing Banach spaces, basis will always refer to a Schauder basis. A Polish
space is a separable, completely metrizable topological space. A subset of a
Polish space is analytic if it is the continuous image of a Borel set in a Polish
space. The σ-algebra generated by the analytic sets will be denoted by C .

3. Classification and ℵ1

3.1. The basis problem for uncountable linear orders: a
case study. In order to illustrate the influence of PFA and how it plays a
role in classification problems for uncountable structures, I will begin with an
example of a recent success in this area. Consider the following problem.

Problem 3.1. Do the uncountable linear orders have a finite basis?

That is, is there a finite set of uncountable linear orders such that every
other contains an isomorphic copy of one from this finite set?

Observe that any such basis must contain a set of reals of minimum possible
cardinality — namely ℵ1. The following theorem, which actually predates PFA,
shows that under PFA a single set of reals of cardinality ℵ1 is sufficient to form
a basis for the uncountable separable linear orders.

Theorem 3.2. [7] Assume PFA. Every two ℵ1-dense sets of reals are isomor-
phic. In particular any set of reals of cardinality ℵ1 embeds into any other.

This is in stark contrast to the situation under CH.

Theorem 3.3. [14] If X ⊆ R with |X| = |R|, then there is a Y ⊆ X with |Y | =
|X| such that no two distinct subsets of Y of cardinality |R| are isomorphic. In
particular if |R| = ℵ1, then there is no basis for the uncountable suborders of R
of cardinality less than |P(R)|.

In fact this is part of general phenomenon: it is typically not possible to
classify arbitrary structures of cardinality 2ℵ0 . (This statement is not meant
to be applied to objects such as manifolds which, while of cardinality 2ℵ0 , are
really coded by a countable — or even finite — mathematical structure.)

How does one reconcile Theorems 3.2 and 3.3? Baumgartner’s result actually
shows that given any model of ZFC, it is possible to go into a forcing extension
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in which uncountability is preserved and every two ℵ1-dense sets of reals are
isomorphic. In particular, two ℵ1-dense sets of reals which may not have been
isomorphic are made isomorphic by Baumgartner’s forcing. Thus while CH
implies that there are many non-isomorphic ℵ1-dense sets of reals, the reason for
this is simply that there is an inadequate number of embeddings between such
orders, rather than some intrinsic property of the sets of reals which prevents
them from being isomorphic.

Now we return to our basis problem. Since ω1 can not be embedded into
R and since ω1 is isomorphic to each of its uncountable suborders, any basis
for the uncountable linear orders must also contain ω1 and −ω1. The following
classical construction of Aronszajn and Kurepa shows that any basis for the
uncountable linear orders must have at least four elements (see [67, 5.15] for a
historical discussion).

Theorem 3.4. There is an uncountable linear order which does not contain
an uncountable separable suborder and does not contain ω1 or −ω1.

Such linear orders are commonly known as Aronszajn lines or A-lines. Re-
gardless of the value of 2ℵ0 , A-lines necessarily have cardinality ℵ1. Like un-
countable suborders of R, every A-line contains an ℵ1-dense suborder. Following
Theorem 3.2, there was an effort to prove an analogous result for the class of A-
lines. It turned out that the answer to this pursuit lay in the following question
of R. Countryman.

Question 3.5. Does there exist an uncountable linear order C such that C×C,
equipped with the coordinatewise partial order, is the union of countably many
chains?

Such linear orders are known as Countryman lines or C-lines. Clearly every
uncountable suborder of a C-line is a C-line. It was observed by Galvin that
such linear orders are necessarily Aronszajn. Their most remarkable property
is that if C is a C-line, then no uncountable linear order can be embedded into
both C and −C. Indeed, if f : L → C and g : L → −C were to witness such
embeddings, then the range of f×g, regarded as a subset of C×C, would be the
graph of a strictly decreasing function. As such a graph can intersect every chain
in C×C in at most a singleton, L must be countable. Thus, unlike the situation
with uncountable suborders of R under CH, there is a fundamental obstruction
preventing an embedding of C into −C if C is a C-line. The following theorem
of Shelah, therefore, ruled out an analog of Baumgartner’s result for ℵ1-dense
A-lines.

Theorem 3.6. [55] There is a Countryman line.

It was in this paper that precursors of Problem 3.1 began to be considered.
Shelah made two conjectures at the end of [55]:

1. It is consistent that every two Countryman lines contain uncountable
suborders which are either isomorphic or reverse isomorphic.
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2. It is consistent that every Aronszajn line contains a Countryman subor-
der.

Shelah’s construction led Todorcevic to prove the following theorem, indicating
that such linear orders occur quite naturally.

Theorem 3.7. [69] If eβ (β < ω1) is a coherent sequence such that for each
β, eβ is a finite-to-one function from β into ω, then the lexicographical order
on {eβ : β < ω1} is a Countryman line.

Here a sequence eβ (β < ω1) with eβ : β → ω is coherent if whenever
β < γ, eβ =∗ eγ � β. Given such a sequence, we can also form an Aronszajn
tree T = {eβ � α : α ≤ β < ω1}. Here an Aronszajn tree (or A-tree) is an
uncountable tree in which all levels and chains are countable. An A-tree which
is the set of restrictions of a coherent sequence is said to be coherent.

Before proceeding, I will mention the method from [69] for explicitly con-
structing such a coherent sequence. Let 〈Cα : α < ω1〉 be a sequence such that
Cα+1 = {α} and if α is a limit ordinal then Cα is a cofinal subset of α iso-
morphic to ω. Such a sequence is known as a C-sequence. Given a C-sequence,
there is a canonical “walk” between any two ordinals α < β in ω1:

βi =

{

β if i = 0

min(Cβi−1
\ α) if i > 0 and βi−1 > α

The walk starts at β and stops once α is reached at some stage l (l is always
finite since otherwise we would have defined an infinite descending sequence of
ordinals). Such walks have a number of associated statistics:

%0(α, β) = 〈|Cβi
∩ α| : i < l〉

%1(α, β) = max %0(α, β)

%2(α, β) = l = |%0(α, β)|

If we set eβ(α) = %1(α, β), then this defines a coherent sequence satisfying the
hypothesis of Theorem 3.7. In fact if we define (for i = 0, 1, 2)

C(%i) = ({%i(·, β) : β < ω1},≤lex)

T (ρi) = ({%i(·, β) � α : α ≤ β < ω1},⊆)

then C(%i) is a C-line and T (%i) is an A-tree. Not only does the above construc-
tion yield an informative example of a C-line and an A-tree, it is the simplest
instance of a widely adaptable technique of Todorcevic for building combinato-
rial objects both at the level of ℵ1 and on higher cardinals. A modern account
of this can be found in [79].

Again we return to our analysis of Problem 3.1. The following theorem of
Todorcevic shows that, under PFA, C-lines are indeed canonical objects.
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Theorem 3.8. (see [48]) Assume MAℵ1
. If C and C ′ are Countryman lines

which are ℵ1-dense and non stationary, then either C ' C ′ or −C ' C ′.

Here an A-line A is non stationary if A =
⋃

C where C ⊆ [A]ω is a ⊆-chain
which is closed under countable unions and is such that if X is in C , then the
convex components of A \X contain no first or last elements. It is routine to
show that every A-line contains an ℵ1-dense non stationary suborder. On the
other hand, there are 2ℵ1 isomorphism types of ℵ1-dense stationary C-lines [71].

The following theorem reduced Problem 3.1 to a purely Ramsey theoretic
statement about A-trees.

Theorem 3.9. [1] (see [79, §4.4] for a proof) Assume PFA. The following are
equivalent:

1. Every Aronszajn line has a Countryman suborder;

2. For every Aronszajn tree T and every partition T = K0 ∪K1, there is an
uncountable antichain A ⊆ T and an i < 2 such that s∧ t is in Ki for all
s 6= t in A;

3. For some Aronszajn tree T , if T = K0 ∪K1 then there is an uncountable
antichain A ⊆ T and an i < 2 such that s ∧ t is in Ki for all s 6= t in A.

Progress on Problem 3.1 then stopped until [64], where a number of addi-
tional properties of A-trees were discovered, assuming PFA.

Theorem 3.10. [64] Assume MAℵ1
. If T is a coherent Aronszajn tree, then

U (T ) = {K ⊆ ω1 : ∃A ∈ A (T )(∧(A) ⊆ K)}

is an ultrafilter, where A is the collection of all uncountable antichains of T
and ∧(A) = {s ∧ t : s 6= t ∈ A}.

Theorem 3.11. [64] If S ≤ T denotes the existence of a strictly increasing map
from S into T , then the class of all Aronszajn trees contains a ≤-antichain of
cardinality 2ℵ1 and an infinite <-descending chain.

Theorem 3.12. [64] Assume PFA. The coherent Aronszajn trees are linearly
ordered by ≤ without a first or last element. Furthermore S ≤ T holds if and
only if there is an increasing function f : ω1 → ω1 such that

U ∈ U (T ) if and only if f−1(U) ∈ U (S)

(i.e. βf(U (S)) = U (T )).

Finally, the following theorem was proved, thus solving Problem 3.1. This
was accomplished by proving that PFA implies (3) of Theorem 3.9.

Theorem 3.13. [46] Assume PFA. Every Aronszajn line contains a Country-
man suborder.
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Corollary 3.14. Assume PFA. If X ⊆ R has cardinality ℵ1 and C is a Coun-
tryman line, then X, ω1, −ω1, C, and −C form a basis for the uncountable
linear orders.

In the wake of Theorem 3.13, two additional results were obtained which
completely clarified our understanding of the A-lines assuming PFA.

Theorem 3.15. [48] If C is a Countryman line, then the direct limit ηC of the
alternating lexicographic products C × (−C) × · · · × (−C) is universal for the
class of Aronszajn lines.

Theorem 3.16. [42] The Aronszajn lines are well quasi-ordered by embeddabil-
ity: if Ai (i ∈ N) are Aronszajn lines, then there are i < j such that Ai embeds
into Aj.

These results draw a strong analogy between the A-lines and the countable
linear orderings: C and −C play the roles of N and −N and ηC plays the role
of Q. Theorem 3.15 is analogous to Cantor’s theorem that all countable dense
linear orders are isomorphic; Theorem 3.16 should be compared to the following
theorem of Laver.

Theorem 3.17. [34] The countable linear orders are well quasi-ordered by
embeddability.

3.2. The Ramsey Theory of ω1. The study of the Ramsey theory of
ω1 has played a central role in the development of PFA (see, e.g., [70]). It was
noticed early on by Sierpinski that the analog of Ramsey’s theorem for ω1 is
false.

Theorem 3.18. [58] There is a partition [ω1]
2 = K0 ∪K1 such that if X ⊆ ω1

is uncountable, [X]2 ∩Ki 6= ∅ for each i < 2.

This was strengthened considerably by Todorcevic, using the method of
minimal walks discussed above.

Theorem 3.19. [69] There is a partition [ω1]
2 =

⋃

ξ<ω1
Kξ such that if X ⊆ ω1

is uncountable, then [X]2 ∩Kξ 6= ∅ for each ξ < ω1.

Still, many problems in set theory boil down to Ramsey theoretic state-
ments about ω1 for restricted classes of partitions or where weaker notions of
homogeneity are required. Theorem 3.9 is a typical instance of this. Another
important example is the reformulation of the S and L space problems in terms
of Ramsey theoretic statements [51]. These problems were eventually solved
with different outcomes.

Theorem 3.20. [65] [70] Assume PFA. Every non Lindelöf space contains an
uncountable discrete subspace.
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Theorem 3.21. [47] There is a non separable space without an uncountable
discrete subspace. Moreover, there is no basis for the uncountable topological
spaces of cardinality less than ℵ2.

I will finish the section by mentioning another classification result under
PFA which is closely aligned with the study of the Ramsey theory of ω1.

Theorem 3.22. [68] Assume PFA. Every directed system of cardinality at most
ℵ1 is cofinally equivalent to one of the following: 1, ω, ω1, ω × ω1, [ω1]

<ω.

This classification was extended to the transitive relations on ω1 in [73]. It is
interesting to note that it is unknown whether a similar classification of relations
on ω2 is possible under any axiomatic assumptions. Such a classification would
require that 2ℵ0 > ℵ2 and in particular that PFA fails (see [68]).

4. Combinatorial Principles

While direct applications of PFA require specialized knowledge of set theory,
there are an increasing number of combinatorial principles that follow from PFA
which are at the same time powerful and approachable by the non specialist.
Both applying these principles and isolating new and useful ones is an important
theme in set-theoretic research (it should be stressed that one must always hold
utility as paramount here).

Two prominent examples are the P-Ideal Dichotomy [76] and Todorcevic’s
formulation of the Open Coloring Axiom [70]:

PID: If S is a set and I ⊆ [S]ω is a P-ideal, then either

1. there is an uncountable Z ⊆ S such that [Z]ω ⊆ I or

2. S can be covered by countably many sets in I ⊥.

OCA: If G is a graph on a separable metric space X whose edge set is topo-
logically open, then either

1. there is an uncountable H ⊆ X such that [H]2 ⊆ G (i.e. G contains
an uncountable complete subgraph) or

2. X can be covered by countably many sets Y such that [Y ]2 ∩G = ∅
(i.e. G is countably chromatic).

I will now present a number of typical examples of graphs and ideals to which
these principles can be applied.

Example 4.1. [2] Let G be the graph on R2 consisting of all edges
{(x, y), (x′, y′)} such that x < x′ and y < y′. Observe that G is open. If X
is a complete subgraph of G, then X is the graph of a partial strictly increasing
function from R to R. If A and B are uncountable subsets of R, then the sub-
graph of G induced by A×B is never countably chromatic and therefore OCA
implies that there is an uncountable partial increasing function from A to B.
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Example 4.2. [70] Recall that if f and g are in NN, then f <∗ g means that
f(i) < g(i) for all but finitely many i. It is well known that this is a countably
directed partial order. If f 6= g are in NN, define {f, g} ∈ G if there are i and
j such that f(i) < g(i) and f(j) > g(j). This defines an open graph. Subsets
E ⊆ NN such that [E]2 ∩ G = ∅ are quite sparse. For example such an E can
not contain an uncountable <∗-well ordered set.

In [70, 0.7] it is shown that if X ⊆ NN consists of increasing functions and
is unbounded and countably <∗-directed, then there are f 6= g in X such that
f ≤ g (i.e. {f, g} is not in G). This can be used to argue that OCA implies
every subset of NN of cardinality ℵ1 is <∗-bounded. This is among the simplest
applications of the phenomenon of oscillation which is explored further in [44],
[70] and in different contexts in [47], [79].

Example 4.3. Let σQ denote the collection of all subsets of Q which are
well ordered in the usual order on Q. σQ is a tree with the order defined by
a ≤ b if a is an initial part of b. This is a separable metric space with the
topology inherited from P(Q). Let G denote the set of all pairs {a, b} which
are comparable in the tree order on σQ. This is a closed graph on σQ. Observe
that if H ⊆ σQ is a complete subgraph, then ∪H is in σQ and every element
of H is an initial part of ∪H. In particular, G has no uncountable complete
subgraphs. On the other hand, if E ⊆ σQ satisfies that [E]2 ∩ G is empty,
then E is an antichain. Since σQ is not a countable union of antichains [33],
this example shows that the asymmetry in the statement of OCA is necessary,
even for graphs on vertex sets which are nicely definable. By contrast, it is a
ZFC theorem that the conclusion of OCA holds for every open graph on an
analytic subset of a Polish space [21]. Furthermore, OCA holds for open graphs
on projective sets as well under appropriate large cardinal assumptions.

For the next two examples, suppose that J is a P-ideal on a set S and
φJ (J ∈ J ) is a collection of functions such that φJ is a function from J into
some countable set C and whenever J and J ′ are in J

{s ∈ J ∩ J ′ : φJ(s) 6= φJ ′(s)}

is finite. Such a family of functions is said to be coherent. A coherent family of
functions is trivial if there is a single Φ : S → C such that {s ∈ J : φJ(s) 6=
Φ(s)} is finite for all J in J .

Example 4.4. [70, 8.7] If S is countable, then define a graph G on the set of
pairs of elements of J by {J, J ′} ∈ G if and only if there is an s in J ∩J ′ such
that φJ(s) 6= φJ ′(s). If we topologize J by identifying it with the subspace
{(J, φJ ) : J ∈ J } of P(S)×P(S×S), then G is an open graph in a separable
metric topology. If G is countably chromatic, then the coherent family is trivial.
If H ⊆ I is uncountable and satisfies that [H ]2 ⊆ G, then H is unbounded in
(J ,⊆∗). Notice that any such H contains such a subset of cardinality ℵ1 and
therefore this alternative of OCA implies that (J ,⊆∗) contains an unbounded
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subset of cardinality ℵ1. Such an H is quite closely related to the obstruction
to non trivial automorphisms of P(N)/Fin mentioned in the introduction.

An important instance of this example is when S = N×N and J = ∅×Fin.
If every subset of (NN, <∗) of cardinality ℵ1 is bounded (this is a consequence
of OCA), then every uncountable H ⊆ J contains an uncountable H ′ whose
union is in J . Thus OCA implies every coherent family indexed by ∅ × Fin is
trivial.

Remark 4.5. In [38] it is shown that the triviality of coherent families of func-
tions indexed by ∅ × Fin has an influence on the computation of the strong
homology of certain locally compact subspaces of Rn. Specifically, non-trivial
coherent families indexed by ∅ × Fin coincide with the 1-cocycles in a certain
cochain complex. This is used to show that, assuming CH, strong homology is
not additive [38]. In [13] it is pointed out that PFA can be used rule out such
1-cocycles.

The existence of non-trivial n-cocyles in this cochain complex for any n,
however, implies that strong homology fails to be additive [38, Theorem 8].
Unlike with 1-cocycles, very little is known what hypotheses entail the non
existence of n-cocycles beyond Goblot’s Vanishing Theorem (see [38]). For in-
stance it is entirely possible that it is a theorem of ZFC that either 1-cocycles
or 2-cocycles exist in this cochain complex. Additionally, while it is known that
there are no C -measurable 1-cocycles in this cochain complex, it is unclear
whether the same can be said for n-cocycles for n > 1.

The body of work surveyed in [37, Ch. 11–14] has not yet been developed
from a set-theoretic perspective (although see [62], [63], [74]). Recasting this
material in set-theoretic language and developing it to the level of [79] would
likely be a rewarding endeavor.

Example 4.6. [76] Given a coherent family φJ (J ∈ J ) of functions mapping
into {0, 1}, we can define I to be the collection of all countable I ⊆ J such
that for some J in J ,

{J ′ ∈ I : |{s ∈ J ∩ J ′ : φJ(s) = 0 ∧ φJ ′(s) = 1}| ≤ n}

is finite for each n in N. If H ⊆ J is uncountable and satisfies that [H ]ω ⊆ I ,
then H is unbounded in (J ,⊆∗). As noted above, this implies that (J ,⊆∗)
contains an unbounded subset of cardinality ℵ1. If J is a countable union of
sets in I ⊥, then the coherent sequence is trivial.

Example 4.7. [3] Suppose that T is an ω1-tree (i.e. an uncountable tree in
which every level is countable). Define I to be the collection of all countable
subsets I of T such that if t is in T , then {s ∈ I : s ≤ t} is finite. The
assumption that the levels of T are countable implies that I is a P-ideal.
If Z ⊆ T is uncountable and [Z]ω ⊆ I , then it follows that Z contains an
uncountable antichain. If T =

⋃

n Sn where Sn is in I ⊥, then it follows that T
is a countable union of chains. Since neither of these alternatives is compatible
with T being a Souslin tree, PID implies Souslin’s Hypothesis.
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Example 4.8. [76] Recall that if κ is a regular cardinal, then �(κ) is the
assertion that there is a sequence 〈Cα : α < κ〉 with the following properties:

1. Cα ⊆ α is closed and unbounded for each α < κ and Cα+1 = {α};

2. if α is a limit point of Cβ , then Cα = Cβ ∩ α;

3. there is no closed unbounded C ⊆ κ such that for every limit point α of
C, Cα = C ∩ α.

As in Section 3.1, we can define %2 : [κ]2 → ω using a �(κ)-sequence: %2(α, β)
is the length of the walk from β down to α. If β < κ and n ∈ ω, set

Kβ,n = {α < β : %2(α, β) ≤ n}.

One can argue that if I is the collection of all countable I which have finite
intersection with every Kβ,n, then I is a P-ideal which does not satisfy either
alternative of PID. In fact, κ is not the union of countably many sets in I ⊥,
even though each β < κ has this property (as witnessed by {Kβ,n}n). The
failure of �(κ) for all κ is known to have considerable large cardinal strength
(see [53]).

In fact the properties of the family K = {Kβ,n : (β < κ+)∧(n < ω)} which
violate PID can be abstracted so as to be applied to more general situations. For
instance this argument can be adapted to prove that PID implies that 2µ = µ+

whenever µ is a singular strong limit cardinal [84].

5. Proper Forcings and How to Construct Them

We will now turn to the task of formulating PFA. Recall that a forcing is a
partial order Q with a greatest element. Elements of a forcing are generally re-
ferred to as conditions and q ≤ p is generally taken to mean q is an extension of
p. Two conditions are compatible if they have a common extension and incom-
patible otherwise. A filter is a collection of conditions which is upward closed
and downward directed. An antichain is a collection of pairwise incompatible
conditions. A forcing Q is c.c.c. if every antichain is countable.

A completely general example of a forcing is the collection of non empty
open sets in a compact topological space, with U ≤ V defined to mean that
U ⊆ V . In this setting, points correspond to maximal filters and antichains are
families of pairwise disjoint open sets. If U is dense and open in a topological
space, then U is the union of a maximal antichain A of open sets V such that
V ≤ U . This allows one to translate forcing axioms into statements about Baire
category.

Now we turn to formulating properness, which is a weakening of being c.c.c..
Unless specified otherwise, θ will always be used to denote a regular uncountable
cardinal. Recall that H(θ) is the collection of all sets of hereditary cardinality at
most θ. In this case (H(θ),∈) satisfies all of the axioms of ZFC except possibly
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the powerset axiom. M ⊆ H(θ) is an elementary submodel of H(θ) if whenever
φ(x1, . . . , xn) is a formula in the language of set theory and a1, . . . , an are in
M , (M,∈) satisfies φ(a1, . . . , an) if and only if (H(θ),∈) satisfies φ(a1, . . . , an).

If Q is a forcing, then a suitable model for Q is a countable elementary
submodel of H(θ) for some θ such that P(Q) is in M . If M is a suitable model
for Q, then a condition in q is (M,Q)-generic if whenever A ⊆ Q is a maximal
antichain which is in M , every extension of q is compatible with an element
of A ∩M . Finally, Q is proper if whenever M is a suitable model for Q, every
condition in Q∩M has an (M,Q)-generic extension. We are now in a position
to understand the formulation of PFA given in the introduction:

If Q is a proper forcing and A is a collection of maximal antichains
in Q with |A | ≤ ℵ1, then there is a filter G ⊆ Q such that G∩A 6= ∅
for every A in A .

Thus PFA is just the statement obtained by replacing “c.c.c.” by “proper” in
the formulation of MAℵ1

. It is not difficult to verify that in fact every c.c.c.
forcing is proper and hence that PFA implies MAℵ1

. While proper forcings
necessarily preserve uncountability, they may collapse cardinals above ℵ1. To a
large extent, this is where PFA derives its additional strength.

In situations where there is a need to apply PFA directly, Todorcevic has
developed a general approach for building proper forcings to accomplish a given
task such as introducing an uncountable complete subgraph to a given graph
or an embedding between two structures. This method was introduced in [66]
and further detailed in [70] and [73]. Typically the conditions in the forcing
Q consist of pairs q = (Xq,Nq) where Xq is a finite approximation of the
desired object and Nq is a finite ∈-chain of elementary substructures of some
(H(θ),∈) for θ suitably large. In all cases, there are additional requirements
placed on the pairs which are specific to the application at hand. One verifies
properness by proving that if M is a suitable model for Q and M ∩H(θ) is in
Nq, then q is (M,Q)-generic. In situations in which this construction results in
a proper forcing, the forcing Q can usually be regarded as a two step iteration
of a forcing which collapses |H(θ)| to ℵ1 by covering it with an ∈-chain of
countable substructures, followed by a c.c.c. forcing of finite approximations to
the desired object.

I will illustrate this method of construction by defining forcings which can
be used to show that PFA implies OCA and PID. These examples are relatively
simple in terms of the interaction between the finite working part and the chain
of models. Still, they contain all of the important features of other examples
built using these methods.

5.1. The OCA forcing. Let G be a fixed open graph on a separable
metric spaceX and let E denote the collection of all E ⊆ X such that [E]2∩G =
∅. Define QG to be the collection of all pairs q = (Hq,Nq) such that:

1. Hq ⊆ X is finite and [Hq]
2 ⊆ G;
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2. Nq is a finite ∈-chain of countable elementary submodels of H(2ℵ0
+
),

each containing X and G;

3. if x 6= y are in Hq, then there is an N in Nq such that |N ∩ {x, y}| = 1
(i.e. Nq separates Hq);

4. if N is in Nq and x is in Hq \N , then x is not in E for any E in E ∩N .

The order on QG is defined by q ≤ p if Hp ⊆ Hq and Np ⊆ Nq.
The following is the key lemma in establishing the properness of this forcing.

Lemma 5.1. Suppose that Ni (i < k) is a finite ∈-chain of suitable models
for X and G and that x is an element of Xk such that if i < k, then xi is not
an element of any E in E ∩ Ni and xi is in Ni+1 if i < k − 1. If D ⊆ Xk is
an element of N0 which has x as an accumulation point, then there is an open
U ⊆ X in N0 satisfying:

• x(k − 1) 6∈ U and {x(k − 1), y} is in G whenever y is in U ;

• {y � k − 1 : (y ∈ D) ∧ (y(k − 1) ∈ U)} accumulates to x � k − 1.

5.2. The PID forcing. We will now turn to a class of forcings which
can be used to force instances of PID. Suppose that I is a P-ideal on a set
S. Let θ be sufficiently large such that I is in H(θ) and for each countable
N ≺ H(θ), let IN be an element of I such that I ⊆∗ IN whenever I is in
I ∩N (this is possible since N is countable and I is a P-ideal). Define QI to
be the collection of all pairs q = (Zq,Nq) such that:

1. Zq ⊆ S is finite;

2. Nq is a finite ∈-chain of suitable models for I which separates Zq;

3. if N is in Nq and x is in Zq \N , then x is not in J for any J in I ⊥ ∩N .

The order on QI is slightly more complicated than in the case of QG. Define
q ≤ p if Zp ⊆ Zq, Np ⊆ Nq, and whenever N is in Np

N ∩ (Zq \ Zp) ⊆ IN .

This last condition ensures that if G ⊆ QI is a filter, then every countable
subset of

⋃

q∈G Zq is in I .
The following is the key combinatorial lemma which is used in the proof

that QI is proper (see [73, 7.8]).

Lemma 5.2. Suppose that J is a σ-ideal on a set S, Ni (i < k) is a finite
∈-chain of suitable models for J , and x is in Sk such that xi is not in any
element of J ∩ Ni and xi is in Ni+1 if i < k − 1. If D ⊆ Sk is in N0 and
contains x, then there is a T ⊆ D in N0 which contains x and is J +-splitting:

{x ∈ S : ∃t ∈ T ((u � i)ˆx ⊆ t)}

is not in J whenever u is in T and i < k.
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6. Some Applications of PFA

I will now mention some applications PFA. The focus will be on applications
outside of set theory and on those which are more recent. Two other applica-
tions of note are Shelah’s solution to Whitehead’s Problem [54] (which required
only MAℵ1

) and Woodin’s resolution of Kaplanski’s Conjecture concerning au-
tomatic continuity of homomorphisms of C([0, 1]) into commutative Banach
algebras [86]. In addition, an extensive list of applications of MAℵ1

can be
found in [23].

6.1. Automorphisms of the Calkin algebra. Let H be a separa-
ble infinite dimensional Hilbert space and let B(H) and K (H) be the bounded
and compact operators on H, respectively. The Calkin algebra is the quotient
C (H) = B(H)/K (H), regarded as a C∗-algebra.

Every unitary operator in C (H) gives rise to an automorphism of C (H) via
conjugation; such automorphisms are said to be inner. In [11], Brown, Douglas,
and Filmore asked whether there are any other automorphisms of C (H). This
turns out to be independent of ZFC:

Theorem 6.1. [50] Assume CH. There is an outer automorphism of C (H).

Theorem 6.2. [16] Assume OCA. Every automorphism of C (H) is inner.

At the core of Farah’s proof of Theorem 6.2 is the construction and the
analysis of coherent families of unitaries which are derived from a given au-
tomorphism of C (H). Such families are analogs of the coherent families of
functions from Example 4.4.

Theorem 6.2 is a new direction in a natural progression of theorems con-
cerning automorphisms and homomorphisms of quotient structures which began
with Shelah’s work on the automorphism group of P(N)/Fin in [56, IV]. The
reader is referred to [17], [18] for a detailed account of the work in this area prior
to [16]. Also Farah, Weaver, and others have recently begun an investigation
into how PFA and other set-theoretic hypotheses and methods can be applied
to operator algebras; see [20], [85].

6.2. Bases in quotients of Banach spaces. The following problem
in Banach space theory has its roots in Banach’s original monograph [6] (the
problem appears explicitly only sometime later; see, e.g., [49]).

Problem 6.3. Does every infinite dimensional Banach space have an infinite
dimensional quotient with a basis?

Johnson and Rosenthal proved that the answer to this problem is positive
in the class of separable Banach spaces [28]. Whether it is true in general
has become known as the Separable Quotient Problem (so called because it is
equivalent to asking whether every infinite dimensional Banach space has an
infinite dimensional separable quotient). In fact, the proof of [28] yields the
following stronger result.
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Theorem 6.4. Assume that every subset of NN of cardinality at most θ is <∗-
bounded. Every Banach space of density at most θ has an infinite dimensional
quotient with a basis.

In this vein it is also natural to ask whether a non separable Banach space
has a non separable quotient with a basis. This question was addressed in part
by the following result.

Theorem 6.5. [78] Assume MAℵ1
and PID. Every Banach space of density

ℵ1 has a quotient with a basis of length ω1.

6.3. Von Neumann’s problem on the existence of strictly
positive measures. Given a complete Boolean algebra B, it is natural
to ask under what circumstances B admits a strictly positive probability mea-
sure. Two necessary requirements are that B be c.c.c. and that it be weakly
distributive. Von Neumann asked whether these conditions are also sufficient.

Problem 6.6. [43, Problem 163] Does every complete Boolean algebra which
is c.c.c. and weakly distributive necessarily support a strictly positive measure?

A positive answer implies Souslin’s Hypothesis and therefore is not provable
in ZFC [36]. Maharam divided von Neumann’s problem into two complementary
problems.

Problem 6.7. [36] Does every weakly distributive c.c.c. complete Boolean al-
gebra support a strictly positive continuous submeasure?

Problem 6.8. [36] Does every complete Boolean algebra equipped with a strictly
positive continuous submeasure admit a strictly positive measure?

This division was significant in part because it was possible to show that,
unlike Souslin’s Hypothesis, the answer to Problem 6.8 could not be changed by
forcing and therefore was unlikely to be independent of ZFC. This is analogous
to the division of Theorem 1.2 discussed in Section 8 below.

Recently two results completely resolved the situation.

Theorem 6.9. [5] Assume PID. If B is a complete Boolean algebra which is
c.c.c. and weakly distributive, then B supports a strictly positive continuous
submeasure.

Theorem 6.10. [61] There is a complete Boolean algebra supporting a strictly
positive continuous submeasure which does not support a measure.

This application of PFA also demonstrates the merits of its large cardinal
strength. While the conclusion of Theorem 6.9 does not apparently have any
relationship to large cardinals, it was demonstrated after the fact that the
conclusion of Theorem 6.9 does entail the existence of an inner model which
satisfies a large cardinal hypothesis.
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Theorem 6.11. [19] Assume that every complete Boolean algebra which is
c.c.c. and weakly distributive necessarily supports a strictly positive continuous
submeasure. Then there is an inner model with a measurable cardinal κ such
that o(κ) = κ++.

6.4. The determinacy of Gale-Stewart games. An application
of PFA of a rather different nature is derived entirely through its consistency
strength. Recall that in a Gale-Stewart game, two players play natural numbers
alternately, resulting in an infinite sequence ni (i < ∞) of elements of N. The
winner of the game is determined based on whether the resulting sequence is in
a predetermined set Γ ⊆ NN. The principle question, in this level of abstraction,
is under what circumstances such a game is determined — i.e. when does one of
the two players have a strategy to win the game? The Axiom of Choice implies
that there are sets Γ ⊆ NN which specify undetermined games. On the other
hand, by a classical theorem of Gale and Stewart, closed games are determined.

The interest in such games arises from the fact that the regularity properties
of subsets of Rn — such as Lebesgue measurability and the Baire Property
— can be reformulated in terms of the determinacy of games (see [30, §20-
21]). The assertion that the conclusion of OCA holds for open graphs on a
given set of reals X can also be regarded as a regularity property of X and
has a corresponding game associated to it [21]. In fact the determinacy of
games for a point class has come to be regarded as the ultimate form of a
regularity property. The first major success in understanding which games could
be determined was the following result.

Theorem 6.12. [39] Assume there is a measurable cardinal. Then every ana-
lytic game is determined.

With a considerably more complicated proof, it was possible to prove Borel
determinacy within ZFC.

Theorem 6.13. [40] Every Borel game is determined.

Unlike Borel games, however, the determinacy of analytic games does require
a large cardinal assumption (see [29, §31]).

While there are natural examples of definable subsets of Polish spaces which
are not Borel (see [8]), all simply definable sets tend to be projective. Here the
class of projective sets in a Polish space X is the smallest algebra of subsets
of X which contain the open sets and which is closed under continuous im-
ages. In a major breakthrough, Martin and Steel were able to prove projective
determinacy from what turned out to be an optimal large cardinal hypothesis.

Theorem 6.14. [41] If there are infinitely many Woodin cardinals, then all
projective games are determined.

While PFA does not imply the existence of large cardinals, it does entail the
existence of inner models which satisfy substantial large cardinal hypotheses.
This allowed for the proof of the following result.
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Theorem 6.15. [60] Assume PFA. The inner model L(R) satisfies that all
sets Γ ⊆ NN are determined. In particular, all projective sets are Lebesgue
measurable and have the Baire Property.

7. The Role of 2ℵ0 = ℵ2

One of the important early results on PFA was that it implies 2ℵ0 = ℵ2 [9] [82].
This is significant in part because it provides a natural limitation to the number
of maximal antichains one can expect to meet in a proper forcing.1 Since then a
number of different proofs have been given that PFA implies 2ℵ0 = ℵ2 [12] [44]
[45]. In each case new ideas where required which were of independent interest.
The most significant example of this is the isolation of the principle MRP in
[45] which in turn played a key role in the solution of the basis problem for the
uncountable linear orders [46] and which has since found other applications [12]
[83].

What is clear from experience is that in order to prove structural results at
the level of ℵ1, one must deal with combinatorics similar to that involved in
proofs that 2ℵ0 = ℵ2. What is less clear is to what extent this connection can
be made more explicit.

Problem 7.1. Is there a consistent classification of structures of cardinality
ℵ1 which implies 2ℵ0 = ℵ2?

The classification of A-lines presented in Section 3.1 provides an intriguing
test question. It is also an open problem whether the combinatorial principles
presented in Section 4 already entail that 2ℵ0 ≤ ℵ2. (While OCA implies b =
ℵ2, it is known that PID is consistent with CH, relative to the existence of a
supercompact cardinal [76].)

Problem 7.2. Does OCA imply 2ℵ0 = ℵ2?

Problem 7.3. Does PID imply 2ℵ0 ≤ ℵ2?

Both OCA and PID can be used to classify gaps and therefore do imply
that b ≤ ℵ2. Recall that a pair of sequences fξ (ξ < κ), gη (η < λ) form a
(κ, λ∗)-gap in NN/Fin if:

• whenever ξ < ξ′ < κ and η < η′ < λ, then fξ <∗ fξ′ <
∗ gη′ <∗ gη and

• there does not exist an h in NN such that if ξ < κ and η < λ, then
fξ <∗ h <∗ gη.

1It was known before the proof that PFA implies 2ℵ0 = ℵ2 that ℵ1 can not be replaced by
ℵ2 in the formulation of PFA. It had also already been known that the stronger MM implies
2ℵ0 = ℵ2 [22].
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Theorem 7.4. [27] There is an (ω1, ω
∗
1)-gap.

Theorem 7.5. [27] The following are equivalent for a regular cardinal κ:

• There is a (κ, ω∗)-gap.

• There is an (ω, κ∗)-gap.

• There is an unbounded chain in (NN, <∗) of ordertype κ.

Theorem 7.6. [70] [76] Assume either OCA or PID. If κ and λ are regular
cardinals and there is a (κ, λ∗)-gap, then either κ = ω, λ = ω, or κ = λ = ω1.
In particular, b ≤ ℵ2.

In [44], it was shown that the conjunction of OCA and the initial formulation
of OCA presented in [2] does imply 2ℵ0 = ℵ2.

8. The Role of PFA in Proving Theorems in

ZFC

One of the remarkable features of the study of forcing axioms and their con-
sequences is that one often obtains ZFC theorems of independent interest as
byproducts. One instance of this is the following result which is implicit in She-
lah’s original proof of the consistency of the conclusion of Theorem 1.2 [56, IV],
but which was first made explicit in [81].

Theorem 8.1. If Φ is an automorphism of P(N)/Fin, then either Φ is induced
by a map φ : N → N or else Φ does not have a C -measurable lifting.

We also have the following analogous result for the Calkin algebra.

Theorem 8.2. [16] If Φ is an automorphism of C (H), then either Φ is inner
or else Φ does not have a C -measurable lifting.

This is part of a more general phenomenon: one can show in ZFC that certain
objects or morphisms must fail to have nice regularity properties and PFA can
then be used to build regularity properties into such objects or morphisms. For
instance, Theorem 1.2 can be viewed as the combination of Theorem 8.1 above
and the following theorem.

Theorem 8.3. Assume PFA. If Φ is an automorphism of P(N)/Fin, then Φ
has a C -measurable lifting.

The reader is referred to [18] for a detailed discussion of this phenomenon
in quotients.

The following Analytic Gap Theorem was directly inspired by the influence
of OCA on gaps in NN/Fin and also closely parallels the formulation of PID.
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It says that the pair A = ∅ × Fin, B = Fin× ∅ is essentially the only analytic
gap occurring in P(N)/Fin.

Theorem 8.4. [72] Suppose that A ⊆ P(N) is analytic and closed under
taking subsets. If B ⊆ A ⊥ then either there is a countable A0 ⊆ B⊥ such
that every element of A is contained in an element of A0, or else there is tree
T ⊆ N<ω such that

1. if t is in T , then {i ∈ N : tˆi ∈ T} is an infinite element of B and

2. every branch through T is an element of A .

Remark 8.5. While there are many similarities between P(N)/Fin and C (H),
there are important differences as well. For instance recent work of Zamora-
Aviles [88] shows that there are analytic gaps in C (H) in which both sides are
countably directed (in an appropriate analog of ⊆∗).

One application of this theorem is the following result concerning the metriz-
ability of separable Fréchet groups.

Theorem 8.6. [80] Suppose that G is a countable topological group which is
Fréchet. If the topology on G is analytic as a subset of P(G), then G is metriz-
able.

The Ramsey theoretic approach to applications of set theory which devel-
oped simultaneously with the theory of PFA also played a role in the results of
[75].

Theorem 8.7. [75] Suppose that K is a compact subset of the Baire class 1
functions on a Polish space X. The following are true:

1. K contains a dense metrizable subspace. In particular if K satisfies the
countable chain condition, then it is separable.

2. If K does not contain an uncountable discrete subspace, then K admits
an at most 2-to-1 map onto a compact metric space.

3. If K is non metrizable, then either K contains an uncountable discrete
subspace or else K contains a homeomorphic copy of [0, 1] × {0, 1} with
the interval topology.

4. If K is separable and x is a point in K, then either x has a countable
neighborhood base or else there is a discrete subset of K of cardinality 2ℵ0

which has x as its unique accumulation point.

The Analytic Gap Theorem is especially important in the proof of (4), where
it is used to bring the Ramsey theory of perfect sets of reals into this context.
This has been further exploited in the following result which solves a special
case of the Separable Quotient Problem.
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Theorem 8.8. [4] If X is an infinite dimensional Banach space, then X∗ has
an infinite dimensional separable quotient.

In some cases, whether these results can be generalized to arbitrary compact
spaces in the presence of PFA remains open (see [25] for a survey of related
problems, including Problem 9.6 below).

Problem 8.9. [24] Assume PFA. If K is compact and does not contain an
uncountable discrete subspace, must K admit an at most 2-to-1 map onto a
metric space?

Finally, I will mention the following effective analog of Theorem 6.9 above.

Theorem 8.10. [77] If a complete Boolean algebra satisfies the σ-bounded
chain condition and is weakly distributive, then it supports a strictly positive
continuous submeasure.

9. Open Problems

In closing, I have collected a number of open problems. When possible I have
included a reference to either recent progress or a survey of the problem.

Problem 9.1. (Efimov [15]; see [26]) Is it consistent that every infinite com-
pact space contains either a convergent sequence or a copy of βN? Does this
follow from PFA?

Problem 9.2. (Todorcevic; see [18]) Assume PFA. If I and J are analytic
ideals on N such that P(N)/I ' P(N)/J , must the isomorphism be induced
by a map φ : N → N?

Problem 9.3. (Todorcevic; see [44]) Does either OCA or PID imply 2ℵ0 ≤ ℵ2?

Problem 9.4. (Moore [48]) Suppose the following are true: (a) every two ℵ1-
dense non-stationary Countryman lines are isomorphic or reverse isomorphic,
(b) every Aronszajn line can be embedded into ηC , and (c) the Aronszajn lines
are well quasi-ordered. Does it follow that 2ℵ0 = ℵ2?

Problem 9.5. (see [25] [35]) Assume PFA. If a compact convex set does not
contain an uncountable discrete subspace, must it be metrizable?

Problem 9.6. (Gruenhage [24]; see [25]) Assume PFA. Do the uncountable
first countable spaces have a three element basis consisting of a set of reals
of cardinality ℵ1 with the separable metric, the Sorgenfrey, and the discrete
topologies?

Problem 9.7. [49] Does every infinite dimensional Banach space have an in-
finite dimensional quotient with a basis?
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Problem 9.8. (Todorcevic [73]) Is there a consistent classification of the co-
final types of directed sets of cardinality at most ℵ2 which is comparable to the
classification of directed sets of cardinality at most ℵ1 given in [68]?

Problem 9.9. (see [13] [38] [37]) Is it consistent that strong homology is ad-
ditive?
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[44] J. Tatch Moore. Open colorings, the continuum and the second uncountable
cardinal. Proc. Amer. Math. Soc., 130(9):2753–2759, 2002.

[45] . Set mapping reflection. J. Math. Log., 5(1):87–97, 2005.

[46] . A five element basis for the uncountable linear orders. Ann. of Math.
(2), 163(2):669–688, 2006.

[47] . A solution to the L space problem. Jour. Amer. Math. Soc., 19(3):717–
736, 2006.

[48] . A universal Aronszajn line. Math. Res. Lett., 16(1):121–131, 2009.
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Pure Appl. Logic, 77(3):279–299, 1996.

[64] S. Todorcevic. Lipschitz maps on trees. J. Inst. Math. Jussieu, 6(3):527–556,
2007.

[65] . Forcing positive partition relations. Trans. Amer. Math. Soc.,
280(2):703–720, 1983.

[66] . A note on the proper forcing axiom. In Axiomatic set theory (Boulder,
Colo., 1983), volume 31 of Contemp. Math., pages 209–218. Amer. Math. Soc.,
Providence, RI, 1984.

[67] . Trees and linearly ordered sets. In Handbook of set-theoretic topology,
pages 235–293. North-Holland, Amsterdam, 1984.

[68] . Directed sets and cofinal types. Trans. Amer. Math. Soc., 209:711–723,
1985.

[69] . Partitioning pairs of countable ordinals. Acta Math., 159(3–4):261–294,
1987.

[70] . Partition Problems In Topology. Amer. Math. Soc., 1989.

[71] . Aronszajn orderings. Publ. Inst. Math. (Beograd) (N.S.), 57(71):29–46,
1995. D̄uro Kurepa memorial volume.

[72] . Analytic gaps. Fund. Math., 150(1):55–66, 1996.

[73] . A classification of transitive relations on ω1. Proc. London Math. Soc.
(3), 73(3):501–533, 1996.

[74] . The first derived limit and compactly Fσ sets. J. Math. Soc. Japan,
50(4):831–836, 1998.

[75] . Compact subsets of the first Baire class. J. Amer. Math. Soc.,
12(4):1179–1212, 1999.

[76] . A dichotomy for P-ideals of countable sets. Fund. Math., 166(3):251–267,
2000.

[77] . A problem of von Neumann and Maharam about algebras supporting
continuous submeasures. Fund. Math., 183(2):169–183, 2004.

[78] . Biorthogonal systems and quotient spaces via Baire category methods.
Math. Ann., 335(3):687–715, 2006.

[79] . Walks on ordinals and their characteristics, volume 263 of Progress in
Mathematics. Birkhäuser, 2007.
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We survey results relating the computability and randomness aspects of sets of
natural numbers. Each aspect corresponds to several mathematical properties.
Properties originally defined in very different ways are shown to coincide. For
instance, lowness for ML-randomness is equivalent to K-triviality. We include
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1. Introduction

We will study sets of natural numbers. We refer to them simply as sets. Sets
can be identified with infinite sequences of bits. Co-infinite sets can also be
identified with real numbers in [0, 1) via the binary representation.

We consider two aspects of a set, its computational complexity and its ran-
domness. The principal observation is that these two aspects interact closely
with one another.

The traditional interaction is from computability to randomness. One uses
algorithmic methods to define and study randomness notions [43, 26, 27]. We
will show that notions introduced in very different computability-theoretic ways
coincide.

The converse interaction was discovered later. Concepts originating from
randomness enrich computability theory [4, 19, 34]. We will give examples of
this interaction through the study of lowness properties of a set A. Such a
property specifies a sense in which A is close to being computable. Often this
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is understood via the weak-as-an-oracle paradigm: A is weak in a specific sense
when used as an oracle set in a Turing machine computation. Randomness-
related concepts have led to two new paradigms of lowness [37, 31, 13].

The Turing-below-many paradigm says that A is close to being computable
because it is easy for an oracle set to compute it, in the sense that the class
of oracles computing A is large. Here, a class of oracles is considered large if
it contains random sets of a certain kind. So far, all the sets that satisfy an
instance of the Turing-below-many paradigm are ∆0

2.
The inertness paradigm says that a set A is close to computable because

it is computably approximable with a small number of changes. In particular,
such a set is ∆0

2 (see the Limit Lemma 2.1 below). To formalize the inertness
paradigm, we use so-called cost functions. They measure the total number of
changes of a ∆0

2 set, and especially that of a computably enumerable set. Most
examples of cost functions are based on randomness-related concepts.

In Sections 4-6, we will show that various lowness properties coincide. We
introduce the K-trivial sets, and the strongly jump-traceable sets. For each
class we give characterizations via all three lowness paradigms.

For some more motivation and background in non-technical language
see [32]. For detailed background see [37, 8]. Most sections end with a sum-
mary and some interesting further facts. The keen student may want to prove
some of these facts as exercises.

2. Some Background from Computability

Theory

We assume that the reader knows the basics of computability theory, such as
the notions of a computable set, a computably enumerable (c.e.) set, Turing
reducibility ≤T, relativization, and (to some extent) Turing functionals. See
[41] or [37, Ch. 1].

The capital letters A,B,X, Y, Z denote sets of natural numbers, simply
called sets in what follows. For an “oracle” set A, we let JA(x) be the value on
input x of a universal partial A-computable function. For instance, let (Φe)e∈N

be an effective listing of all Turing functionals and let JA(x) = ΦA
x (x) (equality

extends to the value ‘undefined’). The domain of JA is denoted A′. Thus, A′

is the set of x such that JA(x) is defined, and ∅′ is (a version of) the halting
problem. We say that a set A is ∆0

2 if A ≤T ∅′. The following basic result of
Shoenfield will be used frequently.

Lemma 2.1 (Limit Lemma).
A is ∆0

2 ⇔ A(x) = lims f(x, s) for some computable 0, 1-valued function f .

Usually we write As(x) instead of f(x, s).
Recall that X ≤tt Y (X is truth-table below Y ) if X ≤T Y via a Turing

functional Γ such that Γ(Z) is total for all oracles Z. A variant of the Limit
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Lemma says that A ≤tt ∅′ iff the number of changes in some computable
approximation of A is computably bounded in x. Such a set is called ω-c.e.

Recall that a lowness property specifies a sense in which a set A ⊆ N is
close to being computable. Such a property is closed downwards under ≤T. For
instance, A is low if A′ ≤T ∅′, that is, the Turing degree of A′ is as low as
possible. A is superlow if in fact A′ is truth-table below ∅′.

Another example of a lowness property is the following. We say that a set
A is computably dominated (or of hyperimmune-free degree) if each function
f that can be computed with A as an oracle is dominated by a computable
function. Outside the computable sets, this lowness property is not compatible
with being low in the usual sense. In fact, the only computably dominated ∆0

2

sets are the computable sets.

Cantor space. Finite sequences of bits will be called strings. The set of strings
is denoted {0, 1}∗. The variables x, y, z, σ, τ range over strings. We identify
strings with natural numbers via a computable bijection {0, 1}∗ → N (related
to the binary presentation of a number).

Subsets of N are identified with infinite sequences of bits. They form the
Cantor space 2N, which is equipped with the product topology. For each
string σ,

[σ] = {X : σ ≺ X}
is the class of sets extending the string σ. The clopen classes [σ] form a basis
for the product topology. Thus, an open class (or set) has the form

⋃
σ∈C [σ]

for some set C. Such a class is called computably enumerable, or Σ0
1, if one can

choose the set C computably enumerable.
The complements of computably enumerable open classes are called Π0

1

classes. A Π0
1 class is given as the set of paths through a computable binary

tree. There are many examples of non-empty Π0
1 classes without a computable

member.

Basis Theorems for Π0
1 classes. A basis theorem (for Π0

1 classes) says that
each non-empty Π0

1 class has a member with a particular property, usually a
lowness property.

Theorem 2.2 (Jockusch and Soare [16]). Let P be a non-empty Π0
1 class.

Then P has a low member, and a computably dominated member.

The proof of the first statement actually shows that P has a superlow mem-
ber. In the second statement one obtains a computably dominated member A
of P such that A′′ ≤tt ∅′′ (see [37, 1.8.38, 1.8.43]).

3. Randomness

In this section we consider the interaction between computability and random-
ness. We use algorithmic tools to introduce tests concepts, which determine
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formal randomness notions. The tools are not only taken from computability
theory on sets of natural numbers, but also from computable analysis, where
the basic objects are continuous functions. We show that differentiability of
certain computable functions defined on the unit interval can be used as a test
notion.

3.1. Finite objects. Recall that {0, 1}∗ denotes the set of strings over
{0, 1}. A machine is a partial computable function M : {0, 1}∗ 7→ {0, 1}∗. If
M(σ) = x we say that σ is an M -description of x.

We say that a machine M is prefix-free if no M -description is a proper
initial segment of any other M -description. To build a prefix-free machine M ,
one usually specifies a set of requests 〈r, y〉 ∈ N × {0, 1}∗. Via such a request
one asks that M can describe the string y with r bits. An important technical
fact is that any consistent c.e. set of requests can be turned into a prefix-free
machine. This result is often referred to as the Kraft-Chaitin theorem, but is
called the Machine Existence Theorem in [37, 2.2.17].

Theorem 3.1. Let L be a computably enumerable set of requests such that

1 ≥ ∑{2−r : 〈r, y〉 ∈ L}.

Then there is a prefix-free machine M such that for each request 〈r, y〉 ∈ L, the
machine M can describe y with at most r bits.

Let (Md)d∈N be an effective listing of the prefix-free machines. We define a
prefix-free machine U by U(0d1σ) =Md(σ). The machine U is universal in the
sense that, if a string y has an Md-description σ, it has a U-description that is
only longer by a constant. For a string x, we let K(x) denote the length of a
shortest U-description of x:

K(x) = min{|σ| : U(σ) = x}.

The definitions given above can be generalized to the case that the compu-
tation model includes queries to an oracle set X. In this way, we define UX(σ),
KX(y), etc.

We list some facts about K. Let “≤+ denote “≤” up to a constant. (For
instance, we write 2n+5 ≤+ n2.) Let |x| ∈ {0, 1}∗ denote the length of a string x
written in binary. The following bounds are proved by constructing appropriate
prefix-free machines: for each computable function f we have K(f(x)) ≤+

K(x). In particular, we have the lower bound K(|x|) ≤+ K(x). Further, we
have the upper bound K(x) ≤+ |x| + K(|x|). Since K(|x|) ≤+ 2 log |x|, this
upper bound is not much larger than |x|.

If |x| ≤+ K(x) we think of x as incompressible. This formalizes the intuitive
notion of randomness for strings (see Section 2.5 of [37] for details).



34 André Nies

3.2. Measure, tests, and Martin-Löf randomness. The product
measure λ on Cantor space 2N is given by

λ[σ] = 2−|σ|

for each string σ. If a class G ⊆ 2N is open then λG =
∑

σ∈B 2−|σ| where B is
a prefix-free set of strings such that G =

⋃
σ∈B [σ].

A class C ⊆ 2N is called null if C is contained in some Borel class D such
that λD = 0. We discuss the connection of null classes and randomness. The
intuition is that an object is random if it satisfies no exceptional properties. We
give two examples of exceptional properties of a set Y . The first is that every
other bit is zero. The second is that in the limit, there are at least twice as
many zeros as ones:

2/3 ≤ lim infn |{i < n : Y (i) = 0}|/n.

We would like to formalize “exceptional property” by “null class”. The examples
above are null classes, so they should not contain a random set. The problem
is that if we do this, no set Z is random, because {Z} itself is a null class.
The solution is to consider only effective null classes. By specifying a particular
notion of effectivity, we specify a notion of tests. To be random in this particular
algorithmic sense, Z has to avoid these effective null classes, that is, to pass
these tests. Since there are only countably many null classes of this type, the
class of random sets in this sense will have measure 1.

Frequently test notions are based on the following fact from measure theory.

Fact 3.2. The class C ⊆ 2N is null ⇔ C ⊆ ⋂Gm for some sequence (Gm)m∈N

of open sets such that λGm converges to 0.

We obtain a type of effective null class (or test) by adding effectivity require-
ments to this condition characterizing null classes. We can require an effective
presentation of (Gm)m∈N; further, we can require fast convergence of λGm to 0.
In this way, we obtain for instance the central randomness notion introduced
by Martin-Löf in 1966 [26].

Definition 3.3. A Martin-Löf test (or ML-test) is a uniformly computably
enumerable sequence (Gm)m∈N of open subclasses of 2N such that λGm ≤ 2−m

for each m. A set Z is Martin-Löf random (or ML-random) if Z passes each
ML-test (Gm)m∈N, in the sense that Z is not a member of some Gm.

The two properties given above (every other bit is zero, or in the limit there
are at least twice as many zeros as ones) determine effective null classes in this
sense. So a ML-random set does not have either of these properties.

In the following, we identify co-infinite sets with real numbers in [0, 1) via
the binary presentation. A natural example of a ML-random set was given by
Chaitin. Consider the halting probability of the universal prefix-free machine U:

Ω =
∑

{2−|σ| : Uhalts on inputσ}.



Interactions of Computability and Randomness 35

Note that this sum converges because the machine U is prefix-free. Chaitin
proved that Ω is Martin-Löf random.

The left cut {q ∈ Q : q < Ω} is computably enumerable. Since any real
number is Turing equivalent to its left cut, this implies that Ω ≤T ∅′. It is also
not hard to show that ∅′ ≤T Ω. Thus Ω determines a ML-random set that is
Turing equivalent to the halting problem.

Given a set Z and n ∈ N, let Z �n denote the initial segment Z(0) . . . Z(n−1).
Schnorr’s 1972 Theorem [40] says that Z is ML-random if and only if each of
its initial segments is incompressible.

Theorem 3.4. Z is ML-random ⇔
there is b ∈ N such that ∀nK(Z �n) > n− b.

Levin [24] proved the analogous theorem for a variant of K called monotone
string complexity.

Schnorr’s Theorem yields a universal ML-test: Let

Rb = {X : ∃n [K(X �n) ≤ n− b]}.

The relation “K(x) ≤ r” is computably enumerable, so the sequence of open
classes Rb is uniformly computably enumerable. One shows that λRb ≤ 2−b.
Thus, using this notation, Schnorr’s Theorem says that

Z is ML-random ⇔ Z passes the ML-test (Rb)b∈N.

So, the single test (Rb)b∈N suffices to emulate all the others.
This fact can be used to obtain ML-random sets with lowness properties.

The complement of R1 is {X : ∀nK(X �n) ≥ n}. This is a Π0
1 class of measure

at least 1/2. By Schnorr’s Theorem, it consists entirely of ML-random sets. So
we can apply the Jockusch-Soare Basis Theorems 2.2 to obtain ML-random
sets satisfying lowness properties:

Example 3.5. (i) There is a low ML-random set.
(ii) There is a computably dominated ML-random set.

3.3. Randomness and differentiability. A well-known theorem
from analysis states that every function f : [0, 1] → R of bounded variation
is differentiable almost everywhere (with respect to Lebesgue measure λ). In
particular, this holds for every monotonic function. In the following we identify
co-infinite subsets of N with reals in [0, 1] via the binary representation (we
identify the set N with the real 1). If one also requires an effectiveness condi-
tion on the function, the reals at which it is not differentiable form a type of
effective null class, and hence a test notion for reals. In the 1970s Demuth had
a program to show that effective functions are well-behaved, and in particular
differentiable, at random reals. For instance, in his own constructivist language
he proved that if a real x is Martin-Löf random then each constructive function
of bounded variation is differentiable at x [6].
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We will describe a similar coincidence due to Brattka, Miller and Nies [2]. We
characterize computable randomness using differentiability of non-decreasing
computable functions on the unit interval. First we explain the notions involved.

Computable randomness. Martin-Löf tests are c.e. objects. For this reason
Schnorr [39] maintained the point of view that ML-tests are already too power-
ful to be considered algorithmic. He proposed a more restricted notion of a test.
His tests formalize computable betting strategies. A test in Schnorr’s sense is a
computable function M from {0, 1}∗ to the non-negative rationals. When the
player has seen z = Z �n, she can make a bet q where 0 ≤ q ≤ M(z) on the
next bit Z(n). If she is right she wins q, otherwise she loses q. Thus M must
satisfy the fairness condition M(z0) +M(z1) = 2M(z) for each string z. She
wins on Z if M(Z �n) is unbounded. We call a set Z computably random if no
computable betting strategy wins.

Choose c ∈ N such that the start capital M(∅) is at most 2c. Let Gr be
the class of Z such that M(Z �k) ≥ 2r+c for some k. It is not hard to see that
(Gr)r∈N forms a ML-test. If M(Z �n) is unbounded then Z ∈ ⋂

m Gm. This
shows that computable betting strategies induce a type of effective null class.
Further, each ML-random set is computably random.

Computable functions on the unit interval. A Cauchy representation of a real
x ∈ R is a sequence (qi)i∈N of rationals converging to x such that |qk − qi| ≤
2−i for each k ≥ i. A function f : [0, 1] → R is called computable if there
is an effective method (i.e., a Turing functional) to transform each Cauchy
representation of an x ∈ [0, 1] into a Cauchy representation of f(x). Such a
function is necessarily continuous. Functions from analysis such as ex,

√
x etc.

are computable.

We are now able to state the result of Brattka, Miller and Nies in [2].

Theorem 3.6. Let x ∈ [0, 1]. Then x is computably random if and only if f ′(x)
exists for each computable non-decreasing function f .

Further research in [2] indicates that x is Martin-Löf random if and only
if each computable function of bounded variation is differentiable at x. The
forward implication is a variant of the aforementioned result of Demuth [6].

3.4. A notion stronger than Martin-Löf randomness. One
can also argue that ML-randomness is too weak to be viewed as a formal coun-
terpart of our intuitive idea of randomness for sets. For instance, the ML-
random real Ω has a computably enumerable left cut, and is Turing equivalent
to the halting problem ∅′. These properties may contradict our intuition on
randomness: the halting problem is not random at all, so a random set should
not match its computational strength. In fact, the set should be Turing incom-
parable with the halting problem. The following stronger notion was proposed
by Kurtz [23].
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Definition 3.7. We say that Z is 2-random if Z is ML-random relative to the
halting problem.

Clearly, a set Z ≤T ∅′ is not 2-random: let Gm = [Z �m], then (Gm)m∈N is a
ML-test relative to ∅′ which Z fails. It is also not hard to show that a set Z ≥T ∅′
is not 2-random: given a Turing functional Φ, the halting problem can for each
m compute k such that the measure of Gm = {Y : ∀i < k [ΦY (i) = ∅′(i)]} is
at most 2−m. If Φ(Z) = ∅′ then Z fails (Gm)m∈N, which is a ML-test relative
to ∅′.

For an example, note that the real Ω∅′

is 2-random. Kurtz [23] showed,
among other things, that no 2-random set Z is computably dominated (see
Section 2 for the definition). In fact he obtained the stronger result that Z is
c.e. relative to some set Y <T Z.

Let C(x) be the plain Kolmogorov complexity of a string x, without restric-
tion to prefix-free machines. Clearly C(x) ≤+ |x|. A string is incompressible
in the sense of C if C(x) > |x| − b for some (small) constant b. One can show
that for some constant slightly larger than b, all prefixes of such a string are
incompressible in the sense of K.

Our next coincidence result characterizes 2-randomness in terms of C-
incompressibility of initial segments. This can be seen as a variant of Schnorr’s
Theorem 3.4. However, we merely need C-incompressibility of infinitely many
initial segments to arrive at the stronger notion of 2-randomness. This sug-
gests that C-incompressibility of a string is a condition much stronger than
K-incompressibility.

The coincidence result is due to Nies, Stephan and Terwijn [36]; the harder
implication “⇒” was also independently (and slightly earlier) obtained by
Miller [28].

Theorem 3.8. Z is 2-random ⇔
there is b ∈ N such that C(Z �n) > n− b for infinitely many n.

Sketch of Proof (for the details see [37, Thm. 3.6.10]).

⇐: Recall that for each oracle X the domain of UX is prefix-free. The plain
machine M on input σ searches for a splitting σ = τz such that y = U∅′

(τ)
converges in |σ| steps with the approximation of the oracle ∅′ at stage |σ|. In
this case, it outputs yz. That is, M prints y followed by the rest of σ.

Now suppose that Z is not 2-random. Then by Theorem 3.4 relative to ∅′,
for each d there is r ∈ N such that K∅′

(Z �r) ≤ r − d. Let n0 be so large that
the final computation U∅′

(τ) = Z �r converges in n0 steps for some τ such that
|τ | ≤ r−d. For each n ≥ n0, if the string y contains the bits of Z from position
r to n− 1, then M(τy) = Z �n. Thus M can describe Z �n with at most n− d
bits for each n ≥ n0, whence C(Z �n) ≤ n− d+O(1) for each n ≥ n0.

⇒: A function F : {0, 1}∗ → {0, 1}∗ is called a compression function if F is
one-one and |F (x)| ≤ C(x) for each x. By the Low Basis Theorem 2.2 there is
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a compression function F such that F ′ ≡T ∅′. Using this lowness of F , if Z is
2-random one can show that there is b such that |F (Z �n)| > n− b for infinitely
many n. This implies that C(Z �n) > n− b for infinitely many n.

As a corollary, in [36] we obtained a simple new proof of Kurtz’s result [23]
that no 2-random set is computably dominated.

Summary of Section 3. For binary strings x, we introduce plain descriptive string
complexity C(x), and prefix-free string complexity K(x). The intuitive notion of ran-
domness for strings can be formalized by incompressibility. One formal version of
incompressibility is |x| ≤+ K(x). A stronger one is |x| ≤+ C(x).

For an infinite sequence of bits (i.e., a set), the intuitive notion of randomness
corresponds to a hierarchy of mathematical randomness notions. The central one is
Martin-Löf randomness; computable randomness is a weaker notion where the tests
formalize the idea of a computable betting strategy; 2-randomness is the relativization
of ML-randomness to ∅′.

ML-randomness and 2-randomness can be characterized via incompressibility
of initial segments of the sequence. Computable randomness is implied by ML-
randomness. It can be characterized by the condition that each non-decreasing com-
putable function on the unit interval is differentiable at the corresponding real number.

Some further facts. The implications between randomness notions are proper:

2-random ⇒ Martin-Löf random ⇒ computably random. See [37, 3.6.2, 7.4.8].

Suppose that the set A is computable. If Z satisfies a randomness notion, then
the symmetric difference Z∆A satisfies the same notion. Further, if ρ is a computable
permutation of N, then ρ(Z) satisfies the same notion (see [37, 7.6.24] for the case of
computable randomness).

4. For ∆0
2, Close to Computable = Far From

Random

We will introduce a lowness property via relativized ML-randomness. Further,
we will introduce the K-trivial sets which are far from random. Recall from
Subsection 3.1 that K(x) is the length of a shortest prefix-free description of a
string x.

Definition 4.1. Let A ⊆ N.

(i) A is low for ML-randomness (Zambella 1990, [44]) if each ML-random
set is already ML-random relative to A.

(ii) A is K-trivial (Chaitin 1975, [4]) if each initial segment of A has prefix-
free complexity no greater than the complexity of its length. That is, there
is b ∈ N such that, for each n, K(A�n) ≤ K(n) + b. (Here n is written in
binary.)
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We will see that these two properties of sets are equivalent.

4.1. Background on the two properties.
Lowness for ML-randomness. Zambella asked whether lowness for ML-
randomness implies being computable. Kučera and Terwijn [22] answered this
in the negative. They proved that in fact some incomputable c.e. set is low for
ML-randomness.

Kjos-Hanssen [17] characterized being low for ML-randomness using only
effective topology and the uniform measure on Cantor space: A is low for ML-
randomness ⇔ each open class G ⊆ 2N that is c.e. in A and has measure λG
less than 1 is contained in an open class S that is c.e. (without the oracle A)
and still of measure λS less than 1.

J. Miller observed that for an incomputable set A, Kjos-Hanssen’s result is
not constructive. An index for a c.e. open set R is a number e such that R is the
class of sets extending some string in We. Assume that from an index relative
to A for G we can effectively obtain an index for the covering class S ⊇ G. To
compute A �n, let G = 2N − [A �n]. Compute the index for S. Wait for a stage
when all strings y of length n except for one satisfy [y] ⊆ S. Then A �n must
be the remaining string.

K-triviality. This property of sets is the opposite of ML-randomness: K-trivial
sets are “antirandom”. For, by Schnorr’s Theorem 3.4, Z is ML-random iff all
values K(Z �n) are near their upper bound n + K(n); on the other hand Z
is K-trivial if the values K(Z �n) are at their lower bound K(n) (all within
constants).

Chaitin [4] was the first to study K-triviality. He showed that the number
of strings of a fixed length with minimal K-complexity up to a constant b is
bounded by O(2b).

Theorem 4.2 (Counting Theorem [4]). For each b ∈ N, at most O(2b) strings
of length n satisfy K(x) ≤ K(n) + b. Thus, at most O(2b) sets are K-trivial
with constant b.

The following is an easy consequence.

Theorem 4.3 ([4]). Each K-trivial set is ∆0
2.

Proof. A is K-trivial via the constant b iff A is a path on the ∆0
2 tree of strings z

such that K(x) ≤ K(|x|) + b for each x � z. This tree has only O(2b) paths.
Therefore A is ∆0

2 as an isolated path on a ∆0
2 tree.

Instigated by Chaitin, in 1975 Solovay [42] built an incomputable K-trivial
set. His set was merely ∆0

2. Calude and Coles [3] modified Solovay’s construction
in order to make the set c.e. In 2002, Downey, Hirschfeldt, Nies and Stephan [9]
gave an easier construction of a c.e. incomputable K-trivial set. It is similar to
the 1999 Kučera-Terwijn construction of a set that is low for ML-randomness.



40 André Nies

These constructions gave rise to the cost function method described in Section 5.
In Proposition 5.4 we will explain how to obtain a c.e. incomputable K-trivial
set via the general Existence Theorem 5.3.

For sets A and B, let A ⊕ B denote the set 2A ∪ 2B + 1, namely the set
which is A on the even bit positions and B on the odd positions. The K-trivial
sets are closed under ⊕ by the following result of Downey, Hirschfeldt, Nies and
Stephan.

Theorem 4.4 ([9]). If A and B are K-trivial via b, then A ⊕ B is K-trivial
via 3b+O(1).

Proof. It is sufficient to describe each string A⊕B �2n withK(n)+3b+O(1) bits.
To do this, we need to describe n only once; if we have a shortest description
of n we also know its length r = K(n).

We (somewhat generously) use b+1 bits to describe b itself, by putting the
string 0b1 at the beginning of our description of A ⊕ B �2n. Next, we put the
prefix-free description of n. The set of strings x of length n such that K(x) ≤
r + b is uniformly c.e. and has size O(2b) by Chaitin’s Counting Theorem 4.2.
So we only need to put b + O(1) further bits each to describe the positions of
A�n and B �n in its enumeration.

4.2. Coincidence of the two properties.

Theorem 4.5. A is low for ML-randomness ⇔ A is K-trivial.

Known since 2002, this result published in [34] is now considered funda-
mental in the area. Nies [34] proved “⇒”. The converse implication has a com-
plicated history. Downey, Hirschfeldt, Nies and Stephan [9] showed that each
K-trivial set is Turing incomplete. These ideas were later explained through the
decanter model [10]. Nies combined this model with a new technique called the
golden run method in order to show that the K-trivial sets are closed downward
under ≤T . Hirschfeldt and Nies together used the golden run method to show
the stronger result that K-triviality implies being low for ML-randomess; see
[34, 37].

Conceptually, lowness for ML-randomness and K-triviality are quite far
apart: the former is a lowness property defined in terms of randomness, while
the latter expresses being far from random. So it come at no surprise that the
proof of their coincidence is hard. On the other hand, this makes the coincidence
quite beneficial, because properties that are easily obtained via one definition
can be very hard to obtain directly via the other. For instance, it is easy to see
from the definition that each set A that is low for ML-randomness is generalized
low1, i.e., A

′ ≤T A ⊕ ∅′ [22], while it takes the golden run method to see this
for the K-trivials. On the other hand, for the K-trivial sets, containment in
the ∆0

2 sets and closure under ⊕ is not very hard to see (Theorems 4.3, 4.4).
If one takes the definition via lowness for ML-randomness, containment in the
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∆0
2 sets is much harder [33], and no direct proof is even known for the closure

under ⊕.

Outline of the Proof. It is easiest to introduce two further properties and show
the coincidence of the theorem via these properties. The implication from left
to right is proved via the notion of a base for ML-randomness. The converse
implication is proved via the notion of being low for K. These two notions are
of independent interest.

⇒: Bases for ML-randomness were introduced by Kučera [21] in a different
terminology.

Definition 4.6. We say that A is a base for ML-randomness if A ≤T Z for
some set Z that is ML-random relative to A.

Each set A that is low for ML-randomness is a base for ML-randomness.
For, by the Kučera-Gács Theorem (see [37, Thm. 3.3.2]) there is a ML-random
set Z such that A ≤T Z. Then Z is ML-random relative to A.

It is now sufficient to show that each base for ML-randomness is K-trivial.
This is a result of Hirschfeldt, Nies and Stephan [15] whose proof we follow.
Suppose there are a set Z and a Turing functional Φ such that ΦZ = A and
Z is ML-random relative to A. We will build a prefix-free machine Nd for each
d ∈ N. We want to ensure that there is a d such that Nd can describe each
τ ≺ A with K(|τ |) + d + 2 bits. Of course, A is unknown. Thus, given the
limitation that the total measure of the Nd-descriptions must not exceed 1,
we have to be judicious in deciding which strings τ receive such a descrip-
tion. The idea is to build uniformly c.e. open classes Cτ

d ⊆ 2ω for d ∈ N and
τ ∈ 2<ω. Their purpose is to test whether a string τ is likely to be an ini-
tial segment of A. Roughly, τ fulfills this test if sufficiently many σ satisfy
τ � Φσ.

For each fixed d, the Cτ
d are pairwise disjoint. If we let Gd =

⋃
τ≺A Cτ

d , then
the following hold.

• (Gd)d∈N is a Martin-Löf test relative to A.

• If Z /∈ Gd then λCτ
d = 2−K(|τ |)−d for all τ ≺ A.

For a c.e. open class C and a stage s, let C[s] ⊆ C denote the clopen class
approximating C at stage s. We defineNd by enumerating a description of length
Ks(|τ |)+d+2 of τ at stage s whenever we have not previously enumerated such
a description and λCτ

d [s] ≥ 2−Ks(|τ |)−d−1. Since the Cτ
d are disjoint for fixed d,

we don’t run out of descriptions. For the formal definition of the Nd we apply
the Machine Existence Theorem 3.1.

Since Z is ML-random relative to A, we have Z /∈ Gd for some d and hence
λCτ

d = 2−K(|τ |)−d for all τ ≺ A. This implies that there is an Nd-description of
length K(|τ |) + d+ 2 of τ for all τ ≺ A, as desired.
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To build the Cτ
d , as long as at a stage s we have λCτ

d [s] < 2−Ks(|τ |)−d, we
look for strings σ such that τ � Φσ and λCτ

d [s] + 2−|σ| ≤ 2−Ks(|τ |)−d, and put
[σ] into Cτ

d [s+1]. To keep our open classes pairwise disjoint, we then ensure that
no [σ′] such that σ′ is compatible with σ is later put into Cν

d for any string ν.

If Z /∈ Gd, then no [σ] with σ ≺ Z is ever put into any Cτ
d . This means that

the measure of each Cτ
d with τ ≺ A = ΦZ must eventually exceed 2−K(|τ |)−d−1.

⇐: Recall that UA is the universal prefix-free machine with oracle A, and
KA(y) is the length of a shortest UA-description of y. In general, enhancing
the computational power of the universal machine by an oracle A decreases
K(y). We say that A is low for K if this is not so:

Definition 4.7. A is low for K if K(y) ≤+ KA(y) for each string y.

This property was introduced by Andrej Muchnik Jr. in a 1999 Moscow
seminar. He showed that some incomputable c.e. set is low for K. Among the
properties discussed in this section, it is the most well-behaved. For instance,
if a c.e. set A is low for K, we can, effectively in the constant for being low for
K and the c.e. index for A, find an index for a truth table reduction showing
A′ ≤tt ∅′, that is, the superlowness of A [37, 5.1.3].

Also, lowness for K easily implies the other properties we have discussed.
By Schnorr’s Theorem relative to A, being low for K implies being low for
ML-randomness: if Z is ML-random, then n ≤+ K(Z �n) ≤+ KA(Z �n) for
each n, so Z is ML-random relative to A. To show that lowness for K implies
K-triviality, one uses the finitary methods common in algorithmic information
theory (see [25]): K(A �n) ≤+ KA(A �n) ≤+ KA(n) ≤+ K(n). The hypothesis
is only used in the first inequality.

To prove that K-triviality implies being low for ML-randomness, it now
suffices to show that conversely, each K-trivial set is low for K. From the for-
mulation of this implication, one could hope that it can also be proved using
finitary methods, such as manipulating inequalities involving K and KA. How-
ever, so far no one has found such a proof.

The difficulty of proving the implication “K-trivial ⇒ low for K” is in part
explained by the fact that it is not constructive: from a constant for K-triviality
and a c.e. index for a set A, one can not compute a constant via which A is low
for K. See [37, 5.5.6], which goes back to [9]. In fact, one cannot even compute
an index of a Turing reduction for A′ ≤T ∅′ [37, 5.5.5]. This shows that the
original implication “⇐” in the theorem is also not constructive.

We give an outline of the proof that K-triviality implies being low for K,
using the decanter model and the golden run method; for more details see [37,
Sections 5.4-5]. We already know from Theorem 4.3 that each K-trival set A
is ∆0

2, and hence has a computable approximation (As)s∈N in the sense of the
Limit Lemma 2.1. We now have to understand whyK-triviality of A can be seen
as an inertness (in particular, a lowness) property. Roughly speaking, whenever
A �n changes, say at a stage s, a U-description of length at most Ks(n) + b of
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the new version of A �n is needed. The measure of possible descriptions is at
most 1, so this restricts the changes of A.
Turing incompleteness. First we will discuss the result of [9] that a K-trivial
set A is Turing incomplete. The proof is by contradiction. We build an auxiliary
c.e. set B. If A is Turing complete, then by the Recursion Theorem we are given
a Turing reduction Γ such that B = Γ(A). Let γA(m)[s] denote the use u, i.e.,
u − 1 is the largest oracle question asked in the computation ΓA(m)[s]. If we
put m into B then A must change below u in order to maintain B = Γ(A) at
input m.

We also build a bounded request set L as in Theorem 3.1. Putting a request
〈r, n〉 into L causes K(n) ≤ r + d, where d is the constant for the machine ob-
tained from L (which is again known ahead of the construction by the Recursion
Theorem). Hence K(A�n) ≤ r + b+ d where A is K-trivial via b.

Let k = 2b+d+1. If we can force A �n to change to a new configuration for
more than k /2 times, then for this n, our investment into L is overmatched by
the opponent’s investment into descriptions of A �n. The idea is to do this for
so many numbers n that he does not have enough resources to match us.

We can cause these changes if we have k /2 numbers m with use γA(m) ≤ n
to put into B. If Γ is a weak truth-table reduction, i.e., the use is bounded by
a computable function g, we can arrange this by choosing n ≥ g(k ). In the
general case, the opponent will simply change A “early” and then redefine the
use γA(m) with a value beyond n. This deprives us of the possibility to cause
further A-changes when we need them.

Our solution to this problem is to pool numbers n together, so that a single
A-change will let us make progress on lots of them. Further, we already make
partial progress based on the A-changes the opponent relies on to move up
γA(m). For i ≤ k let us say that a set E is an i-set if for each n ∈ E, we
put a request 〈rn, n〉 into L, and then see descriptions of length rn + b+ d of i
different A�n configurations. The weight of such a set is

∑
n∈E 2−rn . If n is in

a k -set, then for each of the k different versions A �n there is a U-description
of length at most rn + b+ d. Hence the weight of a k -set cannot exceed 1/2.

We visualize a set of numbers n associated with requests 〈rn, n〉 as a quantity
of precious wine of the corresponding weight. The decanter model consists of
decanters F1, . . . , Fk . For instance, in the case k = 4 it looks like this:

F
4

F
1

F
2

F
3

Precious wine is first poured into F1. Decanter Fi−1 can be emptied into de-
canter Fi. At any stage the content of each Fi must form an i-set. We want as
much wine as possible to reach Fk , because from Fk we can pour it into a glass
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and drink it. Under certain circumstances we cannot ensure that the content
of Fi−1 is promoted to Fi, so we have to spill it on the floor.

When we put 〈rn, n〉 into L, we also put n into F1, which means that we
pour a quantity 2−rn of precious wine into F1. At a stage s, all elements n of
Fi−1, i ≤ k , satisfy n ≥ γA(m)[s] for a specific number m associated with Fi

(to be explained shortly). Once the weight of Fi−1 passes a certain quota, we
put m into B and empty Fi−1 into Fi. Since A �γA(m) has to change to keep
B = Γ(A) correct, the content of Fi including the wine just added remains an
i-set, as required.

Now we can get around the problem of an “early” A-change that would
move γA(m) beyond n. If A changes early, then the wine that has already
reached Fi−1 is still promoted to Fi. The only wine lost is the one currently
in F1, . . . , Fi−2: the content of these decanters is spilled onto the floor. But
the quotas of these decanters are chosen smaller and smaller as i decreases,
so we can ensure that the total quantity of wine spilled has a weight of less
than 1/4.

In the construction we have many runs of procedures associated with a
decanter Fi. Each run has a parameter m such that ΓA(m) converges, and a
weight quota p called its goal. For i > 1 it will call a run associated with Fi−1

with smaller quota for as many times as needed for Fi−1 to fill to weight p.
Then it puts m into B, empties Fi−1 into Fi, and returns. If A�γA(m) changes
prematurely then the current content of Fi−1 is poured into Fi, but the run for
Fi continues.

The construction starts out by running Fk with a quota of 3/4. It calls Fk−1

with a smaller quota for a number of times, and so on down to F1.

Since ΓA is total we can force all the A changes needed for runs to return.
Hence, the single run associated with Fk returns. This yields a k -set of weight
3/4, which is a contradiction.

The full result. We now discuss the full result that aK-trivial set A is low forK.
The basic approach is to build a bounded request set W (see Theorem 3.1) as
follows: if UA(σ) = y, there is a request 〈|σ| + O(1), y〉 in W . Similar to the
proof of the implication “⇒” of the present theorem, we have to judiciously
choose the computations UA(σ) existing at a stage s for which we want to issue
a request. The set W has bounded resources, so we have to limit the situation
that, after a computation is chosen, A changes to destroy it. We will use such
an A-change to promote numbers.

To exploit the hypothesis that A is K-trivial, as before we build a global
bounded request set L. Numbers n go through levels 1, . . . , k . The decanters
are now arranged on a tree. While trying to fill, each decanter at a level greater
than 1 builds its own bounded request set W in an attempt to show that A is
low for K.

Suppose Fi is a decanter at level i where 1 < i ≤ k . When UA(σ) converges,
Fi calls a decanter Fi−1,σ at level i− 1 that can be emptied into Fi. Its goal is
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2−|σ|α, where α is a non-negative rational called the garbage quota of the run
of Fi (to be explained shortly). When Fi−1,σ reaches its goal, it returns. It now
remains inactive, until possibly A changes below the use of UA(σ). In this case
the content of Fi−1,σ becomes an i-set, so Fi−1,σ can be emptied into Fi. We
say that the run of Fi−1,σ is released.

If A changes below the use of UA(σ) before the run returns, then this run is
cancelled, but we still can empty the current content of Fi−1,σ into Fi, because
the A-change turned it into an i-set.

If A does not change at all, a quantity 2−|σ|α of garbage has been created
in the form of wine that is forever stuck at the now defunct decanter Fi−1,σ.
If we choose the α values small enough, we can make the amount of garbage
tolerable.
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To start the construction, we call the decanter at level k with goal 3/4 and an
appropriate small garbage quota. A golden run is a run of a decanter Fi that
is never cancelled and never returns, while all the runs of Fi−1,σ it calls are
cancelled or return. A golden run exists, for otherwise the decanter at level k
would reach its goal 3/4, which is a contradiction.

At the golden run node Fi we can build a bounded request set W that
succeeds in showing that A is low for K. Suppose the golden run of Fi has
goal p and garbage quota α. Let u ∈ N be least such that p/α ≤ 2u. When
Fi−1,σ returns we put 〈|σ| + u + 1, y〉 into W . To see that W is a bounded
request set, note that we can bound by 2u the sum of all 2|σ| where σ is a UA-
description at some stage, Fi−1,σ is called, then Fi−1,σ returns, and later on it
is released by an A-change. If this sum exceeds 2u then the run of Fi reaches its
goal p ≤ 2uα. So these descriptions contribute at most 1/2 to W . The weight
of the descriptions σ where A does not change after the run of Fi−1,σ returns
is at most the measure of the domain of UA, whence their contribution is at
most 1/2. Hence W is a bounded request set.
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Summary of Section 4. We introduce a lowness property, being low for ML-
randomness, and a far-from-randomness property, K-triviality. Each K-trivial set is
∆0

2. The K-trivials are closed under ⊕.

Low for K

Low for ML

Base for ML

easy

easy

very hard;

non-uniform

 K-trivial

easy
harder

We show the equivalence of the two properties. To do so we introduce two further
properties, being a base for ML-randomness and being low for K, which are also of
independent interest. The diagram summarizes the implications discussed. To show
that each K-trivial is low for K, we need the decanter and golden run methods.
Some further facts. We say that A is C-trivial if C(A�n) ≤

+ C(n). Each C-trivial set
is computable (Chaitin; see [37, 5.2.20]).

Directly from the definition one can see that each set A that is low for ML-

randomness is GL1, namely A′ ≤T A ⊕ ∅′ [22]. As mentioned above, it is not hard

to see from the definition that each c.e. set A that is low for K is superlow, namely

A′ ≤tt ∅
′ [37, 5.1.3]. A golden run construction shows directly that each K-trivial set

is superlow [37, p. 208].

5. The Inertness Paradigm and Cost Functions

In Section 4.1 we described four properties of ∆0
2 sets that were introduced

by different groups of researchers. For each property, the researchers gave a
construction of a c.e. incomputable set with the property. All these construc-
tions looked similar, which is not too surprising given that the properties later
turned out to be equivalent. From 1999 on, the language of cost function was
developed to formulate these constructions [22, 9, 34].

Nowadays cost functions are an indispensable tool for understanding the
class of K-trivial sets and its subclasses [37, Section 5.3], [14, 35]. For instance,
each K-trivial set is Turing below a c.e. K-trivial set (see Corollary 5.6 below).
The only known proof of this result relies on a cost function.

5.1. Basics on cost functions. Recall the Limit Lemma 2.1: A ≤T ∅′
iff A(x) = lims As(x) for some 0,1-valued computable approximation (As)s∈N.
Cost functions are used to measure the total of changes, taken over all numbers,
of a computable approximation. In this way we have a formal version of the
inertness paradigm from the introduction: a ∆0

2 set is close to computable if it
can be computably approximated with a small total amount of changes.
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Definition 5.1. A cost function is a computable function

c : N× N → {x ∈ Q : x ≥ 0}.

We say that a cost function c satisfies the limit condition if

limx sups c(x, s) = 0.

When building a computable approximation of a ∆0
2 set A, we view c(x, s) as

the cost of changing A(x) at stage s. We now express that the total cost of
changes, taken over all x, is finite [37, Section 5.3].

Definition 5.2. We say that a computable approximation (As)s∈N obeys a
cost function c if

∞ >
∑

x,s c(x, s) [[x < s ∧ x is least such that As−1(x) 6= As(x)]].

We say that A obeys c if some computable approximation of A obeys c.

Mostly we use this to construct some auxiliary object of finite “weight”,
such as a bounded request set in the sense of 3.1, or a so-called Solovay test in
the proof of Theorem 5.10 below.

The analytic approach to restricting changes is more powerful than most
combinatorial approaches. For example, call a ∆0

2 set A slow if for each non-
decreasing unbounded computable function h, there is a computable approxi-
mation (As)s∈N of A such that As �n changes at most h(n) times. Is it not hard
to build a slow c.e. set that is Turing complete.

A co-infinite c.e. set is called simple [38] if it meets each infinite c.e. set.
Clearly no such set is computable. The following theorem can be traced back
to [22, 9].

Theorem 5.3. If a cost function c satisfies the limit condition, then some
simple set A obeys c.

Proof. Let (We)e∈N be an effective listing of the c.e. sets. To make A simple
we meet the requirements Se : |We| = ∞ ⇒ A ∩We 6= ∅. Requirement Se is
allowed to spend at most 2−e. Because of the limit condition, Se can wait for
an x to appear in We that is so large that Se can afford it.

At stage s, if Se is not satisfied yet, we look for an x, 2e ≤ x < s, such that
x ∈We,s and

c(x, s) ≤ 2−e.

If so, we put the least such x into A and declare Se satisfied.
Since a requirement Se spends at most 2−e, the total cost of changes is

bounded by
∑

e 2
−e = 2. Hence A obeys c.

Suppose that We is infinite. As explained above, since c satisfies the limit
condition, each Se is met. A is co-infinite because we choose x ≥ 2e. So A is
simple.
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We say that a cost function c(x, s) is monotonic if c(x, s) is non-increasing
in x, and non-decreasing in s. Thus, at the same stage a smaller number can
only be more expensive, and the same number can only get more expensive at
later stages. Most cost functions given below will be monotonic.

5.2. Applications of cost functions. We analyze some lowness prop-
erties and their corresponding constructions, using cost functions.

5.2.1. K-triviality. Recall that a set A is K-trivial if there is a b ∈ N such
that ∀n K(A �n) ≤ K(n) + b. We introduce a cost function cK satisfying the
limit condition such that any set obeying cK isK-trivial. Then, by Theorem 5.3,
there is a simple K-trivial set. In Theorem 5.5 we will prove that obeying cK
actually characterizes K-triviality.

To show that A is K-trivial we build an appropriate prefix-free machine M
via the Machine Existence Theorem 3.1.

(a) Let Ks(i) be the value of K(i) at stage s. Whenever there is a new value
Ks(i), we give an M -description of As �i with length Ks(i) + 1. The combined
weight of such descriptions is at most 1/2.

(b) If A(x) changes at stage s then, for all i such that s ≥ i > x, the initial
segment A�i gets a new M -description of length Ks(i) + 1. If we let

cK(x, s) =
∑s

i=x+1 2
−Ks(i),

then the measure of the new M -descriptions needed is cK(x, s)/2. If A obeys
cK and the total cost of changes is at most 1, this contributes a weight of at
most 1/2 inM -descriptions, so we build the desired machine. More generally, if
the total cost of changes is at most 2d for d ∈ N, we choose the M -descriptions
in (b) of length Ks(i) + d+ 1. We have shown the following.

Proposition 5.4. Suppose that A obeys the cost function cK. Then A is K-
trivial.

Note that sups cK(x, s) =
∑

i>x 2
−K(i) is bounded above by the measure

of the set of strings σ such that U(σ) > x. Therefore cK satisfies the limit
condition, and by Theorem 5.3 some simple set is K-trivial.

By the implication “⇒” of the following result, any possible construction of
a K-trivial set will be similar to the one in the proof of Theorem 5.3.

Theorem 5.5 (Nies [34]). A is K-trivial ⇔ A obeys cK.

The implication “⇐” is Proposition 5.4. The implication “⇒” is not too
hard for c.e. sets ([37, 5.3.27]). For ∆0

2 sets in general, apparently it requires
the full power of the golden run method (see [37, 5.5.2]).
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As an application, we show that K-triviality is closely tied to being c.e.

Corollary 5.6. For each K-trivial set A, there is a c.e. K-trivial set D ≥T A.

Proof. Let D = {〈x, i〉 : A(x) changes at least i times}. Thus, when A(x)
changes, we put the next element in the x-th column of N into D. Clearly,
D(〈x, i〉) can only change at a stage s when A(x) also changes. Now x ≤ 〈x, i〉
and cK(y, s) is non-increasing in y. Thus, if A obeys cK then D obeys cK as
well. (Note that cK can be replaced by any monotonic cost function in this
argument.)

In [35] we introduce a cost function cΩ simpler than cK, and show that it also
characterizes K-triviality. For each stage t, let Ωt be the measure of the domain
of U at stage t. Now let cΩ(x, s) be the measure of U–descriptions converging
from stage x to s, that is, cΩ(x, s) = Ωs − Ωx.

Theorem 5.7. A is K-trivial ⇔ A obeys the cost function cΩ.

Outline of the proof. ⇐: Clearly cK(x, s + 1) − cK(x, s) ≤ Ωs+1 − Ωs, which
implies that cK(x, s) ≤ cΩ(x, s) by induction on s ≥ x . Thus, if a set A obeys
cΩ it also obeys cK. Therefore A is K-trivial by Proposition 5.4.
⇒: This is a further application of the golden run method. It can also be proved
directly from the foregoing Theorem.

We say that a monotonic cost function c is additive if c(x, y) + c(y, z) =
c(x, z) for each x < y < z. Clearly cΩ is additive (while cK is not). An additive
cost function c is completely determined by the non-decreasing sequence of
rationals (c(0, s))s∈N approximating the real sups c(0, s). Nies [35] proved that
A is K-trivial iff A obeys all additive cost functions. This characterizes K-
triviality of a ∆0

2 set A purely based on effective approximations of A, and
on left-c.e. reals. In contrast, the characterizations in Section 4 used machines,
measure, or relativization.

5.2.2. Strongly jump traceable sets. We discuss a lowness property which
is defined by purely computability-theoretic means following the weak-as-an-
oracle paradigm. It properly impliesK-triviality for c.e. sets. It is much stronger
than slowness mentioned after Definition 5.2. We will show how it can be char-
acterized by obeying all so-called benign cost functions.

The property is an instance of the meta-concept of traceability. The idea
behind traceability is the following. The set A is computationally weak because
for certain functions ψ computed with oracle A, the possible values ψ(n) are
contained in a finite set Tn of small size. The sets Tn are obtained effectively
from n (not using A as an oracle).

Traces for functions ω → ω also appear in combinatorial set theory, espe-
cially forcing results related to cardinal characteristics. They are called slaloms
there, and were introduced by T. Bartoszyński (see [1]).

Recall that JA(x) is the value on input x of a universal A-partial computable
function. We say that a computable function h with only positive values is an
order function if it is non-decreasing and unbounded.
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Definition 5.8. A computably enumerable trace with bound h is a uniformly
computably enumerable sequence (Tx)x∈N of finite sets such that |Tx| ≤ h(x)
for each x.

We say that a set A is strongly jump traceable (SJT) if for each order func-
tion h, there is a c.e. trace (Tx)x∈N with bound h such that, whenever JA(x)
is defined, we have JA(x) ∈ Tx.

Strong jump traceability was introduced by Figueira, Nies, and Stephan [11].
They built a simple strongly jump traceable set. Further, they show that A is
SJT iff the relative Kolmogorov complexity CA(y) of a string y is not far below
C(y) (for each order function g we have C(y) ≤+ CA(y) + g(CA(y))). This
makes the notion an analog of being low for K.

It matters that we require each order function h as a bound for some trace.
A much weaker notion is jump traceability, where one merely requires that
there is a c.e. trace for JA with some computable bound h. There is a perfect
class of sets that are jump traceable as shown in [37, 8.4.4], while each SJT set
is ∆0

2 by [7].

K-trivial

SJT

Computable

Superlow

The c.e. strongly jump traceable sets form a proper subclass of the c.e. K-
trivial sets by Cholak, Downey, and Greenberg [5]. It is interesting to compare
the two classes. Both are closed downward under ≤T. Both are closed under ⊕.
By definition the c.e. K-trivials have a Σ0

3 index set; in contrast, the c.e. SJTs
have a Π0

4-complete index set by Ng [30]. Thus, as already indicated by the
definition, within the c.e. sets SJT is more complicated than the K-trivials as a
class, even though its members are closer to being computable. Recent research
of Downey and Greenberg [7] shows that in fact each SJT set (c.e. or not) is
K-trivial.

Greenberg and Nies [14] characterized the c.e. SJTs according to the inert-
ness paradigm. They specified the right class of cost functions to gauge how
inert a c.e. set must be so that it is SJT. A monotonic cost function c is called
benign if there is a computable bound g(n) on the length of any finite sequence
x0 < x1 < . . . < xk such that c(xi, xi+1) ≥ 2−n for each i < k. For instance, the
cost function cK characterizing K-triviality is benign via g(n) = 2n. Further,
any additive cost function is benign.
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Theorem 5.9 ([14]). Let A be c.e. Then

A is strongly jump traceable ⇔ A obeys each benign cost function.

Because of Proposition 5.4, the harder implication “⇒” generalizes the re-
sult of Cholak, Downey, and Greenberg [5] that SJT implies K-triviality for
c.e. sets.

5.2.3. Kučera’s injury free solution to Post’s problem. Post [38] asked
whether a c.e. set can be incomputable but also Turing incomplete. Both Fried-
berg and Muchnik solved the problem in 1955 by building a pair of Turing
incomparable c.e. sets. To do so, they introduced the finite injury method.
A further solution to Post’s problem is to build a low simple set (see [41]).
This construction again uses the finite injury method, because it has injury to
lowness requirements. In contrast, Kučera in 1986 [20] obtained an injury-free
proof of the following result, and then used it for an injury-free solution to
Post’s problem.

Theorem 5.10. Suppose Y is a ML-random ∆0
2 set. Then some simple set A

is Turing below Y .

Now let Y be the bits of Ω in the even positions. An easy direct argument
involving van Lambalgen’s theorem on relative randomness shows that Y is
low and ML-random ([36] or [37, 3.4.10]). Therefore one can build without
injury a low simple set A.

We formulate the proof of Kučera’s theorem in the language of cost func-
tions. This argument is due to Greenberg and Nies [14], and indirectly also
Hirschfeldt and Miller (2006, unpublished; see Section 6 of this paper).

Proof of Theorem 5.10. Fix a computable approximation (Ys)s∈N of Y . We de-
fine a cost function cY such that, if e < x and Yt �e does not change for x ≤ t ≤ s,
then cY (x, s) < 2−e. In more detail, let cY (x, s) = 2−x for each x ≥ s. If x < s,
and e is least such that Ys−1(e) 6= Ys(e), let cY (x, s) = max(cY (x, s− 1), 2−e).

Fact 5.11. If a ∆0
2 set A obeys cY , then A ≤T Y with use function bounded by

the identity.

A Solovay test S is given by an effective enumeration of strings σ0, σ1, . . .,
such that

∑
i 2

−|σi| < ∞. If Y is ML-random and σ0, σ1, . . . is a Solovay test,
then for almost all i the string σi is not a prefix of Y (see [37, 3.2.19]).

To see that A ≤T Y , we enumerate a Solovay test as follows. When
As−1(x) 6= As(x) and cY (x, s) = 2−e, we put the string Ys �e into S. Since
A obeys cY , S is indeed a Solovay test.

Choose s0 such that σ 6≺ Y for any σ enumerated into S after stage s0. Given
an input x ≥ s0, using Y as an oracle, compute t > x such that Yt �x= Y �x.
Then x ∈ A implies x ∈ At. For, by the definition of the cost function c, at
each stage s > t, if c(x, s) = 2−e (where e ≤ x), then Ys �e still has the same
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value as at stage t, which is the true Y �e. Thus, if As−1(x) 6= As(x) we will
put a prefix σ of Y into S, contradiction. This shows Fact 5.11.

Since Y is ∆0
2, the cost function cY satisfies the limit condition. Hence some

simple set A obeys cY . So A ≤T Y .

5.2.4. Adaptive cost functions and injury. In Theorem 5.3 we assumed
that the cost function c was given in advance. In a more complicated variant, the
cost function c may be defined during the construction. Such a variant is needed
for the Kučera-Terwijn construction of a set that is low for ML-randomness [22],
and also for Muchnik’s direct construction of a set that is low for K. In the
latter construction, say, c(x, s) is the measure of all descriptions at stage s− 1
such that a change at x would destroy the corresponding computation of UA at
stage s−1; that is, c(x, s) =

∑
σ 2

−|σ| [[UA(σ)[s− 1] ↓ ∧ x < use UA(σ)[s− 1]]].
Extra care has to be taken now to ensure that c satisfies the limit condition.
Note that this cost function is not monotonic.

If the cost function is defined during the construction, then the construction
must be regarded as having injury. For instance, during the construction of a
low simple set, the lowness requirements Le : ∃∞s JA(e)[s − 1] ↓ ⇒ JA(e) ↓
are injured. The following cost function encodes the restraint imposed by Le:
if JA(e) newly converges at stage s − 1, define c(x, s) = max{c(x, s − 1), 2−e}
for each x < use JA(e)[s − 1]. If A is enumerated in such a way that the total
cost of changes is finite, then Le is injured only finitely often. Thus A is low.

In contrast, a cost function c given in advance cannot be used to hide injury,
because to encode a restraint that is in force at the beginning of stage s we
have to know As−1.

Summary of Section 5. Cost functions arose to uniformize the constructions of ∆0
2

sets with lowness properties. Nowadays they have turned into an important tool for
understanding these lowness properties. We formulate in terms of cost functions the
construction of a simple K-trivial set, and Kučera’s construction of a simple set below
a ∆0

2 ML-random. We characterize the K-trivial sets and the strongly jump traceable
sets in terms of obeying a class of cost functions with simple combinatorial properties:
being additive for the K-trivials, and benign for the SJTs. For the K-trivials there is
a universal cost function cΩ.

Some further facts. If c is a monotonic cost function and sets A and B obey c, then
A⊕B obeys c. The class of sets obeying c is closed downward under Turing reduction
with use bounded by the input [35].

There is a computable enumeration (As)s∈N of N in the order 0, 1, 2, . . . such that
(As)s∈N does not obey cK [37, Ex. 5.3.7]. Thus it matters in the Definition 5.2 of
obedience that we require a finite total cost of changes only for some computable
approximation.

The converse of Theorem 5.3 holds for a monotonic cost function c : if a computable

approximation (As)s∈N of an incomputable set A obeys c, then c satisfies the limit

condition [37, Ex. 5.3.8].
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6. The Turing-below-many Paradigm

In Theorem 5.10 we discussed the result of Kučera [20] that for every ML-
random ∆0

2 set Y there is an incomputable c.e. set A ≤T Y . If Y is Turing
incomplete (i.e. ∅′ 6≤T Y ), then A must be a base for randomness, and hence
K-trivial by [15] (also see [37, 3.4.13]). Thus, for c.e. sets, being below a Turing
incomplete ML-random set is a lowness property implyingK-triviality. A major
open question in the area is whether this property coincides with K-triviality
[29, Question 4.6], [37].

Question 6.1. Is each K-trivial set Turing below an incomplete ML-random?

By Corollary 5.6, it is not necessary to require that the given set be c.e.
Kučera’s result is our starting point for studying lowness properties of a

set A according to the Turing-below-many lowness paradigm. To obtain lowness
properties stronger than the ones mentioned in the previous paragraph, we
strengthen the condition related to Kučera’s result that A ≤T Y for some
Turing incomplete random set Y . There are two interrelated approaches:

(a) Replace the single oracle set Y by a null class C ⊆ 2N containing a ML-
random set Y 6≥T ∅′, and require that A ≤T Z for each ML-random set
Z ∈ C.

(b) Stay with a single oracle set Y , but require that it satisfy a randomness
property stronger than Martin-Löf-randomness.

Both approaches lead to similar results related to strong jump traceability.
To carry out (a) the following notation is useful. For a class C ⊆ 2N, let C3

denote the collection of c.e. sets that are computable from all ML-random sets
in C. This “infimum” operator was implicitly introduced in unpublished work
of Hirschfeldt and Miller. Each class of the form C3 induces an ideal in the
c.e. Turing degrees. Via cost functions Hirschfeldt and Miller showed that C3

contains a simple set for each null Σ0
3 class C (see [37, 5.3.15]). Since {Y } is a

Σ0
3 class for each ∆0

2 set Y , this strengthens Kučera’s result.
A strengthening of ML-randomness as required in (b) is Demuth random-

ness, a notion between 2-randomness and Martin-Löf randomness that is still
compatible with being Turing below ∅′ (but no longer with being above ∅′). We
show that each c.e. set that is Turing below a Demuth random is strongly jump
traceable. We leave open the question whether being below a Demuth random
actually characterizes strong jump traceability for c.e. sets.

We give some more detail on the two approaches above.
Approach (a). By definition, the strongly jump traceable (SJT) sets are weak as
an oracle. In Theorem 5.9 we discussed how to characterize the c.e. SJT sets via
the inertness paradigm. Now we will characterize them via the Turing-below-
many paradigm. Recall that a ∆0

2 set Y is ω-c.e. if Y has a computable approx-
imation with a computable bound on the number of times Y (n) changes. It is
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easy to obtain a ML-random ω-c.e. set. Examples are Chaitin’s number Ω, or a
superlow ML-random set. Thus, the following theorem of Greenberg, Hirschfeldt
and Nies [13] says that a c.e. set A is strongly jump traceable iff it is Turing
below many ML-random oracles.

Theorem 6.2. Let A be c.e. Then
A is strongly jump traceable ⇔ A is Turing below each ω-c.e. ML-random set.

The implication “⇒” follows from Theorem 5.9: if Y is ω-c.e. then its associated
cost function cY defined in the proof of Theorem 5.10 is benign. Since A obeys
cY and Y is ML-random, we obtain A ≤T Y .

The implication “⇐” is harder. Given an order function h we want to build a
c.e. trace for JA with bound h. We threaten to build an ω-c.e. ML-random set
Y such that A 6≤T Y .

Let (Φe)e∈N be an effective list of Turing functionals. We have a tree of runs
of procedures similar to the golden run method in Subsection 4.2. However,
now the tree has infinitely many levels. At stage s, there is a procedure Se

x at
each level e, for each x such that y = JA(x) converges at s with use u. This
procedure either shows that A �u is not a prefix of Φe(Y ), or places y into a
trace set Tx of size at most h(x). Since A ≤T Y , at some level e there is a
golden run node which always succeeds via tracing. At this node we obtain the
required trace for JA with bound h.

Since diamond classes induce ideals, as a corollary the c.e. SJT sets are
closed under ⊕. This result was first obtained by Cholak, Downey, and Green-
berg [5] who used a direct construction.

The techniques in the proof of Theorem 6.2 are very adaptable. A variant
shows that the c.e. sets in SJT coincide with C3 when C is the class of superlow
sets. A more complex variant shows that the c.e. sets in SJT also coincide
with C3 when C is the class of superhigh sets Z (namely, Z ′ is truth-table
above ∅′′).

In proving the implication “⇐”, the hypothesis is actually not needed that
the given set A be c.e. for the case of superlow (and hence ω-c.e.) sets. We
conclude that the same hypothesis can be discarded from the implication “⇐”
of Theorem 5.9: suppose A obeys all benign cost functions. Then, for each ω-c.e.
set Y , A obeys the benign cost function cY defined in the proof of Theorem 5.10.
Hence A ≤T Y . Thus A is strongly jump traceable.

By [7] each SJT set is K-trivial, and hence obeys cK. However, it is not
known whether the implication “⇒” of Theorem 5.9 works for arbitrary sets,
that is, whether each SJT set obeys each benign cost function.

Approach (b). Demuth tests generalize Martin-Löf tests (Gm)m∈N in that one
can change the m-th component (a Σ0

1 set of measure at most 2−m) for a
computably bounded number of times. Z fails a Demuth test if Z is in infinitely
many final versions of the Gm. (For a formal definition see [37, Section 3.6].)
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Greenberg [12] built a ∆0
2 Martin-Löf random set Y such that every c.e.

set computable from Y is strongly jump traceable. Subsequently, Kučera and
Nies [18] showed that any Demuth random ∆0

2 set Y serves this purpose.

Theorem 6.3. Let Y be Demuth random. Let A be a c.e. set such that A ≤T Y .
Then A is strongly jump traceable.

The following open problem is analogous to Question 6.1.

Question 6.4. Is each strongly jump traceable c.e. set Turing below a Demuth
random?

Acknowledgments. I thank Rod Downey, Asher Kach, Justin Moore, Eamonn
O’Brien, and Christopher Porter for comments on earlier drafts of this paper.
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Abstract

We describe here a theory of holomorphic functions and analytic manifolds,
restricted to the category of definable objects in an o-minimal structure which
expands a real closed field R. In this setting, the algebraic closure K of the field
R, identified with R2, plays the role of the complex field. Although the ordered
field R may be non-Archimedean, o-minimality allows to develop many of the
basic results of complex analysis for definable K-holomorphic functions even in
this non-standard setting. In addition, o-minimality implies strong theorems on
removal of singularities for definable manifolds and definable analytic sets, even
when the field R is R. We survey some of these results and several examples.

We also discuss the definability in o-minimal structures of several classical
holomorphic maps, and some corollaries concerning definable families of abelian
varieties.
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1. Introduction

Consider a real closed field R and its algebraic closure K = R(
√
−1). After

fixing
√
−1, we can identify K with R2, and then view subsets of Kn as subsets

of R2n. Under this identification polynomial functions from Kn into K become
R-polynomial maps from R2n into R2.
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When the fields are R and C, the order topology of the reals endows the
complex numbers, through the product topology, with the structure of a topo-
logical locally compact field. This is of course the setting of classical complex
analysis, and local analytic theory is usually developed using convergent power
series and integration (here and below, when we say “classical” we refer to the
case R = R and K = C). When R is an arbitrary real closed field then its order
topology still endows K with the structure of a topological field but, since R
could be non-Archimedean, this topology may be far from locally compact. In
this case, the tools of integration and power series are often not available for
the development of complex analysis over K.

While analysis in a non-Archimedean setting is also tackled in rigid analytic
geometry we present here a different approach. The main idea is to consider
only a limited collection of sets and maps, namely those which are definable
in an o-minimal expansion R = 〈R,<,+, ·, · · ·〉 of the field R. Recall that R
is called o-minimal if every definable (with parameters) subset of R is a finite
union of R-intervals whose endpoints are in R∪{±∞}. Real closed fields are the
standard example but we are going to consider below much richer o-minimal
structures (see [6], [38], [8], [19] and [20]).

It turns out (see [7] and [10]) that almost all basic theorems of real differ-
ential calculus hold for functions definable in R, even though the field R may
be non-Archimedean and as a topological space could be totally disconnected.
As we will show, the same is true for many of the basic theorems of complex
analysis.

When the field R equals R, the category of definable sets in an o-minimal
structure can be viewed as a natural candidate for Grothendieck’s vision of
“tame topology” (see discussion in [36]). The exclusion of wild topological phe-
nomena from the tame setting of o-minimality implies that definable holomor-
phic functions cannot have essential singularities. This is easy to see, for if
f is a holomorphic function on the punctured unit disc and 0 is an essential
singularity then there exist c ∈ C with f−1(c) an infinite discrete subset of
C. But then, either {Im(z) : f(z) = c} or {Re(z) : f(z) = c} is an infinite
discrete subset of R, so f cannot be definable in an o-minimal structure. At
first sight, this seems to exclude too much of classical analytic theory, but as
we will see, it is still possible to define in o-minimal structures many classical
holomorphic functions on properly chosen domains in a way which permits rich
mathematical constructions.

Thus, the theory of holomorphic functions in o-minimal structures allows
on one hand to develop analytic-like theory for an arbitrary algebraically closed
field of characteristic zero K with respect to a maximal real closed field R ⊆ K
and an o-minimal expansion of R. On the other hand, when we specialize the
investigation to the classical setting of the complex and real fields, we obtain, in
addition, new results on holomorphic functions, complex manifolds and analytic
sets, when these are definable in some o-minimal expansion of the real field. The
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treatment of both of these settings is uniform and independent of the particular
fields in questions.

Our goal here is to present the main definitions and a survey of results, ac-
companied with examples from both the standard and the nonstandard settings.
The paper is structured as follows: In Section 2 we give the basic definition of
a K-holomorphic function and discuss a variety of examples. In Section 3 we
show how analogues of basic results from complex analysis can be obtained for
definable K-holomorphic functions in arbitrary o-minimal structures. In Sec-
tion 4 we discuss analogues of complex manifolds and analytic sets in o-minimal
structures and in particular, in 4.2 and in the Appendix expand on how compact
complex manifolds can be viewed within the o-minimal structure Ran. In 4.3 we
present a more general, o-minimal, version of Chow’s theorem on analytic sub-
varieties of projective space (which in particular implies the classical version).
We also consider definable families of manifolds, the particular case of complex
tori and point out the connection between such families and non-standard tori.
In this section we discuss how Riemann’s Existence Theorem can fail (or hold)
in the category of definable manifolds in an o-minimal structure. In Section 5
we present several results on what is probably the main feature of tame com-
plex analysis: the theory on removal of singularities. Finally, in Section 6 we
discuss theorems on the definability in o-minimal structures of certain classi-
cal holomorphic functions such as Schwarz-Christoffel maps, the Weierstrass
℘-functions and Riemann’s theta functions. We also mention connections to
arithmetical questions in algebraic geometry.

We assume here basic knowledge of definability, and o-minimality (see [7]
and [10] for a presentation aimed at non-logicians).

Remark. Some work on complex analytic geometry restricted to semiagebraic
and subanalytic sets can be found in [11] and [12]. In the non-standard setting
of an arbitrary real closed field, such work was carried out, from a different
point of view than ours, in [15].

2. K-holomorphic Functions

We start with the basic definitions. Let R = 〈R,<,+, ·, . . .〉 be an o-minimal
expansion of a real closed field, and K = R(

√
−1) the algebraic closure of R.

After fixing i =
√
−1, we can identify K with R2, as in the classical case, and

view subsets of Kn and maps from Kn into K as subsets of R2n and maps
from R2n into R2, respectively. The field operations of K become definable in
the ordered field R. We have the order topology on R, the product topology
on Rk, and with respect to this topology the field K, identified with R2, is a
topological field. We therefore have a natural notion of limx→a f(x) for functions
f : Kn → K, where the limit is taken with respect to the topologies of Kn and
of K.



Tame Complex Analysis and o-minimality 61

Definition 2.1. Let U ⊆ K be an open set. A function f : U → K is K-
differentiable at z0 ∈ U if

lim
z→z0

f(z)− f(z0)

z − z0
exists in K.

The limit, if exists, is called the K-derivative of f at z0 and is denoted by
f ′(z0). If f is K-differentiable at every z ∈ U then it is called K-holomorphic
on U .

For U ⊆ Kn an open set and f : U → K a continuous function, f is called
K-holomorphic on U if it is K-differentiable in each of the variables separately.

The above definitions coincide with the classical definitions of holomorphic
functions in one and several variables when R = R and K = C. As pointed out
above, in the general case the topology on R is not well-behaved and very far
from locally compact or separable. Hence, although the definitions make sense
for arbitrary functions, we are going to restrict our attention to K-holomorphic
functions which are in addition definable in the o-minimal structure R.

Note: Although every algebraically closed field of characteristic zero K
contains a maximal real closed field R, the choice of R is far from being unique
and even the field C contains maximal real closed subfields which are not
isomorphic to R and are non-Archimedean.

Here are some examples of K-holomorphic functions which are definable in
o-minimal structures.

Classical examples
• Let R = 〈R, <,+, ·〉 (so K = C). By Tarski’s work, R is o-minimal. Every
complex polynomial is C-holomorphic and definable in R.

• Consider the o-minimal structure

Ran = 〈R, <,+, ·, {f |[−1, 1]n : f real analytic on open U ⊇ [−1, 1]n}〉

(see [6]). Using the real and imaginary parts, every power series convergent in
a neighborhood of 0 ∈ Cn can be represented by a definable C-holomorphic
function in Ran.

If V ⊆ Cn is an open bounded set, and f : V → C is a holomorphic
function, which can be holomorphically extended to an open set U ⊇ Cl(V )
(where Cl(V ) is the topological closure of V ), then f |V is definable in Ran.
Indeed, Cl(V ) can be covered by finitely many open sets on each of which f is
definable, hence f |V is definable.

• Let Ran,exp be the o-minimal expansion of Ran by the real exponential
function (see [38], [10], [8]). The restriction of the complex exponential function
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ez to any horizontal strip {a < Im(z) < b}, a < b ∈ R, is definable in Ran,exp,
using the real exponential function and restricted sin, cos. It follows that every
branch of ln z is definable in Ran,exp. However, e

z is not definable on the whole
of C because of its infinite discrete kernel, and in fact (see [23], Claim 2.1), if
ez is definable in some o-minimal structure on a set U ⊆ C then necessarily
Im(z) is bounded on U .

• Let Rexp = 〈R, <,+, ·, ex〉. It follows from [3], that every germ of an
n-variable holomorphic function which is definable in Rexp is already definable
in R, namely semi-algebraic.

Non-standard examples

• Let R = 〈R,<,+, ·〉, where R is a real closed field: Every polynomial over
K = R(

√
−1) is K-holomorphic and definable in R. In fact, in [25], Theorem

2.17, we prove a converse statement:

Theorem 2.2. If f : Kn → K is definable and K-holomorphic then it is a
polynomial over K.

• Let R be a proper extension of Ran,exp: If α ∈ R>0 is infinitesimally close
to 0 (by that we mean that 0 < α < 1/n for every n ∈ N) then eαz is
K-holomorphic and definable on “infinitely wide” strip −1/α < Im(z) < 1/α.

These two non-standard examples of o-minimal structures are elementary
extensions of structures over the field of reals. The example below does not
arise from any structure over the reals (this is made precise in [14]):

• Divergent power series as K-holomorphic functions. Consider the real
closed field of formal Puiseux series over R, denoted by R = R((t∗)), and its
algebraic closure, K = C((t∗)). The field R admits a natural valuation (with
v(t) = 1) and the infinitesimal elements of R, denoted by µ, are all those of
positive valuation. The valuation topology coincides in this case with the order
topology of R.

Every formal power series a(x̄) ∈ R[[x1, . . . , xn]] can be computed on µn

and hence defines a function ā : µn → R. Clearly, if we expand the field R by
such a function, the expanded structure will not be o-minimal because µn is not
definable in any o-minimal structure. However, consider the interval I = [−t, t]
in R and the structure

R = 〈R,<,+, ·, ā|In〉a(x̄)∈R[[x̄]].

It is proved in [20] that R is o-minimal.

Now, every formal power series a(z̄) ∈ C[[z1, . . . , zn]] (even if the series
diverges in the complex field) determines a K-holomorphic function on the
poly-disc of radius t in Kn, a map which is definable in R.
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3. Analogues of Classical Results in

Non-Archimedean Fields

We assume here that R is an arbitrary o-minimal expansion of a real closed
field R and K = R(

√
−1). All definability is assumed to take place in R.

Although the classical tools of power series and integration are not available
in this general setting, it is still possible to develop analogues of the classical
theory for K-holomorphic functions which are definable in R, by using methods
of topological analysis, together with o-minimality. In the 1-variable case we
followed the work of Whyburn from [37], and then extended it to functions of
several variables. Almost all classical results go through in this case. When we
specialize to the classical case, i.e. when R equals the field R and K equals C,
results of this type contribute no new information. However, even in this case
model theory allows us to obtain new uniformity results for definable families
of holomorphic functions.

3.1. The one-variable case. All references are to [24].

Fact 3.1 (The Cauchy-Riemann equations). If U ⊆ K is an open definable
set and f : U → K is a definable function then f is K-holomorphic if and
only if, as a map (x, y) 7→ (v(x, y), w(x, y)) from U ⊆ R2 into R2, it is R-
differentiable and its R-derivatives satisfy

∂v

∂x
=
∂w

∂y
and

∂v

∂y
= −∂w

∂x
.

(see Fact 2.27)

We let D ⊆ K denote the closed unit disc and C its boundary. For z =
a+ b

√
−1 ∈ K, we use |z| = a2 + b2 ∈ R.

Theorem 3.2. 1. (Maximum Principle) If f : D → K is a definable
continuous function which is K-holomorphic on Int(D) then |f | attains
its maximum on C (Theorem 2.31).

2. (Open mapping theorem) If U ⊆ K is open, definable and f : U → K
is a definable K-holomorphic, non-constant function then f is an open
map (Corollary 2.34).

3. (Infinite differentiability) If U ⊆ K is open, definable and f : U → K
is a definable K-holomorphic map then f ′(z) is also K-holomorphic on
U (Theorem 2.40).

4. (Identity Theorem) If f : U → K is definable and K-holomorphic in a
neighborhood of 0 ∈ K, and if f (k)(0) = 0 for all k ∈ N then f vanishes
in a neighborhood of 0.
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We re-emphasize that (4) is true although there is no available theory of
converging power series (indeed, if the underlying o-minimal structure is suffi-
ciently saturated then there are no converging sequences in R other than the
eventually constant ones). One corollary of (4) is that “raising to an infinite
power” is not possible for elements in K. The situation is different in the case
of R-variables: Consider R a nonstandard elementary extension of Rexp and let
α > 0 be an element greater than all n ∈ N. The function

hα(x) =

{
xα x ≥ 0

− xα x < 0

is definable in R by xα = eα ln x for all x ∈ R. It is infinitely R-differentiable at
0 and all of its R-derivatives are 0 there.

Given a definable K-holomorphic function f : U → K in a neighborhood
U ⊆ K of 0, we let ord0(f) be the minimal k ≥ 0 such that f (k)(0) 6= 0, or ∞
if there is no such k. The Identity Theorem implies that if f does not vanish in
a neighborhood of 0 then ord0(f) <∞. Moreover, since the above result holds
in arbitrary o-minimal structures, we get a uniform version which is interesting
over R as well:

Given a definable open 0 ∈ U ⊆ K, we say that a family F of functions from
U to K is definable in R if there are definable sets T ⊆ Rn and F ⊆ U×K×T ,
such that for every t ∈ T , the set {(z, y) ∈ U ×K : (z, y, t) ∈ F} is the graph
of a function, call it ft, and F = {ft : t ∈ T}. Assume now that every ft ∈ F
is K-holomorphic on U and does not vanish in a neighborhood of 0. Then, we
claim that there is a bound k on ord0(ft) as t varies in T . Indeed, if not then
by logical compactness we would be able to realize (possibly in an elementary

extension) a K-holomorphic non-vanishing ft0 such that f
(k)
t0 (0) 6= 0 for all

k ∈ N. A contradiction. We therefore proved:

Theorem 3.3. For U ⊆ K a definable neighborhood of 0, let F = {ft : t ∈ T}
be a definable family of K-holomorphic maps ft : U → K. Then there is k ∈ N

such that for every t ∈ T , if f (i)(0) = 0 for all i = 0, . . . , k then ft vanishes in
a neighborhood of 0.

3.2. Functions of several variables. Definable K-holomorphic func-
tions of several variables also share many common properties with classical holo-
morphic functions (see [25]). We limit ourselves here to several results about
the ring of germs at 0 of definable K-holomorphic functions.

Definition 3.4. For definable functions f, g in a neighborhood of 0 ∈ Kn, we
say that f and g have the same germ at 0 if there is an open neighborhood
U 3 0 such that f(z) = g(z) for all z ∈ U . Let On(R) be the ring of germs at
0 ∈ Kn of all K-holomorphic functions near 0 ∈ Kn which are definable in R.
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Here are some results about On(R) (see [25] for all references).

Theorem 3.5. 1. The map from On into K[[z̄]], which sends a germ f ∈
On to its formal Taylor expansion at 0, is injective. Said differently, if
all derivatives of a definable K-holomorphic f vanish at 0 ∈ Kn then f
itself vanishes in a neighborhood of 0 (Theorem 2.30 (2)).

2. On is a local ring.

3. The ring On satisfies the Weierstrass preparation and division theorems
(see Theorem 2.20 and Theorem 2.23).

4. The ring On is Noetherian, (Theorem 2.30).

4. Definable K-manifolds and K-analytic Sets

4.1. Basic definitions. Once we have the notion of a K-holomorphic
function in several variables we may define the notions of a manifold and an
analytic set, with respect to the field K. We restrict our attention only to
definable functions and definable sets in a fixed o-minimal expansion R of a
real closed field R, with K = R(

√
−1).

Definition 4.1. A definable n-dimensional K-manifold is a definable set M
(living in some Rk), equipped with a finite cover of definable sets M =

⋃
i Ui,

each of which is in definable bijection φi : Ui → Vi with a definable open set
Vi ⊆ Kn, such that the transition maps

φjφ
−1
i : φi(Ui ∩ Uj) → φj(Uj)

are K-holomorphic (as maps between open subsets of Kn). The collection
{〈Ui, φi〉 : i ∈ I} is called a definable atlas for M .

Let M be a definable n-dimensional K-manifold. A definable N ⊆ M is
called a d-dimensional K-submanifold of M if every a ∈ N has a definable
open neighborhood U ⊆ M and a definable K-holomorphic f : U → Kn−d

such that N ∩ U = f−1(0) and such that the K-differential of f at a (which is
defined exactly as in the classical case) has K-rank n− d.

In [28], Lemma 3.3, we show that every definable K-submanifold of a de-
finable manifold is itself a definable K-manifold, namely has a definable finite
atlas.

If M and N are definable K-manifolds then a definable map f :M → N is
called K-holomorphic if, when read through the charts of M and N , becomes
a (definable) K-holomorphic map.

Definition 4.2. A definable A ⊆ M is called a K-analytic subset of M if
at every z ∈ M , the set A is given, locally near z, as the zero set of finitely
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many definable K-holomorphic functions. The set A ⊆ M is called a locally
K-analytic subset of M if the same is true for every z ∈ A.

The K-dimension of a K-analytic set A is defined to be the maximal d such
that A contains a d-dimensional K-submanifold of M .

We use dimK A to denote the dimension of A as aK-analytic set and dimRA
to denote its o-minimal dimension. As we show in [28], dimRA = 2dimK A.

When the underlying real closed field is the field of real numbers then defin-
able C-manifolds and definable C-analytic subsets are just complex manifolds
and complex analytic subsets, respectively, which are in addition definable in
the underlying o-minimal structure R.

We now review several examples of definable K-manifolds and K-analytic
sets in o-minimal structures.

4.2. Compact complex manifolds. An important collection of de-
finable manifolds in o-minimal structures is that of compact complex manifolds.

Every compact complex analytic manifold is isomorphic, as a complex man-
ifold, to a definable C-manifold in the structure Ran. More explicitly, assume
that {〈Ui, φi〉 : i ∈ I} is a finite atlas for an n-dimensional real analytic com-
pact manifold M . Then, as we show in the Appendix, the atlas can be replaced
by a new finite atlas {〈Bx, φi(x)|Bx〉 : x ∈ X}, with each Bx an open subset of
Ui(x) for some i(x) ∈ I, and such that: (i) each φix(Bx) is a definable subset

of Rn in Ran, and (ii) for all x, y ∈ X, the transition maps φy,x := φi(y)φ
−1
i(x)

are definable on φi(x)(Bx ∩ By) in Ran. It is not hard now to realize M as a
definable quotient and, using definable choice in o-minimal expansions of fields
(see 6.1.2 in [7]), as a definable set, with a definable atlas.

IfM is a compact complex manifold then we use the same process as above.
Since the transition maps we obtain are just restrictions of the original maps,
we get in this manner a complex manifold which is definable in Ran.

If M is a compact complex manifold which is already definable in Ran then
every complex analytic subset of M is definable in Ran.

Compact complex manifolds were studied elsewhere in model theory after
Zil’ber ([39]) proved that, when endowed with all analytic subsets, they admit
quantifier elimination and produce a stable structure of finite Morley rank. One
may then study the many-sorted structure, denoted sometimes by CCM, given
by the category of all compact complex manifolds (up to an isomorphism),
with all their analytic subsets and with the analytic maps between them. For
a survey of this work see [21] (see also in [13] and in [34]).

Our above discussion implies that the category CCM is interpretable in the
o-minimal Ran. However, this hides a subtlety that we wish to address here.
Note that a compact complex manifold can be realized in many different ways,
depending on the underlying set and the choice of atlas. Since we sometimes
wish to examine the definability of a particular presentation of a manifold, or
the definability of a particular holomorphic function on this manifold, it is often
not sufficient to study the manifold “up to an isomorphism”. As the following
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claim shows, it is possible that the underlying topological space of compact
complex manifold is semialgebraic, and yet a complex atlas for the manifold is
only definable in Rexp.

Claim 4.3. There is an Rexp-definable complex manifold structure S on the
unit sphere S2 in R3 such that S does not have an atlas definable in Ran.

Proof. Let S2 = {(x1, x2, x3) ∈ R3 : x21+x
2
2+x

2
3 = 1} be the unit sphere in R3,

pn = (0, 0, 1), ps = (0, 0,−1), and S∗

2 = S2 \ {pn, ps}. It is easy to see that S∗

2

is semalgebraically homeomorphic to the cylinder S1×R, where S1 = {(x, y) ∈
R2 : x2 + y2 = 1}, and we fix such a homeomorphism h : S∗

2 → S1 × R. Let
ϕ : S1 × R → C∗ be the map ϕ : ((x, y), r) 7→ (x + iy)er. It is not difficult to
see that ϕ is a homeomorphism definable in Rexp. The map ϕ◦h : S∗

2 → C∗

extends to a homeomorphism Φ: S2 → P1(C) by mapping ps to 0 and pN to
∞. Obviously, Φ is definable in Rexp.

We use Φ to pull-back the complex structure from P1(C) to S2, and obtain
a complex manifold structure S on S2. With respect to this structure the map
Φ is a biholomorphism. Since P1(C) has a semialgebraic atlas, the complex
manifold S has an atlas definable in Rexp.

We claim that S does not have a complex manifold atlas definable in Ran.
Indeed, if S admits a definable complex atlas in Ran then Φ should be definable
in Ran as well the map ϕ : S1 × R → C∗, contradicting the fact that the real
exponential function is not definable in Ran.

Remark 4.4. In the above example, since S∗

2 is an open subset of S2, it has an
induced complex manifold structure, call is S∗. It is not hard to see that S∗ has
an atlas definable in the structure Ran(but, as we saw above, this atlas cannot
be extended definably in Ran to an atlas for S)

4.3. K-algebraic and K-analytic sets. For every real closed field R
and its algebraic closure K, the sets Kn and Pn(K) are naturally K-manifolds
definable in 〈R,<,+, ·〉. More generally, every non-singular algebraic subvariety
of Kn or Pn(K) can be naturally endowed with a semialgebraic K-manifold
structure. Algebraic subvarieties of Kn or Pn(K) are K-analytic subsets of Kn

or Pn(K), respectively.

In fact, using Theorem 2.2 above, we also have the converse (see [28], The-
orem 5.1):

Theorem 4.5. Let R be an o-minimal expansion of a real closed field R, with
K its algebraic closure. If V is a definable K-analytic subset of Kn or of Pn(K)
then V is an algebraic variety over K.

When we specialize the above theorem to the o-minimal structure Ran, we
obtain that every definable analytic subset of Pn(C) is an algebraic variety.
However, as we pointed out earlier, every analytic subset of a compact complex
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manifold is definable in Ran so we obtain the classical theorem of Chow: Every
analytic subset of Pn(C) is algebraic.

Similar results for semialgebraic complex analytic sets can be found in [11],
and in the “isoalgebraic” setting in [15].

4.4. Definable families of K-manifolds. If X,Y, F are sets with
F ⊆ X×Y then for x ∈ X, we will denote by Fx the fiber Fx = {y ∈ Y : (x, y) ∈
F}. We say that a family F = {Fx : x ∈ X} of subsets of Y is definable if X,Y
and F ⊆ X × Y are definable sets.

If R is an o-minimal expansion of R and R∗ is an elementary extension of
R then every K-manifold M which is definable in R∗ is obtained as a fiber
in a definable family F of complex manifolds in the structure R (by that we
mean that the underlying sets of the manifolds as well as their atlases are
given by definable families in R). Thus, first order properties of the manifold
M reflect uniform properties of manifolds in the family F . Let us consider one
such property:

As we know by Riemann’s work, every one-dimensional compact complex
manifold M is biholomorphic with an algebraic nonsingular projective curve C.
If M is definable in Ran then the graph of this biholomorphism is an analytic
subset of the definable compact manifold M ×C and therefore is itself definable
in Ran.

Assume now that we are given a definable family of compact one-dimensional
complex-manifolds {Mt : t ∈ T} in some o-minimal structure R over R. Is
there a definable family of biholomorphisms of these manifolds with projective
varieties? Or, equivalently, consider an elementary extension R∗ of R and a
member Mt0 of the family, for a parameter t0 from R∗. Is the K-manifold
Mt0 definably K-biholomorphic with a projective algebraic variety over K?
Our original motivation for asking this question was an analogous theorem of
Moosa (see [22]) stating that if the family F is definable in CCM then indeed
there is in CCM a definable family of such biholomorphisms with projective
algebraic varieties. It turns out that in the o-minimal setting the answer is
negative, as we now describe.

4.5. The family of complex tori. For ω̄ = (ω1, . . . , ω2n) a tuple of 2n
vectors in Cn which are linearly independent over R, let Λω̄ ⊂ Cn be the lattice
Zω1+ · · ·+Zω2n. Since Λω̄ is a discrete subgroup of (Cn,+), the quotient group
Eω̄ = (Cn,+)/(Λω̄,+) inherits a complex-analytic structure, and with respect
to this structure, Eω̄ is a connected compact complex Lie group of dimension
n, i.e. an n-dimensional complex torus.

Although the lattice Λω̄ is an infinite discrete set and thus is not definable
in any o-minimal structure, we are going to view these tori definably as follows:
The underlying set of Eω̄ is identified with the definable parallelogram

Eω̄ =

{
t1ω1 + · · ·+ t2nω2n :

2n∧

i=1

0 ≤ ti < 1

}
, (1)
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and then it is not hard to produce a semialgebraic atlas on Eω̄ with semialge-
braic transition maps, corresponding to the complex analytic structure of Eω̄.
Therefore each Eω̄ can be viewed as a C-manifold definable in the field R, and
moreover these definable charts and transition maps can be constructed uni-
formly in ω̄, thus obtaining a semi-algebraic family of all n-dimensional complex
tori. It follows that in every real closed field R, if we take a tuple ω̄ of 2n vec-
tors in Kn (K = R(

√
−1)) which are linearly independent over R, we have a

corresponding definable K-manifold Eω̄, which we call a K-torus.

In [26] we considered the family, call it F , of all one-dimensional complex
tori in various o-minimal expansions of R. Each member of F is an elliptic curve,
i.e. biholomorphic with a smooth projective cubic curve. The biholomorphism
between these two compact complex manifolds is definable in Ran. However,
as we show in [26], Corollary 5.6, a full family of such biholomorphisms is
not definable in an o-minimal structure. Formulated in the language of non-
standard o-minimal structures we have:

Theorem 4.6. Let R be an arbitrary o-minimal expansion of Ran,exp and let
R∗ = 〈R,<,+, ·, · · ·〉 be a non-Archimedean elementary extension of R, with
K = R(

√
−1). If τ ∈ K is such that Im(τ) > 0 and Re(τ) greater than all

standard n ∈ N, then the K-torus E1,τ is not definably K-biholomorphic, in the
structure R∗, with any algebraic curve.

We thus showed the failure of the definable analogue to Riemann’s Existence
Theorem, for definably compact one-dimensional K-manifolds in o-minimal
structure (a “definably compact manifold” here can be taken to mean aR∗-fiber
in an R-definable family of compact real manifolds).

In Section 4.6 below and Section 6.2 we discuss some positive cases of Rie-
mann’s theorem.

4.6. Mild manifolds. We let R be an o-minimal expansion of a real
closed field R and K = R(

√
−1)

Let M be a definable K-manifold, and let A(M) be the structure whose
universe is M and its atomic relation are all the definable K-analytic subsets
of Mn, n ∈ N. In [27] we called M a mild manifold if A(M) admits quantifier
elimination. Examples are compact complex manifolds (by Zil’ber’s work [39]),
definably compact K-manifolds (see Theorem 8.3 in [28]), the set of K-regular
points of an algebraic variety over K (projective or affine). On the other hand,
the open unit disc in C is a definable complex-manifold which is not mild in
any o-minimal structure.

In an attempt to understand better the previous example of a non-algebraic
one-dimensional K-torus we proved the following result (see Theorem 6.0.1,
and Theorem 4.4.3 [27]), which can be seen as a conditional Riemann Existence
Theorem.
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Theorem 4.7. LetM be a definable K-manifold which is mild and also strongly
minimal (namely, in the structure A(M) every definable subset of M is finite
or co-finite). Then the following are equivalent:

1. A(M) is non locally modular.

2. There is a finite F ⊆ M and a definable non-constant K-holomorphic
function φ :M rF → K (we call φ a K-mermomorphic function on M).

3. There is a definable K-biholomorphism between M and a non-singular
algebraic curve over K.

In particular, the non algebraic one-dimensional K-torus E1,τ of Theorem
4.6 admits no definable nonconstant K-meromorphic map into K and A(E)
is locally modular. If we translate the above theorem to definable families of
compact complex one-dimensional manifolds (which are all mild and strongly
minimal) then we get some uniform version of Riemann’s theorem:

Corollary 4.8. Let R be an o-minimal structure over R and let F = {Mt :
t ∈ T} be a a definable family of one-dimensional compact complex manifolds,
given together with a definable family φt :Mt → C of nonconstant meromorphic
maps.

Then, there is in R a definable family of complex algebraic curves {Ct : t ∈
T} and a definable family of complex biholomorphisms σt :Mt → Ct.

5. Theorems on Removal of Singularities

One of the most useful features of working with analytic objects which are
definable in o-minimal structures is the theory of removal of singularities: Start
with a complex manifold M , an open set U ⊆ M and consider an analytic
subset A of U . In general, the topological closure of A in M is not analytic
in M . A great deal of attention has been given classically to conditions under
which Cl(A) is analytic in M . Assuming that M,U and A are definable in
an o-minimal structure one obtains strong results in both the standard and
non-standard settings.

5.1. Characterizing K-analytic sets

Definition 5.1. Given a definable K-manifold M , and a definable A ⊆M , we
define the set of K-regular points of A, denoted by RegK(A), as the set of all
points a ∈ A such that in some neighborhood of a, the set A is a K-submanifold
of M . We let SingK(A) = ArRegK(A).

We call a definable A ⊆ M a finitely K-analytic subset of M if M can be
covered by finitely many definable open setsM =

⋃
j Wj and for each j there is

a definable K-holomorphic map ψj :Wj → Kmj , such that A ∩Wj = ψ−1(0).
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Clearly, every finitely K-analytic set in K-analytic. As for the converse,
note that if M is a compact complex manifold, definable in Ran, then every
C-analytic subset ofM is C-finitely analytic. It turns out that o-minimality can
replace the role of compactness and that in the o-minimal setting this converse
is always true. Here is one of the main theorems characterizing definable K-
analytic sets (see[28], Corollary 4.14):

Theorem 5.2. Let M be a definable K-manifold and A ⊆M a definable closed
set. Then the following are equivalent:

1. A is a K-analytic subset of M .

2. A is a finitely K-analytic subset of M .

3. For every open W ⊆ Kn, dimR(SingK(A ∩W )) ≤ dimR(A ∩W )− 2.

Another strong variant of Remmert-Stein’s Theorem is (see [28], Theorem
4.1.3):

Theorem 5.3. Let M be a definable K-manifold and E a definable K-analytic
subset of M . If A is a definable K-analytic subset of M \ E then Cl(A) is
K-analytic in M .

If we specialize to complex manifolds then the above theorem follows from
Remmert-Stein when we assume that A is of pure dimension and dimCE <
dimCA.

Remark 5.4. 1. Note that the implication (3)⇒ (1) in Theorem 5.2 fails without
the definability assumption: Take M = C3 and let

A = {(x, e1/x, 1) ∈ C3 : x 6= 0} ∪ {(0, y, z) ∈ C3}.

The set A is a closed subset of C3 and its set of singular points is {(0, y, 1) ∈ C3}.
For every open W ⊆ C3, either W ∩ {(0, y, 1)} = ∅, in which case SingC(W ∩
A) = ∅ or SingC(W ∩ A) = W ∩ {(0, y, 1) : y ∈ C}, in which case the real
dimension of this set is 2 while the real dimension of W ∩ A is 4. However, A
is not an analytic subset of C3.

2. Clause (3) of Theorem 5.2 can be expressed in a first-order way, after
showing that RegK(A) is definable, uniformly in families, for A ⊆ Kn. Working
in the charts of M , it then follows from Theorem 5.2 that if {At : t ∈ T} is a
definable family of subsets of M , then the collection

{t ∈ T : At is an analytic subset of M}

is definable.

Putting this last observation together with Theorem 4.5, we obtain the
following interesting result:

Theorem 5.5. Let {Xt : t ∈ T} be a definable family of subsets of Kn. Then
the set of all t ∈ T such that Xt is an algebraic subset of Kn is definable.
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5.2. Definable K-holomorphic maps. Let us now consider the im-
plications of the above results on definable K-holomorphic maps. The main
results here are (see [29], Corollary 6.3, and [28], Theorem 7.3)

Theorem 5.6. Let f : M → N be a definable K-holomorphic map between
definable K-manifolds, and A ⊆M a definable K-analytic subset of M . Then

1. There is a closed definable set E ⊆ N , with dimR(E) ≤ dimR f(A) − 2,
and with dimR(f

−1(E) ∩ A) ≤ dimR(A) − 2, such that f(A) r E is a
locally K-analytic subset of N .

2. If f(A) is a closed subset of N then it is a K-analytic subset of N .

Clause (2) is a strong variant of Remmert’s proper mapping theorem. Again,
it fails without the definability assumptions. Indeed, the projection of the an-
alytic set {(n, 1/n) ∈ C × C : n ≥ 1} ∪ {(0, 0)} on its first coordinate is the
closed set {1/n : n ≥ 1} ∪ {0} which is clearly not an analytic subset of C.

5.3. Compactification of analytic spaces. Consider an action of
an infinite discrete group Γ on a complex manifold M . Under various assump-
tions one can endow the quotient Γ\M with the structure of a complex analytic
space or even that of quasi-affine or quasi-projective variety (see the seminal
work [2] on arithmetic quotients). We note here how one may apply the theory
on removal of singularities in order to prove results of similar flavor, assuming
the existence of a partially definable holomorphic Γ-periodic map φ from M
into another manifold N . Note that even if M and N are definable in some
o-minimal structure the map φ is generally not definable there, because of the
infinite period Γ. However, as we demonstrate in sections 6.2 and 6.3, we can
sometimes prove the definability of φ on a definable U ⊆M , with φ(U) = φ(M)
and, as the following result shows, for certain purposes this is sufficient (for a
proof, see Appendix).

Theorem 5.7. Let R be an o-minimal expansion of the real field. Let φ :
U → N be a definable finite-to-one holomorphic map from an open U ⊆ Cn

into a definable complex manifold N . Assume that there is a set D ⊆ U (not
necessarily definable) which is closed in Cn, such that φ(U) = φ(D). Then the
topological closure of φ(U) in N , call it A, is a complex analytic subset of N ,
and dimR(Ar φ(U)) ≤ 2n− 2.

6. Classical Holomorphic Functions in an

o-minimal Setting

Although all germs of holomorphic maps are definable in Ran, if one wishes
to apply o-minimal techniques to classical mathematical questions, it is neces-
sary to consider certain holomorphic functions on their natural domains, or on
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sufficiently large sub-domains, and prove their definability in some o-minimal
structure. In this section we consider several such cases.

6.1. The Riemann mapping. The Riemann mapping theorem says
that if Ω ⊆ C is a non-empty simply connected open set which is not equal
to C then there is a biholomorphism f : Ω → D with the open unit disc in
C. The map is unique up to a biholomorphism of D. What can be said about
the definability of f in some o-minimal structure, assuming that Ω is definable
there?

In [17] Kaiser shows that when Ω is a polygon (in which case f is known as
the Schwarz-Chirstoffel map), the map f is indeed definable in the o-minimal
structure RR

an, the expansion of Ran by all power functions xα, α ∈ R. In [18]
he also shows:

Theorem 6.1. There is an o-minimal structure R with the following property.
Let Ω ⊂ C be a bounded simply connected domain that is definable in Ran and
assume that for every x which is a singular boundary point of Ω, the angle of
the boundary at x is an irrational multiple of π. Then the biholomorphic map
f : Ω → D which is given by Riemann’s theorem is definable in R.

The o-minimal structure in the theorem is constructed in [19].

6.2. The Weierstrass ℘-function and elliptic curves. We re-
turn to the family of one dimensional tori discussed in Section 4.5. For the
classical facts mentioned here, see [35].

Every one dimensional torus is bi-holomorphic with a torus C/Λ, with Λ =
Z+ τZ and τ in the upper half plain H = {τ ∈ C : Im(τ) > 0}. We denote the
corresponding torus by Eτ , and its underlying set defined in Section 4.5 (1) by
Eτ .

The group of SL(2,Z) acts on H via

(
a b
c d

)
: z 7→ az + b

cz + d
,

and two tori Eτ , Eτ ′ are biholomorphic if and only if τ = Aτ ′ for some A ∈
SL(2,Z).

Recall that the Weierstrass ℘-function is a meromorphic map ℘(τ, z) from
H×C into C, so that for each τ ∈ H the map ℘τ : z 7→ ℘(z, τ) is a Λτ -periodic
meromorphic map on the whole of C, and the map gτ : z 7→ (1 : ℘τ (z) : ℘

′

τ (z))
induces an embedding of Eτ into P2(C). We also have ℘(τ, z) = ℘(Aτ, z) for
any A ∈ SL2(2,Z), τ ∈ H, z ∈ C.

The function ℘(z, τ) cannot be definable in an o-minimal structure on all
of C×H because of the periodicity in z and in τ . We consider, instead of the
whole of H, the set

F = {τ ∈ H : −1/2 ≤ Re(τ) < 1/2 and |τ | ≥ 1},



74 Ya’acov Peterzil and Sergei Starchenko

and the family of tori EF = {Eτ : τ ∈ F}. The choice of the subfamily EF is
quite standard, since F contains a representative of every orbit of SL(2,Z), and
therefore every one-dimensional torus is biholomorphic with some Eτ for τ ∈ F.

We have (see [26], Theorem 4.1):

Theorem 6.2. The restriction of ℘(τ, z) to the set

{(z, τ) ∈ C×H : τ ∈ F and z ∈ Eτ}

is definable in the structure Ran,exp.

Since H and F are semialgebraic sets, they can be interpreted in any real
closed field R. We denote these byH(R) and F(R). As a corollary to the theorem
above we have (see [26], theorem 5.4):

Theorem 6.3. Let R = 〈R,<,+, · · · ·〉 be an arbitrary model of Ran,exp, K =
R(

√
−1).

(i) If τ ∈ F(R) then Eτ is definably K-biholomorphic to a nonsingular cubic
curve in P2(K).

(ii) If C ⊆ Pn(K) is a nonsingular algebraic curve of genus one then there is
a τ ∈ F(K) and a K-biholomorphism of C and Eτ which is definable in
R.

Thus in all models of Ran,exp, every projective curve of genus one over K
is definably K-biholomorphic to a one-dimensional K-torus Eτ with τ ∈ F(R).
But as we showed in Section 4.5, it is not true that every one dimensional
K-torus is definably K-biholomorphic to an algebraic curve.

As before, the last theorem can be stated in the language of Ran,exp-definable
families of complex curves and holomorphic maps.

6.2.1. O-minimality and arithmetic. Several articles in recent years make
connections between o-minimality and arithmetical questions in complex al-
gebraic geometry. The starting point of this analysis is a theorem of Pila and
Wilkie concerning the distribution of rational points on subsets of Rn which are
definable in o-minimal structures (see [33]). Given a complex algebraic variety,
Pila and Zannier, [32], used transcendental holomorphic functions on bounded
sets, definable in Ran, to translate questions about torsion points in complex
abelian varieties into questions on rational points of Ran-definable subsets of
Cn. Having that, they use the Pila-Wilkie result, together with number theoretic
considerations and o-minimality to give a new proof for the Manin-Mumford
conjecture.

More recently, Pila, [30], [31], used Theorem 6.2 above to translate ques-
tions about special points in the moduli space of elliptic curves into questions
on quadratic points in Ran,exp-definable subsets of Cn. Using a variant of his
theorem with Wilkie, together with number theoretic results and o-minimality,
he was able to prove certain open cases of the André-Oort conjecture.
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6.3. The theta functions and abelian varieties. In this section
we describe a recent, still unpublished work.

As was pointed out in Section 4.5, the family of n-dimensional complex tori
Eω̄ can be viewed as a definable family of complex manifolds in the structure
R. A torus Eω̄ is called an abelian variety if it is biholomorphic to a projective
algebraic variety. We first review briefly the relevant information regarding
abelian varieties (see [5] [16]).

We already discussed the fact that every 1-torus is an abelian variety. When
n > 1, the family of abelian varieties is a proper sub-collection of the family of
all n-tori, given as countable union of definable subfamilies FD, where D runs
over all n× n diagonal matrices

D = Diag(d1, d2, . . . , dn),

with d1|d2| . . . |dn positive integers. Each FD is defined as follows:

We denote by Hn the Siegel half space of all n × n complex symmetric
matrices with a positive definite imaginary part. We now fix D as above (called
the polarization type). For τ ∈ Hn we denote by Λτ,D the lattice which is
generated by the columns of the n × 2n complex matrix (τ,D). We let Eτ,D
denote the corresponding torus. Let FD = {Eτ,D : τ ∈ Hn} be the family of all
polarized tori with polarization type D. It is known that a complex n-torus is
an abelian variety if and only if it is biholomorphic to a torus from one of the
families FD (but each abelian variety appears in more than one such family).

Let Sp(D,Z) be the group of 2n × 2n integral matrices preserving the al-
ternating form (

0 D
−D 0

)
.

The group Sp(D,Z) acts on Hn and any two polarized varieties Eτ1,D and Eτ2,D
in FD are isomorphic (as polarized varieties) if and only if they are in the same
orbit of Sp(D,Z).

There is a natural number k such that every Eτ,D can be embedded, via
a map which we denote by Θτ,D, into Pk(C). We are interested in uniform
definability of these embeddings.

As in the case n = 1, although each Θτ,D is definable in Ran, the whole
family Θτ,D(z), τ ∈ Hn, can not be defined in any o-minimal structure because
of periodicity in τ , and we need to choose an appropriate subfamily. It follows
from Siegel’s reduction theory (see [16], p. 189-197), that there is a a semi-
algebraic set FD

n ⊆ Hn containing finitely many representatives for each orbit
of Sp(D,Z).

Theorem 6.4. For every polarization type D the family of embeddings
{Θτ,D : τ ∈ FD

n } is definable in the structure Ran,exp.

The above theorem is equivalent to definability of certain theta functions
which we now describe.
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We use Θ̃τ,D : Cn → Pk(C) to denote the pullback of Θτ,D, i.e. Θ̃τ,D is a

Λτ,D-periodic map which induces Θτ,D, and let Θ̃D : Hn × Cn → Pk(C) be

Θ̃D(τ, z) = Θ̃τ,D(z). The map Θ̃D can be obtained as the composition π ◦ ϑ̃D,

where π : Ck+1 → Pk(C) is the canonical projection, and ϑ̃D : Hn×Cn → Ck+1

is a map whose coordinate functions are given by theta functions ϑa,b(z, τ),
for various a, b ∈ Qn. The theta functions are given explicitly by the following
formula:
For a, b ∈ Rn, z ∈ Cn column vectors and a matrix τ ∈ Hn (we use tz to denote
the transpose of a column vector z),

ϑa,b(τ, z) =
∑

m∈Zn

eiπ(
t(m+a)τ(m+a)+2 t(m+a)(z+b)).

We define

Ωn = {(τ, z) ∈ Hn × Cn : τ ∈ FIn
n and z ∈ Eτ.In}.

Theorem 6.4 can be deduced from the following result.

Theorem 6.5. For every a, b ∈ Rn, the map (τ, z) 7→ ϑa,b(τ, z) restricted to
Ωn is definable in the o-minimal structure Ran,exp.

We end this section by observing how o-minimality can be be used in the
construction of moduli spaces of polarized abelian varieties. We assume that D
is a polarization type with d1 divisible by 4.

We need the following fact (see Theorem V.4 in [16])

Fact 6.6. There is a subgroup Γ < Sp(D,Z) of finite index and a holomorphic
map ϕ : Hn → PN (C), whose coordinates are given by maps τ 7→ ϑa,b(τ, 0) such
that ϕ(τ) = ϕ(τ ′) if and only if τ and τ ′ are in the same orbit of Γ.

The map ϕ from the above fact induces a map from Γ\Hn into PN (C), and
an important issue in the theory of moduli spaces is the nature of the image
of this map. The main result is that this image is dense inside some algebraic
subvariety of PN (C) (see Theorem V.8 in [16]). Let us see how o-minimality
yields an alternative proof of this fact.

Since Γ has finite index in Sp(D,Z), we can choose a semi-algebraic F
consisting of finitely many translates of FD

n such that ϕ(Hn) = ϕ(F ).

Using Theorem 6.5 and transformation formulas for theta functions, we can
get ϕ to be definable on an open set U ⊆ Hn containing the closure of F .
We now view ϕ : U → PN (C) as a definable holomorphic map from an open
subset of C` (with ` = dim(Hn)) into the definable manifold PN (C). We can
therefore apply Theorem 5.7 and deduce that the closure of ϕ(F ) is an analytic
subvariety of PN (C), so by Chow’s Theorem must be algebraic. It immediately
follows that the closure of image of Γ \ Hn under ϕ is algebraic as well.
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7. Appendix

7.1. Definability of compact real analytic manifolds in Ran.
We prove here the result claimed in Section 4.2.

Proposition 7.1. Let M be a n-dimensional compact real analytic manifold
with a given finite atlas {〈Ui, φi〉 : i ∈ I}. Then there is a finite open cover
M =

⋃
x∈X Bx with the properties:

(i) For each x ∈ X there is an i(x) ∈ I with Bx ⊆ Ui(x), such that φi(x)(Bx) is
a subset of Rn which is definable in Ran.
(ii) For all x, y ∈ X, the sets φi(x)(Bx∩By) and the restriction of the transition

map φi(y)φ
−1
i(x) to this set are definable in Ran.

Proof. Without loss of generality each φi(Ui) is a bounded subset of Rn. We
denote by φij the real analytic transition map

φiφ
−1
j : φj(Ui ∩ Uj) → φi(Ui ∩ Uj).

As was pointed out in the examples of Section 2, if B ⊆ φj(Ui∩Uj) is a definable
set whose closure is contained φj(Ui ∩ Uj) then the restriction of φij to B is
definable in Ran.

By compactness, for each i ∈ I there is an open Vi ⊆ Cl(Vi) ⊆ Ui such that
M =

⋃
i∈I Vi. Now, for every x ∈ M , we choose a neighborhood Bx of x such

that
Bx ⊆ Cl(Bx) ⊆

⋂

x∈Vi

Vi ∩
⋂

x∈Uj

Uj ∩
⋂

x∈Cl(Vt)c

Cl(Vt)
c, (2)

and

for every i ∈ I for which x ∈ Ui, the set φi(Bx) is definable in Ran. (3)

Indeed, this is possible to do since we only we need to choose Bx small enough
to satisfy (2) and in addition require that for some fixed Uj 3 x, the set φj(Bx)
is an open rectangular box in Rn. To verify (2), by our choice of Bx, if x ∈ Ui

then Cl(Bx) ⊆ Ui ∩ Uj and hence φj(Cl(Bx)) is a closed rectangular box
inside φj(Ui ∩ Uj). Therefore, as we observed already, the restriction of φij to
Cl(φj(Bx)) is definable in Ran. But then, φi(Bx) = φij(φj(Bx)) is definable as
well, as required.

Claim Given i, j ∈ I, assume that x ∈ Vi, y ∈ Vj and Bx ∩ By 6= ∅. Then
Cl(Bx ∪ By) ⊆ Ui ∩ Uj and φi(Bx), φi(By), φj(Bx), φj(By) are all definable in
Ran.

Indeed, since Bx ∩ By 6= ∅ and Bx ⊆ Vi we have By ∩ Vi 6= ∅ and
therefore y ∈ Cl(Vi) (for otherwise, by the choice of By, we would have
By ⊆ Cl(Vi)

c, a contradiction). By our choice the Vi’s, it follows that y ∈ Ui

and therefore Cl(By) ⊆ Ui. We also have Cl(Bx) ⊆ Cl(Vi) ⊆ Ui and therefore
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Cl(Bx ∪ By) ⊆ Ui. Similarly, we have Cl(Bx ∪ By) ⊆ Uj . By our definition of
Bx, By we have φi(Bx), φi(By), φj(Bx), φj(By) all definable, proving the claim.

By compactness, there is a finite set X ⊆M , such that M =
⋃

x∈X Bx. For
each x ∈ X we choose i(x) ∈ I such that x ∈ Vi(x). By the claim, if Bx∩By 6= ∅
then φi(x)(Bx∩By) = φi(x)(Bx)∩φi(x)(By) is definable in Ran and furthermore,
the closure of φi(x)(Bx ∩By) is contained in φi(x)(Ui(x) ∩Ui(y)). It follows that

the restriction of φi(y)φ
−1
i(x) to this set is definable.

7.2. The proof of Theorem 5.7

Proof. Let Fr(φ(U)) = A r φ(U) be the frontier of φ(U). We first prove that
dimR(Fr(φ(U))) ≤ 2n− 2.

Consider Cn as a subset Pn(C), namely we write Pn(C) = Cn ∪H for H a
hyperplane at ∞. Let G be the closure in Pn(C)×N of the graph of φ and let
π : Pn(C) × N → N be the projection onto the second coordinate. We claim
that Fr(φ(U)) = π(G ∩ (H × N)). The right-to-left inclusion is immediate.
For the converse, if y ∈ Fr(φ(U)) then there is a sequence xn ∈ U such that
φ(xn) tends to y. Since φ(U) = φ(D) we may assume that xn ∈ D. Because D
is closed in Cn and y /∈ φ(U), the sequence xn does not have any converging
subsequence in Cn and therefore it is unbounded in Cn. But then, viewed in
Pn(C), the sequence has a converging subsequence to an element z ∈ H, and
then (z, y) ∈ G ∩ (H ×N), hence y ∈ π(G ∩ (H ×N))

Next, consider the set Binf of all (z, y) ∈ G ∩ (H ×N) such that there are
infinitely many y′ ∈ N with (z, y′) ∈ G and let Bfin = G∩ (H ×N)rBinf . By
[29], Lemma 6.7 (ii), dimR(Binf) ≤ 2n− 2, and since dimRH = 2n− 2 we also
have dimRBfin ≤ 2n− 2. It follows that dimR(G∩ (H ×N)) ≤ 2n− 2. We now
have,

dimR(Fr(φ(U))) = dimR(π(G ∩ (H ×N))) ≤ 2n− 2,

as claimed.
By Theorem 5.6 (1), there is a definable closed set E ⊆ N , with dimR(E) ≤

dimR φ(U) − 2, such that φ(U) r E is locally analytic in N . Because A =
(φ(U)r E) ∪ E ∪ Fr(φ(U)), we have

SingC(A) ⊆ E ∪ Fr(φ(U)) ∪ SingC(φ(U)r E).

Since φ is finite-to-one, the real dimension of φ(U) is 2n everywhere and there-
fore the real dimension of SingC(φ(U)r E) is at most 2n− 2 everywhere (see
5.2(3)). We thus have for all open W ⊆ N ,

dimR(SingC(A ∩W )) ≤ 2n− 2 = dimR(W ∩A)− 2.

We can now apply Theorem 5.2(3) once more and conclude that A is an analytic
subset of N .
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Introduction

Tensor triangular geometry is the study of tensor triangulated categories by
algebro-geometric methods. We invite the reader to discover this relatively new
subject.

A great charm of this theory is the profusion of examples to be found
throughout pure mathematics, be it in algebraic geometry, stable homotopy
theory, modular representation theory, motivic theory, noncommutative topol-
ogy, or symplectic geometry, to mention some of the most popular. We review
them in Section 1. Here is an early photograph of tensor triangular geometry,
in the crib:
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Before climbing into vertiginous abstraction, it is legitimate to enquire about
the presence of oxygen in the higher spheres. For instance, some readers might
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wonder whether tensor triangulated categories do not lose too much informa-
tion about the more concrete mathematical objects to which they are asso-
ciated. Our first answer is Theorem 54 below, which asserts that a scheme
can be reconstructed from the associated tensor triangulated category, whereas
a well-known result of Mukai excludes such reconstruction from the triangu-
lar structure alone. Informally speaking, algebraic geometry embeds into tensor
triangular geometry.

The main tool for this result is the construction of a locally ringed space
Spec(K) =

(

Spc(K) , OK

)

for any tensor triangulated category K, which gives
back the scheme in the above geometric example. Interestingly, this construc-
tion also gives the projective support variety, VG(k), in modular representation
theory. This unification is one of the first achievements of tensor triangular
geometry.

The most interesting part of our Spec(K) is the underlying space Spc(K),
called the spectrum of K. We shall see that determining Spc(K) is equivalent
to the classification of thick triangulated tensor-ideals of K. Indeed, in almost
all examples, the classification of all objects of K is a wild problem. Neverthe-
less, using subsets of Spc(K), one can always classify objects of K modulo the
basic operations available in K: cones, direct summands and tensor products
(Theorem 14). This marks the beginning of tensor triangular geometry, per se.
See Section 2.

A general goal of this theory is to transpose ideas and techniques between
the various areas of the above picture, via the abstract platform of tensor trian-
gulated categories. For instance, from algebraic geometry, we shall abstract the
technique of gluing and the concept of being local. From modular representation
theory, we shall abstract Carlson’s Theorem [18] and Rickard’s idempotents.
And of course many techniques used in triangulated categories have been bor-
rowed from homotopy theory, not the least being the above idea of classifying
thick tensor-ideals.

Finally, we also want applications, especially strict applications, i. e. results
without tensor triangulated categories in the statement but only in the proof.
Such applications already exist in algebraic geometry (for K-theory and Witt
groups) and in modular representation theory (for endotrivial modules). And
applications start to emerge in other areas as well. We discuss this in Section 3.

Let us illustrate our philosophy with a concrete abstraction. Take the no-
tion of ⊗-invertible object u ∈ K (i. e. u ⊗ v ' 11 for some v ∈ K). This
perfectly ⊗-triangular concept covers line bundles in algebraic geometry and
endotrivial modules in modular representation theory. Now, in algebraic geom-
etry, a line bundle is locally isomorphic to 11. Hence, the ⊗-triangular geometer
asks:

(a) Can one make sense of “locally” in any ⊗-triangulated category?

(b) Are all ⊗-invertible objects “locally” isomorphic to 11, say, up to suspen-
sion?
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(c) Can one use these ideas to relate line bundles and endotrivial modules?

We shall see that the respective answers are: yes, no (!) and, nonetheless, yes.

Acknowledgements. I’m indebted to many friends and colleagues, that
I would like to thank, collectively but very sincerely, for their help and support.

1. Tensor Triangulated Categories in Nature

1.1. Basic definitions. Let us remind the reader of the notion of trian-
gulated category, introduced by Grothendieck-Verdier [50] forty years ago. See
Neeman [41] for a modern reference.

Definition 1. A triangulated category is an additive category K (we can add
objects a⊕ b and morphisms f + g) with a suspension Σ : K

∼→ K (treated here
as an isomorphism of categories) and a class of so-called distinguished triangles

∆ =

(

a
f // b

g // c h // Σa

)

which are like exact sequences in spirit and are subject to a list of simple axioms:

(TC1) Bookkeeping axiom: Isomorphic triangles are simultaneously distin-
guished; ∆ as above is distinguished if and only if its rotated

b
g // c h // Σa

−Σf// Σb is distinguished; a
1 // a // 0 // Σa is distin-

guished for every object a.

(TC2) Existence axiom: Every morphism f : a → b fits in some distinguished
triangle ∆.

(TC3) Morphism axiom: For every pair of distinguished triangles ∆ and ∆′

∆ =

(

a
f //

k ��

b
g //

` ��

c
h //

∃m ��

Σ(a)
)

Σk��

∆′ =

(

a′
f ′

// b′
g′

// c′
h′

// Σ(a′)
)

,

every commutative square (on the left) fits in a morphism of triangles.

This was also proposed by Puppe in topology but Verdier’s notorious addition
is:
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(TC4) Octahedron axiom: Any two composable morphisms a
f−→ a′

f ′

−→ a′′ fit

in a commutative diagram (marked arrows c · // c′ mean c−→Σ(c′))

a
f //

##
a′

f ′

//

��		
		
	

a′′

����
��
�

rr

b

��5
55

55

·333

YY33

b′·oo

·666

[[66

b′′

CC�����

·

LL

or equivalently

a′′

����
��

��7
77

77
77

77
77

a′

f ′
66mmmmmmmmmmm

��6
66

66
66

66
66

b′·oo

·

��

a
QQQQf

hhQQQQQQQ

OO

b′′·oo

hhRRRRRRRRRRRR

b

·���

@@��
66llllllllllll

in which the four triangles of the form

•

·�
�

����
•

//
•

^^=====
are distinguished.

A functor between triangulated categories is exact if it commutes with suspen-
sion (up to isomorphism) and preserves distinguished triangles in the obvious
way.

Remark 2. Assuming (TC1)-(TC3), the third object c in a distinguished
triangle ∆ over a given f : a → b is unique up to (non-unique) isomorphism
and is called the cone of f , denoted cone(f). The octahedron axiom simply
says that there is a nice distinguished triangle relating cone(f), cone(f ′) and
cone(f ′ ◦ f).

The power of this axiomatic comes from its remarkable flexibility, compared
for instance to the concepts of abelian or exact categories, which are somewhat
too “algebraic”. As we shall recall below, triangulated categories appear in a
priori non-additive frameworks. In fact, the homotopy category of any stable
Quillen model category is triangulated, see Hovey [27, Chap. 7].

Definition 3. A tensor triangulated category (K,⊗, 11) is a triangulated cate-
gory K equipped with a monoidal structure (see Mac Lane [33, Chap.VII])

K×K
⊗−→ K

with unit object 11 ∈ K. We assume − ⊗ − exact in each variable, i. e. both
functors a ⊗ − : K → K and − ⊗ a : K → K are exact, for every a ∈ K. This
involves natural isomorphisms (Σa)⊗b ' Σ(a⊗b) and a⊗ (Σb) ' Σ(a⊗b) that
we assume compatible, in that the two ways from (Σa)⊗ (Σb) to Σ2(a⊗ b) only
differ by a sign. Although some of the theory holds without further assumption,
we are going to assume moreover that ⊗ is symmetric monoidal : a⊗ b ∼= b⊗ a,
see [33, §VII.7].

An exact functor F between tensor triangulated categories is ⊗-exact if it
preserves the tensor structure, including the 11, up to isomorphisms which are
compatible with the isomorphism FΣ ' ΣF , in the hopefully obvious way.
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Remark 4. This is the most elementary axiomatic for “tensor triangulated”;
see details in Hovey-Palmieri-Strickland [28, App.A]. May [34] proposed further
compatibility axioms between tensor and octahedra, later extended by Keller-
Neeman [30]. However, the elementary Definition 3 suffices for our purpose.

Such structures abound throughout pure mathematics, as we now review.
See also [28, 1.2.3] for examples. We cannot provide background, motivation and
explanations on all the following subjects and we assume some familiarity with
at least some of the examples below, depending on the reader’s own interests.

1.2. Examples from algebraic geometry. Let X be a scheme, here
always assumed quasi-compact and quasi-separated (i. e. X admits a basis of
quasi-compact open subsets); e.g. X affine, or X noetherian, like a variety over
a field. Then K = Dperf(X), the derived category of perfect complexes over X,
is a tensor triangulated category. See SGA6 [14] or Thomason [49]. It sits
K ⊂ T inside the tensor triangulated category T = DQcoh(X)(X) of complexes
of OX -modules with quasi-coherent homology. Such a complex is perfect if it is
locally quasi-isomorphic to a bounded complex of finitely generated projective
modules. When X is a quasi-projective variety over a field, Dperf(X) is simply
Db(VBX) the bounded derived category of vector bundles. The conceptual way
of thinking of perfect complexes is as the compact objects in T (Def. 44). See
Neeman [40] or Bondal-van denBergh [15, Thm. 3.1.1]. The tensor ⊗ = ⊗L

OX
is

the left derived tensor product and the unit 11 is OX (as a complex concentrated
in degree 0).

When X = Spec(A) is affine, these categories are T = D(A–Mod), the
derived category of A-modules, andK = Dperf(A) ∼= Kb(A–proj), the homotopy
category of bounded complexes of finitely generated projective A-modules.

1.3. Examples from stable homotopy theory. Let K = SHfin

be the Spanier-Whitehead stable homotopy category of finite pointed CW-
complexes. It sits K ⊂ T as a tensor triangulated subcategory inside T = SH,
the stable homotopy category of topological spectra. The tensor ⊗ = ∧ is the
smash product and the unit 11 = S0 is the sphere spectrum. See Vogt [53].
One can also replace these by equivariant versions, use modules over a ring
spectrum, or treat everything over a fixed base space.

1.4. Examples from modular representation theory. Let k be
a field of positive characteristic and let G be a finite group, or a finite group
scheme over k. (The adjective modular refers to kG not being semi-simple, i. e.
to the existence of non-projective kG-modules.) Then K = stab(kG), the stable
module category of finitely generated kG-modules, modulo the projectives, is a
tensor triangulated category. It sits K ⊂ T inside the bigger tensor triangulated
category T = Stab(kG), the stable category of arbitrary kG-modules. Objects
of Stab(kG) are k-representations of G and morphisms are equivalence classes
of kG-linear maps under the relation f ∼ 0 when f factors via a projective
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(which is the same as an injective). The tensor is ⊗k with diagonal G-action
and the unit is the trivial representation 11 = k. See Happel [23], Carlson [19] or
Benson [11]. One can alternatively consider Db(kG–mod), inside D(kG–Mod),
with tensor product as above. Rickard [45] proved that the obvious functor
kG–mod→ Db(kG–mod) induces an equivalence of ⊗-triangulated categories

(5) stab(kG) ∼= Db(kG–mod)/Kb(kG–proj) .

1.5. Examples from motivic theory. Let S be the spectrum of a
perfect field (or some general base scheme). Then K = DMgm(S), Voevodsky’s
derived category of geometric motives over S, is a tensor triangulated category.
It sitsK ⊂ T = DM(S) inside the derived category of motives over S. The tensor
product extends the fiber product X ×S Y . See [52]. The unit 11 is simply the
motive of the base S (in degree zero).

1.6. Examples from A1-homotopy theory. Denote by K =

SHA1

gm(S) the triangulated subcategory generated by smooth S-schemes in the

stable A1-homotopy category T = SHA1(S) of Morel-Voevodsky; see [51] or [36].
Again, the tensor ⊗ is essentially characterized as extending the fiber product
×S of S-schemes; and again 11 is the base S. In some sense, § 1.6 is to § 1.5 what
§ 1.3 is to § 1.2.

1.7. Examples from noncommutative topology. It is custom-
ary to think of C∗-algebras as noncommutative topological spaces. Let G be a
second countable locally compact Hausdorff group – evenG trivial is interesting.
Then KKG, the G-equivariant Kasparov category of separable G-C∗-algebras,
is a tensor triangulated category, with ⊗ given by the minimal tensor product
with diagonal G-action. See Meyer [35, § 4] for instance.

As the full category KKG might be a little too overwhelming at first, we can
follow Dell’Ambrogio [21] and consider the triangulated subcategory K = KG

generated by the unit 11 = C. It actually sits inside the Bootstrap category
T = T G, which is the localizing subcategory of KKG generated by the unit.

1.8. Further examples. There are examples in other areas of math-
ematics. For instance, triangulated categories famously appear in symplectic
geometry, where Kontsevich’s homological mirror symmetry conjecture [31] pre-
dicts an equivalence between the homotopy category of the Fukaya category of
Calabi-Yau manifolds and the derived category of their mirror variety. Here,
the tensor is a very interesting problem, which has seen recent progress in the
work of Subotic [47].

As yet another example, Bühler recently proposed a triangulated category
approach to bounded cohomology in [17]. Actually, examples of triangulated
categories flourish in many directions, be it in connection to cluster algebras,
knot theory, or theoretical physics, to mention a few less traditional examples.
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In this luxuriant production of triangulated categories, we focus on tensor tri-
angulated ones. And even if we “only” have the examples presented so far, the
theory already calls for a unified treatment. Well, precisely, here comes one.

2. Abstract tensor triangular geometry

2.1. The spectrum. The basic idea of tensor triangular geometry, formu-
lated in [1], is the construction of a topological space for every ⊗-triangulated
category K, called the spectrum of K, in which every object b of K would have
a support. This support should be understood as the non-zero locus of b. Since
this idea admits no obvious formalization a priori, we follow the Grothendieck-
ian philosophy of looking for the best such space, in a universal sense. To do
this, we have to decide which properties this support should satisfy.

Theorem 6 ([1, Thm. 3.2]). Let K be an essentially small ⊗-triangulated cat-
egory. There exists a topological space Spc(K) and closed subsets supp(a) ⊂
Spc(K) for all objects a ∈ K, which form a support datum on K, i. e. such that

(SD 1) supp(0) = ∅ and supp(11) = Spc(K),

(SD 2) supp(a⊕ b) = supp(a) ∪ supp(b) for every a, b ∈ K,

(SD 3) supp(Σa) = supp(a) for every a ∈ K,

(SD 4) supp(c) ⊂ supp(a)∪ supp(b) for every distinguished a→ b→ c→ Σa,

(SD 5) supp(a⊗ b) = supp(a) ∩ supp(b) for every a, b ∈ K

and such that (Spc(K), supp) is the final support datum on K in the sense that
for every support datum (X,σ) on K (i. e. X a space with closed subsets σ(a) ⊂
X for all a ∈ K satisfying (SD1-5) above), there exists a unique continuous
map ϕ : X → Spc(K) such that σ(a) = ϕ−1(supp(a)) for every object a ∈ K.

Before explicitly constructing Spc(K), let us recall some standard terminol-
ogy:

Definition 7. A non-empty full subcategory J ⊂ K is a triangulated subcate-
gory if for every distinguished triangle a → b → c → Σa in K, when two out
of a, b, c belong to J, so does the third; here, we call J thick if it is stable by
direct summands: a⊕ b ∈ J⇒ a, b ∈ J (usual definition of thick) and triangu-
lated; we say that J is ⊗-ideal if K ⊗ J ⊂ J; it is radical if ⊗

√
J = J, that is,

a⊗n ∈ J⇒ a ∈ J.

Construction 8. We baptize the universal support datum (Spc(K), supp) of
Theorem 6 the spectrum of K. The content of the proof is the explicit construc-
tion of Spc(K). A thick ⊗-ideal P ( K is called prime if it is proper (11 /∈ P)
and if a⊗ b ∈ P implies a ∈ P or b ∈ P. The spectrum of K is the set of primes:

Spc(K) :=
{

P ( K
∣

∣P is prime
}

.
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(This is where we use K essentially small.) The support of an object a ∈ K is

supp(a) :=
{

P ∈ Spc(K)
∣

∣ a /∈ P
}

.

The complements U(a) :=
{

P ∈ Spc(K)
∣

∣ a ∈ P
}

, for all a ∈ K, define an open
basis of the topology of Spc(K). Examples of Spc(K) are given in § 3.1 below.

Remark 9. Of course, the above notion of prime reminds us of commutative
algebra. Yet, this analogy is not a good reason for considering primes P ⊂ K.
On the contrary, ⊗-triangular geometers should refrain from believing that
everything works in all areas covered by ⊗-triangular geometry as simply as in
their favorite toy area. The justification for the definition of Spc(K) is given
by the universal property of Theorem 6 and by the Classification Theorem 14
below.

Remark 10. An important question is: Why do we ask supp(a) to be closed?
After all, several notions of support involve non-closed subsets, if we deal with
“big” objects. For instance, in D(Z–Mod), the object Q should certainly be
supported only at (0), which is not closed in Spec(Z). This is a first indication
that our theory is actually well suited for so-called compact objects (Def. 44).
In fact, the assumption that K is essentially small points in the same direction:
For instance, D(Z–Mod) is not essentially small but Dperf(Z) is. We shall return
to this discussion in a few places below, culminating in § 2.6.

Let us now collect some basic facts about the space Spc(K), all proven in [1].

Proposition 11. Let K be an essentially small ⊗-triangulated category.

(a) If K is non-zero then Spc(K) is non-empty.

(b) The space Spc(K) is spectral in the sense of Hochster [24], that is, it is
quasi-compact and quasi-separated (has a basis of quasi-compact open sub-
sets) and every non-empty closed irreducible subset has a unique generic
point (hence Spc(K) is T0).

(c) For every ⊗-exact functor F : K→ L, the assignment Q 7→ F−1(Q) defines
a map ϕ = Spc(F ) : Spc(L) → Spc(K) which is continuous and spec-
tral (the preimage of a quasi-compact open subset is quasi-compact). So,
Spc(−) is a contravariant functor. For every a ∈ K, we have supp(F (a)) =
ϕ−1(supp(a)).

Remark 12. Hochster [24] observed that a spectral space X has a dual topol-
ogy with dual-open subsets Y ⊂ X being the arbitrary unions

(13) Y = ∪i∈I Yi with each complement XrYi open and quasi-compact.

We call such a dual-open Y a Thomason subset of X, in honor of Thoma-
son’s insightful result [48, Thm. 4.1], which transposes remarkably well beyond
algebraic geometry. When the space X is noetherian (every open is quasi-
compact), a subset Y is Thomason if and only if it is specialization closed
(y ∈ Y ⇒ {y} ⊂ Y ).
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The next two results show that the computation of Spc(K) is equivalent
to the classification of thick ⊗-ideals (see Definition 7 for terminology about
ideals).

Theorem 14 (Classification of thick tensor-ideals [1, Thm. 4.10]). Let K be an
essentially small ⊗-triangulated category. Then the assignment

(15) Y 7−→ KY :=
{

a ∈ K
∣

∣ supp(a) ⊂ Y
}

,

induces a bijection between Thomason subsets Y of the spectrum, see (13), and
radical thick ⊗-ideals J of K. Its inverse is J 7→ supp(J) := ∪

a∈J
supp(a).

Being radical is a mild condition, as we shall see in Remark 23. Theorem 14
admits the following converse:

Theorem 16. If the radical thick ⊗-ideals of K are classified as in (15), by
the Thomason subsets of a support datum (X,σ) with X spectral in the sense
of Hochster, then the map ϕ : X → Spc(K) of Theorem 6 is a homeomorphism.

Theorem 16 was originally proven in [1, Thm. 5.2] under the assumption that
X be a noetherian space. The ideal proof is due to Buan-Krause-Solberg [16,
Cor. 5.2], who also extended our spectrum to lattices of ideals.

Remark 17. In categories likeK = SHfin orK = Dperf(A), which are generated
by the unit 11, any thick subcategory is automatically ⊗-ideal. Similarly, K =
stab(kG) is generated by the unit 11 = k for G a p-group. However, the global
study requires the tensor, see Remark 53.

We now indicate what happens to the spectrum under the few general con-
structions which are available for arbitrary ⊗-triangulated categories.

Theorem 18. Let K be an essentially small ⊗-triangulated category.

(a) Let J ⊂ K be a thick ⊗-ideal. Then Verdier localization K
q→ K/J (Re-

mark 19) induces a homeomorphism from Spc(K/J) onto the subspace
{

P
∣

∣P ⊃ J
}

of Spc(K). For instance, if J = 〈a〉 = Ksupp(a) is the thick
⊗-ideal generated by one object a ∈ K, then Spc(K/〈a〉) ' U(a) is open
in Spc(K).

(b) Idempotent completion ι : K → K\ (see [10] or Remark 22 below) induces
a homeomorphism Spc(ι) : Spc(K\)

∼→ Spc(K).

(c) Let u ∈ K be an object such that the cyclic permutation (123) : u⊗3 ∼→
u⊗3 is the identity and consider F : K → K[u⊗−1]. Then Spc(F ) yields
a homeomorphism from Spc(K[u⊗−1]) onto the closed subspace supp(u)
of Spc(K).
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Proof. (a) and (b) are [1, Prop. 3.11 and Cor. 3.14]. For (c), recall that K[u⊗−1]
has objects (a,m) with a ∈ K and m ∈ Z (the formal a⊗u⊗m) and morphisms
Hom

(

(a,m), (b, n)
)

= colimk→+∞ HomK(a⊗u⊗m+k, b⊗u⊗n+k). This category
inherits from K a unique ⊗-triangulation and the functor F : a 7→ (a, 0) is ⊗-
exact. The assumption on (123) ensures that the tensor structure on K[u⊗−1]
is well-defined on morphisms. Then, the inverse of Spc(F ) is defined by P 7→
P[u⊗−1] for every prime P ⊂ K such that P ∈ supp(u), that is, u /∈ P. Indeed,
the latter condition implies that P[u⊗−1] is both proper and prime in K[u⊗−1].

Remark 19. Recall that the Verdier quotient q : K−→K/J is the universal
functor out of K such that q(J) = 0. It is the localization of K with respect to
the morphisms s in K such that cone(s) ∈ J. It can be constructed by keeping
the same objects asK and defining morphisms as equivalence classes of fractions
· s← · → · with cone(s) ∈ J, under amplification.

We now introduce a very useful condition on K:

Definition 20. A ⊗-triangulated category K is rigid if there exists an ex-
act functor D : Kop → K and a natural isomorphism HomK(a ⊗ b, c) ∼=
HomK(b,Da ⊗ c) for every a, b, c ∈ K. One calls Da the dual of a. In the
terminology of [33] and [28], (K,⊗) is closed symmetric monoidal and every
object is strongly dualizable.

Hypothesis 21. From now on, we assume our ⊗-triangulated category K to
be essentially small, rigid and idempotent complete.

Remark 22. Following up on Remark 10, the assumption that K is rigid is
another indication that our input category K cannot be chosen too big. Much
milder is the assumption that K is idempotent-complete, i. e. every idempotent
e = e2 : a → a in K yields a decomposition a = im(e) ⊕ ker(e), since K

can always be idempotent completed K
ι
↪→ K\ (see [10]) without changing the

spectrum (Thm. 18 (b)).

Remark 23. Under Hypothesis 21, some natural properties become true in K.
For instance, supp(a) = ∅ forces a = 0 (not only ⊗-nilpotent) by [3, Cor. 2.5].
Moreover, if supp(a) ∩ supp(b) = ∅ then HomK(a, b) = 0, see [3, Cor. 2.8].
Finally, every thick ⊗-ideal J ⊂ K is automatically radical ⊗

√
J = J by [3,

Prop. 2.4].

2.2. Localization. Let us introduce the most important basic construc-
tion of ⊗-triangular geometry, which gives a meaning to “the category K over
some open U of its spectrum”.

Construction 24. For every quasi-compact open U ⊂ Spc(K), with closed
complement Z := Spc(K)rU , we define the tensor triangulated category K(U)
as

K(U) :=
(

K/KZ

)\
.
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It is the idempotent completion of the Verdier quotient (Rem. 19) K/KZ of K
by the thick ⊗-ideal KZ =

{

a ∈ K
∣

∣ supp(a) ⊂ Z
}

of those objects supported
outside U . We have a natural functor resU : K → K(U). One can prove that
Spc(resU ) induces a conceptually pleasant homeomorphism, see [9, Prop. 1.11],

Spc(K(U)) ∼= U .

Hence quasi-compactness of U is necessary since Spc(K) is always quasi-
compact, see Prop. 11 (b). Informally, the category K(U) is the piece of K living
above the open U . For every a, b ∈ K, we abbreviate HomK(U)(resU (a), resU (b))
by HomU (a, b). In the same spirit, we say that something about K happens
“over U”, when it happens in the category K(U) after applying the restriction
functor resU .

Theorem 25 ([5, § 4]). Let K be a ⊗-triangulated category as in Hypothesis 21.

(a) The topological space Spc(K) is local (i. e. every open cover contains the
whole space) if and only if a ⊗ b = 0 implies a = 0 or b = 0. Then {0}
is the unique closed point of Spc(K) and we call K a local ⊗-triangulated
category.

(b) For every P ∈ Spc(K), the category K/P is local in the above sense. Its

idempotent completion (K/P)
\
is the colimit of the K(U) over those quasi-

compact open U ⊂ Spc(K) containing the point P ∈ Spc(K).

Remark 26. Roughly speaking,K/P (or rather (K/P)
\
) is the stalk ofK at the

point P ∈ Spc(K). The support supp(a) =
{

P
∣

∣ a /∈ P
}

=
{

P
∣

∣ a 6= 0 in K/P
}

of an object a ∈ K can now be understood as the points of Spc(K) where a
does not vanish in the stalk. This expresses the non-zero locus of a, as initially
wanted.

Remark 27. Amusingly, a local ⊗-triangulated category K (i. e. a⊗ b = 0 ⇒
a or b = 0) could hastily be baptized “integral” if one was to follow algebraic
gut feeling. Extending standard terminology to ⊗-triangular geometry requires
some care. Indeed, “local” is correct because of the conceptual characteriza-
tion of Theorem 25 (a). And comfortingly, for X a scheme, the ⊗-triangulated
category K = Dperf(X) is local if and only if X ∼= Spec(A) with A a local
ring.

Remark 28. WhenK is local, Spc(K) has a unique closed point by Thm. 25 (a).
Then, the smallest possible support for a non-zero object is exactly that closed
point ∗. We define FL(K) :=

{

a ∈ K
∣

∣ supp(a) ⊂ ∗
}

and call such objects the
finite length objects, by analogy with commutative algebra. (This somewhat im-
proper terminology might need improvement; see the comments in Remark 27.)

We now use K(U) to create a structure sheaf on Spc(K).
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Construction 29. For every quasi-compact open U ⊂ Spc(K), we can consider
the commutative ring EndK(U)(11). Since the unit 11 of K(U) is simply the
restriction of the unit 11 of K, and since (K(U))(V ) ∼= K(V ) for every V ⊂ U ∼=
Spc(K(U)), we obtain a presheaf of commutative rings pOK, at least on the
open basis consisting of quasi-compact open subsets. This presheaf pOK(U) =
EndU (11) is already useful in itself but can also be sheafified into a sheaf OK of
commutative rings on Spc(K). We denote by

Spec(K) :=
(

Spc(K) , OK

)

the corresponding ringed space. It is a locally ringed space by [5, Cor. 6.6].

Remark 30. The above construction has an obvious algebro-geometric bias
and one should not expect too much from this sheaf of rings OK in general.
Still, it will be important in Theorems 54 and 57 below. Our preferred presheaf
on Spc(K) is not OK but the more fundamental “presheaf” of ⊗-triangulated
categories: U 7→ K(U) of Construction 24.

2.3. Support and decomposition. Here comes the first ⊗-triangular
result which really opens the door to geometry. It extends a famous result of
Carlson [18] in representation theory.

Theorem 31 ([3, Thm. 2.11]). Let K be a ⊗-triangulated category as in Hypoth-
esis 21 and let a ∈ K be an object. Suppose that its support is disconnected, i. e.
supp(a) = Y1 tY2 with each Yi closed and Y1 ∩Y2 = ∅. Then the object decom-
poses accordingly, that is, a ' a1 ⊕ a2 with supp(a1) = Y1 and supp(a2) = Y2.

It is easy to build counter-examples to the above statement if we remove the
assumption that K is idempotent complete, see [3, Ex. 2.13]. This explains why
we insist on idempotent-completion, for instance in the construction of K(U)
above. Theorem 31 has the following application.

Theorem 32 ([3, Thm. 3.24]). Let K be a ⊗-triangulated category as in Hy-
pothesis 21 and assume that Spc(K) is a noetherian topological space (every
open is quasi-compact). Let dim : Spc(K) → Z ∪ {±∞} be a dimension func-
tion, i. e. Q $ P ⇒ dim(Q) + 1 ≤ dim(P). Consider the filtration of K by the
⊗-ideals K(d) :=

{

a ∈ K
∣

∣ dim(P) ≤ d for all P ∈ supp(a)
}

. Then for every
finite d ∈ Z, the corresponding subquotient K(d)/K(d−1) decomposes into a co-
product of local parts. More precisely, after idempotent completion, we have an
equivalence

(

K(d)/K(d−1)

)\ ∼−→
∐

P∈Spc(K), dim(P)=d

(

FL(K/P)
)\

where the subcategories of finite-length objects FL(K/P) are as in Remark 28.
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Examples of dimension functions, dim(P), include the Krull dimension of
the irreducible closed {P}, or the opposite of its Krull codimension, in Spc(K).

2.4. Gluing and Picard groups. The true power of Theorem 31 ap-
pears in the following gluing method.

Theorem 33 (B.-Favi [9, Cor. 5.8 and 5.10]). Let K be a ⊗-triangulated cat-
egory as in Hypothesis 21 and let Spc(K) = U1 ∪ U2 be a cover with both Ui

quasi-compact open. Set U12 := U1 ∩ U2 and consider the commutative square
of ⊗-triangulated categories and restriction functors

K //

��

K(U1)

��
K(U2) // K(U12) .

(a) Gluing of morphisms: For every pair of objects a, b ∈ K, we have a Mayer-
Vietoris long exact sequence of abelian groups

HomU1
(a, b)

· · ·
∂ // HomK(a, b) // ⊕ // HomU12

(a, b)
∂ // HomK(a,Σb) // · · ·

HomU2
(a, b)

(b) Gluing of objects: Given two objects ai ∈ K(Ui), i = 1, 2, and an isomor-
phism σ : a1

∼→ a2 over U12, there exists a triple (a, f1, f2) where a is an
object of K and fi : a

∼→ ai is an isomorphism over Ui such that σ ◦f1 = f2
over U12. This gluing is unique up to possibly non-unique isomorphism of
triples in K.

Remark 34. The apparently anodyne non-uniqueness of the isomorphism
in (b) has a cost. Namely, gluing of three objects over three open subsets is
still possible but without uniqueness [9, Cor. 5.11]. And gluing of more than
three pieces might simply not exist unless some connectivity conditions are
imposed [9, Thm. 5.13].

Here is an application of the gluing technique to Picard groups.

Definition 35. The Picard group, Pic(K), is the group of isomorphism classes
of ⊗-invertible objects of K, that is, those u ∈ K for which there exists v ∈ K

with u⊗ v ' 11. (As K is rigid, v ' Du.) This does not use the triangulation.

We can now construct ⊗-invertible objects by gluing copies of the ⊗-unit 11.

Definition 36. For every quasi-compact open U ⊂ Spc(K), denote by
Gm(U) := AutU (11) the group of automorphisms of 11 in K(U).
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Theorem 37 (B.-Favi [9, Thm. 6.7]). Under Hypothesis 21, if Spc(K) = U1∪U2

with each Ui quasi-compact, then gluing induces a well-defined group homomor-
phism δ : Gm(U12)→ Pic(K), where U12 := U1∩U2. We have an exact sequence

· · ·HomU12
(Σ11, 11)

1+∂ // Gm(Spc(K)) // Gm(U1)⊕Gm(U2) // Gm(U12)BC

GF
δ

��
Pic(K) // Pic(K(U1))⊕ Pic(K(U2)) // Pic(K(U12)) ,

which continues on the left as in Theorem 33 (where ∂ also comes from).

It remains an open problem how to extend this sequence on the right, say,
with Brauer groups. The other natural thing one might want to do is to glue
any Gm-cocycle on Spc(K) into an invertible object of K. Then the difficulty
of gluing more than three pieces (Remark 34) becomes an obstacle. It can be
circumvented in positive characteristic p, at the price of inverting p on the
Picard group:

Theorem 38 ([6, Thm. 3.9]). Let p be a prime and K a ⊗-triangulated
Z/p-category satisfying Hypothesis 21. Let Ȟ1(Spc(K),Gm) be the first Čech
cohomology group with coefficients in the above presheaf of units Gm. Let
Picloc.tr.(K) :=

{

[u]
∣

∣u ' 11 in K/P for all P ∈ Spc(K)
}

⊂ Pic(K) be the
subgroup of locally (very) trivial invertibles. Then, gluing induces a well-defined
isomorphism β

Ȟ1(Spc(K),Gm) ⊗
Z
Z[1/p]

β−→
'

Picloc.tr.(K) ⊗
Z
Z[1/p] ⊂ Pic(K)⊗

Z
Z[1/p] .

We call 11 the very trivial ⊗-invertible because the right notion of a triv-
ial ⊗-invertible is probably one of the form Σn11 for some n ∈ Z. See more
in § 4.5.

Remark 39. In algebraic geometry, invertible objects are (shifted) line bun-
dles. Hence they are locally trivial for the Zariski topology, which explains why
the Picard group, Pic(X), is the first Zariski cohomology group of Gm. How-
ever, there are local ⊗-triangulated categories with non-trivial Picard group.
See Remark 71 for an example in modular representation theory. The following
result shows that the Picard group can be as large as one wants with given
(even local) spectrum.

Proposition 40 (B. - Rahbar Virk). Let K be a local ⊗-triangulated category
( Spc(K) connected is enough). Let G be an abelian group. Define a tensor on
the triangulated category L :=

∐

G K by ag ⊗ bh := (a ⊗ b)g+h, where ag ∈ L

is the object corresponding to a ∈ K in the copy indexed by g ∈ G. Then
Spc(L) ∼= Spc(K) whereas Pic(L) ∼= Pic(K)×G.
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Proof. Easy exercise using the ⊗-invertible objects 11g ∈ L for all g ∈ G and
the fact that every object of L is a finite direct sum ⊕

g∈G
a(g)0 ⊗ 11g for objects

a(g) ∈ K.

2.5. Comparing triangular spectra and algebraic spectra.

Remark 41. It should be clear by now that the main key to the geometry of a
given ⊗-triangulated category K, is the determination of its spectrum, Spc(K).
We have seen in Theorem 16 that this problem amounts to the classification
of thick ⊗-ideals of K. This is very nice when the latter classification has been
kindly performed by our predecessors but in most new areas such a classification
is not yet under roof and actually constitutes a very interesting challenge. See
§ 4.1 below. To study Spc(K) without classification, we need some comparison
with other spaces that might appear in examples. This is the purpose of [5],
where we relate Spc(K) to the spectrum of the endomorphism ring RK =
EndK(11) of the ⊗-unit 11, and to the homogeneous spectrum of the graded ring
R•

K = HomK(11,Σ•11).

Theorem 42 ([5, Thm. 5.3]). There exist two natural continuous maps

ρ•

K : Spc(K)−→ Spech(R•

K) and ρK : Spc(K)−→ Spec(RK)

defined by ρ•

K(P) = ⊕
d∈Z

{

f ∈ Rd
K

∣

∣ cone(f) /∈ P
}

and ρK(P) = ρ0K(P).

In fact, these maps are often surjective (yet, not always, see [5, Ex. 8.3]):

Theorem 43 ([5, § 7]). With the notation of Theorem 42, we have:

(a) Suppose that K is connective, i. e. that Hom(Σi11, 11) = 0 for i < 0 (which
reads Rd

K = 0 for d > 0). Then ρK : Spc(K) → Spec(RK) is a surjective
map.

(b) Suppose that R•

K is coherent (e.g. noetherian) in the graded sense. Then
both ρ•

K : Spc(K)→ Spech(R•

K) and ρK are surjective maps.

Injectivity is more delicate, see Theorem 51. However, in “algebraic” exam-
ples, these maps are (local) homeomorphisms, see Remark 56 and Theorem 57.

2.6. Non-compact objects. As indicated a couple of times above, the
natural input K to our ⊗-triangular geometry machine consists of small enough
categories. Let us now be more precise.

Definition 44. Let T be a triangulated category admitting arbitrary small
coproducts

∐

i∈I ti. An object c ∈ T is called compact if for every set of ob-
jects {ti}i∈I in T, the natural map

∐

i∈I HomT(c, ti) → HomT(c,
∐

i∈I ti) is
an isomorphism. The subcategory Tc of compact objects is triangulated but
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not closed under coproducts. We say that T is a compactly generated tensor
triangulated category if

(i) Tc generates T, that is, T = Loc(Tc) is the smallest localizing (i. e. closed
under small coproducts) triangulated subcategory of T which contains Tc.

(ii) Tc is essentially small, Tc is rigid and 11 is compact.

In that case, an object is compact if and only if it is rigid (i. e. strongly du-
alizable) and the ⊗-triangulated category K := Tc of rigid-compact objects
satisfies our Hypothesis 21. We can then apply the above ⊗-triangular geome-
try to K = Tc.

Examples 45. Examples § 1.2-1.4 fit in this picture with the T provided each
time. (Examples § 1.5–1.7 require some care.) In [28], ⊗-triangulated cate-
gories T as above are studied under the name unital algebraic stable homotopy
categories.

Remark 46. Our spectrum Spc(K) is the right space for the compact part
but Spc(T) is not an appropriate invariant of T for it might not even be a set.
Moreover, we do not need supports of non-compact objects to be closed and
we would like supp(

∐

i∈I ti) = ∪i∈I supp(ti). The question of supp(s⊗ t) is not
entirely clear. One expects supp(s⊗t) ⊂ supp(s)∩supp(t) with equality when s
is compact. Putting all this together, one can actually define a “big spectrum”
of T as the universal space with supports, satisfying (SD’ 1)-(SD’ 7) below. Since
it is not clear yet how useful this big spectrum can be, we do not make a theory
out of this. The following result, due independently to Pevtsova-Smith [43] and
Dell’Ambrogio, indicates that such a big spectrum might often coincide with
Spc(K) anyway.

Theorem 47 ([21, Thm. 3.1]). Let T be a compactly generated ⊗-triangulated
category as in Definition 44. Let X be a topological space with a choice of a
subset σ(t) ⊂ X for every object t ∈ T satisfying the following conditions:

(SD’ 1) σ(0) = ∅ and σ(11) = X,

(SD’ 2) σ(s⊕ t) = σ(s) ∪ σ(t) for every s, t ∈ T,

(SD’ 3) σ(Σt) = σ(t) for every t ∈ T,

(SD’ 4) σ(u) ⊂ σ(s) ∪ σ(t) for every distinguished triangle s→ t→ u→ Σs,

(SD’ 5) σ(s ⊗ t) ⊂ σ(s) ∩ σ(t) for every s, t ∈ T, with equality if s or t is
compact,

(SD’ 6) σ(
∐

i∈I ti) = ∪i∈Iσ(ti) for every set {ti}i∈I of objects of T,

(SD’ 7) σ(c) is closed for every compact object c ∈ Tc .
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In particular (X,σ) is a support datum on K = Tc. Suppose moreover:

(i) X is spectral in the sense of Hochster [24], see Proposition 11 (b).

(ii) An open U ⊂ X is quasi-compact if and only if U = X r σ(c) for c ∈ Tc.

(iii) For t ∈ T, if σ(t) = ∅ then t = 0.

Then the canonical map X → Spc(Tc) of Theorem 6 is a homeomorphism.

In examples where T is given with such supports, Theorem 47 might be used
to compute Spc(K). Conversely, Spc(K), for K = Tc, yields information about
the big category T, via the following inflating technique, see [41, Chap. 4]:

Remark 48. For U ⊂ Spc(K) quasi-compact open with closed complement Z,
set TZ = Loc(KZ) the localizing subcategory of T generated by KZ ⊂ K.
In [8], we define the category “T over U” as the localization T(U) := T/TZ .
The ⊗-triangulated category T(U) remains compactly generated and Neeman’s
generalization [41, Thm. 4.4.9] of Thomason’s result (Rem. 55) reads:

(

T(U)
)c

=
K(U). This also justifies the idempotent completion in the definition of K(U).

Transposing Rickard’s idempotents [46] to ⊗-triangular geometry gives:

Theorem 49 (B.-Favi [8]). Let T be a compactly generated ⊗-triangulated cat-
egory (Def. 44) and K = Tc its compact objects. For every Thomason subset
Y ⊂ Spc(K), there exists a distinguished triangle e(Y )→ 11→ f(Y )→ Σ(e(Y ))
in T such that e(Y ) ⊗ f(Y ) = 0 (hence e(Y )⊗2 ' e(Y ) and f(Y )⊗2 ' f(Y )
are ⊗-idempotents) and such that f(Y ) ⊗ − : T−→T realizes Bousfield local-
ization with respect to TY := Loc(KY ) = e(Y )⊗T, the localizing subcategory of
T generated by the compact objects KY =

{

a ∈ K
∣

∣ supp(a) ⊂ Y
}

. Moreover,
for every pair of Thomason subsets Y1 , Y2 ⊂ Spc(K), we have isomorphisms
e(Y1 ∩ Y2) ∼= e(Y1) ⊗ e(Y2) and f(Y1 ∪ Y2) ∼= f(Y1) ⊗ f(Y2) and two Mayer-
Vietoris distinguished triangles in T:

e(Y1 ∩ Y2) // e(Y1)⊕ e(Y2) // e(Y1 ∪ Y2) // Σe(Y1 ∩ Y2)

f(Y1 ∩ Y2) // f(Y1)⊕ f(Y2) // f(Y1 ∪ Y2) // Σf(Y1 ∩ Y2) .

Using these ⊗-idempotents, we get the announced definition of a support
inside Spc(K), for all objects of T (compare Benson-Iyengar-Krause [13]):

Theorem 50 (B.-Favi [8, § 7]). Let T and K = Tc be as above and suppose
that Spc(K) is noetherian. Define κ(P) = e({P}) ⊗ f(supp(P)) ∈ T, for all
P ∈ Spc(K) (here supp(P) is the Thomason subset corresponding to P in the
Classification Theorem 14). Then, the support admits the following extension
to all objects t ∈ T:

supp(t) :=
{

P ∈ Spc(K)
∣

∣ t⊗ κ(P) 6= 0
}

.

This support satisfies all properties (SD’ 1)-(SD’ 7) of Theorem 47.
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Note that (i) and (ii) of Theorem 47 are trivial here. It is not clear when this
support detects vanishing, i. e. when t ⊗ κ(P) = 0 for all P ∈ Spc(K) implies
t = 0.

3. Examples and Applications

We now apply the theory of Part 2 to the examples of Part 1.

3.1. Classification of thick ⊗-ideals, after Hopkins. Such clas-
sifications began in stable homotopy theory, see § 1.3, long before the start of
⊗-triangular geometry. Via Theorem 16, this becomes:

Theorem 51 (Hopkins-Smith [26], see [5, Cor. 9.5]). The spectrum of SHfin is

P2,∞ P3,∞ · · · Pp,∞ · · ·

...
...

...

P2,n+1 P3,n+1 · · · Pp,n+1 · · ·

P2,n P3,n · · · Pp,n · · ·

...
...

...

P2,1

VVVVVVVVVVVV P3,1
MMM

M
· · · Pp,1

lllllll
· · ·

SHfin
tor

The lines P−P′ indicate that the higher prime is in the closure of the lower one.
For every prime number p and every n ≥ 1, the prime Pp,n of SHfin is the kernel
of the n-th Morava K-theory (composed with localization at p) and Pp,∞ =

∩n≥1Pp,n is the kernel of localization at p. Finally, SHfin
tor := Ker(H(−,Q)) is

the subcategory of torsion spectra. The surjective continuous map ρ = ρSHfin :
Spc(SHfin)−→Spec(Z) of Theorem 42 is given by ρ(SHfin

tor) = (0) and ρ(Pp,n) =
pZ for all 1 ≤ n ≤ ∞.

Remark 52. This example yields many observations. First, Spc(SHfin) is not
noetherian and the closed subsets {Pn,∞} are not the support of any object.

In particular, in the local category SHfin
p at p, we have FL(SHfin

p ) = 0. Finally,

Spec(SHfin) is a locally ringed space but is not a scheme. See more in [5].

Remark 53. Hopkins [25] also understood that this classification could be
transposed to algebra and indicated that (15) should provide the classification
for K = Dperf(A), with the subsets Y ⊂ Spec(A) being all specialization closed
subsets. The actual proof of this statement requires A to be noetherian and
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was given by Neeman [39]. But it is Thomason who nailed down the dual-open
subsets (our Thomason subsets) in [48, Thm. 3.15]. His result settles the non-
noetherian affine case and, most interestingly, works for any quasi-separated
scheme if one insists on ⊗-ideal thick subcategories. Via Theorem 16 and Con-
struction 29, this yields:

Theorem 54 (Reconstruction [1, Thm. 6.3]). Let X be a quasi-separated
scheme; see Section 1.2. We have an isomorphism Spec(Dperf(X)) ' X of
ringed spaces.

Remark 55. Under the underlying homemorphism Spc(Dperf(X)) ' X, we
can reformulate another famous result of Thomason’s [49, § 5]: For every quasi-
compact U ⊂ X, we have K(U) ∼= Dperf(U), where K(U) is as in Construc-
tion 24.

Remark 56. The map ϕ : X → Spc(Dperf(X)) of Theorem 16 sends x ∈ X
to Ker

(

Dperf(X) → Dperf(OX,x)
)

. For X = Spec(A) affine and p ∈ Spec(A),

the quotient K/ϕ(p) ∼= Dperf(Ap) is indeed the expected local category. Let us
make two further observations. First, ϕ reverses inclusions, i. e. if p ⊂ q in A
then ϕ(p) ⊃ ϕ(q) in K. This phenomenon is in line with other mildly surprising
facts, to an algebraist’s eye, like {P} =

{

Q
∣

∣Q ⊂ P
}

for every P ∈ Spc(K).
Secondly, an inverse to ϕ is given by the map ρK : Spc(K) → Spec(RK) =

Spec(A) of Theorem 42. Hence K = Dperf(A) provides an example where ρK
is not only surjective, as follows from Theorem 43, but also injective. Inter-
estingly, one can actually give a direct proof of the injectivity of ρK in this
case and obtain the Hopkins-Neeman-Thomason classification for Dperf(A) by
Theorem 14. See details in [5, Rem. 8.4].

Walking in Hopkins’s steps, Benson-Carlson-Rickard [12] and later
Friedlander-Pevtsova [22] performed the classification in modular representa-
tion theory for finite groups and finite group schemes. Combined with Theo-
rem 16, this reads:

Theorem 57 ([1, Thm. 6.3] and [5, Cor. 9.5]). Let k be a field of positive char-
acteristic and G be a finite group (scheme over k). See Section 1.4. Consider the
graded-commutative cohomology ring H•(G, k). Then, for the derived category
K = Db(kG–mod), the map ρ•

K of Theorem 42 induces an isomorphism

Spec(Db(kG–mod)) ' Spech(H•(G, k))

between the triangular spectrum of K and the homogeneous spectrum of
the cohomology. Via (5), it restricts to an isomorphism Spec(stab(kG)) '
Proj(H•(G, k)), where the latter is the so-called projective support vari-
ety VG(k).

Indeed, Friedlander and Pevtsova were able to reconstruct the structure
sheaf of VG by computing the triangular structure sheaf OK of our Construc-
tion 29.
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Recently, Krishna [32, Thm. 7.10] proved that the spectrum of the category
of perfect complexes over a (reasonable) stack is the associated moduli space.

3.2. Further computations. It is now natural to turn to other, newer
areas, where the classification of thick ⊗-ideals is not yet known, to see whether
the spectrum can be computed by some other means. Here are some first results
in motivic theory and noncommutative topology. In both cases, the spectrum
is only known in the simplest ⊗-triangulated category that one can produce.
But these should be considered as bridgeheads in two unknown (but friendly)
territories.

Let us start with motivic theory, see § 1.5-§ 1.6. Here, the simplest category
is probably that of mixed Tate motives with rational coefficients, i. e. the tri-
angulated subcategory of DM(k)Q generated by the Tate objects Q(i), for all
i ∈ Z.

Theorem 58 (Peter [42]). Let k be a number field and DMT(k)Q be the trian-
gulated category of mixed Tate motives. Then Spc(DMT(k)Q) is just a point.

At the other end of the motivic game, the computation of the spectrum

of SHA1

gm(S) as in § 1.6 is probably a difficult long-term challenge. Using Theo-
rem 43 and Morel’s computation [37] of End

SHA1 (11), we can still get:

Theorem 59 ([5, Cor. 10.1]). Let K = SHA1

gm(k) for a perfect field k of charac-
teristic different from 2 as in Section 1.6. Then the continuous map ρK of
Theorem 42 defines a surjection from the triangular spectrum Spc(K) onto
the Zariski spectrum Spec(GW(k)) of the Grothendieck-Witt ring of quadratic
forms over k.

The second area we want to discuss is noncommutative topology, see § 1.7.
In that case, the baby ⊗-triangulated category is the thick subcategory KG of
KKG generated by the unit. The ring of endomorphisms of the unit R(G) =
EndKKG(11) is the Grothendieck group of continuous complex representations
of G.

Theorem 60 (Dell’Ambrogio [21]). Let G be a finite group. Then the map
ρKG of Theorem 42 is split surjective. It is a homeomorphism for G trivial, i. e.
Spc(K) ' Spec(Z) where K ⊂ KK is the triangulated subcategory generated
by 11 = C.

Dell’Ambrogio also conjectured [21, Conj. 1.3] that ρKG is injective for every
finite group G. Again, our surjectivity Theorem 43 applies in big generality:

Theorem 61 ([5, Cor. 8.8]). Let G be a compact Lie group. Then the continuous
map ρKG : Spc(KG)→ Spec(R(G)) of Theorem 42 is surjective.

Remark 62. A famous result of Quillen in modular representation theory of
a finite group G asserts that VG is covered by the images of the VE under the
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maps Spc(resGE) : VE → VG, where E < G runs through the elementary abelian
p-subgroups. Dell’Ambrogio explains in [21] how the celebrated Baum-Connes
conjecture with coefficients would follow from an analogous property in KK-
theory, namely that the spectrum of KKG (G as in §1.7) be covered by the
images of the various spectra of KKH , where H < G runs through compact
subgroups.

3.3. Applications to algebraic geometry. The following result is
an immediate corollary of Theorem 54:

Corollary 63. Let X and Y be two quasi-separated (e. g. noetherian) schemes.
If their derived categories of perfect complexes are equivalent Dperf(X) '
Dperf(Y ) as tensor triangulated categories then the schemes X ' Y are iso-
morphic.

Remark 64. A ⊗-triangular equivalence DQcoh(X)(X) ' DQcoh(Y )(Y ) restricts

to a⊗-triangular equivalence on the compact parts, Dperf(X) ' Dperf(Y ), hence
implies X ' Y as well. This reconstruction result is known to fail without
the tensor: There exist non-isomorphic schemes, even abelian varieties, with
triangular equivalent derived categories. See Mukai [38].

Remark 65. In homological mirror symmetry, or more generally each time
that one expects a given triangulated category K to be equivalent to Dperf(X)
for some (maybe conjectural) scheme X, it becomes interesting to construct the
tensor product on K which should correspond to that of Dperf(X). See [47]. In
this situation, the scheme X must be Spec(K) by Theorem 54. This does not
guarantee that K = Dperf(X) but it tells us what X must be.

The abstract results of ⊗-triangular geometry apply in particular to K =
Dperf(X). For instance, the filtration by (co)dimension of support in Theo-
rem 32 yields a spectral sequence in any cohomology theory “defined” on de-
rived categories, likeK-theory or Witt theory, for instance. In particular, we get
the following generalization of Quillen’s famous spectral sequence for regular
schemes [44]:

Theorem 66 ([4, Thm. 1]). Let X be a (topologically) noetherian scheme of
finite Krull dimension. Then there is a cohomologically indexed and converging
spectral sequence in Thomason non-connective K-theory [49], of local-global
nature:

Ep,q
1 =

⊕

x∈X(p)

K−p−q(OX,x on {x}) p+q=n

p,q,n∈Z

+3 K−n(X) .

Remark 67. This theorem is a first strict application of⊗-triangular geometry,
since the statement does not involve ⊗-triangulated categories. Yet, the deeper
result is Theorem 32 which says that the quotient Dperf(X)(d)/D

perf(X)(d−1)
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decomposes, up to idempotent completion, as the coproduct of the categories
FL(Dperf(OX,x)) =

{

a ∈ Dperf(OX,x)
∣

∣ supp(a) ⊂ {x}
}

over all x ∈ X(d).

This illustrates the “boomerang effect” of abstraction: Inspired by
Quillen [44], we started from the well-known fact that for a regular scheme,
the above quotient is exactly equivalent to

∐

x∈X(d)
FL(Dperf(OX,x)), without

idempotent completion, and we tried to extend it to ⊗-triangular geometry.
This simply fails ! But it works if one adds the idempotent completion to the
picture. Then, Theorem 32 holds in all areas of ⊗-triangular geometry. Now,
this yields a gain even in algebraic geometry where we started, for we under-
stand that the regularity assumption was not that important after all. In K-
theory, the idempotent completion explains the presence of negative K-theory
in Theorem 66. Of course, all this has its origin in Thomason’s description
of Dperf(U) (Remark 55) and it is fair to say that he had everything in [49] to
prove Theorem 66. It is nonetheless remarkable that these ideas extend so far
beyond algebraic geometry.

3.4. Applications to modular representation theory. In mod-
ular representation theory, see § 1.4, the filtration Theorem 32 applied to
K = stab(kG) recovers, and slightly improves, a result of Carlson-Donovan-
Wheeler [20, Thm. 3.5]. Let us rather comment on the Picard group,
Pic(stab(kG)), which is a classical invariant, known as the group T (G) = Tk(G)
of endotrivial kG-modules up to isomorphism. A kG-module M is endotrivial
if Endk(M) ' k ⊕ (proj) which simply means that M∗ ⊗M ' 11 in stab(kG).
We proved:

Theorem 68 (B.-Benson-Carlson [7]). The endotrivial modules obtained by the
gluing technique of Theorem 37 generate a finite-index subgroup of T (G).

Remark 69. Recall the ⊗-triangulated category K(U) of Construction 24 for
every quasi-compact open U ⊂ Spc(K). In algebraic geometry, for X a scheme
and K = Dperf(X), Thomason proved K(U) ' Dperf(U), see Remark 55. In
other words, the construction (K, U) 7−→ K(U) “stays inside algebraic geome-
try”.

On the other hand, for K = stab(kG) and U ⊂ VG(k) non-trivial, K(U) is
never equivalent to a stable category stab(kH), no matter what finite group H
one tries. See [6, Prop. 4.2]. Hence, although Thomason’s result does work ab-
stractly and transposes to modular representation theory via the ⊗-triangular
construction K(U), the resulting construction takes us out of basic modular
representation theory. Here is a nice strict application of Theorem 38 (without
⊗-triangulated categories in the statement):

Theorem 70 ([6, Thm. 4.7]). Let G be a finite group and VG = Proj(H•(G, k))
its projective support variety over a field k of characteristic dividing the order
of G. Then gluing induces an injection β : Pic(VG)⊗

Z
Z[1/p] ↪→ T (G)⊗

Z
Z[1/p].
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Combining with Theorem 68, we obtain a rational isomorphism

Pic(VG)⊗
Z
Q ' T (G)⊗

Z
Q .

Remark 71. The above result fails integrally. For instance, for G = Q8 the
quaternion group and k containing a cubic root of unity, the group of endotriv-
ials is T (Q8) = Z/4 ⊕ Z/2 although Spc(stab(kQ8)) = VQ8

(k) = ∗ is just a
point, hence Pic(VQ8

) = 0. Note also that stab(kQ8) is a local ⊗-triangulated
category.

3.5. Intra-utero applications. While ⊗-triangular geometry was still
in the making, ⊗-triangulated categories showed useful in the theory of Witt
groups of quadratic forms over schemes. This abstract theory, of so-called tri-
angular Witt groups, has been quite useful. It led to the proof of the Gersten
conjecture for Witt groups, among many other (strict) applications, including
the computation of several classical Witt groups. For a survey, the interested
reader is referred to [2]. In retrospect, many of these triangular Witt groups
results fit very well in the language of ⊗-triangular geometry.

4. Problems

We have already mentioned a few open questions in the above text. In con-
clusion, we briefly suggest some additional directions of possible interest. We
refrain from insisting on the wildest dreams (as in Remarks 62 and 65 for in-
stance) and favor of a few problems reasonably close to the current stage of the
theory.

4.1. Computing the spectrum in more examples. As discussed
in § 2.5, the most basic question is to compute Spc(K) for more ⊗-triangulated
categories K, preferably without using the classification of thick ⊗-ideals, in
order to deduce the latter via Theorem 14 and show off a little. Theorem 47
offers an angle of attack. Still, we need more results telling us how to compare
Spc(K) to other spaces. Such a comparison is provided by the maps ρK and ρ•

K

of Theorem 42. We have seen that these maps are often surjective (Thm. 43). It
then becomes interesting to decide when they are injective and more generally
to study their fibers.

In algebraic examples like K = Dperf(A) or K = Db(kG–mod), the map ρ•

K

is injective (see § 3.1) but we have seen in the very first example (Thm. 51) that
injectivity fails completely outside algebra. The tempting guess would be:

Conjecture 72. The map ρ•

K is (locally) injective when K is “algebraic
enough”.

Here “algebraic enough” could mean those triangulated categories K which
arise as stable categories of Frobenius exact categories, or, alternatively, those
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K which are the derived category of some dg-category, see Keller [29]. It might
also be necessary to add some hypothesis like K being locally generated by 11.

Remark 73. By Hochster [24], any spectral space, like our Spc(K), is the
spectrum of some commutative ring. It would be pleasant to construct such a
ring explicitly in terms of K. The above use of RK and R•

K was a first attempt
to do this.

4.2. Image of algebraic geometry in ⊗-triangular geome-
try. We have seen in Theorem 54 that a scheme X can be reconstructed
from the ⊗-triangulated category Dperf(X). An important question is to decide
which ⊗-triangulated categories K are ⊗-equivalent to Dperf(Spec(K)). Actu-
ally, it would also be interesting to know when the locally ringed space Spec(K)
is a scheme. As already mentioned in Remark 65, this could have consequences
beyond algebraic geometry, as for instance in homological mirror symmetry.

Also interesting would probably be the tensor-triangular characterization of
some properties of morphisms of schemes, like being smooth or étale.

4.3. Residue fields. In examples, triangular primes P ⊂ K are often the
kernel of a tensor functor K→ F with F = VBk being the category of k-vector
spaces over a field k (in algebraic geometry), or F being the category of graded
modules over a graded field k[t, t−1] (in homotopy theory), or F = stab(kCp)
being the stable category of kCp-modules, for Cp the cyclic group of order p =
char(k) (in modular representation theory, although this case is still unclear).
This observation calls for two things:

(a) The definition of ⊗-triangular fields F, which would imply in particular
that Spc(F) = {∗} is reduced to a point.

(b) The construction, for every local category K (Thm. 25), of a conservative
⊗-exact functor π : K → F into some ⊗-triangular field, that would be a
“residue field”. Conservative means that Ker(π) = 0, i. e. that the image
of Spc(π) : {∗} = Spc(F)−→ Spc(K) would be the unique closed point
of Spc(K).

Note that there might be several such residue field functors, as seems to be
the case in modular representation theory. It is not at all clear whether such
functors can be constructed from the ⊗-triangular structure alone but they
should certainly be looked for in examples where one tries to determine Spc(K).

Regarding the definition of ⊗-triangular fields, the naive idea of request-
ing the category F to be semi-simple does not cover stab(kCp) for instance.
Indeed, Spc(stab(kCp)) is a point but there is no non-zero ⊗-exact functor
from stab(kCp) into a semi-simple ⊗-category as soon as p ≥ 3. (For p = 2,
stab(kC2) ∼= VBk.) Currently, my favorite guess is to define F to be a triangular
field if every non-zero object x ∈ F is faithful (i. e. x ⊗ f = 0 forces x = 0 or
f = 0). This covers all three examples above and still forces Spc(F) = {∗} but
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there is no solid conceptual motivation for this definition at this stage, beyond
unification of examples.

4.4. Nilpotence. A clear understanding of nilpotence phenomena in tri-
angulated categories still eludes us, even in the presence of a tensor. First, we
do not know how to define reduced ⊗-triangulated categories. Nor do we know
how to construct Dperf(Xred) out of the ⊗-triangulated category K = Dperf(X),
except via the odious cheat: Dperf

(

(Spec(K))red
)

. For instance, even when
Spc(K) = {∗} is a point, that is, when K is something like an “artinian lo-
cal” ⊗-triangulated category, it is not clear how to obtain a residue field (§ 4.3)
by reduction modulo nilpotents.

Also, there seems to be no obvious way to construct a ⊗-triangulated cat-
egory “K over Z”, for a closed subset Z ⊂ Spc(K) of the spectrum, say, with
what should be the “reduced structure”. Neither do I know which closed sub-
sets Z ⊂ Spc(K) are the support of an object u ∈ K as in Theorem 18 (c).
Again, this relates to the residue field of § 4.3 when K is local and Z = {∗} is
the closed point.

4.5. Torsion in the Picard group. This is a follow-up on Remarks 39
and 71. First, let us note that the isomorphism Pic(VG) ⊗ Q ' T (G) ⊗ Q of
Theorem 70 is still unknown for G a finite group scheme, because we do not
know whether the Picard group is locally torsion in that case. We have seen
in Proposition 40 that the Picard group can be locally wild. Yet, the example
∐

G K can be ruled out if we further require K to be generated by 11, as a thick
triangulated subcategory. Hence the following hope survives:

Conjecture 74. Let K be a ⊗-triangulated category as in Hypothesis 21.
Assume that K is local (Thm. 25) and that K is generated by 11. Let u ∈ K be
⊗-invertible. Then there exists m > 0 such that u⊗m is trivial in the sense that
u⊗m ' Σn11 for some n ∈ Z. That is, Pic(K) is rationally trivial: Pic(K)⊗ZQ =
Q · [Σ11].
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Abstract

Let E ∼= (Z/p)r (r ≥ 2) be an elementary abelian p-group and let k be an
algebraically closed field of characteristic p. A finite dimensional kE-module
M is said to have constant Jordan type if the restriction of M to every cyclic
shifted subgroup of kE has the same Jordan canonical form. I shall begin by dis-
cussing theorems and conjectures which restrict the possible Jordan canonical
form. Then I shall indicate methods of producing algebraic vector bundles on
projective space from modules of constant Jordan type. I shall describe realis-
ability and non-realisability theorems for such vector bundles, in terms of Chern
classes and Frobenius twists. Finally, I shall discuss the closely related question:
can a module of small dimension have interesting rank variety? The case p odd
behaves throughout these discussions somewhat differently to the case p = 2.
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1. Introduction

Many questions in modular representation theory of finite groups reduce to
questions about elementary abelian subgroups. A prototype for such a reduc-
tion is Chouinard’s Theorem [11], which states that a module is projective if
and only if its restriction to every elementary abelian subgroup is projective.
Quillen [19, 20] described the spectrum of the cohomology ring in terms of the
elementary abelian subgroups, and this was generalised to the theory of vari-
eties for modules by Carlson [7, 8], Alperin and Evens [1], Avrunin and Scott [2].
The classification of localising subcategories of the stable module category also
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reduces to elementary abelian subgroups, see Benson, Iyengar and Krause [5, 6].
These theorems and others motivate the study of modules for an elementary
abelian p-group

E = 〈g1, . . . , gr〉 ∼= (Z/p)r

over an algebraically closed field k of characteristic p. These are generally un-
classifiable, so we often restrict our attention to particular classes of modules
that we might hope to understand better.

We shall only be interested in finite dimensional kE-modules in this talk.
Dade’s Lemma [12] states that a finite dimensional kE-module M is projective
(or equivalently, free) if and only if its restriction to every cyclic shifted sub-
group is free. A cyclic shifted subgroup is a subgroup of the group algebra kE
of order p generated by an element of the form 1 +Xα where

Xα = λ1X1 + · · ·+ λrXr, (1.1)

Xi = gi − 1 ∈ J(kE) and α = (λ1, . . . , λr) ∈ A
r(k) \ {0}. This motivates

Carlson’s definition of the rank variety of M :

Definition 1.2. The rank variety of a kE-module M is defined to be the closed
homogeneous subset of Ar = A

r(k) given by

V r
E(M) = {α ∈ A

r \ {0} | M↓〈1+Xα〉 is not free} ∪ {0}.

Example 1.3. Let r = 4, let p = 2, and let M be the four dimensional kE-
module defined by

g1 7→
(

1 0 0 0
0 1 0 0
1 0 1 0
0 0 0 1

)

g2 7→
(

1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1

)

g3 7→
(

1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 1

)

g4 7→
(

1 0 0 0
0 1 0 0
0 0 1 0
0 1 0 1

)

.

Then

Xα 7→
(

0 0 0 0
0 0 0 0
λ1 λ2 0 0

λ3 λ4 0 0

)

and V r
E(M) is the variety defined by the vanishing of the minor λ1λ4 − λ2λ3.

We write k[Y1, . . . , Yr] for the coordinate ring of affine space k[Ar]. With
this notation, in Example 1.3, V r

E(M) is the irreducible quadric with equation
given by Y1Y4−Y2Y3 = 0. This, when projectivised, gives the Segre embedding
of P1 × P

1 in P
3.

2. Jordan Type

Let k, E and M be as described in the introduction. The elements X1, . . . , Xr

are generators for J(kE), and the elements Xα of equation (1.1) form a set of
coset representatives of J2(kE) in J(kE). Since Xp

α = 0, the action of Xα on
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M breaks up into Jordan blocks of length between 1 and p with eigenvalue 0.
We write

[p]ap . . . [1]a1

for the Jordan type.

Warning 2.1. If x, y ∈ J(kE), x − y ∈ J2(kE), it can happen that x and y
have different Jordan types on M .

Definition 2.2. Nilpotent Jordan types are partially ordered: if A and B are
nilpotent square matrices of the same size, A ≥ B if and only if for all s > 0
we have rank(As) ≥ rank(Bs). If we think of Jordan types as represented by
partitions, then this is the well known dominance ordering.

We say that x ∈ J(kE) \ J2(kE) has maximal Jordan type if it is maximal
with respect to this partial order.

Maximal Jordan type was examined in depth by Friedlander, Pevtsova and
Suslin [14], and the following theorem relating it to generic Jordan type forms
the beginning of their investigation.

Theorem 2.3 (FPS). If x, y ∈ J(kE) and x−y ∈ J2(kE) then x has maximal

Jordan type if and only if y does, so that the elements of maximal Jordan type

determine a well defined subset of J(kE)/J2(kE). This is a dense open subset.

This Jordan type is the same as that of the element Xα for a generic point α
defined over a large enough transcendental extension of k.

Because of this theorem, we talk of the generic Jordan type of M , which is
the Jordan type of a generic element Xα of M .

3. Modules of Constant Jordan Type

Definition 3.1 (CFP [10]). We say that M has constant Jordan type

[p]ap . . . [1]a1 if every element of J(kE)\J2(kE) has the same Jordan canonical
form on M .

Rather than working in the module category, we often wish to work in the
stable module category where we ignore projective summands of a module. So
if we forget the term [p]ap in the Jordan type of a module, as it can be recovered
from the remaining terms and the dimension, we talk of a module M of stable
constant Jordan type [p − 1]ap−1 . . . [1]a1 . Dade’s lemma shows that a module
M has empty stable constant Jordan type if and only if M is projective.

It is obvious that a direct sum of modules of constant Jordan type is again
such. It is not quite so obvious, but it follows from Theorem 2.3, that a direct
summand of a module of constant Jordan type is again such. After all, if there’s
a closed subset where one summand has smaller Jordan type, the other would
have to have larger Jordan type on the same closed subset, in order for the sum
to be constant.
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Warning 3.2. If M and N are kE-modules, it is not necessarily true that if
α ∈ A

r \ {0} then M ⊗k N (with diagonal group action) restricted to Xα is
isomorphic to M↓Xα

⊗k N↓Xα
.

Nonetheless, we have the following theorem.

Theorem 3.3 (CFP [10]). If M and N have constant Jordan type then so do

M∗ and M ⊗k N .

The fundamental question then arises:

Question 3.4. Let us assume that r ≥ 2, so that the situation is not trivial.
Then what stable constant Jordan types can occur?

4. Endotrivial Modules

What modules have stable constant Jordan type [1]? Suppose that M is such
a module. Then M ⊗k M∗ ∼= Homk(M,M) also has stable constant Jordan
type [1]. The canonical maps k → M ⊗k M∗ → k, defined using the inclusion
of the identity map and the trace map on matrices, compose to give dimM
times the identity map. But dimM ≡ 1 (mod p), so M ⊗k M∗ decomposes as
a direct sum of a trivial module and another summand; this other summand is
projective, by Dade’s lemma.

Definition 4.1. A module M is said to be endotrivial if M ⊗k M
∗ is a direct

sum of a trivial module and a projective module.

Theorem 4.2 (Dade [12]). If M is an endotrivial module for an elementary

abelian p-group then M ∼= Ωn(k)⊕ (projective) (n ∈ Z).

The notation here is as follows. If n ≥ 0 then Ωn(k) is the nth kernel in a
minimal projective resolution of k while Ω−n(k) is the nth cokernel in a minimal
injective resolution of k. The module Ωn(k) has stable constant Jordan type
[1] if p = 2 or n is even, while if both p and n are odd it has stable constant
Jordan type [p− 1].

So we have seen that the indecomposable modules of stable constant Jordan
type [1] are precisely the modules Ωn(k), where n is even if p is odd.

We can deal with indecomposable modules of stable constant Jordan type
[p − 1] (p odd) in the same way. If M is such a module, then again M ⊗k M∗

has stable constant Jordan type [1], and we deduce using the same arguments
that M is isomorphic to Ωn(k) with n odd.

So what about modules of stable constant Jordan type [a] with 1 < a <
p − 1? It was conjectured by CFP [10] that there are no modules of stable
constant Jordan type [2] if p ≥ 5. I proved this conjecture while visiting MSRI
in 2008 [4].
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Theorem 4.3 (B, MSRI 2008). If r ≥ 2 then there are no kE-modules of stable

constant Jordan type [a] with 1 < a < p− 1.

The technique of proof was to take exterior and symmetric powers, and use
Dade’s lemma to get incompatible congruences on dimk M .

There are two conjectures, each of which imply the theorem above. The first
was formulated by Rickard at MSRI in 2008, based on a computer printout of
data from a large number of modules of constant Jordan type.

Conjecture 4.4 (Rickard, MSRI 2008). Suppose that r ≥ 2 andM is a module
of constant Jordan type. If there are no Jordan blocks of length i then the total
number of Jordan blocks of length greater than i is divisible by p.

The second was formulated by Suslin and recorded in CFP [10].

Conjecture 4.5 (S). Suppose that r ≥ 2 and M is a module of constant
Jordan type. If for some i with 2 ≤ i ≤ p−1, the module M has a Jordan block
of length i, then it also has a Jordan block either of length i − 1 or of length
i+ 1.

The smallest cases which remain unresolved, and which would follow from
either of these conjectures, are the existence of modules of stable constant
Jordan type [3][1] and [2]2 for p ≥ 5. But each conjecture disallows types
allowed by the other, and we have no reasonable conjecture in general as to
exactly what types occur.

5. Vector Bundles on Projective Space

We use the phrase vector bundle on P
r−1 in the algebraic sense, so that it is

equivalent to the phrase locally free sheaf of O-modules, whereO is the structure
sheaf of Pr−1.

Remarks 5.1. The only line bundles on P
r−1 are O(n) for n ∈ Z.

r = 2: every vector bundle on P
1 is a direct sum of line bundles; the decom-

position is essentially unique (Grothendieck).
r ≥ 3: It is moderately easy to construct indecomposable vector bundles on

P
r−1 of every rank ≥ r − 2.
The only known indecomposable vector bundles with rank bigger than 1

and less than r − 2 are:

On P
4, the Horrocks–Mumford bundle [16] FHM of rank 2 with 15, 000

symmetries (the group is 51+2SL(2, 5)),

On P
5, Horrocks’ Parent bundle [15] of rank 3,

On P
5 in characteristic 2, the Tango bundle [21] of rank 2,
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Some further rank 2 bundles on P
4 and rank 3 bundles on P

5 constructed
by Kumar [17], and by Kumar, Peterson and Rao [18], in positive char-
acteristic only. . .

. . . and bundles obtained from these by twisting and pulling back
through self-maps of projective space.

In particular, it remains unknown whether there are indecomposable vector
bundles of rank two on P

6 in any characteristic and on P
5 in characteristic other

than 2.

We construct vector bundles Fi(M) (1 ≤ i ≤ p) from a module M of
constant Jordan type as follows. We let

P
r−1 = Proj k[Y1, . . . , Yr]

where the Yi are the functions on A
r defined by Yi(Xj) = δij (Kronecker delta).

Given a kE-module M , we set M̃ = M ⊗k O, a trivial bundle over Pr−1 whose
rank is equal to the dimension of M .

Definition 5.2 (FP [13]). We define a map of vector bundles

θ : M̃(j) → M̃(j + 1) (j ∈ Z)

by the formula

θ(m⊗ f) =
∑

i

Xim⊗ Yif.

Definition 5.3 (BP, MSRI 2008).

Fi(M) =
Ker θ ∩ Im θi−1

Ker θ ∩ Im θi

as a subquotient of M̃ , for 1 ≤ i ≤ p.

Remark 5.4. This definition has the feature that Fi(M) is a vector bundle
for 1 ≤ i ≤ p if and only if M has constant Jordan type. The rank of Fi(M) is
equal to the number of Jordan blocks of length i on a cyclic shifted subgroup.

Example 5.5. Let E = (Z/p)2 = 〈g1, g2〉, kE = k[X1, X2]/(X
p
1 , X

p
2 ), Xi =

gi − 1. Let M be the kE-module given by

g1 7→





1 0 0
1 1 0
0 0 1



 g2 7→





1 0 0
0 1 0
1 0 1



 .

Then

θ =





0 0 0
Y1 0 0
Y2 0 0





has kernel of rank two and image of rank one; F1(M) and F2(M) are both rank
one bundles.
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Example 5.6. More generally, for E of any rank, the module M = kE/J2(kE)
has constant Jordan type [2][1]r−1. We have F1(M) ∼= T (−1) and F2(M) ∼=
O(−1), where T is the tangent bundle.

Example 5.7. The kE-module M = Soc2(kE) also has constant Jordan type
[2][1]r−1, but F1(M) ∼= Ω(1), F2(M) ∼= O where Ω = T ∗ denotes the cotangent
bundle.

Example 5.8 (B, MSRI 2008). If p ≥ 7 and r = 5 then there exists a kE-
module M of dimension 30p5 of stable constant Jordan type [p − 1]30[2]2[1]26

such that F2(M) ∼= FHM(−2), a twist of the Horrocks–Mumford bundle. See
the preprint [3] for details.

Example 5.9 (B, Summer 2008). Let E = (Z/2)6, and M be the module for
which θ is the following 30× 30 matrix:
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Then M has constant Jordan type [2]14[1]2 and F1(M) is the Tango bundle of
rank two on P

5.

6. Properties of Fi(M)

The following properties of the vector bundles Fi(M) were found by BP, MSRI
2008.

• Fp−i(ΩM) ∼= Fi(M)(−p+ i) (1 ≤ i ≤ p− 1))

• Fi(M
∗) ∼= Fi(M)∨(−i+ 1) (1 ≤ i ≤ p)

• F1(M ⊗k N) ∼=
⊕p−1

i=1
Fi(M)⊗O Fi(N)(i− 1)
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• The short exact sequence 0 → ΩM → PM → M → 0 induces a complex

0 → Fp(ΩM) → Fp(PM ) → Fp(M) → 0

which is not exact, but has homology only in the middle, where it is

p−1
⊕

i=1

Fi(M)(−p+ i).

Realisability of vector bundles by modules of constant Jordan type is ad-
dressed in the following theorem.

Theorem 6.1 (BP, MSRI 2008). Given a vector bundle F of rank s on P
r−1,

there exists a kE-module of stable constant Jordan type [1]s such that

1. if p = 2 then F1(M) ∼= F ,

2. if p is odd then F1(M) ∼= F ∗(F)

where F : Pr−1 → P
r−1 is the Frobenius map.

The method of proof of the theorem is to take a resolution of the vector
bundle by sums of twists of the structure sheaf. The maps in the resolution are
polynomials in Y1, . . . , Yr. If p = 2, a polynomial of degree d is realised by a
map from Ωdk to k. Then there is a construction in the stable module category
of kE which produces a single module from these maps.

If p is odd then the pth power of the polynomial is realised by a map from
Ω2dk to k, and so we only get to realise bundles whose resolutions involve only
pth powers of polynomials. This is where the Frobenius twist comes in.

When p is odd, there is an obstruction to improving the theorem to F1(M) ∼=
F coming from Chern classes.

7. Chern Classes

The Chow group A∗(Pr−1) is isomorphic to Z[h](hr). Given a vector bundle F
on P

r−1, there is a Chern polynomial

c(F) = 1 + c1(F)h+ · · ·+ cr−1(F)hr−1 ∈ A∗(Pr−1)

whose coefficients ci(F) are the Chern numbers of F .

Theorem 7.1 (B, Summer 2008). Suppose that r ≥ 2, and let M be a kE-

module of stable constant Jordan type [1]s. Then p | ci(F1(M)) for 1 ≤ i ≤ p−2.
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If p = 2 this gives no information, but for p odd it gives a genuine restriction
on the vector bundles that can occur this way.

Example 7.2. The rank two Horrocks–Mumford bundle FHM on P
4 has Chern

numbers c1(FHM(i)) = 2i + 5 and c2(FHM(i)) = i2 + 5i + 10. So no twist of
FHM can occur as F1(M) for a module of stable constant Jordan type [1]2. This
explains why, in Example 5.8, it was necessary to have Jordan blocks of lengths
other than one and p.

8. Small Modules with Interesting Varieties

We now move away from constant Jordan type, and look at some more specu-
lative questions. Looking back at Example 1.3, can we mimic this construction
if p is odd? The most obvious attempts fail, so we are left with the general
question: are there small modules with interesting varieties, when p is odd?
Can we find good bounds and good constructions to address this question?

A construction of Carlson produces modules with any desired closed homo-
geneous subvariety of Ar as its rank variety, but the dimension of the module
produced this way is large. For example, if we do this with the ruled quadric
Y1Y4−Y2Y3 = 0 for (Z/2)4, then we are required to interpret this as an element
of H2(E, k) ∼= Ext1kE(Ωk, k) and take the corresponding extension of k by Ωk,
of dimension 16. Carlson’s method in general is to realise hypersurfaces in this
way and then tensor modules for a general variety written as an intersection of
hypersurfaces.

A modified version of Carlson’s method produces Example 1.3. Namely,
instead of using a single element of cohomology, we use a 2 × 2 matrix of
elements

(

Y1 Y2

Y3 Y4

)

and interpret it as an element of Ext1kE(k ⊕ k, k ⊕ k). The
corresponding four dimensional module gives the 4×4 matrices of the example.

When p is odd, the single element method is even worse. The generators
in degree one of cohomology are nilpotent, and cannot be used in Carlson’s
construction. One is forced to use the generators of degree two, so Y1Y4 − Y2Y3

corresponds to an element of H4(E, k) ∼= Ext1kE(Ω
3k, k). The dimension of the

module obtained in this way is 13p4.

If we go with the 2 × 2 matrix method for p odd, we still end up with an
element of Ext1kE(Ωk ⊕ Ωk, k ⊕ k), giving a module of dimension 2p4.

But we can do better than this. If a row of the matrix does not use all of the
variables, we can use a relative syzygy of k instead of the absolute syzygy. The
condition for making this work is that the variety of the subgroup used for the
relative syzygy should be contained in the variety defined by the polynomials
appearing in the row. So for the 2 × 2 matrix we’re considering, we can use
relative syzygies for two subgroups of order p2 to obtain a module of dimension
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2p2 with the required variety. Here is a diagram for this module when p = 3:
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�?
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�?
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�?
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@
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• • •

�?
�?
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• •

In this diagram the actions of the four elements Xi = gi − 1 (1 ≤ i ≤ 4)
are represented by the single, double, wavy and dotted edges respectively. The
leftmost and rightmost vertices are identified to make a module of dimension
18.

This module of dimension 2p2 is still far from the lower bound given by
Bézout’s theorem, as described in Carlson [9]:

Theorem 8.1 (C, 1993). Let E be an elementary abelian p-group of rank r.
If M is a kE-module whose rank variety has dimension m and degree d then

dimk M/pr−m is an integer at least as big as d.

In our case, the Bézout bound is 2p, but it is not hard to prove that there is
no module of dimension 2p with the required variety for p odd. I suspect that
the smallest module with the ruled quadric as an irreducible component of its
variety is the above one of dimension 2p2.

Question 8.2. Let E be an elementary abelian p-group of rank r. Given a
closed homogeneous subvariety V ⊆ A

r, what is the smallest dimension of a
kE-module M with VE(M) = V ?

9. Modules for (Z/p)2

For an elementary abelian group of rank two, Question 8.2 is not interesting,
because the projective line does not have interesting subvarieties. But when
we mix conditions on the variety with conditions on the Jordan type, we do
get some very interesting questions. I shall describe just one theorem in this
direction.

Let E = (Z/p)2 with p odd. For an indecomposable kE-module the possible
varieties are the whole of A2 and a single line through the origin. In the latter
case, namely the case of periodic modules, we can look at the Jordan type
of the module on the cyclic shifted subgroup corresponding to that line. The
following theorem gives rather surprising information about the dimensions of
such modules.

Theorem 9.1 (B, 2010). If an indecomposable periodic kE-module M has

Jordan blocks of length p on all cyclic shifted subgroups then the dimension of
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M is at least p
3

2 . Furthermore, there exists such a module M of dimension at

most p
3

2 +
√
2 p

5

4 .

The constant
√
2 in the theorem is probably not best possible. There must be

further theorems of a similar type waiting to be discovered, but at the moment
this seems to be the only one known.
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Total Positivity and Cluster Algebras
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Abstract

This is a brief and informal introduction to cluster algebras. It roughly follows
the historical path of their discovery, made jointly with A. Zelevinsky. Total
positivity serves as the main motivation.
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Introduction

Cluster algebras are encountered in many algebraic and geometric contexts,
with combinatorics providing a unifying framework. This short paper reviews
the origins of cluster algebras, their deep connections with total positivity phe-
nomena, and some of their recent manifestations in Teichmüller theory.

The introduction of cluster algebras, made in joint work with A. Zelevin-
sky [26], was rooted in the desire to understand, in a concrete and combinato-
rial way, G. Lusztig’s theory of total positivity and canonical bases in quantum
groups (see, e.g., [44, 47]). Although this goal remains largely elusive (cf. [43]),
the concept proved valuable due to its surprising ubiquity, and to the con-
nections it helped uncover between diverse and seemingly unrelated areas of
mathematics.

This paper gives a popular and quick introduction to the subjects in the
title, aimed at an uninitiated reader, and roughly following the historical order
of modern developments in the two related fields. Cumbersome technicalities
involved in the usual definition of cluster algebras are largely omitted, giving
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way to prototypical examples from which the reader is invited to generalize, to
discussions of underlying motivations, and to hints concerning further applica-
tions and extensions of the basic theory. Many important aspects are left out
due to space limitations.

The style is rather informal, owing to the desire to see the forest through the
trees, and to make the paper accessible to a general mathematical audience.
There are no numbered formulas or theorems: results are stated as part of
the general narrative. Some attributions are missing; they can be found in
the sources quoted. The goal is to give the reader an intuitive feel for what
cluster algebras are, and motivate her/him to read the more formal expositions
elsewhere.

Several survey/introductory papers dedicated to the subjects in the title,
approached from various perspectives, have already appeared in the literature;
see in particular [1, 5, 19, 25, 29, 34, 39, 43, 54, 55, 56]. An excellent intro-
duction to applications of cluster algebras in representation theory is given in
B. Leclerc’s contribution [43] to these proceedings. Besides consulting these
sources and references therein, the reader is invited to visit the Cluster Alge-
bras Portal [18], which provides numerous links to publications, conferences,
seminars, thematic programs, software packages, etc.

Our presentation is loosely based on the papers [2, 3, 20, 21, 23, 25, 26,
27, 29], joint with A. Berenstein, M. Shapiro, D. Thurston, and A. Zelevinsky.
Section 1 introduces total positivity and the idea of a positive/nonnegative
part of an algebraic variety. Section 2 presents the basic notions of cluster
algebra theory, emphasizing its roots in total positivity. Section 3 discusses the
occurence of cluster algebras in combinatorial topology of triangulated surfaces,
and connections with Teichmüller spaces.

The format of this brief survey does not allow us to discuss several important
directions of current research on cluster algebras and related fields. In particu-
lar, not covered here are the theory of cluster categories and the various facets of
categorification [39, 40, 41, 50]; the connections between cluster algebras and
Poisson geometry [32, 33]; closely related work on cluster varieties arising
in higher Teichmüller theory [16, 17]; the polyhedral combinatorics of clus-
ter fans and Cambrian lattices [52]; applications to discrete integrable systems
[13, 28, 37, 41]; the machinery of quivers with potentials [11, 12]; connections
with Donaldson-Thomas invariants [42, 49]; and other exciting topics.

Acknowledgments. The discovery of cluster algebras, the main work
leading to it, and the development of fundamentals of the general theory were
all done jointly with my longtime collaborator Andrei Zelevinsky. I am indebted
to him, and to my co-authors Arkady Berenstein, Michael Shapiro, and Dylan
Thurston for their invaluable contributions to our joint work discussed below.
Catharina Stroppel persuaded me to give a talk in Bonn whose design this
presentation follows. Bernhard Keller, George Lusztig, and Kelli Talaska made
valuable editorial suggestions.
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1. Total Positivity

A matrix x with real entries is called totally positive (resp., totally nonnega-
tive) if all its minors—that is, determinants of square submatrices—are positive
(resp., nonnegative). Following the pioneering work of I. Schoenberg, the sys-
tematic study of these classes of matrices was initiated in the 1930s by F. Gant-
macher and M. Krein [31] who in particular showed that the eigenvalues of an
n× n totally positive matrix are real, positive, and distinct.

Total positivity is a remarkably widespread phenomenon: matrices with pos-
itive/nonnegative minors play an important role in classical mechanics (theory
of small oscillations), probability (one-dimensional diffusion processes), discrete
potential theory (planar resistor networks), asymptotic representation theory
(the Edrei-Thoma theorem), algebraic and enumerative combinatorics (im-
manants, lattice paths), and of course in linear algebra and its applications.
See [1, 25, 31, 35, 38] for a plethora of examples and results, and for additional
references.

A key technical fact from the classical theory of total positivity is C. Cryer’s
“splitting lemma” [8, 9]: an invertible square matrix x (say of determinant 1)
is totally nonnegative if and only if it has a Gaussian decomposition

x =















1 0 0 · · · 0
∗ 1 0 · · · 0
∗ ∗ 1 · · · 0
...

...
...

. . .
...

∗ ∗ ∗ · · · 1





























∗ 0 0 · · · 0
0 ∗ 0 · · · 0
0 0 ∗ · · · 0
...

...
...

. . .
...

0 0 0 · · · ∗





























1 ∗ ∗ · · · ∗
0 1 ∗ · · · ∗
0 0 1 · · · ∗
...

...
...

. . .
...

0 0 0 · · · 1















in which all three factors (lower-triangular unipotent, diagonal, and upper-tri-
angular unipotent) are totally nonnegative. There is also a counterpart of this
statement for totally positive matrices.

The Binet-Cauchy theorem implies that totally positive (resp., nonnegative)
matrices in G = SLn form a multiplicative semigroup, denoted by G≥0. In view
of Cryer’s lemma, the study of G≥0 can be reduced to the investigation of its
subsemigroup N≥0 ⊂ G≥0 of upper-triangular unipotent totally nonnegative
matrices.

The celebrated Loewner-Whitney Theorem [45, 53] identifies the infinites-
imal generators of N≥0 as the Chevalley generators of the corresponding Lie
algebra. In pedestrian terms, each upper-triangular unipotent totally nonnega-
tive n×n matrix can be written as a product of (totally nonnegative) matrices
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of the form

xi(t) =





















1 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 1 t · · · 0
0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 1





















;

here the matrix xi(t) differs from the identity matrix by a single entry t ≥ 0 in
row i and column i+1. This led G. Lusztig [46] to the idea of extending the no-
tion of total positivity to other semisimple groups G, by defining the set G≥0 of
totally nonnegative elements in G as the semigroup generated by the Chevalley
generators. Lusztig has shown that G≥0 can be described by inequalities of the
form ∆(x) ≥ 0 where ∆ ranges over the appropriate dual canonical basis (at
q = 1). This set is infinite, and very hard to understand; fortunately, it can be
replaced [24] by a much simpler (and finite) set of generalized minors [22].

A yet more general (if informal) concept is one of a totally posi-
tive/nonnegative variety. Vaguely, the idea is this: take a complex variety X
together with a family ∆ of “important” regular functions on X. The corre-
sponding totally positive (resp., totally nonnegative) variety X>0 (resp., X≥0)
is the set of points at which all of these functions take positive (resp., nonneg-
ative) values:

X>0 = {x ∈ X : ∆(x) > 0 for all ∆ ∈∆}.

If X is the affine space of matrices of a given size (or GLn(C) or SLn(C)), and∆

is the set of all minors, then we recover the classical notion. One can restrict this
construction to matrices lying in a given stratum of a Bruhat decomposition,
or in a given double Bruhat cell [22, 46]. Another important example is the
totally positive (resp., nonnegative) Grassmannian consisting of the points in a
usual Grassmann manifold where all Plücker coordinates can be chosen to be
positive (resp., nonnegative).

In each of these examples, the notion of positivity depends on a particular
choice of a coordinate system: a basis in a vector space allows us to view linear
transformations as matrices; a choice of reference flag determines a system of
Plücker coordinates; and so on.

Why study totally nonnegative varieties? Besides the connections to Lie
theory alluded to above, there are at least three more reasons.

First, some totally nonnegative varieties are interesting in their own right
as they can be identified with important spaces, e.g. some of those arising in
Teichmüller theory; cf. Section 3. One can hope to gain additional insight into
the structure of such spaces and their compactifications by “upgrading” them to
complex varieties, studying associated quantizations, etc. The nascent “higher
Teichmüller theory” [7, 17] is one prominent expression of this paradigm.

Second, passing from a complex variety to its positive part can be viewed as
a step towards its tropicalization. The deep connections between total positivity,
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tropical geometry, and cluster theory lie outside the scope of this short paper;
see [17, 21, 30] for some aspects of this emerging research area.

Yet another reason to study totally nonnegative varieties lies in the fact
that their structure as semialgebraic sets reveals important features of related
complex varieties. We illustrate this phenomenon using the example first studied
in [46] (cf. also [2, 23]). Consider N⊂SLn(C), the subgroup of n×n unipotent
upper-triangular matrices. The corresponding totally nonnegative variety is the
semigroup N≥0 of totally nonnegative matrices in N . Take n = 3; then

N≥0 =











1 x y
0 1 z
0 0 1



 :
x ≥ 0
y ≥ 0
z ≥ 0

and xz − y ≥ 0







.

The inequalities defining N≥0 are homogeneous in the following sense: replacing
(x, y, z) by (ax, a2y, az), with a > 0, does not change them. Consequently, the
space N≥0 is topologically a cone with the apex x = y = z = 0 (the identity
matrix) over the base M≥0 ⊂ N≥0 cut out by the plane x+ z = 1. Thus

M≥0 ∼= {(x, y) ∈ R
2 : 0 ≤ x ≤ 1 and y ≤ x(1− x)}

is the subset of the coordinate plane R2 bounded by the x axis and the parabola
y = x(1− x), as shown in Figure 1(a).

y = x (1− x)

-

6

0 1
x

y

∅

Figure 1. (a) The base M≥0 of the cone N≥0. (b) The attachment of algebraic strata.

The semialgebraic set M≥0 naturally decomposes into 5 algebraic strata:
two of dimension 0, two of dimension 1, and one of dimension 2. Accordingly,
the cone N≥0 decomposes into 6 algebraic strata of dimension 1 higher; the
apex of N≥0 corresponds to the “empty face” of M≥0. See Figure 1(b).

The adjacency of these strata is described by a partial order isomorphic to
the Bruhat order on the symmetric group S3 . This happens in general, for
any n: the decomposition of N≥0 into algebraic strata produces a CW-complex
with cell attachments described by the Bruhat order on Sn . Recall that the
same partial order describes the attachment of Schubert cells in the manifold
of complete flags in C

n. The latter has rich topology, and is a central object of
study in modern Schubert Calculus. By contrast, N≥0 and M≥0 have no topol-
ogy to speak of (in fact, M≥0 is expected to be homeomorphic to a ball [23, 36])
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but has a cell decomposition with exactly the same cell attachments. The big
difference of course is that the complex Schubert cells have twice the dimensions
of their real (more precisely, positive real) counterparts. Still, the stratification
of M≥0 resulting from its semialgebraic structure somehow “remembers”the
Bruhat order—which is all one needs to know in order to reconstruct the topol-
ogy of the flag manifold and its Schubert cells/varieties—including Schubert
and Kazhdan-Lusztig polynomials, etc.

2. Cluster Algebras

The discussion in Section 1 prompts one to ask: Which algebraic varieties X
have a natural notion of positivity? Which families ∆ of regular functions
should one consider in defining this notion? The concept of a cluster algebra can
be viewed as an attempt to provide a general answer to these questions. Since
the definition is fairly technical, we start with an example and then generalize.

Our prototypical example of a cluster algebra A is the coordinate ring of the
base affine space for the special linear group G = SLn(C), defined as follows.
The subgroup N ⊂ G of unipotent upper-triangular matrices acts on G by
right multiplication. The algebra A = C[G/N ] consists of regular functions
on G which are invariant under this action of N . Thus elements of A can
be viewed as polynomials in the entries xij of a matrix x = (xij) ∈ SLn(C)
which are invariant under column operations that add to a column of x a linear
combination of preceding columns. Classical invariant theory tells us that A is
generated by the flag minors

∆I : x 7→ det(xij |i ∈ I, j ≤ |I|)

where I ranges over nonempty proper subsets of {1, . . . , n}. That is, ∆I is a
minor occupying the rows in I and the first several columns. The generators ∆I

satisfy certain well known homogeneous quadratic identities sometimes called
generalized Plücker relations.

A point in G/N represented by a matrix x is, by definition, totally posi-
tive/nonnegative if all flag minors ∆I take positive/nonnegative values at x.
Total positivity in G/N is closely related to the classical notion of total pos-
itivity in G: it is not hard to deduce from Cryer’s lemma that a matrix x is
totally positive if and only if both x and its transpose represent totally positive
elements in G/N .

There are 2n − 2 flag minors; do we really have to test all of them to verify
that a point x ∈ G/N is totally positive? The answer is no: it suffices to test

positivity of dim(G/N) = (n−1)(n+2)
2 minors; one could hardly hope for a more

efficient test.
To design such tests, we will need the notion of a pseudoline arrangement.

The latter is a collection of n “pseudolines” each of which is a graph of a contin-
uous function on [0, 1]; each pair of pseudolines must have exactly one crossing
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point in common. (See Figure 2.) The resulting arrangement is considered up
to isotopy.

1

2

3

4

∆1 ∆2 ∆3 ∆4

∆12

∆23

∆34

∆123 ∆234

1

2

3

4

∆1

∆13

∆3 ∆4

∆12

∆23

∆34

∆123 ∆234

Figure 2. Two pseudoline arrangements, and associated chamber minors

We label the pseudolines 1 through n by numbering their left endpoints
from the bottom up. To each region R of a pseudoline arrangement, with the
exception of the top and the bottom regions, we associate the chamber minor
∆I(R) (cf. [2]) defined as the flag minor indexed by the set I(R) of labels of the

pseudolines passing below R. The (n−1)(n+2)
2 chamber minors associated with

a given pseudoline arrangement form an extended cluster ; we shall see that the
positivity of these minors implies that all flag minors of a given matrix are
positive.

There are two types of regions: the bounded regions entirely surrounded by
pseudolines, and the unbounded ones, adjacent to the left and right borders. The
2(n−1) chamber minors associated with unbounded regions are called frozen:
these minors are present in every arrangement. For n = 4, the frozen minors
are ∆1, ∆12, ∆123, ∆4, ∆34, and ∆234 (cf. Figure 2).

The chamber minors corresponding to the bounded regions form the cluster
associated with the given pseudoline arrangement. (Thus an extended cluster is
a cluster plus the frozen minors.) Each cluster contains

(

n−1
2

)

chamber minors.
The two pseudoline arrangements shown in Figure 2 have clusters {∆2,∆3,∆23}
and {∆13,∆3,∆23}, respectively.

These two clusters differ in one element only. This is because the corre-
sponding two arrangements are related to each other by a local move consisting
in dragging one of the pseudolines through an intersection of two others; see
Figure 3. As a result of such a move, one chamber minor (namely e in Figure 3,
and ∆2 in Figure 2) disappears (we say that this minor is flipped), and a new
one (namely f in Figure 3, and ∆13 in Figure 2) is introduced.
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Figure 3. A local move in a pseudoline arrangement

It can be shown that for a local move as in Figure 3, the chamber minors
associated with the regions where the action takes place satisfy the identity

ef = ac+ bd.

This identity is one of the generalized Plücker relations alluded to above. We
call it an exchange relation, as the chamber minors e and f are exchanged by
the local move. For the local move shown in Figure 2, the exchange relation is

∆2∆13 = ∆12 ∆3 +∆1 ∆23 .

The new chamber minor f produced by a local move is given by a simple
rational expression f = ac+bd

e
in the chamber minors of the original arrange-

ment. Note that this expression is subtraction-free (no minus signs). One can
now start with a particular pseudoline arrangement, label its regions by inde-
terminates, then use iterated local moves (combined with the corresponding
birational transformations) to generate all possible arrangements, and in doing
so write all flag minors as rational expressions in the initial extended cluster.
All these expressions are clearly subtraction-free, and the claim follows: if the
elements of the initial extended cluster evaluate positively at a given point
in G/N , then so do all flag minors.

Let F denote the field of rational functions in the formal variables making
up the initial extended cluster. Inside F , the rational expressions discussed
in the previous paragraph generate the subalgebra A canonically isomorphic
to C[G/N ]. Notice that our construction does not explicitly involve the group G:
we can pretend to be unaware that we are dealing with matrices, their minors,
etc. Yet the construction produces, by design, an algebra A equipped with a
distinguished set of generators ∆ (the rational expressions corresponding to
the flag minors), and thus endowed with a notion of (total) positivity.

The example of a base affine space treated above displays, in a rudimentary
form, the main features of a general cluster algebra set-up. We next proceed to
describing the latter on an informal level, with details to be filled in later on.

Fix a field F of rational functions in several variables, some of which are
designated as “frozen.” Imagine a (potentially infinite) family of equinumerous
finite collections (“clusters”) of elements in F . (These elements, called cluster
variables, can be thought of as regular functions on some “cluster variety” X.)
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Each cluster can be “extended” by adjoining the frozen variables. The (ex-
tended) clusters are the vertices of a connected regular graph in which adjacent
clusters are related by birational transformations of the most simple kind, re-
placing an arbitrary element of a cluster by a sum of two monomials divided by
the element being removed. (By a monomial we mean a product of elements of
a given extended cluster.) These transformations are subtraction-free, so pos-
itivity of the elements of a cluster at a point x ∈ X does not depend on the
choice of a cluster. The birational maps between adjacent clusters are encoded
by appropriate combinatorial data, and the construction is made rigid by man-
dating that these data are transformed (as one moves to an adjacent cluster)
according to certain canonical rules. These combinatorial rules define a discrete
dynamics that drives the algebraic dynamics of cluster transformations. Con-
sequently, the choice of initial combinatorial data (the pseudoline arrangement
in the example of G/N) determines, in a recursive fashion, the entire structure
of clusters and exchanges. The corresponding cluster algebra is then defined as
the subring of the ambient field F generated by the elements of all extended
clusters.

In the example of the base affine space, one key feature of the set-up de-
scribed above is lacking: we do not always know how to exchange an element of
a cluster. If a region in a pseudoline arrangement is bounded by more than three
pseudolines, then the corresponding chamber minor cannot be readily flipped
by a local move. For instance, how do we exchange the chamber minor ∆23 in
Figure 2 on the left? There is in fact a “hidden” exchange relation of the form
∆23 ~ = ~+~ —but how do we guess what those ~’s are?

The answer to this question will fall into our lap once we replace the language
of pseudoline arrangements, too specialized for a general theory, by a more
universal combinatorial language of quivers. (Using quivers somewhat restricts
the generality of the cluster theory, but is general enough for the purposes of
this paper.) Developing this language will take a little time—but will pay off
quickly.

A quiver is a finite oriented graph. We allow multiple edges, but not loops
(i.e., edges connecting a vertex to itself) or oriented 2-cycles (i.e., edges of op-
posite orientation connecting the same pair of vertices). We will need a slightly
richer notion, with some vertices in a quiver designated as frozen. The remain-
ing vertices are called mutable. We assume that no edges connect frozen vertices
to each other. (Such edges would make no difference in what follows.)

Quivers play the role of the aforementioned combinatorial data accompany-
ing the clusters. We think of the vertices of a quiver as labeled by the elements
of an extended cluster, so that the frozen vertices are labeled by the frozen
variables, and the mutable vertices by the cluster variables.

We next describe the quiver analogue of a local move. Let z be a muta-
ble vertex in a quiver Q. The quiver mutation µz transforms Q into a new
quiver Q′ = µz(Q) via a sequence of three steps. At the first step, for each
pair of directed edges x → z → y passing through z, we introduce a new edge
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x→ y (unless both x and y are frozen, in which case do nothing). At the second
step, we reverse the direction of all edges incident to z. At the third step, we
repeatedly remove oriented 2-cycles until unable to do so. See Figure 4. It is
easy to check that mutating Q′ at z′ recovers Q.

x y

u z v

�

� �

?
6 � µz

7−→

x y

u z′ v- -

66 6
	 	

Figure 4. A quiver mutation. Vertices u and v are frozen.

Quiver mutation can be viewed as a generalization of the notion of a local
move: there is a combinatorial rule associating a quiver with an arbitrary pseu-
doline arrangement so that local moves translate into quiver mutations. Rather
than stating this rule precisely, we refer to Figure 5, and let the reader guess.

∆1 ∆2 ∆3 ∆4

∆12 ∆23 ∆34

∆123 ∆234

� � �

� �
� �

�

R R

R

∆1 ∆13 ∆3 ∆4

∆12 ∆23 ∆34

∆123 ∆234

- - �

�

	 �

�

I

R

i

Figure 5. The quivers corresponding to the pseudoline arrangements shown in Figure 2.
The chambers of an arrangement correspond to the vertices of the associated quiver.

Let us now define cluster exchanges using the language of quivers. This
turns out to be very simple. Consider a quiver Q accompanied by an extended
cluster z, a finite collection of algebraically independent elements in our ambient
field of rational functions F . (Such a pair (Q, z) is called a seed.) Pick a mutable
vertex labeled by a cluster variable z. A seed mutation at z replaces (Q, z) by
the seed (Q′, z′) whose quiver is Q′ = µz(Q) and whose extended cluster is
z
′ = z ∪ {z′} \ {z}; here the new cluster variable z′ is determined by the

exchange relation

z z′ =
∏

z←y

y +
∏

z→y

y .

(The products are over the edges directed at/from z, respectively.) For example,
the exchange relation associated with the quiver mutation shown in Figure 4 is
zz′ = vx + uy; applying mutation µx to the quiver on the right would invoke
the exchange relation xx′ = z′ + u2.

Following the blueprint outlined earlier, we now define a cluster algebra
A(Q) associated to an arbitrary quiver Q. Assign a formal variable to each
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vertex of Q; these variables form the initial extended cluster z, and generate
the ambient field F . Starting with the initial seed (Q, z), repeatedly apply seed
mutations in all possible directions. The cluster algebra A(Q) is defined as the
subring of F generated by all the elements of all extended clusters obtained by
this recursive process.

Returning to our running example, we illustrate this definition by describing
the cluster algebra structure in C[SL4 /N ]. Let us start with the quiver shown
on the left in Figure 5. We view the 9 variables ∆I labeling the vertices of
this quiver as formal indeterminates (secretly, they are chamber minors). We
declare the variables ∆2, ∆3, and ∆23 mutable; the remaining six variables are
frozen. There are three possible mutations out of this seed; we use the quiver
to write the corresponding exchange relations:

∆2∆13 = ∆12 ∆3 +∆1 ∆23 ,

∆3 ∆24 = ∆4 ∆23 +∆34 ∆2 ,

∆23 Ω = ∆123 ∆34 ∆2 +∆12 ∆234 ∆3 .

At this point, these relations merely define ∆13, ∆24, and Ω as rational func-
tions in the original extended cluster. The first two relations look familiar: they
correspond to the two local moves that can be applied to the given pseudo-
line arrangement. The third relation is new: it enables us to flip the chamber
minor ∆23, something we could not do before. Although the resulting cluster
does not correspond to a pseudoline arrangement, we can still determine its
associated quiver using the definition of quiver mutation. Continuing this pro-
cess recursively ad infinitum yields more and more extended clusters; taken
together, they generate a cluster algebra.

If one interprets the elements of the initial cluster as actual flag minors,
then the generators produced by this process become rational functions on the
base affine space. Remarkably, all these generators are regular functions, and
generate the ring of all such functions. This holds for any n, resulting in a
cluster algebra structure in C[SLn /N ]; see, e.g., [3, 34, 43].

In the special case n = 4, this recursive process produces a finite number of
distinct extended clusters, 14 of them to be exact. Altogether they contain 15
generators: in addition to the 24 − 2 = 14 flag minors ∆I , there is a single new
cluster variable

Ω = −∆1∆234 +∆2∆134

that already appeared in the third exchange relation above.

Figure 6 shows the 14 clusters for C[SL4 /N ] as vertices of a planar graph;
note that there is one additional vertex at infinity, so that the graph should be
viewed as drawn on a sphere rather than a plane. The regions are labeled by
cluster variables. Each cluster consists of the three elements labeling the regions
adjacent to the corresponding vertex. The edges of the graph correspond to seed
mutations. The 6 frozen variables are not shown.
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Ω

∆23

∆14

∆2 ∆3

∆24 ∆13

Figure 6. Clusters in C[SL4 /N ]

What do we gain by introducing a cluster algebra structure into a commu-
tative ring that already appears well understood? One reason has been given
earlier: such a structure gives rise to a well-defined notion of the (totally) pos-
itive part of the associated algebraic variety. Another reason has to do with
defining a “canonical basis” in the algebra at hand; the next paragraph hints
at a possible approach.

Let us call two generators of a cluster algebra compatible if they appear
together in some extended cluster. A cluster monomial is a product of pairwise
compatible (not necessarily distinct) generators. It is not too hard to show that
in the cluster algebra A = C[SL4 /N ], the cluster monomials form a linear basis.
This is a particular instance of the dual canonical basis of G. Lusztig (called
the “upper global basis” by M. Kashiwara).

Unfortunately, the general picture (for arbitrary SLn) is much more com-
plicated: the cluster monomials seem to form just a part of the dual canonical
(or dual semicanonical) basis; see [43]. The challenge of describing the rest of
the dual canonical basis in concrete terms remains unmet.

Many other algebraic varieties of representation-theoretic importance turn
out to possess a natural structure of a cluster algebra (hence the notions of
positivity, cluster monomials, perhaps canonical bases, etc.). The list includes
Grassmannians, flag manifolds, Schubert varieties, and double Bruhat cells in
arbitrary semisimple Lie groups. See [22, 29, 34, 39, 43, 54, 55].

We conclude this section by mentioning some of the most basic structural
results in the general theory of cluster algebras. The first such result is the
Laurent phenomenon: the cluster variables are not merely rational functions
in the elements of the initial extended cluster—all of them are in fact Laurent
polynomials! We conjectured [26] that these Laurent polynomials always have
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positive coefficients; many instances of this conjecture have been proved (see
in particular [4, 14, 48, 50]) but the general case seems out of reach at the
moment.

Another basic structural result is the classification [27] of the cluster al-
gebras of finite type, i.e., those with finitely many seeds (equivalently, finitely
many generators). In the generality presented here, the classification theorem
states that a cluster algebra has finite type if and only if one of its seeds
has a quiver whose subquiver formed by the mutable vertices is an orienta-
tion of a disjoint union of simply-laced Dynkin diagrams. (The full-blown ver-
sion of the cluster theory leads to a complete analogue of the Cartan-Killing
classification.)

The combinatorial scaffolding for a cluster algebra is provided by its clus-
ter complex, a simplicial complex whose vertices are the cluster variables, and
whose maximal simplices are the clusters. In the finite type case, this simplicial
complex can be identified as the dual complex of a generalized associahedron,
a remarkable convex polytope [6, 28] associated with the corresponding root
system. In particular, the cluster complex of finite type is homeomorphic to a
sphere. This can be observed in our running example of C[SL4 /N ]: the cluster
complex is the dual simplicial complex of the spherical cell complex shown in
Figure 6.

3. Triangulations and Laminations

Cluster algebras owe much of their appeal to the ubiquity of the combinatorial
and algebraic dynamics that underlies them. A priori, one might not expect
the fairly rigid axioms governing quiver mutations and exchange relations to
be satisfied in a large variety of contexts. Yet this is exactly what happens.
Moreover, in each instance the framework of clusters and mutations seems to
arise organically rather than artificially. A case in point is discussed in this
section: the classical (by now) machinery of triangulations and laminations on
bordered Riemann surfaces, which goes back to W. Thurston, can be naturally
recast in the language of quiver mutations. The resulting connection between
combinatorial topology and cluster theory is bound to benefit both.

This section is based on the papers [20, 21], which were in turn inspired by
the work of V. Fock and A. Goncharov [16, 17], M. Gekhtman, M. Shapiro, and
A. Vainshtein [32, 33], and R. Penner[51].

Let S be a connected oriented surface with boundary. (A few simple cases
must be ruled out.) Fix a finite nonempty set M of marked points in the closure
of S. An arc in (S,M) is a non-selfintersecting curve in S, considered up to
isotopy, which connects two points in M, does not pass through M, and does
not cut out an unpunctured monogon or digon. Arcs are compatible if they
have non-intersecting realizations. Collections of pairwise compatible arcs are
the simplices of the arc complex of S. The facets of this simplicial complex
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correspond to (ideal) triangulations. Note that these triangulations may contain
self-folded triangles. See Figure 7.

Figure 7. The arc complex of a once-punctured triangle. Its 10 two-dimensional sim-
plices correspond to ideal triangulations. Among them, 6 contain self-folded triangles.

The vertices of the dual graph of the arc complex correspond to the trian-
gulations; the edges in this graph correspond to flips. A flip replaces an arc
in a triangulation by another (uniquely defined) arc. Note that an edge inside
a self-folded triangle cannot be flipped. The situation is akin to pseudoline
arrangements, which are likewise related to each other by flips (of a different
kind).

This analogy goes much deeper than it might appear at first. To see that,
we translate the setting into the lingua franca of quivers. Let us define the
quiver Q(T ) associated to a triangulation T . The vertices of Q(T ) are labeled
by the arcs in T . If two arcs belong to the same triangle, we connect the corre-
sponding vertices of the quiver Q(T ) by an edge whose orientation is determined
by the clockwise orientation of the boundary of the triangle. See Figure 8. For
triangulations containing self-folded triangles, the definition is more compli-
cated but is nevertheless completely elementary and explicit.

As the reader may have guessed by now, flips in ideal triangulations trans-
late into mutations of the associated quivers. Furthermore, the quiver language
suggests what we should do about the “forbidden” flips (of interior edges in self-
folded triangles): forget about triangulations and just mutate the corresponding
quivers.

It is easy to check that a quiver mutation corresponding to an edge inside a
self-folded triangle transforms any quiver into an isomorphic one. Another sim-
ple observation is that the number of different (up to isomorphism) quiversQ(T )
associated to triangulations T of a given surface is finite (because the action of
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Figure 8. A triangulation T of a once-punctured hexagon and the associated quiver
Q(T ).

the mapping class group on triangulations has finitely many orbits). Combin-
ing these two observations, one concludes that any quiver Q(T ) associated to
a triangulated surface is of finite mutation type: its iterated mutations produce
finitely many distinct (non-isomorphic) quivers. In fact, as shown in [15], all
connected quivers of finite mutation type, with a few exceptions, are of the form
Q(T ), for some triangulation T of some marked bordered surface (S,M). (We
assume that there are no frozen vertices.) The complete list of exceptions con-
sists of (a) quivers with two vertices and more than one edge, and (b) 11 quivers
listed in [10].

The construction of quivers Q(T ) can be generalized by involving
W. Thurston’s machinery of laminations on Riemann surfaces. An integral
(unbounded measured) lamination on (S,M) is a finite collection of non-
selfintersecting and pairwise non-intersecting curves in S, considered modulo
isotopy. The curves in a lamination must satisfy certain constraints. In particu-
lar, each of them is either closed, or runs from boundary to boundary, or spirals
into an interior marked point (a puncture). See Figure 9.

Figure 9. (a) A lamination; (b) curves not allowed in a lamination.

Let L be an integral lamination, and T a triangulation without self-folded
triangles. For an arc γ in T , the shear coordinate bγ(T,L) is the signed number
of curves in L which intersect γ and in doing so, connect the opposite sides of
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the quadrilateral surrounding γ. The sign depends on which pair of opposite
sides the curves connect; see Figure 10.

γ
+1 −1

γ

Figure 10. A (signed) contribution of a curve in L to the shear coordinate bγ(T, L).

By a theorem of W. Thurston, the shear coordinates coordinatize integral
laminations in the following sense: for a fixed triangulation T , the map

L 7→ (bγ(T,L))γ∈T

is a bijection between integral laminations and Z
n.

A multi-lamination L on (S,M) is an arbitrary finite family of laminations.
Given such L and a triangulation T of the surface (S,M), we construct the
“extended” quiver Q(T,L) by adding vertices and oriented edges to Q(T ) as
follows. For each lamination L in L, we introduce a new vertex labeled by L.
We then connect this vertex to each vertex in Q, say labeled by an arc γ,
by |bγ(T,L)| edges whose direction is determined by the sign of bγ(T,L). See
Figure 11.
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Figure 11. (a) Shear coordinates of a lamination L; (b) the quiver Q(T, {L}).

Amazingly, the same property as before holds: for a fixed multi-
lamination L, a flip in a triangulation T translates into the corresponding
mutation in the quiver Q(T,L). (The definition of the latter can be gener-
alized to allow for self-folded triangles.) This strongly suggests the existence
of a cluster algebra structure associated with any given marked surface (S,M)
and any multi-lamination L on it.
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This class of cluster algebras can be understood on several levels. On the
combinatorial level, the cluster complex of such an algebra can be explicitly
described in terms of tagged arcs, which are ordinary arcs adorned with very
simple combinatorial decorations. This description represents the cluster com-
plex as a finite covering space for the arc complex. The cluster complex turns
out to be either contractible or homotopy equivalent to a sphere. Unlike the
generalized associahedra mentioned above, these cluster complexes are usually
not compact; moreover, with a few exceptions, they exhibit exponential growth.
See [20].

The coordinatization theorem implies that any quiver Q whose mutable part
can be interpreted as a quiver Q(T ) corresponding to a triangulation T of some
marked surface (S,M), there exists a (unique) multi-lamination L on (S,M)
such that Q = Q(T,L). In view of the discussion above, the cluster algebra
A(Q) associated with such a quiver Q depends only on (S,M) and L but not
on the triangulation T . Consequently, one should be able to understand this
cluster algebra in terms of the topology of the surface (S,M) and the multi-
lamination L.

We illustrate this construction by returning, once again, to the example of
the cluster algebra A = C[SL4 /N ]. The mutable part of any quiver Q defining
this algebra (see, e.g., Figure 5) has 3 vertices, and is isomorphic to a quiver
Q(T ) associated to a triangulation of a hexagon, i.e., a disk with 6 marked
points on the boundary. Thus, we can let (S,M) be a hexagon. Due to the
absence of marked points in the interior of S, the construction simplifies con-
siderably: there are no self-folded triangles, and the cluster complex coincides
with the arc complex. The underlying combinatorics of A is thus modeled
as follows: cluster variables correspond to arcs (that is, the diagonals of the
hexagon), clusters correspond to triangulations, and exchanges correspond to
flips. It remains to determine the appropriate multi-lamination L. This is done
by interpreting the multiplicities of edges connecting the frozen vertices in Q
to the mutable ones as shear coordinates of laminations, and then constructing
the unique laminations having those shear coordinates. The result is shown in
Figure 12.

It is natural to ask whether cluster variables in the cluster algebra associ-
ated with a multi-lamination on a bordered surface can be given an intrinsic
geometric interpretation. The answer is yes: each cluster variable can be viewed
as a suitably renormalized lambda length [51] (a.k.a. Penner coordinate) of the
corresponding (tagged) arc. For a given arc, such a lambda length is a real
function on (an appropriate generalization of) the decorated Teichmüller space
for (S,M); see [21] for further details. Thus in this geometric realization, the
decorated Teichmüller space plays the role of the corresponding totally positive
variety. This brings us back full circle to the problems discussed at the end
of Section 1, namely to the challenges of understanding the stratification of a
totally nonnegative variety (in this case, a compactified decorated Teichmüller
space) and the singularities of its boundary.
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Figure 12. (a) Labeling the cluster variables in C[SL4 /N ] by the diagonals of a
hexagon. (b) Labeling the frozen variables by laminations, each consisting of a single
curve.
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[18] S. Fomin, Cluster Algebras Portal,
http://www.math.lsa.umich.edu/˜fomin/cluster.html.

[19] S. Fomin and N. Reading, Root systems and generalized associahedra, Geometric
Combinatorics (Park City, UT, 2003), 63–131, IAS/Park City Math. Ser., 14,
Amer. Math. Soc., Providence, RI, 2007.

[20] S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated sur-
faces. Part I: Cluster complexes, Acta Math. 201 (2008), 83–146.

[21] S. Fomin and D. Thurston, Cluster algebras and triangulated surfaces. Part II:
Lambda lengths, preprint.

[22] S. Fomin and A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer.
Math. Soc. 12 (1999), 335–380.

[23] S. Fomin and M. Z. Shapiro, Stratified spaces formed by totally positive varieties,
Michigan Math. J. 48 (2000), 253–270.

[24] S. Fomin and A. Zelevinsky, Totally nonnegative and oscillatory elements in
semisimple groups, Proc. Amer. Math. Soc. 128 (2000), 3749–3759.

[25] S. Fomin and A. Zelevinsky, Total positivity: tests and parametrizations, Math.
Intelligencer 22 (2000), 23–33.

[26] S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math.
Soc. 15 (2002), 497–529.

[27] S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent.
Math. 154 (2003), 63–121.

[28] S. Fomin and A. Zelevinsky, Y -systems and generalized associahedra, Ann. of
Math. 158 (2003), 977–1018.

[29] S. Fomin and A. Zelevinsky, Cluster algebras: Notes for the CDM-03 conference,
Current Developments in Mathematics, 2003, 1–34, Int. Press, 2004.

[30] S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, Compos. Math.
143 (2007), 112–164.

[31] F. R. Gantmacher and M. G. Krein, Oscillation matrices and kernels and small
vibrations of mechanical systems, AMS Chelsea Publishing, Providence, RI, 2002.
(Original Russian edition, 1941.)



144 Sergey Fomin

[32] M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson
geometry, Mosc. Math. J. 3 (2003), 899–934.

[33] M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Weil-
Petersson forms, Duke Math. J. 127 (2005), 291–311.
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Abstract

Canonical dimension is an integral-valued invariant of algebraic structures. We
are mostly interested in understanding the canonical dimension of projective
homogeneous varieties under semisimple affine algebraic groups over arbitrary
fields. Known methods, results, applications, and open problems are reviewed,
some new ones are provided.
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0. Introduction

A smooth projective variety X is incompressible, if any rational map X 99K X
is dominant. Canonical dimension cdimX, an invariant measuring the level of
compressibility of X, is the minimum of the dimension of the image of a rational
map X 99K X. Formally introduced by G. Berhuy and Z. Reichstein only in
2005, [3], this invariant has been implicitly studied for a long time before.
For instance, an old question of M. Knebusch, [19, Question 4.13], answered
in Example 1.5, was about the canonical dimension of a quadric. Also the
incompressibility of the Severi-Brauer variety of a primary division algebra –
see Example 2.3 – has been known and intensively applied since 1995.

In this talk we look at the canonical dimension of a projective homoge-
neous variety X, mainly, through the motive of X. This approach is justified
by Theorem 5.1.
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UPMC Univ Paris 06, Institut de Mathématiques de Jussieu, F-75252 Paris, France,

www.math.jussieu.fr/~karpenko. E-mail: karpenko at math.jussieu.fr.



Canonical Dimension 147

1. Definitions of Canonical Dimension

By variety we mean an integral separated scheme of finite type over a field.
Since we are mainly interested in canonical dimension of projective homo-

geneous varieties, we define it for smooth projective varieties only. We refer to
[25] for the case of a more general variety.

Let X be a smooth projective variety over a field F .

Definition 1.1. Canonical dimension cdimX of X is the minimum of dimY ,
where Y runs over the closed subvarieties of X admitting a rational map X 99K
Y . Equivalently, Y runs over the closed subvarieties of X such that the scheme
YF (X) has a rational point.

Of course, cdimX = 0 if X has a rational point. We are basically interested
in varieties without rational points.

In general, cdimX is an integer satisfying

0 ≤ cdimX ≤ dimX.

Let p be a positive prime integer. We write Ch for the Chow group [7, §57]
with coefficients in Fp, the finite field of p elements. By a correspondenceX  Y
we mean an element of the Chow group ChdimX(X × Y ). The multiplicity
multα ∈ Fp of a correspondence α : X  Y (also called degree in the literature)
is its image under the push-forward homomorphism

ChdimX(X × Y ) → ChdimX(X) = Fp

with respect to the projection X×Y → X. Finally, a 0-cycle class is an element
of Ch0(X), its degree is therefore an element of Ch0(SpecF ) = Fp.

Our actual subject of study is the canonical p-dimension, a p-local version
of the above notion, defined as follows:

Definition 1.2. Canonical p-dimension cdimp X of X is the minimum of
dimY , where Y runs over the closed subvarieties of X admitting a multiplicity
1 correspondence X  Y . Equivalently, Y runs over the closed subvarieties of
X such that the scheme YF (X) has a 0-cycle class of degree 1.

Of course, cdimp X = 0 if X has a 0-cycle class of degree 1. We are basically
interested in varieties without 0-cycle classes of degree 1, that is, varieties where
the degree of each closed point is divisible by p.

In general, cdimp X is an integer satisfying

0 ≤ cdimp X ≤ cdimX.

There are at least two more definitions of the canonical (p-)dimension look-
ing quite differently. We refer to [25] for a proof that they are equivalent to the
initial one. We start by the definition via the essential dimension. We refer to
[25, §1.1] for the definition of the essential (p-)dimension of an arbitrary functor
FieldsF → Sets of the category of the field extensions of F to the category of
sets.
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Definition 1.3. Let FX : FieldsF → Sets be the functor defined by the
formulas FX(L) = ∅ if X(L) = ∅ and FX(L) = {L} (a singleton) otherwise.
We define cdimX as the essential dimension of the functor FX , and we define
cdimp X as its essential p-dimension.

We come to the last definition. It makes use of the notion of a generic
splitting field of a variety. We say that a field L/F is a splitting field (or isotropy
field) ofX isX(L) 6= ∅. A splitting field E/F is generic, if for each splitting field
L/F of X there exists an F -place E 99K L. A splitting field E/F is p-generic,
if for each splitting field L/F of X there exist a finite field extension L′/L of a
p-prime degree and an F -place E 99K L′. Of course, any generic splitting field
is also p-generic (for any p); the function field F (X) is a generic splitting field.

Definition 1.4. We define the canonical (p-)dimension of X as the minimum
of the transcendence degree of a (p-)generic splitting field of X.

The last definition (as well as the previous one) naturally generalizes to
the case of an arbitrary “algebraic structure” A in place of X as soon as we
have a notion of a splitting field for A. We consider two examples of such a
generalization. (However, one easily comes back to varieties in both examples.)

Example 1.5. Let ϕ be a finite-dimensional non-degenerate quadratic form
over F . A field L/F is a splitting field (or isotropy field) of ϕ if the quadratic
form ϕL has a non-trivial zero. This way we get the notion of the canonical
(p-)dimension of ϕ. Let X be the projective quadric of ϕ. We have cdimϕ =
cdimX and cdimp ϕ = cdimp X, because a splitting field of ϕ is the same as
a splitting field of X. These invariants are computed. If X(F ) = ∅, i.e., if the
quadric X is anisotropic, then we have cdimϕ = cdim2 ϕ = dimX − i1 + 1,
where i1 is the first Witt index of ϕ, [7, Theorem 90.2]. (Of course, cdimp ϕ = 0
for p 6= 2.)

Example 1.6. Let A be a finite p-subgroup of the Brauer group BrF of F . A
field L/F is a splitting field of A if AL = 0, i.e., if A vanishes under the change
of field homomorphism BrF → BrL. We get the notion of the canonical (p-)
dimension of A. Let A1, . . . , An be central simple F -algebras such that their
classes are in A and generate A; letX be the direct product of the corresponding
Severi-Brauer varieties. We have cdimA = cdimX and cdimp A = cdimp X (for
anyX obtained this way), because a splitting field of A is the same as a splitting
field of X. These invariants are computed as cdimA = cdimp A = min dimX,
[18, §2]. (Of course, cdimp′ A = 0 for p′ 6= p.)

The result of Example 1.6 has numerous applications. Many of them com-
pute the essential dimension of algebraic groups as the following series of papers
on finite p-groups. It was initiated by M. Florence who used the case of cyclic
A to compute the essential dimension of a finite cyclic p-group in [8]. Arbitrary
finite constant p-groups have been treated later on in [18]. Finally, the case of an
arbitrary finite p-group (as well as the case of an algebraic tori), still essentially
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using Example 1.6, has been recently done by R. Lötscher, M. Macdonald, A.
Meyer, and Z. Reichstein, [22].

Here is an example of a class of projective homogeneous varieties for which
the canonical p-dimension is computed in terms of their Chow groups. These
are the generically split projective homogeneous varieties. A projective homo-
geneous variety X is generically split, if the F (X)-variety XF (X) is cellular.

Example 1.7 ([17, Theorem 5.8]). Let X be a generically split projective
homogeneous variety and let X̄ := XF̄ with an algebraic closure F̄ of F . The
canonical p-dimension cdimp X coincides with the minimal integer i such that
the change of field homomorphism Chi(X) → Chi(X̄) is non-zero.

Let G be a split simple affine algebraic group, T a generic G-torsor, B a
Borel subgroup of G. Using the result of Example 1.7, the canonical dimension
of the (generically split) projective homogeneous variety T/B is determined:
the case of a classical G is done in [17], the case of an exceptional G in [28].

Example 1.8. Let n be a positive integer andX be the variety of n-dimensional
totally isotropic subspaces of a 2n + 1-dimensional non-degenerate quadratic
form ϕ. The variety X is homogeneous and generically split. Its canonical (2-)
dimension is the canonical (2-)dimension of ϕ if defining the splitting fields of
ϕ we require that ϕ becomes completely split (i.e., almost hyperbolic). The
canonical 2-dimension of X is known, [7, Theorem 90.3]; cdimX, however, is
not known in general. It is conjectured in [27, Conjecture 6.6] that cdimX =
cdim2 X.

2. Incompressible Varieties

A smooth projective variety X is incompressible, if cdimX = dimX; X is p-
incompressible, if cdimp X = dimX. Equivalently, X is incompressible if any
rational map X 99K X is dominant, that is, no proper closed subset Y ⊂ X
admits a rational map X 99K Y ; X is p-incompressible, if no proper closed
subset Y ⊂ X admits a degree 1 correspondence X  Y .

Of course, any p-incompressible variety (for some p) is incompressible. An
example of an incompressible and p-compressible (for any p) projective homo-
geneous variety is obtained in [21] with a help of the birational classification of
geometrically rational surfaces:

Example 2.1. Let X1 be the Severi-Brauer variety of a quaternion (i.e., degree
2 central) division algebra and let X2 be the Severi-Brauer variety of a degree 3
central division algebra. The (projective homogeneous, 3-dimensional) variety
X := X1 ×X2 is incompressible. However, cdim2 X = cdim2 X1 = dimX1 = 1
and cdim3 X = cdim2 X2 = dimX2 = 2 (and cdimp X = 0 for any other p).

An important source of p-incompressible varieties is Proposition 2.2 below
which is a consequence of the A. Merkurjev degree formula [24, Theorem 6.4],
a generalization of the M. Rost degree formula.
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For any sequence R = (r1, r2, . . . ) of non-negative almost all zero integers ri,
a homogeneous integral polynomial TR ∈ Z[σ1, σ2, . . . ] in variables σ1, σ2, . . . of
degree |R| := ∑

i≥1 ri(p
i−1) is defined in [24, §4], where for any i ≥ 1 the degree

of the variable σi is defined as i. (The polynomial TR also depends on the prime
p which we have fixed before.) For any smooth projective varietyX of dimension
|R|, the characteristic number R(X) is defined as R(X) := deg cR(−TX) ∈ Z,
where cR is the characteristic class cR := TR(c1, c2, . . . ) (the polynomial TR

evaluated on the Chern classes c1, c2, . . . ) and TX (which has nothing to do
with TR) is the tangent bundle of X.

For any integer n, we write vp(n) for the value on n of the p-adic valuation.
For any F -scheme X, we write vp(X) for the value of the p-adic valuation on
the greatest common divisor of the degrees of the closed points on X.

Clearly, vp(R(X)) ≥ vp(X) for any R. A smooth projective variety X is
p-rigid, if vp(R(X)) = vp(X) for some R.

A smooth projective variety X is strongly p-incompressible, if for any pro-
jective variety Y with vp(Y ) ≥ vp(X), dimY ≤ dimX, and a multiplicity 1
correspondence X  Y , one has: dimY = dimX (in particular, any strongly
p-incompressible variety is p-incompressible) and there also exists a multiplicity
1 correspondence Y  X.

Proposition 2.2 ([24, Theorem 7.2]). Assume that charF 6= p. Then any
p-rigid F -variety is strongly p-incompressible.

For any projective scheme X and any positive integer l ≤ vp(X), we define
a homomorphism deg/pl : Ch0(X) → Fp associating to the class [x] ∈ Ch0(X)
of a closed points x ∈ X the class in Fp of the integer (deg x)/pl. Of course,
deg/pl = 0 for l < vp(X). For any morphism f : X → Y of projective schemes
X and Y and any l ≤ min{vp(X), vp(Y )}, the push-forward homomorphism
f∗ : Ch0(X) → Ch0(Y ) satisfies (deg/pl) ◦ f∗ = deg/pl.

Since charF 6= p, any sequence R as above determines certain degree |R|
homological operation SR on the (modulo p) Chow group Ch, [24, §5]. This
means that for any projective (not necessarily smooth) F -scheme Z, we are
given a degree −|R| homogeneous group homomorphism

SZ
R : Ch∗(Z) → Ch∗−|R|(Z)

commuting with the push-forward homomorphisms and such that

SZ
R([Z]) = cR(−TZ) mod p

if Z is smooth.

Proof of Proposition 2.2. Let X be a p-rigid variety and let R be a sequence
such that vp(R(X)) = vp(X). For checking the strong p-incompressibility of X,
let us take a projective variety Y with vp(Y ) ≥ vp(X), dimY ≤ dimX, and
a multiplicity 1 correspondence X  Y . Then there exists a closed subvariety
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Z ⊂ X × Y such that the degree deg prX ∈ Fp of the projection prX : Z → X
is non-zero. The proof plays with the following commutative diagram:

Ch|R|(Z)

Ch|R|(X) Ch|R|(Y )

Ch0(Z)

Ch0(X) Ch0(Y )

Fp

wwoooooooo(prX)∗

''OOOOOOOO (prY )∗

��

SZ
R

��

SX
R

��

SY
R

wwoooooooo(prX)∗

��

deg/pl

''OOOOOOOO
(prY )∗

''OOOOOOOOOO

deg/pl
wwoooooooooo

deg/pl

Since the operation SR commutes with the push-forward (prX)∗ and
(prX)∗([Z]) = (deg prX) · [Z], we have (deg/pl)

(

SZ
R([Z])

)

= (deg prX) ·
(deg/pl)

(

SX
R ([X])

)

6= 0, where l = vp(X). Since the operation SR also com-
mutes with the push-forward with respect to the projection prY : Z → Y ,
we have (deg/pl)

(

SZ
R([Z])

)

= (deg/pl)
(

SY
R ◦ (prY )∗([Z])

)

. It follows that
(prY )∗([Z]) 6= 0, that is, dimY = dimZ (= dimX) and deg prY 6= 0. There-
fore the the class in ChdimY (Y × X) of the transposition of Z is a required
correspondence Y  X.

Certainly, the strength of the above approach to the p-incompressibility is
in the fact that it gives a stronger property – the strong p-incompressibility.
Moreover, if X is a p-rigid variety, then for any field extension L/F , any twisted
form X ′/L of X with vp(X

′) = vp(X) is also p-rigid. Therefore we get the p-
incompressibility not only for X, but also for any such X ′. Sometimes, however,
this is too much, becoming a weakness of the approach: it cannot possibly
succeed for a variety possessing a p-compressible twisted form with the same
vp. Besides that, the approach does not exist in characteristic p at all because
a construction of the operations on the Chow group modulo p is not available
in characteristic p.

Example 2.3. Let n be a positive integer and let D be a central division
F -algebra of degree pn. The Severi-Brauer variety X of D is p-rigid, [24,
§7.2]. Therefore, if charF 6= p, the variety X is strongly p-incompressible.
Consequently, X is p-incompressible. (This is the particular case of Exam-
ple 1.6 with cyclic A and charF 6= p.) For F with charF = p, it is not
known whether X is strongly p-incompressible. The general case of Example
1.6 (even with the characteristic p excluded) cannot be done by the degree
formula method. For instance, the product of two non-isomorphic anisotropic
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conics possessing a common quadratic splitting field is 2-incompressible but
not 2-rigid (and even not strongly 2-incompressible). In general, a product
X = X1 × · · · ×Xn of arbitrary smooth projective varieties X1, . . . , Xn can be
p-rigid only if vp(X) = vp(X1) + · · ·+ vp(Xn).

Example 2.4 ([13]). Here is another proof of the p-incompressibility for the
variety X of Example 2.3, which works for F of arbitrary characteristic and
which also works in the general case of Example 1.6. Using the computation
of K0(X) and the relationship between K0(X) and Ch(X), one shows that the
image of Ch(X) → Ch(X̄) is generated by the class of X. Since the variety X
is projective homogeneous and generically split, it follows by Example 1.7 that
X is p-incompressible.

Example 2.5. An immediate consequence of the above result concerns an
orthogonal involution σ on a central division F -algebra D. An F -linear invo-
lution – a self-inverse anti-automorphism of the algebra D – is orthogonal, if
the induced involution on the split algebra DF (X) ' End(V ) is adjoint to a
non-alternating bilinear form b on the vector space V . Possessing an involu-
tion, D has to be 2-primary, so that we have the incompressibility statement
which implies that b is anisotropic, or, equivalently, that σF (X) is anisotropic.
Indeed, otherwise the proper closed subvariety Y ⊂ X of the isotropic ideals
in D (i.e., ideals I ⊂ D with σ(I) · I = 0) would have an F (X)-point. Note
that in contrast to the original paper [15], containing this observation, we do
not exclude the case of characteristic 2 here. Moreover, we can replace the in-
volution by a quadratic pair, [20, Definition 5.4]; the conclusion obtained this
way differs from the previous one in characteristic 2 (and coincides with it in
characteristic 6= 2).

Example 2.6 (cf. Example 1.5). Let X be an anisotropic smooth projective
quadric of the first Witt index 1. Then X is strongly 2-incompressible, [7,
Theorem 76.1]. The degree formula approach works only if dimX + 1 is a 2-
power: otherwise, X has a 2-compressible twisted form X ′ (another quadric)
with v2(X

′) = v2(X) = 1 so that the degree formula approach cannot possibly
work.

We terminate this Section by a criterion of p-incompressibility in terms of
the correspondence multiplicities:

Lemma 2.7. A projective homogeneous variety X is p-incompressible if and
only if multα = multαt for any correspondence α : X  X, where αt is the
transposition of α.

Proof. If X is p-compressible, there exists a multiplicity 1 correspondence α :
X  Y to a proper closed subvariety Y ⊂ X. Considering α as a correspondence
X  X, we have multα = 1 and multαt = 0. Therefore the “only if” part of
Lemma 2.7 holds for an arbitrary X, not only for a homogeneous one.
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The other way round, suppose that we are given a correspondence α : X  
X with multα 6= multαt. Adding a multiple of the diagonal class and multi-
plying by an element of Fp, we may achieve that multα = 1 and multαt = 0.
In this case the pull-back of α with respect to the morphism XF (X) → X ×X
induced by the generic point of the second factor of the product X × X, is a
0-cycle class of degree 0. Since X is homogeneous, the degree homomorphism
Ch0(XF (X)) → Fp is an isomorphism. Therefore the pull-back of α is 0. By
the continuity property of Chow groups [7, Proposition 52.9], there exists a
non-empty open subset U ⊂ X such that the pull-back of α to X×U is already
0. By the localization sequence [7, Proposition 57.9], it follows that α is the
push-forward of some correspondence β : X  Y ∈ ChdimX(X × Y ), where Y
is the proper closed subset Y = X \ U of X. Since multβ = multα = 1, the
variety X is p-compressible.

3. Motives

The classical Grothendieck Chow motives [7, Chapter XII] we are going to use
are simply a convenient language to work with the correspondences. Since our
correspondences live in the Chow groups with coefficients in Fp, our motives
also have coefficients in Fp. Thus, a motive is a direct sum of triples (X,π, i),
where X is a smooth projective variety, π : X  X a projector, and i an
integer. Given two such triples (X1, π1, i1) and (X2, π2, i2), one defines

Hom
(

(X1, π1, i1), (X2, π2, i2)
)

:= π2 ◦ ChdimX1+i1−i2(X1 ×X2) ◦ π1.

For any smooth projective X, the motive M(X) of X is the triple (X, idX , 0).
For any integer j, the shift functor M 7→ M(j) is identity on the homomor-
phisms, additive, and takes (X,π, i) to (X,π, i+ j). The motive M(SpecF ) is
denoted by Fp; any its shift Fp(j) is called a Tate motive.

The Krull-Schmidt principle holds for the motives of projective homoge-
neous varieties: any direct summand of the motive of a projective homogeneous
variety decomposes – and in a unique way – into a direct sum of indecomposable
motives, see [6] or [12].

The nilpotence principle, initially discovered in the case of quadrics by M.
Rost, holds for the motives of projective homogeneous varieties, [5, Theorem
8.2]. In particular, a motivic summand of a projective homogeneous variety be-
coming 0 over an extension of F is 0. However, in contrast to the Krull-Schmidt
principle, the nilpotence principle is not really required for our purposes. It al-
lows us to work with the usual Chow motives with coefficients in Fp (which is
probably more interesting from the view point of the theory of motives itself).
Alternatively, we could have constructed our motives out of the reduced Chow
groups C̄h which are defined as Ch modulo everything vanishing over an ex-
tension of the base field. In this “simplified” motivic category, the nilpotence
principle vanishes as well.
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Let X be a projective homogeneous variety. The motive M̄(X) (which is
M(X) over an algebraic closure of F ) is a sum of Tate motives Fp(j), with j
varying between 0 and dimX; moreover, there is precisely one summand with
j = 0 (as well as with j = dimX). Therefore, there is one and unique (up to
an isomorphism) indecomposable summand U(X) of M(X) such that the Tate
motive Fp is a summand of Ū(X). We call this U(X) the upper indecomposable
motivic summand of X or simply the upper motive of X. (The lower motive of
X is defined in the same way by taking the Tate motive Fp(dimX) in place of
Fp.)

Upper motives are easy to handle. For instance, U(X) ' U(Y ) for two
projective homogeneous varieties X and Y if and only if vp(YF (X)) = 0 =
vp(XF (Y )), [12].

Upper motives are important: any indecomposable summand of the motive
of a projective homogeneous variety under an algebraic group of inner type
is the upper motive of some (other) projective homogeneous variety. A more
precise statement is given in [12]. A generalization including the outer type case
is given in [16, Theorem 1.1].

A projector π : X  X determines an upper summand of M(X) if and only
if multπ = 1; π determines a lower summand if and only if multπt = 1 (see
[12]). Since moreover, an appropriate power of any correspondence X  X is
a projector (see [12]), Lemma 2.7 can be reformulated as follows:

Lemma 3.1. A projective homogeneous variety X is p-incompressible if and
only if its upper motive is lower.

A simple but extremely useful tool for proving p-incompressibility is the
following lemma. For any direct summand M of the motive of a projective
homogeneous variety X, the rank rkM of M is the number of summands in the
complete decomposition of M̄ .

Lemma 3.2 ([12]). vp(rkM) ≥ vp(X).

Proof. Let π be a lifting of the projector on X defining M to the Chow group
with coefficients in Z/plZ, where l = vp(X). Some power of the correspondence
π is a projector and its pull-back with respect to the diagonal morphism X →
X ×X is a (modulo pl) 0-cycle class on X of degree rkM mod pl.

Example 3.3. Let X be the Severi-Brauer variety of a p-primary central di-
vision F -algebra D. Lemma 3.2 shows that the motive of X is indecompos-
able. Indeed, if degD = pn, where degD :=

√
dimF D ∈ Z, then vp(X) = n

and it follows that the rank of any non-zero summand of M(X) is at least
pn = rkM(X). After the proofs of Examples 2.3 and 2.4, this is the third proof
of the p-incompressibility of X.

Let A be a central simple F -algebra. For any integer i with 0 ≤ i ≤ degA
we write SBi(A) for the following generalized Severi-Brauer variety of A: the
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variety of the right ideals in A of the reduced dimension i (that is, of the F -
dimension i · degA). For instance, SB1(A) is the usual Severi-Brauer variety
SB(A).

For p = 2, the opposite to the Severi-Brauer case has been considered by B.
Mathews:

Example 3.4 ([23]). Let D be a non-trivial 2-primary central division F -
algebra. Then the variety X := SB(degD)/2(D) is 2-incompressible. Indeed,
according to [4] or [5] or [14], the motive M(X)F (X) is a sum of one F2, one
F2(dimX), and of shifts of M(Y ), where Y runs over some projective homo-
geneous F (X)-varieties with v2(Y ) > 0. It follows that U(X)F (X) contains the
summand F2(dimX). Therefore X is 2-incompressible by Lemma 3.1. (This
proof differs from the original one.) In contrast to Example 3.3, the motive of
X is decomposable as far as v2(degD) > 2: this is a special case of motivic
decompositions found by M. Zhykhovich in [29].

Although the rank of U(X) in Example 3.4 is not determined, one can
show that v2 rkU(X) = 1, [12]. Together with the incompressibility of X, this
is a basement for the following result concerning isotropy of an orthogonal
involution on an arbitrary (not necessarily division) central simple algebra:

Theorem 3.5 ([11]). Assume that charF 6= 2. Any orthogonal involution σ
on a central simple F -algebra A becoming isotropic over the function field of
SB(A), also becomes isotropic over a finite odd degree field extension of F .

An F -linear involution on a central simple F -algebra A is hyperbolic, if A
possesses a σ-isotropic ideal of the reduced dimension (degA)/2.

The following non-hyperbolicity result is an immediate consequence of The-
orem 3.5 and [1, Proposition 1.2]:

Theorem 3.6 ([9]). Assume that charF 6= 2. Any non-hyperbolic orthogonal
involution σ on a central simple F -algebra A remains non-hyperbolic over the
function field of SB(A).

The symplectic version of Theorem 3.6 has been obtained by J.-P. Tignol:

Theorem 3.7 ([26]). Assume that charF 6= 2. Any non-hyperbolic symplectic
(i.e., non-orthogonal) involution σ on a central simple F -algebra A remains
non-hyperbolic over the function field of SB2(A).

Tensor products of F -linear involutions on quaternion F -algebras are called
Pfister involutions. This is a generalization of the classical Pfister forms. Any
isotropic Pfister form is hyperbolic. An over 30 years old conjecture saying that
any isotropic Pfister involution on a central simple algebra A is hyperbolic, has
been proved for algebras A of index ≤ 2 by K. Becher 3 years ago, [2]. Theorems
3.6 and 3.7 give the general case:

Theorem 3.8. Any isotropic Pfister involution (over a field of characteristic
6= 2) is hyperbolic.
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Proof. Let σ be an isotropic Pfister involution on a central simple F -algebra
A. If σ is orthogonal, σF (X) with X := SB(A) is hyperbolic by [2, Theorem 1];
therefore σ is hyperbolic by Theorem 3.6. If σ is symplectic, σF (X) with X :=
SB2(A) is hyperbolic by [2, Corollary]; therefore σ is hyperbolic by Theorem
3.7.

4. General Generalized Severi-Brauer Varieties

The following result generalizes Examples 3.3 and 3.4:

Theorem 4.1 ([12]). Let n be a positive integer and let D be a central division
F -algebra of degree pn. For any integer i with 0 ≤ i < n, the generalized Severi-
Brauer variety SBpi(D) is p-incompressible.

The proof is based on the properties of upper motives formulated in Section
3. It makes use of a double induction on n and i with a simultaneous computa-
tion of the p-adic valuation of the rank of the upper motive of SBpi(D) which
turns out to be

vp rkU
(

SBpi(D)
)

= vp rkM
(

SBpi(D)
)

= n− i.

Theorem 4.1 actually computes the canonical p-dimension of an arbitrary
generalized Severi-Brauer variety:

Corollary 4.2 ([12]). Let A be a central simple F -algebra, i any integer with
0 ≤ i ≤ degA. Then

cdimp SBi(A) = dimSBpvp(i)(Dp) = pvp(i)(pvp(indA) − pvp(i)),

where Dp is the p-primary part of a central division algebra Brauer-equivalent
to A.

Example 4.3 (J.-P. Tignol, [26]). The particular case of Theorem 4.1 with
p = 2 and i = 1 has the following application to a symplectic involution σ
on a central division F -algebra D: σF (X) is anisotropic, where X = SB2(D).
Indeed, otherwise the proper closed subvariety Y ⊂ X of the isotropic ideals in
D would have an F (X)-point. (This proof differs from the original one.) Note
that the characteristic 2 case is included here. We do not get the same result
for X = SB1(D) because Y = X for such X.

We have already spoken in Example 1.6 about the incompressibility of some
products of Severi-Brauer varieties. There is one more related class of incom-
pressible projective homogeneous varieties. It is useful in study of unitary in-
volutions.

Given a finite separable field extension L/F , we write RL/FX for the Weil
transfer of an L-variety X.
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Theorem 4.4 ([10]). Let F be a field, L/F a quadratic separable field extension,
n a non-negative integer, and D a central division L-algebra of degree 2n such
that the norm algebra NL/FD is trivial. For any integer i ∈ [0, n], the variety
X := RL/F SB2i(D) is 2-incompressible.

The proof, using induction on n, considers some indecomposable motivic
summands – the upper one, the lower one, and some of their shifts – of the
variety XEL, where E = F

(

RL/F SB2n−1(D)
)

. “Connections” between these
summands existing over E (known by induction) and over L are represented in
the diagram below, where the ovals represent the summands. Since the upper
and the lower summand are connected (by a chain of connections), the variety
X is 2-incompressible.

·
. . .

· ·
· . . . ·
. . . · . . .

· · · ·
. . . · . . .

· . . . ·
· ·

. . .

·

/. -,

() *+

/. -,

() *+

/. -,

() *+

/. -,

() *+

/. -,

() *+

/. -,

() *+

/. -,

() *+

/. -,

() *+

:
:

:
:

:
:

8
8

8
8

8
8

8

Example 4.5 (J.-P. Tignol, [26]). Theorem 4.4 with i = 0 has the following
application to a unitary involution σ on a 2-primary central division L-algebra
D (an F -linear involution σ on D is unitary if it acts on L by the non-trivial
F -automorphism): σF (X) is anisotropic, where X = RL/F SB1(D). Indeed, oth-
erwise the proper closed subvariety Y ⊂ X of the isotropic ideals in D would
have an F (X)-point. (This proof differs from the original one.) Characteristic 2
case is included here. Unlike [26], we do not need to assume that the exponent
of D is 2.

5. Dimension of Upper Motive

Let X be a projective homogeneous variety. In this final section we will show
that cdimp(X) is determined by the upper motive U(X). Since cdimp(X) is
not changed under field extensions of p-prime degrees, [25, Proposition 1.5], we
may assume that the semisimple affine algebraic group G acting on X has the
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following property: G becomes of inner type over some p-primary field extension
of F .

Dimension dimU(X) of U(X) is the biggest integer i such that the Tate
motive Fp(i) is a summand of Ū(X). More generally, dimension of a summand
M of the motive of a projective homogeneous variety is the maximum of i− j,
where i and j run over the integers such that Fp(i) and Fp(j) are summands of
M̄ .

Theorem 5.1. dimU(X) = cdimp X.

For a motive M , M∗ is its dual. The cofunctor M 7→ M∗ transposes the
homomorphisms, is additive, and takes (Y, π, i) to (Y, πt,− dimY − i) for any
smooth projective variety Y , where πt is the transposition of the projector π.
In particular, M(Y )∗ = M(Y )(− dimY ).

Proposition 5.2. U(X)∗ ' U(X)
(

− dimU(X)
)

. In other words, the lower
indecomposable motivic summand of X, that is, U(X)∗(dimX), is isomorphic
to

U(X)
(

dimX − dimU(X)
)

.

Remark 5.3. Note that Chi Ū(X) = 0 = Chi Ū(X) for any integer i >
dimU(X) by the very definition of dimU(X). Proposition 5.2 shows that ac-
tually

Chi U(X) = 0 = Chi U(X)

for i as above. Indeed, for d := dimU(X), we have:

Chi U(X) = Ch−i U(X)∗ ' Ch−i U(X)(−d) = Chd−i U(X) ⊂ Chd−i X = 0

and Chi U(X) = Ch−i U(X)∗ ' Chd−i U(X) ⊂ Chd−i X = 0. (Of course, since
U(X) is a summand of the motive of a variety, we also have Chi(U) = 0 =
Chi(U) for any i < 0.)

Proof of Proposition 5.2. For G as above, let r = r(X) be the rank of the
semisimple anisotropic kernel of GF (X). We induct on r.

The motive U(X)∗(d), where now d := dimX, is an indecomposable sum-
mand of M(X). Therefore, by [16, Theorem 1.1] and according to the assump-
tion on G made in the beginning of this Section, there exists a finite separable
field extension L/F , a projective GL-homogeneous L-variety Y , and an integer
n such that U(X)∗(d) ' U(Y )(n) and the Tits index of GL(Y ) contains the
Tits index of GF (X). Here we consider the upper motive of Y , which originally
lives over L, as a motive over F (strictly speaking, we apply to the L-motive
U(Y ) the functor corL/F of [16, §3]).

Since Chd Ū(X)∗(d) = Ch0 Ū(X)∗ = Ch0 Ū(X) = Fp and
dimFp

Chd Ū(Y )(n) is a multiple of [L : F ], it follows that L = F . Besides,

n = min{i | Chi Ū(Y )(n) 6= 0}
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and min{i | Chi Ū(X)∗(d) 6= 0} = d− dimU(X), therefore n = d− dimU(X),
and we have U(X)∗ ' U(Y )

(

− dimU(X)
)

.
If the Tits index of GF (Y ) coincides with the Tits index of GF (X), the mo-

tives U(X) and U(Y ) are isomorphic, and we are done in this case. Otherwise,
the rank of the semisimple anisotropic kernel of GF (Y ) is smaller than r, and,

by the induction hypothesis, we have U(Y )∗ ' U(Y )
(

− dimU(Y )
)

. Dualizing
and substituting, we see that

U(X) ' U(Y )
(

dimU(X)− dimU(Y )
)

.

It follows that dimU(X) = dimU(Y ) and U(X) ' U(Y ).

Proof of Theorem 5.1. We start by proving the easier inequality

dimU(X) ≤ cdimp X.

We can find a closed subvariety Y ⊂ X with dimY = cdimp X and with a
multiplicity 1 correspondence π : X  Y . Considering π as a correspondence
X  X, we can find an integer m ≥ 1 such that π◦m is a projector. Let
M = (X,π◦m). Since multπ◦m = multπ = 1, the motivic summand M of X is
upper and so, dimU(X) ≤ dimM . Since Chi M̄ ⊂ Im(Chi Ȳ → Chi X̄) for any
integer i, and Chi Ȳ = 0 for i > dimY , we get the inequality dimM ≤ dimY
proving that dimU(X) ≤ cdimp X.

The opposite inequality dimU(X) ≥ cdimp X requires Proposition 5.2. We
set n := dimX−dimU(X). Since U(X)(n) is a motivic summand ofX, shifting,
we have morphisms

U(X)
f−−−−→ M(X)(−n)

g−−−−→ U(X)

with g ◦ f = id. Since U(X) is an upper summand of M(X), the subgroup
Ch0 U(X) of Ch0 X coincides with Ch0 X and, in particular, the class [X] ∈
Ch0 X belongs to Ch0 U(X). Applying f∗ : Ch0 U(X) → Ch0 M(X)(−n) =
Chn X, we get an element α := f∗([X]) ∈ Chn X such that g∗(α) = [X].
Therefore, there exists a closed subvariety Y ⊂ X of codimension n such that
g∗([Y ]) 6= 0. We claim that YF (X) has a closed point of a p-prime degree, and
this claim proves Theorem 5.1.

To prove the claim, it suffices to notice that the relation g∗([Y ]) 6=
0 ∈ Ch0(X) implies that ξ∗g∗([Y ]) 6= 0 ∈ Ch0 SpecF (X) = Fp, where
ξ : SpecF (X) → X is the generic point. In the same time, the modulo p
integer ξ∗g∗([Y ]) ∈ Fp is the degree of the 0-cycle class [YF (X)] · (idX × ξ)∗(g)
which is represented by a 0-cycle on YF (X).
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Abstract

Informally speaking, the essential dimension of an algebraic object is the mini-
mal number of independent parameters one needs to define it. This notion was
initially introduced in the context where the objects in question are finite field
extensions [BuR97]. Essential dimension has since been investigated in several
broader contexts, by a range of techniques, and has been found to have inter-
esting and surprising connections to many problems in algebra and algebraic
geometry.

The goal of this paper is to survey some of this research. I have tried to
explain the underlying ideas informally through motivational remarks, exam-
ples and proof outlines (often in special cases, where the argument is more
transparent), referring an interested reader to the literature for a more detailed
treatment. The sections are arranged in rough chronological order, from the
definition of essential dimension to open problems.
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1. Definition of Essential Dimension

Informally speaking, the essential dimension of an algebraic object is the min-
imal number of parameters one needs to define it. To motivate this notion, let
us consider an example, where the object in question is a quadratic form.

Let k be a base field, K/k be a field extension and q be an n-dimensional
quadratic form over K. Assume that char(k) 6= 2 and denote the symmetric
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bilinear form associated to q by b. We would now like to see if q can be defined
over a smaller field k ⊂ K0 ⊂ K. This means that there is a K-basis e1, . . . , en
of Kn such that b(ei, ej) ∈ K0 for every i, j = 1, . . . , n. If we can find such a
basis, we will say that q descends to K0 or that K0 is a field of definition of q. It
is natural to ask if there is a minimal field Kmin/k (with respect to inclusion) to
which q descends. The answer to this question is usually “no”. For example, it
is not difficult to see that the “generic” form q(x1, . . . , xn) = a1x

2
1 + · · ·+ anx

2
n

over the field K = k(a1, . . . , an), where a1, . . . , an are independent variables,
has no minimal field of definition. We will thus modify our question: instead of
asking for a minimal field of definition K0 for q, we will ask for the minimal
value of the transcendence degree tr degk(K0).

1 This number is called the
essential dimension of q and is denoted by ed(q).

Note that the above definition of ed(q) is in no way particular to quadratic
forms. In a similar manner one can consider fields of definition of any polyno-
mial in K[x1, . . . , xn], any finite-dimensional K-algebra, any algebraic variety
defined over K, etc. In each case the minimal transcendence degree of a field of
definition is an interesting numerical invariant which gives us some insight into
the “complexity” of the object in question.

We will now state these observations more formally. Let k be a base field,
Fieldsk be the category of field extensions K/k, Sets be the category of sets, and
F : Fieldsk → Sets be a covariant functor. In the sequel the word “functor” will
always refer to a functor of this type. If α ∈ F(K) and L/K is a field extension,
we will denote the image of α in F(L) by αL.

For example, F(K) could be the set of K-isomorphism classes of quadratic
forms on Kn, or of n-dimensional K-algebras, for a fixed integer n, or of elliptic
curves defined over K. In general we think of F as specifying the type of
algebraic object we want to work with, and elements of F(K) as the of algebraic
objects of this type defined over K.

Given a field extension K/k, we will say that a ∈ F(K) descends to an
intermediate field k ⊆ K0 ⊆ K if a is in the image of the induced map F(K0) →
F(K). The essential dimension ed(a) of a ∈ F(K) is the minimum of the
transcendence degrees tr degk(K0) taken over all fields k ⊆ K0 ⊆ K such
that a descends to K0. The essential dimension ed(F) of the functor F is the
supremum of ed(a) taken over all a ∈ F(K) with K in Fieldsk.

These notions are relative to the base field k; we will sometimes write edk
in place of ed to emphasize the dependence on k. If F : Fieldsk → Sets be
a covariant functor and k ⊂ k′ is a field extension, we will write edk′(F) for
ed(Fk′), where Fk′ denotes the restriction of F to Fieldsk′ . Is easy to see that
in this situation

edk(F) ≥ edk′(F) ; (1.1)

1One may also ask which quadratic forms have a minimal field of definition. To the best
of my knowledge, this is an open question; see Section 7.1.
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cf. [BF03, Proposition 1.5]. In particular, taking k′ to be an algebraic closure of
k, we see that for the purpose of proving a lower bound of the form edk(F) ≥ d,
where d does not depend on k, we may assume that k is algebraically closed.

Let µn denote the group of nth roots of unity, defined over k. Whenever we
consider this group, we will assume that it is smooth, i.e., that char(k) does
not divide n.

Example 1.1. Let F(K) := Hr(K,µn) be the Galois cohomology functor.
Assume k is algebraically closed. If α ∈ Hr(K,µn) is non-trivial then by the
Serre vanishing theorem (see, e.g., [Se02, II.4.2, Prop. 11, p. 83]) ed(α) ≥ r.

Example 1.2. Once again, assume that k is algebraically closed. Let
Formsn,d(K) be the set of homogeneous polynomials of degree d in n variables.
If α ∈ Formsn,d(K) is anisotropic over K then by the Tsen-Lang theorem (see,
e.g., [Pf95]), n ≤ ded(α) or equivalently, ed(α) ≥ logd(n).

Of particular interest to us will be the functors FG given by K → H1(K,G),
where G is an algebraic group over k. Here, as usual, H1(K,G) denotes the set
of isomorphism classes of G-torsors over Spec(K). The essential dimension of
this functor is a numerical invariant of G, which, roughly speaking, measures
the complexity of G-torsors over fields. We write edG for ed FG. Essential
dimension was originally introduced in this context (and only in characteristic
0); see [BuR97, Rei00, RY00]. The above definition of essential dimension for a
general functor F is due to A. Merkurjev; see [BF03].

In special cases this notion was investigated much earlier. To the best of my
knowledge, the first non-trivial result related to essential dimension is due to
F. Klein [Kl1884]. In our terminology, Klein showed that the essential dimension
of the symmetric group S5 over k = C, is 2. (Klein referred to this result as
“Kroeneker’s theorem”, so it may in fact go back even further.) The essential
dimension of the projective linear group PGLn first came up in C. Procesi’s
pioneering work on universal division algebras in the 1960s; see [Pr67, Section
2]. The problems of computing the essential dimension of the symmetric group
Sn and the projective linear group PGLn remain largely open; see Section 7.

If k is an algebraically closed field then groups of essential dimension zero
are precisely the special groups, introduced by J.-P. Serre [Se58]. Recall that
an algebraic group G over k is called special if H1(K,G) = 0 for every field
extension K/k. Over an algebraically closed field of characteristic zero these
groups were classified by A. Grothendieck [Gro58] in the 1950s. The problem
of computing the essential dimension of an algebraic group may be viewed as
a natural extension of the problem of classifying special groups.

2. First Examples

Recall that an action of an algebraic group G on an algebraic k-variety X is
called generically free if X has a dense G-invariant open subset U such that
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the stabilizer StabG(x) = {1} for every x ∈ U(k) and primitive if G permutes
the irreducible components of X. Here k denotes an algebraic closure of k.
Equivalently, X is primitive if k(X)G is a field.

If K/k is a finitely generated field extension then elements of H1(K,G) can
be interpreted as birational isomorphism classes of generically free primitive G-
varieties (i.e., k-varieties with a generically free primitive G-action) equipped
with a k-isomorphism of fields k(X)G ' K; cf. [BF03, Section 4]. If X is a
generically free primitive G-variety, and [X] is its class in H1(K,G) then

ed([X]) = min dim(Y )− dim(G) , (2.1)

where the minimum is taken over all dominant rational G-equivariant maps
X 99K Y such that the G-action on Y is generically free.

An important feature of the functor H1( ∗ , G) is the existence of so-called
versal objects; see [GMS03, Section I.5]. If α ∈ H1(K,G) is a versal torsor
then it is easy to see that ed(α) ≥ ed(β) for any field extension L/k and any
β ∈ H1(L,G). In other words, ed(α) = ed(G). If G → GL(V ) is a generically
free k-linear representation of G then the class [V ] of V in H1(k(V )G, G) is
versal. By (2.1), we see that

ed(G) = min dim(Y )− dim(G) , (2.2)

where the minimum is taken over all dominant rational G-equivariant maps
V 99K Y , such that G-action on Y is generically free. In particular,

ed(G) ≤ dim(V )− dim(G) . (2.3)

Moreover, unless k is a finite field and G is special, we only need to consider
closed G-invariant subvarieties Y of V . That is,

ed(G) = min{dim Im(f)} − dim(G) , (2.4)

where the minimum is taken over all G-equivariant rational maps f : V 99K V
such that the G-action on Im(f) is generically free; see [Me09, Theorem 4.5].

Example 2.1. Let G be a connected adjoint semisimple group over k. Then
ed(G) ≤ dim(G). To prove this inequality, apply (2.3) to the generically free
representation V = G ×G, where G is the adjoint representation of G on its Lie
algebra.

Note that the inequality ed(G) ≤ dim(G) can fail dramatically if G is not
adjoint; see Corollary 4.3.

We now turn to lower bounds on ed(G) for various algebraic groups G and
more generally, on ed(F) for various functors F : Fieldsk → Sets. The simplest
approach to such bounds is to relate the functor H1( ∗ , G) (and more generally,
F) to the functors in Examples 1.1 or 1.2, using the following lemma, whose
proof is immediate from the definition; cf. [BF03, Lemma 1.9].
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Lemma 2.2. Suppose a morphism of functors φ : F → F ′ takes α to β. Then
ed(α) ≥ ed(β). In particular, if φ is surjective then ed(F) ≥ ed(F ′).

A morphism of functors F → Hd( ∗ ,µn) is called a cohomological invariant
of degree d; it is said to be nontrivial if F(K) contains a non-zero element of
Hd(K,µn) for some K/k. Using Lemma 2.2 and Example 1.1 we recover the
following observation, due to Serre.

Lemma 2.3. Suppose k is algebraically closed. If there exists a non-trivial
cohomological invariant F → Hd( ∗ ,µn) then ed(F) ≥ d.

In the examples below I will, as usual, write 〈a1, . . . , an〉 for the quadratic
form (x1, . . . , xn) 7→ a1x

2
1+ · · ·+anx

2
n and � a1, . . . , ar � for the r-fold Pfister

form 〈1,−a1〉 ⊗K · · · ⊗ 〈1,−ar〉.

Example 2.4. Suppose char(k) 6= 2. Let Pfr be the functor that assigns
to a field K/k the set of K-isomorphism classes of r-fold Pfister forms,
q =� a1, . . . , ar �. Then edk(Pfr) = r.

Indeed, since q is defined over k(a1, . . . , ar), we have edk(Pfr) ≤ r. To
prove the opposite inequality, we may assume that k is algebraically closed. Let
a1, . . . , ar be independent variables and K = k(a1, . . . , ar). Then the tautolog-
ical map Pfr(K) → Forms2r,2(K) takes q =� a1, . . . , ar � to an anisotropic
form in 2r variables; see, e.g., [Pf95, p. 111]. Combining Lemma 2.2 and Exam-
ple 1.2 we conclude that ed(Pfr) ≥ r, as desired.

Alternatively, the inequality ed(Pfr) ≥ r also follows from Lemma 2.3,
applied to the cohomological invariant Pfr → Hr( ∗ ,µ2), which takes �
a1, . . . , ar � to the cup product (a1) ∪ · · · ∪ (ar).

Since H1( ∗ ,G2) is naturally isomorphic to Pf3, we conclude that ed(G2) =
3. Here G2 stands for the split exceptional group of type G2 over k.

Example 2.5. If char(k) 6= 2 then edk(On) = n.
Indeed, since every quadratic form over K/k can be diagonalized, we see

that edk(On) ≤ n. To prove the opposite inequality, we may assume that k is
algebraically closed. Define the functor φ : H1( ∗ ,On) → Pfn as follows. Let b
be the bilinear form on V = Kn, associated to q = 〈a1, . . . , an〉 ∈ H1(K,On).
Then b naturally induces a non-degenerate bilinear form on the 2n-dimensional
K-vector space

∧

(V ). We now set φ(q) to be the 2r-dimensional quadratic
form associated to ∧(b). One easily checks that φ(q) is the n-fold Pfister form
φ(q) =� a1, . . . , an �. Since φ is clearly surjective, Lemma 2.2 and Exam-
ple 2.4 tell us that ed(On) ≥ ed(Pfn) = n.

We remark that φ(q) is closely related to the nth Stiefel-Whitney class
swn(q) (see [GMS03, p. 41]), and the inequality ed(On) ≥ n can also be deduced
by applying Lemma 2.3 to the cohomological invariant swn : H

1(K,On) →
Hn(K,µ2).

Example 2.6. If k contains a primitive nth root of unity then edk(µ
r
n) = r.



Essential Dimension 167

Indeed, the upper bound, ed(µr
n) ≤ r, follows from (2.3). Alternatively, note

that any (a1, . . . , ar) ∈ H1(K,µr
n) is defined over the subfield k(a1, . . . , ar) of

K, of transcendence degree ≤ r.
To prove the opposite inequality we may assume that k is algebraically

closed. Now apply Lemma 2.3 to the cohomological invariant

H1(K,µr
n) = K∗/(K∗)n × · · · ×K∗/(K∗)n → Hr(K,µn)

given by (a1, . . . , ar) → (a1) ∪ · · · ∪ (ar). Here a denotes the class of a ∈ K∗ in
K∗/(K∗)n.

Remark 2.7. Suppose H is a closed subgroup of G and G → GL(V ) is a
generically free linear representation. Since every rational G-equivariant map
V 99K Y is also H-equivariant, (2.2) tells us that

ed(G) ≥ ed(H) + dim(H)− dim(G) . (2.5)

In particular, if a finite group G contains a subgroup H ' (Z/pZ)r for some
prime p and if char(k) 6= p (so that we can identify (Z/pZ)r with µ

r
p over k)

then
edk(G) ≥ edk(G) ≥ edk(H) = r .

In the case where G is the symmetric group Sn and H ' (Z/2Z)[n/2] is the
subgroup generated by the commuting 2-cycles (12), (34), (56), etc., this yields
ed(Sn) ≥ [n/2]; cf. [BuR97].

Example 2.8. Recall that elements of H1(K,PGLn) are in a natural bijective
correspondence with isomorphism classes of central simple algebras of degree n
over K. Suppose n = ps is a prime power, and k contains a primitive pth root
of unity. Consider the morphism of functors φ : H1(K,PGLn) → Formsn2,p

given by sending a central simple K-algebra A to the degree p trace form
x → TrA/K(xp).

If a1, . . . , a2s are independent variables over k, K = k(a1, . . . , a2s), and

A = (a1, a2)p ⊗K ⊗ · · · ⊗ (a2s−1, a2s)p

is a tensor product of s symbol algebras of degree p then one can write out φ(A)
explicitly and show that it is anisotropic over K; see [Rei99]. Lemma 2.2 and
Example 1.2 now tell us that edk(A) ≥ edk(A) ≥ 2s. Since tr degk(K) = 2s, we
conclude that, in fact

edk(A) = 2s and consequently, edk(PGLps) ≥ 2s. (2.6)

The following alternative approach to proving (2.6) was brought to my
attention by P. Brosnan. Consider the cohomological invariant given by the
composition of the natural map H1(K,PGLn) → H2(K,µn), which sends
a central simple algebra to its Brauer class, and the divided power map
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H2( ∗ ,µn) → H2s( ∗ ,µn); see [Kahn00, Appendix]. The image of A under
the resulting cohomological invariant

H1( ∗ ,PGLn) → H2s( ∗ ,µn)

is (a1) ∪ (a2) ∪ · · · ∪ (a2s) 6= 0 in H2s(K,µn). Lemma 2.3 now tells us that
edk(A) ≥ 2s, and (2.6) follows. The advantage of this approach is that it shows
that the essential dimension of the Brauer class of A is also 2s.

3. The Fixed Point Method

The following lower bound on ed(G) was conjectured by Serre and proved
in [GR07]. Earlier versions of this theorem have appeared in [RY00] and [CS06].

Theorem 3.1. If G is connected, A is a finite abelian subgroup of G and
char(k) does not divide |A|, then edk(G) ≥ rank(A)− rank C0

G(A).

Here rank(A) stands for the minimal number of generators of A and
rank C0

G(A) for the dimension of the maximal torus of the connected group
C0

G(A). Note that if A is contained in a torus T ⊂ G then rank(C0
G(A)) ≥

rank(T ) ≥ rank(A), and the inequality of Theorem 3.1 becomes vacuous. Thus
we are primarily interested in non-toral finite abelian subgroups A of G. These
subgroups have come up in many different contexts, starting with the work of
Borel in the 1950s. For details and further references, see [RY00].

The proof of Theorem 3.1 relies on the following two simple results.

Theorem 3.2 (Going Down Theorem). Suppose k is an algebraically closed
base field and A is an abelian group such that char(k) does not divide |A|.
Suppose A acts on k-varieties X and Y and f : X 99K Y is an A-equivariant
rational map. If X has a smooth A-fixed point and Y is complete then Y has
an A-fixed point.

A short proof of Theorem 3.2, due to J. Kollár and E. Szabó, can be found
in [RY00, Appendix].

Lemma 3.3. Let A be a finite abelian subgroup, acting faithfully on an irre-
ducible k-variety X. Suppose char(k) does not divide |A|. If X has a smooth
A-fixed point then dim(X) ≥ rank(A).

The lemma follows from the fact that the A-action on the tangent space
Tx(X) at the fixed point x has to be faithful; see [GR07, Lemma 4.1].

For the purpose of proving Theorem 3.1 we may assume that k is alge-
braically closed. To convey the flavor of the proof I will make the following
additional assumptions: (i) CG(A) is finite and (ii) char(k) = 0. The conclusion
then reduces to

ed(G) ≥ rank(A) . (3.1)
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This special case of Theorem 3.1 is proved in [RY00] but I will give a much
simplified argument here, based on [GR07, Section 4].

Let G → GL(V ) be a generically free representation. By (2.2) we need
to show that if V 99K Y is a G-equivariant dominant rational map and the
G-action on Y is generically free, then

dim(Y )− dim(G) ≥ rank(A) . (3.2)

To see how to proceed, let us first consider the “toy” case, where G is finite.
Here (3.1) follows from (2.5), but I will opt for a different argument below, with
the view of using a variant of it in greater generality.

After birationally modifying Y , we may assume that it is smooth and pro-
jective. (Note that this step relies on G-equivariant resolution of singularities
and thus uses the characteristic 0 assumption.) Since V has a smooth A-fixed
point (namely, the origin), the Going Down Theorem 3.2 tells us that so does
Y . By Lemma 3.3, dim(Y ) ≥ rank(A), which proves (3.2) in the case where G
is finite.

If G is infinite, we can no longer hope to prove (3.2) by applying Lemma 3.3
to the A-action on Y . Instead, we will apply Lemma 3.3 to a suitable A-invariant
subvariety Z ⊂ Y . This subvariety Z will be a cross-section for the G-action
on Y , in the sense that a G-orbit in general position will intersect Z in a finite
number of points. Hence, dim(Z) = dim(Y ) − dim(G), and (3.2) reduces to
dim(Z) ≥ rank(A). We will then proceed as in the previous paragraph: we will
use Theorem 3.2 to find an A-fixed point on a smooth complete model of Z,
then use Lemma 3.3 to show that dim(Z) ≥ rank(A).

Let me now fill in the details. By [CGR06] Y is birationally isomorphic to
G×SZ, where S is a finite subgroup of G and Z is an algebraic variety equipped
with a faithful S-action. (A priori Z does not carry an A-action; however, we
will show below that some conjugate A′ of A lies in S and consequently, acts
on Z. We will then replace A by A′ and argue as above.) We also note that we
are free to replace Z by an (S-equivariantly) birationally isomorphic variety, so
we may (and will) take it to be smooth and projective.

Here, as usual, if S acts on normal quasi-projective varieties X and Z then
X ×S Z denotes the geometric quotient of X × Z by the natural (diagonal)
action of S. Since S is finite, there is no difficulty in forming the quotient map
π : X × Z → X ×S Z; cf. [GR07, Lemma 3.1]. Moreover, if the S-action on X
extends to a G×S-action, then by the universal property of geometric quotients
X ×S Z inherits a G-action from X ×Z, where G acts on the first factor. I will
write [x, z] ∈ X ×S Z for the image of (x, z) under π.

We now compactify Y = G×S Z by viewing it as a G-invariant open subset
of the projective variety Y := G×S Z, where G is a so-called “wonderful” (or
“regular”) compactification of G. Recall that G × G acts on G, extending the
right and left multiplication action of G on itself, The complement G r G is
a normal crossing divisor D1 ∪ · · · ∪Dr, where each Di is irreducible, and the
intersection of any number of Di is the closure of a single G × G-orbit in G.
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The compactification G has many wonderful properties; the only one we will
need is Lemma 3.4 below. For a proof, see [Br98, Proposition A1].

Lemma 3.4. For every x ∈ G, P = pr1(StabG×G(x)) is a parabolic subgroup
of G. Here pr1 is projection to the first factor. Moreover, P = G if and only if
x ∈ G.

We are now ready to complete the proof of the inequality (3.2) (and thus
of (3.1)) by showing that S contains a conjugate A′ of A, and A′ has a fixed
point in Z. In other words, our goal is to show that some conjugate A′ of A lies
in StabS(z).

By the Going Down Theorem 3.2, Y has an A-fixed point. Denote this point
by [x, z] for some x ∈ G and z ∈ Z. That is, for every a ∈ A, [ax, z] = [x, z] in
Y . Equivalently,

{

ax = xs−1

sz = z
(3.3)

for some s ∈ S. In other words, for every a ∈ A, there exists an s ∈ StabS(z)
such that (a−1, s) ∈ StabG×G(x). Equivalently, the image of the natural
projection pr1 : StabG×G(x) → G contains A. Since we are assuming that
C0

G(A) is finite, A cannot be contained in any proper parabolic subgroup of
G. Thus x ∈ G; see Lemma 3.4. Now the first equation in (3.3) tells us that
A′ := x−1Ax ⊂ StabS(z), as desired.

Remark 3.5. The above argument proves Theorem 3.1 under two simplifying
assumptions: (i) CG(A) is finite and (ii) char(k) = 0. If assumption (i) is re-
moved, a variant of the same argument can still be used to prove Theorem 3.1 in
characteristic 0; see [GR07, Section 4]. Assumption (ii) is more serious, because
our argument heavily relies on resolution of singularities. Consequently, the
proof of Theorem 3.1 in prime characteristic is considerably more complicated;
see [GR07].

Corollary 3.6. (a) ed(SOn) ≥ n− 1 for any n ≥ 3, (b) ed(PGLps) ≥ 2s,

(c) ed(Spinn) ≥

{

[n/2] for any n ≥ 11,

[n/2] + 1 if n ≡ −1, 0 or 1 modulo 8,

(d) ed(G2) ≥ 3, (e) ed(F4) ≥ 5, (f) ed(Esc
6 ) ≥ 4.

(g) ed(Esc
7 ) ≥ 7, (h) ed(Ead

7 ) ≥ 8, (i) ed(E8) ≥ 9.

Here the superscript sc stands for “simply connected” and ad for “adjoint”.

Each of these inequalities is proved by exhibiting a non-toral abelian sub-
group A ⊂ G whose centralizer is finite. For example, in part (a) we can take
A ' (Z/2Z)n−1 to be the subgroup of diagonal matrices of the form

diag(ε1, . . . , εn), where each εi = ±1 and ε1 · . . . · εn = 1. (3.4)

The details are worked out in [RY00], with the exception of the first line in
part (c), which was first proved by V. Chernousov and J.-P. Serre [CS06], by a
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different method. I later noticed that it can be deduced from Theorem 3.1 as
well; the finite abelian subgroups one uses here can be found in [Woo89].

Remark 3.7. The inequalities in parts (a), (b), (d), (e) and (f) can be recovered
by applying Lemma 2.3 to suitable cohomological invariants. For parts (b) and
(d), this is done in Examples 2.8 and 2.4, respectively; for parts (a), (e) and (f),
see [Rei00, Example 12.7], [Rei00, Example 12.10] and [Gar01, Remark 2.12].

It is not known whether or not parts (g), (h) and (i) can be proved in a
similar manner, i.e., whether or not there exist cohomological invariants of Esc

7 ,
Ead

7 and E8 of dimensions 7, 8, and 9, respectively.

4. Central Extensions

In this section we will discuss another more recent method of proving lower
bounds on ed(G). This method does not apply as broadly as those described in
the previous two sections, but in some cases it leads to much stronger bounds.
Let

1 → C → G → G → 1 (4.1)

be an exact sequence of algebraic groups over k such that C is central in G
and isomorphic to µ

r
p for some r ≥ 1. Given a character χ : C → µp, we

will, following [KM07], denote by Repχ the set of irreducible representations
φ : G → GL(V ), defined over k, such that φ(c) = χ(c) IdV for every c ∈ C.

Theorem 4.1. Assume that k is a field of characteristic 6= p containing a
primitive pth root of unity. Then

edk(G) ≥ min
〈χ1,...,χr〉=C∗

(

r
∑

i=1

gcd
ρi∈Repχi

dim(ρi)

)

− dimG . (4.2)

Here gcd stands for the greatest common divisor and the minimum is taken
over all minimal generating sets χ1, . . . , χr of C∗ ' (Z/pZ)r.

Theorem 4.1 has two remarkable corollaries.

Corollary 4.2. (N. Karpenko – A. Merkurjev [KM07]) Let G be a finite p-
group and k be a field containing a primitive pth root of unity. Then

edk(G) = min dim(φ) , (4.3)

where the minimum is taken over all faithful k-representations φ of G.

Proof. We apply Theorem 4.1 to the exact sequence 1 → C → G → G/C → 1,
where C be the socle of G, i.e., C := {g ∈ Z(G) | gp = 1}. Since dim(ρ) is a
power of p for every irreducible representation ρ ofG, we may replace gcd by min
in (4.2). Choosing a minimal set of generators χ1, . . . , χr of C∗ so that the sum
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on the right hand side of (4.2) has minimal value, and ρi ∈ Repχi of minimal
dimension, we see that (4.2) reduces to edk(G) ≥ dim(ρ1) + · · · + dim(ρr).
Equivalently, edk(G) ≥ dim(ρ), where ρ := ρ1⊕· · ·⊕ρr is faithful by elementary
p-group theory. This shows that edk(G) ≥ min dim(φ) in (4.3). The opposite
inequality follows from (2.3).

Corollary 4.3. Let Spinn be the split spinor group over a a field k of charac-
teristic 0. Assume n ≥ 15. Then

(a) ed(Spinn) = 2(n−1)/2 − n(n−1)
2 , if n is odd,

(b) ed(Spinn) = 2(n−2)/2 − n(n−1)
2 , if n ≡ 2 (mod 4), and

(c) 2(n−2)/2 − n(n−1)
2 + 2m ≤ ed(Spinn) ≤ 2(n−2)/2 − n(n−1)

2 + n, if n ≡ 0
(mod 4). Here 2m is the largest power of 2 dividing n.

We remark that M. Rost and S. Garibaldi have computed the essential
dimension of Spinn for every n ≤ 14; see [Rost06] and [Gar09].

Proof outline. The lower bounds (e.g., ed(Spinn) ≥ 2(n−1)/2 − n(n−1)
2 , in part

(a)) are valid whenever char(k) 6= 2; they can be deduced either directly from
Theorem 4.1 or by applying the inequality (2.5) to the finite 2-subgroup H of
G = Spinn, where H is the inverse image of the diagonal subgroup µ

n−1
2 ⊂

SOn, as in (3.4), under the natural projection π : Spinn → SOn. Here ed(H)
is given by Corollary 4.2.

The upper bounds (e.g., ed(Spinn) ≤ 2(n−1)/2 − n(n−1)
2 , in part (a)) follow

from the inequality (2.3), where V is spin representation Vspin in part (a), the
half-spin representation Vhalf−spin in part (b), and to Vhalf−spin ⊕ Vnatural in
part (c), where Vnatural is the natural n-dimensional representation of SOn,
viewed as a representation of Spinn via π. The delicate point here is to check
that these representations are generically free. In characteristic 0 this is due to
E. Andreev and V. Popov [AP71] for n ≥ 29 and to A. Popov [Po85] in the
remaining cases.

For details, see [BRV10a] and (for the lower bound in part (c)) [Me09,
Theorem 4.9].

To convey the flavor of the proof of Theorem 4.1, I will consider a special
case, where G is finite and r = 1. That is, I will start with a sequence

1 → µp → G → G → 1 (4.4)

of finite groups and will aim to show that

edk(G) ≥ gcd
ρ∈Rep′

dim(ρ) , (4.5)

where k contains a primitive pth root and Rep′ denotes the set of irreducible
representations of G whose restriction to µp is non-trivial. The proof relies on
the following two results, which are of independent interest.
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Theorem 4.4. (Karpenko’s Incompressibility Theorem; [Kar00, Theorem 2.1])
Let X be a Brauer-Severi variety of prime power index pm, over a field K and
let f : X 99K X be a rational map defined over K. Then dimK Im(f) ≥ pm− 1.

Theorem 4.5. (Merkurjev’s Index Theorem [KM07, Theorem 4.4]; cf.
also [Me96]) Let K/k be a field extension, and ∂K : H1(K,G) → H2(K,µp)
be the connecting map induced by the short exact sequence (4.4). Then the
maximal value of the index of ∂K(a), as K ranges over all field extension of k
and a ranges over H1(K,G), equals gcdρ∈Rep′ dim(ρ).

Recall that H2(K,µp) is naturally isomorphic to the p-torsion subgroup of
the Brauer group Br(K), so that it makes sense to talk about the index.

I will now outline an argument, due to M. Florence [Fl07], which deduces the
inequality (4.5) from these two theorems. To begin with, let us choose a faithful
representation V of G, where C acts by scalar multiplication. In particular, we
can induce V from a faithful 1-dimensional representation χ : C = µp → k∗.
We remark that χ exists because we assume that k contains a primitive pth
root of unity and that we do not require V to be irreducible.

By (2.4), there exists a non-zero G-equivariant rational map f : V 99K V
defined over k (or a rational covariant, for short) whose image has dimension
ed(G). We will now replace f by a non-zero homogeneous rational covariant
fhom : V 99K V . Here “homogeneous” means that fhom(tv) = tdfhom(v) for
some d ≥ 1. Roughly speaking, fhom is the “leading term” of f , relative to
some basis of V , and it can be chosen so that

dim Im(fhom) ≤ dim Im(f) = ed(G) ;

see [KLS09, Lemma 2.1]. Since we no longer need the original covariant f , we
will replace f by fhom and thus assume that f is homogeneous. Note that G
may not act faithfully on the image of f but this will not matter to us in the
sequel. Since f is homogeneous and non-zero, it descends to an G-equivariant
rational map f : P(V ) 99K P(V ) defined over k, whose image has dimension
≤ edk(G)− 1.

Now, given a field extension K/k and a G-torsor T → Spec(K) in H1(K,G),
we can twist P(V ) by T . The resulting K-variety TP(V ) is defined as the quo-
tient of P(V ) ×K T by the natural (diagonal) G-action. One can show, using
the theory of descent, that this action is in fact free, i.e., the natural projec-
tion map P(V ) ×K T →T P(V ) is a G-torsor; see [Fl07, Proposition 2.12 and
Remark 2.13]. Note that we have encountered a variant of this construction in

the previous section, where we wrote P(V )×G T in place of T
P(V ).

We also remark that T
P(V ) is a K-form of P(V ), i.e., is a Brauer-Severi

variety defined over K. Indeed, if a field extension L/K splits T then it is easy
to see that T

P(V ) is isomorphic to P(V ) over L. One can now show that the
index of this Brauer-Severi variety equals the index of ∂K(T ) ∈ H2(K,µp); in
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particular, it is a power of p. By Theorem 4.5 we can choose K and T so that

ind(TP(V )) = gcd
ρ∈Rep′

dim(ρ) .

The G-equivariant rational map f : P(V ) 99K P(V ) induces a G-equivariant
rational map f × id : P(V ) × T 99K P(V ) × T , which, in turn, descends to a
K-rational map T f : T

P(V ) 99KT P(V ). Since the dimension of the image of f
is ≤ edk(G)−1, the dimension of the image of f × id is ≤ edk(G)−1+dim(G),
and thus the dimension of the image of T f is ≤ edk(G)− 1. By Theorem 4.4,

edk(G)− 1 ≥ dimK(Im(T f)) ≥ ind(TP(V ))− 1 = gcd
ρ∈Rep′

dim(ρ)− 1 ,

and (4.5) follows.

Remark 4.6. Now suppose G is finite but r ≥ 1 is arbitrary. The above
argument has been modified by R. Lötscher [Lö08] to prove Theorem 4.1 in
this more general setting. The proof relies on Theorem 4.5 and a generalization
of Theorem 4.4 to the case where X is the direct product of Brauer-Severi
varieties X1×· · ·×Xr, such that ind(Xi) is a power of p for each i; see [KM07,
Theorem 2.1].

Here we choose our faithful k-representation V so that V = V1 × · · · ×
Vr, where C acts on Vi by scalar multiplication via a multiplicative character
χi ∈ C∗, and χ1, . . . , χr generate C∗. Once again, there exists a G-equivariant
rational map f : V 99K V whose image has dimension ed(G). To make the
rest of the argument go through in this setting one needs to show that f can
be chosen to be multi-homogeneous, so that it will descend to a G-equivarint
rational map

f : P(V1)× . . .P(Vr) 99K : P(V1)× . . .P(Vr) .

If G is finite, this is done in [Lö08]. The rest of the argument goes through
unchanged.

In his (still unpublished) Ph. D. thesis Lötscher has extended this proof
of Theorem 4.1 to the case where G is no longer assumed to be finite. His
only requirement on G is that it should have a completely reducible faithful
k-representation. The only known proof of Theorem 4.1 in full generality uses
the notion of essential dimension for an algebraic stack, introduced in [BRV07];
cf. also [BRV10b]. For details, see [Me09, Theorem 4.8 and Example 3.7], in
combination with [KM07, Theorem 4.4 and Remark 4.5].

5. Essential Dimension at p and Two Types of

Problems

Let p be a prime integer. I will say that a field extension L/K is prime-to-p if
[L : K] is finite and not divisible by p.
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This section is mostly “metamathematical”; the main point I would like
to convey is that some problems in Galois cohomology and related areas are
sensitive to prime-to-p extensions and some aren’t. Loosely speaking, I will refer
to such problems as being of “Type 2” and “Type 1”, respectively.

More precisely, suppose we are given a functor F : Fieldsk → Sets and we
would like to show that some (or every) α ∈ F(K) has a certain property. For
example, this property may be that ed(α) ≤ d for a given d. If our functor is
F(K) = H1(K,On), we may want to show that the quadratic form representing
α is isotropic over K. If our functor is F(K) = H1(K,PGLn), we may ask if
the central simple algebra representing α is a crossed product. Note that in
many interesting examples, including the three examples above, the property
in question is functorial, i.e., if α ∈ F(K) has it then so does αL for every field
extension L/K.

The problem of whether or not α ∈ F(K) has a property we are interested
in can be broken into two steps. For the first step we choose a prime p and
ask whether or not αL has the desired property for some prime-to-p extension
L/K. This is what I call a Type 1 problem. If the answer is “no” for some p
then we are done: we have solved the original problem in the negative. If the
answer is “yes” for every prime p, then the remaining problem is to determine
whether or not α itself has the desired property. I refer to problems of this
type as Type 2 problems. Let me now explain what this means in the context
of essential dimension.

Let F : Fieldsk → Sets be a functor and a ∈ F(K) for some field K/k. The
essential dimension ed(a; p) of a at a prime integer p is defined as the minimal
value of ed(aL), as L ranges over all finite field extensions L/K such that p
does not divide the degree [L : K]. The essential dimension ed(F ; p) is then
defined as the maximal value of ed(a; p), as K ranges over all field extensions
of k and a ranges over F(K).

As usual, in the case where F(K) = H1(K,G) for some algebraic group G
defined over k, we will write ed(G; p) in place of ed(F ; p). Clearly, ed(a; p) ≤
ed(a), ed(F ; p) ≤ ed(F), and ed(G; p) ≤ ed(G) for every prime p.

In the previous three sections we proved a number of lower bounds of the
form ed(G) ≥ d, where G is an algebraic group and d is a positive integer.
A closer look reveals that in every single case the argument can be modi-
fied to show that ed(G; p) ≥ d, for a suitable prime p. (Usually p is a so-
called “exceptional prime” for G; see, e.g., [St75] or [Me09]. Sometimes there
is more than one such prime.) In particular, the arguments we used in Exam-
ples 2.4, 2.5, 2.6 and 2.8 show that ed(G2; 2) = 3, ed(On; 2) = n, ed(µr

p; p) = r
and ed(PGLps ; p) ≥ 2s, respectively. In Theorem 3.1 we may replace ed(G) by
ed(G; p), as long as A is a p-group; see [GR07, Theorem 1.2(b)]. Consequently,
in Corollary 3.6 ed(G) can be replaced by ed(G; p), where p = 2 in parts (a),
(c), (d), (e), (g), (h), (i) and p = 3 in part (f). Theorem 4.1 remains valid
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with ed(G) replaced by ed(G; p).2 Consequently, Corollary 4.2 remains valid if
ed(G) is replaced by ed(G; p) (see [KM07]), and Corollary 4.3 remains valid if
ed(Spinn) is replaced by ed(Spinn; 2) (see [BRV10a]).

The same is true of virtually all existing methods for proving lower bounds
on ed(F) and, in particular, on ed(G): they are well suited to address Type
1 problems and poorly suited for Type 2 problems. In this context a Type 1
problem is the problem of computing ed(F ; p) for various primes p and a Type
2 problem is the problem of computing ed(F), assuming ed(F ; p) is known for
all p.

I will now make an (admittedly vague) claim that this phenomenon can be
observed in a broader context and illustrate it with three examples not directy
related to essential dimension.

Observation 5.1. Most existing methods in Galois cohomology and related
areas apply to Type 1 problems only. On the other hand, many long-standing
open problems are of Type 2.

Example 5.2. The crossed product problem. Recall that a central simple
algebra A/K of degree n is a crossed product if it contains a commutative
Galois subalgebra L/K of degree n. We will restrict our attention to the case
where n = pr is a prime power; the general case reduces to this one by the
primary decomposition theorem. In 1972 Amitsur [Am72] showed that for r ≥ 3
a generic division algebra U(pr) of degree pr is not a crossed product, solving a
long-standing open problem. L. H. Rowen and D. J. Saltman [RS92, Theorem
2.2] modified Amitsur’s argument to show that, in fact, UD(pr)L is a non-
crossed product for any prime-to-p extension L of the center of UD(pr).

For r = 1, 2 it is not known whether or not every central smple algebra
A of degree pr is a crossed product. It is, however, known that every such
algebra becomes a crossed product after a prime-to-p extension of the center;
see [RS92, Section 1]. In other words, the Type 1 part of the crossed product
problem has been completely solved, and the remaining open questions, for
algebras of degree p and p2, are of Type 2.

Example 5.3. The torsion index. Let G be an algebraic group defined over k
andK/k be a field extension. The torsion index nα of α ∈ H1(K,G) was defined
by Grothendieck as the greatest common divisor of the degrees [L : K], where
L ranges over all finite splitting fields L/K. The torsion index nG of G is then
the least common multiple of nα taken over all K/k and all α ∈ H1(K,G). One
can show that nG = nαver

, where αver ∈ H1(Kversal, G) is a versal G-torsor.
One can also show, using a theorem of J. Tits [Se95], that the prime divisors
of nG are precisely the exceptional primes of G.

2At the moment the only known proof of this relies on the stack-theoretic approach; see
the references at the end of Remark 4.6. The more elementary “homogenization” argument I
discussed in the previous section has not (yet?) yielded a lower bound on ed(G; p).
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The problem of computing nG and more generally, of nα for α ∈ H1(K,G)
can thus be rephrased as follows. Given an exceptional prime p for G, find the
highest exponent dp such that pdp divides [L : K] for every splitting extension
L/K. It is easy to see that this is a Type 1 problem; d does not change if we
replace α by αK′ , where K ′/K is a prime-to-p extension. This torsion index nG

has been computed Tits and B. Totaro, for all simple groups G that are either
simply connected or adjoint; for details and further references, see [Ti92, To05].

The remaining Type 2 problem consists of finding the possible values of
e1, . . . , er such that αver is split by a field extension L/K of degree pe11 . . . perr ,
where p1, . . . , pr are the exceptional primes for G. This problem is open for
many groups G. It is particularly natural for those G with only one exceptional
prime, e.g., G = Spinn.

Example 5.4. Canonical dimension. Let G be a connected linear algebraic
group defined over k, K/k be a field extension, and X be a G-torsor over K.
Recall that the canonical dimension cdim(X) of X is the minimal value of
dimK(Im(f)), where the minimum is taken over all rational maps f : X 99K X
defined over K. In particular, X is split if and only if cdim(X) = 0. The
maximal possible value of cdim(X), as X ranges over all G-torsors over K and
K ranges over all field extensions of k, is called the canonical dimension of G
and is denoted by cdim(G). Clearly 0 ≤ cdim(G) ≤ dim(G) and cdim(G) = 0
if and only if G is special. For a detailed discussion of the notion of canonical
dimension, we refer the reader to [BerR05], [KM06] and [Me09].

Computing the canonical dimension cdim(G) of an algebraic group G is
a largely open Type 2 problem. The associated Type 1 problem of com-
puting the canonical p-dimension cdim(G; p) has been solved by Karpenko-
Merkurjev [KM06] and K. Zainoulline [Zai07].

6. Finite Groups of Low Essential Dimension

Suppose we would like to determine the essential dimension of a finite group
G. To keep things simple, we will assume throughout this section that, unless
otherwise specified, the base field k is algebraically closed and of characteristic
0. Let us break up the problem of computing ed(G) into a Type 1 part and a
Type 2 part, as we did in the previous section.

The Type 1 problem is to determine ed(G; p) for a prime p. It is not difficult
to show that ed(G; p) = ed(Gp; p), where p is a prime and Gp is a p-Sylow
subgroup of G; see [MR09a, Lemma 4.1] or [Me96, Proposition 5.1]. The value
of ed(Gp; p) is given by Corollary 4.2. So, to the extent that we are able to
compute the dimension of the smallest faithful representation of Gp, our Type
1 problem has been completely solved, i.e., we know ed(G; p) for every prime p.

Now our best hope of computing ed(G) is to obtain a strong upper bound
ed(G) ≤ n, e.g., by constructing an explicit G-equivariant dominant rational
map V 99K Y , as in (2.2), with dim(Y ) = n. If n = ed(G; p) then we conclude
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that ed(G) = ed(G; p), i.e., the remaining Type 2 problem is trivial, and we are
done. In particular, this is what happens if G is a p-group.

If the best upper bound we can prove is ed(G) ≤ n, where n is strictly
greater than ed(G; p) for every p then we are entering rather murky waters.
Example 6.2 below shows that it is indeed possible for ed(G) to be strictly
greater than ed(G; p) for every prime p. On the other hand, there is no general
method for computing ed(G) in such cases. The only ray of light in this situation
is that it may be possible to prove a lower bound of the form ed(G) > d, where
d = 1 or (with more effort) 2 and sometimes even 3.

Let us start with the simplest case where d = 1.

Lemma 6.1 (cf. [BuR97, Theorem 6.2]). Let G be a finite group. Then

(a) ed(G) = 0 if and only if G = {1},

(b) ed(G) = 1 if and only if G 6= {1} is either cyclic or odd dihedral.

Proof. Let V be a faithful linear representation of G. By (2.4) there exists a
dominant G-equivariant rational map V 99K X, where G acts faithfully on X
and dim(X) = ed(G).

(a) If ed(G) = 0 then X is a point. This forces G to be trivial.

(b) If ed(G) = 1 then X is a rational curve, by a theorem of Lüroth. We
may assume that X is smooth and complete, i.e., we may assume that X =
P
1. Consequently, G is isomorphic to a subgroup of PGL2. By a theorem of

Klein [Kl1884], G is cyclic, dihedral or is isomorphic to S4, A4 or S5. If G is
an even dihedral group, S4, A4 or S5 then G contains a copy of Z/2× Z/2Z '
µ2 × µ2. Hence,

ed(G) ≥ ed(µ2
2) = 2 ;

see Example 2.6. This means that if ed(G) = 1 then G is cyclic or odd dihedral.
Conversely, if G is cyclic or odd dihedral then one can easily check that,

under our assumption on k, edk(G) = 1.

Example 6.2. Suppose q and r are odd primes and q divides r − 1. Let G =
Z/rZ o Z/qZ be a non-abelian group of order rq. Clearly all Sylow subgroups
of G are cyclic; hence, ed(G; p) ≤ 1 for every prime p. On the other hand, since
G is neither cyclic nor odd dihedral, Lemma 6.1 tells us that ed(G) ≥ 2.

Similar reasoning can sometimes be used to show that ed(G) > 2. Indeed,
assume that ed(G) = 2. Then there is a faithful representation V of G and a
dominant rational G-equivariant map

V 99K X , (6.1)

where G acts faithfully on X and dim(X) = 2. By a theorem of G. Casteln-
uovo, X is a rational surface. Furthermore, we may assume that X is smooth,
complete, and is minimal with these properties (i.e., does not allow any G-
equivariant blow-downs X → X0, with X0 smooth). Such surfaces (called min-
imal rational G-surfaces) have been classified by Yu. Manin and V. Iskovskikh,
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following up on classical work of F. Enriques; for details and further references,
see [Du09a]. This classification is significantly more complicated than Klein’s
classification of rational curves but one can use it to determine, at least in prin-
ciple, which finite groups G can act on a rational surface and describe all such
actions; cf. [DI06]. Once all minimal rational G-surfaces X are accounted for,
one then needs to decide, for each X, whether or not the G-action is versal,
i.e., whether or not a dominant rational G-equivariant map (6.1) can exist for
some faithful linear representation G → GL(V ). Note that by the Going Down
Theorem 3.2 if some abelian subgroup A of G acts on X without fixed points
then the G-action on X cannot be versal. If every minimal rational G-surface
X can be ruled out this way (i.e., is shown to be non-versal) then one can
conclude that ed(G) > 2.

This approach was used by Serre to show that ed(A6) > 2; see [Se08, Propo-
sition 3.6]. Since the upper bound ed(A6) ≤ ed(S6) ≤ 3 was previously known
(cf. (7.2) and the references there) this implies ed(A6) = 3. Note that

ed(A6; p) =











2, if p = 2 or 3,

1, if p = 5, and

0, otherwise;

see (7.1). A. Duncan [Du09a] has recently refined this approach to give the
following complete classification of groups of essential dimension ≤ 2.

Theorem 6.3. Let k be an algebraically closed field of characteristic 0 and
T = G

2
m be the 2-dimensional torus over k. A finite group G has essential

dimension ≤ 2 if and only if it is isomorphic to a subgroup of one of the
following groups:

(1) The general linear group GL2(k),

(2) PSL2(F7), the simple group of order 168,

(3) S5, the symmetric group on 5 letters,

(4) T oG1, where |G ∩ T | is coprime to 2 and 3 and

G1 =

〈 (

1 −1
1 0

)

,

(

0 1
1 0

) 〉

' D12,

(5) T oG2, where |G ∩ T | is coprime to 2 and

G2 =

〈 (

−1 0
0 1

)

,

(

0 1
1 0

) 〉

' D8,

(6) T oG3, where |G ∩ T | is coprime to 3 and

G3 =

〈 (

0 −1
1 −1

)

,

(

0 −1
−1 0

) 〉

' S3,
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(7) T oG4, where |G ∩ T | is coprime to 3 and

G4 =

〈 (

0 −1
1 −1

)

,

(

0 1
1 0

) 〉

' S3 .

If one would like to go one step further and show that ed(G) > 3 by this
method, for a particular finite group G, the analysis becomes considerably more
complicated. First of all, while X in (6.1) is still unirational, if dim(X) ≥ 3,
we can no longer conclude that it is rational. Secondly, there is no analogue
of the Enriques-Manin-Iskovskikh classification of rational surfaces in higher
dimensions. Nevertheless, in dimension 3 one can sometimes use Mori theory
to get a handle on X. In particular, Yu. Prokhorov [Pr09] recently classified
the finite simple groups with faithful actions on rationally connected threefolds.
This classification was used by Duncan [Du09b] to prove the following theorem,
which is out of the reach of all previously existing methods.

Theorem 6.4. Let k be a field of characteristic 0. Then edk(A7) = edk(S7) =
4.

Note that ed(A7; p) ≤ ed(S7; p) ≤ 3 for every prime p; cf. [MR09a, Corollary
4.2].

7. Open Problems

7.1. Strongly incompressible elements. Let F : Fieldsk → Sets be
a covariant functor. We say that an object α ∈ F(K) is strongly incompressible
if α does not descend to any proper subfield of K.

Examples of strongly incompressible elements in the case where G is a finite
group,K is the function field of an algebraic curve Y over k, and F = H1( ∗ , G),
are given in [Rei04]. In these examples α is represented by a (possibly rami-
fied) G-Galois cover X → Y . I do not know any such examples in higher
dimensions.

Problem. Does there exist a finitely generated field extension K/k of transcen-
dence degree ≥ 2 and a finite group G (or an algebraic group G defined over k)
such that H1(K,G) has a strongly incompressible element?

For G = On Problem 7.1 is closely related to the questions of existence
of a minimal field of definition of a quadratic form posed at the beginning of
Section 1.

It is easy to see that if an element of H1(K,PGLn) represented by a non-
split central simple algebra A is strongly incompressible and tr degk(K) ≥ 2
then A cannot be cyclic. In particular, if n = p is a prime then the existence of
a strongly incompressible element in H1(K,PGLn) would imply the existence
of a non-cyclic algebra of degree p over K, thus solving (in the negative) the
long-standing cyclicity conjecture of Albert.
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7.2. Symmetric groups.

Problem. What is the essential dimension of the symmetric group Sn? of the
alternating group An?

Let us assume that char(k) does not divide n!. Then in the language of
Section 5, the above problem is of Type 2. The associated Type 1 problem has
been solved: ed(Sn; p) = [n/p] (see [MR09a, Corollary 4.2]) and similarly

ed(An; p) =

{

2[n4 ], if p = 2, and

[np ], otherwise.
(7.1)

It is shown in [BuR97] that ed(Sn+2) ≥ ed(Sn) + 1, ed(An+4) ≥ ed(An) + 2,
and

ed(An) ≤ ed(Sn) ≤ n− 3 . (7.2)

I believe the true value of ed(Sn) is closer to n− 3 than to [n/2]; the only piece
of evidence for this is Theorem 6.4.

7.3. Cyclic groups.

Problem. What is the essential dimension edk(Z/nZ)?

Let us first consider the case where char(k) is prime to n. Under further
assumptions that n = pr is a prime power and k contains a primitive pth root
of unity ζp, Problem 7.3 has been solved by Florence [Fl07]. It is now a special
case of Corollary 4.2:

edk(Z/p
r
Z) = edk(Z/p

r
Z; p) = [k(ζpr ) : k] ; (7.3)

see [KM07, Corollary 5.2]. This also settles the (Type 1) problem of computing
edk(Z/nZ; p) for every integer n ≥ 1 and every prime p. Indeed,

edk(Z/nZ; p) = edk(Z/p
r
Z; p) ,

where pr is the largest power of p dividing n. Also, since [k(ζp) : k] is prime to
p, for the purpose of computing edk(Z/nZ; p) we are allowed to replace k by
k(ζp); then formula (7.3) applies.

If we do not assume that ζp ∈ k then the best currently known upper
bound on edk(Z/p

r
Z), due to A. Ledet [Led02], is edk(Z/p

r
Z) ≤ ϕ(d)pe. Here

[k(ζpr ) : k] = dpe, where d divides p− 1, and ϕ is the Euler ϕ-function.
Now let us suppose char(k) = p > 0. Here it is easy to see that edk(Z/p

rZ) ≤
r; Ledet [Led04] conjectured that equality holds. This seems to be out of reach
at the moment, at least for r ≥ 5. More generally, essential dimension of finite
(but not necessarily smooth) group schemes over a field k of prime characteristic
is poorly understood; some interesting results in this direction can be found
in [TV10].
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7.4. Quadratic forms. Let us assume that char(k) 6= 2. The following
question is due to J.-P. Serre (private communication, April 2003).

Problem. If q is a quadratic form over K/k, is it true that ed(q; 2) = ed(q)?

A similar question for central simple algebras A of prime power degree pr

is also open: is it true that ed(A; p) = ed(A)?
Here is another natural essential dimension question in the context of

quadratic form theory.

Problem. Assume char(k) 6= 2. If q and q′ are Witt equivalent quadratic forms
over a field K/k, is it true that edk(q) = edk(q

′)?

The analogous question for central simple algebras, with Witt equivalence
replaced by Brauer equivalence, has a negative answer. Indeed, assume k con-
tains a primitive 4th root of unity and D = UDk(4) is a universal division alge-
bra of degree 4. Then ed(D) = 5 (see [Me10a, Corollary 1.2], cf. also [Rost00])
while ed M2(D) = 4 (see [LRRS03, Corollary 1.4]).

7.5. Canonical dimension of Brauer-Severi varieties. Let X
be a smooth complete variety defined over a field K/k. The canonical dimension
cdim(X) is the minimal dimension of the image of a K-rational map X 99K X.
For a detailed discussion of this notion, see [KM06] and [Me09].

Conjecture. (Colliot-Thélèlene, Karpenko, Merkurjev [CKM08]) Suppose X
is a Brauer-Severi variety of index n. If n = pe11 . . . perr is the prime decompo-
sition of n then cdim(X) = pe11 + · · ·+ perr − r.

This is a Type 2 problem. The associated Type 1 question is completely
answered by Theorem 4.4: cdim(X; pi) = pe1i − 1. Also, by Theorem 4.4 the
conjecture is true if r = 1. The only other case where this conjecture has been
proved is n = 6; see [CKM08]. The proof is similar in spirit to the results of Sec-
tion 6; it relies on the classification of rational surfaces over a non-algebraically
closed field. For other values of n the conjecture has not even been checked for
one particular X.

Note that the maximal value of cdim(X), asX ranges over the Brauer-Severi
varieties of index n, equals cdim(PGLn). As I mentioned in Example 5.4, com-
puting the canonical dimension cdim(G) of a linear algebraic (and in particular,
simple) group G is a largely open Type 2 problem. In particular, the exact value
of cdim(PGLn) is only known if n = 6 or a prime power.

7.6. Essential dimension of PGLn.

Problem. What is ed(PGLn; p)? ed(PGLn)?

As I mentioned in Section 1, this problem originated in the work of Pro-
cesi [Pr67]; for a more detailed history, see [MR09a, MR09b]. The second ques-
tion appears to be out of reach at the moment, except for a few small values of
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n. However, there has been a great deal of progress on the first (Type 1) ques-
tion in the past year. By primary decomposition ed(PGLn; p) = ed(PGLpr ; p),
where pr is the highest power of p dividing n. Thus we may assume that n = pr.
As I mentioned in Example 5.2, every central simple algebra A of degree p be-
comes cyclic after a prime-to-p extension. Hence, ed(PGLp; p) = 2; cf. [RY00,
Lemma 8.5.7]. For r ≥ 2 we have

(r − 1)pr + 1 ≤ ed(PGLpr ; p) ≤ p2r−2 + 1 .

The lower bound is due to Merkurjev [Me10b]; the upper bound is proved in a
recent preprint of A. Ruozzi [Ru10]. (A weaker upper bound, ed(PGLn; p) ≤
2p2r−2 − pr + 1, is proved in [MR09b].) In particular, ed(PGLp2 ; p) = p2 + 1;
see [Me10a].

Note that the argument in [Me10b] shows that if A is a generic (Z/pZ)r-
crossed product then ed(A; p) = (r − 1)pr + 1. As mentioned in Example 5.2,
for r ≥ 3 a general division algebra A/K of degree pr is not a crossed product
and neither is AL = A⊗K L for any prime-to-p extension L/K. Thus for r ≥ 3
it is reasonable to expect the true value of ed(PGLpr ; p) to be strictly greater
than (r − 1)pr + 1.

7.7. Spinor groups.

Problem. Does Corollary 4.3 remain valid over an algebraically closed field of
characteristic p > 2?

As I mentioned at the beginning of the proof of Corollary 4.3, the lower
bound in each part remains valid over any field of characteristic > 2. Conse-
quently, Problem 7.7 concerns only the upper bounds. It would, in fact, suffice
to show that the spin representation Vspin and the half-spin representation
Vhalf−spin of Spinn are generically free, if n is odd or n ≡ 2 (mod 4), respec-
tively; see [BRV10a, Lemma 3-7 and Remark 3-8].

Problem. What is edk(Spin4m; 2)? edk(Spin4m)? Here m ≥ 5 is an integer.

Corollary 4.3 answers this question in the case where m is a power of 2. In
the other cases there is a gap between the upper and the lower bound in that
corollary, even for k = C.

7.8. Exceptional groups.

Problem. Let G be an exceptional simple group and p be an exceptional prime
for G. What is edk(G; p)? edk(G)? Here we assume that k is an algebraically
closed field of characteristic 0 (or at least, char(k) is not an exceptional prime
for G).

For the exceptional group G = G2 we know that ed(G2) = ed(G2; 2) = 3;
see Example 2.4.
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For G = F4, the Type 1 problem has been completely solved: ed(F4; 2) =
5 (see [MacD08, Section 5]), ed(F4; 3) = 3 (see [GR07, Example 9.3]), and
ed(F4; p) = 0 for all other primes. It is claimed in [Ko00] that ed(F4) = 5.
However, the argument there appears to be incomplete, so the (Type 2) problem
of computing ed(F4) remains open.

The situation is similar for the simply connected group Esc
6 . The Type 1

problem has been solved,

ed(Esc
6 ; p) =











3, if p = 2 (see [GR07, Example 9.4]),

4, if p = 3 (see [RY00, Theorem 8.19.4 and Remark 8.20]),

0, if p ≥ 5.

(For the upper bound on the second line, cf. also [Gar09, 11.1].) The Type 2
problem of computing ed(Esc

6 ) remains open.
For the other exceptional groups, Ead

6 , Ead
7 Esc

7 and E8, even the Type
1 problem of computing ed(G; p) is only partially solved. It is known that
ed(Ead

6 ; 2) = 3 (see [GR07, Remark 9.7]), ed(Ead
7 ; 3) = ed(Esc

7 ; 3) = 3
(see [GR07, Example 9.6 and Remark 9.7]; cf. also [Gar09, Lemma 13.1]) and
ed(E8; 5) = 3 (see [RY00, Theorem 18.19.9] and [Gar09, Proposition 14.7]). On
the other hand, the values of ed(Ead

6 ; 3), ed(Ead
7 ; 2), ed(Esc

7 ; 2), ed(E8; 3) and
ed(E8; 2) are wide open, even for k = C. For example, the best known lower
bound on edC(E8; 2) is 9 (see Corollary 3.6(i)) but the best upper bound I know
is edC(E8; 2) ≤ 120. The essential dimension ed(G) for these groups is largely
uncharted territory, beyond the upper bounds in [Lem04].

7.9. Groups whose connected component is a torus. LetG be
an algebraic group over k and p be a prime. We say that a linear representation
φ : G → GL(V ) is p-faithful (respectively, p-generically free) if Ker(φ) is a finite
group of order prime to p and φ descends to a faithful (respectively, generically
free) representation of G/Ker(φ).

Suppose the connected component G0 of G is a k-torus. One reason such
groups are of interest is that the normalizer G of a maximal torus in a reductive
k-group Γ is of this form and ed(G) (respectively ed(G; p)) is an upper bound
on ed(Γ) (respectively, ed(Γ; p)). The last assertion follows from [Se02, III.4.3,
Lemma 6], in combination with Lemma 2.2.

For the sake of computing ed(G; p) we may assume that G/G0 is a p-group
and k is p-closed, i.e., the degree of every finite field extension k′/k is a power
of p; see [LMMR09, Lemma 3.3]. It is shown in [LMMR09] that

min dim ν − dim(G) ≤ ed(G; p) ≤ min dim ρ− dimG , (7.4)

where the two minima are taken over all p-faithful representations ν, and p-
generically free representations ρ, respectively. In the case where G = T is a
torus or G = F is a finite p-group or, more generally, G is a direct product
T ×F , a faithful representation is automatically generically free. Thus in these
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cases the lower and upper bounds of (7.4) coincide, yielding the exact value of
edk(G; p). If we only assume that G0 is a torus, I do not know how to close the
gap between the lower and the upper bound in (7.4). However, in every example
I have been able to work out the upper bound in (7.4) is, in fact, sharp.

Conjecture. ([LMMR09]) Let G be an extension of a p-group by a torus, de-
fined over a p-closed field k of characteristic 6= p. Then ed(G; p) = min dim ρ−
dimG, where the minimum is taken over all p-generically free k-representations
ρ of G.
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[Ko00] V. E. Kordonskĭı, On the essential dimension and Serre’s conjecture II
for exceptional groups, Mat. Zametki, 68, (2000), no. 4, 539–547.

[KLS09] H. Kraft, R. Lötscher, G. M. Schwarz, Compression of finite group actions
and covariant dimension. II, J. Algebra 322 (2009), no. 1, 94–107.

[Led02] A. Ledet,On the essential dimension of some semi-direct products, Canad.
Math. Bull. 45 (2002), no. 3, 422–427.

[Led04] A. Ledet, On the essential dimension of p-groups, Galois theory and mod-
ular forms, 159–172, Dev. Math., 11, Kluwer Acad. Publ., Boston, MA,
2004.

[Lem04] N. Lemire, Essential dimension of algebraic groups and integral represen-
tations of Weyl groups, Transform. Groups 9 (2004), no. 4, 337–379.

[LRRS03] M. Lorenz, Z. Reichstein, L. H. Rowen, D. J. Saltman, Fields of definition
for division algebras, J. London Math. Soc. (2) 68 (2003), no. 3, 651–670.
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Abstract

Let k be a p-adic field and K a function field of a curve over k. It was proved
in ([PS3]) that if p 6= 2, then the u-invariant of K is 8. Let l be a prime number
not equal to p. Suppose that K contains a primitive lth root of unity. It was
also proved that every element in H3(K,Z/lZ) is a symbol ([PS3]) and that
every element in H2(K,Z/lZ) is a sum of two symbols ([Su]). In this article we
discuss these results and explain how the Galois cohomology methods used in
the proof lead to consequences beyond the u-invariant computation.
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Let k be a field of characteristic not equal to 2. By a quadratic form q over
k we mean a homogeneous polynomial q(X1, · · · , Xn) =

∑
aijXiXj of degree

2 with aij ∈ k. The number of variables n is called the dimension of q. We
say that a quadratic form q over k is isotropic if there exist λ1, · · · , λn ∈ k,
not all zero, such that q(λ1, · · · , λn) = 0. If q is not isotropic, then q is called
anisotropic. Kaplansky attached an invariant to a field k, known as u-invariant
of k, denoted by u(k), defined as the supremum of the dimensions of anisotropic
quadratic forms over k. A theorem of Chevalley asserts that every quadratic
form of dimension at least 3 over a finite field is isotropic: the u-invariant of a
finite field is 2. It follows from Hensel’s lemma that the u-invariant of a p-adic
field is 4. A theorem of Tsen-Lang on Ci-fields yields that u(k(T1, · · · , Tn)) is
2n if k is an algebraically closed field and 2n+1 if k is a finite field.

Kaplansky conjectured that the u-invariant of a field is always a power of 2.
For a given integer n ≥ 3, Merkurjev ([M]) constructed a field with u-invariant

∗Department of Mathematics and Statistics, University of Hyderabad, Hyderabad, India

500046. E-mail: vssm@uohyd.ernet.in.



190 V. Suresh

2n, thereby disproving the conjecture of Kaplansky. Later on, Izhboldin ([I])
constructed a field with u-invariant 9. The more recent results of Vishik ([V])
assert that there exist fields of u-invariant 2n + 1 for each n ≥ 3.

The fields constructed by Merkurjev/Izhboldin are very large, obtained by
taking iterated function fields of quadrics.

Conjecture. Let K be a finitely generated field extension of either Q or Qp.
If u(K) is finite, then u(K) is a power of 2.

Let k be a p-adic field and K the function field of a curve over k. Kaplansky
conjectured that u(K) = 8. If p 6= 2, it was proved in ([PS3]) that the u-
invariant of K is 8. We shall discuss the Galois cohomology methods used in
([PS3]) and show how they lead to further consequences.

Let k be a global field or a local field and l a prime not equal to the char-
acteristic of k. Class field asserts that every element in H2(k, µl) is a symbol.
Let k be either a global field of positive characteristic p or a p-adic field and l
a prime not equal to p. Let K be a function field of a curve over k. In ([PS2],
[PS3], [PS4]), we proved that if K contains a primitive lth root of unity, then
every element in H3(K,µl) is a symbol. This result, for l = 2 and k a non-
dyadic p-adic field, was used in the proof of the above conjecture of Kaplansky
for non-dyadic p-adic field case. The main ingredient is a certain local global
principle for elements of H3(K,µl) in terms of symbols in H2(K,µl). Let X
be a smooth projective surface over a finite field F. Let Y be a smooth projec-
tive 3-fold with a surjective morphism Y → X whose generic fibre is a smooth
conic. The above local-global principle also leads to the fact that the unramified
cohomology H3

nr(F(Y )/Y,Ql/Zl(2)) is zero. The vanishing of this unramified
cohomology group was raised as a question by Colliot-Thélène ([CT3], [CT4])
in the context of the integral Tate conjecture on 1-cycles. We discuss these
results in this article.

1. Quadratic Forms and Galois Cohomology

Groups

We now recall some basic facts about the Witt group of quadratic forms over
fields. We refer the reader to ([L], [Sc]).

Let k be a field of characteristic not equal to 2. Let q be a quadratic form
over k. Then we know that there exists a linear change of variables such that
q(X1, · · · , Xn) = a1X

2
1 + · · ·+ anX

2
n for some a1, · · · , an ∈ k. We say that q is

non-singular if ai 6= 0 for 1 ≤ i ≤ n. Since every anisotropic quadratic form is
non-singular and we are interested in anisotropic forms, from now on we assume
that by a quadratic form we mean non-singular quadratic form. The quadratic
form q(X1, · · · , Xn) = a1X

2
1 + · · · + anX

2
n is denoted by < a1, · · · , an >. Let

H =< 1,−1> be the hyperbolic plane (i.e. a dimension 2 isotropic quadratic
form). Let q be a quadratic form over k. Then q = q0 ⊥ Hr for some anisotropic
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quadratic form q0 over k and r ≥ 0. Witt’s cancellation theorem implies that
the isometry class of q0 is uniquely defined by the isometry class of q.

Let W (k) denote the set of isometry classes of anisotropic quadratic forms
over k. Let q1 ⊥ q2 = q0 ⊥ Hr for some anisotropic quadratic form q0 over k. We
define the sum of the isometry classes of q1 and q2 as the isometry class of q0.
This makes W (k) into an abelian group. The tensor product of two quadratic
forms makes W (k) into a commutative ring.

The dimension modulo 2 of a quadratic form defines a ring homomorphism
e0 : W (k) → Z/2. Let I(k) be the kernel of this homomorphism. Then I(k) is
the ideal of W (k) consisting of all the even dimension forms.

Let q =<a1, · · · , an> be a quadratic form over k. The discriminant disc(q)
of q is defined as the class of (−1)n(n+1)/2a1 · · · an in k∗/k∗2. This gives a
homomorphism e1 : I(k) → k∗/k∗2. The kernel of this homomorphism is
I2(k) = I(k)2. Since every element in I(k) is represented by an even dimen-
sion form, it follows that I2(k) is generated by the classes of quadratic forms
<1, a><1, b> with a, b ∈ k∗.

Let Br(k) be the Brauer group of k and 2Br(k) the 2-torsion subgroup of
Br(k). For a quadratic form q over k, let C(q) be the Clifford algebra associated
to q. Then we have a well defined homomorphism e2 : I2(k) → 2Br(k) given
by e2(q) = C(q).

Let k be a field and l a prime not equal to the characteristic of k. Let µl be
the group of lth roots of unity. For i ≥ 1, let µ⊗i

l be the Galois module given
by the tensor product of i copies of µl. For n ≥ 0, let Hn(k, µ⊗i

l ) be the nth

Galois cohomology group with coefficients in µ⊗i
l .

We have the Kummer isomorphism k∗/k∗l ' H1(k, µl). For a ∈ k∗, its class
inH1(k, µl) is denoted by (a). If a1, · · · , an ∈ k∗, the cup product (a1) · · · (an) ∈
Hn(k, µ⊗n

l ) is called a symbol. We have an isomorphism of H2(k, µl) with the
l-torsion subgroup lBr(k) of the Brauer group of k. We define the index of
an element α ∈ H2(k, µl) to be the index of the corresponding central simple
algebra in lBr(k).

Assume that k contains a primitive lth root of unity. We fix a generator ρ
for the cyclic group µl and identify the group µl with Z/lZ as Galois modules.
This leads to an identification of H1(k,Z/lZ) with k∗/k∗l and identification of
Hn(k, µ⊗m

l ) with Hn(k,Z/lZ) for all n and m. The element in Hn(k,Z/lZ) cor-
responding to the symbol (a1) · · · (an) ∈ Hn(k, µ⊗n

l ) through this identification
is again denoted by (a1) · · · (an).

For a1, · · · , an ∈ k∗, let << a1, · · · , an >> denote the n-fold Pfister form
given by the tensor product of quadratic forms < 1,−ai > for 1 ≤ i ≤ n. Let
Pn be the set of isometry classes of n-fold Pfister forms. There is a well-defined
map due to Arason,

ẽn : Pn(k) → Hn(k,Z/2Z)

given by

ẽn(<<a1, · · · , an>>) = (a1) ∪ (a2) ∪ · · · ∪ (an).
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Milnor’s Conjecture: (Quadratic form version) The maps ẽn extend to
homomorphisms

en : In(k) → Hn(k,Z/2Z).

which are surjective with kernel In+1(k).

In other words, the maps (en) induce an isomorphism

⊕

n≥0

In(k)/In+1(k) '
⊕

n≥0

Hn(k,Z/2Z).

Milnor’s conjecture has been proved by Orlov, Voevodsky and Vishik ([OVV]).

We now recall a few basic definitions and facts about Galois cohomology
groups and residue homomorphisms. We refer the reader to ([CT1]).

Throughout this article by a discrete valuation we mean a discrete valu-
ation of rank one. Let K be a field with a discrete valuation ν. Let κ(ν) be
the residue field at ν. If l is a prime not equal to char(κ(ν)), then there is a
residue homomorphism ∂ν : Hn(K,µ⊗m

l ) → Hn−1(κ(ν), µ⊗m−1
l ). Suppose that

K contains a primitive lth root of unity. Then κ(ν) also contains a primitive lth

root of unity. By fixing a suitable primitive lth root of unity in K and its image
in κ(ν), as mentioned above, we identify Hn(K,µ⊗m

l ) with Hn(K,Z/lZ) and
Hn(κ(ν), µ⊗m

l ) with Hn(κ(ν),Z/lZ).

Let X be a regular integral scheme of dimension d, with field of fractions K.
Let X 1 be the set of codimension one points of X . A point x ∈ X 1 gives rise to a
discrete valuation νx onK. The residue field of this discrete valuation ring is de-
noted by κ(x). The corresponding residue homomorphism is denoted by ∂x. We
say that an element ζ ∈ Hn(K,µ⊗m

l ) is unramified at x if ∂x(ζ) = 0; otherwise
it is said to be ramified at x. We define the ramification divisor ramX (ζ) =

∑
x

as x runs over X 1 where ζ is ramified. The nth unramified cohomology on X , de-
noted by Hn

nr(K/X , µ⊗m
l ), is defined as the intersection of kernels of the residue

homomorphisms ∂x : Hn(K,µ⊗m
l ) → Hn−1(κ(x), µ

⊗(m−1)
l ), x running over X 1.

We say that ζ ∈ Hn(K,µ⊗m
l ) is unramified on X if ζ ∈ Hn

nr(K/X , µ⊗m
l ). Sup-

pose C is an irreducible closed subscheme of X of codimension 1. Then the
generic point x of C belongs to X 1 and we set ∂x = ∂C . If α ∈ Hn(K,µ⊗m

l ) is
unramified at x, then we say that α is unramified at C. The group of elements of
Hn(K,µ⊗m

l ) which are unramified at every discrete valuation of K is denoted
byHn

nr(K,µ⊗m
l ). If C is an integral curve (not necessarily regular) with function

field κ(C), Hn
nr(κ(C)/C, µl) denotes the subgroup of Hn(κ(C), µl) consisting

of those elements which are unramified at all those discrete valuation which
are centered on a closed point of C. If K contains a primitive lth root of unity,
then we also denote Hn

nr(K/X , µ⊗m
l ) by Hn

nr(K/X ,Z/lZ) and Hn
nr(K,µ⊗m

l ) by
Hn

nr(K,Z/lZ).
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2. Galois Cohomology Groups of Function

Fields of Surfaces

Let X be a regular, integral surface. Let K be the function field of X . Let l be a
prime not equal to the characteristic of K. Suppose that l is a unit in OX and

K contains a primitive lth root of unity. Let X 1 be the set of all codimension
one points of X . For x ∈ X 1, let κ(x) denote the residue field at x and Kx the
completion of K with respect to the discrete valuation νx given by x.

Suppose that for every irreducible closed curve C on X , κ(C) is either a
global field or a local field. Then we have the following (cf. [PS4]):

Theorem 2.1. Let ζ ∈ H3(K,Z/lZ) and α ∈ H2(K,Z/lZ). Suppose that the
central division algebra represented by α has degree l. If for every x ∈ X 1,
there exists fx ∈ K∗

x such that ζ − (α · (fx)) ∈ H3
nr(Kx,Z/lZ), then there exists

f ∈ K∗ such that ζ − (α · (f)) ∈ H3
nr(K/X ,Z/lZ).

Corollary 2.2. Let k be a p-adic field or a global field of positive characteristic
p and K a function field in one variable over k. Let l be a prime not equal to
p. Suppose that k contains a primitive lth root of unity. Let ζ ∈ H3(K,Z/lZ)
and α ∈ H2(K,Z/lZ). Suppose that the central division algebra represented by
α has degree l. If for every x ∈ X 1, there exists fx ∈ K∗

x such that ζ = α ·(fx) ∈
H3(Kx,Z/lZ), then there exists f ∈ K∗ such that ζ = α · (f) ∈ H3(K,Z/lZ).

Proof. If k is a p-adic field, let O be the ring of integers in k. If k is a global
field of characteristic p, let O be the field of constants in k. Then there exists
an integral, regular surface X which is projective over Spec(O) with function
field K. Let C be any closed curve on X . Then κ(C) is either a p-adic field or
a global field of positive characteristic. In both cases, by class field theory, we
have H2

nr(κ(C)/C,Z/lZ) = 0. Let x ∈ X 1. By (2.1), there exists f ∈ K∗ such
that ζ − (α · (f)) ∈ H3

nr(K/X ,Z/lZ). By ([CSS], [Ka]), H3
nr(K/X ,Z/lZ) = 0.

Hence ζ = α · (f) ∈ H3(K,Z/lZ).

For the function field of a curve over a p-adic field, the above corollary was
proved in ([PS3]). This leads to the following (cf. [PS3], [PS4]):

Theorem 2.3. Let k be a p-adic field or a global field of positive characteristic
p. Let l be a prime not equal to p. Assume that k contains a primitive lth root
of unity. Let K be a function field in one variable over k. Then every element
in H3(K,Z/lZ) is a symbol.

Let k be a p-adic field and K the function field of a p-adic curve over k. Let
l be a prime not equal to p. Local class field theory asserts that every element
in H2(k,Z/lZ) is a symbol and Hn(k,Z/lZ) = 0 for n ≥ 3. The following is a
higher dimensional analogue of these results for function fields of curves over
p-adic fields ([Su]).
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Theorem 2.4. Let k be a p-adic field and K a function field in one variable
over k. Let l be a prime not equal to p. Suppose that k contains a primitive
lth root of unity. Then every element in H2(K,Z/lZ) is a sum of at most 2
symbols.

The proof of the above theorem uses in a fundamental way a theorem of
Saltman on splitting ramification of algebras over such fields ([S3]).

3. The u-invariant

In ([PS3]), we have given sufficient conditions for a field to a have u-invariant
at most 8. The following is a slight modification of this result.

Theorem 3.1. Let K be a field of characteristic not equal to 2. Assume the
following:

1. Every element in H2(K,µ2) is a sum of at most 2 symbols.

2. Every element in I3(K) is equal to a 3-fold Pfister form.

3. If φ is a 3-fold Pfister form and q2 is a quadratic form over K of dimen-
sion 2, then φ =< 1, f >< 1, g >< 1, h > for some f, g, h ∈ K∗ with f a
value of q2.

4. If φ =< 1, f >< 1, a>< 1, b> is a 3-fold Pfister form and q3 a quadratic
form over K of dimension 3, then φ =< 1, f >< 1, g >< 1, h> for some
g, h ∈ K∗ with g a value of q3.

Then u(K) ≤ 8.

Proof. In ([PS3]), we proved this with the additional assumption that I4(K) =
0. We show that condition 3) implies that I4(K) = 0. Let q =<1, a><1, b><
1, c >< 1, d >. By assumption (3), we have < 1, b >< 1, c >< 1, d >=< 1, f ><
1, g >< 1, h > for some f, g, h ∈ K∗ with f a value of the quadratic form
<−1,−a >. Since f is a value of <−1,−a >, we have < 1, a >< 1, f >= 0 ∈

W (K). In particular, q =< 1, a >< 1, f >< 1, g >< 1, h >= 0. Since I4(K) is
generated by elements of the form < 1, a >< 1, b >< 1, c >< 1, d >, we have
I4(K) = 0.

In ([PS3], we have also shown that the above conditions, except the first
one, are also necessary for a field to have the u-invariant equal to 8.

Let K be a function field of a curve over a p-adic field. Assume that p 6= 2.
Let ν be a discrete valuation of K and Kν be the completion of K at ν. Let κ(ν)
be the residue field at ν. Then κ(ν) is either a p-adic field or a function field of a
curve over a finite field. In both cases we have u(κ(ν)) = 4. Using a theorem of
Springer, we get that u(Kν) = 8. Thus Kν satisfies the conditions in the above
theorem except possibly the first one. Using the local-global principle stated in
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the previous section, we prove that K satisfies all the conditions of the above
theorem except the first condition. A theorem of Saltman ([S1], [S2]) asserts
that K also satisfies the first condition. Hence we conclude the following:

Corollary 3.2. Let k be a p-adic field and K the function field of a curve over
k. If p 6= 2, then u(K) = 8.

Using the patching methods developed in ([HH]), Harbater-Hartman-
Krashen proved the following in ([HHK]).

Theorem 3.3. Let K be a complete discrete valuated field with residue field
κ. Suppose that there exists an integer n such that for every finite extension
L of K, u(L) ≤ n and for every function field κ(C) of a curve C over κ,
u(κ(C)) ≤ n. If char(κ) 6= 2, then for any function field F of a curve over K,
u(F ) ≤ 2n.

Using the above mentioned patching methods, we proved the following local-
global principle for isotropy of quadratic forms ([CTPS]):

Theorem 3.4. Let K be a complete discrete valuated field with residue field κ.
Suppose that char(κ) 6= 2. Let q be a quadratic form over K of dimension at
least 3. If q is isotropic over Kν for every discrete valuation ν of K, then q is
isotropic over K.

Using a theorem of Heath-Brown ([HB1], [HB2]) on the common zeroes of
a system of quadratic form over p-adic field, Leep ([L]) proved the following
theorem which holds also when p = 2.

Theorem 3.5. Let k be any p-adic field and K a function field in n-variables
over k. Then u(K) = 2n+2.

For function fields over p-adic fields this completely solves Kaplansky’s con-
jecture. The next extremely interesting case to explore is the case of function
fields of curves over totally imaginary number fields.

4. The Chow Group of 0-cycles

Let X be a smooth, projective, geometrically integral variety over a field k. Let
CH0(X) be the Chow group of 0-cycles modulo rational equivalence. If X is
a curve over a number field or a local field, the structure of CH0(X) is well
understood. Very little is known about the structure of this group for general
varieties over number fields or local field.

Let k be a field and C a smooth projective geometrically integral curve over
k. Let π : X → C be a dominant morphism. Let π∗ : CH0(X) → CH0(C) be
the induced morphism. Let CH0(X/C) be the kernel of π∗. Since the structure
of CH0(C) is well understood, to study the structure of CH0(X), one is led to
the study of the group CH0(X/C).
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We now describe a characterisation of CH0(X/C) as a subquotient of the
group of units k(C)∗ due to Colliot-Thélène and Skorobogatov ([CTS]. Let k be
a field of characteristic not equal to 2 and C a smooth projective geometrically
integral curve over k. Let π : X → C be an admissible quadric fibration over
k (c.f. [CTS]). Let q be a quadratic form over k(C) defining the generic fibre
of π. Let Nq(k(C)) be the subgroup of k(C)∗ generated by ab where a, b are
values of the quadratic form q over k(C)∗. Let k(C)dn be the subgroup of k(C)∗

consisting of elements f ∈ k(C)∗ such that for every closed point P of C, f
can be written as a product of a unit at P and an element in Nq(k(C)). Then
CH0(X/C) ' k(C)∗dn/k

∗Nq(k(C)) ([CTS]). We have the following ([PS1]):

Theorem 4.1. Let k be a p-adic field and C a smooth projective curve over
k. Let X → C be an admissible quadric fibration. Then CH0(X/C) is a finite
group.

The above theorem was proved in ([CTS]) for dim(X) = 2, 3. We have the
following:

Theorem 4.2. Let k be a finitely generated extension of Qp of transcendence
degree d ≥ 0 and C a smooth projective curve over k. If X → C is an admissible
quadric fibration and dim(X) ≥ 2d+2, then CH0(X/C) = 0.

Proof. Let q be a quadratic form over k(C) defining the generic fibre of the
quadric fibration X → C. Since dim(X) ≥ 2d+2, we have dim(q) ≥ 2d+2 + 1.
Let f ∈ k(C)∗. Since, by (3.5) u(k(C)) = 2d+3, the quadratic form <1, f > ⊗q
is isotropic. In particular f ∈ Nq(k(C). Hence Nq(k(C) = k(C)∗dn = k(C)∗ and
CH0(X/C) = 0.

The above result for p 6= 2 and d = 0 was proved in ([PS2]).

We now discuss connections with the integral Tate conjecture. We refer the
reader to Colloit-Thélène’s expositions on this topic ([CT3], [CT4])

Let F be a finite field and X a smooth, projective, geometrically integral
variety over F of dimension d. Let l be a prime not equal to the characteristic of
F. We have the cycle map CHi(X)⊗ZZl → H2i(X,Zl(i)). The integral version
of Tate Conjecture states that this map is surjective.

Let C be a smooth, projective, geometrically integral curve over F. Let
X be a smooth, projective, geometrically integral variety over F of dimension
d + 1 with a flat morphism X → C with generic fibre Xη/F(C) smooth and
geometrically integral. A theorem of Saito/Colliot-Thélène ([Sa], [C2]) asserts
that if the cycle map CHd(X)⊗Zl → H2d(X,Zl(d)) is onto, then the Brauer-
Manin obstruction is the only obstruction to the local-global principle for the
existence of zero-cycles of degree 1 on Xη.

For a certain class BTate(F) of smooth projective varieties Y , Bruno Kahn
([K]) showed that the cycle map CH2(Y )⊗Zl → H4(Y,Zl(2) is onto if and only
if H3

nr(F(Y )/Y,Ql/Zl(2)) = 0. Suppose Y is a smooth projective variety with a
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dominant morphism Y → X, where X is a smooth geometrically ruled surface,
with generic fibre a smooth conic over F(X). Then Y belongs to BTate(F) ([So]).

Let X be a smooth, projective, geometrically integral surface over a finite
field F of characteristic not equal to 2. Let Y be a smooth, projective, geomet-
rically integral variety over F and a dominant morphism Y → X with generic
fibre a smooth projective conic over F(X). In [PS4], we have shown that the
vanishing of H3

nr(F(Y )/Y, µ2) is equivalent to the local-global principle dis-
cussed in (2.1). This leads to the vanishing of H3

nr(F(Y )/Y, µ2), answering a
question of Colliot-Thélène ([CT3], [CT4]), leading to the following:

Theorem 4.3. Let F be a finite field of characteristic not equal to 2. Let l
be a prime not equal to the characteristic of F. Let X be a smooth, projective,
geometrically ruled surface over F and Y → X a surjective morphism with
generic fibre a smooth conic over F(X). Then the cycle map CH2(Y ) ⊗ Zl →

H4(Y,Zl(2)) is onto.

Corollary 4.4. Let F be a finite field of characteristic not equal to 2. Let C
be a smooth, projective, geometrically integral curve over F and Y a smooth,
geometrically integral 3-fold with a dominant morphism Y → C × P1. Let Yη

be the generic fibre of the composite morphism Y → C × P1 → C. Then the
Brauer-Manin obstruction is the only obstruction to the existence of zero-cycles
of degree one on Yη.
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1. Introduction

Fix p a prime number and Qp an algebraic closure of the field of p-adic numbers
Qp. Let ` 6= p be another prime number and Q` an algebraic closure of Q`. If F is
a field which is a finite extension of Qp and n a positive integer, the celebrated
local Langlands programme for GLn ([48], [37], [38]) establishes a “natural”
1 − 1 correspondence between certain Q`-linear continuous representations ρ
of the Galois group Gal(Qp/F ) on n-dimensional Q`-vector spaces and certain
Q`-linear locally constant (or smooth) irreducible representations π of GLn(F )
on (usually infinite dimensional) Q`-vector spaces. This local correspondence is
moreover compatible with reduction modulo ` ([68]) and with cohomology ([49],
[23], [37]). By “compatible with cohomology”, we mean here that there exist
towers of algebraic (Shimura) varieties (S(K))K over F of dimension d indexed
by compact open subgroups K of GLn(F ) on which GLn(F ) acts on the right
and such that the natural action of GLn(F )×Gal(Qp/F ) on the inductive limit
of `-adic étale cohomology groups:

lim
−→

K

Hd
ét(S(K)×F Qp,Q`) (1)
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makes it a direct sum of representations π⊗ρ where ρmatches π by the previous
local correspondence. (One can also take étale cohomology with values in certain
locally constant sheaves of finite dimensional Q`-vector spaces.)

Now GLn(F ) is a topological group (even a p-adic Lie group) and by [69] one
can replace the above locally constant irreducible representations π of GLn(F )
on Q`-vector spaces by continuous topologically irreducible representations π̂
of GLn(F ) on `-adic Banach spaces (by a completion process which turns out
to be reversible). This is quite natural as it gives now a 1 − 1 correspondence
between two kinds of continuous `-adic representations. The original aim of the
local p-adic Langlands programme is to look for a possible p-adic analogue of
this `-adic correspondence, that is:

Can one match certain linear continuous representations ρ of the Galois
group Gal(Qp/F ) on n-dimensional Qp-vector spaces to certain linear contin-
uous representations π̂ of GLn(F ) on p-adic Banach spaces, in a way that is
compatible with reduction modulo p, with cohomology, and also with “p-adic
families”?

It turns out that such a nice p-adic correspondence indeed exists between
2-dimensional representations of Gal(Qp/Qp) and certain continuous represen-
tations of GL2(Qp) on “unitary p-adic Banach spaces” (that is, with an invari-
ant norm) which satisfies all of the above requirements. Based on the work of
precursors ([50], [1], [2]) and on the papers [67], [59], [60], [61], the first cases
were discovered and studied by the author in [6], [7], [8], [9], [15] and a partial
programme was stated for GL2(Qp) in [8]. The local p-adic correspondence for
GL2(Qp), together with its compatibility with “p-adic families” and with reduc-
tion modulo p, was then fully developed, essentially by Colmez, in the papers
[19], [5], [3], [20], [21] after Colmez discovered that the theory of (ϕ,Γ)-modules
was a fundamental intermediary between the representations of Gal(Qp/Qp)
and the representations of GL2(Qp) (see Berger’s Bourbaki talk [4] and [12]
for a historical account). These local results already have had important global
applications by work of Kisin ([45]) and Emerton ([28]) as, combined with de-
formations techniques, they provide an almost complete proof of the Fontaine-
Mazur conjecture ([31]). Finally, the important compatibility with cohomology
is currently being written in [28]. Note that the relevant cohomology in that set-
ting is not (1) but rather its p-adic completion, which is a much more intricate
representation. Such p-adically completed cohomology spaces were introduced
by Emerton in [24] (although some cases had been considered before, see, e.g.,
[51]). Their study as continuous representations of GLn(F )×Gal(Qp/F ) seems
a mammoth task which is sometimes called the “global p-adic Langlands pro-
gramme” (as these cohomology spaces are of a global nature). We sum up some
of these results for GL2(Qp) in §2.

At about the same time as the p-adic and modulo p theories for GL2(Qp)
were definitely flourishing, the theory modulo p for GL2(F ) and F 6= Qp was
discovered in [16], much to the surprise of everybody, to be much more involved.
Although nothing really different happens on the Galois side when one goes from
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Qp to F , the complications on the GL2 side are roughly twofold: (i) there are
infinitely many smooth irreducible (admissible) representations of GL2(F ) over
any finite field containing the residue field of F (whereas when F = Qp there is
only a finite number of them) and (ii) the vast majority of them are much harder
to study than for F = Qp. In particular (i) has the consequence that there is
no possible naive 1− 1 correspondence as for the F = Qp case and (ii) has the
consequence that no one so far has been able to find an explicit construction
of one single irreducible representation of GL2(F ) that isn’t a subquotient of
a principal series. The p-adic theory shouldn’t be expected to be significantly
simpler ([54]). And yet, cohomology spaces analogous to (1) are known to exist
and to support interesting representations of GL2(F ) over Fp (where Fp is an
algebraic closure of the finite field Fp) as well as related representations of
Gal(Qp/F ), but the representations of GL2(F ) occuring there seem to be of a
very special type. We report on these phenomena in §3.

We then conclude this non-exhaustive survey in §4 more optimistically by
mentioning, among other scattered statements, three theorems or conjectures
available for GLn(F ) that give some kind of (p-adic or modulo p) relations
between the Gal(Qp/F ) side and the GLn(F ) side. Although they are quite far
from any sort of correspondence, these statements are clearly part of the p-adic
Langlands programme and will probably play a role in the future.

One word about the title. Strangely, the terminology “p-adic Langlands cor-
respondence/programme” started to spread (at least in the author’s memory)
only shortly after preprints of [6], [7], [8], [9], [14], [19], [24], [53], [59], [60], [61],
[70] were available (that is, around 2004), although of course p-adic considera-
tions on automorphic forms (e.g., congruences modulo p between automorphic
forms, p-adic families of automorphic forms) had begun years earlier with the
fundamental work of Serre, Katz, Mazur, Hida, Coleman, etc. Maybe one of
the reasons was that an important difference between the above more recent
references and older ones was the focus on (i) topological group representa-
tion theory “à la Langlands” and (ii) purely p-adic aspects in relation with
Fontaine’s classifications of p-adic Galois representations.

The present status of the p-adic Langlands programme so far is thus the
following: almost everything is known for GL2(Qp) but most of the experts
(including the author) are quite puzzled by the apparent complexity of whatever
seems to happen for any other group. The only certainty one can have is that
much remains to be discovered!

Let us introduce some notations. Recall that Qp (resp. Fp) is an algebraic
closure of Qp (resp. Fp). If K is a finite extension of Qp, we denote by OK its
ring of integers, by $K a uniformizer in OK and by kK := OK/($KOK) its
residue field.

Throughout the text, we denote by F a finite extension of Qp inside Qp, by
q = pf the cardinality of kF and by e = [F : Qp]/f the ramification index of
F . For x ∈ F×, we let |x| := q−valF (x) where valF (p) := e. The Weil group of
F is the subgroup of Gal(Qp/F ) of elements w mapping to an integral power
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d(w) of the arithmetic Frobenius of Gal(Fp/Fp) (that is, x 7→ xp) via the map
Gal(Qp/F ) → Gal(Fp/Fp).

Representations always take values either in E-vector spaces, inOE-modules
or in kE-vector spaces where E is always a “sufficiently big” finite extension
of Qp. By “sufficiently big”, we mean big enough so that we do not have to
deal with rationality issues. For instance irreducible always means absolutely
irreducible, we always assume |Hom(F,E)| = |Hom(F,Qp)|, |Hom(kF , kE)| =
|Hom(kF ,Fp)|, etc.

We normalize the reciprocity map F× ↪→ Gal(Qp/F )
ab of local class field

theory by sending inverses of uniformizers to arithmetic Frobeniuses. Via this
map, we consider without comment Galois characters as characters of F× by
restriction. We denote by ε : Gal(Qp/Qp) → Z×

p the p-adic cyclotomic character
and by ω its reduction modulo p. Seen as a character of Q×

p , ε is the identity
on Z×

p and sends p to 1.

If A is any Z-algebra, we denote by B(A) (resp. T (A)) the upper triangular
matrices (resp. the diagonal matrices) in GLn(A). We denote by I (resp. I1)
the Iwahori subgroup (resp. the pro-p Iwahori subgroup) of GLn(OF ), that is,
the matrices of GLn(OF ) that are upper triangular modulo $F (resp. upper
unipotent modulo $F ).

A smooth representation of a topological group is a representation such that
any vector is fixed by a non-empty open subgroup. A smooth representation of
GLn(OF ) over a field is admissible if its subspace of invariant elements under
any open (compact) subgroup of GLn(OF ) is finite dimensional. We recall that
the socle of a smooth representation of a topological group over a field is the
(direct) sum of all its irreducible subrepresentations.

We call a Serre weight for GLn(OF )F
× any smooth irreducible representa-

tion of GLn(OF )F
× over kE . In particular, a Serre weight is finite dimensional,

F× acts on it by a character and its restriction to GLn(OF ) is irreducible. In
other references (e.g., [18] or [39]), a Serre weight is just a smooth irreducible
representation of GLn(OF ) over kE ; however, in all representations we con-
sider, F× acts by a character, and it is very convenient to extend the action to
GLn(OF )F

×.

2. The Group GL2(Qp)

We assume here F = Qp. The p-adic Langlands programme for GL2(Qp) and
2-dimensional representations of Gal(Qp/Qp) is close to being finished. We sum
up below some of the local and global aspects of the theory.

2.1. The modulo p local correspondence. We first describe the
modulo p Langlands correspondence for GL2(Qp) (at least in the “generic”
case), which is much easier than the p-adic one and which was historically
found before.
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Let σ be a Serre weight for GL2(Zp)Q
×
p and denote by:

c− Ind
GL2(Qp)

GL2(Zp)Q
×

p

σ

the kE-vector space of functions f : GL2(Qp) → σ which have compact sup-
port modulo Q×

p and such that f(kg) = σ(k)(f(g)) for (k, g) ∈ GL2(Zp)Q
×
p ×

GL2(Qp). We endow this space with the left and smooth action of GL2(Qp)
defined by (gf)(g′) := f(g′g). By a standard result, one has ([2]):

EndGL2(Qp)

(
c− Ind

GL2(Qp)

GL2(Zp)Q
×

p

σ
)
= kE [T ]

for a certain Hecke operator T . One then defines:

π(σ, 0) :=
(
c− Ind

GL2(Qp)

GL2(Zp)Q
×

p

σ
)
/(T ).

One can prove that the representations π(σ, 0) are irreducible and admissible
([6]). The representations π(σ, 0) form the so-called supersingular representa-
tions of GL2(Qp).

Let χi : Q×
p → k×E , i ∈ {1, 2} be smooth multiplicative characters and

define:

χ1 ⊗ χ2 : B(Qp) → k×E(
a b
0 d

)
7→ χ1(a)χ2(d).

Denote by:

Ind
GL2(Qp)

B(Qp)
χ1 ⊗ χ2

the kE-vector space of locally constant functions f : GL2(Qp) → kE such that
f(hg) = (χ1 ⊗ χ2)(h)f(g) for (h, g) ∈ B(Qp)×GL2(Qp). We endow this space
with the same left and smooth action of GL2(Qp) as previously. The repre-

sentations Ind
GL2(Qp)

B(Qp)
χ1 ⊗ χ2 are admissible. They are irreducible if χ1 6= χ2

and have length 2 otherwise ([1], [2]). They form the so-called principal series.
The supersingular representations together with the Jordan-Hölder factors of
the principal series exhaust the smooth irreducible representations of GL2(Qp)
over kE with a central character ([2], [6]).

Theorem 2.1. For χ1 6= χ2 and χ1 6= χ2ω
±1 the kE-vector space:

Ext1GL2(Qp)

(
Ind

GL2(Qp)

B(Qp)
χ1 ⊗ χ2ω

−1, Ind
GL2(Qp)

B(Qp)
χ2 ⊗ χ1ω

−1
)

has dimension 1.
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Proof. This follows for instance from [16, Cor.8.6] but other (and earlier) proofs
can be found in [27] and [21, §VII].

Note that the assumptions on χi imply that both principal series in Theorem
2.1 are irreducible distinct (and hence that any extension between them has
their central character) and that Ext1

Gal(Qp/Qp)
(χ2, χ1) also has dimension 1.

For g in the inertia subgroup of Gal(Qp/Qp), let:

ω2(g) :=
g( p2−1

√−p)
p2−1

√−p ∈ µp2−1(Qp)
∼→ F×

p2 ↪→ k×E

be Serre’s level 2 fundamental character (where the first map is reduction
modulo p and where we choose an arbitrary field embedding Fp2 ↪→ kE). For
0 ≤ r ≤ p − 1, we denote by σr the unique Serre weight for GL2(Zp)Q

×
p such

that σr(p) = 1 and σr has dimension r + 1 (in fact σr|GL2(Zp) ' Symr(k2E)).
For 0 ≤ r ≤ p − 1, we denote by ρr the unique continuous representation of
Gal(Qp/Qp) over kE such that its determinant is ωr+1 and its restriction to

inertia is ωr+1
2 ⊕ ω

p(r+1)
2 .

The modulo p local correspondence for GL2(Qp) can be defined as follows.

Definition 2.2. (i) For 0 ≤ r ≤ p − 1 and χ : Gal(Qp/Qp) → k×E , the repre-
sentation π(σr, 0)⊗ (χ ◦ det) corresponds to ρr ⊗ χ.
(ii) For χ1 /∈ {χ2, χ2ω

±1} the representation associated to the unique non-split
(resp. split) extension in:

Ext1GL2(Qp)

(
Ind

GL2(Qp)

B(Qp)
χ1 ⊗ χ2ω

−1, Ind
GL2(Qp)

B(Qp)
χ2 ⊗ χ1ω

−1
)

corresponds to the representation associated to the unique non-split (resp. split)
extension in Ext1

Gal(Qp/Qp)
(χ2, χ1).

For more general 2-dimensional reducible representations of Gal(Qp/Qp),
the corresponding representations of GL2(Qp) are a bit more subtle to define
and we refer the reader to [27] or [21, §VII]. When representations (on both
side) are semi-simple, the above correspondence was first defined in [6]. Note
that Definition 2.2 requires one to check that whenever there is an isomorphism
between the GL2(Qp)-representations involved, the corresponding Galois rep-
resentations are also isomorphic. The correspondence of Definition 2.2 (without
restrictions on the χi) can now be realized using the theory of (ϕ,Γ)-modules
(see §2.3), which makes it much more natural.

2.2. Over E: first properties. We now switch to continuous represen-
tations of GL2(Qp) over E and explain the first properties of the p-adic local
correspondence for GL2(Qp).

We fix a p-adic absolute value | · | on E extending the one on F = Qp and
recall that a (p-adic) norm on an E-vector space V is a function ‖·‖ : V → R≥0
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such that ‖v‖ = 0 if and only if v = 0, ‖λv‖ = |λ|‖v‖ (λ ∈ E, v ∈ V ) and
‖v+w‖ ≤ Max(‖v‖, ‖w‖) (v, w ∈ V ). Any norm on V defines a metric ‖v−w‖
which in turns defines a topology on V by the usual recipe. A (p-adic) Banach
space over E is an E-vector space endowed with a topology coming from a norm
and such that the underlying metric space is complete. All norms on a Banach
space over E defining its topology are equivalent.

Definition 2.3. (i) A Banach space representation of a topological group G
over E is a Banach space B over E together with a linear action of G by
continuous automorphisms such that the natural map G×B → B is continuous.
(ii) A Banach space representation B of G over E is unitary if there exists a
norm ‖ · ‖ on B defining its topology such that ‖gv‖ = ‖v‖ for all g ∈ G and
v ∈ B.

If G is compact, any Banach space representation of G is unitary but this
is not true if G is not compact, e.g., G = GL2(Qp). Let B be a unitary Banach
space representation of G and B0 := {v ∈ B, ‖v‖ ≤ 1} the unit ball with
respect to an invariant norm on B (giving its topology); then B0 ⊗OE

kE is
a smooth representation of G over kE . A unitary Banach space representation
of GL2(Qp) is said to be admissible if B0 ⊗OE

kE is admissible. This does
not depend on the choice of B0 ([60, §3], [8, §4.6]). The category of unitary
admissible Banach space representations of GL2(Qp) over E is abelian ([60]).

To any Banach space representation B of GL2(Qp) over E, one can associate
two subspaces Balg ⊂ Ban which are stable under GL2(Qp). We define Ban ⊂ B
(the locally analytic vectors) to be the subspace of vectors v ∈ B such that the
function GL2(Qp) → B, g 7→ gv is locally analytic in the sense of [61]. We define
Balg ⊂ Ban (the locally algebraic vectors) to be the subspace of vectors v ∈ B
for which there exists a compact open subgroup H ⊂ GL2(Qp) such that the H-
representation 〈H ·v〉 ⊂ B|H is isomorphic to a direct sum of finite dimensional
(irreducible) algebraic representations of H. In general one has Balg = 0, but
if B is admissible as a representation of the compact group GL2(Zp) it is a
major result due to Schneider and Teitelbaum (which holds in much greater
generality) that the subspace Ban is never 0 and is even dense in B ([62]).

Inspired by the modulo p correspondence of Definition 2.2 and by lots of
computations on locally algebraic representations of GL2(Qp) ([7], [15]), the
author suggested in [8, §1.3] (see also [25, §3.3]) the following partial “pro-
gramme”.

Fix V a linear continuous potentially semi-stable 2-dimensional representa-
tion of Gal(Qp/Qp) over E with distinct Hodge-Tate weights w1 < w2. As in
§4.1 below, following Fontaine ([30]) one can associate to V a Weil-Deligne rep-
resentation to which (after semi-simplifying its underlying Weil representation)
one can in turn attach a smooth admissible infinite dimensional representation
π of GL2(Qp) over E by the classical local Langlands correspondence (slightly

modified as in §2.4 or §4.1 below). We denote by V
ss

the semi-simplification of
V 0 ⊗OE

kE where V 0 is any Galois OE-lattice in V . To V one should be able
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to attach an admissible unitary Banach space representation B(V ) of GL2(Qp)
over E satisfying the following properties:

(i) V ' V ′ if and only if B(V ) ' B(V ′) if and only if B(V )an ' B(V ′)an;

(ii) if V is irreducible then B(V ) is topologically irreducible; if V is reducible
and indecomposable (resp. semi-simple) then B(V ) is reducible and inde-
composable (resp. semi-simple);

(iii) for any unit ball B0 ⊂ B(V ) preserved by GL2(Qp), the semi-

simplification of B0 ⊗OE
kE corresponds to V

ss
under the modulo p cor-

respondence of Definition 2.2;

(iv) the GL2(Qp)-subrepresentation B(V )alg is isomorphic to:

detw1 ⊗E Symw2−w1−1(E2)⊗E π.

When V is irreducible, (ii) and (iv) imply that B(V ) is a suitable completion
of the locally algebraic representation B(V )alg = detw1 ⊗E Symw2−w1(E2)⊗E π
with respect to an invariant norm. This property is the basic idea which initially
motivated the above programme: what is missing to recover V from w1, w2

and its associated Weil-Deligne representation, or equivalently from B(V )alg,
is a certain weakly admissible Hodge filtration ([22]). This missing data should
precisely correspond to an invariant norm on B(V )alg. For instance, when V
is irreducible and becomes crystalline over an abelian extension of Qp, such
a filtration turns out to be unique (see, e.g., [32, §3.2]). Correspondingly one
finds that there is a unique class of invariant norms on B(V )alg in that case ([5,
§5.3], [55]).

The first instances of B(V ) were constructed “by hand” for V semi-stable
and small values of w2−w1 in [7], [8] and [9]. Shortly after these examples were
worked out, Colmez discovered that there was a way to define B(V ) directly
out of Fontaine’s (ϕ,Γ)-module of V ([19], [5]), thus explaining the above basic
idea and also the compatibility (iii) with Definition 2.2 (the latter was checked
in detail by Berger [3]). Using the (ϕ,Γ)-module machinery, Colmez was ul-
timately able to fulfil the above programme and even to associate a B(V ) to
any linear continuous 2-dimensional representation V of Gal(Qp/Qp) over E. It
was then recently proved by Paškūnas that these B(V ) and their Jordan-Hölder
constituents essentially exhaust all topologically irreducible admissible unitary
Banach space representations of GL2(Qp) over E.

2.3. (ϕ,Γ)-modules and the theorems of Colmez and of
Paškūnas. We first briefly recall what a (ϕ,Γ)-module is ([30]) and then
state the main results on the Banach space representations B(V ).

Let Γ := Gal(Qp(
p∞
√
1)/Qp) and note that the p-adic cyclotomic character

ε canonically identifies Γ with Z×
p . If a ∈ Z×

p , let γa ∈ Γ be the unique element

such that ε(γa) = a. Let OE [[X]][ 1X ]∧ be the p-adic completion of OE [[X]][ 1X ]
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equipped with the unique ring topology such that a basis of neighbourhoods of
0 is: (

pnOE [[X]]

[
1

X

]∧
+XmOE [[X]]

)

n≥0,m≥0

.

We endow OE [[X]][ 1X ]∧ with the unique OE-linear continuous Frobenius ϕ such
that ϕ(Xj) := ((1+X)p−1)j (j ∈ Z) and with the unique OE-linear continuous
action of Γ such that (a ∈ Z×

p ):

γa(X
j) := ((1 +X)a − 1)j =

(
+∞∑

i=1

a(a− 1) · · · (a− i+ 1)

i!
Xi

)j
.

We extend ϕ and Γ by E-linearity to the field OE [[X]][ 1X ]∧[ 1p ]. Note that the

actions of ϕ and Γ commute and preserve the subring OE [[X]].
A (ϕ,Γ)-module over OE [[X]][ 1X ]∧ (resp. OE [[X]][ 1X ]∧[ 1p ]) is an

OE [[X]][ 1X ]∧-module of finite type (resp. an OE [[X]][ 1X ]∧[ 1p ]-vector space

of finite dimension) D equipped with the topology coming from that on
OE [[X]][ 1X ]∧ together with a homomorphism ϕ : D → D such that ϕ(sd) =
ϕ(s)ϕ(d) and with a continuous action of Γ such that γ(sd) = γ(s)γ(d) and
γ ◦ ϕ = ϕ ◦ γ (s ∈ OE [[X]][ 1X ]∧ or OE [[X]][ 1X ]∧[ 1p ], d ∈ D, γ ∈ Γ). A (ϕ,Γ)-

module over OE [[X]][ 1X ]∧ or OE [[X]][ 1X ]∧[ 1p ] is said to be étale if moreover
the image of ϕ generates D, in which case ϕ is automatically injective. There
is a third important OE-linear map ψ : D → D on any étale (ϕ,Γ)-module

D defined by ψ(d) := d0 if d =
∑p−1
i=0 (1 + X)iϕ(di) ∈ D (any d determines

uniquely such di ∈ D as D is étale). The map ψ is surjective, commutes with
Γ and satisfies by definition (ψ ◦ ϕ)(d) = d. The main theorem is the following
equivalence of categories due to Fontaine (we won’t need more details here, see
[29]).

Theorem 2.4. There is an equivalence of categories between the category of
OE-linear continuous representations of Gal(Qp/Qp) on finite type OE-modules
(resp. on finite dimensional E-vector spaces) and étale (ϕ,Γ)-modules over
OE [[X]][ 1X ]∧ (resp. over OE [[X]][ 1X ]∧[ 1p ]).

If T (resp. V ) is an OE-linear continuous representation of Gal(Qp/Qp) on a
finite type OE-module (resp. on a finite dimensional E-vector space), we denote
byD(T ) (resp.D(V )) the corresponding (ϕ,Γ)-module over OE [[X]][ 1X ]∧ (resp.
over OE [[X]][ 1X ]∧[ 1p ]).

Let V be any linear continuous 2-dimensional representation of Gal(Qp/Qp)
over E and χ : Q×

p → O×
E any continuous character. For d ∈ D(V )ψ=0 := {d ∈

D(V ), ψ(d) = 0}, one can prove that the formula:

wχ(d) := lim
n→+∞

∑

i∈Z
×

p mod pn

χ(i)−1(1 +X)iγ−i2
(
ϕnψn

(
(1 +X)−i

−1

d
))
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converges in D(V )ψ=0 and that w2
χ(d) = d ([21, §II]). One defines the following

E-vector space (recalling that (1− ϕψ)(D(V )) ⊆ D(V )ψ=0):

D(V )�χ P1 := {(d1, d2) ∈ D(V )×D(V ), (1− ϕψ)(d1) = wχ
(
(1− ϕψ)(d2)

)
}.

Note that (d1, d2) ∈ D(V )�χ P
1 is determined by ϕψ(d1) and d2, or by d1 and

ϕψ(d2). One can show that the following formulas define an action of the group
GL2(Qp) on D(V )�χ P1 (even if V has dimension ≥ 2):

(i) if a ∈ Q×
p ,
(
a 0
0 a

)
(d1, d2) := (χ(a)d1, χ(a)d2);

(ii) if a ∈ Z×
p ,
(
a 0
0 1

)
(d1, d2) := (γa(d1), χ(a)γa−1(d2));

(iii)
(
0 1
1 0

)
(d1, d2) := (d2, d1);

(iv)
(
p 0
0 1

)
(d1, d2) is the unique element (d′1, d

′
2) of D(V ) �χ P1 such that

ϕψ(d′1) := ϕ(d1) and d
′
2 := χ(p)ψ(d2);

(v) if b ∈ pZp,
(
1 b

0 1

)
(d1, d2) is the unique element (d′1, d

′
2) of D(V ) �χ P1

such that d′1 := (1 +X)bd1 and:

ϕψ(d′2) := χ(1+b)−1(1+X)−1wχ

(

γ1+b

(

(1 +X)bwχ

(

1 +X)(1+b)−1

ϕψ(d2)
)))

.

All of the above mysterious formulas were first discovered in the case V crys-
talline, where everything can be made very explicit ([5], [19]), and then extended
more or less verbatim to any V .

For any étale (ϕ,Γ)-moduleD over OE [[X]][ 1X ]∧, letD\ ⊂ D be the smallest
compact OE [[X]]-submodule which generates D over OE [[X]][ 1X ]∧ and which
is preserved by ψ (one can prove that such a module exists). If D is an étale
(ϕ,Γ)-module over OE [[X]][ 1X ]∧[ 1p ], choose any lattice D0 ⊂ D, that is any

étale (ϕ,Γ)-module D0 which is free over OE [[X]][ 1X ]∧ and generates D, and

let D\ := D\
0[

1
p ]. Going back to our 2-dimensional V , for (d1, d2) ∈ D(V )�χ P

1

and n ∈ Z≥0, let (d
(n)
1 , d

(n)
2 ) :=

(
pn 0
0 1

)
(d1, d2) ∈ D(V ) �χ P1. Note that from

the iteration of (iv) above and from ψ ◦ϕ = Id, one gets ψ(d
(n+1)
1 ) = d

(n)
1 . One

then defines the following subspace of D(V )�χ P1:

D(V )\ �χ P1 := {(d1, d2) ∈ D(V )�χ P1, d
(n)
1 ∈ D(V )\ for all n ∈ Z≥0}.

Now let χ(x) = χV (x) := (x|x|)−1det(V )(x) (x ∈ Q×
p ). It turns out that,

for such a χ, D(V )\ �χ P1 is preserved by GL2(Qp) inside D(V ) �χ P1. The
stability of the subspace D(V )\ �χV

P1 by GL2(Qp) is the most subtle part of
the theory and, so far, the only existing proof (following a suggestion of Kisin)
is by analytic continuation from the crystalline case (see [21, §II.3]).

We can now state the main theorem giving the local p-adic Langlands cor-
respondence for GL2(Qp) in the case V is irreducible ([21]).
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Theorem 2.5. Assume V is irreducible. Then the quotient:

B(V ) := D(V )�χV
P1/D(V )\ �χV

P1

together with the induced action of GL2(Qp) above is naturally an admissible
unitary topologically irreducible Banach space representation of GL2(Qp) over
E satisfying properties (i) to (iii) of §2.2. Moreover, B(V )alg 6= 0 if and only
if V is potentially semi-stable with distinct Hodge-Tate weights, and B(V ) then
satisfies property (iv)1 of §2.2.

A unit ball of B(V ) is B(T ) := D(T ) �χV
P1/D(T )\ �χV

P1 where T ⊂ V
is any Galois OE-lattice (one can extend all the previous constructions with
D(T ) instead of D(V )). For the second part of property (i) of §2.2, one has
to use that the subspace B(V )an ⊂ B(V ) of locally analytic vectors admits an
analogous construction in terms of the (ϕ,Γ)-module of V over the Robba ring
([21, §V.2]). When V is reducible, a reducible B(V ) can also be constructed as
an extension between two continuous principal series in a way analogous to (ii)
of Definition 2.2 (see [19] or [27] or [47], see also [46]).

There is a nice functorial way to recover in all cases D(T ) from B(T ) (and
hence D(V ) from B(V )) as follows. Let n ∈ Z>0, T

∨ := HomOE
(T,OE) and

let σ ⊂ B(T∨)/pnB(T∨) be any OE-submodule of finite type that generates
B(T∨)/pnB(T∨) as a GL(Qp)-representation (such a σ exists as a consequence
of property (iii) of §2.2). Consider the OE/p

nOE-module:

HomOE/pnOE

(
∑

m≥0

(
pm Zp
0 1

)
σ,OE/p

nOE

)
(2)

where the left entry is the OE/p
nOE-submodule of B(T∨)/pnB(T∨) generated

by σ under the matrices
(
pm a

0 1

)
, a ∈ Zp,m ∈ Z≥0. The natural action of

(
1 Zp
0 1

)

(resp. of
(

Z
×

p 0

0 1

)
) on

∑
m≥0

(
pm Zp
0 1

)
σ makes (2) a module over the Iwasawa

algebra OE [[
(
1 Zp
0 1

)
]] = OE [[Zp]] = OE [[X]] where X := [

(
1 1
0 1

)
] − 1 (resp.

endows (2) with an action of Γ ' Z×
p ). After tensoring (2) by OE [[X]][ 1X ]∧

over OE [[X]], one can moreover define a natural Frobenius ϕ coming from
the action of

(
p−1 0
0 1

)
. The final result turns out to be an étale (ϕ,Γ)-module

over OE [[X]][ 1X ]∧ (killed by pn) which is independent of the choice of σ and
isomorphic to D(T )/pnD(T ) ([21, §IV]). One then recovers D(T ) by taking the
projective limit over n.

This last functor B(T ) 7→ D(T ) has revealed itself to be of great importance.
For instance it allowed Kisin to give in many cases another construction of B(V )
more amenable to deformation theory ([46]) and it was a key ingredient in

1Some of the arguments of [21] here rely on the global results of [28], in particular on
Theorem 2.7 below. Hence property (iv) might not yet be completely proven in a few cases

like p = 2 or V
ss ∼=

(

1 0
0 ω

)

or
(

1 0
0 1

)

up to twist, etc.
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Kisin’s or Emerton’s proof of almost all cases of the Fontaine-Mazur conjecture
([45], [28]). Together with Kisin’s construction, it was also used by Paškūnas
to recently prove the following nice theorem ([56]):

Theorem 2.6. Assume p ≥ 5, then the above functor B(T ) 7→ D(T ) induces
(after tensoring by E) a bijection between isomorphism classes of:

(i) admissible unitary topologically irreducible Banach space representations
of GL2(Qp) over E which are not subquotients of continuous parabolic
inductions of unitary characters;

(ii) irreducible 2-dimensional continuous representations of Gal(Qp/Qp) over
E.

Finally, let us mention that this functor has been extended to a more general
setting in [64].

2.4. Local-global compatibility. The local correspondence of §2.3
turns out to be realized on suitable cohomology spaces of (towers of) modular
curves. This aspect, usually called “local-global compatibility” (as the coho-
mology spaces have a global origin), is the deepest and most important part of
the theory.

Denote by A the adèles of Q, Af ⊂ A the finite adèles and A
p
f ⊂ Af the finite

adèles outside p. For any compact open subgroup Kf of GL2(Af ), consider the
following complex curve:

Y (Kf )(C) := GL2(Q)\GL2(A)/KfR
×SO2(R).

For varying Kf , (Y (Kf )(C))Kf
forms a projective system on which GL2(Af )

naturally acts on the right (g ∈ GL(Af ) maps Y (Kf )(C) to Y (g−1Kfg)(C)).
Likewise, for each fixed compact open subgroup Kp

f ⊂ GL2(A
p
f ) and varying

compact open subgroups Kf,p of GL2(Qp), (Y (Kp
fKf,p)(C))Kf,p

forms a pro-
jective system on which GL2(Qp) acts on the right. One considers the following
“completed cohomology spaces”:

Ĥ1(Kp
f ) :=

(
lim
←−

n

lim
−→

Kf,p

H1
(
Y (Kp

fKf,p)(C),OE/p
nOE

))
⊗OE

E

Ĥ1 := lim
−→

Kp

f

Ĥ1(Kp
f )

where H1 is usual Betti cohomology and where Kf,p (resp. Kp
f ) runs over the

compact open subgroups of GL(Qp) (resp. of GL(Apf )). The group GL2(Qp)

(resp. GL2(Af )) acts on Ĥ1(Kp
f ) (resp. on Ĥ1) and one can prove that each

Ĥ1(Kp
f ) is an admissible unitary Banach space representation of GL2(Qp) over

E, an open unit ball being given by lim
←−

lim
−→

H1
(
Y (Kp

fKf,p)(C),OE/p
nOE

)
(this
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result, due to Emerton, actually holds in much greater generality, see [24, §2]).
Moreover, all the Betti cohomology spaces H1

(
Y (Kp

fKf,p)(C),OE/p
nOE

)
can

be identified with étale cohomology spaces, in particular they carry a natural
action of Gal(Q/Q). We thus also have a (commuting) action of Gal(Q/Q) on

Ĥ1(Kp
f ) and Ĥ

1.

Let ρ : Gal(Q/Q) → GL2(E) be a linear continuous representation (where
Q is an algebraic closure of Q) and for each prime number ` let ρ` be the
restriction of ρ to a decomposition group at `. By the classical local Langlands
correspondence as in [38], if ` 6= p one can associate to ρ` (after maybe semi-
simplifying the action of Frobenius) a smooth irreducible representation π′

` of
GL2(Q`) over E. We slightly modify π′

` as follows: if π
′
` is infinite dimensional,

we let π`(ρ`) := π′
`⊗| det |− 1

2 . If π′
` is finite dimensional (that is, 1-dimensional),

we let π`(ρ`) be the unique principal series which has π′
` ⊗ | det |− 1

2 as unique

irreducible quotient (π`(ρ`) is a non-split extension of π′
`⊗| det |− 1

2 by a suitable
twist of the Steinberg representation). For ` = p, recall we have the unitary
admissible Banach space representation B(ρp) of §2.3. The following theorem
is currently being proven by Emerton ([28]).

Theorem 2.7. Let ρ : Gal(Q/Q) → GL2(E) be a linear continuous rep-
resentation which is unramified outside a finite set of primes and such that
the determinant of one (or equivalently any) complex conjugation is −1. Let
ρ : Gal(Q/Q) → GL2(kE) be the semi-simplification modulo p of ρ. Assume
p > 2, ρ|Gal(Q/Q( p

√
1)) irreducible and ρ|Gal(Qp/Qp)

�
(
1 ∗

0 ω

)
or
(
1 ∗

0 1

)
up to

twist. Then the GL2(Af )-representation HomGal(Q/Q)(ρ, Ĥ
1) decomposes as a

restricted tensor product:2

HomGal(Q/Q)(ρ, Ĥ
1) ' B(ρp)⊗E

(
⊗′
` 6=p π`(ρ`)

)
.

Note that this theorem in particular states that HomGal(Q/Q)(ρ, Ĥ
1) is al-

ways non-zero. It is thus at the same time a local-global compatibility re-
sult and a modularity result! When ρ comes from a modular form (so that

one already knows HomGal(Q/Q)(ρ, Ĥ
1) 6= 0) and when moreover ρp is semi-

stable, it was proven in [8], [5] and [13] that, for a suitable Kp
f , one has

HomGal(Q/Q)(ρ, Ĥ
1(Kp

f )) ' B(ρp). These results were the first cohomological

incarnations of the representations B(V ) of §2.3. Note that the case where ρp
is crystalline and irreducible is easy here. Indeed, as ρ is modular, one knows
that the locally algebraic representation detw1 ⊗E Symw2−w1−1(E2)⊗E πp (see

property (iv) of §2.2) embeds into Ĥ1(Kp
f ) and its closure has to be B(ρp) since

this Banach space is its only unitary completion (see the end of §2.2).

2Depending on normalizations, one may have to replace ρp and the ρ` here by their duals
or their Cartier duals.
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The proof of Theorem 2.7 uses many ingredients, such as the aforementioned
local-global compatibility in the crystalline case, the density in the space of all
ρ of those ρ such that ρp is crystalline, Serre’s modularity conjecture ([44]),
Colmez’s last functor at the end of §2.3, Mazur’s deformation theory, Kisin’s
construction of D(V ) ([46]), etc. In fact, Theorem 2.7 is a consequence of an

even stronger result giving a full description of the GL2(Af )-representation Ĥ
1
ρ

(where Ĥ1
ρ is the localization of Ĥ1 at the maximal Hecke ideal defined by ρ)

and not just of HomGal(Q/Q)(ρ, Ĥ
1) = HomGal(Q/Q)(ρ, Ĥ

1
ρ ) ([28]).

3. The Group GL2(F )

After the group GL2(Qp), it is natural to look at the group GL2(F ), where
many new phenomena appear and where the theory is thus still in its infancy.
We describe below some of these new aspects, starting with the modulo p theory.

3.1. Why the GL2(Qp) theory cannot extend directly. Let

us start with reducible 2-dimensional representations of Gal(Qp/F ) over kE .
One of the first naive hopes in order to extend the modulo p Langlands corre-
spondence from GL2(Qp) to GL2(F ) in that case (see (ii) of Definition 2.2) was
the following: since, if F = Qp, the unique non-split (resp. split) Gal(Qp/Qp)-
extension: (

χ1 ∗
0 χ2

)

corresponds to the unique non-split (resp. split) GL2(Qp)-extension:

0 −→ Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1 −→ ∗ −→ Ind
GL2(F )
B(F ) χ1 ⊗ χ2ω

−1 −→ 0

(at least in “generic” cases) then for general F the space of extensions:

Ext1
Gal(Qp/F )

(χ2, χ1)

(which has generic dimension [F : Qp]) would hopefully be (canonically) iso-
morphic to the space of extensions:

Ext1GL2(F )

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2ω

−1, Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1
)

thus yielding a nice correspondence.
Unfortunately, this turned out to be completely wrong.

Theorem 3.1. Assume F 6= Qp. For χ1 6= χ2 one has:

Ext1GL2(F )

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2ω

−1, Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1
)
= 0.
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Proof. This follows from [16, Thm.8.1] together with [16, Thm.7.16(i)] and [16,
Cor.6.6].

Remark 3.2. In fact, at least for χ1 6= χ2 and χ1 6= χ2ω
±1, one can prove

that ExtiGL2(F )

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2ω

−1, Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1
)
= 0 for 0 ≤ i ≤

[F : Qp] − 1 and that Ext
[F :Qp]

GL2(F )

(
Ind

GL2(F )
B(F ) χ1 ⊗ χ2ω

−1, Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1
)

has dimension 1.

Let us now consider irreducible 2-dimensional representations of Gal(Qp/F )
over kE . Just as for F = Qp, we define the following smooth representations of
GL2(F ):

π(σ, 0) :=
(
c− Ind

GL2(F )
GL2(OF )F×σ

)
/(T )

where σ is a Serre weight for GL2(OF )F
× (the definition of T holds for any F ).

Recall that for F = Qp the representations π(σ, 0) are all irreducible admissible.

Again, this turns out to be wrong for F 6= Qp.

Theorem 3.3. Assume F 6= Qp. For any Serre weight σ the representation
π(σ, 0) is of infinite length and is not admissible.

Proof. When kF is strictly bigger than Fp, this can be derived from the results
of [16], in particular Theorem 3.4 below. When kF = Fp, one can prove (by an

explicit calculation) that π(σ, 0) contains c− Ind
GL2(F )
GL2(OF )F×σ

′ for some Serre

weight σ′, which implies both statements as this representation is neither of
finite length nor admissible.

3.2. So many representations of GL2(F ). We survey most of the
results so far on smooth admissible representations of GL2(F ) over kE .

It is not known how to define an irreducible quotient of π(σ, 0) by explicit
equations, although we know such quotients exist by an abstract argument
using Zorn’s lemma ([2]). The classification of all irreducible representations of
GL2(F ) over kE with a central character remains thus unsettled. But one can
prove that there exist many irreducible admissible quotients of π(σ, 0) with,
for instance, a given GL2(OF )F

×-socle (containing σ). This is enough to show
that irreducible representations of GL2(F ) over kE are far more “numerous”
than irreducible representations of GL2(Qp) over kE . This also turns out to be
useful as the representations of GL2(F ) appearing in étale cohomology groups
over kE analogous to (1) are expected to have specific GL2(OF )F

×-socles (see
§3.3 below).

Denote by N (F ) the normalizer of the Iwahori subgroup I inside GL2(F ),
that is, N (F ) is the subgroup of GL2(F ) generated by I, the scalars F× and
the matrix

(
0 1

$F 0

)
. The following theorem was proved in [16, §9] using and
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generalizing constructions of Paškūnas based on the existence and properties
of injective envelopes of Serre weights for GL2(OF )F

× ([53]).

Theorem 3.4. Assume p > 2. Let D0 be a finite dimensional smooth repre-
sentation of GL2(OF )F

× over kE with a central character and D1 ⊆ D0|IF× a
non-zero subrepresentation of IF×. For each kE-linear action of N (F ) on D1

that induces the IF×-action, there exists a smooth admissible representation
π of GL2(F ) over kE with a central character such that the following diagram
commutes:

D0
� �

// π

D1
� �

//

?�

OO

π

(where the two horizontal injections are respectively GL2(OF )F
× and N (F )-

equivariant), such that π is generated by D0 under GL2(F ) and such that :

socle(π|GL2(OF )F×) = socle(D0).

In general, it is not straightforward to construct explicitly such pairs
(D0, D1) with a compatible action of N (F ) on D1, but there is one case where
it is: the case where the pro-p subgroup I1 of I acts trivially on D1, for instance
if D1 = DI1

0 (which is never 0 as I1 is pro-p). Indeed, in that case, D1 is just a
direct sum of characters of IF× (as I/I1 has order prime to p) and an action
of
(

0 1
$F 0

)
is then essentially a certain permutation of order 2 on these charac-

ters. Moreover for such pairs (D0, D1) the assumption p > 2 in Theorem 3.4 is
unnecessary. These examples are enough to show that there are infinitely many
irreducible admissible non-isomorphic quotients of the representations π(σ, 0),
for instance because there are infinitely many D0 containing σ for which there
exist many non-isomorphic compatible actions of N (F ) on DI1

0 such that any
π as in Theorem 3.4 is irreducible and is not a subquotient of a principal series
(see [16] when kF is not Fp).

We now give two series of examples of such pairs (D0, D1).

The first examples are very explicit and arise from the generalization of
Serre’s modularity conjecture in [18] (see also [58]). For these examples we
assume F unramified over Qp. To any linear continuous 2-dimensional repre-
sentation ρ of Gal(Qp/F ) over kE is associated in [18] a finite set W(ρ) of Serre
weights which generically has 2[F :Qp] elements. Let D0(ρ) be a linear represen-
tation of GL2(OF )F

× over kE such that:

(i) socGL2(OF )F×D0(ρ) = ⊕σ∈W(ρ)σ

(ii) the action of GL2(OF ) on D0(ρ) factors through GL2(OF ) � GL2(kF )

(iii) D0(ρ) is maximal for inclusion with respect to (i) and (ii).
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If ρ is sufficiently generic (in a sense that can be made precise, see [16, §11]),
one can prove that such a D0(ρ) exists, is unique, and that D1(ρ) := D0(ρ)

I1

can be endowed with (many) compatible actions of N (F ). For each such action
of N (F ), Theorem 3.4 applied to (D0, D1) := (D0(ρ), D1(ρ)) gives a smooth
admissible representation π of GL2(F ). In fact, based on explicit computations
in special cases ([43]), it is expected that the number of isomorphism classes of
π as in Theorem 3.4 will be strictly bigger than one for each action of N (F )
on D1(ρ) as soon as F 6= Qp. Denote by Π(ρ) the set of isomorphism classes of
all π given by Theorem 3.4 for all compatible actions of N (F ) on D1(ρ). The
following result is proved in [16].

Theorem 3.5. If ρ is (sufficiently generic and) irreducible, then any π in Π(ρ)
is irreducible. If ρ is (sufficiently generic and) reducible, then any π in Π(ρ) is
reducible.

Remark 3.6. When ρ is irreducible, one could replace D0(ρ) by its subrepre-
sentation 〈GL2(OF ) ·D1(ρ)〉 as one can prove that any π as in Theorem 3.4 for
(〈GL2(OF ) ·D1(ρ)〉, D1(ρ)) contains D0(ρ) in that case, i.e., is in Π(ρ).

In the case ρ is reducible, ρ '
(
χ1 ∗
0 χ2

)
, any π in Π(ρ) is reducible because

it strictly contains the representation Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1. By Theorem 3.1

(which can be applied as the genericity of ρ entails in particular χ1 6= χ2), it

cannot be an extension of Ind
GL2(F )
B(F ) χ1 ⊗ χ2ω

−1 by Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1. So

what could π look like in this case? Consider the following two propositions,
the first one being in [16, §19] and the second one being elementary.

Proposition 3.7. If ρ is (sufficiently generic and) reducible split, then some of
the π in Π(ρ) are semi-simple with [F : Qp] + 1 non-isomorphic Jordan-Hölder
factors, two of them being the above two principal series (which are irreducible
for ρ sufficiently generic) and the others being irreducible admissible quotients
of representations π(σ, 0).

Proposition 3.8. If ρ is (sufficiently generic and) reducible, then the tensor
induction of ρ from Gal(Qp/F ) to Gal(Qp/Qp) is a successive extension of
[F : Qp] + 1 non-isomorphic semi-simple representations, two of them being
1-dimensional.

If ρ is reducible non-split, then any extension between two consecutive
semi-simple representations as in Proposition 3.8 is non-split and the two 1-
dimensional representations are the unique irreducible subobject and the unique
irreducible quotient of the tensor induction of ρ. If ρ is split, the link between
the [F : Qp]+1 Jordan-Hölder factors of π in Proposition 3.7 and the [F : Qp]+1
semi-simple representations of the tensor induction of ρ in Proposition 3.8 can
be made much more convincing by using (ϕ,Γ)-modules (see [10]). In partic-
ular, the above two propositions suggest that, among all the π in Π(ρ) for ρ
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reducible and sufficiently generic, some of them (the “good” ones) should have
exactly [F : Qp] + 1 distinct Jordan-Hölder factors as in Proposition 3.7 and
should be:

(i) semi-simple if ρ is reducible split, or

(ii) uniserial with Ind
GL2(F )
B(F ) χ2 ⊗ χ1ω

−1 as unique irreducible subobject and

Ind
GL2(F )
B(F ) χ1 ⊗χ2ω

−1 as unique irreducible quotient if ρ is reducible non-

split.

This gives a possible explanation for Theorem 3.1: there is no extension for
F 6= Qp because we are missing the “middle” Jordan-Hölder factors!

The second examples of pairs (D0, D1) are constructed in [42] (no assump-
tion on F here). Let π be an irreducible not necessarily admissible represen-
tation of GL2(F ) over kE with a central character and σ ⊂ π|GL2(OF )F× a
Serre weight for GL2(OF )F

× (which always exists). One first defines an N (F )-
subrepresentation D1(π) of π as follows (with notations analogous to (2)):

D1(π) :=

(
∑

m≥0

(
$m
F OF

0 1

)
σ

)
⋂(

0 1
$F 0

)(∑

m≥0

(
$m
F OF

0 1

)
σ

)

(which is checked to be preserved by N (F ) inside π). One can prove that
D1(π) does not depend on the choice of the Serre weight σ in π and that it
always contains πI1 . One then considers the pair (D0(π), D1(π)) with D0(π) :=
〈GL2(OF ) ·D1(π)〉 ⊂ π.

Theorem 3.9. If D1(π) is finite dimensional, then there is a unique represen-
tation of GL2(F ) as in Theorem 3.4 with (D0, D1) := (D0(π), D1(π)) (even if
p = 2) and it is the representation π. In particular π is then admissible.

This theorem is proved in [42]. In fact, [42] proves more: (i) without any
assumption on D1(π) the pair (D0(π), D1(π)) always uniquely determines π
and (ii) D1(π) is finite dimensional if and only if π is of finite presentation

(i.e., is a quotient of some c− Ind
GL2(F )
GL2(OF )F×σ by an invariant subspace which

is finitely generated under GL2(F )). However, if F 6= Qp it is not known in
general whether D1(π) is or isn’t finite dimensional, and it seems quite hard to
determine D1(π) explicitly if π is not a subquotient of a principal series. For
those π in Π(ρ), note that one has the inclusions D1(ρ) ⊆ πI1 ⊆ D1(π) hence
also 〈GL2(OF ) ·D1(ρ)〉 ⊆ D0(π) with equalities if F = Qp.

3.3. Questions on local-global compatibility. We conclude our
discussion of the modulo p theory for GL2(F ) with questions on local-global
compatibility.

Let L be a totally real finite extension of Q with ring of integers OL. Assume
for simplicity that p is inert in L (i.e., pOL is a prime ideal) and let Lp denote the



The Emerging p-adic Langlands Programme 221

completion of L at p and A
p
L,f the finite adèles of L outside p. To any quaternion

algebra D over L which splits at only one of the infinite places and which splits
at p and to any compact open subgroup Kp

f ⊂ (D⊗LApL,f )×, one can associate

a tower of Shimura algebraic curves (S(Kp
fKf,p))Kf,p

over L where Kf,p runs

over the compact open subgroups of (D ⊗L Lp)× ' GL2(Lp). Analogously to
the case L = Q and D = GL2 of §2.4, one would like to understand:

lim
−→

Kf,p

H1
ét

(
S(Kp

fKf,p)×L Q, kE
)

as a representation of GL2(Lp) × Gal(Q/L) over kE . Fix a linear continuous
totally odd (i.e., any complex conjugation has determinant −1) irreducible rep-
resentation:

ρ : Gal(Q/L) → GL2(kE).

One can at least state the following conjecture which generalizes one of the
main conjectures of [18].

Conjecture 3.10. If ρ|Gal(Qp/Lp)
is sufficiently generic (in the sense of [16,

§11]) then for each compact open subgroup Kp
f ⊂ (D ⊗L A

p
L,f )

× one has:

HomGal(Q/L)

(
ρ, lim
−→

Kf,p

H1
ét

(
S(Kp

fKf,p)×L Q, kE
)
)

' πnp

for some integer n ≥ 0 and some πp in the set3 Π(ρ|Gal(Qp/Lp)
) (see §3.2).

Note that Conjecture 3.10 does not state that the above space of homomor-
phisms is non-zero, but that, if it is non-zero, then it is a number of copies
of some πp in Π(ρ|Gal(Qp/Lp)

). Conjecture 3.10 is known for L = Q ([28]). For
L 6= Q, some non-trivial evidence for this conjecture and for a variant with
0-dimensional Shimura varieties and H0 (instead of Shimura curves and H1)
can be found in [18], [57], [33] and [11] (see also [58] and [35]). If Conjec-
ture 3.10 holds, the main crucial questions are then (recalling from §3.2 that
Π(ρ|Gal(Qp/Lp)

) is a huge set if Lp 6= Qp):

Question 3.11. Does πp in Conjecture 3.10 only depend on ρ|Gal(Qp/Lp)
?

How can one “distinguish” the πp of Conjecture 3.10 in the purely local set
Π(ρ|Gal(Qp/Lp)

)?

If the answer to the first question is yes, then this will enable one to de-
fine a genuine modulo p local Langlands correspondence for GL2(F ) that is
compatible with cohomology. Again, the answer is of course yes if L = Q.

3As in Theorem 2.7, depending on normalizations, one may have to replace ρ|Gal(Qp/Lp)

here by its dual or its Cartier dual.
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3.4. Over E. The modulo p theory being so involved, it is not surprising
that very little is known in characteristic 0. We just state here the main theorem
of [54], which shows that one also has too many admissible unitary topologically
irreducible Banach space representations of GL2(F ) over E when F 6= Qp.

Theorem 3.12. Let π be a smooth irreducible admissible representation of
GL2(F ) over kE. Then there exists an admissible unitary topologically irre-
ducible Banach space representation B of GL2(F ) over E and a unit ball
B0 ⊂ B preserved by GL2(F ) such that:

HomGL2(F )(π,B
0 ⊗OE

kE) 6= 0.

In particular, because of the results of §3.2, one should not expect a naive
extension of Theorem 2.6 to hold for F 6= Qp. The question whether one can
always choose B above such that π ' B0 ⊗OE

kE is open (except for F = Qp
where the answer is yes and is already essentially in [7]). If such a B does not
always exist, maybe one should only consider those π for which it does, i.e.,
those π which lift to characteristic 0.

All the other results concerning GL2(F ) over E are very partial so far. In
some cases, one can for instance associate to a 2-dimensional semi-stable p-adic
representation of Gal(Qp/F ) over E a locally Qp-analytic strongly admissible
(in the sense of [61]) representation of GL2(F ) over E which generalizes the
representation from the F = Qp case and that one would wish to find inside

completed cohomology spaces analogous to the Ĥ1(Kp
f ) of §2.4 (see, e.g., [65]

for the non-crystalline case). However, if this holds, it is likely that for F 6= Qp
this locally Qp-analytic representation is only a strict subrepresentation of the
“correct” (unknown) locally Qp-analytic representation(s) of GL2(F ).

4. Other Groups

If not much is known for GL2(F ), almost nothing is known for groups other
than GL2(F ), even conjecturally, although some non-trivial results start to
appear in various cases like GL3(Qp) ([66]) or quaternion algebras ([36]). We
content ourselves here to mention briefly a few results and conjectures that
have been stated for GLn(F ) and that give some kind of “relations” between
the Gal(Qp/F ) side and the GLn(F ) side. Although these relations are very far
from any kind of correspondence, it is plausible that they will play some role
in the future.

4.1. Invariant lattices and admissible filtrations. Locally al-
gebraic representations of GLn(F ) over E (such as the representations B(V )alg

of §2.2) which are “related” to continuous n-dimensional representations of
Gal(Qp/F ) over E (e.g., that appear as subrepresentations in completed coho-
mology spaces) should have invariant OE-lattices, as is clear from the GL2(Qp)
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case (§2.2). It turns out that a necessary condition for a locally algebraic rep-
resentation of GLn(F ) to have invariant lattices is essentially a well-known
condition in Fontaine’s theory called “weakly admissible”.

Let us fix (r,N,D) a Weil-Deligne representation on an n-dimensional E-
vector space D where r is the underlying representation of the Weil group of
F (which has open kernel) and N the nilpotent endomorphism on D satisfying
the usual relation r(w) ◦N ◦ r(w)−1 = pd(w)N (for w in the Weil group of F ,
see introduction for d(w)).

To (r,N,D), one can associate a smooth irreducible representation π′ of
GLn(F ) over E by the classical local Langlands correspondence as in [38] (after
semi-simplifying r). We then slightly modify it as in §2.4: if π′ is generic, we let

π := π′ ⊗ | det | (1−n)
2 . If π′ is not generic, we replace π′ by a certain parabolic

induction π′′ which has π′ as unique irreducible quotient (see [17, §4]) and let

π := π′′ ⊗ | det | (1−n)
2 .

For each embedding τ : F ↪→ E, let us fix n integers i1,τ < i2,τ < · · · < in,τ .
We denote by στ the algebraic representation of GLn over E of highest weight
−i1,τ − (n− 1) ≥ −i2,τ − (n− 2) ≥ · · · ≥ −in,τ that we see as a representation
of GLn(F ) via the embedding τ : F ↪→ E. We then set σ := ⊗τστ . This is a
finite dimensional representation of GLn(F ) over E.

Any p-adic potentially semi-stable representation of Gal(Qp/F ) on an n-
dimensional E-vector space V gives rise to some (r,N,D) and some (ij,τ )j,τ as
follows ([30]). Let F ′ be a finite Galois extension of F such that V |Gal(Qp/F ′)

becomes semi-stable and set:

D := (Bst ⊗Qp
V )Gal(Qp/F

′) ⊗F ′0⊗E E
where Bst is Fontaine’s semi-stable period ring, F ′

0 is the maximal unramified
subfield in F ′ and F ′

0 ↪→ E is any embedding. It is an n-dimensional E-vector
space endowed with a nilpotent endomorphism N coming from the one on Bst.
We define r(w) on D by r(w) := ϕ−d(w) ◦w where w is any element in the Weil
group of F , w its image in Gal(F ′/F ) and ϕ the semi-linear endomorphism
coming from the action of the Frobenius on Bst (as ϕ

−d(w) ◦w is F ′
0⊗E-linear,

r(w) goes down to D). Finally, the ij,τ are just the opposite of the various
Hodge-Tate weights of V (n weights for each embedding τ : F ↪→ E).

The following conjecture was stated in [17, §4].
Conjecture 4.1. Fix (r,N,W ) and (ij,τ )j,τ as above. There exists an invariant
OE-lattice on the locally algebraic GLn(F )-representation σ ⊗E π if and only
if the data

(
(r,N,W ), (ij,τ )j,τ

)
comes from a p-adic n-dimensional potentially

semi-stable representation of Gal(Qp/F ).

The following theorem gives one complete direction in the above conjecture.
After many cases were proved in [63] and [17], its full proof was given in [41].

Theorem 4.2. If there exists an invariant OE-lattice on σ⊗E π then the data(
(r,N,W ), (ij,τ )j,τ

)
comes from a p-adic n-dimensional potentially semi-stable

representation of Gal(Qp/F ).
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The proof is divided into four steps. (i) It is essentially trivial if π is su-
percuspidal. Hence one can restrict to the non-supercuspidal cases. (ii) Using
a result of Emerton ([26, Lem.4.4.2]), one deduces from the existence of an
invariant lattice on σ⊗E π a finite number of inequalities relating the numbers
ij,τ to the “powers of p” in the action of r. (iii) These inequalities are just
what is needed so that there exists a weakly admissible filtration on a certain
(ϕ,N)-module naturally associated to (r,N,W ). (iv) Such a filtration gives an
n-dimensional potentially semi-stable representation of Gal(Qp/F ) by the main
result of [22].

The other direction in Conjecture 4.1 is much harder. Apart from trivial or
scattered partial results, the only case which is completely known is again that
of GL2(Qp) ([5]).

4.2. Supersingular modules and irreducible Galois repre-
sentations. We now state a theorem on Hecke-Iwahori modules for GLn(F )
over kE in relation with irreducible n-dimensional representations of Gal(Qp/F )
over kE .

LetH1 be the Hecke algebra of I1 over kE , that is,H1 := kE [I1\GLn(F )/I1].
The usual product of double cosets makes H1 a non-commutative kE-algebra
of finite type. An H1-module M over kE is a kE-vector space endowed with
a linear right action of H1. By Schur’s lemma, the center Z1 of H1 acts on a
simple (and thus finite dimensional) H1-module M by a character with values
in kE called the central character of M . The commutative kE-subalgebra Z1 is
generated by (cosets of) scalars, by certain elements of kE [I1\I/I1] = kE [I/I1]
and by n − 1 cosets Z1, · · · , Zn−1. A finite dimensional simple H1-module is
said to be supersingular if its central character sends all these Zi to 0 ([71]).

The following nice numerical coincidence was conjectured in [71] and com-
pletely proved in [52].

Theorem 4.3. The number of simple n-dimensional supersingular H1-modules
over kE is equal to the number of linear continuous n-dimensional irreducible
representations of Gal(Qp/F ) over kE.

Let us briefly give the case n = 3 as an example. The number of (iso-
morphism classes of) continuous 3-dimensional irreducible representations of
Gal(Qp/F ) over kE with determinant mapping a fixed choice of Frobenius to

1 ∈ kE is easily checked to be q3−q
3 . The number of 3-dimensional simple su-

persingular H1-modules over kE with central character mapping a fixed choice
of uniformizer to 1 ∈ kE turns out to be:

2

(
q − 1 + (q − 1)(q − 2) +

(q − 1)(q − 2)(q − 3)

6

)
.

The reader can check that these two numbers are just the same (whence the
theorem for n = 3 by varying the central character/determinant).
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For (n, F ) = (2,Qp), the functor π 7→ πI1 induces a bijection between
smooth irreducible supersingular representations of GL2(Qp) over kE and 2-
dimensional simple supersingular H1-modules over kE ([70]), but this already
completely breaks down when n = 2 and F 6= Qp (see §3). The meaning of
Theorem 4.3 in terms of smooth representations of GLn(F ) over kE (if any)
thus remains mysterious for (n, F ) 6= (2,Qp).

4.3. Serre weights and Galois representations. We have seen
in §3 that the set of Serre weights W(ρ) associated in [18] and [58] to a lin-
ear continuous 2-dimensional representation of Gal(Qp/F ) over kE is expected
to be the set of simple summands (forgetting possible multiplicities) of the
GL2(OF )F

×-socle of some smooth admissible representation of GL2(F ) over
kE . (Without restrictions on ρ, one may indeed have multiplicities in this so-
cle.) This yields a non-trivial link between the weights in Serre-type conjectures
and the modulo p Langlands programme for GL2(F ).

For GLn(Qp) when n > 2 the modulo p Langlands programme is essen-
tially open (although there is recent progress in the classification of “non-
supersingular” smooth irreducible admissible representations of GLn(F ) over
kE , see [40]). But the set of Serre weights W(ρ) has been generalized by Herzig
and Gee in [39] and [34] to linear continuous n-dimensional representations of
Gal(Qp/Qp) over kE .

For integers a1 ≥ a2 ≥ · · · ≥ an such that ai − ai+1 ≤ p− 1 for all i we let
F (a1, · · · , an) denote the restriction to GLn(Fp) of the GLn-socle of the alge-
braic dual Weyl module for GLn of highest weight (t1, · · · , tn) 7→ ta11 t

a2
2 · · · tann

(see [39, §3.1]). The F (a1, · · · , an) exhaust the irreducible representations of
GLn(Fp) (equivalently of GLn(Zp)) over kE .

Let ρ : Gal(Qp/Qp) → GLn(kE) be any linear continuous representation.
Its determinant has the form ωmunr where unr is an unramified character of
Gal(Qp/Qp) and m an integer. We can see unr as a character of GLn(Zp)Q

×
p

which is trivial on GLn(Zp).

Definition 4.4. The set W(ρ) of Serre weights for GLn(Zp)Q
×
p associated

to ρ is the set of F (a1, · · · , an) ⊗ unr such that ρ has a crystalline lift with
Hodge-Tate weights a1 + n− 1, a2 + n− 2, · · · , an.

Definition 4.4 is quite general but not at all explicit. When ρ is sufficiently
generic and semi-simple, a conjectural but much more explicit description of
the weights of W(ρ) has been given in [39] (which was actually written before
[34]). The method of [39] is first to associate to ρ (in fact to its restriction
to the inertia subgroup of Gal(Qp/Qp)) a finite dimensional “Deligne-Lusztig”
representation σ(ρ) of GLn(Fp) over E. For instance, if ρ = ⊕ni=1χi is a direct
sum of characters of Gal(Qp/Qp), then:

σ(ρ) := Ind
GLn(Fp)

B(Fp)
χ
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where χ : B(Fp) � T (Fp) → E×, (t1, · · · , tn) 7→ [χ1(t1)χ2(t2) · · ·χn(tn)] (note
that χi|1+pZp

= 1 and [·] is here the multiplicative representative). If ρ is suffi-
ciently generic, all Jordan-Hölder factors F (a1, · · · , an) of the modulo p semi-
simplification σ(ρ)ss of σ(ρ) (that is, of the semi-simplification of the reduction
modulo $E of any invariant OE-lattice in σ(ρ)) are such that ai−ai+1 ≤ p− 2
for all i. If ρ is moreover semi-simple, the set W(ρ) of Definition 4.4 is then
expected to be the set of Serre weights:

F
(
an + (n− 1)(p− 2), an−1 + (n− 2)(p− 2), · · · , a2 + p− 2, a1

)
⊗ unr

for F (a1, · · · , an) a Jordan-Hölder factor of σ(ρ)ss.
Changing notations, let:

ρ : Gal(Q/Q) → GLn(kE)

be a linear continuous irreducible odd representation, that is, either p = 2 or
the eigenvalues of the image of a complex conjugation are:

1, · · · , 1︸ ︷︷ ︸
n+ times

,−1, · · · ,−1︸ ︷︷ ︸
n− times

with −1 ≤ n+ − n− ≤ 1. Let N be the Artin conductor of ρ measuring its
ramification at primes other than p and let unrp be as above the unramified
part of det(ρ|Gal(Qp/Qp)

). Then the “Serre conjecture” of [39] and [33] states

that the Serre weights of W(ρ|Gal(Qp/Qp)
) should be exactly those Serre weights

F (a1, · · · , an)⊗unrp for GLn(Zp)Q
×
p such that ρ “arises” from a non-zero Hecke

eigenclass in some group cohomology H∗(Γ1(N), F (a1, · · · , an)). Here Γ1(N) ⊂
SLn(Z) is the subgroup of matrices with last row congruent to (0, · · · , 0, 1)
modulo N (see [39, §6] for details).

The results of §3 suggest that the Serre weights of W(ρ|Gal(Qp/Qp)
) may

form (up to multiplicities) the GLn(Zp)Q
×
p -socle of interesting smooth admissi-

ble representations of GLn(Qp) over kE (that remain to be discovered if n > 2).
But one should keep in mind the following numbers. Assuming ρ is semi-simple,
for n = 2 one has generically |W(ρ)| = 2, and for n = 3 one should have
|W(ρ)| = 9, but then W(ρ) rapidly grows: n = 4 should give |W(ρ)| = 88 and
n = 5 should give |W(ρ)| = 1640! Also, consider for instance the case n = 3
and ρ = ⊕3

i=1χi with ρ sufficiently generic. Then 6 of the 9 weights of W(ρ)
are easily checked to be the GL3(Zp)Q

×
p -socle of 6 natural principal series rep-

resentations of GL3(Qp) analogous to the 2 principal series in (ii) of Definition
2.2. But there are 3 remaining Serre weights and their combinatorics suggests
that they might form the GL3(Zp)Q

×
p -socle of an irreducible admissible repre-

sentation of GL3(Qp) that does not occur in any (strict) parabolic induction,
i.e., of a supersingular representation of GL3(Qp). We thus may have a phe-
nomenon analogous to what happens with GL2(F ) (see Proposition 3.7 and
the discussion that follows) except that the possible appearance here of this
“extra” supersingular constituent seems now quite mysterious.
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Abstract

We first introduce Selmer groups for elliptic curves, and then Selmer groups for
Galois representations. The main topic of the article concerns the behavior of
Selmer groups for Galois representations with the same residual representation.
We describe a variety of situations where this behavior can be studied fruitfully.
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1. Selmer Groups

Suppose that E is an elliptic curve defined over a number field F . Let E(F )
denote the set of points on E defined over F . Under a certain simply-defined
operation, E(F ) becomes an abelian group. The classical Mordell-Weil theorem
asserts that E(F ) is finitely-generated. One crucial step in proving this theorem
is to show that E(F )/nE(F ) is a finite group for some integer n ≥ 2. In essence,
one proves this finiteness for any n by defining a map from E(F )/nE(F ) to the
Selmer group for E over F and showing that the kernel and the image of that
map are finite.

We will regard F as a subfield of Q, a fixed algebraic closure of Q. The
torsion subgroup Etors of E(Q) is isomorphic to (Q/Z)2 as a group. One has
a natural action of GF = Gal(Q/F ) on Etors. The Selmer group is a certain
subgroup of the Galois cohomology group H1(GF , Etors). Its definition involves
Kummer theory for E and is based on the fact that the group of points on E
defined over any algebraically closed field is a divisible group.

As is customary, we will write H1(F,Etors) instead of H1(GF , Etors). A
similar abbreviation will be used for other Galois cohomology groups. Suppose
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that P ∈ E(F ) and that n ≥ 1. Then there exists a point Q ∈ E(Q) such that
nQ = P . In fact, there are n2 such points Q, all differing by points in Etors of
order dividing n. If g ∈ GF and Q′ = g(Q), then nQ′ = P . Therefore, we have
g(Q) − Q ∈ Etors. The map ϕ : GF → Etors defined by ϕ(g) = g(Q) − Q is a
1-cocycle and defines a class [ϕ] in H1(F,Etors). In this way, we can define the
“Kummer map”

κ : E(F )⊗Z (Q/Z) −→ H1(F,Etors).

The image of P⊗
(
1
n+Z

)
is defined to be the class [ϕ]. The map κ is an injective

homomorphism.
If v is any prime of F , we can similarly define the v-adic Kummer map

κv : E(Fv)⊗Z (Q/Z) −→ H1(Fv, Etors),

where Fv is the completion of F at v. One can identify GFv
with a subgroup

of GF by choosing an embedding of Q into an algebraic closure of Fv which
extends the embedding of F into Fv, and thereby define a restriction map from
H1(F,Etors) to H1(Fv, Etors). One has such a map for each prime v of F , even
for the archimedean primes. One then defines the Selmer group SelE(F ) to be
the kernel of the map

σ : H1(F,Etors) −→
⊕

v

H1(Fv, Etors)
/
im(κv),

where v runs over all the primes of F . One shows that the image of σ is actually
contained in the direct sum and that this definition of SelE(F ) does not depend
on the choice of embeddings. The image of the Kummer map κ is clearly a
subgroup of SelE(F ). The corresponding quotient group SelE(F )

/
im(κ) is the

Tate-Shafarevich group for E over F .

The elliptic curve E is determined up to isomorphism over F by the action
of GF on Etors. This result was originally conjectured by Tate and proved by
Faltings [10]. If p is a prime and n ≥ 1, then the pn-torsion on E will be denoted
by E[pn]. The p-primary subgroup of Etors is the union of the groups E[pn]
and will be denoted by E[p∞]. The inverse limit of the E[pn]’s is the p-adic
Tate module Tp(E). It is a free Zp-module of rank 2, where Zp denotes the
ring of p-adic integers. All of these objects have a continuous action of GF . We
let Vp(E) = Tp(E) ⊗Zp

Qp, a 2-dimensional representation space for GF over
Qp, the field of p-adic numbers. Faltings proves the following version of Tate’s
conjecture: The elliptic curve E is determined up to isogeny over F by the
isomorphism class of the representation space Vp(E) for GF . The Tate module
Tp(E) determines E up to an isogeny of degree prime to p.

The above theorem of Faltings suggests that arithmetic properties of E
which depend only on the isomorphism class of E over F should somehow be
determined by the Galois module Etors. In particular, the structure of E(F )
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should be so determined. It is clear how to determine the torsion subgroup
of E(F ) in terms of Etors. It is just H0(F,Etors). Now it is conjectured that
the Tate-Shafarevich group for an elliptic curve over a number field is always
finite. If this is so, then the image of the Kummer map should be precisely the
maximal divisible subgroup SelE(F )div of SelE(F ). If r is the rank of E(F ),
then that image is isomorphic to (Q/Z)r. Thus, at least conjecturally, one can
determine r from the structure of SelE(F ). And, as we will now explain, one
can describe SelE(F ) entirely in terms of the Galois module Etors. This is not
immediately apparent from the definition given earlier.

Let p be any prime. The p-primary subgroup SelE(F )p of SelE(F ) is a
subgroup of H1(F,E[p∞]). It can be defined as the kernel of the map

σp : H1(F,E[p∞]) −→
⊕

v

H1(Fv, E[p∞])
/
im(κv,p) ,

where κv,p is the restriction of κv to the p-primary subgroup of E(Fv)⊗Z(Q/Z).
Thus, if we can describe the image of κv,p for all primes v of F just in terms of
the Galois module E[p∞], then we will have such a description of SelE(F )p.

First of all, suppose that v is a nonarchimedean prime and that the residue
field for v has characteristic `, where ` 6= p. It is known that E(Fv) is an `-
adic Lie group. More precisely, E(Fv) contains a subgroup of finite index which

is isomorphic to Z
[Fv :Q`]
` . Since that group is divisible by p, one sees easily

that E(Fv)⊗Z (Qp/Zp), the p-primary subgroup of E(Fv)⊗Z (Q/Z), actually
vanishes. Hence im(κv,p) = 0 if v - p. A similar argument shows that the same
statement is true if v is archimedean.

Now assume that the residue field for v has characteristic p. We also assume
that E has good ordinary reduction at v. Good reduction means that one can
find an equation for E over the ring of integers of F such that its reduction
modulo v defines an elliptic curve Ev over the residue field Fv. The reduction is
ordinary if the integer av = 1+|Fv|−|Ev(Fv)| is not divisible by p. Equivalently,
ordinary reduction means that Ev[p

∞] is isomorphic to Qp/Zp as a group.
Reduction modulo v then defines a surjective homomorphism from E[p∞] to
Ev[p

∞]. Its kernel turns out to be the group of p-power torsion points on a
formal group. We denote that kernel by Cv. It is invariant under the action of
GFv

and is isomorphic to Qp/Zp as a group. We have E[p∞]/Cv
∼= Ev[p

∞].
Remarkably, one has the following description of the image of κv,p:

im(κv,p) = im
(
H1(Fv, Cv)div −→ H1(Fv, E[p∞])

)
.

One can characterize Cv as follows: It is a GFv
-invariant subgroup of E[p∞]

and E[p∞]/Cv is the maximal quotient of E[p∞] which is unramified for the
action of GFv

. Thus, the above description of im(κv,p) just involves the Galois
module E[p∞], as we wanted.

The above description of im(κv,p) was given in [4]. The argument is not
very difficult. If E does not have good ordinary reduction at v, there is still a
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description of im(κv,p) in terms of E[p∞]. This was given by Bloch and Kato in
[2]. It involves Fontaine’s ring Bcrys. One defines the subspace H1

f

(
Fv, Vp(E)

)

of H1
(
Fv, Vp(E)

)
to be the kernel of the the natural map from H1

(
Fv, Vp(E)

)

to H1
(
Fv, Vp(E) ⊗Qp

Bcrys

)
. One has Vp(E)/Tp(E) ∼= E[p∞]. Then im(κv,p)

turns out to be the image of H1
f

(
Fv, Vp(E)

)
under the natural map from

H1
(
Fv, Vp(E)

)
to H1(Fv, E[p∞]).

The fact that SelE(F )p can be defined solely in terms of the Galois module
E[p∞] was a valuable insight in the 1980’s. It suggested a way to give a reason-
able definition of Selmer groups in a far more general context. This idea was
pursued in [11] for the purpose of generalizing conjectures of Iwasawa and of
Mazur concerning the algebraic interpretation of zeros of p-adic L-functions. It
was also pursued by Bloch and Kato in [2] for the purpose of generalizing the
Birch and Swinnerton-Dyer conjecture.

Since SelE(F )p is determined by the Galois module E[p∞], one can ask
whether SelE(F )[p] is determined by the Galois module E[p]. This turns out
not to be so. Suppose that E1 and E2 are elliptic curves defined over F and
that E1[p] ∼= E2[p] as GF -modules. It is quite possible for SelE1

(F )[p] and
SelE2

(F )[p] to have different Fp-dimensions. In the next section of this article,
we will consider this question in the setting of Iwasawa theory. Thus, we will
consider the Selmer group for an elliptic curve E over a certain infinite extension
F∞ of F , the so-called “cyclotomic Zp-extension” of F .

Let µp∞ denote the group of p-power roots of unity in Q. Then F∞ is the
unique subfield of F (µp∞) such that Gal(F∞/F ) ∼= Zp. We denote that Galois
group by Γ. For each n ≥ 0, Γ has a unique subgroup Γn of index pn. Thus,
Fn = FΓn

∞ is a cyclic extension of F of degree pn. One can define the Selmer
group for E over F∞ to be the direct limit of the Selmer groups SelE(Fn) as
n → ∞. We will concentrate on its p-primary subgroup SelE(F∞)p. Now Γ acts
naturally on SelE(F∞)p. Regarding SelE(F∞)p as a discrete Zp-module, the
action of Γ is continuous and Zp-linear. We can then regard SelE(F∞)p as a
discrete Λ-module, where Λ = Zp[[Γ]] is the completed Zp-group algebra for the
pro-p group Γ. That is, Λ is the inverse limit of the Zp-group algebras Zp[Γn]
defined by the obvious surjective Zp-algebra homomorphisms Zp[Γm] → Zp[Γn]
for m ≥ n ≥ 0. One often refers to Λ as the “Iwasawa algebra” for Γ (over Zp).
A very useful fact in Iwasawa theory is that Λ is isomorphic (non-canonically)
to the formal power series ring Zp[[T ]] in one variable. Thus, Λ is a complete
Noetherian local ring of Krull dimension 2.

Assuming that E has good ordinary reduction at the primes of F lying over
p, one has a description of SelE(F∞)p just as above. If v is a prime of F not
dividing p, and η is a prime of F∞ lying over v, then the image of the Kummer
map over F∞,η is again trivial. If v|p, then the direct limits of the local Galois
cohomology groups H1(Fn,η, Cη)div and H1(Fn,η, Cη) as n → ∞ turn out to be
the same, both equal to H1(F∞,η, Cη). Thus, the image of the Kummer map
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over F∞,η coincides with the image of the map

ε∞,η : H1(F∞,η, Cη) −→ H1(F∞,η, E[p∞]) .

A very broad generalization of this fact is proven in [4].

The following conjecture of Mazur will play a fundamental role in most of
the results we will describe. It was first stated and discussed in [21]. We let
XE(F∞) denote the Pontryagin dual of SelE(F∞)p. We can regard XE(F∞) as
a compact Λ-module. It turns out to always be finitely-generated as a Λ-module.
As in [21], we will say that SelE(F∞)p is a cotorsion Λ-module if XE(F∞) is a
torsion Λ-module.

Conjecture. Suppose that E has good ordinary reduction at the primes of F
lying over p. Then SelE(F∞)p is a cotorsion Λ-module.

The above conjecture is proved in [21] under the assumption that SelE(F )p
is finite. We will later cite a much more recent theorem (due to Kato and
Rohrlich) which asserts that SelE(F∞)p is indeed Λ-cotorsion if E is an elliptic
curve defined over Q with good ordinary reduction at p and F is any abelian
extension of Q. Such a theorem had already been proven by Rubin [31] in the
case where E has complex multiplication.

The above conjecture should be valid under somewhat weaker assumptions
about the reduction of E at the primes above p. It should suffice to just assume
that E does not have potentially supersingular reduction at any of those primes.
That assumption is necessary. If E has potentially supersingular reduction at a
prime above p, then one can show that SelE(F∞)p is not Λ-cotorsion. We refer
the reader to [34] for a discussion of this issue and a precise conjecture about
the rank of XE(F∞) as a Λ-module.

2. Behavior Under Congruences

The results that we describe here are mostly from [14]. We will now take F = Q,
partly just to simplify the discussion and partly because the deep theorem of
Kato and Rohrlich mentioned above is then available. We will also assume that
p is an odd prime. We concentrate entirely on the p-primary subgroup of Selmer
groups. Let Q∞ denote the cyclotomic Zp-extension of Q. Suppose that E is
defined over Q and has good ordinary reduction at p.

Let π denote the unique prime of Q∞ lying over p. We will write E for Ep.
It will be useful to note that the image of ε∞,π coincides with the kernel of the
map H1(Q∞,π, E[p∞]) → H1(Q∞,π, E[p∞]). That map turns out to be sur-
jective and so H1(Q∞,π, E[p∞])

/
im
(
ε∞,π

)
is isomorphic to H1(Q∞,π, E[p∞]),

which we will denote by Hp(Q∞, E[p∞]). We will denote H1(Q∞,π, E[p]) by
Hp(Q∞, E[p]).
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If ` is a non-archimedean prime, and ` 6= p, we define

H`(Q∞, E[p∞]) =
⊕

η|`

H1(Q∞,η, E[p∞]),

a finite direct sum because ` is finitely decomposed in Q∞/Q. We similarly
define H`(Q∞, E[p]), just replacing the Galois module E[p∞] by E[p]. We will
ignore the local Galois cohomology groups for archimedean primes. They are
trivial since we are assuming that p is odd.

Although the Galois module E[p] still does not determine SelE(F∞)[p], a
somewhat weaker statement turns out to be true. To formulate it, we intro-
duce “non-primitive” Selmer groups. Suppose that Σ0 is a finite set of non-
archimedean primes of Q. We assume that p 6∈ Σ0. The corresponding non-
primitive Selmer group will be denoted by SelΣ0

E (Q∞)p and differs from the
actual Selmer group in that we omit the local conditions for the primes of Q∞

lying above primes in Σ0. To be precise, SelΣ0

E (Q∞)p is defined to be the kernel
of the following map:

H1(Q∞, E[p∞]) −→
⊕

` 6∈Σ0

H`(Q∞, E[p∞]). (1)

If we take Σ0 to be empty, then SelΣ0

E (Q∞)p = SelE(Q∞)p.
Suppose that E[p] is irreducible and that Σ0 contains the primes where E

has bad reduction. The map H1(Q∞, E[p]) → H1(Q∞, E[p∞])[p] is an isomor-
phism. The role of the assumption about Σ0 is that it implies that the preimage
of SelΣ0

E (Q∞)[p] under that isomorphism is precisely the kernel of the map

H1(Q∞, E[p]) −→
⊕

` 6∈Σ0

H`(Q∞, E[p]). (2)

Note that the groups and maps here indeed depend only on the Galois module
E[p]. This is clear for ` 6= p. For ` = p, it follows because one can characterize
E[p] as the maximal unramified quotient of E[p] for the action of GQp

. This is so
because p is assumed to be odd and therefore the action of the inertia subgroup
of GQp

on the kernel of the reduction map E[p] → E[p] is nontrivial. Thus,

under the above assumption about Σ0, we have a description of SelΣ0

E (Q∞)[p]
in terms of the Galois module E[p].

The local Galois cohomology groupsH`(Q∞, E[p∞]) can be studied by using
standard results, essentially just local class field theory. One finds that

H`(Q∞, E[p∞]) ∼= (Qp/Zp)
δ(E,`)

for any prime ` 6= p, where δ(E, `) is an easily determined non-negative integer.
A theorem of Kato [18], combined with a theorem of Rohrlich [29], implies

that SelE(Q∞)p,div ∼= (Qp/Zp)
λ(E) for some integer λ(E) ≥ 0. This means

that the Pontryagin dual of SelE(Q∞)p is a torsion module over the Iwasawa
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algebra Λ = Zp[[Γ]]. This was conjectured to be so in [21], as we mentioned in
section 1. The integer λ(E) is the Zp-corank of SelE(Q∞)p. Under the assump-
tion that E[p] is irreducible as a Galois module, it is reasonable to make the
conjecture that the Pontryagin dual of SelE(Q∞)[p] is a torsion module over
Λ/pΛ. Equivalently, this would mean that SelE(Q∞)[p] is finite, and hence that
the so-called µ-invariant for SelE(Q∞)p vanishes. If so, then one can prove that
SelE(Q∞)p is a divisible group and so one would have an isomorphism

SelE(Q∞)p ∼= (Qp/Zp)
λ(E).

The fact that SelE(Q∞)p is a cotorsion Λ-module allows one to prove that
the map

SelΣ0

E (Q∞)p −→
⊕

`∈Σ0

H`(Q∞, E[p∞])

is surjective. The kernel of that map is SelE(Q∞)p, and so we have an isomor-
phism

SelΣ0

E (Q∞)p
/
SelE(Q∞)p ∼=

⊕

`∈Σ0

H`(Q∞, E[p∞]) ∼= (Qp/Zp)
δ(E,Σ0) ,

where δ(E,Σ0) =
∑

`∈Σ0
δ(E, `). Let λ(E,Σ0) denote the Zp-corank of

SelΣ0

E (Q∞)p. We then obtain the formula λ(E,Σ0) = λ(E) + δ(E,Σ0).

If SelE(Q∞)p is divisible, then it is a direct summand in SelΣ0

E (Q∞)p, and
so we will have

SelΣ0

E (Q∞) ∼= SelE(Q∞) ⊕

(
⊕

`∈Σ0

H`(Q∞, E[p∞])

)
.

Thus, SelΣ0

E (Q∞)p will also be divisible, and so its Zp-corank λ(E,Σ0) will be

equal to the Fp-dimension of SelΣ0

E (Q∞)[p]. A similar statement is true for all
of the summands in the above direct sum.

Suppose that E1 and E2 are elliptic curves defined over Q, that both have
good ordinary reduction at p, and that E1[p] ∼= E2[p] as GQ-modules. We think
of such an isomorphism as a congruence modulo p between the p-adic Tate
modules for E1 and E2. We will also assume that GQ acts irreducibly on E1[p],
and hence on E2[p]. Suppose that Σ0 is chosen to include all the primes where
E1 or E2 have bad reduction. Under these assumptions, the above discussion
shows that

SelΣ0

E1
(Q∞)[p] ∼= SelΣ0

E2
(Q∞)[p].

Consequently, if SelE1
(Q∞)[p] is finite, then so is SelE2

(Q∞)[p]. Their Fp-
dimensions will be equal and one then obtains the formula

λ(E1) + δ(E1,Σ0) = λ(E2) + δ(E2,Σ0) .



238 Ralph Greenberg

Since the quantities δ(E1,Σ0) and δ(E2,Σ0) can be evaluated, one can then
determine λ(E2) if one knows λ(E1).

As an example, consider the two elliptic curves

E1 : y2 = x3 + x− 10, E2 : y2 = x3 − 584x+ 5444

which have conductors 52 and 364 = 7 · 52, respectively. We take p = 5 and
Σ0 = {2, 7, 13}. One has a congruence modulo 5 between the q-expansions of
the modular forms corresponding to E1 and E2, ignoring the terms for powers
qn where 7|n. It follows that E1[5] ∼= E2[5] as GQ-modules. It turns out that
SelE1

(Q∞)p = 0. Hence, one has λ(E1) = 0. One finds that δ(E1,Σ0) = 5 and
δ(E2,Σ0) = 0. Consequently, we have λ(E2) = 5.

Such isomorphisms E1[p] ∼= E2[p] are not hard to find for p = 3 and p = 5.
In fact, it is shown in [33] that for p ≤ 5, and for a fixed elliptic curve E1 defined
over Q, one can explicitly describe equations defining an infinite family of non-
isomorphic elliptic curves E2 over Q with E2[p] ∼= E1[p]. Such isomorphisms
are not common for p ≥ 7. However, if one considers cusp forms of weight 2,
then “raising the level” theorems show that such isomorphisms occur for every
odd prime p. They can be formulated in terms of the Jacobian variety attached
to Hecke eigenforms of weight 2. An isomorphism amounts to a congruence
between the q-expansions of two such eigenforms. The results described above
extend without any real difficulty to this case.

A somewhat different approach is taken in [9]. That paper considers Selmer
groups over Q∞ associated to Hecke eigenforms of arbitrary weight which are
ordinary in a certain sense. If one fixes the residual representation and bounds
the prime-to-p part of the conductor, then such eigenforms occur in Hida fam-
ilies which are parametrized by the set of prime ideals of height 1 in a certain
ring R. Such families were constructed by Hida in [17]. If a is a minimal prime
ideal of R, then the height 1 prime ideals of R/a parametrize one “branch” in
such a family. For each eigenform h, one can associate a Galois representation
Vh of dimension 2 over a field F , a finite extension of Qp. Let O be the ring of
integers in F and let π be a uniformizing parameter. Let f = O/(π). One can
choose a Galois-invariant O-lattice Th in Vh and then define a discrete Galois
module Ah = Vh/Th. The representation is ordinary in the sense that Vh has
a 1-dimensional quotient which is unramified for the action of GQp

. Hence Ah

has an unramified quotient which has O-corank 1.
One can define a Selmer group SelAh

(Q∞)p for the Galois module Ah in
essentially the same way as for E[p∞] = Vp(E)/Tp(E). It is a subgroup of
H1(Q∞,Ah) and is defined as the kernel of a map just like (1) (taking Σ0

to be empty). It suffices to define H`(Q∞,Ah) for all primes `. The residual
representation is given by the Galois action on Ah[π]. If we assume that this is
irreducible, as before, then H0(Q∞,Ah) = 0 and one has an isomorphism

H1(Q∞,Ah[π]) −→ H1(Q∞,Ah)[π]. (3)

The preimage of SelAh
(Q∞)[π] under this isomorphism defines an f-subspace Sh

of H1(Q∞,Ah[π]). It can be characterized by local conditions. That is, one can
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define Sh as the kernel of a map like (2) (again taking Σ0 to be empty). However,
those conditions will not generally be determined by the Galois module Ah[π].

For a prime ` not dividing p in some finite set Σ0, which would usually be
nonempty, and for a prime η of Q∞ lying over `, the map

H1(Q∞,η,Ah[π]) −→ H1(Q∞,η,Ah)[π]

may have a nontrivial kernel. Let δη(h) denote the f-dimension of the kernel.
An element of Sh will have a trivial image in H1(Q∞,η,Ah)[π] (and hence
satisfy the local condition for the prime η which occurs in the definition of
SelAh

(Q∞)p), but may have a nontrivial image in H1(Q∞,η,Ah[π]). Thus, for
` ∈ Σ0, one should define H`(Q∞,Ah[π]) to be a certain quotient of the direct
product of the H1(Q∞,η,Ah[π])’s for η|` so that the inclusion A[π] → Ah

induces an isomorphism from H`(Q∞,Ah[π]) to H`(Q∞,Ah)[π]. If one assumes
that SelAh

(Q∞)[π] is finite, then it turns out that SelAh
(Q∞) is a divisible O-

module. Let λ(h) denote its O-corank. Thus, we have λ(h) = dimf(Sh). As
shown in [9], the variation in dimf(Sh) is controlled completely by the δη(h)’s.
They turn out to be constant in each branch of the Hida family, and so λ(h)
will also be constant in each branch. One also obtains a rather simple formula
for the change in the λ-invariant from one branch to another.

What we have described above is the algebraic side of Iwasawa theory. A
substantial part of both [14] and [9] is devoted to the analytic side of Iwa-
sawa theory, the existence and properties of p-adic L-functions. One can also
associate a λ-invariant to p-adic L-functions. A natural domain of definition

for those functions is Homcont(Γ,Q
×

p ). The λ-invariant is the number of ze-
ros, counting multiplicity. In [14], a non-primitive p-adic L-function plays an
important role. In both [14] and [9], the results on the algebraic and on the
analytic sides are quite parallel, although the nature of the arguments is quite
different. The “main conjecture” of Iwasawa theory for elliptic curves (due to
Mazur [21]), or for modular forms (as in [11]), relates the algebraic and analytic
sides in a precise way. It gives an algebraic interpretation of the zeros of the
p-adic L-functions.

If E has complex multiplication, then the main conjecture has been settled
by Rubin [32] in a somewhat more general situation than we are considering
here. The results in [14] and in [9] together with a theorem of Kato [18] imply
that if the main conjecture is valid for one elliptic curve E1, or for one modular
form h1 in a Hida family, then, under the assumption that a certain µ-invariant
vanishes, the main conjecture will also be valid for any other elliptic curve E2

such that E2[p] ∼= E1[p], or for any other modular form h2 in the Hida family.
Thus, roughly speaking, and under suitable assumptions, the validity of the
main conjecture is preserved by congruences. We also want to mention much
more recent work of Skinner and Urban which may go a long way to settling
this conjecture completely.

There are also results for elliptic curves with good supersingular reduction
at p, and more generally for modular forms of weight 2 which are supersingular
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in a certain sense. This topic will be discussed in detail in [13]. The results in
that paper are intended to be the analogues of those in [14], despite the fact that
the corresponding Selmer groups will not be Λ-cotorsion and the corresponding
p-adic L-functions will have infinitely many zeros. The higher weight case is
not yet understood. One finds a discussion of that case on the analytic side in
[27].

3. Artin Twists

The discussion in section 2 mostly concerns the invariant λ(E) associated to
SelE(Q∞)p, and the non-primitive analogues λ(E,Σ0) and SelΣ0

E (Q∞)p corre-
sponding to a suitable set Σ0. We will now include another variable, an Artin
representation σ. We let the base field F be an arbitrary algebraic number field
and denote the cyclotomic Zp-extension of F by F∞. Suppose that K is a finite
Galois extension of F and that K ∩ F∞ = F . The Artin representations to be
considered will factor through ∆ = Gal(K/F ). However, if K is allowed to vary
over the finite extensions of F contained in some infinite Galois extension K of
F satisfying K ∩ F∞ = F , then σ can vary over all Artin representations over
F which factor through Gal(K/F ). One interesting case is where Gal(K/F ) is
a p-adic Lie group.

If v is a non-archimedean prime of F , let ev(K/F ) denote the ramification
index for v in K/F . Let

ΦK/F = {v | v - p, v - ∞, and ev(K/F ) is divisible by p }.

This finite set of primes of F will play an important role in this section. We
always will assume that E has good ordinary reduction at the primes of F lying
over p.

Assume that X is a free Zp-module of finite rank λ(X) and that there is
a Zp-linear action of ∆ on X. Thus, X is a Zp[∆]-module. Suppose that σ is
defined over F , a finite extension of Qp, and that σ is absolutely irreducible. We
define λ(X,σ) to be the multiplicity of σ in VF = X⊗Zp

F , an F-representation
space for ∆ of dimension λ(X). The definition of λ(X,σ) makes sense if we just
assume that X/Xtors is a free Zp-module of finite rank. We let IrrF (∆) denote
the set of irreducible representations of ∆ over F , always assuming that F is
large enough so that irreducible F-representations are absolutely irreducible.
We extend the definition of λ(X, ·) to arbitrary finite-dimension representations
ρ of ∆ by making the map λ(X, ·) a homomorphism from the Grothendieck
group RF (∆) to Z.

Since K ∩ F∞ = F , we can identify ∆ with Gal(K∞/F∞), where K∞ is
KF∞, the cyclotomic Zp-extension of K. Hence there is a natural action of
∆ on SelE(K∞)p. Assume that the Pontryagin dual of SelE(K∞)p is a torsion
Λ-module. If we take X to be that module, then we will denote λ(X,σ) by
λ(E, σ). Let Σ0 be a finite set of primes of F not lying above p or ∞. Then
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there is also a natural action of ∆ on SelΣ0

E (K∞)p. If we take X to be the

Pontryagin dual of SelΣ0

E (K∞)p (which will also be a torsion Λ-module), then
we will denote λ(X,σ) by λ(E,Σ0, σ). Although we will not discuss it here,
one can also describe the difference λ(E,Σ0, σ)−λ(E, σ) in purely local terms.
And so one can reduce the study of the λ(E, σ)’s to studying the λ(E,Σ0, σ)’s
for a suitable choice of Σ0. Proposition 3.1 below concerns these non-primitive
λ-invariants and is one of the main results of [12].

If v is a prime of F lying above p, we let Ev denote the reduction of E at v,
an elliptic curve over the residue field of v. We let kv denote the residue field
for any prime of K lying above v.

Proposition 3.1. Suppose that E has good ordinary reduction at the primes

of F lying above p, that E(K)[p] = 0, that Ev(kv)[p] = 0 for all primes v
of F lying over p, and that SelE(K∞)[p] is finite. Let Σ0 be a finite set of

primes containing ΦK/F , but not containing primes lying over p or ∞. Then

the Pontryagin dual of SelΣ0

E (K∞)p is a projective Zp[∆]-module.

The assumption that SelE(K∞)[p] is finite implies that SelE(K∞)p is Λ-
cotorsion.

A corollary of the above result is that the invariants λ(E,Σ0, ρ) behave
in the following way. Here we let ρ be an arbitrary representation of ∆ over
F . Let O be the integers in F . We can choose a ∆-invariant O-lattice in the
underlying representation space for ρ. Reducing modulo the maximal ideal m of
O, we obtain a representation ρ̃. Its semisimplification ρ̃ss is well-defined. It is
a representation over the residue field f = O/m. Then, under the assumptions
in the above proposition, we have the following result:

Corollary 3.2. Suppose that the assumptions in proposition 3.1 are satisfied.

Assume that ρ1 and ρ2 are representations of ∆ such that ρ̃ss1
∼= ρ̃ss2 . Then

λ(E,Σ0, ρ1) = λ(E,Σ0, ρ2). That is, we have a linear relation

∑

σ

m1(σ)λ(E,Σ0, σ) =
∑

σ

m2(σ)λ(E,Σ0, σ)

where σ varies over the irreducible representations of ∆ over F and mi(σ)
denotes the multiplicity of σ in ρi for i = 1, 2.

If ρ1 6∼= ρ2, but ρ̃ss1
∼= ρ̃ss2 , then the corresponding linear relation is nontrivial.

Such nontrivial relations occur whenever |∆| is divisible by p. We also remark
that the conclusion in the corollary means that the map λ(E,Σ0, ·) fromRF (∆)
to Z factors through the reduction map RF (∆) → Rf(∆).

The assumptions in the corollary can be weakened. As shown in [12], one can
omit the assumptions about E(K)[p] and Ev(kv)[p] for v|p. It suffices to assume
that SelE(K∞)[p] is finite and that Σ0 is chosen as in proposition 3.1. The
Pontryagin dual of SelΣ0

E (K∞)p may fail to be a projective Zp[∆]-module, but
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it still turns out to have a weaker property which we call “quasi-projectivity”.
The linear relation in corollary 3.2 still follows. We call such a linear relation
a “congruence relation” because it arises from an isomorphism ρ̃ss1

∼= ρ̃ss2 . We
think of such an isomorphism as a congruence between the two representations
ρ1 and ρ2. Note that the semisimplifications of E[p]⊗ ρ̃1 and E[p]⊗ ρ̃2 will also
be isomorphic.

Assume now that Π is a normal subgroup of ∆ and that Π is a p-group. Let
∆0 = ∆/Π. Of course, ∆0 = Gal(K0/F ) for some subfield K0 of K. Since f has
characteristic p, one sees easily that every irreducible representation of ∆ over
f factors through ∆0. A result in modular representation theory implies that
if ρ1 is a representation of ∆ over F , then there exists a representation ρ2 of
∆ which factors through ∆0 such that ρ̃ss1

∼= ρ̃ss2 . Furthermore, one can show
that SelE(K∞)[p] is finite if and only if SelE(K0,∞)[p] is finite, where K0,∞ is
the cyclotomic Zp-extension of K0. Thus, it suffices to assume the finiteness of
SelE(K0,∞)[p]. The corresponding congruence relation from corollary 3.2 then
shows that λ(E,Σ0, ρ1) can be expressed just in terms of the λ(E,Σ0, σ)’s for
σ ∈ IrrF (∆0). Thus, the function λ(E,Σ0, ·) on IrrF (∆) is completely deter-
mined by its restriction to IrrF (∆0).

In the special case where ∆ is itself a p-group, one obtains the simple formula
λ(E,Σ0, σ) = deg(σ)λ(E,Σ0, σ0), where σ0 is the trivial representation of ∆.
In this case, that formula was proven in [16]. It is stated there in a somewhat
different form. One needs to assume that SelE(F∞)[p] is finite.

There are results of a similar nature in [3]. They concern irreducible Artin
representations σ which factor through G = Gal(K/F ), where K is generated
over F by all the p-power roots of some α ∈ F× (subject to some mild
restrictions on α). This is called a “false Tate extension” of F . Note that
G = Gal(K/F ) is a non-commutative p-adic Lie group of dimension 2. Since K
contains µp∞ , the cyclotomic Zp-extension F∞ of F is contained in K. There-
fore, the earlier assumption that K∩F∞ = F is not satisfied here. So we instead
let ∆ = Gal(K/F∞) and let ∆0 = Gal(F (µp∞)/F∞). Note that ∆0 is cyclic
and has order dividing p − 1, and that the kernel Π of the map ∆ → ∆0 is a
pro-p group. These facts simplify the representation theory significantly, both
in characteristic 0 and in characteristic p.

If σ′ is an irreducible representation of ∆, one can define λ(E, σ′) essentially
as before. One can then define λ(E, ρ′) for any representation ρ′ of ∆. We
define λ(E, σ) to be λ(E, σ|∆) for all irreducible Artin representations σ of
G. The irreducible representations of ∆0 are 1-dimensional. They are powers
of ω, the p-power cyclotomic character which has order dividing p − 1. Those
characters are restrictions of characters of Gal(F (µp)/F ) to ∆. The results in
section 4 of [3] give formulas for λ(E, σ) in terms of the λ(E,ωi)’s under a
certain hypothesis which we state below. Such formulas are also derived in [12],
but under a somewhat different hypothesis.

We want to briefly discuss these hypotheses. Let X denote the Pontryagin
dual of SelE(K)p. One can view X as a module over the completed group ring
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Zp[[G]], the Iwasawa algebra for the 2-dimensional p-adic Lie group G. The
module X is finitely-generated over that ring. The key hypothesis in [3] is the
following:

1: X/Xtors is finitely-generated as a Zp[[∆]]-module.

Now it is known that Zp[[G]] is Noetherian. It follows that Xtors is killed by a
fixed power of p. Note also that X/Xtors is the Pontryagin dual of SelE(K)p,div.
Under the above hypothesis, the results in [3] are proved by a K-theoretic
approach. It may be possible to prove the results in [12] by such an approach.
The proofs there work under the following hypothesis.

2: SelE′

(
F (µp∞)

)
[p] is finite for at least one elliptic curve E′ in the F -isogeny

class of E.

One can deduce hypothesis 1 from hypothesis 2. However, the precise relation-
ship between these hypotheses is not clear at present.

The results described in this section can be reformulated in another way.
The analogy with the results mentioned in section 2 then becomes clearer. One
can give an alternative definition of λ(E, σ) as the O-corank of a Selmer group
over F∞ associated to the F-representation space Vp(E) ⊗ σ for GF∞

One
chooses a Galois invariant O-lattice. We denote the corresponding quotient by
E[p∞]⊗ σ, which is a discrete, divisible O-module whose O-rank is 2dimF (σ).
We then define a Selmer group essentially as for E[p∞] itself. It is a subgroup of
the Galois cohomology group H1(F∞, E[p∞]⊗ σ). For primes of F∞ not lying
over p, cocycle classes are required to be locally trivial. For primes π lying over
p, cocycle classes are required to have a trivial image in H1(F∞,π, Eπ[p

∞]⊗σ).
The proof that λ(E, σ) coincides with the O-corank of SelE[p∞]⊗σ(F∞) is

a straightforward argument using the restriction maps for the global and local
H1’s. Note that if ρ1 and ρ2 are representations of ∆ and ρ̃ss1

∼= ρ̃ss2 , then

E[p]⊗ ρ̃ss1
∼= E[p]⊗ ρ̃ss2 .

Thus, the residual representations for Vp(E)⊗ ρ1 and Vp(E)⊗ ρ2 will at least
have isomorphic semisimplifications. Chapter 4 in [12] gives a proof of corollary
3.2 from this point of view, although only under more stringent hypotheses.

4. Parity

Continuing with the situation in section 3, the Birch and Swinnerton-Dyer
conjecture for E over the field K asserts that the rank of E(K) and the order
of vanishing of the Hasse-Weil L-function L(E,K, s) at s = 1 should be the
same. One can factor L(E,K, s) as a product of L-functions L(E, σ, s), where
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σ varies over the irreducible representations of ∆ = Gal(K/F ) over C, each
with multiplicity deg(σ). A refined form of the Birch and Swinnerton-Dyer
conjecture asserts that, for every such σ, the multiplicity r(E, σ) of σ in the C-
representation space E(K)⊗Z C for ∆ and the order of vanishing of L(E, σ, s)
at s = 1 should be the same. This refined conjecture is stated in [28] where it
is derived from the Birch and Swinnerton-Dyer conjecture and a conjecture of
Deligne and Gross.

The functional equation for L(E, σ, s) relates that function to L(E, σ̌, 2−s),
where σ̌ is the contragredient of σ. If σ is self-dual (i.e., σ ∼= σ̌), then that
functional equation will have a root number W (E, σ) ∈ {±1} which would de-
termine the parity of the order of vanishing at s = 1. The analytic continuation
and functional equation for the L-functions mentioned above are conjectural in
general, but there is a precise definition of W (E, σ) due to Deligne [5]. General
formulas for W (E, σ) are derived in [30]. If one just considers the parity of
the multiplicity and the order of vanishing, then one is led to conjecture that
W (E, σ) = (−1)r(E,σ) for any self-dual representation σ of ∆.

It has proved easier to study a Selmer group version of the above conjec-
ture. Fix embeddings of Q into C and into Qp. We can then realize σ as an

irreducible representation of ∆ over Q, and then over Qp. Let XE(K) denote
the Pontryagin dual of SelE(K)p. Let s(E, σ) denote the multiplicity of σ in
the Qp-representation space XE(K)⊗Zp

Qp. If the p-primary subgroup of the
Tate-Shafarevich group for E over K is finite, then one has s(E, σ) = r(E, σ).
The parity conjecture that we will discuss here is the equality:

W (E, σ) = (−1)s(E,σ) (4)

for any self-dual irreducible representation of ∆. We will assume that p is odd.
There has been significant progress on this conjecture in certain cases. The

first results go back to [1], and later [20], [15], and [24]. More recently, Nekovar
([25], [26]) proved the conjecture when E is defined over Q and has good ordi-
nary reduction at p, and σ is trivial. This is now known for arbitrary elliptic
curves over Q. (See [7] and [19].) Subsequently, various results for more general
self-dual Artin representations σ have been proved in [7], [8], which are part
of a long series of papers, and in [22], [23]. Results in [3] and [12] also have a
bearing on this question, as we will explain.

Under the assumption that SelE(K∞)p is Λ-cotorsion, one can define λ(E, σ)
as before. Also, recall that self-dual irreducible representations σ of a finite
group are of two types: orthogonal or symplectic. The following result is proved
in [12].

Proposition 4.1. Assume that σ is an irreducible orthogonal representation of

∆. Then we have λ(E, σ) ≡ s(E, σ) (mod 2).

One can use this result together with the congruence relations in section 3 to
show that W (E, σ) behaves well under congruences. To be precise, the following
result is proven in [12]:
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Proposition 4.2. Assume that E has semistable reduction at the primes of F
lying above 2 and 3 and that SelE(K∞)[p] is finite. Let σ1 and σ2 be irreducible

orthogonal representations of ∆. Assume that σ̃ss
1

∼= σ̃ss
2 . Then (4) holds for

σ = σ1 if and only if (4) holds for σ = σ2.

There is also a version for arbitrary orthogonal representations ρ of ∆. This kind
of result is proven in [12] with a significantly weaker assumption concerning the
primes above 2 or 3. It should be possible to eliminate that assumption entirely.
As for symplectic irreducible representations σ, one has W (E, σ) = 1, and so
one expects s(E, σ) to be even. There seem to be no results known in that
direction. However, it is not hard to show that r(E, σ) is even if σ is symplectic.
Thus, if the p-primary subgroup of the Tate-Shafarevich group for E over K is
finite, then s(E, σ) is indeed even.

In the rest of this article, we will consider the situation mentioned in section
3 where ∆ = Gal(K/F ) has a normal p-subgroup Π, K0 is the fixed field for
Π, and ∆0 = Gal(K0/F ). We assume that K ∩ F∞ = F and let K0,∞ be
K0F∞, the cyclotomic Zp-extension of K0. One can show that SelE(K∞)[p]
is finite if and only if SelE(K0,∞)[p] is finite. Let us assumes the finiteness of
SelE(K0,∞)[p] and the semistability assumption for primes above 2 and 3 in
proposition 4.2. One can then derive the following consequence: If (4) is valid

for all irreducible orthogonal representations factoring through ∆0, then (4) is

valid for all irreducible orthogonal representations factoring through ∆.

As an illustration, one can consider subfields of F (A[p∞]), where A is
an elliptic curve defined over F . We will assume that the homomorphism
GF → AutZp

(
Tp(A)

)
giving the action of GF on Tp(A) is surjective. Thus,

Gal
(
F (A[p∞])/F

)
∼= GL2(Zp) and so F (A[p∞]) will contain a tower of sub-

fields Kn such that ∆n = Gal(Kn/F ) is isomorphic to PGL2(Z/p
n+1Z) for all

n ≥ 0. Let K = ∪nKn. We will consider Artin representations over F which
factor through Gal(K/F ), and hence through ∆n for some n ≥ 0.

To apply the results in [12] to K = Kn for any n ≥ 0, one may just
assume that SelE(K0,∞)[p] is finite. It turns out that all irreducible representa-
tions of PGL2(Z/p

n+1Z) are self-dual and orthogonal. Thus, under the assump-
tions about E in proposition 4.2 (or various alternative hypotheses), it follows
that (4) holds for all the irreducible Artin representations factoring through
Gal(K/Q) if it holds for all irreducible Artin representations factoring through
∆0 = Gal(K0/F ). Two of those Artin representations factoring through ∆0 are
1-dimensional, two are p-dimensional, and all the other irreducible Artin rep-
resentations of Gal(K/Q) are even dimensional. If one just assumes that (4) is
valid for the four odd-dimensional irreducible representations σ just mentioned,
then one finds that (4) is valid for a certain infinite family of irreducible Artin
representations σ.

Assume that F = Q, that A = E, and that the surjectivity hypothesis in
the previous paragraph is satisfied. Then (4) is valid for the two 1-dimensional
representations of ∆0. This follows from the results of Nekovar, Kim, and of T.
and V. Dokchitser cited above. Under mild hypotheses on the reduction type,
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one then obtains (4) for the two p-dimensional Artin representations factoring
through ∆0. This follows from a result proven in [3], and also in [6] under certain
stronger hypotheses, establishing (4) when σ is trivial and E is an elliptic curve
without complex multiplication which has an isogeny of degree p over the base
field. One applies this result to certain subfields of K0.

The results in [3] about the parity conjecture (4) have a similar form.
They concern irreducible orthogonal Artin representations which factor through
the Galois group G = Gal(K/F ), where K is a p-adic Lie extension of F .
A key assumption in [3] is hypothesis 1 discussed in section 3. One takes
∆ = Gal(K/F∞). The cases considered in that paper have the following prop-
erty: ∆ has a normal pro-p subgroup Π such that ∆0 = ∆/Π is abelian and
of order prime to p. One can identify ∆0 with a quotient of G. In addition
to the case where K is the false Tate extension mentioned in section 3, they
consider the case where K = F (E[p∞]), E is an elliptic curve without complex
multiplication, and E has an isogeny of degree p over F . The result cited in
the previous paragraph concerning such an elliptic curve establishes (4) for the
self-dual irreducible representations of ∆0, i.e., the characters of ∆0 of order 1
or 2. Under some mild additional hypotheses, they can then prove (4) for all
the other irreducible orthogonal Artin representations which factor through G.

Mazur and Rubin [22] study the case where ∆ = Gal(K/F ) is a dihedral
group of order 2pn for n ≥ 1. One can then take ∆0 to be the quotient group
of ∆ of order 2. Let K0 be the corresponding quadratic extension of F . All the
irreducible representations of ∆ are orthogonal. There are two of degree 1, which
we call ε0 and ε1. They factor through ∆0. If σ is an irreducible representation
of ∆ which does not factor through ∆0, then σ has degree 2. Furthermore,
we have σ̃ss ∼= ε̃0 ⊕ ε̃1. Note also that the Zp-corank of SelE(K0)p is equal to
s(E, ε0) + s(E, ε1). The results in [22] are stated under an assumption about
the parity of the Zp-corank of SelE(K0)p. In essence, and under various rather
mild sets of hypotheses, the results in [22] establish (4) for the σ’s of degree 2
under the assumption that

W (E, ε0)W (E, ε1) = (−1)s(E,ε0)+s(E,ε1) .

This assumption is somewhat weaker than the assumption that (4) is valid for
the irreducible representations factoring through ∆0, namely ε0 and ε1. Mazur
and Rubin use such a result to show that the Zp-corank of SelE(K)p is large
for certain Galois extensions K/F . Such an assertion follows under hypotheses
which imply that W (E, σ) = −1 for many self-dual irreducible representations
σ of Gal(K/F ). If s(E, σ) is odd, then s(E, σ) is positive. This idea is exploited
in [23]. It is also pursued in [3] and [12], although much more conditionally.

One can define W (E, ρ) for any self-dual Artin representation ρ over a
number field F . One can also extend the definition of s(E, ·) to all Artin rep-
resentations ρ over F . Then (4) can be restated as

W (E, ρ) = (−1)s(E,ρ) (5)
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for all self-dual Artin representations ρ over F . Following the theme of this
article, one would like to prove that the validity of (5) is preserved by congru-
ences. That is, if (5) is valid for ρ1 and if ρ̃ss1

∼= ρ̃ss2 , then (5) should also be
valid for ρ2. We believe that such a result is approachable. The results in [22]
discussed above go a long way in the case where ∆ is a dihedral group of order
2pn. There are also remarkable results concerning (5) in [7] which go a long way
in the case where ∆0 is abelian and also in the case where ρ is a permutation
representation.
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Artin’s Conjecture [1, Preface] is the following statement.

Conjecture . Let F (x1, . . . , xn) ∈ Qp[x1, . . . , xn] be a form of degree d. Then
if n > d2 the equation F (x1, . . . , xn) = 0 has a non-trivial solution in Qn

p .

Here Qp is the p-adic field corresponding to a rational prime p. Artin was
led to his conjecture by considerations about Ci-fields, and the above assertion
can be re-phased to say that Qp is a C2-field. There are easy examples for
every prime p and every degree d to show that one cannot take n = d2 here.
The conjecture can be generalized to more general p-adic fields, and to systems
of forms of degrees d1, . . . , dr, in which case the condition on n becomes n >
d21 + . . .+ d2r.

One reason for the interest in Artin’s Conjecture comes from the study of
Local-to-Global Principles. One example is provided by the following theorem
of Birch [4].
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Theorem 1. Let F (x1, . . . , xn) ∈ Q[x1, . . . , xn] be a non-singular form of de-
gree d ≥ 2 with n > (d− 1)2d. Then

#

{

x ∈ Zn : F (x) = 0, max
i=1,...,n

|xi| ≤ B

}

= cFB
n−d + o(Bn−d) (1)

as B → ∞. Moreover the constant cF is strictly positive providing that the
equation F (x1, . . . , xn) = 0 has zeros in Rn and in each p-adic field.

Thus if Artin’s Conjecture were true the p-adic condition would hold auto-
matically, since (d− 1)2d ≥ d2.

Unfortunately Artin’s Conjecture is currently only known in the cases d = 1
and 2 (which are classical), and d = 3 (due to Lewis [21]). Indeed the conjecture
is known to be false in general, the first counterexample having been found by
Terjanian [25], for degree d = 4. If one sets

G(x1, x2, x3) = x4
1 + x4

2 + x4
3 − (x2

1x
2
2 + x2

1x
2
3 + x2

2x
2
3)− x1x2x3(x1 + x2 + x3)

and

F (x1, . . . , x18) = G(x1, x2, x3) +G(x4, x5, x6) +G(x7, x8, x9)

+ 4G(x10, x11, x12) + 4G(x13, x14, x15) + 4G(x16, x17, x18),

then F (x) is a form in 18 variables with only the trivial zero overQ2. Subsequent
work has produced counter-examples for many values of d, though d is even in
every case known.

Question 1. Can one find any counter-examples to Artin’s Conjecture with
odd degree?

The most important general result in the positive direction is that of Ax
and Kochen [2].

Theorem 2. For every d ∈ N there is a p0(d) such that Artin’s Conjecture
holds whenever p ≥ p0(d).

The proof uses Mathematical Logic, and is based on the fact that the ana-
logue of Artin’s Conjecture is known for the fields Fp((t)). A value for p0(d)
was found by Brown [8]:-

22
2
2
2
d
11

4d

! (2)

Here the “!” symbol is merely an exclamation mark, and not a factorial sign!
Another result by Ax and Kochen [3] shows that the theory of p-adic fields
is decidable. Thus for each fixed prime p and each fixed degree d there is, in
principle, a procedure for deciding whether the statement

“Every form F (x1, . . . , xd2+1) ∈ Qp[x1, . . . , xd2+1] has a nontrivial
zero over Qp.”
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is true or false. It follows that one can, in theory, test every prime up to Brown’s
bound (2), and hence decide whether or not Artin’s Conjecture holds for a given
degree d.

A second approach to Artin’s Conjecture, developed by Lewis [21] for d = 3,
Birch and Lewis [5] for d = 5, and Laxton and Lewis [16] for d = 7 and 11,
applies a p-adic “minimization” process to the form F to produce a suitable
model over Zp. One then examines the reduction F [x] ∈ Fp[x1, . . . , xn]. If this
can be shown to have a non-singular zero, Hensel’s Lemma will allow us to lift
it to a non-trivial zero of F over Zp. However this “minimization” method has
limited applicability. If d can be written as a sum of composite numbers it is
possible that F factors as Ge1

1 . . . Gek
k with degGi ≥ 2 and ei ≥ 2 for every i.

In this case it is impossible for F to have a non-singular zero. The method is
therefore doomed to fail for such degrees. In fact d = 1, 2, 3, 5, 7 and 11 are the
only integers which cannot be written as a sum of composite numbers. However
for these values the method works moderately well, and produces results of the
type given by Ax and Kochen, but with much smaller values for p0(d). Thus
Leep and Yeomans [20] showed that one may take p0(5) = 47, and Wooley
[26], that p0(7) = 887 and p0(11) = 8059 are admissible. These are susceptible
to further improvement, and indeed calculations by Heath–Brown have shown
that for d = 5 Artin’s Conjecture holds for p ≥ 17.

Question 2. Does Artin’s Conjecture hold for d = 5, for every prime?

This is certainly decidable in principle, but whether it is realistic to expect
a computational answer with current technology is unclear.

The minimization approach can also be used for systems of forms. It shows
(Demyanov [12]) that n > 8 suffices for a pair of quadratic forms, for every
p, and (Birch and Lewis [6], Schuur [23]) that n > 12 suffices for a system of
3 quadratic forms, providing that p ≥ 11. A very recent application involving
forms of differing degrees has been given by Zahid [28], who shows that a
quadratic and a cubic form over Qp have a common zero if n > 13 = 22 + 32,
providing that p > 293.

Since Artin’s Conjecture is false in general, it is natural to ask about
the number vd(p), defined as the minimal integer such that every form
F (x1, . . . , xn) ∈ Qp[x1, . . . , xn] of degree d in n > vd(p) variables, has a non-
trivial p-adic zero. We also write vd = maxp vd(p). Brauer [7] proved a result
that implies that vd is finite for every d.

Theorem 3. For every degree d there is an integer vd such that for each prime
p, every form F (x1, . . . , xn) ∈ Qp[x1, . . . , xn] of degree d with n > vd has a
non-trivial p-adic zero.

Brauer’s proof involves multiple nested inductions, and did not lead to ex-
plicit bounds for vd. More recent versions of the argument due to Leep and
Schmidt [19], and particularly Wooley [27], are vastly more efficient, yielding

vd ≤ d2
d

(3)
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in general, but this is still disappointingly large. Brauer’s basic idea is to show
that for any m ∈ N, the form F will represent a diagonal form in m variables
as soon as n is large enough compared to m. It is not hard to show (Davenport
and Lewis [11]) that for every p and every d one can solve diagonal equations

c1x
d
1 + . . .+ cmxd

m = 0

over Qp as soon as m > d2. Thus it suffices that F should represent a di-
agonal form in m ≥ d2 + 1 variables. We therefore seek linearly independent
vectors e1, . . . , em ∈ Qn

p such that F (λ1e1 + . . .+ λmem) is a diagonal form in
λ1, . . . , λm. If we choose the vectors ei inductively it is clear that em must be
a zero of a collection of forms of degree strictly less than d. Specifically there
will be m− 1 forms of degree d− 1; m(m− 1)/2 forms of degree d− 2; and so
on. The induction argument therefore involves the analogue of vd for systems
of forms of differing degrees, and not just for a single form of degree d.

There is an approach to these problems (Heath–Brown [14]) which is inter-
mediate between the method of Lewis, Birch and Lewis, and Laxton and Lewis
and that of Brauer, Schmidt and Wooley. In this intermediate approach one
does not diagonalize F fully, but removes enough of the coefficients to ensure
that there is a multiple of F which has a non-singular zero over Fp, so that
Hensel’s Lemma can be used. As an example we have the following lemma.

Lemma 1. Let p 6= 2, 5 or 13 be prime and let

H(x, y, z) = Ax4 +Bxy3 + Cy4 +Dxz3 + Eyz3 + Fz4 ∈ Qp[x, y, z].

Suppose further that A,C and F are p-adic units. Then H must represent zero
non-trivially over Qp.

In order to produce such forms by the inductive construction above one has
to solve a system containing quadratic and linear equations, but not cubics.

The power of this new method is well illustrated by the case d = 4, for
which a direct application of (3) yields v4 ≤ 4294967296. In contrast the new
method (Heath–Brown [14, Theorem 2 and Note Added in Proof]) establishes
the following bounds.

Theorem 4. We have

(i) v4(p) ≤ 120 for p ≥ 11,

(ii) v4(p) ≤ 128 for p = 3 and p = 7,

(iii) v4(5) ≤ 312, and

(iv) v4(2) ≤ 4221.

Thus v4 ≤ 4221
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One sees that p = 2 is the worst case by far. It is fair to say that we have
absolutely no idea what the correct value for v4 is, and it seems natural in
particular to ask the following question.

Question 3. Are there any counter-examples to Artin’s Conjecture for quartic
forms with p 6= 2?

It is convenient at this point to introduce the following notation. For any
field K, let β(r;K) be the least integer m such that a system of r quadratic
forms over K has a non-trivial common zero in K as soon as the number of
variables exceeds m. The case d = 2 of Artin’s Conjecture, which is known to
be true, yields β(1;Qp) = 4, and in general the conjecture would imply that
β(r;Qp) = 4r.

The results on v4(p) from Heath–Brown [14] arise from the estimates

v4(p) ≤







16 + β(8;Qp), p 6= 2, 5,
40 + β(12;Qp), p = 5,
537 + β(43;Qp), p = 2.

together with suitable bounds for β(r;Qp). It is therefore natural to turn our
attention to the question of systems of quadratic forms. For general r it has
been shown by Leep [17] that β(r;Qp) ≤ 2r2 + 2r for all r and p. There have
been subsequent small improvements, but in all cases the bound is asymptotic
to 2r2 as r → ∞. Leep’s argument is an elementary induction on r, somewhat
in the spirit of the Brauer induction method.

A recent alternative attack (Heath–Brown [15]) starts from the work of
Birch and Lewis [6], who used the minimization approach to handle systems of
three quadratic forms. In general this leads to a set of forms over Fp for which
one wants to find a non-singular common zero. This is done via a counting
argument, so that one requires, amongst other information, an estimate for the
overall number of common zeros. The following rather easy lemma suffices.

Lemma 2. Suppose we have a system of quadratic forms

Q(i)(x1, . . . , xn) ∈ Fp[x1, . . . , xn], (1 ≤ i ≤ r)

with N common zeros over Fp. Write NR for the number of vectors u ∈ Fr
p for

which
r

∑

i=1

uiQ
(i)(x1, . . . , xn) (4)

has rank R, and assume that such a linear combination vanishes only for u = 0.
Then

|N − qn−I | ≤
∑

1≤t≤n/2

qn−I−tN2t.
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For vectors u in the algebraic completion Fp the condition that (4) should
have rank at most R defines a projective algebraic variety. It is possible to
derive a good upper bound for the dimension of suitable components of this
set, using the fact that the original p-adic system was minimized. This bound
on the dimension leads in turn to a bound for NR. This enables one to show that
the system of quadratic forms over Fp has a non-singular zero when p is large
enough. In particular one can show that β(r;Qp) = 4r as soon as p > (2r)r.

In contrast to the situation for the original formulation of Artin’s Conjec-
ture, we know of no counter-examples for systems of quadratic forms. It is
therefore possible that β(r;Qp) = 4r for every prime p.

Question 4. Is it true that β(r;Qp) = 4r for every prime p?

It is not even known what happens if we restrict the quadratic forms to be
diagonal.

The Ax–Kochen result already implies the existence of a bound pr such
that β(r;Qp) = 4r for p > pr. However the two methods have a very important
difference when we come to apply them to finite extensions Qp of Qp. Suppose
the residue field Fp of such an extension has cardinality q = pe. Then the Ax–
Kochen theorem yields the existence of a bound pr,e such that β(r;Qp) = 4r
for p > pr,e. Thus there is a condition on the characteristic of Fp. For example,
the theorem leaves open the possibility that β(r;Qp) > 4r whenever Qp is a
finite extension of Q2. In contrast, the new method extends to give the following
result.

Theorem 5. We have β(r;Qp) = 4r whenever #Fp > (2r)r.

Here there is a condition on the cardinality of Fp, rather than its character-
istic.

This makes a crucial difference when we consider the u-invariant of function
fields of the form Qp(t1, . . . , tk), as has been shown by Leep [18]. The u-invariant
of a fieldK is the smallest integer n such that any quadratic form overK in more
than n variables must have a non-trivial zero over K. Thus u(R) = ∞, u(C) = 1
and u(Qp) = 4. It is easy to see that u(K(x)) ≥ 2u(K) in general, and hence
that u(Qp(t1, . . . , tk)) ≥ 22+k for all k ≥ 0. Prior to the appearance of the new
results on β(r;Qp) just described, the only values of k for which it was known
that u(Qp(t1, . . . , tk)) is finite were k = 0 and k = 1. When k = 1, Parimala
and Suresh [22] have recently shown that the u-invariant is 8, if p 6= 2. The
same result has been proved in a different way by Harbater, Hartmann and
Krashen [13, Corollary 4.14], who handle function fields of arbitrary curves
over finite extensions of Qp. Indeed Wooley, in unpublished work, has shown
how to adapt the circle method to handle quite general problems over Qp(t),
proving in particular that u(Qp(t)) = 8 for every prime p.

In order to handle the u-invariant for function fields Qp(t) = Qp(t1, . . . , tk)
in k variables, Leep considers a quadratic form Q(X1, . . . , Xn) over Qp(t), in
which the coefficients of Q are polynomials in t1, . . . , tk of total degree at most
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d, say. One now considers a finite extension Qp of Qp, whose significance will
become apparent later, and considers both Q and the Xi as polynomials in
t1, . . . , tk over the new field Qp. If we suppose that the Xi are polynomials of
total degree at most D then the overall number of coefficients in X1, . . . , Xn is

N := n(D + k) . . . (D + 1)/k!.

One may regard these coefficients as variables c1, . . . , cN ∈ Qp, which one uses
to force Q(X1, . . . , Xn) to vanish identically. Since Q(X1, . . . , Xn) has total
degree at most 2D + d as a function of t1, . . . , tk there are at most

R := (2D + d+ k) . . . (2D + d+ 1)/k!

coefficients which one must arrange to vanish. Each of these is a quadratic form
in c1, . . . , cN . According to Theorem 5 the corresponding system of quadratic
forms has a non-trivial zero (c1, . . . , cN ) ∈ Qp providing that N > 4R and
q > (2R)R, where q is the cardinality of the residue field of Qp. However it
is clear that N/R → 2−kn as D → ∞. Hence if n = 1 + 22+k we can choose
D = D(k, d) so that N > 4R. It follows that Q(X1, . . . , Xn) = 0 has a non-
trivial solution X1, . . . , Xn ∈ Qp(t1, . . . , tk) providing that q > q0(k, d).

One now calls on a result of Springer [24], which states that if Q is a
quadratic form over a field F of characteristic different from 2, which has a
non-trivial zero over some extension of F of odd degree, then Q has a non-
trivial zero over F itself. Thus to complete the proof it suffices to choose Qp

to be an extension of Q of odd degree, and for which q > q0(k, d). One may
then apply Springer’s result with F = Qp(t) to produce a non-trivial zero of
Q over the original field Qp(t). We therefore have the following result, due to
Leep [18].

Theorem 6. We have u(Qp(t1, . . . , tk)) = 22+k for all k ∈ N and all primes p.

The elegant feature of this argument is the way in which the size constraint
on q disappears. It is clear that the actual bound (2R)R is irrelevant. The
reader may note that Leep’s argument above is, in effect, the same as that
given slightly earlier by Colliot–Thélène, Parimala and Suresh [10, Proposition
2.2].

One can utilise the case k = 1 of Theorem 6 to obtain new bounds for
β(r;Qp). For example one has β(3;Qp) ≤ 16 and β(4;Qp) ≤ 24 for every prime
p. These estimates are themselves used in the proof of Theorem 4. It is curious
that these results hold even for the case when the residue field is small, even
though Theorem 5, from which they derive, requires the residue field to be
large.

As a corollary of Theorem 6 one can give an analogous statement for pairs
of quadratic forms.

Theorem 7. Two quadratic forms over Qp(t1, . . . , tk), in at least 1 + 23+k

variables, have a non-trivial common zero.
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This follows from a result of Brumer [9], which shows that if F is a field of
characteristic different from 2, then a pair of quadratic forms over F will have
a common zero as soon as the number of variables exceeds u(F (X)).

As with Theorem 6, there are examples showing that one cannot reduce the
number of variables. Of course both results remain true if we replace Qp by a
finite extension.

In conclusion we remark that it would be interesting to know what happens
for systems of cubic forms over Qp. One might hope to show that r cubic forms
in n > 9r variables have a common zero when the cardinality q of the residue
field is large enough in terms of r. However this is currently known only for
r = 1, by the result of Lewis [21]. If the general statement were established one
could deduce an analogue of Theorem 6 for cubic forms, with the number of
variables required to exceed 32+k. Here Springer’s theorem would be replaced
by the observation that if F is a field of characteristic zero, then any cubic form
with a zero over a quadratic extension of F also has a zero over F itself.

References

[1] E. Artin, The collected papers of Emil Artin, (Addison–Wesley, Reading, MA,
1965).

[2] J. Ax and S. Kochen, Diophantine problems over local fields. I, Amer. J. Math.,
87 (1965), 605–630.

[3] J. Ax and S. Kochen, Diophantine problems over local fields. II, A complete set
of axioms for p-adic number theory, Amer. J. Math., 87 (1965), 631–648.

[4] B.J. Birch, Forms in many variables, Proc. Roy. Soc. Ser. A 265 (1961/1962),
245–263.

[5] B.J. Birch and D.J. Lewis, p-adic forms, J. Indian Math. Soc. (N.S.), 23 (1959),
11–32.

[6] B.J. Birch and D.J. Lewis, Systems of three quadratic forms, Acta Arith., 10
(1964/1965), 423–442.

[7] R. Brauer, A note on systems of homogeneous algebraic equations, Bull. Amer.
Math. Soc., 51 (1945), 749–755.

[8] S.S. Brown, Bounds on transfer principles for algebraically closed and complete
discretely valued fields, Mem. Amer. Math. Soc., 15 (1978), no. 204, iv+92pp.

[9] A. Brumer, Remarques sur les couples de formes quadratiques, C. R. Acad. Sci.
Paris Sér. A–B, 286 (1978), no. 16, A679–A681.

[10] J.-L. Colliot–Thélène, R. Parimala and V. Suresh, Patching and local-global prin-
ciples for homogeneous spaces over function fields of p-adic curves, Comment.
Math. Helv., to appear.

[11] H. Davenport and D.J. Lewis, Homogeneous additive equations, Proc. Roy. Soc.
Ser. A, 274 (1963), 443–460.



Artin’s Conjecture on Zeros of p-adic Forms 257

[12] V.B. Demyanov, Pairs of quadratic forms over a complete field with discrete
norm with a finite field of residue classes, Izv. Akad. Nauk SSSR. Ser. Mat., 20
(1956), 307–324.

[13] D. Harbater, J. Hartmann and D. Krashen, Applications of patching to quadratic
forms and central simple algebras, Invent. Math., 178 (2009), 231–263.

[14] D.R. Heath–Brown, Zeros of p-adic forms, Proc. London Math. Soc. (3), 100
(2010), 560–584.

[15] D.R. Heath–Brown, Zeros of systems of p-adic quadratic forms, Composito Math.,
to appear.

[16] R.R. Laxton and D.J. Lewis, Forms of degrees 7 and 11 over p-adic fields, Proc.
Sympos. Pure Math., Vol. VIII, 16–21, (Amer. Math. Soc., Providence, R.I.,
1965).

[17] D.B. Leep, Systems of quadratic forms, J. Reine Angew. Math. 350 (1984), 109–
116.

[18] D.B. Leep, The u-invariant of p-adic function fields, preprint.

[19] D.B. Leep and W.M. Schmidt, Systems of homogeneous equations, Invent. Math.,
71 (1983), 539–549.

[20] D.B. Leep and C.C. Yeomans, Quintic forms over p-adic fields, J. Number Theory,
57 (1996), 231–241.

[21] D.J. Lewis, Cubic homogeneous polynomials over p-adic number fields, Ann. of
Math., (2) 56 (1952), 473–478.

[22] R. Parimala and V. Suresh, The u-invariant of the function fields of p-adic curves,
http://arxiv.org/pdf/0708.3128v1.

[23] S.E. Schuur, On systems of three quadratic forms, Acta Arith., 36 (1980), 315–
322.

[24] T.A. Springer, Sur les formes quadratiques d’indice zéro, C. R. Acad. Sci. Paris,
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Abstract

As an example of relative p-adic Hodge theory, we sketch the construction of the
universal admissible filtration of an isocrystal (φ-module) over the completion of
the maximal unramified extension of Qp, together with the associated universal
crystalline local system.
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Introduction

The subject of p-adic Hodge theory seeks to clarify the relationship between
various cohomology theories (primarily étale and de Rham) associated to al-
gebraic varieties over p-adic fields, in much the same way as ordinary Hodge
theory clarifies the relationship between various cohomology theories (primarily
Betti and de Rham) associated to complex algebraic varieties. Only recently,
however, has p-adic Hodge theory progressed to the point of dealing comfort-
ably with families of p-adic varieties, in the way that one uses variations of
Hodge structures to deal with families of complex varieties.

In this lecture, we illustrate one example of relative p-adic Hodge theory:
the construction of the universal admissible filtration on an isocrystal of given
Hodge-Tate weights, and the corresponding universal crystalline local system.
This problem was originally introduced by Rapoport and Zink [41], as part of a
generalization of the construction of p-adic symmetric spaces by Drinfel’d [15];
the relevant spaces in this construction are the moduli of filtered isocrystals. For
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K0 an absolutely unramified p-adic field with perfect residue field, an isocrystal
is a finite-dimensional K0-vector space equipped with an invertible semilinear
Frobenius action. Typical examples are the crystalline cohomology groups of
a smooth proper scheme over the residue field of K0. If the scheme lifts to
characteristic 0, one then obtains a filtered isocrystal by transferring the Hodge
filtration from de Rham cohomology to crystalline cohomology via the canonical
isomorphism. One can then pass directly from this filtered isocrystal to the étale
cohomology of the scheme, by a recipe of Fontaine.

Given an isocrystal, the possible filtrations on it with jumps at particular
indices (i.e., with prescribed Hodge-Tate weights) are naturally parametrized by
a partial flag variety. Of the points of this variety defined over finite extensions
of K0, one can identify those which give rise to Galois representations: by a
theorem of Colmez and Fontaine [13], they are the ones satisfying a simple
linear-algebraic condition called weak admissibility (analogous to the notion of
semistability in the theory of vector bundles). Rapoport and Zink conjecture
the existence of a rigid analytic subspace of this variety, containing exactly
the weakly admissible points, and admitting a local system specializing at each
point to the appropriate crystalline Galois representation. What makes this
conjecture subtle is that while the definition of weak admissibility suggests a
natural analytic structure on the set of weakly admissible points, one cannot
construct the local system without modifying the Grothendieck topology. As
observed by de Jong [14], this situation is better understood in Berkovich’s
language of nonarchimedean analytic spaces: the space sought by Rapoport-
Zink has the same rigid analytic points as the weakly admissible locus, but is
missing some of the nonrigid points.

We construct the Rapoport-Zink space and its associated local system by
copying as closely as possible the corresponding construction in equal char-
acteristic given by Hartl [22]. The definition of the space itself, as suggested
by Hartl [23], is similar in spirit to the definition of weak admissibility, but it
concerns not the original filtered isocrystal but an associated isocrystal over a
somewhat larger ring. In the case of a rigid analytic point, this ring is the Robba
ring appearing in the modern theory of p-adic differential equations; it is the
ring of germs of power series (over a certain coefficient field) convergent at the
outer boundary of the open unit disc (or more precisely, on some unspecified
open annulus with unit outer radius). The classification of isocrystals over the
Robba ring, analogous to the classification of rational Dieudonné modules, was
introduced by this author in [27]. We generalized this classification [29] in a
fashion that allows it to be applied to arbitrary Berkovich-theoretic points of
the flag variety. Having identified a candidate for the admissible locus, we im-
itate Berger’s alternate proof of the Colmez-Fontaine theorem [6] to construct
an isocrystal (more precisely a (φ,Γ)-module) over a relative Robba ring, from
which we construct the desired local system by the usual procedure from p-adic
Hodge theory (specializing to p-th power roots of unity and then performing
Galois descent).
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One of the intended applications of this construction is to the study of
period morphisms associated to moduli spaces of p-divisible groups (Barsotti-
Tate groups). Fix a p-divisible group G over Falg

p of height h and dimension d; its
rational crystalline Dieudonné module D(G)K0

is then an isocrystal over K0 =
Frac(W (Falg

p )). To any complete discrete valuation ring oK of characteristic 0

with residue field Falg
p , and any deformation of G to a p-divisible group G̃ over

oK , Grothendieck and Messing [37] associate an extension

0 → (Lie G̃∨)∨K → D(G)K → (Lie G̃)K → 0.

This gives D(G)K the structure of a filtered isocrystal with Hodge-Tate weights
in {0, 1}, and determines a K-point in the Grassmannian F of (h − d)-
dimensional subspaces of D(G)K0

. Grothendieck asked [21] which points of F
can occur in this fashion; Rapoport and Zink proved [41, 5.16] that all such
points belong to the image of a certain period morphism from the generic fibre
of the universal deformation space of G. Using results of Faltings, Hartl [24,
Theorem 3.5] has shown that his (and our) admissible locus is exactly the image
of the Rapoport-Zink period morphism.

The presentation here is based on a lecture series given in January 2010
during the Trimestre Galoisien at Institut Henri Poincaré (Paris). The original
lecture notes for that series are available online [33]. We are currently preparing
a more detailed manuscript in collaboration with Ruochuan Liu.

1. Nonarchimedean Analytic Spaces

It is convenient to use Berkovich’s language of nonarchimedean analytic spaces.
Here is the briefest of synopses of [8].

Definition 1.1. Consider the following conditions on a ring A (always assumed
to be commutative and unital) and a function α : A → [0,+∞).

(a) For all g, h ∈ A, we have α(g − h) ≤ max{α(g), α(h)}.

(b) We have α(0) = 0.

(b′) For all g ∈ A, we have α(g) = 0 if and only if g = 0.

(c) We have α(1) = 1, and for all g, h ∈ A, we have α(gh) ≤ α(g)α(h).

(c′) We have α(1) = 1, and for all g, h ∈ A, we have α(gh) = α(g)α(h).

We say α is a (nonarchimedean) seminorm if it satisfies (a) and (b), and a
(nonarchimedean) norm if it satisfies (a) and (b′). We say α is submultiplicative
if it satisfies (c), and multiplicative if it satisfies (c′).

Example 1.2. For any ring A, the function sending 0 to 0 and every other
element of A to 1 is a nonarchimedean norm, called the trivial norm. It is
multiplicative if A is an integral domain, and submultiplicative otherwise.
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Example 1.3. For R a ring equipped with a (sub)multiplicative (semi)norm
| · |, the Gauss (semi)norm on R[T ] takes

∑
i aiT

i to maxi{|ai|}.
Definition 1.4. Let A be a ring equipped with a submultiplicative norm | · |.
The Gel’fand spectrum M(A) of A is the set of multiplicative seminorms α on
A bounded above by | · |, topologized as a closed (hence compact, by Tikhonov’s
theorem) subspace of the product

∏
a∈A[0, |a|]. A subbasis of this topology is

given by the sets {α ∈ M(A) : α(f) ∈ I} for each f ∈ A and each open interval

I ⊆ R. For Â the separated completion of A with respect to | · |, extension by

continuity gives a natural identification of M(A) with M(Â).
For α ∈ M(A), the seminorm α induces a multiplicative norm on the inte-

gral domain A/α−1(0), and hence also on Frac(A/α−1(0)). The completion of
this latter field is the residue field of α, denoted H(α).

Lemma 1.5. Let A,B be rings equipped with submultiplicative norms | · |A,
| · |B.
(a) Let φ : A → B be a ring homomorphism for which |φ(a)|B ≤ |a|A for

all a ∈ A. Then φ induces a continuous map φ∗ : M(B) → M(A) by
restriction.

(b) Suppose further that φ is injective and A admits an orthogonal comple-
ment in B. Then φ∗ is surjective.

Proof. Part (a) is clear. For (b), note that for any α ∈ M(A), H(α) admits an
orthogonal complement in the completed tensor product H(α)⊗̂AB. We may
thus apply [8, Theorem 1.2.1] to produce an element β ∈ M(H(α)⊗̂AB), whose
restriction to B will lie in the fibre of φ∗ above α.

Example 1.6. Consider the ring Z equipped with the trivial norm. In this
case, one may describe M(Z) as the comb

⋃

p prime

{(cp−1, cp−2) : c ∈ [0, 1]} ⊆ R2,

where

(cp−1, cp−2)(pam) = (1− c)a (a,m ∈ Z; a ≥ 0;m 6≡ 0 (mod p)).

In particular, each neighborhood of (0, 0) (the trivial norm) contains the com-
plement of some finite union of the given segments.

Example 1.7. For K a field complete for a multiplicative norm, equip K[T ]
with the Gauss norm. The points of M(K[T ]) (the closed unit disc over K)
have been classified by Berkovich [8, §1] when K is algebraically closed (see
also [31, §2] for the general case). For instance, for each z ∈ K with |z| ≤ 1 and
each r ∈ [0, 1], the formula

αz,r(f) = max
i

{
ri
∣∣∣∣
1

i!

dif

dT i
(z)

∣∣∣∣
}

(1.7.1)
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defines a point αz,r ∈ M(K[T ]); these comprise all points of M(K[T ]) if and
only if K is spherically complete and algebraically closed. For applications of
this space to dynamical systems on the projective line, see [3].

2. Witt Vectors

We will make extensive use of the Witt vectors over a perfect Fp-algebra. Even
if these are familiar, some facts about their Gel’fand spectra may not be.

Definition 2.1. For R a perfect Fp-algebra (i.e., a ring in which p = 0 and
the p-th power map is a bijection), let W (R) denote the ring of p-typical Witt
vectors over R. The definition of W (R) may be reconstructed from the following
key properties.

(a) The ring W (R) is p-adically complete and separated, and W (R)/(p) ∼= R.

(b) For each r ∈ R, there is a unique lift [r] of r to W (R) (the Teichmüller
lift) having pn-th roots for all positive integers n.

(c) Each x ∈ W (R) admits a unique representation
∑∞

i=0 p
i[xi] with xi ∈ R.

Since the construction of W (R) is functorial in R, W (R) also carries an auto-
morphism φ (the Witt vector Frobenius) lifting the p-power Frobenius map on
R. We equip W (R) with the normalized p-adic norm, that is, the norm of a
nonzero element

∑∞
i=0 p

i[xi] equals p
−j for j the smallest index with xj 6= 0.

If R carries a submultiplicative norm and R[T ] carries the corresponding
Gauss norm, we obtain a map λ : M(R) → M(R[T ]) taking each seminorm
on R to its Gauss extension, and a map µ : M(R[T ]) → M(R) induced by the
inclusion R → R[T ]. For R a perfect Fp-algebra, we have similar maps between
M(R) and M(W (R)), with the role of the inclusion R → R[T ] played by the
multiplicative (but not additive) Teichmüller map.

Lemma 2.2. Equip R with the trivial norm. For α ∈ M(R), the function
λ(α) : W (R) → [0, 1] given by

λ(α)

(
∞∑

i=0

pi[xi]

)
= max

i
{p−iα(xi)}.

is a multiplicative seminorm bounded by the p-adic norm, and so belongs to
M(W (R)).

Proof. Let x =
∑∞

i=0 p
i[xi], y =

∑∞
i=0 p

i[yi] be two general elements of W (R).

If we write x+ y =
∑∞

i=0 p
i[zi], then each zi is a polynomial in xpj−i

j , yp
j−i

j for
j = 0, . . . , i, which is homogeneous of degree 1 for the weighting in which xj , yj
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have degree 1. It follows that λ(α)(x+ y) ≤ max{λ(α)(x), λ(α)(y)}, so λ(α) is
a seminorm. This in turn implies that

λ(α)(xy) ≤ max
i,j

{λ(α)(pi[xi]p
j [yj ])}

≤ λ(α)(x)λ(α)(y),

so λ(α) is submultiplicative. To check multiplicativity, we may safely assume
λ(α)(x), λ(α)(y) > 0. Choose the minimal indices j, k for which λ(α)(pj [xj ]),
λ(α)(pk[yk]) attain their maximal values. For

x′ =

∞∑

i=j

pi[xi], y′ =

∞∑

i=k

pi[yi],

on one hand we have λ(α)(x − x′) < λ(α)(x), λ(α)(y − y′) < λ(α)(y). Since
λ(α) is a submultiplicative seminorm, we get that λ(α)(xy) = λ(α)(x′y′). On
the other hand, we may write x′y′ =

∑∞
i=j+k p

i[zi] with zj+k = xjyk. Therefore
λ(α)(x′y′) ≥ λ(α)(x)λ(α)(y). Putting everything together, we deduce that λ(α)
is multiplicative.

Lemma 2.3. Equip W (R) with the p-adic norm. For β ∈ M(W (R)), the
function µ(β) : R → [0, 1] given by

µ(β)(x) = β([x])

is a multiplicative seminorm bounded by the trivial norm, and so belongs to
M(R).

Proof. Given x0, y0 ∈ R, choose any x, y ∈ W (R) lifting them. For (z0, z) =
(x0, x), (y0, y), (x0+ y0, x+ y), for any ε > 0, for n sufficiently large (depending
on z, z0, ε), we have max{ε, µ(β)(z0)} = max{ε, β(φ−n(z))p

n} because φ−n(zp
n

)
converges p-adically to [z0]. Since β is a multiplicative seminorm, we deduce
the same for µ(β).

Theorem 2.4. Equip R with the trivial norm and W (R) with the p-adic norm.
Then the functions λ : M(R) → M(W (R)), µ : M(W (R)) → M(R) are
continuous. Moreover, for any α ∈ M(R), β ∈ M(W (R)), we have (µ◦λ)(α) =
α and (λ◦µ)(β) ≥ β. (The latter means that for any x ∈ W (R), (λ◦µ)(β)(x) ≥
β(x).)

Proof. For x =
∑∞

i=0 p
i[xi] ∈ W (R) and ε > 0, choose j > 0 for which p−j < ε;

then λ(α)(pi[xi]) < ε for all α ∈ M(R) and all i ≥ j. We thus have

{α ∈ M(R) : λ(α)(x) > ε} =

j−1⋃

i=0

{α ∈ M(R) : α(xi) > piε}

{α ∈ M(R) : λ(α)(x) < ε} =

j−1⋂

i=0

{α ∈ M(R) : α(xi) < piε},
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and the sets on the right are open. It follows that λ is continuous.
For x0 ∈ R and ε > 0, we have

{β ∈ M(W (R)) : µ(β)(x0) > ε} = {β ∈ M(W (R)) : β([x0]) > ε}
{β ∈ M(W (R)) : µ(β)(x0) < ε} = {β ∈ M(W (R)) : β([x0]) < ε},

and the sets on the right are open. It follows that µ is continuous.
The equality (µ ◦ λ)(α) = α is evident from the definitions. The inequality

(λ ◦ µ)(β) ≥ β follows from the definition of λ and the observation that (λ ◦
µ)(β)([x0]) = β([x0]) for any x0 ∈ R.

Example 2.5. Here is a simple example to illustrate that λ ◦ µ need not be
the identity map. Put R = ∪∞

n=1Fp[X
p−n

], so that W (R) is isomorphic to the

p-adic completion of ∪∞
n=1Zp[[X]p

−n

]. The ring W (R)/([X] − p) is isomorphic

to the completion of ∪∞
n=1Zp[p

p−n

] for the unique multiplicative extension of
the p-adic norm; let β ∈ M(W (R)) be the induced seminorm.

Note that µ(β)(X) = β([X]) = p−1 and that µ(β)(y) = 1 for y ∈ F×
p . These

imply that µ(β)(y) ≤ p−p−n

whenever y ∈ Fp[X
p−n

] is divisible by Xp−n

, so

µ(β)(y) = 1 whenever y ∈ F×
p + Xp−n

Fp[X
p−n

]. We conclude that for y ∈ R,
µ(β)(y) equals the X-adic norm of y with the normalization µ(β)(X) = p−1.
In particular, we have a strict inequality (λ ◦ µ)(β) > β.

Remark 2.6. There is a strong analogy between the geometry of the fibres
of µ and the geometry of closed discs (see Example 1.7). This suggests the
possibility of constructing a homotopy between the map λ ◦ µ on M(W (R))
and the identity map, which acts within fibres of µ and fixes the image of
λ ◦ µ; such a construction would imply that any subset of M(R) has the same
homotopy type as its inverse image under µ. Such a homotopy does in fact
exist; see [34].

3. Filtered Isocrystals and Weak Admissibility

To simplify the exposition, we introduce filtered isocrystals only for the group
GLn. One can generalize to an arbitrary reductive Lie group (see [41, Chapter 1]
for the setup), but the general results can be deduced from the GLn case.

Definition 3.1. Put K0 = FracW (Falg
p ). An isocrystal over K0 is a finite-

dimensional K0-vector space equipped with an invertible semilinear action of
the Witt vector Frobenius φ. For D a nonzero isocrystal over K0, the degree
deg(D) of D is the p-adic valuation of the determinant of the matrix via which
φ acts on some (and hence any) basis of D. The slope of D is the ratio µ(D) =
deg(D)/ rank(D).

Definition 3.2. Let K be a complete extension of K0 (not necessarily dis-
cretely valued). A filtered isocrystal over K consists of an isocrystal D over
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K0 equipped with an exhaustive decreasing filtration {Fili DK}i∈Z on DK =
D⊗K0

K. The Hodge-Tate weights are then defined as the multiset containing
i ∈ Z with multiplicity dimK(Fili DK)/(Fili+1 DK).

For D an isocrystal over K0 and H a finite multiset of integers, let FD,H

be the partial flag variety parametrizing exhaustive decreasing filtrations on D
with Hodge-Tate weights H. Let Fan

D,H be the analytification of FD,H in the
sense of [8, Theorem 3.4.1].

Beware that our notion of filtered isocrystals is slightly nonstandard; for
instance, if K is a finite extension of K0, one would normally replace K0 by its
maximal unramified extension within K. Since our ultimate goal is to fix an
isocrystal structure and vary the filtration, this discrepancy is not so harmful.

Lemma 3.3. Equip K0[T
±
1 , . . . , T±

d ] with the Gauss norm. Then Fan
D,H is cov-

ered by finitely many copies of M(K0[T
±
1 , . . . , T±

d ]).

Proof. We first observe that the closed unit disc M(K0[T ]) is covered by
M(K0[T

±]) and M(K0[(T−1)±]). It follows that M(K0[T1, . . . , Td]) is covered
by finitely many copies of M(K0[T

±
1 , . . . , T±

d ]).
Let FD,H be the partial flag variety over W (Falg

p ) with generic fibre FD,H .

Then (FD,H)
F
alg
p

is a partial flag variety over Falg
p of dimension d, and so can

be covered by finitely many d-dimensional affine spaces (e.g., using Plücker
coordinates). Lifting such a covering to the p-adic formal completion of FD,H ,
then taking (Berkovich) analytic generic fibres, yields a covering of Fan

D,H by
finitely many copies of M(K0[T1, . . . , Td]). By the previous paragraph, this
implies the desired result.

Definition 3.4. Let D be a filtered isocrystal over some complete extension
of K0. Define tN (D) = deg(D), and let tH(D) be the sum of the Hodge-Tate
weights of D. We say D is weakly admissible if the following conditions hold.

(a) We have tN (D) = tH(D).

(b) For any subisocrystal (φ-stable subspace) D′ of D equipped with the
induced filtration, tN (D′) ≥ tH(D′).

Weak admissibility is an open condition, in the following sense.

Theorem 3.5. Let Fwa
D,H be the set of α ∈ Fan

D,H for which D becomes weakly
admissible when equipped with the filtration on DH(α) induced by the universal
filtration over FD,H . Then Fwa

D,H is open in Fan
D,H .

Proof. See [41, Proposition 1.36].

Definition 3.6. The tensor product of two filtrations Fil·1,Fil
·
2 is given by

(Fil1 ⊗Fil2)
k =

∑

i+j=k

Fili1 ⊗Filj2 .
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It is true but not immediate that the tensor product of two weakly admissible
filtered isocrystals is weakly admissible; this was proved by Faltings [16] and
Totaro [42], using ideas from geometric invariant theory. It also follows a poste-
riori from describing weak admissibility in terms of Galois representations, or
in terms of isocrystals over the Robba ring (Theorem 4.10).

4. Admissibility at Rigid Analytic Points

For the rest of the paper, fix an isocrystal D over K0 and a finite multiset H
of integers. In this section, we follow Berger’s proof of the Colmez-Fontaine
theorem [6], forging a link between filtered isocrystals and crystalline Galois
representations via Frobenius modules over the Robba ring. We will use this
link as the basis for our definition of the admissible locus of Fan

D,H . (One could
use instead Kisin’s variant of Berger’s method [36]; see Remark 7.1.)

Definition 4.1. Fix once and for all a completed algebraic closure CK0
of

K0 and a sequence ε = (ε0, ε1, . . . ) in CK0
in which εi is a primitive pi-th

root of 1 and εpi+1 = εi. (This is analogous to fixing a choice of
√
−1 in the

complex numbers, in order to specify orientations.) Write K0(ε) as shorthand
for ∪∞

n=1K0(εn).

Definition 4.2. For r > 0, define the valuation vr on K0[π
±] by the formula

vr

(
∑

i

aiπ
i

)
= min

i
{vp(ai) + ir}.

Let Rr be the Fréchet completion of K0[π
±] for the valuations vs for s ∈ (0, r];

we may interpret Rr as the ring of formal Laurent series over K0 convergent in
the range vp(π) ∈ (0, r]. Put R = ∪r>0Rr (the Robba ring over K0) and

t = log(1 + π) =

∞∑

i=1

(−1)i−1

i
πi ∈ R.

Let Rbd be the subring of R consisting of series with bounded coefficients;
then Rbd is a henselian (but not complete) discretely valued field for the p-adic
valuation, with residue field Falg

p ((π)). Let Rint be the valuation subring of Rbd.
Let φ : R → R be the map

φ

(
∑

i

aiπ
i

)
=
∑

i

φ(ai)((1 + π)p − 1)i;

note that φ(t) = pt. Define also an action of the group Γ = Z×
p on R by the

formula

γ

(
∑

i

aiπ
i

)
=
∑

i

ai((1 + π)γ − 1)i;

note that γ(t) = γt, and that the action of Γ commutes with φ.
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Definition 4.3. For r > 0 and n a positive integer such that r ≥ 1/(pn−1(p−
1)), the series belonging to Rr converge at εn−1. Moreover, t vanishes to order
1 at εn − 1. We thus have a well-defined homomorphism θn : Rr → K0(εn)JtK
with dense image. We also have a commutative diagram

Rr
φ

//

θn

��

Rr/p

θn+1

��

K0(εn)JtK // K0(εn+1)JtK

(4.3.1)

whenever r ≤ p/(p − 1), in which the bottom horizontal arrow acts on K0 via
φ, fixes εn, and carries t to pt.

Let S be a finite étale algebra over Rint. Choose some r for which S can be
represented as the base extension of a finite étale algebra Sr over Rint∩Rr. For
n sufficiently large, we can then form KS,n = Sr ⊗θn K0(ε). View the right side
as a K0(ε)-algebra via the unique extension of φn fixing all of the εi; then by
(4.3.1), φ induces an isomorphism KS,n

∼= KS,n+1 of K0(ε)-algebras. We thus
obtain functorially from S a finite étale algebra KS over K0(ε).

Theorem 4.4. The functor S 7→ KS is an equivalence of categories.

Proof. This is typically deduced from Fontaine’s theory of (φ,Γ)-modules [19],
but it can also be obtained as follows. For full faithfulness, it suffices to check
that if S is a field, then so is KS . For this, choose a uniformizer of the residue
field of S, and write down the minimal polynomial over Falg

p JπK. This polynomial

is Eisenstein, so when we lift to Rint and tensor with θn, for n large we get an
Eisenstein (and hence irreducible) polynomial over K0(εn). Hence KS is a field.

For essential surjectivity, it suffices to check that every field L finite over
K0(ε) occurs as a KS . For some positive integer n, we can write L = Ln(ε)
for some finite extension Ln of K0(εn) with [Ln : K0(εn)] = [L : K0(ε)]. Fix
some r ≥ 1/(pn−1(p − 1)). Note that any nonzero a ∈ K0(εn) can be lifted to
ã ∈ Rint ∩Rr having zero p-adic valuation.

If Ln is tamely ramified over K0(εn), then Ln = K0(εn)(a
1/m) for some

positive integer m not divisible by p and some a ∈ K0(εn) of positive valuation.
In this case, put P̃ (T ) = Tm − a for some lift ã ∈ Rint ∩ Rr of φ−n(a) having
zero p-adic valuation.

If Ln is wildly ramified over K0(εn), choose α ∈ Ln of positive valuation
with Ln = K0(εn)(α) and TraceLn/K0(εn)(α) 6= 0. (We can enforce this last

condition by replacing α by α + p if needed.) Let P (T ) = Tm +
∑m−1

i=0 aiT
i

be the minimal polynomial of α over K0(εn), so that m is divisible by p and

a0, am−1 6= 0. Put P̃ (T ) = Tm +
∑m−1

i=0 ãiT
i where each ãi ∈ Rint ∩Rr is a lift

of φ−n(ai), and ãi has zero p-adic valuation if i ∈ {0,m− 1}.
In both cases, it can be shown that one obtains a residually separable poly-

nomial P̃ (T ) over Rint for which S = Rint[T ]/(P̃ (T )) satisfies KS = L.
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Definition 4.5. For L a finite extension ofK0, let B
†
rig,L be the finite extension

of R obtained by starting with L(ε), producing a finite étale extension S of Rint

with KS = L(ε) using Theorem 4.4, and base-extending to R. This ring carries
unique extensions of the actions of φ and Γ; it admits a ring isomorphism to
R, but not in a canonical way (and not respecting the actions of φ or Γ).

Although B
†
rig,L does not carry a p-adic valuation, the units in this ring are

series with bounded coefficients (by analysis of Newton polygons), and so do

have well-defined p-adic valuations. If we then define an isocrystal over B†
rig,L

to be a finite free module equipped with a semilinear action of φ acting on some
(hence any) basis via an invertible matrix, it again makes sense to define degree
and slope. An isocrystal is étale if it admits a basis via which φ acts via an
invertible matrix over S.

Beware that L does not embed into B
†
rig,L, as indicated by the following

lemma.

Lemma 4.6. For any finite extension L of K0, K0 is integrally closed in
Frac(B†

rig,L).

Proof. Suppose r, s ∈ B
†
rig,L and f = r/s is integral over K0. Then for any

maximal ideal m of R away from the support of s, the image of f in B
†
rig,L ⊗R

R/m must be a root of a fixed polynomial over K0. This implies that all of these
images are bounded in norm, so in fact f ∈ S[p−1]. In particular, f generates
a finite unramified extension of K0. Since K0 has algebraically closed residue
field, this forces f ∈ K0.

Lemma 4.7. For any finite extension L of K0 and any open subgroup U of Γ,
we have (Frac(B†

rig,L))
U = K0.

Proof. Suppose first that f ∈ Frac(R) is Γ-invariant. Choose r > 0 for which
f ∈ Frac(Rr). For some large n, we can embed Frac(Rr) into K0(εn)((t)) as
in Definition 4.3. This action is Γ-equivariant for the action on K0(εn) via the
cyclotomic character (i.e., with γ(εn) = εγn) and the substitution t 7→ γt. It is
evident that the fixed subring of K0(εn)((t)) under this action is precisely K0,
whence the claim.

In the general case, if f ∈ Frac(B†
rig,L) is U -invariant, then it is integral

over Frac(R)U and hence over Frac(R)Γ = K0. By Lemma 4.6, this forces
f ∈ K0.

Theorem 4.8. Let L be a finite extension of K0. An isocrystal M over B
†
rig,L

is étale if and only if the following conditions hold.

(a) We have deg(M) = 0.

(b) For any nonzero subisocrystal M ′ of M , deg(M ′) ≥ 0.
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Proof. This is a consequence of slope theory for isocrystals over the Robba ring,
as introduced in [27]. See [30, Theorem 1.7.1] for a simplified presentation. (For
less detailed expositions, see also [11] and [32, Chapter 16].)

Definition 4.9. Let M be an isocrystal over B
†
rig,L. For n sufficiently large,

we may base-extend along θn to produce a module M (n) over (K0(εn) ⊗φn,K0

L)((t)). The construction is not canonical (it depends on the choice of a model
of M over some Rr), but any two such constructions give the same answers for
n large. Hence any assertion only concerning the M (n) for n large is well-posed.

The following result of Berger [6, §III] makes the link between weak admis-
sibility and slopes of isocrystals over the Robba ring.

Theorem 4.10 (Berger). Let L be a finite extension of K0. Let (D,Fil· D) be

a filtered isocrystal over L, and view M = D ⊗K0
B

†
rig,L as an isocrystal over

B
†
rig,L.

(a) There exists an isocrystal M ′ over B
†
rig,L and a φ-equivariant isomor-

phism M [t−1] ∼= M ′[t−1] of modules over B
†
rig,L[t

−1], via which for n

sufficiently large, the t-adic filtration on (M ′)(n) coincides with the fil-
tration on M (n) obtained by tensoring the t-adic filtration with the one
provided by D.

(b) The isocrystal M ′ is étale if and only if (D,Fil· D) is weakly admissible.

Proof. For (a), Berger gives an algebraic construction of M ′ [6, §III.1]. An
alternative geometric approach is to construct M ′ as an object in the category
of coherent locally free sheaves on an open annulus of outer radius 1. One then
uses the fact (essentially due to Lazard) that on an annulus over a complete
discretely valued field, any coherent locally free sheaf is generated by finitely
many global sections [28, Theorem 3.14].

For (b), observe that deg(M ′) = tN (D) − tH(D). Hence condition (a) of
weak admissibility holds if and only if deg(M ′) = 0. If condition (b) fails for

some D′, then D′ ⊗K0
B

†
rig,L is a subisocrystal of M ′ of negative degree, so by

Theorem 4.8, M ′ cannot be étale. Conversely, if M ′ fails to be étale, then by
Theorem 4.8 it has a subisocrystal N ′ of negative slope, which we may assume
to be saturated (otherwise its saturation has even smaller degree). There is a
unique saturated subisocrystal N of M for which the isomorphism M [t−1] ∼=
M ′[t−1] induces an isomorphism N [t−1] ∼= N ′[t−1].

To deduce that D is not weakly admissible, one must check that N arises
from a subisocrystal of D. Put D′ = D∩N , so that the natural map D/D′⊗K0

B
†
rig,L → M/N is surjective. We check that this map is also injective. Suppose

the contrary, and choose an element
∑n

i=1 di⊗ri mapping to zero in M/N with
n minimal. Then for each j ∈ {1, . . . , n} and each γ ∈ Γ,

∑
i6=j di ⊗ (riγ(rj)−
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rjγ(ri)) maps to zero inM/N . By the minimality of n, we have riγ(rj) = rjγ(ri)
for all i, j ∈ {1, . . . , n} and all γ ∈ Γ. By Lemma 4.7, ri/rj ∈ K×

0 for all
i, j ∈ {1, . . . , n}, which forces the di to be linearly dependent over K0. But
then one can rewrite d1 in terms of d2, . . . , dn to reduce the value of n, a
contradiction.

We now conclude that dimK0
D′ = rankN , so N = D′ ⊗K0

B
†
rig,L. Since

tN (D′)− tH(D′) = deg(N ′) < 0, we conclude that D is not weakly admissible.
(See [6, Corollaire III.2.5] for a similar argument using the Lie algebra of Γ.)

To get from étale isocrystals over the Robba ring to Galois representations,
we proceed as in Definition 4.3.

Definition 4.11. Let L be a finite extension of K0. Let M
′ be an étale isocrys-

tal over B
†
rig,L. Choose a basis of M on which φ acts via an invertible matrix

over the valuation subring o of B†
rig,L. Let N be the o-span of this basis. For

each positive integer n, we obtain a connected finite étale Galois algebra Sn

over o for which N ⊗o Sn/(p
n) admits a φ-invariant basis. For n large, we can

base-extend Sn via θn to obtain a (not necessarily connected) finite étale Ga-
lois algebra over K0(ε) ⊗φn,K0

L (which itself may not be connected). From
the Galois action on φ-invariant elements of N ⊗o Sn/(p

n), we obtain a Galois
representation GL(ε) → GLm(Zp/p

nZp) for m = rankM ′. (The coefficient ring
is Zp/p

nZp because that is the φ-invariant subring of o/pno.) Taking the in-
verse limit, we obtain a Galois representation GL(ε) → GLm(Zp); the resulting
representation GL(ε) → GLm(Qp) does not depend on the original choice of a
basis of M ′.

Let Γ act on K0(ε) via the cyclotomic character, and let ΓL be the open
subgroup fixing L ∩K0(ε). Via θn, we have

ΓL
∼= Gal(K0(ε)/(L ∩K0(ε))) = Gal(L(ε)/L),

while for any finite Galois extension L′ of L,

Aut(B†
rig,L′/B

†
rig,L)

∼= Gal(L′(ε)/L(ε)).

Taking the semidirect product yields an action of Gal(L′(ε)/L) on B
†
rig,L′ com-

muting with φ. Similarly, if M ′ comes with an action of ΓL commuting with the
φ-action, then combining this ΓL-action with the action of Aut(S/B†

rig,L) pro-
vides descent data on the Galois representation previously constructed, yielding
a Galois representation GL → GLm(Qp).

In the case arising from Theorem 4.10, we obtain a ΓL-action by defin-
ing such an action on M fixing D. Berger shows [6] that the resulting Galois
representation is crystalline in Fontaine’s sense of having a full set of periods
within the crystalline period ring Bcrys. Moreover, the passage between the
filtered isocrystal and the Galois representation is compatible with Fontaine’s
construction of the mysterious functor. That is, if one starts with the de Rham
cohomology of a smooth proper schemeX over oL, viewed as a filtered isocrystal
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(using the Hodge filtration plus the Frobenius action on crystalline cohomol-
ogy), the resulting Galois representation may be identified with the p-adic étale
cohomology of X over Lalg.

5. Admissibility at General Analytic Points

Over a finite extension of K0, we have now interpreted weak admissibility of
filtered isocrystals in terms of isocrystals over Robba rings, and given a mech-
anism for passing from such isocrystals to Galois representations. As noted by
Hartl [23], it seems to be difficult to give a direct analogue of Berger’s con-
struction over a general extension of K0. In the case of Hodge-Tate weights in
{0, 1}, Hartl has given an analogue of the notion of admissibility, using a field of
norms construction in the manner of Fontaine and Wintenberger [20, 43] and a
generalization of the slope theory for isocrystals over the Robba ring introduced
in [29]. We take a different approach that applies to arbitrary weights, by refor-
mulating in terms of the universal filtration over the partial flag variety. This
requires working in local coordinates on the flag variety; the fact that the final
construction does not depend on this choice (and so glues) will follow by a sim-
ilar argument to the one showing that the constructed local system reproduces
the previous construction over rigid analytic points (see Definition 6.5).

Definition 5.1. Let L be a field of characteristic p equipped with a valuation
vL. Let L

′ be the completion of Lperf for the unique extension of vL. For r > 0,
let R̃bd,r

L be the subring of W (L′)[p−1] consisting of x =
∑∞

i=m pi[xi] for which

i + rvL(xi) → +∞ as i → +∞. On R̃bd,r
L , the function vr(x) = mini{i +

rvL(xi)} defines a valuation (that is, e−vr(·) is a multiplicative norm). Put

R̃bd
L = ∪r>0R̃bd,r

L ; this is a field which is henselian (but not complete) for the
p-adic valuation.

Let R̃r
L be the Fréchet completion of R̃bd,r

L for the vs for all s ∈ (0, r]. Put

R̃L = ∪r>0R̃r
L; the Witt vector Frobenius φ on W (L′) extends continuously

to R̃L. One defines isocrystals over R̃L, and the associated notions of degree,
slope, and étaleness, by analogy with R. The analogue of Theorem 4.8 carries
over; see [29, Corollary 6.4.3]. One has an analogue of the Dieudonné-Manin
classification theorem: if L is algebraically closed, then any étale isocrystal
admits a φ-invariant basis [29, Theorem 4.5.7].

We now make a relative analogue of the construction of Theorem 4.10,
working in local coordinates on the partial flag variety FD,H .

Definition 5.2. Let S be the completion of K0[T
±
1 , . . . , T±

d ] for the Gauss
norm, for d = dimFD,H . Let oS be the subring of S of elements of norm at
most 1. Extend the Witt vector Frobenius φ from K0 to S continuously so that
φ(Ti) = T p

i for i = 1, . . . , d. Let X be the open unit disc over M(S), i.e., the set
of α ∈ M(S[π]) (for the Gauss norm on S[π]) for which α(π) < 1. We may also
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identify X with the set of α ∈ M(oSJπK[p−1]) (for the Gauss norm on oSJπK)
for which α(π) < 1.

The analogue of the commutative diagram (4.3.1) is

oSJπK
φ

//

θn

��

oSJπK

θn+1

��

oS(εn)JtK // oS(εn+1)JtK

(5.2.1)

in which the bottom horizontal arrow acts on oS as φ, fixes εn, and carries t
to pt. Define the group Γ̃ ∼= Γ n Zd

p of automorphisms of X in which Γ acts

as usual on R and trivially on S, while (e1, . . . , ed) ∈ Zd
p acts as the R-linear

substitution sending Ti to (1 + π)eiTi for i = 1, . . . , d.
Choose an embedding of M(S) into Fan

D,H , as per Lemma 3.3. Let E
be the pullback of D along the structural morphism X → M(K0). Then
there exists a coherent locally free sheaf E ′ equipped with an isomorphism
E [t−1] ∼= E ′[t−1], such that for each positive integer n, the t-adic filtration on
E ′ ⊗θn S(εn)((t)) equals the t-adic filtration on E ⊗θn S(εn)((t)) tensored with
the filtration provided by the universal filtration over FD,H . (Beware that in
this construction, S(εn) is to be viewed as an S-algebra via φn.) More ex-
plicitly, we may obtain E ′ by first modifying E along π = 0, then pulling
back by φn to obtain the appropriate modification along φn(π) = 0. The lo-
cal freeness of E ′ can be checked most easily by covering FD,H with the variety
parametrizing partial flags with marked basis, on which the verification becomes
trivial.

One does not get an action of φ on E ′ over all of X, because of poles
introduced at π = 0. However, one does have an isomorphism φ∗E ′ ∼= E ′ away
from π = 0.

Definition 5.3. Equip S = Falg
p [T±

1 , . . . , T±
d ] and S

′
= SJzK with the trivial

norm. Then consider the diagram

oSJπK
φ

//

θ0

��

oSJπK

θ1

��

φ
// · · ·

oS(ε0)
φ

// oS(ε1)
φ

// · · ·

(5.3.1)

obtained from (5.2.1). Taking the completed direct limit over the top row gives a

map oSJπK → W (S
′,perf

) sending π to [π+1]−1 and Ti to [T i]; this map restricts

to a map oS → W (S
perf

). By Lemma 1.5, the induced maps M(W (S
perf

)) →
M(oS) and M(W (S

′,perf
)) → M(oSJπK) are surjective. Taking the completed

direct limit over the bottom row gives a map from oS to the completion of

W (S
perf

)(ε); again by Lemma 1.5, the induced map M(W (S
perf

)(ε)) → M(oS)
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is surjective. In fact, its fibres are permuted transitively by the action of Γ̃ on
oSJπK.

Definition 5.4. Put ω = p−p/(p−1). Given α̃ ∈ M(W (S
perf

)(ε)), let β be the

image of α̃ under the map θ∗ : M(W (S
perf

)(ε)) → M(W (S
′,perf

)) induced by
the vertical arrows in (5.3.1). Note that µ(β)(π) = ω.

For L = H(µ(β)), the composition oSJπK → W (S
′,perf

) → R̃L extends to
series in π convergent in an open annulus with outer radius 1. It thus makes
sense to form the base extension E ′ ⊗ R̃L, which is finite free over R̃L [29,
Theorem 2.8.4]. We say that α ∈ M(S) is admissible if E ′ ⊗ R̃L is étale for

some (hence any, thanks to the Γ̃-action) choice of α̃ ∈ M(W (S
perf

)(ε)) lifting
α.

Theorem 5.5. The set M(S)adm of admissible points of M(S) is an open
subset of M(S) ∩ Fwa

D,H having the same rigid analytic points.

Proof. Openness will follow from the construction of the universal crystalline
local system (Theorem 6.2 and Theorem 6.4). The proof of Theorem 4.10 shows
that an arbitrary admissible point must also be weakly admissible.

It remains to check that any weakly admissible rigid analytic point α ∈
M(S) is admissible. Put K = H(α); the lifts α̃ of α can be put in bijection
with the components of K ⊗K0

K0(ε). In particular, for a fixed choice of α̃,
the stabilizer Γ̃K of α̃ in Γ̃ is an open subgroup. Let SK denote the closure of
the image of S[π±] in R̃L. Recall that Γ̃ contains Zd

p as a normal subgroup;

one calculates (as in Lemma 4.7) that the (Zd
p ∩ Γ̃K)-invariants of SK form a

copy of B†
rig,K . By matching up copies of D, we obtain a (φ,ΓK)-equivariant

isomorphism of the (Zd
p∩Γ̃K)-invariant submodule of E⊗SK with the moduleM

from Theorem 4.10. Since t is invariant under Zd
p, we also obtain a corresponding

isomorphism of primed objects. The claim then follows.

Remark 5.6. In the case of Hodge-Tate weights in {0, 1}, Hartl defined the
admissible locus Fadm

D,H (using a different but equivalent method), and showed
that it is open in Fwa

D,H [23, Corollary 5.3]. He also exhibited some examples
where the two spaces differ [23, Example 5.4]; such examples have also been
exhibited by Genestier and Lafforgue. Subsequently, Hartl showed (using results
of Faltings) that Fadm

D,H is the image of the Rapoport-Zink period morphism [24,
Theorem 3.5].

6. The Universal Crystalline Local System

Having identified a suitable candidate for the admissible locus on Fan
D,H , we are

ready to construct the universal crystalline local system over it. (An étale local
system of a nonarchimedean analytic space can be viewed as a representation
of the étale fundamental group. See [14] for a full development.)
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Definition 6.1. For T an open subset of M(S
′,perf

) and r > 0, let Rr
S(T )

be the Fréchet completion of oSJπK[π−1, p−1] with respect to the restrictions

of the seminorms λ(γlogω ρ) ∈ M(W (S
′,perf

)) for all γ ∈ T and all ρ with
− logp ρ ∈ (0, r]. Let RS(T ) be the union of the Rr

S(T ) over all r > 0.

Theorem 6.2. Suppose γ ∈ M(S
′,perf

) is such that for L = H(γ), E ′ ⊗ R̃L

is étale. Then there exist an open neighborhood T of γ in M(S
′,perf

) such that
for each positive integer n, there exists a finite étale extension of Rr

S(T ) for
some r > 0 over which E ′ acquires a basis on which φ acts via a matrix whose
difference from the identity has p-adic valuation at least n. (Note that T is
chosen uniformly in n.)

Proof. This is a calculation following [22, Proposition 1.7.2], which in turn
follows [29, Lemma 6.1.1].

Definition 6.3. Suppose α ∈ M(S) is admissible. Define α̃, β as in Defi-
nition 5.4, and apply Theorem 6.2 with γ = µ(β). Then µ−1(T ) is open in

M(W (S
′,perf

)) because µ is continuous (Theorem 2.4), so U = (θ∗)−1(µ−1(T ))

is open in M(W (S
perf

)(ε)). Let U ′ be the union of the Γ̃-translates of U , which

is again open in M(W (S
perf

)(ε)). Then U and U ′ have the same image V0 in

M(oS), but U ′ is the full inverse image of V0 in M(W (S
perf

)(ε)). Hence the
complement of V0 is the image of a closed and thus compact set (namely the
complement of U ′), and so is compact and thus closed. We conclude that V0 is
open in M(oS), and V = V0 ∩M(S) is open in M(S). Since β ∈ µ−1(T ), we
also have α ∈ V .

Theorem 6.4. Suppose α ∈ M(S) is admissible. Define an open neighborhood
V of α in M(S) as in Definition 6.3. Then there exists a Qp-local system over
V whose specialization to any rigid analytic point of V may be identified with
the crystalline Galois representation produced by Definition 4.11.

Proof. Retain notation as in Theorem 6.2 and Definition 6.3, and choose a
nonnegative integer n with r > 1/(pn−1(p − 1)). Let α′ ∈ V be any point,
choose α̃′ ∈ U lifting α′, and put β′ = θ∗(α′) ∈ µ−1(T ) and γ′ = µ(β′) ∈ T .
Then Rr

S(T ) admits the seminorm

λ((γ′)p
−n

) = λ(µ(β′)p
−n

) = (λ ◦ µ)((φ−n)∗(β′)),

which dominates (φ−n)∗(β′) by Theorem 2.4. We conclude that the elements
of Rr

S(T ) define analytic functions on a subspace of X containing (φn∗)−1(V ),
under the identification of M(S) with the subspace π = εn − 1 of X. As
in Definition 4.11, by considering φ-invariant sections of E ′ over finite étale
extensions of Rr

S(T ), we obtain a Qp-local system over (φn∗)−1(V ). By also

keeping track of the action of Γ̃, we obtain descent data yielding a Qp-local
system over V itself. The compatibility at rigid analytic points follows from the
proof of Theorem 5.5.
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Definition 6.5. In Theorem 6.4, any point of V is automatically admissible.
It follows that there exists an open subset Fadm

D,H of Fan
D,H such that M(S)adm =

M(S)∩Fadm
D,H for any embedding of M(S) into Fan

D,H as in Lemma 3.3. We call

Fadm
D,H the admissible locus of Fan

D,H .
By an argument similar to the proof of Theorem 6.4, one shows that the

definition of the admissible locus, and the construction of the local system, does
not depend on the choice of local coordinates. We may thus glue using a cover
as in Lemma 3.3 to produce a Qp-local system over Fadm

D,H specializing to the
crystalline representations associated to rigid analytic points. We call this the
universal crystalline local system on Fadm

D,H .

7. Further Remarks

Remark 7.1. In some cases of Hodge-Tate weights equal to {0, 1}, the space
Fadm

D,H receives a period morphism constructed by Rapoport-Zink [41] from
the generic fibre of the universal deformation space associated to a suitable
p-divisible group. One expects (as in [23, Remark 7.8]) that the pullback of
the universal crystalline local system is obtained by extension of scalars from
a Zp-local system which computes the (integral) crystalline Dieudonné mod-
ule at each rigid analytic point. This appears to follow from work of Faltings
(manuscript in preparation).

It should be possible to give an alternative proof, more in the spirit of this
lecture, using Kisin’s variant of Berger’s proof of the Colmez-Fontaine the-
orem [36]. In Kisin’s approach, the role of the highly ramified Galois tower
K0(ε) is played by the non-Galois Kummer tower ∪nK0(p

−pn

). Instead of
(φ,Γ)-modules, one ends up with modules over oK0

JuK carrying an action of
the Frobenius lift u 7→ up, with kernel killed by a power of a certain poly-
nomial. These are particularly well suited for studying integral properties of
crystalline representations; indeed, their definition is inspired by a construction
of Breuil [9] introduced precisely to study such integral aspects (moduli of fi-
nite flat group schemes and p-divisible groups). We expect that one can carry
out a close analogue of the construction described in this lecture using Kisin’s
modules.

Remark 7.2. When one considers the cohomologies of smooth proper schemes
over a p-adic field which are no longer required to have good reduction, one must
broaden the class of allowed Galois representations slightly. The correct class is
Fontaine’s class of de Rham representations, which coincides with the class of
potentially semistable representations by a theorem of Berger [5]. On the side
of de Rham cohomology, one must replace the category of isocrystals by the
category of (φ,N)-modules with finite descent data. That is, one specifies not
only a Frobenius action but also a linear endomorphism N satisfying Nφ =
pφN . (Note that any such N is necessarily nilpotent.) It should be possible to
follow the model of this lecture to construct a universal semistable local system;
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one possible point of concern is that the parameter space replacing the partial
flag variety is no longer proper.

Remark 7.3. The techniques of this paper fit into the general philosophy that
one can study representations of arithmetic fundamental groups of schemes
of finite type over a p-adic field using p-adic analytic methods. This attitude
has been convincingly articulated by Faltings in several guises, such as his p-
adic analogue of the Simpson correspondence [17]. It has subsequently been
taken up by Andreatta and his collaborators (Brinon, Ioviţa), who have made
great strides in developing and applying a relative theory of (φ,Γ)-modules
[1, 2].

Remark 7.4. The relative p-adic Hodge theory in this paper has been re-
stricted to the case where one starts with a fixed isocrystal and varies its filtra-
tion, corresponding geometrically to a deformation to characteristic 0 of a fixed
scheme in characteristic p. It is also of great interest to consider cases where
the isocrystal itself may vary.

On the Galois side, families of Galois representations parametrized by a rigid
analytic space occur quite frequently in the theory of p-adic modular forms,
dating back to the work of Hida [25] on ordinary families, and continuing in
the work of Coleman and Mazur [10] on the eigencurve. More recently, the
study of families of representations has become central in the understanding of
the p-adic local Langlands correspondence, particularly for the group GL2(Qp)
[12].

A partial analogue of the (φ,Γ)-module functor for representations in ana-
lytic families has been introduced by Berger and Colmez [7]. Unfortunately, it
is less than clear what the essential image of the functor is; see [35] for some
discussion. Moreover, proper understanding of families of (φ,Γ)-modules is se-
riously hampered by the lack of a good theory of slopes of Frobenius modules
in families; the situation at rigid analytic points is understood thanks to [30],
but at nonclassical points things are much more mysterious. Nonetheless, the
construction has proved useful in the study of Selmer groups in families, as in
the work of Belläıche [4] and Pottharst [39, 40].

One can also make analogous considerations on the side of Breuil-Kisin mod-
ules, as in the work of Pappas and Rapoport [38]. Again, the correspondence
from modules back to Galois representations is somewhat less transparent in
families, so the moduli stack of Breuil-Kisin modules itself becomes the central
object of study; on this stack, Pappas and Rapoport introduce an analogue of
the Rapoport-Zink period morphism. One can also introduce an analogue of
the admissible locus, as in work of Hellmann (in preparation); in this line of
inquiry, there appears to be some advantage in replacing Berkovich’s theory
of nonarchimedean analytic spaces with Huber’s more flexible theory of adic
spaces [26].
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We state Serre’s modularity conjecture, give some hints on its proof and give
some consequences.
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1. Introduction

Let p be a prime number. Let GQ = Gal(Q̄/Q) be the absolute Galois group
of Q. Let ρ̄ : GQ → GL2(F) be a continuous, absolutely irreducible, two-
dimensional, odd (det(ρ̄(c)) = −1 for c ∈ GQ a complex conjugation), mod
p representation, with F a finite field of characteristic p. We say that such a
representation is of Serre-type, or S-type, for short. The continuity just says
that ρ̄ factors through the Galois group of a finite extension of Q: its image lies
in GL2(F) for a finite field F ⊂ Fp.

Let Qp be an algebraic closure of the field Qp of p-adic numbers. Let N ≥ 1
be an integer and let Γ1(N) ⊂ Γ0(N) be the congruence subgroup:

Γ1(N) :=

{(

a b
c d

)

∈ SL2(Z), c ≡ 0 mod.N, a ≡ d ≡ 1 mod.N

}

.

In particular, we have Γ1(1) = SL2(Z). Let k be an integer ≥ 1 and let f be a
normalized new parabolic eigenform for Γ1(N) of weight k and level N . So f is
an holomorphic function on the Poincaré upper half space {z ∈ C, im(z) > 0}
which satisfies:

f

(

az + b

cz + d

)

= (cz + d)kf(z)
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for

(

a b
c d

)

∈ Γ1(N). The parabolic form f has a Fourier expansion: f(z) =

a1q +
∑

n≥2 anq
n, q = e2πiz. It is normalized by the condition a1 = 1. The

Fourier coefficients an are in the ring of integers of a finite extension of Q

contained in Q ⊂ C. We write Ef for the field generated by the an and call it
the field of coefficients of f . The algebraic integer ap, for p a prime not dividing
N , is the eigenvalue of the Hecke operator Tp acting on the eigenform f , and
for p dividing N , is the eigenvalue of the Hecke operator Up.

Let Γ0(N) :=

{(

a b
c d

)

∈ SL2(Z), c ≡ 0 mod.N

}

. As f is an eigenvector

for the diamond operators, there exists a character η : (Z/NZ)∗ → C∗, the
Nebentypus, such that:

f

(

az + b

cz + d

)

= η(d)(cz + d)kf(z)

for

(

a b
c d

)

∈ Γ0(N). By considering the above functional identity for the

matrix −id, we see that η(−1)(−1)k = 1.
Eichler, Shimura, Deligne ([9]), and Deligne-Serre ([8]), have associated to

f (and an embedding ιp : Ef ↪→ Qp) a continuous p-adic Galois representaton

ρ(f)ιp : GQ → GL2(Qp) which is characterized by the fact that it is unramified
outside pN , it is irreducible, and it satisfies the Eichler-Shimura relation:

tr(ρ(f)ιp(Frob`)) = ιp(a`), det(ρ(f)ιp) = χk−1
p η.

Here ` is a prime not dividing pN . We call SN the set of primes dividing N .
We note by GQ,SN∪{p} the Galois group of the maximal extension QSN∪{p} of

Q contained in Q and which is unramified outside SN ∪ {p}. We call Frob` ∈
GQ,SN∪{p} the Frobenius of a prime over ` in QSN∪{p}. The character χp :
GQ → Z∗

p is the cyclotomic character. The character η : (Z/NZ)∗ → C∗ is

viewed as a Galois character with values in Q
∗

p via the isomorphism (Z/NZ)∗ '
Gal(Q(µN )/Q) and ιp. We replace the notation ρ(f)ιp by ρp(f) when it is not
confusing. The representation ρp(f) is odd meaning det(ρp(f)(c)) = −1 for
c ∈ GQ a complex conjugation. This follows from the relation η(−1)(−1)k = 1
and the formula giving the determinant of ρp(f).

By compactness of GQ, one sees that, after conjugation by an element g ∈
GL2(Qp), one can suppose that ρ(f)p has image in GL2(O), for O the ring
of integers of a finite extension of Qp. By reducing modulo the maximal ideal
of O, we get a representation GQ → GL2(Fp). Its semi-simplification does not
depend up to isomorphism on the choice of g. We call it ρ̄p(f). It clearly is odd.
When it is irreducible, it is of type S.

The following theorem had been conjectured by Serre ([32]) and is proved
in ([20], [18], [21], [22]):
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Theorem 1.1. Let ρ̄ : GQ → GL2(Fp) be an odd, irreducible, Galois repre-
sentation. Then there is a modular form f as above and an embedding of the
coefficient field of f in Qp such that ρ̄ ' ρ̄p(f).

We may consider that the above theorem proves Serre’s conjecture in its
qualitative form. Serre’s conjecture is more precise. Given ρ̄ of S-type, Serre
defines two integers k(ρ̄) ≥ 2 and N(ρ̄) ≥ 1, such that one should be able to
choose f in the theorem of weight k(ρ̄) and level N(ρ̄).

The integer N(ρ̄) is the prime to p part of the conductor of ρ̄. More precisely,
if ` 6= p, the exponent of the power of ` that exactly divides N(ρ̄) is:

∞
∑

i=0

1

(I0 : Ii)
dim(V/Vi),

where I is the inertia group for a prime over `, (Ii) is the ramification filtration,
V is the Fp vector space underlying ρ̄ and Vi is the subspace of elements of V
which are fixed by Ii. In particular, N(ρ̄) is divisible by ` if and only if ρ̄ is
ramified at `.

The integer k(ρ̄) only depends on the action of the inertia subgroup Ip at
p. If p = 2, k(ρ̄) = 2 or 4. If p 6= 2, 2 ≤ k(ρ̄) ≤ p2 − 1. Let us call χp the
cyclotomic character giving the action of Galois on p-roots of unity. There is
an integer j such that 2 ≤ k(ρ̄⊗ χj

p) ≤ p+ 1. Before the proof of Theorem 1.1
it was known by the work of Ribet, Mazur, Carayol, Gross, Coleman-Voloch,
Edixhoven, Diamond that its statement implied the precise form of Serre’s
conjecture:

Theorem 1.2. If p 6= 2 the qualitative form of the conjecture implies the precise
form. If ρ̄ arises from a newform f , then there exists f ′ of weight k(ρ̄) and level
N(ρ̄) such that ρ̄ arises from f ′.

It is a consequence of the proof of Theorem 1.1, which offers new perspectives
on this implication, that in Theorem 1.2 the assumption p 6= 2 can be removed.

One has another definition of the weight, where the weight of ρ̄ is a subset of
the finite set of isomorphism classes of irreducible representations of GL2(Fp)
with values in linear groups with coefficients in Fp. One can determine the
weights in this sense too, as done in [19],[1]. The work of F. Diamond and R.
Taylor ([12]) and [19] allows one to determine all the possible k ≥ 2 and N ≥ 1
such that ρ̄ arises from a newform f of weight k and level N .

Theorems 1.1 and 1.2, the fact that k(ρ̄) is in a finite range and the finiteness
of the dimension of the space of modular forms of given weight and level, imply:

Corollary 1.3. There are finitely many isomorphism classes of representations
of type S with given level N(ρ̄).

Let A be an abelian variety over Q. We say that A is of (primitive) GL2-
type if A is simple and there is a number field L such that [L : Q] = dim(A)
and an order O of L with an embedding O ↪→ EndQ(A) ([28]).
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Let X1(N) the modular curve over Q defined by Γ1(N) and J1(N) its jaco-
bian variety. By applying Theorems 1.1 and 1.2 to the Galois representations
on points of A of λ-torsion for λ in an infinite set of primes of O and a theorem
of Faltings ([16]), one obtains the following theorem, which characterizes the
simple quotients of the abelian varieties J1(N):

Theorem 1.4. Let A be an abelian variety of GL2-type. Then A is isogenous
to a Q-simple factor of J1(N) for some N .

This statement generalizes to compatible systems of Galois representations
which are odd 2-dimensional and odd motives of dimension 2.

Let ρ : GQ → GL2(C) be a continuous irreducible complex representation.
It has finite image. Its projective image is either dihedral, or isomorphic to one
of the permutation groups A4, S4 or A5. Hecke in the dihedral case, Langlands
and Tunnell in the A4 and S4 case, proved Artin’s conjecture for ρ that the
L-function of ρ is holomorphic. In fact, Langlands and Tunnell proved that ρ
arises from an automorphic representation of GL2(AQ) that is limit of discrete
series at infinity ([25] and [44]). The Theorems 1.1 and 1.2 imply:

Theorem 1.5. Let ρ : GQ → GL2(C) be an odd 2-dimensional complex repre-
sentation with projective image A5. Let N be its conductor. Then ρ arises from
such an automorphic representation. i.e., there exists an eigenform f of weight
1 for Γ1(N) such that ρ is isomorphic to the Galois representation attached to
f by Deligne-Serre.

Theorem 1.5 had been previously proved in many cases in [39].
J.-M. Fontaine and B. Mazur made the following conjecture that charac-

terizes the p-adic representations ρ : GQ → GL2(Qp) that arise from an f of
weight ≥ 2:

Conjecture 1.6. If ρ is odd, irreducible, unramified outside a finite set of
primes and potentially semistable with Hodge-Tate weights (a, b), say a ≤ b,
then the cyclotomic twist ρ(−a) arises from an f of weight b− a+ 1

A p-adic Galois representation ρ : GF → GLd(E), F a number field, E a
finite extension of Qp, which is unramified outside a finite set of primes and
potentially semistable at primes above p is called geometric by J.-M. Fontaine
and B. Mazur. A subquotient of the Galois representation given by the p-adic
etale cohomology of a projective and smooth algebraic variety X over F is
geometric. It is unramified outside p and the primes of bad reduction of X, and
it is potentially semistable by the p-adic comparison theorem ([43]). Conversely
J.-M. Fontaine and B. Mazur conjecture that a p-adic geometric irreducible
representation of GF comes from such a subquotient. In particular, the p-adic
Galois representation attached to an f of weight ≥ 2 is geometric, as it appears
in the cohomology of a fiber product of the universal generalized elliptic curve
over a modular curve. The Galois representation attached by P. Deligne and
J.-P. Serre to an f of weight 1 has finite image hence is also geometric.
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For a potentially semistable representation ρ of GQp
in a E-vector space of

dimension d , one can define the collection (i1, . . . , id) of its Hodge-Tate weights
which are integers ∈ Z. The Hodge-Tate weights of ρp(f) for f of weight k are
(0, k − 1). We say that a 2-dimensional potentially semistable representation
of GQp

is of weight k ≥ 1 if its Hodge-Tate weights are (0, k − 1). The p-adic
Hodge theory of Galois representations allows also to attach to ρ a Frobenius-
semisimple representation τp of the Weil-Deligne group WDp ([17]): τp is defined
by the action of WDp on the filtered Dieudonné module attached ρ.

If ρ is now a geometric p-adic representation of GQ, for each prime `, one
can attach to ρ a representation τ` of the Weil-Deligne group WD`. For ` 6= p,
it is given by a theorem of Grothendieck ([10]), and for ` = p, it is given by
Fontaine’s theory as recalled above. We call τ` the Weil-Deligne parameter at
`. If ρ arises from an f of weight ≥ 1, for each `, τ` is isomorphic to the
Frobenius-semisimple representation of WD` attached to f by local Langlands
correspondence ([7],[29]). In particular, one can define the conductor N(ρ); `
does not divide N(ρ) if and only if ` 6= p and ρ is unramified, or ` = p and ρ is
crystalline at p.

We call a Modularity Lifting Theorem (“MLT”) a statement of the following
type: for ρ a p-adic representation of the Galois group of a number field with
reduction ρ̄, ρ̄ modular (or reducible), ρ geometric and odd, implies ρ modular.
Wiles, Taylor-Wiles were the first to prove such a theorem ([45],[42], [11]).

When we know the modularity of ρ̄, such a theorem implies the modularity
of ρ. For example, the following theorem is a consequence of Theorem 1.1 and
a “MLT” theorem of M. Kisin ([24]):

Theorem 1.7. Let p 6= 2. Let ρ : GQ → GL2(Qp) be an odd irreducible rep-
resentation satisfying the hypotheses of Fontaine-Mazur conjecture 1.6, with
distinct Hodge-Tate weights (a 6= b). Suppose further that the reduced represen-
tation ρ̄ satisfies:

1) the restriction of ρ̄ to the Galois group GQ(µp) is irreducible ;

2) the restriction of ρ̄ to GQp
is not an extension of Fp(η) by Fp(ηω) where

ω is the mod. p cyclotomic character.

Then the Fontaine-Mazur conjecture is true for ρ.

M. Emerton, with another approach, has a similar theorem with mildly
different hypothesis 2)([15]) . Both approaches use p-adic Langlands correspon-
dence for GL2.

For statements for p = 2, see Dickinson ([13]), M. Kisin ([23]) and [21], [22].
For the case where the restriction of ρ̄ to GQ(µp) is reducible, we have the

following theorem of C. M. Skinner and A. Wiles ([35],[34]):

Theorem 1.8. Let p > 2. Let ρ : GQ → GL2(Qp) be a continuous Galois rep-
resentation, unramified outside a finite set of primes. Suppose that ρ̄ restricted
to Q(µp) is reducible. Suppose futhermore that



Serre’s Modularity Conjecture 285

-1) ρ̄Dp
'

(

η1 ∗
0 η2

)

with (η1)|Dp
6= (η2)|Dp

;

-2) ρ|Ip '

(

∗ ∗
0 1

)

-3) detρ = Ψχk−1
p for k ≥ 2, Ψ has finite image and detρ is odd.

Then, the Fontaine-Mazur conjecture is true for ρ.

For partial results for the case a = b in the Fontaine-Mazur conjecture (1.6),
see [5] and [6].

Before we sketch the strategy of the proof of Theorem 1.1, we have to in-
troduce two ingredients in the proof: existence of lifts of Galois representations
with a control on the ramification of the lift, and existence of compatible sys-
tems.

2. Lifts with Conditions of Ramification

We first give conditions on ramification that we impose to the lifts.

2.1. Case ` = p. Serre’s weight [32]. We give some more hints
about the weight k(ρ̄) of ρ̄ : GQp

→ GL2(Fp).
Let p 6= 2. One can prove that k(ρ̄) is the minimum of the integers k, k ≥ 2,

such that ρ̄ lifts to a crystalline Galois representation ρ : GQp
→ GL2(Qp)

of weight k. It only depends on the restriction of ρ̄ to the inertia subgroup
Ip ⊂ GQp

. Let ω : Ip → F∗
p be the cyclotomic character giving the action of Ip

on the p-roots of unity. Let ω2 : Ip → (Fp2)∗ be the Kummer character for the

extension Qp2(p1/(p
2−1)) of the unramified extension Qp2 of Qp of degree 2. By

Fontaine-Laffaille and Berger-Li-Zhu, we have the following description of the
ρ̄ such that 2 ≤ k(ρ̄) ≤ p+ 1:

- If ρ̄ is reducible, then the restriction of ρ̄ to Ip has semisimplification
ωa ⊕ ωb with a and b integers in [1, p − 1]. One has 2 ≤ k(ρ̄) ≤ p + 1 if and
only one of the characters ωa and ωb is trivial, say ωa, and ρ̄ has an unramified
quotient. Then k(ρ̄) = b + 1 ∈ [2, p], unless b = 1 and we are in the case ”très
ramifié” where k(ρ̄) = p+ 1.

- If ρ̄ is irreducible, then the restriction of ρ̄ to Ip has semisimplification

ωa+pb
2 ⊕ ωb+pa

2 with 0 ≤ a < b < p. One has 2 ≤ k(ρ̄) ≤ p + 1 if and only if
a = 0 in which case one has k(ρ̄) = b+ 1.

We consider ρ̄ with 2 ≤ k(ρ̄) ≤ p + 1. The first type of condition is that ρ
is crystalline of weight k(ρ̄).

It is also important for us to consider lifts ρ of ρ̄ which are potentially
semistable of weight 2 (Hodge-Tate weights (0, 1)). Recall that one can associate
to a potentially semistable p-adic representation ρ a representation τ(ρ) of the
Weil-Deligne group of Qp. One considers ρ with τ(ρ) having conductor 1 (ρ is
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crystalline) or p. More precisely, still for 2 ≤ k(ρ̄) ≤ p + 1, we consider the
following condition:

- If k(ρ̄) 6= p + 1, ρ is of weight 2, becomes crystalline after restriction to
Qp(µp) and the restriction of the Weil-Deligne parameter τ(ρ) to Ip is ωk(ρ̄)−2⊕
id.

- If k(ρ̄) = p+ 1, ρ is semistable non-crystalline of weight 2.
If p = 2, and ρ̄ : GQp

→ GL2(Fp) is either reducible and we are not in the
case “très ramifié”, or it is irreducible, then k(ρ̄) = 2 and we impose to ρ to be
a crystalline representation of weight 2. When ρ̄ is reducible and “très ramifié”,
k(ρ̄) = 4. In this case, we impose to ρ to be semistable, non-crystalline of weight
2.

2.2. Case ` 6= p ([22]). Let I` ⊂ D` := GQ`
be the ramification

subgroup. Let ρ̄ : GQ`
→ GL2(Fp) be a mod. p representation. We suppose

given a lift ρ0 : GQ`
→ GL2(Zp). We consider the lifts ρ : GQ`

→ GL2(Zp) such
that the restrictions of ρ and ρ0 to I` are conjugate by an element of GL2(Qp).

We can impose on ρ0 the condition called “minimal” that in particular
implies that ρ and ρ̄ have the same conductor.

2.3. Statement. Let ρ̄ : GQ → GL2(Fp) be of Serre’s type. If p 6= 2, we
suppose that 2 ≤ k(ρ̄) ≤ p+1. Let S be a finite set of places of Q that contains
∞, p and the primes of ramification of ρ̄. We consider the problem of lifting ρ̄ to
a representation ρ : GQ → GL2(Qp) which satisfies the following ramification
conditions for v ∈ S:

- v = ∞: ρ is odd (det(ρ̄(c) = −1 for c a complex conjugation). It is a
condition only if p = 2.

- v = p: (2.1). If p 6= 2 ρ is either crystalline of weight k(ρ̄) or it is of weight
2, potentially crystalline or semistable. If p = 2, ρ has to be of weight 2 and
crystalline if k(ρ̄) = 2, semistable if k(ρ̄) = 4.

– for other places v, we fix the ramification up to conjugacy by giving a lift
of ρ̄|Dv

as in (2.2).
As the maximal abelian extension of Q has Galois group that is the direct

product of its inertia subgroups for all prime numbers, the conditions on inertia
for all primes fix the determinant. For p = 2, we have to impose that the
conditions on ramification for all primes give an odd determinant.

Theorem 2.1. (Th. 5.1. of [21]). We assume that ρ̄ has non-solvable image
when p = 2, and that ρ̄|Q(µp) is absolutely irreducible when p > 2. We fix
conditions on ramification for v ∈ S . Then ρ̄ has a lift ρ which satisfies the
ramification conditions.

R. Ramakrishna was the first to construct geometric lifts under general
hypotheses, but had to allow ramification at auxiliary primes ([27]).

We give some hints on the proof, which relies on the work of G. Böckle ([3])
and the potential modularity theorem of R. Taylor ([37],[38]). Let φ be the fixed
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determinant. Let O be the ring of integers of a sufficiently big extension E of
Zp (in particular, we ask that the residue field k of O is such that ρ̄ is conjugate
to a representation with coefficients in k). For v ∈ S, let ρ̄v be the restriction
of ρ̄ to the decomposition group Dv. For each v ∈ S, one has a complete
noetherian local O-algebra R̄�

v with residue field k, and a Galois representation
Dv → GL2(R̄

�
v ) that satisfies in particular the following condition. Let F ′ is

a finite extension of F with ring of integers O′. Then, the natural map from
the set of local O-algebra morphisms from R̄�

v to O′ to the set of isomorphism
classes of lifts ρv : Dv → GL2(O

′) of ρ̄v such that Dv → GL2(F
′) satisfy the

ramification condition, is a bijection. The rings R̄�
v are flat over O, R̄�

v [1/p] is
regular, and is equidimensional of relative dimension 2 if v = ∞, 4 if v = p and
3 if v = ` 6= p. We call R̄�,loc

S the completed tensor product over O of the R̄�
v .

We have a complete noetherian local O-algebra R̄S (resp. R̄�
S ) with residue

field k such that the local O-algebra morphisms from R̄S (resp. R̄�
S ) to O′ are

the data of a lift ρ of ρ̄ that satisfies the ramification conditions up to conjugacy
(resp. and for each v ∈ S a basis of the underlying space of ρ). The O-algebra

R̄�
S has a natural structure of R̄�,loc

S -algebra. The deformation theory links the

number of generators and relations of R̄�
S above R̄�,loc

S to Galois cohomolgy.
The formula of Wiles (Th. 8.6.20 of [26]), taking into account the dimension of
the local deformation rings, gives that the dimension of R̄S is ≥ 1.

Then, it suffices to prove that R̄S is a finitely generated O-module. Indeed,
as it is of dimension ≥ 1, there will exist O′ and a O-algebra morphism from
R̄S to O′ giving the searched lift.

R. Taylor proves that there exist a finite extension F of Q, totally real,
such that the restriction of ρ̄ to GF is modular i.e. is isomorphic to the Galois
representation associated by him in [40] and [41] to an Hilbert eigenform form
for F (or a suitable automorphic representation πF of GL2(AF )). One defines
the deformation problem for ρ̄|GF

with conditions of ramification as the restric-
tion to GF of the conditions of ramification for GQ. One gets a ring R̄S,F . An
“MLT” theorem (almost) identifies R̄S,F to the completion of an Hecke-algebra.
It follows that R̄S,F is finite over O. An easy lemma of algebra implies that R̄S

is finite over O.

3. Existence of Compatible Systems

Let ρ : GQ → GLd(Qp) be a geometric Galois representation. We saw that
for every prime `, we get a F -semisimple representation τ` of the Weil-Deligne
group WD` → GLd(Qp).

The following theorem is essentially due to L. Dieulefait ([14], [46]):

Theorem 3.1. Suppose that ρ and ρ̄ are as in the theorem 2.1. Then, there
exists a finite extension E ⊂ Q of Q and for every prime ` and every embedding
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ι` : Q ↪→ Q` an `-adic Galois representation ρι` : GQ → GL2(Q`) such that:

1) there is one ιp such that ρ ' ριp ;

2) for every prime `, the representation τ` of WD` is rational over E, mean-
ing that it is isomorphic via ιp to a representation which is defined over
E;

2) For each prime q and every ι`, the representation of the Weil-Deligne
WDq defined by ρι` is isomorphic to the one defined by ριp .

The proof of the theorem uses ideas of R. Taylor. By his potential modu-
larity theorem, there exists a finite totally real Galois extension F of Q such
that the restriction of ρ̄ to GF is the Galois representation attached by him to
an automorphic representation πF for GL2(AF ) and an embedding ιp of Q into
Qp. The field F can be choosen satisfying appropriate properties, in particu-
lar, that the restriction of ρ̄ to GF (µp) is irreducible. An “MLT” theorem and

solvable base change theorem ([25]) then imply that there exists E ⊂ Q a finite
extension of Q and, for every F ′ ⊂ F with Gal(F/F ′) solvable, an automorphic
representation πF ′ such that:

- for every prime q of F ′ the representation of the local Weil-Deligne groups
of F ′ at q is rational over E ⊂ Q considered as a subfield of Qp via ιp ;

- there is an embedding ιp of Q into Qp such that ρ|GF ′
is isomorphic to the

Galois representation attached to πF ′ and ιp.
Using Brauer theorem, one proves that there exists nF ′ ∈ Z and characters

χF ′ of Gal(F/F ′), for F ′ as above, such that

ρ =
∑

F ′

nF ′Ind
GQ

GF′
(χF′ ⊗ ρπF′ ,ιp).

For ι`, one defines ρι` , as a virtual representation, by the displayed formula,
replacing ιp by ι`:

ρι` =
∑

F ′

nF ′Ind
GQ

GF′
(χF′ ⊗ ρπF′ ,ι`).

One checks that ρι` is a true representation, as it has, in the Grothendieck
group of p-adic representations of GQ, the same norm 1 and dimension 2 as ρ.
The compatibility at all places follows from [7], [29],[30],[33].

4. The Strategy of the Proof

We prove Theorem 1.1 by an inductive argument on level and the prime p. We
give the starting points. First:

Theorem 4.1. (Tate-Serre). Let ρ̄ be a continuous representation of GQ in
GL2(F2) (resp. GL2(F3)) which is unramified outside 2 (resp. 3). Then ρ̄ is
reducible.
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This theorem has been proved by Tate for p = 2 ([36]), and by Serre for
p = 3, using the Odlyzko bounds.

We also need the following generalisation of the theorem of Fontaine and
Abrashkin that there are no non-zero abelian varieties over Spec(Z):

Theorem 4.2. (Brumer-Kramer [4], R. Schoof [31]) Let q = 2, 3, 5, 7 or 13.
There is no non-trivial abelian variety over Q which has good reduction for all
` 6= q and is semistable at q.

Theorem 1.8 of Skinner-Wiles is also one of the starting points of the in-
duction.

We explain the strategy. Let ρ̄ be of S-type. We want to prove that it is
modular. If p 6= 2, by a twist, we may impose that 2 ≤ k(ρ̄) ≤ p+1. We can lift ρ̄
to a geometric ρ by Theorem 2.1, then make ρ part of a compatible system (ρι)
by Theorem 3.1. We choose a prime ` 6= p and consider the reduction ρ̄` of an
`-dic member ρ` of the compatible system (ρι). The conditions on ramification
of ρ and the choice of ` make that either ρ̄` becomes reducible after restriction
to Q(µ`) and ρ` satisfies the conditions of Theorem 1.8, or ρ̄` restricted to Q(µ`)
is irreducible, and it has a cyclotomic twist of conductor and weight in a range
where we already know Serre’s conjecture. Then, a “MLT” theorem allows us
to know that ρ` is modular, hence every member of the compatible system (ρι)
is modular, hence ρ̄ is modular. Let us give some examples.

Let us prove Serre’s conjecture for ρ̄ of level 1 and weight 2. By Theorem
2.1, we can lift ρ̄ to a ρ that is crystalline of weight 2 and unramified outside
p. Then, we can extend ρ to a compatible system (ρι) of odd geometric Galois
representations such that ρι` is unramified outside ` and is crystalline of weight
2. We consider ρ̄3, the reduction modulo 3 of a 3-adic representation member
of the compatible system. By Serre’s theorem, ρ̄3 is reducible. The theory of
finite flat group schemes implies that the ρ3 and ρ̄3 satisfy the hypotheses of
Theorem 1.8. It follows that ρ3 is modular, and thus ρ̄. Hence in fact ρ̄ does
not exist.

Let us suppose that ρ̄ is of weight 2 and of conductor q = 2, 3, 5, 7, 13 prime
to p > 2 and semistable at q (ρ̄(Iq) is of order p). By Theorem 2.1, we get as
above a lift of ρ̄ and a compatible system (ρι) of geometric representations of
weight 2 with Weil-Deligne parameter at q of conductor q and semistable. It
follows from the potential modularity theorem of R. Taylor and a theorem of G.
Faltings ([16]) that the compatible system arises from an abelian variety over Q
which has good reduction outside q and has semistable reduction at q. Such an
abelian variety is trivial by Theorem 4.2, hence ρ̄ does not exist proving Serre’s
conjecture in this case.

This also yields the proof of Serre’s conjecture when N(ρ̄) = 1, k(ρ̄) = q+1
(q = 2, 3, 5, 7, 13): by Theorem 2.1, we get a lift of ρ̄ and a compatible system
(ρ′ι) of geometric representations of weight q + 1 and conductor 1. A residual
representation arising from it at q, say ρ̄q, has Serre weight either 2 or q + 1.
Then we are done using “MLT” result, either if ρ̄q is reducible, or otherwise by
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lifting ρ̄q to a compatible system (ρι) of geometric representations of weight 2
with Weil-Deligne parameter at q of conductor q and semistable as above. This
again yields by the earlier argument that ρ̄q is reducible. This inter alia proves
the level one case of Serre’s conjecture for p ≤ 5.

In the proof of the general level 1 case i.e. ρ̄ unramified outside p, the
induction on the prime p uses lifts that are of weight 2 and prime conductor
(not necessarily semistable), and crystalline of weight k(ρ̄) and conductor 1.
Let p > 5 and let S(k, p) be the statement for an integer, 2 ≤ k ≤ p + 1, that
Serre’s conjecture is true for ρ̄ of characteristic p and weight k. By an argument
as above, one first proves that S(k, p) is independent of p ≥ k − 1. Then one
lifts ρ̄ to a ρ which is of weight 2 and level p, part of a compatible system (ρι).
One considers ρ̄` the reduction of a member of the compatible system (ρι) of
characteristic `. By the choice of `, one is able to find a lift ρ′` of ρ̄` and a
compatible system (ρ′ι′) whose WDp parameter at p is such that ρ̄′ιp is up to
twist in a range where we already know S(k, p).

For the general case, we use an inductive argument on the number of primes
that divide N(ρ̄). We get a compatible system (ρι) that is of level N(ρ̄). We
consider a divisor q of N(ρ̄) and ρ̄q. By the definition of conductor, the con-
ductor of ρ̄q is prime to q, hence divides the prime to q part of N(ρ). This
observation allows us to do the induction on the number of primes that divide
the conductor. We are able, when we make this reduction on the level, to avoid
ρ̄` which are reducible over Q(µ`) by adding some ramification at an auxiliary
prime.

It is plausible that future progress on modularity lifting theorems will allow
some simplifications in the strategy of the proof.
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Abstract

Inside the universal deformation space of a local Galois representation one has
the set of deformations which are potentially semi-stable of given p-adic Hodge
and Galois type. It turns out these points cut out a closed subspace of the
deformation space. A deep conjecture due to Breuil-Mézard predicts that part
of the structure of this space can be described in terms of the local Langlands
correspondence. For 2-dimensional representations the conjecture can be made
precise. We explain some of the progress in this case, which reveals that the
conjecture is intimately connected to the p-adic local Langlands correspondence,
as well as to the Fontaine-Mazur conjecture.
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Introduction

The study of deformations of Galois representations was initiated by Mazur
[Ma]. Already in that article Mazur considered deformations satisfying certain
local conditions formulated in terms of p-adic Hodge theory. The importance of
deformations satisfying such conditions became clear with the formulation of
the Fontaine-Mazur conjecture [FM], and the spectacular proof of the Shimura-
Taniyama conjecture on modularity of elliptic curves over Q by Wiles, Taylor-
Wiles, and their collaborators [Wi], [TW], [BCDT].

The first question which arises concerns the nature of the subspaces cut
out by these conditions: Suppose that K/Qp is a finite extension with ab-
solute Galois group GK , let F/Fp be a finite extension, and VF a finite di-
mensional F-vector space equipped with a continuous, absolutely irreducible
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GK-action. Then VF admits a universal deformation ring RVF
. A closed point

x ∈ SpecRVF
[1/p] gives rise to a deformation Lx of VF, so that Lx ⊗Zp

Qp is a
representation of GK on a finite dimensional vector space over a finite extension
of W (F)[1/p]. One can ask whether the points such that Lx⊗Zp

Qp satisfies the
condition are cut out by a closed subspace of SpecRVF

[1/p].

Of course the answer depends on the condition one imposes. In [Fo 2]
Fontaine suggests (at least implicitly) that the answer should be affirmative
if one requires the representations to become semi-stable over a fixed extension
K ′/K and with Hodge-Tate weights in a fixed interval. Attached to any such
representation V is a finite dimensional representation of the inertia subgroup
IK ⊂ GK , which, in some sense, measures the failure of V to be semi-stable. One
can sharpen Fontaine’s conjecture by fixing a representation τ of IK , with open
kernel, and requiring Lx ⊗Zp

Qp to have fixed Hodge-Tate weights and associ-
ated IK-representation τ. That this refined condition cuts out a closed subspace
was conjectured in special cases in the papers of Fontaine-Mazur [FM, p191],
Breuil-Conrad-Diamond-Taylor [BCDT, Conj. 1.1.1], and suggested more gen-
erally by Breuil-Mézard [BM, Conj. 1.1, p214].

After partial results by several people (see section 1.2.5 below for a more
detailed discussion) such a result was proved in general in [Ki 4]. Thus, for some
finite normal extension O of W (F) one obtains a quotient Rv,τ

VF
of RVF

⊗W (F) O
whose points in characteristic 0 correspond precisely to deformations of VF
which become semi-stable over some finite extension of K, have the chosen
fixed Hodge-Tate weights and associated IK-representation τ. 1

The conjectures of Breuil-Mézard predict a deep connection between the
structure of Rv,τ

VF
and the representation theory of GLd(OK), where d = dimFVF.

2 This can be made precise when VF is two dimensional, which we assume for
the rest of this introduction. In this case, a result of Henniart attaches to
τ a smooth, irreducible, finite dimensional representation σ(τ) of GL2(OK)
which is characterized in terms of the local Langlands correspondence. On the
other hand, the cocharacter v gives rise to an algebraic representation σ(v)
of GL2(OK). Let Lv,τ ⊂ σ(v) ⊗ σ(τ) be a GL2(OK) invariant lattice. Then
the conjecture predicts the Hilbert-Samuel multiplicity e(Rv,τ

VF
/π) of Rv,τ

VF
/π in

terms of the multiplicities of the Jordan-Hölder factors of Lv,τ/πLv,τ . Here
π ∈ O denotes a uniformizer. Indeed, one can formulate such a conjecture in
any dimension assuming an analogue of Henniart’s result. When τ is irreducible
a higher dimensional analogue of Henniart’s result has been proved by Paskunas
[Pa], building on the work of Bushnell-Kutzko [BK].

1Here the symbol v indicates a conjugacy class of cocharacters corresponding to the choice
of Hodge-Tate weights; we refer to section 1.1.3 below for the precise definition. The choice
of O is related to the field of definition of v and τ.

2Strictly speaking [BM] makes this conjecture in detail for two dimensional representa-
tions, K = Qp and small Hodge-Tate weights. However, the possibility of this connection
holding more generally is suggested on p214 of loc. cit.
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It is slightly more convenient to work with the quotient Rv,τ,ψ
VF

of Rv,τ
VF

which corresponds to deformations having determinant ψ times the cyclotomic
character, for some appropriately chosen 3 ψ. The general shape of such a
conjecture is then that

e(Rv,τ,ψ
VF

/π) =
∑

σ̄

a(σ̄)µσ̄(VF),

where σ̄ runs over irreducible mod p representations of GL2(k), k the residue
field of K, a(σ̄) denotes the multiplicity of σ̄ as a Jordan-Hölder factor of
Lv,τ/πLv,τ , and µσ̄(VF) is a non-negative integer. This equality can be viewed
as a system of infinitely many equations (corresponding to the choices of v

and τ) in the finitely many unknowns µσ̄(VF). One can of course also ask for a
version of such a conjecture where the µσ̄(VF) are given explicitly, as is done in
[BM] when K = Qp.

For two dimensional representations and K = Qp most of the Breuil-Mézard
conjecture is proved in [Ki 5]. The proof consists of two parts: One uses the p-
adic local Langlands correspondence of Breuil and Colmez [Br 1], [Co] to show

that e(Rv,τ,ψ
VF

/π) is bounded above by the expected value. A modified form of
the Taylor-Wiles patching argument, introduced in [Ki 1], is then used to prove
the other inequality. To do this one uses Lv,τ -valued automorphic forms on a
totally definite quaternion algebra to construct a module M∞ which is finite of
rank ≤ 1 over a formally smooth Rv,τ,ψ

VF
-algebra R∞. Then

e(Rv,τ,ψ
VF

/π) = e(R∞/π) ≥ e(M∞/πM∞)

where the final quantity denotes the Hilbert-Samuel multiplicity of the R∞/π-
module M∞/πM∞. This multiplicity can in turn be analyzed in terms of the
Jordan-Hölder factors of Lv,τ/πLv,τ .

The restriction K = Qp is used primarily so as to be able to apply the
p-adic local Langlands correspondence, which is available for GL2(Qp) but
remains somewhat elusive for GL2(K) with K 6= Qp. Indeed the Breuil-
Mézard conjecture may be viewed as an avatar of that correspondence. On
the other hand, the modified Taylor-Wiles method can be applied without re-
strictions on K. It always gives an inequality involving e(Rv,τ,ψ

VF
/π) with equal-

ity being essentially equivalent to a modularity lifting theorem for represen-
tations which are of type (v, τ) at primes dividing p. Such lifting theorems
are predicted by the Fontaine-Mazur conjecture and generalize the results used
to prove the Shimura-Taniyama conjecture. They were the main motivation
of [Ki 5].

In particular, one can try to use modularity lifting theorems to prove cases
of the Breuil-Mézard conjecture for K 6= Qp. We give an example of such a

3In order that the quotient is non-zero, one needs a condition of compatibility between ψ
and (v, τ) (see section 2.2 below) which we assume from now on.
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result in §3, using the modularity lifting theorems for potentially Barsotti-Tate
representations proved in [Ki 1] and [Ge 1]. The coefficients µσ̄(VF) are not
made explicit in this case. One can hope to do that when K/Qp is unrami-
fied, assuming the Buzzard-Diamond-Jarvis conjecture [BDJ] on the weights of
automorphic forms giving rise to a given 2-dimensional mod p representation.
Most of this has been proved by Gee [Ge 2], but one really needs the whole
conjecture to determine all the coefficients. Nevertheless, we explain how to
use Gee’s result to prove the expected lower bound for e(Rv,τ,ψ

VF
/π) when VF is

absolutely irreducible and satisfies a mild additional restriction.
The paper is organized as follows: In §1 we recall the definition of the rings

Rv,τ,ψ
VF

and some of their variants. In §2, we formulate the general form of
the Breuil-Mézard conjecture and recall the explicit definition of µσ̄(VF) when
K/Qp is unramified and VF is absolute irreducible. In this case these integers
are all either 0 or 1, and the explicit description is essentially a reformulation of
the conjecture of [BDJ]. Finally, in §3 we prove the two theorems on e(Rv,τ,ψ

VF
/π)

mentioned above.

1. Potentially Semi-stable Deformation Rings

1.1. Potentially semi-stable representations. Let K/Qp be a
finite extension with residue field k, and fix an algebraic closure K̄/K. For a
subfield K ′ ⊂ K̄, containing K, we write GK′ = Gal(K̄/K ′) and IK′ ⊂ GK′

for the inertia subgroup of GK′ . We denote by K ′
0 the maximal absolutely

unramified subfield of K ′, and by OK′ the ring of integers of K ′.
Recall Fontaine’s [Fo 1] period rings

Bcris ⊂ Bst ⊂ BdR.

The ring Bst is a K̄0-algebra, equipped with a Frobenius endomorphism ϕ and
an operator N satisfying Nϕ = pϕN, and we have Bcris = BN=0

st . The ring

BdR is a discrete valuation field with residue field ̂̄K. In particular, it carries a
filtration given by the valuation. The above inclusions induce inclusions

Bcris ⊗K0
K ⊂ Bst ⊗K0

K ⊂ BdR.

In particular, the rings Bcris ⊗K0
K and Bst ⊗K0

K are equipped with the
filtration induced from BdR.

Suppose that V is a finite dimensional Qp-vector space equipped with a
continuous action of GK . We set

Dcris(V ) = (Bcris ⊗Qp
V )GK , Dst(V ) = (Bst ⊗Qp

V )GK .

Then Dst(V ) is a K0-vector space of dimension ≤ dimQp
V equipped with

operators ϕ and N, with ϕ a bijection and satisfying Nϕ = pϕN. We have
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Dcris(V ) = Dst(V )N=0. Moreover,

Dcris(V )⊗K0
K ⊂ Dst(V )⊗K0

K ⊂ DdR(V ) := (BdR ⊗Qp
V )GK . (1.1.1)

So Dcris(V )⊗K0
K and Dst(V )⊗K0

K are equipped with a filtration.
A representation V is called crystalline (respectively semi-stable) if Dcris(V )

(resp. Dst(V )) has K0-dimension dimQp
V, in which case both (resp. the second)

inclusions in (1.1.1) are equalities. We say that V is potentially crystalline
(resp. potentially semi-stable) if V |GK′

is crystalline (resp. semi-stable) for some
finite extension K ′/K.

1.1.2. Fix an algebraic closure Q̄p of Qp and let E ⊂ Q̄p be a finite extension
of Qp with ring of integers O. Let VE be an E-vector space of finite dimension
d, equipped with a continuous action of GK . We assume that VE is potentially
semi-stable (viewed as a Qp-representation). Then

Dpst(VE) = lim−→K′(Bst ⊗Qp
VE)

GK′

is a vector space over K̄0 of dimension dimQp
VE . Note that Dpst(VE) is a

K̄0 ⊗Qp
E-module equipped with a semi-linear action of GK , and so with a

linear action of IK . Since ϕ is a bijection on Dpst(VE), this is necessarily a free
K̄0⊗Qp

E-module, and since the action of ϕ commutes with that of IK , we have
tr(σ|Dpst(VE)) ∈ E for any σ ∈ IK .

Let τ : IK → GLd(Q̄p) be a representation with open kernel. We say that VE
is of Galois type τ if the IK-representation Dpst(VE) is equivalent to τ. That
is, Q̄p ⊗E Dpst(VE), equipped with its IK action is isomorphic to τ ⊗Qp

K̄0.
Concretely this means that for any σ ∈ IK , tr(σ|Dpst(VE)) = tr(τ(σ)).

We can extend this definition to finite local E-algebras B : If VB is a finite
free B-module, equipped with a continuous, potentially semi-stable action of
GK , then Dpst(VB) gives rise to a representation of IK on a finite free K̄0⊗Qp

B-
module with traces in B. We say that VB is of Galois type τ if the traces of
elements of IK acting on Dpst(VB) and τ are equal. If B has residue field E
then a potentially semi-stable VB is of type τ if and only if VB ⊗B E is.

1.1.3. Let v be a conjugacy class of cocharacters of ResK/Qp
GLd (defined

over Q̄p). Concretely, v consists of the data of a d-tuple of integers for each
embedding K ↪→ Q̄p. Let Ev ⊂ Ē denote the reflex field of v. That is, Ev is
the fixed field of the group of σ ∈ Gal(Q̄p/Qp) such that σ∗(v) = v. Then v

has a representative defined over Ev.
Now let VE be as above, and suppose that E ⊃ Ev. We say that VE has p-

adic Hodge type v, if the filtration on the K⊗Qp
E-module DdR(VE) is induced

by the inverse of a cocharacter in the conjugacy class v. As in section 1.1.2, we
can extend this definition to representations of GK on finite local E-algebras
B.

1.1.4. Suppose that VE is of p-adic Hodge type v, and Galois type τ. An
extension of VE by VE in the category of GK -representations can be regarded
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as a representation of GK on a finite free module VE[ε] over the dual numbers
E[ε]. If VE[ε] is potentially semi-stable it is necessarily of p-adic Hodge type v

and Galois type τ. We can compute the space of such extensions as follows:
First observe that

adDpst(VE)
∼
−→ Dpst(adVE) ⊂ DdR(adVE)⊗K K̄

∼
−→ adDdR(VE)⊗K K̄

where ad denotes the adjoint so that, for example, adVE = HomE(VE , VE).
Hence

(adDpst(VE))
GK ⊂ adDdR(VE). (1.1.5)

Suppose for a moment that VE is potentially crystalline. Then it turns out
that the space Ext1pcris(VE , VE) of self extensions of VE which are potentially
crystalline is canonically isomorphic to the H1 of the following complex con-
centrated in degrees 0 and 1

(adDpst(VE))
GK

(1−ϕ,can)
−→ (adDpst(VE))

GK ⊕ adDdR(VE)/Fil
0adDdR(VE),

where the second component of the map is induced by the inclusion (1.1.5).
The kernel of this map is canonically isomorphic to (adVE)

GK . In particular,
we have

dimEExt
1
pcris(VE , VE) = dimEadDdR(VE)/Fil

0adDdR(VE) + dimE(adVE)
GK .

(1.1.6)
In particular, if VE is absolutely irreducible, then the right hand side of (1.1.6)
depends only on the p-adic Hodge type, and is equal to 1+w>0

v
, where w>0

v
is the

dimension of the Lie subalgebra of ResK/Qp
gld on which a fixed representative

of v acts with positive weights.
Now suppose that VE is potentially semi-stable. Then the space

Ext1pst(VE , VE) of potentially semi-stable self extensions is canonically isomor-
phic to H1 of the total complex (concentrated in degrees 0, 1, 2) of

(adDpst(VE))
GK

1−ϕ
//

N,can

��

(adDpst(VE))
GK

N

��

(adDpst(VE))
GK ⊕ adDdR(VE)/Fil

0adDdR(VE)
pϕ−1,0

// (adDpst(VE))
GK

If VE is absolutely irreducible, we deduce that the dimension of Ext1pst(VE , VE)
is again 1+w>0

v
provided theH2 of the above total complex vanishes. In general,

this H2 contains obstructions for the deformation theory of VE as a potentially
semi-stable representation.

1.2. Deformation rings. Now let F̄p be the residue field of Q̄p, and
F ⊂ F̄p a finite extension of Fp. Let VF be an F-vector space of dimension d
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equipped with a continuous action of GK . Let ARW (F) denote the category of
Artinian W (F)-algebras with residue field F. If A is in ARW (F), a deformation
of VF to A is a finite free A-module equipped with a continuous action of GK
and a GK-equivariant isomorphism VA⊗A F

∼
−→ VF. We denote by DVF

(A) the
set of isomorphism classes of deformations of VF to A.

If we fix a basis for VF, then a framed deformation is a deformation VA of
VF to A, together with a lifting to VA of the chosen basis of VF. We denote by
D�
VF
(A) the set of isomorphism classes of framed deformations of VF to A.

The functor D�
VF

is always pro-representable by a complete local W (F)-

algebra R�
VF
. If End F[GK ]VF = F then the functor DVF

is pro-representable by
a complete local W (F)-algebra RVF

[Ma]. In this case the canonical morphism
RVF

→ R�
VF

is formally smooth.

Now let E ⊂ Q̄p be a finite extension of Qp as before, and assume that the
residue field of E contains F. Fix a representation τ : IK → GLd(E) with open
kernel, and a p-adic Hodge type v such that Ev ⊂ E. The main result of [Ki 4]
is that R�

VF
and RVF

(when it is defined) admit quotients which parameterize
potentially semi-stable deformations of VF of Galois type τ and p-adic Hodge
type v.

Theorem 1.2.1. There exists a p-torsion free quotient R�,τ,v
VF

of R�
VF

⊗W (F) O

such that for any finite local E-algebra B, and any homomorphism ξ : R�
VF

→ B,
the B-representation of GK induced by ξ is potentially semi-stable of Galois type
τ and p-adic Hodge type v if and only if ξ factors through R�,τ,v

VF
.

The irreducible components of SpecR�,τ,v
VF

[1/p] are generically reduced and

of dimension d2 + w>0
v
.

If End F[GK ]VF = F, then there exists an analogous quotient Rτ,vVF
of RVF

,

except that the components of SpecRτ,vVF
[1/p] have dimension 1 + w>0

v
.

We have a completely analogous statement for potentially crystalline repre-
sentations, except that one can then make a more precise statement about the
local structure of the generic fibres of the corresponding rings:

Theorem 1.2.2. There exists a p-torsion free quotient R�,τ,v
VF,cr

of R�
VF

⊗W (F) O

such that for any finite local E-algebra B, and any homomorphism ξ : R�
VF

→ B,
the B-representation of GK induced by ξ is potentially crystalline of Galois type
τ and p-adic Hodge type v if and only if ξ factors through R�,τ,v

VF,cr
.

The irreducible components of SpecR�,τ,v
VF,cr

[1/p] are formally smooth of di-

mension d2 + w>0
v
.

If End F[GK ]VF = F, then there exists an analogous quotient Rτ,vVF,cr
of RVF

,

except that the components of SpecRτ,vVF,cr
[1/p] have dimension 1 + w>0

v
.

Note that it is clear that, if the above quotients exist, then they are unique.
The reason for taking B a finite local E-algebra, rather than just a finite field
extension of E, was to ensure this uniqueness.
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1.2.3. For τ trivial, the above results were previously known in special cases: In
each of those cases what was actually shown were special cases of the following
conjecture of Fontaine [Fo 2]:

Conjecture 1.2.4. (Fontaine) Let a ≤ b be integers and V a continuous repre-
sentation of GK on a finite free Zp-module. Suppose that for n ≥ 1 V/pnV is a
subquotient of a GK-stable lattice in a semi-stable (resp. crystalline) represen-
tation Vn whose Hodge-Tate weights are in [a, b]. Then V ⊗Zp

Qp is semi-stable
(resp. crystalline) with Hodge-Tate weights in [a, b].

1.2.5. For crystalline deformations this was shown by Ramakrishna [Ra] when
[a, b] = [0, 1], using results of Raynaud, 4 by Fontaine-Lafaille [FL] when K =
K0 and [a, b] = [0, p−2], and by Berger [Be] whenever K = K0. For semi-stable
representations with [K : K0]|b− a| < p− 1 this is a result of Breuil [Br 2].

The results of [Ki 4], are not proved via Fontaine’s conjecture. Rather the

quotients R�,v,τ
VF

are constructed more directly using the results of [Ki 2] on
Galois stable lattices in semi-stable representations. On the other hand, T. Liu
has also used the theory of [Ki 2] to prove Fontaine’s conjecture in general [Li].

2. The Breuil-Mézard Conjecture

2.1. Local Langlands and IK-representations. From now on we
fix a normalization of local class field theory so that the restriction of the
cyclotomic character χcyc : GK → Zp to O×

K ⊂ GK is given by the norm
NK/Qp

. This corresponds to the normalization of global class field theory which
takes uniformizers to geometric Frobenii.

Consider a representation τ : IK → GL2(Q̄p) with open kernel as in sec-
tion 1.1.2 We will assume that τ is the restriction to IK of a 2-dimensional
representation of the Weil-Deligne group WDK of K.

If τ̃ is any continuous, Frobenius semi-simple 2-dimensional representation
of WDK , we denote by π(τ̃) the representation of GL2(K) attached to τ̃ by
the local Langlands correspondence 5 , normalized so that π(τ̃) has central
character det τ̃ |K× | · |−1. We have the following result [BM, Appendix].

Theorem 2.1.1. (Henniart) There exists a finite dimensional, irreducible Q̄p-
representation σ(τ) (resp. σcr(τ)) of GL2(OK) such that for any 2-dimensional,
Frobenius semi-simple representation τ̃ of WDK , π(τ̃)|GL2(OK) contains σ(τ)
(resp. σcr(τ)) if and only if τ̃ |IK ∼ τ (resp. τ̃ |IK ∼ τ and N = 0 on τ̃).

4Actually, what Ramakrishna shows is that if Vn arises from a p-divisible group then so
does V. It was a later result of Breuil that V arises from a p-divisible group if and only if it
is crystalline with Hodge-Tate weights in [0, 1].

5If τ̃ ∼ χ ⊕ χ| · | for some character χ of WDK , then we take π(τ̃) to be the reducible

principal series representation χ ◦ det⊗Ind
GL2(K)
B 1 where B ⊂ GL2(K) is a Borel, rather

than the more classical choice of the one dimensional representation χ ◦ det .
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The representation σ(τ) (resp. σcr(τ)) is uniquely determined by this prop-
erty except possibly 6 when |k| = 2.

2.1.2. Let v be a cocharacter of ResK/Qp
GL2 and suppose that E contains the

image of all embeddings K ↪→ Q̄p. In particular, Ev ⊂ E. Concretely, v consists
of the data of a pair of integers (wι, kι + wι) with kι ≥ 0, for each embedding
ι : K ↪→ Q̄p. We say that v is regular if kι ≥ 1 for all ι. For a regular v we set

σ(v) = ⊗ι:K↪→Eι
∗(Symkι−1K2 ⊗ detwι)

Now suppose that τ, σ(τ) and σcr(τ) are defined over E. We again denote
by σ(τ) and σcr(τ) the corresponding E-vector spaces. Then we set σ(v, τ) =
σ(τ)⊗E σ(v), and σcr(v, τ) = σcr(τ)⊗E σ(v).

2.2. Formulation of the conjecture. Let $ be a uniformizer of K,
and χ$ the Lubin-Tate character attached to $. For v as above we set

χv =
∏

ι:K↪→E

(ι ◦ χ$)
kι+2wι−1.

Now fix τ as in section 2.1 and v as above. Let ψ : GK → O× be a continuous
character such that ψ|IK = χv|IK · det τ.

Let F ⊂ F̄p be the residue field of E, and let VF be a two dimensional F-vector
space equipped with a continuous action of GK such that the determinant of
VF is equal to the reduction of ψχcyc.

We denote by R�,v,τ,ψ
VF

the quotient of the ring R�,v,τ
VF

introduced in Theo-
rem 1.2.1 corresponding to deformations with determinant (the image of) ψχcyc.

Similarly we have the ring R�,v,τ,ψ
VF,cr

and, when End F[GK ]VF = F, the rings Rv,τ,ψ
VF

and Rv,τ,ψ
VF,cr

Let π ⊂ O be a uniformizer. We want to relate the Hilbert-Samuel mul-
tiplicity of the ring R�,v,τ,ψ

VF
/π and its variants to the reduction mod π of a

GL2(OK)-stable O-lattice Lv,τ ⊂ σ(v, τ). To do this we need to recall the
irreducible mod p representations of GL2(k) [BL].

2.2.1. Let n = {nῑ} and m = {mῑ} be tuples of integers indexed by the
embeddings ῑ : k ↪→ F, with 0 ≤ nῑ,mῑ ≤ p − 1 and not all mῑ = p − 1. Then
the representations

σn,m = ⊗ῑῑ
∗(Symnῑk2 ⊗ detmῑ)

are irreducible and pairwise distinct, and any irreducible mod p representation
of GL2(k) is isomorphic to one of the σn,m. These are also the irreducible mod
p representations of GL2(OK).

6More precisely, if |k| = 2 and τ ∼ χ⊕χε0 with ε0 a ramified character then there are two
such representations. In this case, we take σ(τ) = σcr(τ) to be χ◦det times the representation
denoted by uN0

(ε0) in [He, A.2.2]. We are grateful to Fred Diamond for pointing out that,
in fact, the two representations have the same semi-simplified reductions, so that the two
possible choices for σ(τ) give rise to the same conjectures below.
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2.2.2. Recall that the Hilbert-Samuel multiplicity is an invariant which mea-
sures the complexity of a Noetherian, local ring A. If A has dimension d and
maximal ideal m ⊂ A then, for sufficiently large n, the function n 7→ `(A/mn+1)
is a polynomial of degree d, where ` denotes length. Then the Hilbert-Samuel
multiplicity e(A) is defined as d! times the coefficient of Xd in this polynomial.
It is necessarily an integer.

More generally, if M is a finite A-module, then for n sufficiently large,
n 7→ `(M/mn+1) is a polynomial of degree at most d. The coefficient of Xd

has the form eA(M)/d! for a non-negative integer eA(M) which is called the
Hilbert-Samuel multiplicity of M.

The following is a natural generalization of the Breuil-Mézard conjecture
which is, to some extent, already hinted at in [BM, p214].

Conjecture 2.2.3. There exist integers µn,m(VF) such that for any τ and v,
and ψ as above, with v regular, we have

e
(
R�,v,τ,ψ
VF

/π
)
=

∑

n,m

a(n,m)µn,m(VF),

where

(Lv,τ ⊗O F)ss
∼
−→ ⊕n,mσ

a(n,m)
n,m .

Similarly, if Lcr
v,τ is a GL2(OK)-stable lattice in σcr(v, τ) then

e
(
R�,v,τ,ψ
VF,cr

/π
)
=

∑

n,m

a(n,m)µn,m(VF),

where (
Lcr
v,τ ⊗O F

)ss ∼
−→ ⊕n,mσ

a(n,m)
n,m .

2.2.4. Note that when VF has trivial endomorphisms, the morphism Rv,τ,ψ
VF

→

R�,v,τ,ψ
VF

(resp. Rv,τ,ψ
VF,cr

→ R�,v,τ,ψ
VF,cr

) is formally smooth, so the Hilbert-Samuel
multiplicities of these two rings are equal.

The equalities in Conjecture 2.2.3 can be viewed as an infinite number of
equations (corresponding to the choices of v and τ) in the finitely many un-
knowns µn,m(VF). If these equalities hold, then the µn,m(VF) may be determined
by taking τ trivial, and selecting v as follows: Choose a subset L of the set of
embeddings K ↪→ E such that L maps bijectively onto the set of embeddings
k ↪→ F. Define v by kι = nῑ + 1 and wι = mι if ι ∈ L and kι = 1, wι = 0 other-
wise. Here ῑ denotes the reduction of ι. Then σcr(τ) is the trivial representation
of GL2(OK) and any GL2(OK)-stable lattice Lcr

v,τ in σcr(v, τ), has reduction
isomorphic to σn,m. So Conjecture 2.2.3 predicts

µn,m(VF) = e
(
R�,v,τ,ψ

cr /π
)
. (2.2.5)
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2.3. The case of an unramified extension. When K/Qp is un-
ramified, the integers on the right hand side of (2.2.5) can be determined in
almost all cases, and are usually in {0, 1, 2}. In this case, the condition that
µn,m(VF) 6= 0 is closely related to the Buzzard-Diamond-Jarvis conjecture on
when a given two dimensional, mod p global Galois representation is modular
of weight σn,m.

2.3.1. Suppose now that K/Qp is unramified. We will give the explicit values
of µn,m(VF) when VF is absolutely irreducible.

Let K ′/K be the unramified extension of degree 2, so that IK = IK′ = IQp
.

Let k′ denote the residue field of K ′. Let n = [K : Qp] and ω2n : IQp
→ k′× the

fundamental character of level 2n and ωn = ωp
n+1

2n the fundamental character
of level n. We will assume that E contains all embeddings of K ′ into Q̄p.

Let J be a subset of the embeddings k′ ↪→ F which bijects onto the set of
all embeddings k ↪→ F. We set

ωJ =
∏

ῑ∈J

ι ◦
(
ω
n
ι
+1

2n · ω
m

ι
n

)
,

where for ι ∈ J we again denote by ι the restriction of ι to k. Thus ωJ is a
character IK → F×. Similarly, if J ′ denotes the compliment of J in the set of
embeddings ῑ : k′ ↪→ F, we have the character ωJ ′ .

Conjecture 2.3.2. Suppose VF is absolutely irreducible. Then Conjecture 2.2.3
holds with µn,m(VF) = 0 unless there exists J as above such that

VF|IK ∼
(
ωJ 0
0 ωJ′

)
,

in which case µn,m(VF) = 1.

3. Theorems

3.1. Statements. We will review some cases when Conjecture 2.2.3 is
known as well as sketching some of the arguments. We assume from now on
that p > 2.

Most of the conjecture is known when K = Qp. In this case each of n, m
consist of a single integer which we denote by n and m respectively, and we
write µn,m(VF) for µn,m(VF). The explicit value of µn,m(VF) is known in all
cases, except when n = p − 2 and VF is scalar. One has the following result
[Ki 5], which, in particular includes (most of) the original conjecture stated by
Breuil-Mézard (here ω denotes the mod p cyclotomic character).

Theorem 3.1.1. Suppose that K = Qp, that VF �
( ωχ ∗

0 χ

)
for any character

χ, and that if VF has scalar semi-simplification then it is scalar.
Then Conjecture 2.2.3 holds for any regular v and any τ.
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3.1.2. The proof uses the p-adic local Langlands correspondence for GL2(Qp)
to prove that the left hand side in the equalities in Conjecture 2.2.3 is bounded
above by the right hand side. To each two dimensional E-representation VE
of GQp

, this correspondence attaches a certain representation of GL2(Qp) on
a p-adic Banach space Π(V ). A key ingredient in the proof is the fact that
the p-adic local Langlands correspondence is compatible with the usual local
Langlands correspondence, in the sense that, if VE is potentially semi-stable
with p-adic Hodge type v and Galois type τ, then the locally algebraic vectors
in Π(V ) contain a copy of the GL2(Zp)-representation σ(v, τ). This was proved
by Colmez and Berger-Breuil [Co 2], [BB] when τ arises from an abelian rep-
resentation of the Weil group, and by Colmez [Co] in general, using Emerton’s
work on the local-global compatibility of the p-adic Langlands correspondence
[Em].

The opposite inequality is proved by a Taylor-Wiles style patching argu-
ment. Indeed, this patching argument shows that Conjecture 2.2.3 is very
closely related to the conjecture of Fontaine-Mazur on the modularity of ge-
ometric Galois representations. One can attempt to run this argument in re-
verse and deduce Conjecture 2.2.3 from a modularity lifting theorem. For po-
tentially Barsotti-Tate representations such a theorem was proved in [Ki 1]
and generalized by Gee [Ge 1]. Using it one can show that for any K/Qp we
have

Theorem 3.1.3. Denote by v0 the cocharacter corresponding to kι−1 = wι = 0
for all ι. If VF is absolutely irreducible, then there exist non-negative integers
µn,m(VF) such that for any τ,

e
(
R�,v0,τ,ψ

cr /π
)
=

∑

n,m

a(n,m)µn,m(VF),

where (
Lcr
v0,τ ⊗O F

)ss ∼
−→ ⊕n,mσ

a(n,m)
n,m .

3.1.4. Now return to the case where K/Qp is unramified. We assume that
VF is absolutely irreducible, and we now take µn,m(VF) to be defined as in
Conjecture 2.3.2, so that µn,m(VF) is non-zero if and only if there exists J such

that VF|IK ∼
(
ωJ 0
0 ωJ′

)
in which case µn,m(VF) = 1.

We will say that v is paritious if the integers kι + 2wι are independent of
ι. We will say that VF is regular, if there exists (n,m) with µn,m(VF) 6= 0 and
2 ≤ nι ≤ p− 4 for all ι.

Theorem 3.1.5. Suppose that K/Qp is unramified, that v is paritious and that
VF is absolutely irreducible and regular. Then

e(Rv,τ,ψ/π) ≥
∑

n,m

a(n,m)µn,m(VF),
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where
(Lv,τ ⊗O F)ss

∼
−→ ⊕n,mσ

a(n,m)
n,m ,

and similarly for e(Rv,τ,ψ
cr /π).

3.2. A sketch of the proofs. We now give a sketch of some of the
methods which are used to prove Theorems 3.1.3 and 3.1.5. These involve re-
lating the Hilbert-Samuel multiplicities in the conjectures to those of certain
spaces of automorphic forms.

It ought to be possible to extend these methods to prove Conjecture 2.2.3
for e(R�,v,τ,ψ

cr /π) with an explicit collection of integers µn,m(VF), when v = v0

and K/Qp is unramified. This is work in progress with Toby Gee.

3.2.1. Let F be a totally real number field and D a totally definite quaternion
algebra over F, which is unramified at all primes v|p of F. Denote by AfF ⊂ AF
the finite adeles. For each finite place v of F we will denote by πv ∈ Fv a
uniformizer. Fix a maximal order OD ⊂ D, and an isomorphism (OD)v

∼
−→

M2(OFv
) for each finite place where D is unramified. Let U =

∏
v Uv ⊂ (D⊗F

AfF )
× be a compact open subgroup contained in

∏
v(OD)

×
v . We assume that

Uv = GL2(OFv
) for v|p.

For each v|p, we fix a continuous representation σv : Uv → Aut(Wσv
) on a fi-

nite O-module. Write Wσ = ⊗v|p,OWσv
and denote by σ :

∏
v|p Uv → Aut(Wσ)

the corresponding representation. We regard σ as being a representation of U
by letting Uv act trivially if v - p. Finally, assume there exists a continuous

character ψ : (AfF )
×/F× → O× such that σ on U ∩ (AfF )

× is given by multipli-

cation by ψ. Fix such a ψ, and extend the action of U on Wσ to U(AfF )
×, by

letting (AfF )
× act via ψ.

Let Sσ,ψ(U) denote the set of continuous functions

f : D×\(D ⊗F AfF )
× →Wσ

such that for g ∈ (D ⊗F AfF )
× we have f(gu) = σ(u)−1f(g) for u ∈ U, and

f(gz) = ψ−1(z)f(g) for z ∈ (AfF )
×.

We consider the left action of (D ⊗F AfF )
× on Wσ-valued functions on

(D ⊗F AfF )
× given by the formula (gf)(z) = f(zg). Then for any finite prime

v, the double cosets of Uv in (D⊗F AfF )
× act naturally on Sσ,ψ(U). Denote by

Tσ,ψ(U) the O-algebra generated by the endomorphisms Sv and Tv of Sσ,ψ(U)
corresponding to Uv

(
πv 0
0 πv

)
Uv and Uv

(
πv 0
0 1

)
Uv respectively, where v - p runs

over primes at which D is unramified. If Uv is maximal compact in (D⊗F Fv)
×,

then these operators do not depend on the choice of πv.

3.2.2. Now fix an algebraic closure F̄ of F and let S be a finite set of primes
of F, containing the infinite primes, the primes dividing p, the primes where D
is ramified, and the primes where Uv is not maximal compact in (D ⊗F Fv)

×.
Let FS ⊂ F̄ be the maximal extension of F unramified outside S, and set
GF,S = Gal(FS/F ).
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Let m ⊂ Tσ,ψ(U) be a maximal ideal. Such an ideal is called Eisenstein if
Tv − 2 ∈ m for all but finitely many primes v /∈ S which split completely in
some fixed abelian extension of F. After possibly replacing O by an extension
we may assume that m has residue field F. If m is a non-Eisenstein ideal, then
the work of Carayol [Ca] and Taylor [Ta], together with the Jacquet-Langlands
correspondence, implies that there exists a unique representation

ρm : GF,S → GL2(Tσ,ψ(U)m)

such that if v /∈ S is a prime of F, and Frobv denotes an arithmetic Frobenius
at v then ρm(Frobv) has trace Tv.We denote by ρ̄m the reduction of ρm modulo
m. As m is non-Eisenstein ρ̄m is absolutely irreducible.

3.2.3. Now suppose we are given v and τ as in section 2.1.2 with v paritious and
an absolutely irreducible representation VF of GK . Then we choose F such that
there is a unique prime p|p of F and Fp

∼
−→ K. Fix an embedding F̄ ↪→ K̄,

extending this isomorphism. We choose the character ψ : (AfF )
×/F× → O×

so that ψ|IK = χv|IK det τ, and we apply the above constructions with σ a
GL2(OK)-stable O-lattice Lcr

v,τ in σcr(v, τ).
Using CM forms, one can find m such that ρ̄m|GK

∼ VF, and we again denote
by VF the underlying F-vector space of ρ̄m.

Let RF,S and Rp denote the the universal deformation rings of VF and VF|GK

respectively. We denote by RψF,S the quotient of RF,S which parameterizes de-
formations of determinant ψχcyc, where χcyc now denotes the p-adic cyclotomic
character on GF,S . Set

Rv,τ,ψ
F,S = Rv,τ,ψ

VF,cr
⊗Rp

RψF,S .

The map
RF,S → Tσ,ψ(U)m,

induced by ρm, factors through R
v,τ,ψ
F,S . (See for example [Ki 4, §4].)

Under some technical restrictions on the choice of F,D and U, which can
always be arranged for a given representation VF ofGK , a Taylor-Wiles patching
argument, as modified by Diamond [Di] and Fujiwara, and in [Ki 1, §3], [Ki 5,
§2], shows that there exist an O-algebra R∞, maps of O-algebras

O[[y1, . . . , yh]] → Rv,τ,ψ
VF,cr

[[x1, . . . , xh−d]] � R∞, (3.2.4)

and an R∞-module M∞ satisfying the following properties:

(1) h ≥ d = dimRv,τ,ψ
VF,cr

/π = [K : Qp].

(2) There is an isomorphism of Rv,τ,ψ
VF,cr

algebras R∞/(y1, . . . , yh)
∼
−→ Rv,τ,ψ

F,S .

(3) M∞ is a finite free O[[y1, . . . , yh]]-module and has rank at most 1 on any

irreducible component on SpecRv,τ,ψ
VF,cr

[[x1, . . . , xh−d]].
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(4) There is an isomorphism of Rv,τ,ψ
F,S -modules

M∞/(y1, . . . , yh)M∞
∼
−→ Sσ,ψ(U)m.

Now let
{0} =M0 ⊂M1 ⊂ · · · ⊂Ms = Lcr

v,τ/π

be a filtration such that M i+1/M i is an irreducible representation of GL2(k).
Then we can enhance the above construction (see [Ki 5, 2.2.9]) in such a way
that there exists a filtration

{0} =M0
∞ ⊂M1

∞ ⊂ · · · ⊂Ms
∞ =M∞/πM∞

by R∞-modules such that

(5) M i
∞/M

i−1
∞ is a finite free F[[y1, . . . , yh]]-module.

(6) If M i/M i−1 ∼
−→ σn,m then the isomorphism in (4) above induces an iso-

morphism

M i
∞/M

i−1
∞ ⊗R∞

R∞/(y1, . . . , yh)
∼
−→ Sσn,m,ψ(U)m.

Moreover this construction can be made so that, as an Rp[[x1, . . . , xh−d]]-
module, M i

∞/M
i−1
∞ depends only on σn,m and m, and not on the choice of v

and τ. More precisely this module is made by an analogous patching argument
but with σn,m in place of Lcr

v,τ . We denote this module by M
n,m
∞ .

Set R′
∞ = Rv,τ,ψ

VF,cr
[[x1, . . . , xh−d]], and let a(n,m) be the multiplicity with

which σn,m appears as a Jordan-Hölder factor in Lcr
v,τ/π. Using (3) and (5) and

standard facts about Hilbert-Samuel multiplicities one obtains

e(Rv,τ,ψ
VF,cr

/π) = e(R′
∞/πR

′
∞) ≥ eR′

∞
/π(M∞/πM∞) =

∑

n,m

a(n,m)eR′

∞
/π(M

n,m
∞ ).

(3.2.5)

with equality if and only if SpecR′
∞[1/p] is contained in the support of the R′

∞-
module M∞ (cf. [Ki 5, Lem. 2.2.11]). Note that the freeness condition in (3)
implies that this support is a union of irreducible components of SpecR′

∞[1/p]
as the dimensions of O[[y1, . . . , yh]] and R

′
∞ coincide by (1). This also implies

that eR′

∞
/π(M

n,m
∞ ) depends only on the image of Rp[[x1, . . . , xh−d]] in EndM

n,m
∞

and not on R′
∞, and is therefore independent of v and τ.

3.2.6. Proof of Theorem 3.1.5. In this case K/Qp is unramified and VF is as-
sumed regular. We have to show that

eR′

∞
/π(M

n,m
∞ ) ≥ µn,m(VF). (3.2.7)

By definition, the term on the right is 0 or 1, and in the former case there is
nothing to prove. Suppose µn,m(VF) = 1. As above, the condition (5) implies
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that the support of M
n,m
∞ has dimension equal to dimR′

∞/π. Hence it suffices
to show that M

n,m
∞ 6= {0}. By (6) it suffices to show that Sσn,m,ψ(U)m 6= {0}.

This follows from Gee’s proof [Ge 2] of the Buzzard-Diamond-Jarvis conjecture
for regular weights. Namely our condition on the regularity of VF implies that
any σn,m such that µn,m(VF) 6= 0 is regular in the sense of [Ge 2].

This completes the proof of Theorem 3.1.5 for Rv,τ,ψ
VF,cr

and the proof for Rv,τ,ψ
VF

is identical, replacing Lcr
v,τ by a GL2(OK)-invariant lattice in σ(v, τ).

3.2.8. Proof of Theorem 3.1.3: Let v = v0, and set µn,m(VF) = eR′

∞
(M

n,m
∞ ). To

prove the theorem we have to show that the inequality in (3.2.5) is an equality.
It is enough to show that M∞ is a faithful R′

∞-module.

The following lemma will be useful.

Lemma 3.2.9. The following are equivalent

(1) The support of Sσ,ψ(U)m contains SpecRv,τ,ψ
F,S [1/p] and Rv,τ,ψ

F,S is a finite
O-algebra.

(2) M∞ is a faithful R′
∞-module.

Proof. (2) =⇒ (1): If M∞ is a faithful R′
∞-module then R′

∞ = R∞ and both
are finite over O[[y1, . . . , yh]]. Then (1) follows from conditions (2) and (4) in
(3.2.3).

(1) =⇒ (2): One can use an argument of Khare-Wintenberger [KW 2,
Cor. 4.7] to show that the second condition in (1) implies that the image of

SpecRv,τ,ψ
F,S [1/p] in SpecRv,τ,ψ

VF,cr
[1/p] meets every irreducible component of the

latter scheme. Hence the first condition implies that the support of Sσ,ψ(U)m
meets every irreducible component of R′

∞. Since the support of M∞ is a union
of irreducible components of SpecR′

∞[1/p], it must contain all of SpecR′
∞[1/p]

by condition (4) in (3.2.3). Finally as R′
∞ is flat over O with formally smooth

(so in particular reduced) generic fibre, this implies that M∞ is a faithful R′
∞-

module.

3.2.10. We return to the proof of Theorem 3.1.3. Since v = v0 the main
result of [Ki 1] and [Ge 1] shows that the support of Sσ,ψ(U)m contains

SpecRv,τ,ψ
F,S [1/p].

Moreover the proof in loc. cit (cf. also [Ki 3, §1]) together with an argument

of Khare-Wintenberger [KW 1, Prop. 3.8] shows that that Rv,τ,ψ
F,S is a finite

O-algebra. More precisely, the argument in [Ki 1, §3.4] carries out a patching
argument analogous to the one sketched here, but over a finite, solvable, totally
real extension F ′/F. In that situation the analogue of the ring Rv0,τ,ψ

VF,cr
turns out

to be a domain. This implies that the analogue of the condition (2) in Lemma
3.2.9 is automatically satisfied, and hence so is the condition (1). This is enough

to imply the finiteness of Rv,τ,ψ
F,S itself.
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Abstract

The purpose of this talk is to present an (apparently) new way to look at the
intersection complex of a singular variety over a finite field, or, more generally, at
the intermediate extension functor on pure perverse sheaves, and an application
of this to the cohomology of noncompact Shimura varieties.
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1. Shimura Varieties

1.1. The complex points. In their simplest form, Shimura varieties
are just locally symmetric varieties associated to certain connected reductive
groups over Q. So let G be a connected reductive group over Q satisfying the
conditions in 1.5 of Deligne’s article [17]. To be precise, we are actually fixing G

and a morphism h : C× −→ G(R) that is algebraic over R. Let us just remark
here that these conditions are quite restrictive. For example, they exclude the
group GLn as soon as n ≥ 3. The groups G that we want to think about are,
for example, the group GSp2n (the general symplectic group of a symplectic
space of dimension 2n over Q) or the general unitary group of a hermitian space
over a quadratic imaginary extension of Q. The conditions on G ensure that
the symmetric space X of G(R) is a hermitian symmetric domain; so X has a
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canonical complex structure. Remember that X = G(R)/K′
∞, where K′

∞ is the
centralizer in G(R) of h(C×). In the examples we consider, K′

∞ is the product
of a maximal compact subgroup K∞ of G(R) and of A∞ := A(R)0, where A

is the maximal Q-split torus of the center of G. (To avoid technicalities, many
authors assume that the maximal R-split torus in the center ofG is also Q-split.
We will do so too.)

The locally symmetric spaces associated to G are the quotients Γ \G(R),
where Γ is an arithmetic subgroup of G(Q), that is, a subgroup of G(Q) such
that, for some (or any) Z-structure on G, Γ ∩G(Z) is of finite index in Γ and
in G(Z). If Γ is small enough (for example, if it is torsion-free), then Γ \X is a
smooth complex analytic variety. In fact, by the work of Baily and Borel ([4]),
it is even a quasi-projective algebraic variety.

In this text, we prefer to use the adelic point of view, as it leads to somewhat
simpler statements. So let K be a compact open subgroup of G(Af ), where

Af = Ẑ⊗Z Q is the ring of finite adeles of Q. This means that K is a subgroup

of G(Af ) such that, for some (or any) Z-structure on G, K ∩G(Ẑ) is of finite

index in K and in G(Ẑ). Set

SK(C) = G(Q) \ (X ×G(Af )/K),

where G(Q) acts on X ×G(Af )/K by the formula (γ, (x, gK)) 7−→ (γ ·x, γgK).

This space SK(C) is related to the previous quotients Γ \X in the following
way. By the strong approximation theorem, G(Q) \ G(Af )/K is finite. Let
(gi)i∈I be a finite family in G(Af ) such that G(Af ) =

∐
i∈I G(Q)giK. For

every i ∈ I, set Γi = G(Q) ∩ giKg−1
i . Then the Γi are arithmetic subgroups of

G(Q), and

SK(C) =
∐

i∈I

Γi \ X .

In particular, we see that, if K is small enough, then SK(C) is the set of
complex points of a smooth quasi-projective complex algebraic variety, that
we will denote by SK. These are the Shimura varieties associated to G and
h : C× −→ G(R) (over C). From now on, we will assume always that the group
K is small enough.

Remark 1. If G = GL2, then SK is a modular curve, or rather, a finite
disjoint union of modular curves; it parametrizes elliptic curves with a certain
level structure (depending on K). Higher-dimensional generalizations of this are
the Shimura varieties for the symplectic groups G = GSp2n; they are called the
Siegel modular varieties, and parametrize principally polarized abelian varieties
with a level structure (depending on K). Some other Shimura varieties have been
given a name. For example, if G is the general unitary group of a 3-dimensional
hermitian vector space V over an imaginary quadratic extension of Q such that
V has signature (2, 1) at infinity, then SK is called a Picard modular surface.
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1.2. The projective system and Hecke operators. If K′ ⊂ K
are two open compact subgroups of G(Af ), then there is an obvious projection

SK′

(C) −→ SK(C), and it defines a finite étale morphism SK′

−→ SK; if K′

is normal in K, then this morphism is Galois, with Galois group K/K′. So we
can see the Shimura varieties SK as a projective system (SK)K⊂G(Af ) indexed
by (small enough) open compact subgroups of G(Af ), and admitting a right
continuous action of G(Af ).

More generally, if K′,K are two open compact subgroups of G(Af ) and

g ∈ G(Af ), then we get a correspondence [K′gK] : SK∩g−1K′g −→ SK × SK′

in

the following way. The first map is the obvious projection SK∩g−1K′g −→ SK,
and the second map is the composition of the obvious projection SK∩g−1K′g −→
Sg−1K′g and of the isomorphism Sg−1K′g ∼

−→ SK′

. This is the Hecke correspon-
dence associated to g (and K,K′).

Let H∗ be a cohomology theory with coefficients in a ring A that has good
fonctoriality properties (for example, Betti cohomology with coefficients in A)
and K be an open compact subgroup ofG(Af ). Then the Hecke correspondences
define an action of the Hecke algebra at level K, HK(A) := C(K \G(Af )/K, A)
(of bi-K-invariant functions from G(Af ) to A, with the algebra structure given
by the convolution product), on the cohomology H∗(SK). For every g ∈ G(Af ),
we make 11KgK ∈ HK(A) act by the correspondence [Kg−1K].

Let H(A) =
⋃

K HK(A) = C∞
c (G(Af ), A) (the algebra of locally constant

functions G(Af ) −→ A with compact support) be the full Hecke algebra, still
with the product given by convolution. Then we get an action of H(A) on the
limit lim

−−→
K

H∗(SK). So the A-module lim
−−→
K

H∗(SK) admits an action of the group

G(Af ).

1.3. Canonical models. Another feature of Shimura varieties is that
they have so-called canonical models. That is, they are canonically defined over a
number field E, called the reflex field, that depends only onG and the morphism
h : C× −→ G(R) (in particular, it does not depend on the open compact
subgroup K of G(Af )). We will use the same notation SK for the model over
E. Here “canonically” means in particular that the action of G(Af ) on the
projective system (SK)K is defined over E. The theory of canonical models was
begun by Shimura, and then continued by Deligne, Borovoi, Milne and Moonen
(cf [17], [18], [13], [46], [47], [51]).

So, if the cohomology theory H∗ happens to make sense for varieties over
E (for example, it could be `-adic étale cohomology, with or without sup-
ports), then the limit lim

−−→
K

H∗(SK) admits commuting actions of G(Af ) and of

Gal(E/E). Another way to look at this is to say that the cohomology group at
finite level, H∗(SK), admits commuting actions of HK(A) and of Gal(E/E).

The goal is now to understand the decomposition of those cohomology
groups as representations of G(Af )×Gal(E/E) (or of HK(A)×Gal(E/E)).
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1.4. Compactifications and the choice of cohomology the-
ory. If the Shimura varieties SK are projective, which happens if and only if
the group G is anisotropic over Q, then the most natural choice of cohomology
theory is simply the étale cohomology of SK. There is still the question of the
coefficient group A. While the study of cohomology with torsion or integral
coefficients is also interesting, very little is known about it at this point, so we
will restrict ourselves to the case A = Q`, where ` is some prime number.

Things get a little more complicated when the SK are not projective, and
this is the case we are most interested in here. We can still use ordinary étale
cohomology or étale cohomology with compact support, but it becomes much
harder to study (among other things, because we do not have Poincaré dual-
ity or the fact that the cohomology is pure - in Deligne’s sense - any more).
Nonetheless, it is still an interesting problem.

Another solution is to use a cohomology theory on a compactification of
SK. The author of this article knows of two compactifications of SK as an
algebraic variety over E (there are many, many compactifications of SK(C) as
a topological space, see for example the book [11] of Borel and Ji):

(1) The toroidal compactifications. They are a family of compactifications of
SK, depending on some combinatorial data (that depends on K); they can
be chosen to be very nice (i.e. projective smooth and with a boundary
that is a divisor with normal crossings).

(2) The Baily-Borel (or minimal Satake, or Satake-Baily-Borel) compactifi-

cation S
K
. It is a canonical compactification of SK, and is a projective

normal variety over E, but it is very singular in general.

See the book [3] by Ash, Mumford, Rapoport and Tai for the construction of
the toroidal compactifications over C, the article [4] of Baily and Borel for the
construction of the Baily-Borel compactification over C, and Pink’s dissertation
[55] for the models over E of the compactifications.

The problem of using a cohomology theory on a toroidal compactification
is that the toroidal compactifications are not canonical, so it is not easy to
make the Hecke operators act on their cohomology. On the other hand, while
the Baily-Borel compactification is canonical (so the Hecke operators extend
to it), it is singular, so its cohomology does not behave well in general. One
solution is to use the intersection cohomology (or homology) of the Baily-Borel
compactification. In the next section, we say a little more about intersection
homology, and explain why it might be a good choice.

2. Intersection Homology and L
2 Cohomology

2.1. Intersection homology. Intersection homology was invented by
Goresky and MacPherson to study the topology of singular spaces (cf [24],
[25]). Let X be a complex algebraic (or analytic) variety of pure dimension n,
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possibly singular. Then the singular homology groups ofX (say with coefficients
in Q) do not satisfy Poincaré duality if X is not smooth. To fix this, Goresky
and MacPherson modify the definition of singular homology in the following
way. First, note that X admits a Whitney stratification, that is, a locally finite
decomposition into disjoint connected smooth subvarieties (Si)i∈I satisfying
the Whitney condition (cf [24] 5.3). For every i ∈ I, let ci = n − dim(Si) be
the (complex) codimension of Si. Let (Ck(X))k∈Z be the complex of simplicial
chains on X with coefficients in a commutative ring A. The complex of intersec-
tion chains (ICk(X))k∈Z is the subcomplex of (Ck(X))k∈Z consisting of chains
c ∈ Ck(X) satisfying the allowability condition: For every i ∈ I, the real dimen-
sion of c ∩ Si is less than k − ci, and the real dimension of ∂c ∩ Si is less than
k − 1 − ci. The intersection homology groups IHk(X) of X are the homology
groups of (ICk(X))k∈Z. (Note that this is the definition of middle-perversity in-
tersection homology. We can get other interesting intersection homology groups
of X by playing with the bounds in the definition of intersection chains, but
they will not satisfy Poincaré duality.)

Intersection homology groups satisfy many of the properties of ordinary
singular homology groups Hk(X) on smooth varieties. Here are a few of these
properties:

• They depend only on X, and not on the stratification (Si)i∈I .

• If X is smooth, then IHk(X) = Hk(X).

• If X is compact, then the IHk(X) are finitely generated.

• If the coefficients A are a field, the intersection homology groups satisfy
the Künneth theorem.

• If U ⊂ X is open, then there are relative intersection homology groups
IHk(X,U) and an excision long exact sequence.

• It is possible to define an intersection product on intersection homology,
and, if X is compact and A is a field, this will induce a nondegenerate
linear pairing

IHk(X)× IH2n−k(X) −→ A.

(I.e., there is a Poincaré duality theorem for intersection homology.)

• Intersection homology satisfies the Lefschetz hyperplane theorem and the
hard Lefschetz theorem (if A is a field for hard Lefschetz).

Note however that the intersection homology groups are not homotopy in-
variants (though they are functorial for certain maps of varieties, called placid
maps).
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2.2. L
2 cohomology of Shimura varieties and intersection

homology. Consider again a Shimura variety SK(C) as in section 1 (or
rather, the complex manifold of its complex points). For every k ≥ 0, we write
Ωk

(2)(S
K(C)) for the space of smooth forms ω on SK(C) such that ω and dω

are L2. The L2 cohomology groups H∗
(2)(S

K(C)) of SK(C) are the cohomology
groups of the complex Ω∗

(2). These groups are known to be finite-dimensional
and to satisfy Poincaré duality, and in fact we have the following theorem

(remember that S
K
is the Baily-Borel compactification of SK):

Theorem 2.1. There are isomorphisms

Hk
(2)(S

K(C)) ' IH2d−k(S
K
(C),R),

where d = dim(SK). Moreover, these isomorphisms are equivariant under the
action of HK(R). (The Hecke algebra acts on intersection homology because the
Hecke correspondences extend to the Baily-Borel compactifications and are still
finite, hence placid.)

This was conjectured by Zucker in [67], and then proved (independently) by
Looijenga ([44]), Saper-Stern ([61]) and Looijenga-Rapoport ([45]).

So now we have some things in favour of intersection homology of the Baily-
Borel compactification: it satisfies Poincaré duality and is isomorphic to a nat-
ural invariant of the Shimura variety. We will now see another reason why L2

cohomology of Shimura varieties (hence, intersection homology of their Baily-
Borel compactification) is easier to study than ordinary cohomology: it is closely
related to automorphic representations of the group G. (Ordinary cohomology
of Shimura varieties, or cohomology with compact support, is also related to
automorphic representations, but in a much more complicated way, see the
article [22] of Franke.)

2.3. L
2 cohomology of Shimura varieties and discrete auto-

morphic representations. For an introduction to automorphic forms,
we refer to the article [10] of Borel and Jacquet and the article [54] of Piatetski-
Shapiro. Let A = Af×R be the ring of adeles ofQ. Very roughly, an automorphic
form on G is a smooth function f : G(A) −→ C, left invariant under G(Q),
right invariant under some open compact subgroup of G(Af ), K∞-finite on the
right (i.e., such that the right translates of f by elements of K∞ generate a finite
dimensional vector space; remember that K∞ is a maximal compact subgroup
of G(R)) and satisfying certain growth conditions. The group G(A) acts on the
space of automorphic forms by right translations on the argument. Actually,
we are cheating a bit here. The group G(Af ) does act that way, but G(R)
does not; the space of automorphic forms is really a Harish-Chandra (g,K∞)-
module, where g is the Lie algebra of G(C). An automorphic representation of
G(A) (or, really, G(Af )×(g,K∞)) is an irreducible representation that appears
in the space of automorphic forms as an irreducible subquotient.
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Note that there is also a classical point of view on automorphic forms, where
they are seen as smooth functions on G(R), left invariant by some arithmetic
subgroup of G(Q), K∞-finite on the right and satisfying a growth condition.
From that point of view, it may be easier to see that automorphic forms gen-
eralize classical modular forms (for modular forms, the group G is GL2). The
two points of view are closely related, cf. [10] 4.3 (in much the same way that
the classical and adelic points of view on Shimura varieties are related). In this
article, we adopt the adelic point of view, because it makes it easier to see the
action of Hecke operators.

Actually, as we are interested only in discrete automorphic representations
(see below for a definition), we can see automorphic forms as L2 functions on
G(Q) \G(A). We follow Arthur’s presentation in [1]. First, a word of warning:
the quotient G(Q) \ G(A) does not have finite volume. This is due to the
presence of factors isomorphic to R>0 in the center of G(R). As in 1.1, let
A∞ = A(R)0, where A is the maximal R-split torus in the center of G. Then
G(Q) \ G(A)/A∞ does have finite volume, and we will consider L2 functions
on this quotient, instead of G(Q) \G(A).

So let ξ : A∞ −→ C× be a character (not necessarily unitary). Then ξ
extends to a character G(A) −→ C×, that we will still denote by ξ (cf. I.3 of
Arthur’s introduction to the trace formula, [2]). Let L2(G(Q) \G(A), ξ) be the
space of measurable functions f : G(Q) \G(A) −→ C such that:

(1) for every z ∈ A∞ and g ∈ G(A), f(zg) = ξ(z)f(g);

(2) the function ξ−1f is square-integrable on G(Q) \G(A)/A∞.

Then the group G(A) acts on L2(G(Q) \ G(A), ξ) by right translations
on the argument. By definition, a discrete automorphic representation of G

is an irreducible representation of G(A) that appears as a direct summand in
L2(G(Q)\G(A), ξ). It is known that the multiplicity of a discrete automorphic
representation π in L2(G(Q) \G(A), ξ) is always finite; we denote it by m(π).
We also denote by Πdisc(G, ξ) the set of discrete automorphic representations
on which A∞ acts by ξ. For the fact that discrete automorphic representations
are indeed automorphic representations in the previous sense, see [10] 4.6. (The
attentive reader will have noted that automorphic representations are not ac-
tual representations of G(A) - because G(R) does not act on them - while
discrete automorphic representations are. How to make sense of our statement
that discrete automorphic representations are automorphic is also explained
in [10] 4.6.)

Now, given the definition of discrete automorphic representations and the
fact that SK(C) = G(Q) \ G(A)/(A∞K∞ × K), it is not too surprising that
the L2 cohomology of the Shimura variety SK(C) should be related to discrete
automorphic representations. Here is the precise relation:
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Theorem 2.2. (Borel-Casselman, cf. [9] theorem 4.5) Let K be an open com-
pact subgroup of G(Af ). Then there is a HK(C)-equivariant isomorphism

H∗
(2)(S

K(C))⊗R C '
⊕

π∈Πdisc(G,1)

H∗(g,A∞K∞;π∞)m(π) ⊗ πK
f .

(This is often called Matsushima’s formula when SK(C) is compact.)
We need to explain the notation. First, the “1” in Πdisc(G, 1) stands for the

trivial character of A∞. (We have chosen to work with the constant sheaf on SK,
in order to simplify the notation. In general, for a non-trivial coefficient system
on SK(C), other characters of A∞ would appear.) Let π ∈ Πdisc(G, 1). Then π
is an irreducible representation of G(A) = G(R)×G(Af ) so it decomposes as
a tensor product π∞⊗πf , where π∞ (resp. πf ) is an irreducible representation
of G(R) (resp. G(Af )). We denote by πK

f the space of K-invariant vectors
in the space of πf ; it carries an action of the Hecke algebra HK(C). Finally,
H∗(g,A∞K∞;π∞), the (g,A∞K∞)-cohomology of π∞ (where g is as before the
Lie algebra of G(C)), is defined in chapter I of the book [12] by Borel and
Wallach.

This gives another reason to study the intersection homology of the Baily-
Borel compactifications of Shimura varieties: it will give a lot of information
about discrete automorphic representations of G. (Even if only about the ones
whose infinite part has nontrivial (g,A∞K∞)-cohomology, and that is a pretty
strong condition.)

Note that there is an issue we have been avoiding until now. Namely, in 1.3,
we wanted the cohomology theory on the Shimura variety to also have an action
of Gal(E/E), where E is the reflex field (i.e., the field over which the varieties
SK have canonical models). It is not clear how to endow the L2 cohomology of
SK(C) with such an action. As we will see in the next section, this will come

from the isomorphism of H∗
(2)(S

K(C)) with the intersection homology of S
K
(C)

and from the sheaf-theoretic interpretation of intersection homology (because
this interpretation will also make sense in an étale `-adic setting).

3. Intersection (Co)Homology and Perverse
Sheaves

We use again the notation of section 2.

3.1. The sheaf-theoretic point of view on intersection ho-
mology. Intersection homology of X also has a sheaf-theoretical interpre-
tation. (At this point, we follow Goresky and MacPherson and shift from the
homological to the cohomological numbering convention.) For every open U
in X, let ICk(U) be the group of (2n − k)-dimensional intersection chains on
U with closed support. If U ′ ⊂ U , then we have a map ICk(U) −→ ICk(U ′)
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given by restriction of chains. In this way, we get a sheaf ICk on X. Moreover,
the boundary maps of the complex of intersection chains give maps of sheaves
δ : ICk −→ ICk+1 such that δ ◦ δ = 0, so the ICk form a complex of sheaves
IC∗ on X. This is the intersection complex of X. Its cohomology with compact
support gives back the intersection homology groups of X:

Hk
c (X, IC∗(X)) = IH2n−k(X).

Its cohomology groups IHk(X) := Hk(X, IC∗(X)) are (by definition) the inter-
section cohomology groups of X.

3.2. Perverse sheaves. This point of view has been extended and gen-
eralized by the invention of perverse sheaves. The author’s favourite reference
for perverse sheaves is the book by Beilinson, Bernstein and Deligne ([6]).

To simplify, assume that the ring of coefficients A is a field. Let D(X) be the
derived category of the category of sheaves onX. This category is obtained from
the category of complexes of sheaves on X by introducing formal inverses of
all the quasi-isomorphisms, i.e. of all the morphisms of complexes that induce
isomorphisms on the cohomology sheaves. (This is a categorical analogue of
a ring localization.) Note that the objects of D(X) are still the complexes
of sheaves, we just added more morphisms. The homological functors on the
category of complexes of sheaves (such as the various cohomology functors and
the Ext and Tor functors) give functors on D(X), and a morphism in D(X) is
an isomorphism if and only if it is an isomorphism on the cohomology sheaves.

This category D(X) is still a little big, and we will work with the full
subcategory Db

c(X) of bounded constructible complexes. If C∗ is a complex of
sheaves, we will denote its cohomology sheaves by HkC∗. Then C∗ is called
bounded if HkC∗ = 0 for k << 0 and k >> 0. It is called constructible if its
cohomology sheaves HkC∗ are constructible, that is, if, for every k ∈ Z, there
exists a stratification (Si)i∈I of X (by smooth subvarieties) such that HkC∗

|Si

is locally constant and finitely generated for every i.
For every point x of X, we denote by ix the inclusion of x in X.

Definition 1. A complex of sheaves C∗ in Db
c(X) is called a perverse sheaf if

it satisfies the following support and cosuport conditions:

(1) Support: for every k ∈ Z,

dimC{x ∈ X|Hk(i∗xC
∗) 6= 0} ≤ −k.

(2) Cosupport: for every k ∈ Z,

dimC{x ∈ X|Hk(i!xC
∗) 6= 0} ≤ k.

We denote by P (X) the category of perverse sheaves on X.
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Remark 2. Let x ∈ X. There is another way to look at the groups i∗xH
kC∗

and i!xH
kC∗. Choose an (algebraic or analytic) embedding of a neighbourhood

of x into an affine space Cp, and let Bx denote the intersectioon of this neigh-
bourhood and of a small enough open ball in Cp centered at x. Then

Hk(i∗xC
∗) = Hk(Bx, C

∗)

Hk(i!xC
∗) = Hk

c (Bx, C
∗).

Remark 3. As before, we are only considering one perversity, the middle (or
self-dual) perversity. For other perversities (and much more), see [6].

Note that perverse sheaves are not sheaves but complexes of sheaves. How-
ever, the category of perverse sheaves satisfies many properties that we expect
from a category of sheaves, and that are not true for Db

c(X) (or D(X)). For
example, P (X) is an abelian category, and it is possible to glue morphisms of
perverse sheaves (more precisely, categories of perverse sheaves form a stack,
say on the open subsets of X, cf. [6] 2.1.23).

3.3. Intermediate extensions and the intersection complex.
Now we explain the relationship with the intersection complex. First, the in-
tersection complex is a perverse sheaf on X once we put it in the right degree.
In fact:

Proposition 3.1. The intersection complex IC∗(X) is an object of Db
c(X)

(i.e., it is a bounded complex with constructible cohomology sheaves), and:

(1) For every k 6= 0,

dimC{x ∈ X|Hk(i∗xIC
∗(X)) 6= 0} < n− k.

(2) For every k 6= 2n,

dimC{x ∈ X|Hk(i!xIC
∗(X)) 6= 0} < k − n.

(3) If U is a smooth open dense subset of X, then IC∗(X)|U is quasi-

isomorphic (i.e., isomorphic in Db
c(X)) to the constant sheaf on U .

Moreover, the intersection complex is uniquely characterized by these prop-
erties (up to unique isomorphism in Db

c(X)).

In particular, IC∗(X)[n] (that is, the intersection complex put in degree
−n) is a perverse sheaf on X.

Even better, it turns out that every perverse sheaf on X is, in some sense,
built from intersection complexes on closed subvarieties of X. Let us be more
precise. Let j : X −→ Y be a locally closed immersion. Then there is a functor
j!∗ : P (X) −→ P (Y ), called the intermediate extension functor, such that, for
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every perverse sheaf K on X, the perverse sheaf j!∗K on Y is uniquely (up to
unique quasi-isomorphism) characterized by the following conditions:

(1) For every k ∈ Z,

dimC{x ∈ Y −X|Hk(i∗xj!∗K)) 6= 0} < −k.

(2) For every k ∈ Z,

dimC{x ∈ Y −X|Hk(i!xj!∗K) 6= 0} < k.

(3) j∗j!∗K = K.

Remark 4. Let us explain briefly the name “intermediate extension”. Al-
though it is not clear from the way we defined perverse sheaves, there are
“perverse cohomology” functors pHk : Db

c(X) −→ P (X). In fact, it even turns
out that Db

c(X) is equivalent to the derived category of the abelian category of
perverse sheaves (this is a result of Beilinson, cf. [5]). We can use these coho-
mology functors to define perverse extension functors pj! and

pj∗ from P (X)
to P (Y ). (For example, pj! =

pH0j!, where j! : D
b
c(X) −→ Db

c(Y ) is the “exten-
sion by zero” functor between the derived categories; likewise for pj∗). It turns
out that, from the perverse point of view, the functor j! : D

b
c(Y ) −→ Db

c(X)
is right exact and the functor j∗ : Db

c(Y ) −→ Db
c(X) is left exact (that, if K

is perverse on X, pHkj!K = 0 for k > 0 and pHkj∗K = 0 for k < 0). So the
morphism of functors j! −→ j∗ induces a morphism of functors pj! −→

pj∗. For
every perverse sheaf K on X, we have:

j!∗K = Im(pj!K −→ pj∗K).

Now we come back to the description of the category of perverse sheaves on
X. Let F be a smooth connected locally closed subvariety of X, and denote by
iF its inclusion in X. If F is a locally constant sheaf on F , then it is easy to
see that F [dimF ] is a perverse sheaf on F ; so iF !∗F [dimF ] is a perverse sheaf
on X (it has support in F , where F is the closure of F in X). If the locally
constant sheaf F happens to be irreducible, then this perverse sheaf is a simple
object in P (X). In fact:

Theorem 3.2. The abelian category P (X) is artinian and noetherian (i.e.,
every object has finite length), and its simple objects are all of the form
iF !∗F [dimF ], where F is as above and F is an irreduible locally constant sheaf
on F .

Finally, here is the relationship with the intersection complex. Let iF :
F −→ X be as above. Then, if F is the constant sheaf on F , the restriction
to F of the perverse sheaf iF !∗F [dimF ] is isomorphic to IC∗(F )[dimF ]. In
fact, we could define the intersection complex on a (possibly singular) variety
Y with coefficients in some locally constant sheaf on the smooth locus of Y ,
and then the simple objects in P (X) would all be intersection complexes on
closed subvarieties of X.
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3.4. `-adic perverse sheaves. Now we come at last to the point of
this section (to make the Galois groups Gal(E/E) act on the intersection

(co)homology of S
K
(C)).

Note that the definitions of the category of perverse sheaves and of the
intermediate extension in 3.2 and 3.3 would work just as well in a category of
étale `-adic sheaves. So now we take for X a quasi-separated scheme of finite
type over a field k, we fix a prime number ` invertible in k and we consider the
category Db

c(X,Q`) of bounded `-adic complexes on X. (To avoid a headache,
we will take k to be algebraically closed or finite, so the simple construction of [6]
2.2.14 applies.) Then we can define an abelian subcategory of perverse sheaves
P (X) in Db

c(X,Q`) and intermediate extension functors j!∗ : P (X) −→ P (Y )
as before (see [6] 2.2). In particular, we can make the following definition:

Definition 2. Suppose that X is purely of dimension n, and let j : U −→ X
be the inclusion of the smooth locus of X in X. Then the (`-adic) intersection
complex of X is

IC∗(X) = (j!∗Q`,U [n])[−n],

where Q`,U is the constant sheaf Q` on U . The `-adic intersection cohomology

IH∗(X,Q`) of X is the cohomology of IC∗(X).

3.5. Application to Shimura varieties. We know that the Shimura

variety SK and its Baily-Borel compactification S
K
are defined over the number

field E. So we can form the `-adic intersection cohomology groups IH∗(S
K

E ,Q`).
They admit an action of Gal(E/E). Moreover, if we choose a field isomorphism
Q` ' C, then the comparison theorems between the étale topology and the

classical topology will give an isomorphism IH∗(S
K

E ,Q`) ' IH∗(S
K
(C),C) (cf.

chapter 6 of [6]).

The isomorphism of 2.2 between intersection homology of S
K
(C) and L2

cohomology of SK(C), as well as the duality between intersection homology
and intersection cohomology (cf. 3.1), thus give an isomorphism

IH∗(S
K

E ,Q`) ' H∗
(2)(S

K(C))⊗ C,

and this isomorphism is equivariant under the action of HK(C). We know what
L2 cohomology looks like as a representation of HK(C), thanks to the theorem
of Borel and Casselman (cf. 2.3).

Using this theorem and his own trace invariant formula, Arthur has given
a formula for the trace of a Hecke operator on H∗

(2)(S
K(C)) ⊗ C (cf. [1]). This

formula involves global volume terms, discrete series characters on G(R) and
orbital integrals on G(Af ).

The problem now is to understand the action of the Galois group Gal(E/E).
We have a very precise conjectural description of the intersection cohomology

of S
K

as a HK(C) × Gal(E/E)-module, see for example the articles [34] of
Kottwitz and [7] of Blasius and Rogawski.
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In the next sections, we will explain a strategy to understand how at least
part of the Galois group Gal(E/E) acts.

4. Counting Points on Shimura Varieties

We want to understand the action of the Galois group Gal(E/E) on the intersec-

tion cohomology groups IH∗
K := IH∗(S

K

E ,Q`). It is conjectured that this action
is unramified almost everywhere. Thus, by the Chebotarev density theorem,
it is theoretically enough to understand the action of the Frobenius automor-
phisms at the places of E where the action is unramified, and one way to do
this is to calculate the trace of the powers of the Frobenius automorphisms at
these places. However, for some purposes, it is necessary to look at the action
of the decomposition groups at other places. This is part of the theory of bad
reduction of Shimura varieties, and we will not talk about this here, nor will we
attempt to give comprehensive references to it. (Let us just point to the book
[31] of Harris and Taylor.)

In general, intersection cohomology can be very hard to calculate. First
we will look at simpler objects, the cohomology groups with compact support
H∗

c,K := H∗
c(S

K
E
,Q`). Assume that the Shimura varieties and their compactifi-

cations (the Baily-Borel compactifications and the toroidal compactifications)
have “good” models over an open subset U of SpecOE , and write SK for the
model of SK. (It is much easier to imagine what a “good” model should be
than to write down a precise definition. An attempt has been made in [49]
1.3, but it is by no means optimal.) Then, by the specialization theorem (SGA
4 III Exposé XVI 2.1), and also by Poincaré duality (cf. SGA 4 III Exposé
XVIII), for every finite place p of E such that p ∈ U and p 6 |`, there is a
Gal(Ep/Ep)-equivariant isomorphism

H∗
c,K = H∗

c(S
K
E
,Q`) ' H∗

c(S
K
Fp

,Q`),

where Fp is the residue field of OE at p. In particular, the Gal(E/E)-
representation H∗

c,K is unramified at p.
Now, by Grothendieck’s fixed point formula (SGA 4 1/2 Rapport), calcu-

lating the trace of powers of the Frobenius automorphism on H∗
c(S

K
Fp

,Q`) is the

same as counting the points of SK over finite extensions of Fp.
Langlands has given a conjectural formula for this number of points, cf. [40]

and [34]. Ihara had earlier made and proved a similar conjecture for Shimura
varieties of dimension 1. Although this conjecture is not known in general, it
is easier to study for a special class of Shimura varieties, the so-called PEL
Shimura varieties. These are Shimura varieties that can be seen as moduli
spaces of abelian with certain supplementary structures (P: polarizations, E:
endomorphisms, i.e. complex multiplication by certain CM number fields, and
L: level structures). For PEL Shimura varieties of types A and C (i.e., such
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that the group G is of type A or C), Langlands’s conjecture had been proved
by Kottwitz in [35]. Note that all the examples we gave in 1.1 are of this type.
Conveniently enough, the modular interpretation of PEL Shimura varieties also
gives a model of the Shimura variety over an explicit open subset of SpecOE .

In fact, Kottwitz has done more than counting points; he has also counted
the points that are fixed by the composition of a power of the Frobenius auto-
morphism and of a Hecke correspondence (with a condition of triviality at p).
So, using Deligne’s conjecture instead of Grothendieck’s fixed point formula, we
can use Kottwitz’s result to understand the commutating actions of Gal(E/E)
and of HK(Q`) on H∗

c,K. (Deligne’s conjecture gives a simple formula for the
local terms in the Lefschetz fixed formula if we twist the correspondence by a
high power of the Frobenius. It is now a theorem and has been proved inde-
pendently by Fujiwara in [23] and Varshavsky in [63]. In the case of Shimura
varieties, it also follows from an earlier result of Pink in [57].)

Using his counting result, Kottwitz has proved the conjectural description
of IH∗

K for some simple Shimura varieties (cf. [36]). Here “simple” means that
the Shimura varieties are compact (so intersection cohomology is cohomology
with compact support) and that the phenomenon called “endoscopy” (about
which we are trying to say as little as possible) does not appear.

One reason to avoid endoscopic complications was that a very important
and necessary result when dealing with endoscopy, the so-called “fundamental
lemma”, was not available at the time. It now is, thanks to the combined efforts
of many people, among which Kottwitz ([33]), Clozel ([15]), Labesse ([38], [16]),
Hales ([30]), Laumon, Ngo ([43], [53]), and Waldspurger ([64], [65], [66]).

Assuming the fundamental lemma, the more general case of compact PEL
Shimura varieties of type A or C (with endoscopy playing a role) was treated by
Kottwitz in [34], admitting Arthur’s conjectures on the descripton of discrete
automorphic representations of G. Actually, Kottwitz did more: he treated the
case of the (expected) contribution of H∗

c,K to IH∗
K. Let us say a word about

Arthur’s conjectures. Arthur has announced a proof of a suitable formulation of
his conjectures for classical groups (that is, symplectic and orthogonal groups),
using the stable twisted trace formula. His proof is expected to adapt to the
case of unitary groups (that is, the groups that give PEL Shimura varieties of
type A), but this adaptation will likely require a lot of effort.

Let us also note that the case of compact PEL Shimura varieties of type
A should be explained in great detail in the book project led by Michael
Harris ([8]).

This does not tell us what to do in the case where SK is not projective. First
note that the modular interpretation gives us integral models of the Shimura
varieties but not of their compactifications. So this is the first problem to solve.
Fortunately, it has been solved: See the article [21] of Deligne and Rapoport
for the case of modular curves, the book [14] by Chai and Faltings for the case
of Siegel modular varieties, Larsen’s article [42] for the case of Picard modu-
lar varieties, and Lan’s dissertation [39] for the general case of PEL Shimura
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varieties of type A or C. This allows us to apply the specialization theorem
to intersection cohomology. In particular, we get the fact that the Gal(E/E)-
representation IH∗

c,K is unramified almost everywhere, and, at the finite places
p where it is unramified, we can study it by considering the reduction modulo
p of the Shimura variety and its compactifications.

Next we have to somehow describe the intersection complex. If the group
G has semi-simple Q-rank 1, so it has only one conjugacy class of rational
parabolic subgroups, then the Baily-Borel compactification is simpler (it only
has one kind of boundary strata) and we can obtain the intersection complex by

a simple truncation process from the direct image on S
K
of the constant sheaf

on SK. The conjectural description of IH∗
K is know for the cases G = GL2 (see

the book [20]) and the case of Picard modular surfaces, i.e., G = GU(2, 1) (see
the book [41]). In the general case of semi-simple Q-rank 1, Rapoport has given
in [58] a formula for the trace of a power of the Frobenius automorphism (at
almost every place) on the stalks of the intersection complex.

In the general case, the intersection complex is obtained from the direct
image of the constant sheaf on SK by applying several nested truncations (cf.
[6] 2.1.11), and it is not clear how to see the action of Frobenius on the stalks
of this thing. We will describe a solution in the next section.

5. Weighted Cohomology

In this section, j will be the inclusion of SK in its Baily-Borel compactification

S
K
, and j∗ will be the derived direct image functor. Here is the main idea:

instead of seeing the intersection complex IC∗(S
K
) as a truncation of j∗Q`,SK

by the cohomology degree (on various strata of S
K
− SK), we want to see it

as a truncation by Frobenius weights (in the sense of Deligne). This idea goes
back to the construction by Goresky, Harder and MacPherson of the weighted
cohomology complexes in a topological setting (i.e., on a non-algebraic com-
pactification of the set of complex points SK(C)).

5.1. The topological case. As we have mentioned before, the manifold
SK(C) has a lot of non-algebraic compactifications (these compactifications are
defined for a general locally symmetric space, and not just for a Shimura vari-
ety). The one used in the construction of weighted cohomology is the reductive
Borel-Serre compactification SK(C)RBS (cf. [11] III.6 and III.10; the reductive
Borel-Serre compactification was originally defined by Zucker in [67], though
not under that name). The reductive Borel-Serre compactification admits a

map π : SK(C)RBS −→ S
K
(C) that extends the identity on SK(C); we also

denote by j̃ the inclusion of SK(C) in SK(C)RBS .

The boundary SK(C)RBS − SK(C) of SK(C)RBS has a very pleasant de-
scription. It is a union of strata, each of which is a locally symmetric space for
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the Levi quotient of a rational parabolic subgroup of G; moreover, the closure
of a stratum is its reductive Borel-Serre compactification. (A lot more is known
about the precise geometry of the strata, see, e.g., [27] 1D).

The weighted cohomology complexes are bounded constructible complexes
Wµ of C or Q-vector spaces on SK(C)RBS extending the constant sheaf on
SK(C), constructed by Goresky, Harder and MacPherson in [27] (they give two
constructions, one for C-coefficients and one for Q-coefficients, and then show
that the two constructions agree). They depend on a weight profile µ (which is
a function from the set of relative simple roots of G to Z+ 1

2 ). The basic idea of

weighted cohomology is to consider the complex j̃∗C (or j̃∗Q) on SK(C)RBS and
to truncate it, not by the cohomology degree as for the intersection complex,
but by the weights of certain tori. More precisely, on a strata S corresponding
to a Levi subgroup M, we truncate by the weights of the Q-split torus AM

in the center of M (the group AM (Q) acts on j̃∗C|S by what Goresky, Harder
and MacPherson call Looijenga Hecke correspondences). The weight profile
specifies, for every strata, which weights to keep.

Of course, it is not that simple. The complex j̃∗C is an object in a derived
category (which is not abelian but triangulated), and it is not so easy to truncate
objects in such a category. To get around this problem, the authors of [27]

construct an incarnation of j̃∗C, that is, an explicit complex that is quasi-
isomorphic to j̃ ∗ C and on which the tori AM (Q) still act. (In fact, they

construct two incarnations, one of j̃∗C and one of j̃∗Q).

The upshot (for us) is that the functor π∗ : Db
c(S

K(C)RBS) −→ Db
c(S

K
(C))

sends two of these weighted cohomology complexes to the intersection complex

on S
K
(C) (they are the complexes corresponding to the lower and upper middle

weight profiles). On the other hand, the weighted cohomology complexes are
canonical enough so that the Hecke algebra acts on their cohomology, and
explicit enough so that it is possible to calculate the local terms when we apply
the Lefschetz fixed point formula to them. This is possible but by no means
easy, and is the object of the article [26] of Goresky and MacPherson. Then, in
the paper [29], Goresky, Kottwitz and MacPherson show that the result of [26]
agrees with the result of Arthur’s calculation in [1].

The problem, from our point of view, is that this construction is absolutely
not algebraic, so it is unclear how to use it to understand the action of Gal(E/E)
on IH∗(SK,Q`).

Remark 5. There is another version of weighted cohomology of locally sym-
metric spaces: Franke’s weighted L2 cohomology, defined in [22]. In his article
[52], Nair has shown that Franke’s weighted L2 cohomology groups are weighted
cohomology groups in the sense of Goresky-Harder-MacPherson.

5.2. Algebraic construction of weighted cohomology. First,
the reductive Borel-Serre compactification is not an algebraic variety, so what
we are really looking for is a construction of the complexes π∗W

µ, directly on
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the Baily-Borel compactification. This looks difficult for several reasons. The
Baily-Borel compactification is very singular, which is one of the reasons why
Goresky, Harder and MacPherson use the less singular reductive Borel-Serre

compactification in the first place. Besides, the boundary strata in S
K

cor-
respond to maximal rational parabolic subgroups of G, and several strata in

SK(C)RBS can be (rather brutally) contracted to the same stratum in S
K
(C).

It is possible to give a description of the stalks of π∗W
µ (see the article [28]

of Goresky, Harder, MacPherson and Nair), but it is a rather complicated de-
scription, much more complicated than the simple description of the stalks of
Wµ.

The idea is that the action of the Looijenga Hecke correspondences should
correspond in some way to the action of the Frobenius automorphism in an
algebraic setting. This is actually a very natural ideal. Looijenga himself uses
the fact that the eigenspaces of the Looijenga Hecke correspondences are pure
in the sense of mixed Hodge theory (cf. [44] 4.2), and we know that the weight
filtration of Hodge theory corresponds to the filtration by Frobenius weights in
`-adic cohomology (cf. for example [6] 6.2.2). So the correct algebraic analogue
of the truncations of [27] should be a truncation by Frobenius weights (in the
sense of Deligne’s [19], see also chapter 5 of [6]). As a consequence, the most
natural place to define the algebraic analogues of the weighted cohomology

complexes is the reduction modulo p of an integral model of S
K
, where p is a

finite place of E where good integral models exist. (But see the remark at the
end of this subsection.)

In fact, it turns out that we can work in a very general setting. Let Fq be a
finite field, and X be a quasi-separated scheme of finite type over Fq. Then we
have the category of mixed `-adic complexes Db

m(X,Q`) on X, cf. [6] 5.1. (Here
“mixed” refers to the weights of the complexes, and the weights are defined
by considering the action of the Frobenius automorphisms on the stalks of the
complexes; for more details, see [19] or [6] 5). In particular, we get a category
Pm(X) of mixed `-adic perverse sheaves on X as a subcategory of Db

m(X,Q`).
One important result of the theory is that mixed perverse sheaves admit a
canonical weight filtration. That is, if K is an object in Pm(X), then it has a
canonical filtration (w≤aK)a∈Z such that each w≤aK is a subperverse sheaf of
K of weight ≤ a and such that K/w≤aK is of weight > a.

This functor w≤a on mixed perverse sheaves does not extend to Db
m(X,Q`)

in the näıve way; that is, the inclusion functor from the category of mixed
sheaves of weight ≤ a to Db

m(X,Q`) does not admit a right adjoint. But we can
extend w≤a in another way. Consider the full subcategory wD≤a of Db

m(X,Q`)
whose objects are the complexes K such that, for every k ∈ Z, the k-th perverse
cohomology sheaf pHkK is of weight ≤ a. (If we wanted to define the complexes
of weight ≤ a, we would require pHkK to be of weight ≤ a+k.) Then wD≤a is a
triangulated subcategory of Db

m(X,Q`), and the inclusion wD≤a ⊂ Db
m(X,Q`)

does admit a right adjoint, which we denote by w≤a (because it extends the
previous w≤a). Likewise, we can define a full triangulated subcategory wD≥a
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of Db
m(X,Q`), whose inclusion into Db

m(X,Q`) admits a left adjoint w≥a (ex-
tending the functor K 7−→ K/w≤a−1K on mixed perverse sheaves). This is
explained in section 3 of [48]. Then the analogue of the theorem that π∗W

µ is
the intersection complex (for a well-chosen weight profile µ) is the:

Theorem 5.1. ([48] 3.1.4) Let j : U −→ X a nonempty open subset of X
and K be a pure perverse sheaf of weight a on U . Then there are canonical
isomorphisms:

j!∗K ' w≤aj∗K ' w≥aj!K.

More generally, if we have a stratification on X, we can choose to truncate
by different weights on the different strata (cf. [48] 3.3); in this way, we get
analogues of the other weighted cohomology complexes, or rather of their im-
ages on the Baily-Borel compactification. We also get somewhat more explicit
formulas for w≤a, and hence the intersection complex ([48] 3.3.4 and 3.3.5),
analogous to the formula of [6] 2.1.11, but where all the truncations by the
cohomology degree have been replaced by weight truncations. The reason this
makes such a big difference is that the weight truncation functors w≤a and w≥a

are exact in the perverse sense. (Interestingly enough, it turns out that, in this
setting, the weighted cohomology complexes are canonically defined and have
nothing to do with Shimura varieties. In fact, there is another application of
these ideas, to Schubert varieties, see [50].)

Remark 6. We want to make a remark about the construction of the weighted

cohomology complexes on the canonical models S
K

(and not their reduction
modulo a prime ideal). The construction of [48] 3 is very formal and will ap-
ply in every category that has a notion of weights and a weight truncation
on “perverse” objects. For example, it should apply without any changes to
Saito’s derived category of mixed Hodge modules. In fact, Arvind Nair has
just informed the author that he has indeed been able to construct weighted
cohomology complexes in the category of mixed Hodge modules, and to prove
that the weighted cohomology complexes he obtained on the Baily-Borel com-
pactification of a Shimura variety are the pushforwards of the Goresky-Harder-
MacPherson weighted cohomology complexes on the reductive Borel-Serre com-
pactification. As an application of this, he was able to prove that Franke’s spec-
tral sequence ([22] 7.4) is a spectral sequence of mixed Hodge structures (for
the locally symmetric spaces that are Shimura varieties).

Now suppose thatX is a quasi-separated scheme of finite type over a number
field. We can define `-adic perverse sheaves onX, and we can also define a notion
of weights for `-adic complexes on X (cf. Deligne’s [19] 1.2.2 and Huber’s article
[32]). The problem is that mixed perverse sheaves on X do not have a weight
filtration in general (because number fields have more Galois cohomology than
finite fields). To circumvent this problem, we could try to work in the derived
category of the abelian category of mixed perverse sheaves on X admitting a
weight filtration. Then it is not obvious how to construct the 4/5/6 operations
on these categories. It might be possible to copy Saito’s approach in [59] (where
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he constructs and studies the derived category of mixed Hodge modules); see
also Saito’s preprint [60]. As far as the author knows, this has not been worked
out anywhere.

5.3. Application to the cohomology of Shimura varieties.
Once we have the interpretation of the intermediate extension functor given in
the previous subsection, it becomes surprisingly easy to calculate the trace of

Frobenius automorphisms on the stalks of IC∗(S
K
). We should mention that

one reason it is so easy is that one of the main ingredients, a description of
the restriction to the boundary strata of the complex j∗Q` (where j is again

the inclusion of SK in S
K
) has been provided by Pink in [56]. And of course,

the whole calculation rests on Kottwitz’s calculations for the cohomology with
compact support (in [35]). Including Hecke correspondences in the picture is
just a matter of bookkeeping, and the final result of the Lefschetz trace formula
appears in [49] 1.7.

This is not the end of the story. It still remains to compare the result of the
Lefschetz fixed point formula with Arthur’s invariant trace formula, in order
to try to prove the result conjectured in 10.1 of Kottwitz’s article [34]. This
is basically a generalization of part I of [34] to include the non-elliptic terms.
Given the work done by Kottwitz in [34] and [37], it requires no new ideas, but
still takes some effort. In the case of general unitary groups over Q, it is the
main object of the book [49] (along with some applications).

Even then, we are not quite done. If we want to prove the conjectural de-

scription of IH∗(S
K
,Q`) given in [34] or [7], we still need to know Arthur’s

conjectures.
Some applications that do not depend on Arthur’s conjectures are worked

out in the book [49] (subsection 8.4). They use a weak form of base change
from unitary groups to general linear groups, for the automorphic representa-
tions that appear in the L2 cohomology of Shimura varieties. (If we knew full
base change, then we would probably also know Arthur’s conjectures.) Let us
mention the two main applications:

• The logarithm of the L-function of the intersection complex is a linear
combination of logarithms of L-functions of automorphic representations
of general linear groups ([49] corollary 8.4.5). In fact, we can even get
similar formulas for the L-functions of the HK(Q`)-isotypical components
of the intersection cohomology, as in [49] 7.2.2. However, the coefficients
in these linear combinations are not explicit, and in particular [49] does
not show that they are integers.

• We can derive some cases of the global Langlands correspondence (cf. [49]
8.4.9, 8.4.10). Note however that one of the conclusions of [49] is that, in
the end, we do not get more Galois representations in the cohomology of
noncompact unitary varieties than we would in the cohomology of com-
pact unitary Shimura varieties. In particular, the cases of the Langlands
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correspondence that are worked out in [49] can also be obtained using
compact Shimura varieties and gluing of Galois representations (cf. the
last chapters of the book project [8] or the article [62] of Shin; note that
Shin also considers places of bad reduction).
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Abstract

We discuss recent developments on geometric theory of ramification of schemes
and sheaves. For invariants of `-adic cohomology, we present formulas of
Riemann-Roch type expressing them in terms of ramification theoretic invari-
ants of sheaves. The latter invariants allow geometric computations involving
some new blow-up constructions.
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Introduction

For an extension of a number field, the discriminant is an invariant of fun-
damental importance, in the classical theory of algebraic integers. The cele-
brated conductor-discriminant formula [40, Chapitre VI Section 3 Corollaire 1]
expresses the discriminant as the product of local invariants of ramification,
called the conductor. The conductor is defined for a Galois representation, as
a measure of the wild ramification. The relation of the conductor of a Galois
representation with the level of corresponding modular form plays a crucial role
in the quantitative formulation of the Langlands correspondences.

In arithmetic geometry, the conductor showed up in the 60’s in the follow-
ing scenes among others. For an `-adic sheaf on a curve over an algebraically
closed field of positive characteristic different from `, the Grothendieck-Ogg-
Shafarevich formula [20] computes the Euler number, in geometric terms. The
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conductor appears in the formula as the local contribution of ramification. The
formula is a sheaf theoretic variant of the Riemann-Hurwitz formula, which
is a geometric counterpart of the conductor-discriminant formula, with the
analogy between the discriminant of a number field and the genus of a curve.
Grothendieck raised a question to find a formula of Riemann-Roch type comput-
ing the Euler number in higher dimension, which generalizes the GOS formula.
Deligne and Laumon deduced a generalization for surfaces using fibration [17]
[32], a method different from that taken in this article.

For an elliptic curve over a local field, the Tate-Ogg formula [34] expresses
the relation between the discriminant and the conductor of the elliptic curve.
In the seminal paper [11], Bloch found a correct generalization to arithmetic
schemes in general dimension and proved it for curves. His crucial insight is
that the ramification should give rise to an invariant as a 0-cycle class, al-
though the ramification does occur in codimension 1. Kato developed this idea
in [28].

In this article, we discuss recent developments on geometric theory of ram-
ification, inspired by the insight of Bloch. Some of related results were already
discussed 20 years ago in Kyoto by Kato [27, Section 4]. We will not touch
on arithmetic applications of ramifications, including canonical subgroups of
abelian varieties [3], [42], explicit computation of local Fourier transform [8],
finite flat group schemes [22] etc., although they should not be ignored. We
will not discuss either the p-adic approach using p-adic D-modules [10], see e.g.
[9], [33].

The article consists of two parts. In the first part, we introduce an invariant,
called the Swan class, as a measure of the wild ramification of a covering of
schemes or a sheaf. We present formulas of Riemann-Roch type computing the
Euler number or the conductor of cohomology of an `-adic sheaf in terms of
the Swan class, as generalizations of the GOS formula and Bloch’s formula. In
the geometric case, the characteristic class of an `-adic sheaf is defined as a
cohomology class and is shown to equal the cycle class of the Swan class. This
gives a refinement of the generalized GOS formula.

In the second part, we discuss a new geometric method to study the wild
ramification, blowing-up at the ramification locus in the diagonal. A traditional
approach in the study of ramification of a sheaf, taken in the first part of the
article, is to kill the ramification by taking a ramified covering. The new ap-
proach replaces ramified coverings by blowing-ups. It grew out of the definition
of the upper numbering filtration of ramification groups of the absolute Galois
group of a local field with not necessarily perfect residue field. By globalizing
the construction, we have a geometric method to study the ramification of a
sheaf along the boundary.

At the end of the article, we introduce the characteristic cycle of an `-adic
sheaf satisfying a certain condition and show that it computes the character-
istic class and hence the Euler number. An analogy of the wild ramification
of `-adic sheaves with the irregularities of D-modules has been observed by
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many mathematicians e.g [16], [28]. The author expects that the new geometric
approach shed more light on it.

The author would like to thank his coauthors Kazuya Kato and Ahmed
Abbes for long time and fruitful collaborations. Large parts of Sections 1.3 and
2.2 are based on papers in preparation coauthored with them, respectively. It
should be evident from the article that a considerable part of the contents is
due to them.

1. `-Adic Riemann-Roch Formulas

In Sections 1.1 and 1.2, we consider the geometric case where the base field
is a perfect field of positive characteristic. We introduce in Section 1.1 the
Swan class of an `-adic sheaf and state a formula for the Euler number, as
a generalization of the Grothendieck-Ogg-Shafarevich formula. We define the
characteristic class in Section 1.2 as a refinement of the Euler number and gives
a relation with the Swan class. In Section 1.3, we consider the arithmetic case
where the base field is a p-adic field with perfect residue field and formulate
results analogous to those in Section 1.1.

1.1. Euler numbers. Let k be a perfect field and U be a smooth sepa-
rated scheme of finite type of dimension d over k. For a separated scheme X
of finite type over k, the Chow group CH0(X) denotes the group of 0-cycles
modulo rational equivalence. We define

CH0(∂U) = lim
←−

CH0(X \ U), CH0(∂U)Q = lim
←−

(CH0(X \ U)⊗Z Q)

to be the projective limits with respect to proper schemes X containing U as
a dense open subscheme and proper push-forward. The degree maps CH0(X \
U)→ CH0(Spec k) = Z induce degk : CH0(∂U)→ Z.

For a finite etale Galois covering V → U of Galois group G, we define the
Swan character class

sV/U (σ) ∈ CH0(∂V )Q

for σ ∈ G. We refer to [31, Definition 4.1] for the definition in the general
case that requires alteration [15], causing the denominator. Here we only give
a definition of the image in CH0(Y \V ), for a smooth compactification Y of V
satisfying certain good properties.

Assume Y is a proper smooth scheme containing V as the complement of
a divisor D with simple normal crossings. Let D1, . . . , Dn be the irreducible
components of D and let (Y ×k Y )′ → Y ×k Y be the blow-up at Di ×k

Di for every i = 1, . . . , n. Namely the blow-up by the product of the ideal
sheaves IDi×kDi

⊂ OY×kY . We call the complement Y ∗k Y ⊂ (Y ×k Y )′ of
the proper transform of (D×kY )∪(Y ×kD) the log product. The diagonal map
δ : Y → Y ×k Y is uniquely lifted to a closed immersion δ̃ : Y → Y ∗k Y called
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the log diagonal. The log products and the log diagonal seem to have been
first introduced by Faltings [21] and by Pink [36] apparantly independently.
For an explicit local description, see Example 2.2 in Section 2.2. For more
intrinsic definition in the language of log geometry, we refer to [30, Section 4].
We introduce the log product in order to focus on the wild ramification. A
heuristic reason for this is that a tamely ramified covering can be regarded as
an unramified covering in log geometry.

Let σ ∈ G be an element different from the identity and let Γ be a closed
subscheme of Y ∗k Y of dimension d = dimY such that the intersection Γ ∩
(V ×kV ) is equal to the graph Γσ of σ. By the assumption that V is etale over U ,
the intersection Γσ∩∆V with the diagonal ∆V = δ(V ) ⊂ V ×kV is empty. Hence

the intersection product (Γ,∆log
Y )Y ∗kY with the log diagonal ∆log

Y = δ̃(Y ) ⊂

Y ∗k Y is defined in CH0(Y \ V ). The intersection product (Γ,∆log
Y )Y ∗kY is

shown to be independent of the choice of Γ under the assumption that V → U
is extended to a map Y → X to a proper scheme X over k containing U as
the complement of a Cartier divisor B and that the image of Γ in the log
product X ∗k X defined with respect to B is contained in the log diagonal
∆log

X .

The Swan chararacter class sV/U (σ) ∈ CH0(Y \ V ) for σ 6= 1 is defined by

sV/U (σ) = −(Γ,∆
log
Y )Y ∗kY . (1)

For σ = 1, it is defined by requiring
∑

σ∈G sV/U (σ) = 0. For σ 6= 1, we have

2 dimV∑

q=0

(−1)qTr(σ∗ : Hq
c (Vk̄,Q`)) = − degk sV/U (σ) (2)

by a Lefschetz trace formula for open varieties [31, Theorem 2.3.4] for a prime
number ` different from the characteristic of k.

Example 1.1. Assume that V is a curve. Then, Y is unique and we have
CH0(∂V ) = CH0(Y \ V ) =

⊕
y∈Y \V Z. For σ 6= 1,∈ G, we have

sV/U (σ) = −
∑

y∈{y∈Y |σ(y)=y}

length Oy

/(
σ(a)

a
− 1; a ∈ Oy, 6= 0

)
· [y]. (3)

Let ` be a prime number different from p = char k > 0. We consider a
smooth `-adic sheaf F on U and define the Swan class SwUF ∈ CH0(∂U)Q(ζp∞ ).
We refer to [31, Definition 4.2.2] for the definition in the general case that re-
quires reduction modulo ` and Brauer traces [23]. Here we only give a definition
assuming that there exists a finite etale Galois covering f : V → U trivializing
F . Let G denote the Galois group Gal(V/U) and M be the representation of
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G corresponding to F . Then, the Swan class is defined by

SwUF =
1

|G|

∑

σ∈G

f∗sV/U (σ) · Tr(σ : M). (4)

By the equality (3), this is an immediate generalization of the classical definition
of the Swan conductor [41, Partie III], see also Example 1.3 in Section 1.3. For
the Swan class, we expect that the Hasse-Arf theorem [40, Chapitre VI Section
2 Théorème 1] can be generalized as follows:

Conjecture 1.1. The Swan class SwUF ∈ CH0(∂U)Q(ζp∞ ) is in the image of
CH0(∂U).

Conjecture 1.1 implies a conjecture of Serre on the integrality of the Artin
character for an isolated fixed point [39] in the geometric case. By the standard
argument using Brauer induction, it is reduced to the rank 1 case. By computing
the Swan class in the rank 1 case using Theorem 2.12, Conjecture 1.1 is proved
in [31, Corollary 5.1.7] for U of dimension 2. The conjecture of Serre for surfaces
is proved earlier in [29].

For a smooth `-adic sheaf F on U , the Euler number χc(Uk̄,F) is defined as

the alternating sum
∑2 dimU

q=0 (−1)q dimHq
c (Uk̄,F). The Lefschetz trace formula

for open varieties (2) implies the following generalization of the Grothendieck-
Ogg-Shafarevich formula:

Theorem 1.2 ([31, Theorem 4.2.9]). Let U be a separated smooth scheme of
finite type over k. For a smooth `-adic sheaf F on U , we have

χc(Uk̄,F) = rank F · χc(Uk̄,Q`)− degk SwUF . (5)

1.2. Characteristic classes. We recall from [6, Definition 2.1.1] the
definition of the characteristic class of an `-adic sheaf on a separated scheme
of finite type over a field k of characteristic different from `. Although it is not
stated explicitly, essential ingredients in the definition are contained in [19], see
also [24, Section 9.1].

Let X be a separated scheme of finite type over a field k. As a coefficient
ring Λ, we consider a ring finite over Z/`nZ, Z` or Q` for a prime number
` 6= char k. Let a : X → Spec k denote the structure map and KX = Ra!Λ
denote the dualizing complex. If X is smooth of dimension d over k, we have
KX = Λ(d)[2d].

Let F be a constructible sheaf of flat Λ-modules on X and consider the
object

H = RHom(pr∗2F , Rpr!1F)

of the derived category Dctf(X ×k X,Λ) of constructible sheaves of Λ-modules
of finite tor-dimension on the product X ×k X. If X is smooth of dimen-
sion d over k and if F is smooth, we have a canonical isomorphism H →
Hom(pr∗2F , pr

∗
1F)(d)[2d].
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A canonical isomorphism

End(F)→ H0
X(X ×k X,H) (6)

is defined in [19]. Hence, we may regard the identity idF as a cohomology class
idF ∈ H0

X(X ×k X,H) supported on the diagonal X ⊂ X ×k X. Let δ : X →
X ×k X be the diagonal map. Further in [19], a canonical map δ∗H → KX is
defined as the trace map. The characteristic class

C(F) ∈ H0(X,KX)

is defined as the image of the pull-back δ∗idF ∈ H0(X, δ∗H) by the induced
map H0(X, δ∗H) → H0(X,KX). If X is smooth and if F is smooth, we have
C(F) = rank F · (X,X)X×kX where (X,X)X×kX denotes the self-intersection
in the product X ×k X. The Lefschetz trace formula [19] asserts that, if X
is proper, the trace map H0(X,KX) → Λ sends the characteristic class C(F)
to the Euler number χ(Xk̄,F). In other words, the characteristic class is a
geometric refinement of the Euler number.

By a standard devissage, the computation of the characteristic classes is
reduced to that of the difference C(j!FU )− rank FU ·C(j!Λ) where j : U → X
is the immersion of a dense open subscheme U ⊂ X smooth over k and FU is a
smooth sheaf of flat Λ-modules on U . Under a certain mild technical assumption
on F , the difference is computed by the Swan class as follows.

Theorem 1.3 ([6, Theorem 3.3.1]). Let U be a smooth dense open subscheme
of a separated scheme X of finite type over k. Let Λ be a finite extension of
Q` and FU be a smooth Λ-sheaf on U . Assume that there exists a finite etale
covering V → U such that the pull-back FV is of Kummer type with respect to
the normalization Y of X in V .

Then, we have

C(j!FU )− rank FU · C(j!Λ) = −[SwUFU ] (7)

in H0(X,KX), where [ ] denotes the cycle class.

We refer to [6, Definition 3.1.1] for the definition of being of Kummer
type. We only remark here that the purity theorem of Zariski-Nagata and Ab-
hyankar’s lemma [37] imply that the assumption on F is satisfied if we admit a
strong form of resolution of singularities for Y . One can also deduce Theorem
1.2 unconditionally from Theorem 1.3.

Problem 1. Find a definition of the characteristic class of an `-adic sheaf on
a separated scheme of finite type over a complete discrete valuation ring with
perfect residue field and prove a relation similar to Theorem 1.3 with the Swan
class defined in Section 1.3.



Wild Ramification of Schemes and Sheaves 341

1.3. Conductor formula. Let K be a complete discrete valuation field
with perfect residue field F = OK/mK . For simplicity, we will assume that the
characteristic of K is 0. We consider constructions and formulas for schemes
over K analogous to those in Section 1.1. For a scheme X of finite type over
S = Spec OK , let G(X) denote the Grothendieck group of coherent OX -
modules and F• be the increasing filtration of G(X) defined by the dimension of
support.

Let U be a smooth separated scheme of finite type of dimension d− 1 over
K. We define

F0G(∂FU) = lim
←−

F0G(XF ), F0G(∂FU)Q = lim
←−

(F0G(XF )⊗Z Q)

to be the projective limits with respect to schemesX proper over S containing U
as a dense open subscheme and proper push-forward. For a morphism f : U → V
of separated smooth schemes of finite type overK, the push-forward maps define
a map f! : F0G(∂FU)→ F0G(∂FV ). In particular, for V = Spec K, the degree
map degF : F0G(∂FU)→ Z is defined.

For a finite etale Galois covering V → U of Galois group G, we define the
Swan character class

sV/U (σ) ∈ F0G(∂FV )Q

for σ ∈ G. Here we only sketch the definition of the image in F0G(YF ), for a
smooth compactification Y of V satisfying certain good properties similarly as
in Section 1.1.

Assume Y is a proper regular flat scheme over S containing V as the com-
plement of a divisor D with simple normal crossings. Then, we define the log
product Y ∗S Y similarly to Y ∗k Y . The diagonal map δ : Y → Y ×S Y is
uniquely lifted to a closed immersion δ̃ : Y → Y ∗S Y called the log diagonal.

Let σ ∈ G be an element and let Γ be a closed subscheme of Y ∗S Y of
dimension d = dimY such that the intersection Γ ∩ (V ×S V ) is equal to the

graph Γσ of σ. The localizedK-theoretic intersection product ((Γ,∆log
Y ))Y ∗SY ∈

F0G(YF ) is then defined by

((Γ,∆log
Y ))Y ∗SY = (−1)q

(
[T or

OY ∗SY

q (OΓ,O∆log
Y

)]− [T or
OY ∗SY

q+1 (OΓ,O∆log
Y

)]
)

(8)

for q ≥ d = dimY [30, Section 3]. It is a non-trivial fact that the right hand
side is independent of the choice of Γ or q ≥ d, under an assumption similar to
the corresponding one in Section 1.1. We write ((Γσ,∆V )) for ((Γ,∆

log
Y ))Y ∗SY .

The Swan chararacter class sV/U (σ) ∈ F0G(YF ) for σ 6= 1 is defined by

sV/U (σ) = −((Γσ,∆V )). (9)

For σ = 1, it is defined by requiring
∑

σ∈G sV/U (σ) = 0.

Example 1.2. Assume that V = Spec L for a totally ramified extension of K.
Then, Y = Spec OL is unique and we have F0G(∂FV ) = F0G(Spec F ) = Z.
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The log product Y ∗S Y is Spec OL ⊗OK
OL[U

±1]/(1 ⊗ t − t ⊗ 1 · U) for a
prime element t of L, by definition. The minimal polynomial f ∈ OK [T ] of t is
an Eisenstein polynomial. We have Y ∗S Y = Spec OL[U

±1]/(f(tU)).
Assume L is a Galois extension and let σ be an element of G = Gal(L/K).

We define gσ ∈ OL[U ] by f(tU) = gσ · (U − σ(t)/t) and put A =
OL[U

±1]/(f(tU)), Oσ = A/(U − σ(t)/t). Then we have a periodic free res-
olution

· · · // A
×(U−σ(t)/t)

// A
×gσ

// A
×(U−σ(t)/t)

// A // Oσ → 0.

Hence, for σ 6= 1, we have

T orAq (Oσ,O1) =

{
OL/(σ(t)/t− 1) if q is even,

0 if q is odd.

Consequently, we have

sV/U (σ) = −ordL

(
σ(t)

t
− 1

)
. (10)

For a smooth `-adic sheaf F on U , the Swan class SwUF ∈ F0G(∂FU)Q(ζp∞ )

is defined. Under the same simplifying assumptions, the Swan class is defined
by the same formula (4) as in the geometric case. By the equality (10), this is
an immediate generalization of the classical definition of the Swan conductor
as follows.

Example 1.3. We consider F on U = Spec K corresponding to an `-adic
repreresentation M of the absolute Galois group GK = Gal(K̄/K) factoring
through a finite quotient G = Gal(L/K). Then, the Swan class SwUF is nothing
but the Swan conductor SwKM ∈ Z = CH0(∂FU) = CH0(Spec F ) defined by

SwKM =
1

|G|

∑

σ∈G

sL/K(σ) · Tr(σ : M). (11)

For the Swan class defined above, we also expect that the Hasse-Arf theorem
can be generalized as in Conjecture 1.1. As in the geometric case, it is proved for
a curve U over K. A proof of the conjecture of Serre [39] in the corresponding
case is announced in [27], see also [1], [2].

Let U1 ⊂ U be a regular closed subscheme and i : U1 → U and j : U0 =
U \ U1 → U denote the immersions. Then, we have an excision formula

SwUF = j!SwU0
F|U0

+ i!SwU1
F|U1

. (12)

This enables us to extend the definition of the Swan classes to constructible
sheaves. For a smooth sheaf F on U , we define a variant of the Swan class by

SwUF = −rank F · ((∆U ,∆U )) + SwUF .

This is also extended to constructible sheaves by the excision formula.
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For the variant, we have the following formula of Riemann-Roch type:

Theorem 1.4. Assume K is of characteristic 0. For a morphism f : U → V
of separated schemes of finite type over K and for a constructible `-adic sheaf
F on U , we have

SwV Rf!F = f!SwUF . (13)

The outline of the proof is as follows. By standard devissage using the
excision formula, it is reduced to the relative curve case. Then, we take an
alteration and apply a logarithmic Lefschetz trace formula for an open variety
over a local field generalizing [30, Theorem 6.5.1], to conclude the proof.

In the case where V = Spec K, Theorem 1.4 gives a conductor formula.
For a smooth `-adic sheaf F on a separated scheme U of finite type over K,
let SwKH∗

c (UK̄ ,F) denote the alternating sum
∑2 dimU

q=0 (−1)qSwKHq
c (UK̄ ,F)

of the Swan conductor.

Corollary. Let U be a separated smooth scheme of finite type of dimension
d− 1 over K.

1. For a smooth `-adic sheaf F on U , we have

SwKH∗
c (UK̄ ,F) = rank F · SwKH∗

c (UK̄ ,Q`) + degF SwUF . (14)

2. ([30, Theorem 6.2.3]) Assume U is proper over K and let X be a proper
regular flat scheme such that U = XK . Assume that the reduced closed
fiber XF,red is a divisor with simple normal crossings. Then, we have

χc(XK̄ ,Q`)− χc(XF̄ ,Q`) + SwKH∗
c (XK̄ ,Q`) = (−1)d−1 degF cd(Ω

1
X/S),
(15)

where cd(Ω
1
X/S) ∈ CH0(XF ) denotes the localized Chern class.

The formula (15) is conjectured by Bloch in [11] and proved there for curves.
For surfaces dimU = 2, we can remove the assumption on the reduced closed
fiber XF,red, since the strong resolution of singularity is now obtained by blow-
up in dimension 2 [14]. In a geometric case, a formula analogous to (14) is
obtained by using a localized refinement of the characteristic class in [43], as-
suming resolution of singularities.

2. Geometric Ramification Theory

We recall the geometric definition of the filtration by ramification groups of
Galois groups of local fields in Section 2.1. We globalize it in Section 2.2 and
study the ramification of a Galois covering of a smooth scheme over a perfect
field of characteristic p > 0 along the boundary. We compute in Section 2.3
the characteristic class using the construction in Section 2.2 and introduce the
characteristic cycle of an `-adic sheaf that enables one to compute the Euler
number.
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2.1. Ramification groups of a local field. Let K be a complete
discrete valuation field with not necessarily perfect residue field F = OK/mK .
For a finite Galois extension L over K, the Galois group G = Gal(L/K) has
two decreasing filtrations, the lower numbering filtration (Gi)i∈N and the upper
numbering filtration (Gr)r∈Q,>0. In the classical case where the residue field
is perfect, they are the same up to renumbering by the Herbrand function
[40, Chapitre IV Section 3]. However, their properties make good contrasts.
The lower one has an elementary definition and is compatible with subgroups
while the upper one has more sophisticated definition and is compatible with
quotients. The lower one is simply defined by Gi = Ker(G → Aut(OL/m

i
L)).

More geometrically, it is rephrased as follows.
Take a presentation OK [X1, . . . , Xn]/(f1, . . . , fn) → OL of the integer ring

of L. We consider the n-dimensional closed disk Dn defined by ‖x‖ ≤ 1 over K
in the sense of rigid geometry and the morphism of disks f : Dn → Dn defined
by f1, . . . , fn. Then the Galois group G is identified with the inverse image
f−1(0) of the origin 0 ∈ Dn. In other words, we have a cartesian diagram

G //

��

Dn

f

��

{0} // Dn.

(16)

The subgroups Gi and Gr are defined to consist of the points of G that are
close to the identity in certain senses. For the lower one, the closeness is simply
measured by the distance. Namely, the lower numbering subgroup Gi ⊂ G
consists of the points σ ∈ G satisfying d(σ, id) ≤ |πi

L| for a prime element πL

of L.
To define the upper numbering filtration, we consider, for a rational number

r > 0, the inverse image Vr = {x ∈ Dn | d(f(x), 0) ≤ |πK |
r} ⊂ Dn of the

closed subdisk of radius |πK |
r, as an affinoid subdomain containing G. The

upper numbering subgroup Gr consists of the points in G contained in the
same geometric connected component of Vr as the identity.

Theorem 2.1 ([4, Theorems 3.3, 3.8]). Let L be a finite Galois extension over
K of Galois group G = Gal(L/K).

1. For a rational number r > 0, the subset Gr ⊂ G defined above is inde-
pendent of the choice of presentation OK [X1, . . . , Xn]/(f1, . . . , fn)→ OL

and is a normal subgroup of G. Further the inclusion G → Vr induces a
bijection G/Gr → π0(Vr) to the set of geometric connected components.

2. There exist rational numbers 0 = r0 < r1 < . . . < rm such that Gr = Gri

for r ∈ (ri−1, ri] ∩Q and i = 1, . . . ,m and Gr = 1 for r > rm.

3. For a subfield M ⊂ L Galois over K and for a rational number r > 0, the
subgroup Gal(M/K)r ⊂ Gal(M/K) is the image of Gr = Gal(L/K)r.
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The definition of the upper numbering filtration in the general residue field
case is first found using rigid geometry, as described above. The use of rigid
geometry is quite essential. For example, the proof of 2. in Theorem 2.1 relies
on the reduced fiber theorem in rigid geometry [12]. However, an alternative
scheme theoretic approach described below turned out to be quite powerful as
well.

In the following, we give a definition of a logarithmic variant of the upper
numbering filtration, that seems more essential than the non-logarithmic one
and is defined using the natural log structure of the integer rings. For the
generality on log schemes, we refer to [26] and [30, Section 4]. In the classical
case where the residue field is perfect, the two filtrations are the same up to
the shift by 1. In the general residue field case, there is no simple relation
among them. We emphasize here that both filtrations have scheme theoretic
descriptions.

We regard S = Spec OK as a log scheme with the canonical log structure de-
fined by the closed pointDS = Spec F . Let Q be a regular flat separated scheme
of finite type over S. Assume that the reduced closed fiberDQ = (Q×SDS)red is
regular and that the log schemeQ endowed with the log structure defined byDQ

is log smooth over S. For example, Q = Spec OK [T1, . . . , Td, U
±1]/(π − UTm

1 )
for integers d,m ≥ 1 and a prime element π of OK .

Let L be a finite Galois extension of K. We put T = Spec OL and DT =
(T ×S DS)red. We consider a closed immersion i : T → Q that is exact in the
sense that DT = DQ ×Q T . Let P be a separated smooth scheme of finite type
over S, s : S → P be a section and f : Q → P be a finite and flat morphism
over S such that the diagram

T

��

i
// Q

f

��

S
s

// P

(17)

is cartesian. This diagram should be regarded as a scheme theoretic counterpart
of (16).

We consider a finite separable extension K ′ of K containing L as a subex-
tension, in order to make a base change. We put S′ = Spec OK′ , F ′ = OK′/mK′

and let e = eK′/K be the ramification index.

Let r > 0 be a rational number and assume that r′ = er is an integer.
We regard the divisor R′ = r′DS′ = Spec OK′/mr′

K′ of S′ as a closed sub-
scheme of PS′ = P ×S S′ by the section s′ : S′ → PS′ induced by s : S → P .

We consider the blow-up of PS′ at the center R′ and let P
(r)
S′ denote the com-

plement of the proper transform of the closed fiber PS′ ×S′ DS′ . The scheme

P
(r)
S′ is smooth over S′ and the closed fiber P

(r)
S′ ×S′ DS′ is the vector bun-

dle Θ
(r)
F ′ over F ′ such that the set of F ′-valued points is the F ′-vector space
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HomF ′(mr′

K′/m
r′+1
K′ , Is(S)/I

2
s(S) ⊗OK

F ′) where Is(S) ⊂ OPS
denotes the ideal

sheaf.
We consider the normalizations Q̄

(r)
S′ and T̄S′ of Q×P P

(r)
S′ and of T ×S S′

respectively. Then, the diagram (17) induces a diagram

T̄S′

��

i(r)
// Q̄

(r)
S′

f(r)

��

S′ s(r)
// P

(r)
S′ .

(18)

By the assumption that K ′ contains L, the scheme T̄S′ is isomorphic to the
disjoint union of finitely many copies of S′ and the geometric fiber T̄F̄ = T̄S′×S′

F̄ is identified with Gal(L/K).
By Epp’s theorem [18], after replacingK ′ by some finite separable extension,

the geometric closed fiber Q̄
(r)

F̄
= Q̄

(r)
S′ ×S′ Spec F̄ is reduced and the formation

of Q̄
(r)
S′ commutes with further base change. We call such Q̄

(r)
S′ a stable integral

model. The finite map i(r) : T̄S′ → Q̄
(r)
S′ induces surjections

T̄F̄ = Gal(L/K)

i(r)
∗ ''O

O

O

O

O

O

O

O

O

O

O

i(r+)
∗

// f (r)−1(0)

��

π0(Q̄
(r)

F̄
)

(19)

to the set of geometric connected components and to the inverse image of the

origin 0 ∈ P
(r)

F̄
= Θ

(r)

F̄
.

Theorem 2.2 ([4, Theorems 3.11, 3.16], [38, Section 1.3]). Let L be a finite
Galois extension over K of Galois group G and we consider a diagram (17) as
above.

1. For a rational number r > 0, we take a finite separable extension K ′ of

K containing L such that eK′/Kr is an integer and that Q
(r)

S̄′
is a stable

integral model.

Then, the inverse image i
(r)−1
∗ (i

(r)
∗ (1)) = Gr

log ⊂ G is independent of
the choice of diagram (17) or an extension K ′ and is a normal subgroup of

G. Further the surjection i
(r)
∗ (19) induces a bijection G/Gr

log → π0(Q̄
(r)

F̄
).

2. Let the notation be as in 1. Then, there exist rational numbers 0 = r0 <
r1 < . . . < rm such that Gr

log = Gri
log for r ∈ (ri−1, ri]∩Q and i = 1, . . . ,m

and Gr
log = 1 for r > rm.

3. For a subfield M ⊂ L Galois over K and for a rational number r > 0, the
subgroup Gal(M/K)rlog ⊂ Gal(M/K) is the image of Gr = Gal(L/K)rlog.
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For a rational number r ≥ 0, we put Gr+
log =

⋃
s>r G

s
log. Then, under the

same assumption as in Theorem 2.2.1., the surjection i
(r+)
∗ (19) induces a bi-

jection G/Gr+
log → f (r)−1(0).

Example 2.1 ([25], [7]). If K is of characteristic p > 0, a cyclic extension L of
degree pm+1 is defined by a Witt vector by the isomorphism Wm+1(K)/(F −
1) → H1(K,Z/pm+1Z) of Artin-Schreier-Witt theory. An increasing filtration
on Wm+1(K) is defined in [13] by

FnWm+1(K) = {(a0, . . . , am) ∈Wm+1(K) | pm−ivK(ai) ≥ −n for i = 0, . . . ,m}.

The filtration induced by the surjection Wm+1(K) → H1(K,Z/pm+1Z) is
considered in [25]. For G = Gal(L/K), the filtration (Gn

log)n≥0 indexed

by integers is the dual of the restriction to Hom(Gal(L/K),Z/pm+1Z) ⊂
H1(K,Z/pm+1Z). Namely, we have Gn

log = {σ ∈ G | c(σ) = 0 if c ∈

FnH1(K,Z/pm+1Z)}. Further, for a rational number r ∈ (n − 1, n] ∩ Q, we
have Gr

log = Gn
log.

Problem 2. Prove that, for an abelian extension in the mixed characteristic
case, the filtration (Gn

log)n≥0 is the same as that defined by Kato in [25] and
show Gr

log = Gn
log for r ∈ (n− 1, n] ∩Q.

Definition 2.3. Let L be a finite etale K-algebra and r > 0 (resp. r ≥ 0) be a
rational number. Let M be a finite Galois extension of K such that L⊗K M is
isomorphic to the product of copies of M . Then, we say that the log ramification
of L over K is bounded by r (resp. by r ≥ 0) if the action of the subgroup
Gal(M/K)rlog (resp. Gal(M/K)r+log) on the finite set HomK(L,M) is trivial.

It is interpreted geometrically as follows.

Proposition 2.4 ([38, Lemma 1.13]). Let r > 0 be a rational number and we
consider a diagram (17) and a finite separable extension K ′ of K as in Theorem

2.2 such that Q̄
(r)
S′ is a stable integral model.

1. The following conditions are equivalent:

(1) The log ramification of L over K is bounded by r.

(2) The finite covering Q̄
(r)
F ′ → P

(r)
F ′ is a split etale covering.

2. The following conditions are equivalent:

(1) The log ramification of L over K is bounded by r+.

(2) The finite map Q̄
(r)
S′ → P

(r)
S′ is etale on a neighborhood of the closed

fiber Q̄
(r)
F ′ .
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2.2. Ramification along a divisor. Let X be a smooth separated
scheme of finite type over a perfect field k of characteristic p > 0 and U =
X \ D be the complement of a divisor D with simple normal crossings. We
consider a finite etale G-torsor V over U for a finite group G and study the
ramification of V along D. The ramification of V along D will be measured by
linear combinations R =

∑
i riDi with rational coefficients ri ≥ 0 of irreducible

components of D as follows.
We consider the log product P = X ∗k X ⊂ (X×kX)′ and the log diagonal

δ̃ : X → P = X ∗k X as in Section 1.1. We define a relatively affine scheme P (R)

over P . If the coefficients of R =
∑

i riDi are integers, the scheme P (R) is the
complement of the proper transforms of P×XR in the blow-up of P at the center
R ⊂ X embedded by the log diagonal map δ̃ : X → P . In other words, P (R) is
the relatively affine scheme over P defined by the quasi-coherent OP -algebra
OP [IX(RP )] =

∑
n≥0 I

n
X(nRP ) where IX ⊂ OP is the ideal sheaf defining the

log diagonal and the divisor RP ⊂ P is the pull-back of R ⊂ X. The base change
P (R)×X R with respect to the projection P (R) → X ⊃ R is the twisted tangent
bundle Θ(R) = V(Ω1

X(logD)(R)) ×X R where V(Ω1
X(logD)(R)) denotes the

vector bundle defined by the symmetric algebra of the locally free OX -module
Ω1

X(logD)(R).
For general R, it is defined by the quasi-coherent OP -algebra∑

n≥0 I
n
X(bnRP c) where bnRP c denotes the integral part. The log diagonal

δ̃ : X → P = X ∗k X is uniquely lifted to an immersion δ(R) : X → P (R).
The open immersion U ×k U → X ∗k X = P is lifted to an open immersion
j(R) : U ×k U → P (R).

Example 2.2. Assume X = Spec k[T1, . . . , Td] and D is defined by T1 · · ·Tn

for 0 ≤ n ≤ d. Then, the log product P = X ∗k X is the spectrum of

A = k[T1, . . . , Td, S1, . . . , Sd, U
±1
1 , . . . , U±1

n ]/(S1 − U1T1, . . . , Sn − UnTn) (20)

and the log diagonal δ̃ : X → P = X ∗k X is defined by U1 = · · · = Un = 1
and Tn+1 = Sn+1, . . . , Td = Sd.

Further assume that the coefficients of R =
∑n

i=1 riDi are integral. Then,
if we put TR = T r1

1 · · ·T
rn
n , the scheme (X ∗k X)(R) is the spectrum of

A[V1, . . . , Vd]/(U1 − 1− V1T
R, . . . , Un − 1− VnT

R,

Sn+1 − Tn+1 − Vn+1T
R, . . . , Sd − Td − VdT

R) (21)

= k[T1, . . . , Td, V1, . . . , Vd, (1 + V1T
R)−1, . . . , (1 + VnT

R)−1].

The immersion δ(R) : X → (X ∗k X)(R) is defined by V1 = · · · = Vd = 0.

Let V be a G-torsor over U for a finite group G. We consider the quotient
(V ×k V )/∆G by the diagonal ∆G ⊂ G×G as a finite etale covering of U ×k U
and let Z be the normalization of (X ∗k X)(R) in the quotient (V ×k V )/∆G.
The diagonal map V → V ×k V induces a closed immersion U = V/G →
(V ×kV )/∆G on the quotients and is extended to a closed immersion e : X → Z.
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Definition 2.5. Let V be a G-torsor over U for a finite group G. We say
that the ramification of V over U is bounded by R+ if the normalization Z of
(X ∗k X)(R) in the quotient (V ×k V )/∆G is etale over (X ∗k X)(R) on a
neighborhood of the image of e : X → Z.

The following is an immediate consequence of Proposition 2.4.2.

Lemma 2.6. Assume D is irreducible and let K = Frac ÔX,ξ be the fraction
field of the completion of the local ring OX,ξ at the generic point ξ of D. Then,
for a rational number r ≥ 0, the following conditions are equivalent:

(1) The log ramification of the etale K-algebra Γ(V ×U Spec K,O) is bounded
by r+.

(2) There exists an open neighborhood X ′ of ξ such that the ramification of
V ∩X ′ over U ∩X ′ is bounded by r(D ∩X ′)+.

By the following lemma, the general case is reduced to the case where the
coefficients of R are integral.

Lemma 2.7. Let f : X ′ → X be a morphism of separated smooth schemes of
finite type over k. Let U ⊂ X and U ′ ⊂ X ′ be the complements of divisors with
simple normal crossings respectively satisfying U ′ ⊂ f−1(U).

Let V → U be a G-torsor for a finite group G and V ′ = V ×UU ′ → U ′ be the
pull-back. Let R =

∑
i riDi ≥ 0 be an effective divisor with rational coefficients

and R′ = f∗R be the pull-back. We consider the following conditions.

(1) The ramification of V is bounded by R+.

(2) The ramification of V ′ is bounded by R′+.

We always have an implication (1) ⇒ (2). Conversely, if f : X ′ → X is log
smooth and is faithfully flat and if U ′ = f−1(U), we have the other implication
(2)⇒ (1).

The main result is the following.

Theorem 2.8. Let X be a separated smooth scheme of finite type over k and
U = X\D be the complement of a divisor with simple normal crossings. Assume
that the coefficients of R =

∑
i riDi ≥ 0 are integral. Let V be a G-torsor over

U for a finite group G and Z0 ⊂ Z be the maximum open subscheme etale over
(X ∗k X)(R) of the normalization Z of (V ×k V )/∆G. Let e : X → Z be the
section induced by the diagonal.

Then, the base change Z0,R = Z0 ×X R with respect to the projection Z0 →
(X ∗k X)(R) → X ⊃ R has a natural structure of smooth commutative group
scheme over R such that the map eR : XR → Z0,R induced by e : X → Z is the
unit. Further the etale map Z0,R → Θ(R) = (X ∗k X)(R) ×X R induced by the
canonical map Z → (X ∗k X)(R) is a group homomorphism.



350 Takeshi Saito

For every point x ∈ R, the connected component Z0
0,x of the fiber Z0,x is

isomorphic to the product of finitely many copies of the additive group Ga,x

and the map Z0
0,x → Θ

(R)
x is an etale isogeny.

Problem 3. Prove an analogous result for schemes over a discrete valuation
rings with perfect residue field.

Theorem 2.8 has the following application to the filtration by ramification
groups in the equal characteristic case.

Let K be a complete discrete valuation field of characteristic p > 0 and
assume that the residue field F has a finite p-basis. Let Ω1

OK
(log) denote the

OK-submodule of the K-vector space Ω1
K generated by Ω1

OK
and d log π for a

prime element π of K. By abuse of notation, let Ω1
F (log) denote the F -vector

space Ω1
OK

(log)⊗OK
F . Then, we have an exact sequence 0→ Ω1

F → Ω1
F (log)

res
→

F → 0 of F -vector spaces of finite dimension. We extend the normalized discrete
valuation v of K to a separable closure K̄ and, for a rational number r, we put
m

r
K̄

= {a ∈ K̄ | v(a) ≥ r} and m
r+
K̄

= {a ∈ K̄ | v(a) > r}. The F̄ -vector space

m
r
K̄
/mr+

K̄
is of dimension 1.

Corollary ([5, Theorem 2.15], [38, Theorem 1.24, Corollary 1.25]). Let K be a
complete discrete valuation field of characteristic p > 0 and L be a finite Galois
extension of Galois group G. Then, for a rational number r > 0, the graded
quotient GrrlogG = Gr

log/G
r+
log is abelian and killed by p.

If F has a finite p-basis, there exists a canonical injection

Hom(GrrlogG,Fp)→ HomF̄ (m
r
K̄/mr+

K̄
,Ω1

F (log)⊗F F̄ ). (22)

For a non-trivial character χ ∈ Hom(GrrlogG,Fp), we call the image rswχ ∈

HomF̄ (m
r
K̄
/mr+

K̄
,Ω1

F (log)⊗F F̄ ) the refined Swan character of χ.
For K of mixed characteristic, one has an analogous result. The proof is

similar but technically more difficult.

Problem 4. Determine the union of the images of the injections (22) for all
finite Galois extensions L ⊂ K̄ over K.

In the classical case where the residue field is perfect, the union is the whole.

Example 2.3 ([25], [7]). We keep the notation in Example 2.1. We define a

canonical map Fmd : Wm+1(K)→ Ω1
K by sending (a0, . . . , am) to ap

m−1
0 da0 +

· · · + dam. It maps FnWm+1(K) to FnΩ1
K = m

−n
K Ω1

OK
(log) for n ∈ Z and

induces an injection

GrnH1(K,Z/pm+1Z)→ GrnΩ1
K = HomF (m

n
K/mn+1

K ,Ω1
F (log)) (23)

for n > 0.
Let L be a cyclic extension of degree pm+1 corresponding to a char-

acter χ ∈ H1(K,Z/pm+1Z). The smallest integer n ≥ 0 such that χ ∈
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FnH1(K,Z/pm+1Z) is called the conductor of χ and is equal to the small-
est rational number r such that the ramification of L is bounded by r+. The
character is ramified if and only if the conductor is > 0. For a ramified charac-
ter χ of conductor n > 0, the image of the class of χ by the injection (23) in
HomF (m

n
K/mn+1

K ,Ω1
F (log)) ⊂ HomF̄ (m

n
K̄
/mn+

K̄
,Ω1

F (log) ⊗F F̄ ) is the refined
Swan character rswχ.

2.3. Characteristic cycles. We keep the notation in Section 2.2 that
X is a separated smooth scheme of dimension d over a perfect field k of char-
acteristic p > 0 and U = X \ D is the complement of a divisor with simple
normal crossings. For each irreducible component Di of D, let ξi be the generic
point of Di and Ki = Frac ÔX,ξi be the local field. Recall that, for a divisor
R =

∑
i riDi with rational coefficients ri ≥ 0, we have a cartesian diagram

U
j

//

��

X

δ(R)

��

U ×k U
j(R)

// (X ∗k X)(R).

For a smooth sheaf on U , we make a definition similar to Definition 2.5. As
a coefficient ring Λ, we consider a ring finite over Z/`nZ, Z` or Q` for a prime
number ` 6= char k as in Section 1.2.

Definition 2.9 ([38, Definition 2.19]). Let F be a smooth sheaf of Λ-modules on
U and we put H0 = Hom(pr∗2F , pr

∗
1F) on U×kU . We say that the ramification

of F is bounded by R+ if the identity idF is in the image of the base change
map

Γ(X, δ(R)∗j
(R)
∗ H0)→ Γ(X, j∗End(F)) = End(F). (24)

The following is an immediate consequence of Definition.

Lemma 2.10. The following conditions are equivalent:

(1) The ramification of F is bounded by R+.

(2) The base change map δ(R)∗j
(R)
∗ H0 → j∗End(F) is an isomorphism.

Example 2.4 ([6, Proposition 4.2.2]). Let F be a smooth sheaf of rank 1
corresponding to a character χ : π1(U)ab → Λ×. For each irreducible component
Di, letKi be the local field and ni be the conductor of the p-part of the character
χi : G

ab
Ki
→ Λ×. We put R =

∑
i niDi. Then, the ramification of F is bounded

by R+. Further, j
(R)
∗ H0 is a smooth sheaf of Λ-modules of rank 1 on (X∗kX)(R).

For a component with ri > 0, the restriction of j
(R)
∗ H0 to the fiber Θ

(R)
ξi

is the
Artin-Schreier sheaf defined by the refined Swan character rswχi regarded as a

linear form on Θ
(R)
ξi

.
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In the remaining part of the article, we present a computation of the char-
acteristic class C(j!F) ∈ H2d(X,Λ(d)) for a smooth `-adic sheaf F on U whose
ramification is bounded by R+ using the geometric ramification theory under a
certain assumption. We assume that the coefficients of R =

∑
i riDi are integral

for simplicity. For the general case, we refer to [38, Section 3].
For each irreducible component Di of D such that ri > 0, we consider the

`-adic representation Mi of the local field Ki = Frac ÔX,ξi defined by F . By
the assumption that the ramification of F is bounded by R+, the subgroup
Gri+

Ki,log
acts trivially on Mi. We assume the following condition:

• The Gri
Ki,log

-fixed part of Mi is 0.

This condition means that, for each irreducible component, the wild ramifi-
cation of F at the generic point is homogeneous. The restriction to Gri

Ki,log
is

then decomposed as the sum Mi|Gri
Ki,log

=
⊕

j χ
⊕mij

ij of non-trivial characters of

GrrilogGKi
. By the assumption that ri is an integer, the refined Swan character

defines a non-trivial F i-linear homomorphism

rsw χij : m
ri
Ki

/mri+1
Ki
⊗Fi

F i → Ω1
X(logD)ξi ⊗ F i,

where Fi = κ(ξi) is the function field of Di. Let Eij be a finite extension of Fi

such that rsw χij is defined and let Tij be the normalization of Di in Eij .
We assume further the following condition:

(C) The refined Swan character rsw χij defines a locally splitting injection

rsw χij : OX(−R)⊗OX
OTij

→ Ω1
X(logD)⊗OX

OTij
.

This condition says that for each irreducible component, the wild ramification
of F is controlled at the generic point. In the rank one case, the condition (C)
is called the cleanness condition and studied in [28]. The key ingredient in the
proof of the following computation is Theorem 2.8.

Proposition 2.11 ([38, Corollary 3.3]). Assume the condition (C) above is
satisfied. Let π(R) : (X ∗k X)(R) → X ×k X denote the canonical map. We
put H0 = Hom(pr∗2F , pr

∗
1F) on U ×k U and H = RHom(pr∗2j!F , Rpr!1j!F) on

X ×k X. We regard the identity idF as an element of H0
X(X ×k X,H) and of

H0(X, δ(R)∗j
(R)
∗ H0) by the isomorphisms End(j!F)→ H0

X(X×kX,H) (6) and

H0(X, δ(R)∗j
(R)
∗ H0)→ End(F) (24).

Then, the image of the identity idF by the pull-back map

H0
X(X ×k X,H) −→ H2d

π(R)−1(X)((X ∗k X)(R), j
(R)
∗ H0(d))

is equal to the image of the cup-product [X]∪idF ∈ H2d
X ((X∗kX)(R), j

(R)
∗ H0(d))

of the cycle class [X] ∈ H2d
X ((X ∗kX)(R),Λ(d)) with idF ∈ H0(X, δ(R)∗j

(R)
∗ H0).
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Corollary ([38, Theorem 3.4]). For the characteristic class, we have an equality

C(j!F) = rank F · (X,X)(X∗kX)(R) .

Consequently, if X is proper, we have

χc(Uk̄,F) = rank F × deg(X,X)(X∗kX)(R) .

We keep the assumptions and define the characteristic cycle in order to
describe the computation in Corollary more geometric terms. We call the vec-
tor bundle over X defined by the symmetric OX -algebra of the dual module
Ω1

X(logD)∗ the logarithmic cotangent bundle T ∗X(logD). Let L denote the
line bundle over X defined by the symmetric OX -algebra of OX(R). By the
condition (C), the refined Swan character rsw χij defines a linear map

rij : L×X Tij → T ∗X(logD)×X Tij .

We define the characteristic cycle CC(F) by

CC(F) = (−1)d


rank F · [X] +

∑

i

∑

j

mij

[Eij : Fi]
pr1∗rij∗[L×X Tij ]




as a dimension d-cycle of T ∗X(logD). In the first term of the right hand side,
[X] denotes the class of the 0-section. In the second term, pr1∗rij∗[L ×X Tij ]
denote the image of the class [L ×X Tij ] by the composition L ×X Tij →
T ∗X(logD) ×X Tij → T ∗X(logD). The reason why the characteristic cycle
defined above is determined by points of codimension 1 is the condition (C).

As a consequence of Corollary, we have the following.

Theorem 2.12 ([38, Theorem 3.7]). Assume the condition (C).

1. The characteristic class C(j!F) is equal to the pull-back by the 0-section
0: X → T ∗X(logD) of the cycle class of the characteristic cycle CC(F):

C(j!F) = 0∗[CC(F)].

2. Assume further that X is proper. Then the Euler number χc(Uk̄,F) is
equal to the intersection number of the 0-section with the characteristic
cycle:

χc(Uk̄,F) = (X,CC(F))T∗X(logD).

Problem 5. Find an intrinsic definition of the characteristic cycle.
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mologique des faisceaux d’ensembles et des faisceaux de groupes non commutatifs,
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Abstract

A fundamental problem in the area of quantum chaos is to understand the
distribution of high eigenvalue eigenfunctions of the Laplacian on certain Rie-
mannian manifolds. A particular case which is of interest to number theorists
concerns hyperbolic surfacess arising as a quotient of the upper half-plane by
a discrete “arithmetic” subgroup of SL2(R) (for example, SL2(Z), and in this
case the corresponding eigenfunctions are called Maass cusp forms). In this
case, Rudnick and Sarnak have conjectured that the high energy eigenfunctions
become equi-distributed. I will discuss some recent progress which has led to
a resolution of this conjecture, and also on a holomorphic analog for classical
modular forms

Mathematics Subject Classification (2010). Primary 11F11, 11F67, 11M99,

11N64.

Keywords. Quantum unique ergodicity, modular surface, Hecke operators, sub-

convexity problem, L-functions, multiplicative functions, sieve methods.

1. Introduction

Given a Riemannian manifold, it is of great interest to study the behavior of
eigenfunctions of the Laplacian in the limit as the eigenvalue tends to infin-
ity. In particular if the eigenvalue is large, we may ask if the L2-mass of the
eigenfunction is spread out evenly over the manifold, or if it can accumulate
in sub-regions. A general result of Shnirelman [47], Colin de Verdiere [2], and
Zelditch [53] states that when the geodesic flow (which corresponds to the clas-
sical dynamics on this space) is ergodic, a typical eigenfunction of large eigen-
value does get evenly distributed (more precisely, one has equidistribution for
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a density one subsequence of eigenfunctions). This result is known as quantum
ergodicity, and one is led to wonder if every eigenfunction gets equi-distributed
in the large eigenvalue limit; more precisely, what are the possible weak-∗ limits
of the eigenfunctions? This problem is known as quantum unique ergodicity. A
recent result of Hassell [17] shows that in the case of “stadium billiards” the
answer is negative.

In contrast, for (strictly) negatively curved compact manifolds (where the
geodesic flow is chaotic) Rudnick and Sarnak [41] have conjectured that QUE
holds. In this generality, the conjecture remains wide open, but recently Anan-
tharaman [1] made significant progress by showing that any limiting measure
must have positive entropy.

The QUE conjecture has been established for a class of manifolds arising
in number theory, and our aim in this article is to describe some of these
developments; for other accounts see [32], [35], [43] and [44]. Specifically let us
consider the surfaces Γ\H of constant negative curvature, where H denotes the
upper half-plane, and Γ a discrete subgroup of SL2(R) with the quotient having
finite area. The proto-typical example of an arithmetic group is Γ = SL2(Z)
and we shall focus largely on this case. Note here that the quotient SL2(Z)\H
is not compact, but of finite area; recall that the area measure on H is given
by dx dy

y2 , and that a fundamental domain for SL2(Z)\H is the region {z =

x + iy : −1/2 < x ≤ 1/2, |z| ≥ 1} (with the additional constraint that x ≥ 0
if |z| = 1) which has area π/3. Other examples of arithmetic surfaces are the
quotients of congruence subgroups of SL2(Z), or the quotients of groups arising
from quaternion algebras (and these quotients are compact). The distinguishing
feature of these arithmetic surfaces (and which is responsible for the success in
this case) is the presence of a large family of commuting, self-adjoint operators
known as the Hecke operators.

The spectrum of the hyperbolic Laplacian ∆ = −y2( d2dx2 + d2

dy2 ) acting on

Γ\H falls into three types: the constant function, unitary Eisenstein series
E(z, 12 + it) with t ∈ R (these are not in L2 and constitute the continuous
spectrum), and a discrete spectrum of Maass forms φ. The Maass forms are
square-integrable and decay rapidly at infinity. The existence of Maass forms is
not evident, but the Selberg trace formula demonstrates this, and also counts
the number of Maass forms with eigenvalue up to T . Given a Maass form φ
of eigenvalue λ normalized to have

∫

Γ\H
|φ(z)|2 dx dyy2 = 1 we denote by µφ(z)

the measure |φ(z)|2 dx dyy2 . Quantum ergodicity (see [54]) tells us that for typical
eigenfunctions φ, as λ → ∞ the measures µφ tend to the uniform distribution

measure 3
π
dx dy
y2 . The Rudnick-Sarnak QUE conjecture asserts that this holds

for every sequence of eigenfunctions; that is, no other weak-∗ limit is possible.
One can also formulate a version of QUE for the Eisenstein series E(z, 12 + it)
and this was established by Luo and Sarnak [34] and by Jakobson [29] for a
stronger lifted version on SL2(Z)\H.

The space of functions on Γ\H has a natural inner product, the Petersson
inner product, given by 〈f, g〉 =

∫

Γ\H
f(z)g(z)dx dyy2 . For each natural number
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n, the arithmetic surface Γ\H has a Hecke operator Tn defined by

(Tnf)(z) =
1√
n

∑

ad=n

∑

b (mod d)

f

(

az + b

d

)

.

These Hecke operators satisfy TmTn =
∑

d|(m,n) Tmn/d2 , so that they commute,
and are self-adjoint with respect to the Petersson inner product. The unitary
Eisenstein series E(z, 12 + it) are eigenfunctions of all the Hecke operators, and
we may also diagonalize the space of Maass forms to get a basis of eigenfunc-
tions for all Hecke operators. We call such eigenfunctions Hecke-Maass forms.
Numerical experiments suggest that the spectrum of the Laplacian on Γ\H is
simple, so that every Maass form would automatically be an eigenfunction of
all Hecke operators, but this is very far from being known. From the point of
view of number theory, in studying QUE for Γ\H it is natural to restrict to
Hecke-Maass forms, and it is this problem that has now been solved.

Lindenstrauss [31] made great progress towards QUE for Hecke-Maass
forms. He considers micro-local lifts of the Hecke-Maass forms to the unit tan-
gent bundle SL2(Z)\SL2(R), and these lifts are known to be approximately
invariant under the geodesic flow. Using results from measure rigidity, he then
shows that the only possible limiting measures are of the form 3

π c
dx dy
y2 (re-

stricting ourselves to the modular surface SL2(Z)\H; Lindenstrauss’s result
holds for the larger space SL2(Z)\SL2(R)) where 0 ≤ c ≤ 1. In other words,
the measures get equi-distributed except for the possibility that some of the
mass escapes into the cusp at infinity. Recently I showed [49] that escape of
mass is not possible here, so that c = 1, and the proof of QUE for Hecke-Maass
forms on SL2(Z)\H is complete. It is conceivable that QUE fails for a different
basis of Maass forms, but as noted before that seems unlikely.

Theorem 1. For any sequence of L2-normalized Hecke-Maass eigenforms φj,

the measures |φj |2 dx dy
y2 tend weakly to the measure 3

π
dx dy
y2 as the Laplace eigen-

value of φj tends to infinity.

In addition to the Maass forms discussed above, the complex structure of H
allows for a rich theory of holomorphic functions which transform nicely under
the action of SL2(Z). The classical theory of modular forms of weight k (an
even positive integer) considers holomorphic functions f : H → C satisfying

f(γz) = (cz + d)kf(z) for all γ =

(

a b
c d

)

∈ SL2(Z). If we also require f

to be holomorphic and decay rapidly “at the cusp at infinity” then we get the
theory of cusp forms. The most famous example of a cusp form is Ramanujan’s
∆-function given by

∆(z) = q

∞
∏

n=1

(1− qn)24, q = e2πiz.

The space of cusp forms of weight k comes equipped with an inner prod-
uct: 〈f, g〉k =

∫

Γ\H
ykf(z)g(z)dx dyy2 . Normalizing a cusp form to have L2 norm
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‖f‖2 = 〈f, f〉k = 1, we may ask whether the holomorphic analog of QUE
holds: that is, whether the measure µf := yk|f(z)|2 dx dyy2 tends to the equi-

distribution measure 3
π
dx dy
y2 . Here we see that some care must be taken: The

space Sk(SL2(Z)) of cusp forms of weight k for SL2(Z) is a vector space of
dimension about k/12, and contains elements such as ∆(z)k/12 (if 12|k, and
where ∆ is Ramanujan’s cusp form given above) for which the measure will not
tend to uniform distribution. Therefore one must restrict attention to a partic-
ular basis of cusp forms, and it is natural to consider the basis of eigenfunctions
of all the Hecke operators. Analogously to the Maass form case we may define
the n-th Hecke operator acting on modular forms of weight k by

(Tnf)(z) =
1

n
k+1

2

∑

ad=n

ak
∑

b (mod d)

f

(

az + b

d

)

.

The Hecke operators commute, with TmTn =
∑

d|(m,n) Tmn/d2 , and are self-
adjoint with respect to the Petersson inner product. Thus we may choose a
basis for the space of cusp forms of weight k consisting of eigenfunctions for all
the Hecke operators.

The Rudnick-Sarnak conjecture in this context states that as k → ∞, for
every Hecke eigencuspform f the measure µf tends to the uniform distribution
measure. Luo and Sarnak [33] have shown that equidistribution holds for most
Hecke eigenforms, and Sarnak [42] has shown that it holds in the special case
of dihedral forms (these are not present for SL2(Z) but arise in the case of con-
gruence subgroups). There seems to be no apparent way to define a microlocal
lift of a holomorphic form with invariance under the geodesic flow, and so it
does not seem clear how to adapt Lindenstrauss’s method to the holomorphic
setting.

Theorem 2. For any sequence of L2-normalized Hecke eigencusp forms f of

weight k, the measures µf = yk|f(z)|2 dx dy
y2 tend weakly to 3

π
dx dy
y2 as k → ∞.

The proof of this holomorphic analog of QUE combines two different ap-
proaches developed independently by Holowinsky [23] and Soundararajan [50].
At their heart, both approaches rely on an understanding of mean-values of
multiplicative functions. Either of these approaches is capable of showing that
there are very few possible exceptions to the conjecture, and under reasonable
hypotheses either approach would show that there are no exceptions. However,
it seems difficult to show unconditionally that there are no exceptions using
just one of these approaches. Fortunately, as we shall explain below, the two
approaches are complementary, and the few rare cases that are untreated by
one method fall easily to the other method. Both approaches use in an essential
way that the Hecke eigenvalues of a holomorphic eigencuspform satisfy the Ra-
manujan conjecture which was established by Deligne. Deligne’s theorem tells
us that the eigenvalues of the Hecke operator Tp (for a prime p) are bounded in
magnitude by 2. The Ramanujan conjecture remains open for Maass forms, and
this is the (only) barrier to using our methods in the non-holomorphic setting.
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While the holomorphic analog of QUE does not have an interpretation in
terms of quantum versus classical dynamics, it does imply a striking corol-
lary on the distribution of zeros of modular forms. A cusp form of weight k
has about k/12 zeros inside a fundamental domain. How are these zeros dis-
tributed? If we take a large power of Ramanujan’s ∆ function, then there is
only one zero of multiplicity k/12 at the cusp at ∞. However, if the L2-mass
of f is equidistributed on the fundamental domain, then Rudnick [40] (see also
the work of Schiffman and Zelditch [45], and Nonnenmacher and Voros [39]
in related contexts) showed that the zeros are also equidistributed (with the
measure 3

π
dx dy
y2 ). In particular, Theorem 2 implies the following corollary.

Corollary 1. The zeros of a Hecke eigencusp form of large weight k are equi-

distributed inside a fundamental domain with respect to the measure 3
π
dx dy
y2 .

2. Spectral Expansions, and Expansions into

Incomplete Eisenstein and Poincare Series

Let h denote a smooth bounded function on X = SL2(Z)\H. Considering h
as fixed, the holomorphic Rudnick-Sarnak conjecture asserts that for a Hecke
eigencuspform f of weight k (normalized to have L2-norm 1) we have

∫

X

yk|f(z)|2h(z)dx dy
y2

→ 3

π

∫

X

h(z)
dx dy

y2
, (1)

as k → ∞ with the rate of convergence depending on the function h. To attack
the conjecture (1), it is convenient to decompose the function h in terms of a
basis of smooth functions on X. There are two natural ways of doing this, and
both decompositions play important roles in the proof of the Rudnick-Sarnak
conjecture.

First, we could use the spectral decomposition of a smooth function on
X in terms of eigenfunctions of the Laplacian. The spectral expansion will
involve (i) the constant function

√

3/π, (ii) Maass cusp forms φ that are also
eigenfunctions of all the Hecke operators, and (iii) Eisenstein series on the 1

2
line. Recall that the Eisenstein series is defined for Re(s) > 1 by

E(z, s) =
∑

γ∈Γ∞\Γ

Im(γz)s,

where Γ = SL2(Z) and Γ∞ denotes the stabilizer group of the cusp at infinity
(namely the set of all translations by integers). The Eisenstein series E(z, s)
admits a meromorphic continuation, with a simple pole at s = 1, and is analytic
for s on the line Re(s) = 1

2 . For more on the spectral expansion see Iwaniec’s
book [25].

Note that (1) is trivial when h is the constant eigenfunction. To establish
(1) using the spectral decomposition, we would need to show that for a fixed
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Maass eigencuspform φ, and for a fixed real number t that
∣

∣

∣

∣

∫

X

yk|f(z)|2φ(z)dx dy
y2

∣

∣

∣

∣

, and

∣

∣

∣

∣

∫

X

yk|f(z)|2E(z, 12 + it)
dx dy

y2

∣

∣

∣

∣

tend to 0 as k → ∞. The above statement should be thought of as an analog of
Weyl’s equidistribution criterion. The two inner products above may be related
to special values of certain L-functions, and we shall discuss this connection in
the next section.

Alternatively, one could expand the function h in terms of incomplete
Poincare and Eisenstein series. Let ψ denote a smooth function, compactly
supported in (0,∞). For an integer m the incomplete Poincare series is defined
by

Pm(z | ψ) =
∑

γ∈Γ∞\Γ

e(mγz)ψ(Im(γz)).

In the special case m = 0 we obtain incomplete Eisenstein series E(z | ψ) =
P0(z | ψ). By taking a Fourier expansion of h(x + iy) for each fixed value of
y we may approximate h using incomplete Poincare and Eisenstein series; for
details see Luo and Sarnak [34]. Now conjecture (1) can be reformulated (again
analogously to Weyl’s equidistribution criterion) as saying that as k → ∞

∣

∣

∣

∣

∫

X

yk|f(z)|2Pm(z | ψ)dx dy
y2

∣

∣

∣

∣

→ 0,

for m 6= 0 (considered to be fixed), and any given smooth function ψ. In the
case m = 0 we want that

∫

X

yk|f(z)|2E(z | ψ)dx dy
y2

→ 3

π

∫

X

E(z, ψ)
dx dy

y2
,

for any fixed ψ and as k → ∞. The Rankin-Selberg unfolding method can
be used to handle these inner products. For example the inner product with
Poincare series (for m 6= 0) was related by Luo and Sarnak [33] to the problem
of estimating the shifted convolution sums (for m fixed, and as k → ∞)

∑

n�k

λf (n)λf (n+m),

where the sum is over n of size k, and λf (n) denotes the n-th Hecke eigenvalue
of f . We will discuss the inner products with these incomplete Poincare and
Eisenstein series in more detail in section 4.

3. Relation to L-functions and the

Subconvexity Problem

In the approach to the Rudnick-Sarnak conjecture via a spectral expansion, we
need to estimate the inner products of yk|f(z)|2 with fixed Hecke-Maass form
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φ, and Eisenstein series E(·, 12 + it) with t fixed. Both these inner products are
related to L-functions; the latter being a classical result of Rankin and Selberg,
and the former a recent result given explicitly by Watson [51].

Let λf (n) denote the n-th Hecke eigenvalue of the cusp form f . For a prime
number p we may write the Hecke eigenvalue λf (p) as αf (p)+βf (p) where αf (p)
and βf (p) are complex numbers satisfying αf (p)βf (p) = 1 and, by Deligne’s
theorem, |αf (p)| = |βf (p)| = 1. The L-function associated to f is then

L(s, f) =

∞
∑

n=1

λf (n)

ns
=
∏

p

(

1− αp
ps

)−1(

1− βp
ps

)−1

,

where the series and product above are absolutely convergent in σ > 1, and
L(s, f) extends analytically to C with a functional equation connecting the
values at s and 1 − s. Of greater importance for us is the related symmetric
square L-function which is given by

L(s, sym2f) =

∞
∑

n=1

λ
(2)
f (n)

ns
=
∏

p

(

1−
α2
p

ps

)−1
(

1− 1

ps

)−1
(

1−
β2
p

ps

)−1

.

The series and product above converge absolutely in Re(s) > 1, and by the
work of Shimura [46], we know that L(s, sym2f) extends analytically to the
entire complex plane, and satisfies the functional equation

Λ(s, sym2f) = ΓR(s+ 1)ΓR(s+ k − 1)ΓR(s+ k)L(s, sym2f)

= Λ(1− s, sym2f),

where ΓR(s) = π−s/2Γ(s/2). The symmetric square L-function appears natu-
rally when we normalize the cusp form f to have L2-norm 1. Recall that f has
a Fourier expansion

f(z) = C
∞
∑

n=1

λf (n)n
k−1

2 e(nz),

where C is a positive constant which is chosen so as to make the L2 norm of f
equal to 1. This constant C is then related to the symmetric square L-function
by

|C|2 =
(4π)k−1

Γ(k)

2π2

L(1, sym2f)
.

Now we return to the inner products of yk|f(z)|2 with Eisenstein series and
Maass forms. In the former case of the classical “unfolding method” of Rankin
and Selberg (starting with E(z, s) in the domain of absolute convergence, and
extending to s = 1/2 + it by analytic continuation) leads to
∣

∣

∣

∣

∣

∫

Γ\H

yk|f(z)|2E(z, 12 + it)
dx dy

y2

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

π
3
2
ζ( 12 + it)L( 12 + it, sym2f)

ζ(1 + 2it)L(1, sym2f)

Γ(k − 1
2 + it)

Γ(k)

∣

∣

∣

∣

∣

.
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Since |Γ(k − 1
2 + it)| ≤ Γ(k − 1

2 ), |ζ( 12 + it)| � (1 + |t|) 1
4 , and |ζ(1 + 2it)| �

1/ log(1 + |t|), using Stirling’s formula it follows that

∣

∣

∣

∣

∣

∫

Γ\H

yk|f(z)|2E(z, 12 + it)
dx dy

y2

∣

∣

∣

∣

∣

� (1 + |t|)2|L( 12 + it, sym2f)|
k

1
2L(1, sym2f)

.

The works of Hoffstein and Lockhart [21] and Goldfeld, Hoffstein and Lieman [8]
establish a classical zero free region for the symmetric square L-function. Fur-
ther, their work shows that the denominator above, L(1, sym2f), is� 1/(log k).
Hence the inner product with Eisenstein series tends to zero provided we can
establish an upper bound for |L( 12 + it, sym2f)| which is better than k

1
2 / log k.

This is a special case of the general problem of bounding L-functions on
the critical line. This problem has a long history, going back to work of Weyl,
Hardy and Littlewood in the case of the Riemann zeta-function. In general one
has a bound for L-functions of the form � C

1
4 , where C is an object called

the analytic conductor which measures the complexity of the L-function. Such
a bound is called the convexity bound; usually the convexity bound is stated
as � C

1
4
+ε, and the refined bound we have stated is a recent observation

of Heath-Brown [18]. For example, for the zeta-function the convexity bound

states that |ζ( 12 + it)| � |t| 14 and the work of Weyl-Hardy-Littlewood furnished

improvements over this, leading for example to |ζ( 12 + it)| � |t| 16 . Here the
truth is expected to be the Lindelöf bound |ζ( 12 + it)| � |t|ε, and this bound is
a consequence of the Riemann hypothesis. The problem of obtaining a bound
for L-values of the shape C

1
4
−δ for some δ > 0 is known as the subconvexity

problem, and is an important outstanding problem in number theory. The sub-
convexity problem is now resolved for L-functions arising from GL(1) or GL(2),
and a handful of other cases, but in general the problem is wide open. One of
the most striking applications of subconvexity is to the problem of representing
integers by ternary quadratic forms (see [3]). We refer the reader to [28], [36],
and [37] for comprehensive accounts on the subconvexity problem.

Returning to the case at hand, we need a bound for |L( 12 + it, sym2f)| and
the analytic conductor for this L-function is about (1 + |t|)3k2. The convexity

bound gives |L( 12 + it, sym2f)| � k
1
2 (1 + |t|) 3

4 . Using this in our inner product
with Eisenstein series, we realize that this is barely insufficient to show that
decay of this inner product, and any subconvexity bound would be sufficient.
The Generalized Riemann Hypothesis implies such a bound (in fact that the L-
value is � kε(1+ |t|)ε), but unconditionally subconvexity for symmetric square
L-functions is not known. Recently, X. Li [30] obtained a subconvexity bound
for k fixed and t → ∞, but for our application we want the opposite case of t
fixed and k → ∞. For a general class of L-functions, I established recently a
weak subconvexity bound (described in §5) which implies that

|L( 12 + it, sym2f)| � k
1
2 (1 + |t|) 3

4

(log k)1−ε
. (2)
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Since we only know that L(1, sym2f) � 1/ log k we see that weak subcon-
vexity also fails (now only by (log k)ε) to show the decay of inner products
with Eisenstein series. However one can show that L(1, sym2f) is very rarely
less than (log k)−δ for any δ > 0 (there are at most Kε exceptional Hecke
eigenforms with weight below K), and so for the vast majority of cases weak
subconvexity suffices. On GRH we also know that L(1, sym2f) � 1/ log log k,
but improving lower bounds for L-functions on the 1-line unconditionally is
a very difficult problem connected with widening the zero-free region for that
L-function (and so quite likely harder than subconvexity!).

Now let us turn to the inner product with a fixed Hecke-Maass cusp form.
Let φ denote a fixed Hecke-Maass cusp form with Laplace eigenvalue λφ =
1
4 + t

2
φ, and normalized to have L2 norm 1. In exact analogy with the Eisenstein

series case, a deep and beautiful formula of Tom Watson (see Theorem 3 of
[51]) shows that

∣

∣

∣

∣

∣

∫

Γ\H

yk|f(z)|2φ(z)dx dy
y2

∣

∣

∣

∣

∣

2

=
1

8

L∞( 12 , f × f × φ)L( 12 , f × f × φ)

Λ(1, sym2f)2Λ(1, sym2φ)

where L(s, f × f × φ) is the triple product L-function and L∞ denotes its
Gamma factors, whose definitions we give below. Also, in the formula above we
have set

Λ(s, sym2f) = ΓR(s+ 1)ΓR(s+ k − 1)ΓR(s+ k)L(s, sym2f),

and

Λ(s, sym2φ) = ΓR(s)ΓR(s+ 2itφ)ΓR(s− 2itφ)L(s, sym
2φ).

Recall that we wrote the p-th Hecke eigenvalue of f as αf (p)+ βf (p) where
αf (p)βf (p) = 1 and |αf (p)| = |βf (p)| = 1. Similarly write the p-th Hecke
eigenvalue of φ as αφ(p) + βφ(p) where αφ(p)βφ(p) = 1, but we do not know
here the Ramanujan conjecture that these are both of size 1. The triple product
L-function L(s, f × f × φ) is then defined by means of the Euler product of
degree 8 (absolutely convergent in Re(s) > 1)

∏

p

(

1− αf (p)
2αφ(p)

ps

)−1(

1− αφ(p)

ps

)−2(

1− βf (p)
2αφ(p)

ps

)−1

×
(

1− αf (p)
2βφ(p)

ps

)−1(

1− βφ(p)

ps

)−2(

1− βf (p)
2βφ(p)

ps

)−1

.

This L-function is not primitive and factors as L(s, φ)L(s, sym2f × φ). The
archimedean factor L∞(s, f ×f ×φ) is defined as the product of eight Γ-factors

∏

±

ΓR(s+ k − 1± itφ)ΓR(s+ k ± itφ)ΓR(s± itφ)ΓR(s+ 1± itφ).
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The work of Garrett [6] shows that the completed L-function L(s, f × f ×
φ)L∞(s, f × f ×φ) is an entire function in C, and its value at s equals its value
at 1− s.

Using Stirling’s formula we deduce that

∣

∣

∣

∣

∣

∫

Γ\H

yk|f(z)|2φ(z)dx dy
y2

∣

∣

∣

∣

∣

2

�φ

L( 12 , f × f × φ)

kL(1, sym2f)2
.

Now the analytic conductor of L( 12 , f × f × φ) is about k4, and again we see
that the convexity bound (�φ k) is insufficient to show that the triple product
above tends to zero, but any subconvexity bound would suffice. In particular
GRH again gives that these triple products tend to zero as k → ∞, and the
Rudnick-Sarnak conjecture is thus implied by GRH. In this case also we have
a weak subconvexity bound

L
(

1
2 , f × f × φ

)

�φ,ε
k

(log k)1−ε
(3)

and so if L(1, sym2f) ≥ (log k)−
1
2
+δ for some δ > 0 then we would be done.

Such a bound holds in all but a very small number of exceptional cases, but
establishing such a lower bound in all cases seems extremely difficult: even for
the zeta-function we only know that |ζ(1+it)| � (log |t|)− 2

3
−ε, and the methods

of Vinogradov that achieve this are unavailable for general L-functions.

4. Inner Products with Poincare Series and the

Shifted Convolution Problem

Now we turn to the approach to the Rudnick-Sarnak conjecture via incom-
plete Eisenstein and Poincaré series. First let us consider the inner product of
yk|f(z)|2 with the Poincaré series Pm(z | ψ) where m 6= 0 is fixed. This inner
product can be evaluated by the Rankin-Selberg unfolding method, and this
was carried out by Luo and Sarnak [33]. We have (recall X = SL2(Z)\H)
∫

X

yk|f(z)|2Pm(z | ψ)dx dy
y2

=

∫

X

yk|f(z)|2
∑

γ∈Γ∞\Γ

e(mγz)ψ(Im(γz))
dx dy

y2

=

∫ 1

0

∫ ∞

0

yk|f(z)|2ψ(y)e(mz)dxdy
y2

and by Parseval this equals

C2
∞
∑

r=1

λf (r)λf (r +m)(r(m+ r))
k−1

2

∫ ∞

0

yk−1ψ(y)e−4π(r+m)y dy

y
,

where we set the Hecke eigenvalues at negative integers to be zero.
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Now it is easy to analyze the integral over y above. The term yk−1e−4π(r+m)y

attains its maximum for y = (k−1)/(4π(r+m)), and is sharply peaked at that
maximum. Note also that

∫∞

0
yk−1e−4π(r+m)y dy

y = (4π(r+m))−(k−1)Γ(k− 1).

From these remarks, and using from §3 the formula for |C|2, we obtain that the
inner product with Pm(z | ψ) is

∼ 2π2

(k − 1)L(1, sym2f)

∑

r≥1

(

r

r +m

)
k−1

2

λf (r)λf (r +m)ψ

(

k − 1

4π(r +m)

)

.

Since ψ is a fixed smooth function compactly supported in (0,∞) we may
think of the above sum as essentially being

1

kL(1, sym2f)

∑

r�k

λf (r)λf (r +m),

where r runs over a range of values of size k. Finding cancellation in such sums
is known as the shifted convolution problem. If m 6= 0 then we expect that the
terms λf (r) and λf (r+m) behave independently and cancel out on average. If
that were so, then we would reach the desired conclusion that the triple product
with Poincare series tends to zero. For fixed m and k, and as x→ ∞ it is known
that there is cancellation in

∑

r≤x λf (r)λf (r +m), however in our case we are
interested in the delicate range where x is of size k, and such cancellation re-
mains unknown. Holowinsky’s ingenious idea is to forego cancellation in shifted
convolution sums, and instead just bound

∑

r�k |λf (r)λf (r +m)|. The insight
is that the Hecke eigenvalues tend to be small in size, and we will explain this
in more detail in §6.

One can also carry out the above argument for m = 0 when we have the
incomplete Eisenstein series E(z | ψ). The only difference is that here we have
a main term to deal with. Here we want to show that
∫

Γ\H

yk|f(z)|2E(z | ψ)dx dy
y2

→ 3

π

∫

Γ\H

E(z | ψ)dx dy
y2

=
3

π

∫ ∞

0

ψ(y)
dy

y2
,

where the equality above follows by unfolding. Arguing as above we find that
the LHS above is

∼ 2π2

(k − 1)L(1, sym2f)

∞
∑

r=1

|λf (r)|2ψ
(

k − 1

4πr

)

,

and so the problem here is to show that

2π2

(k − 1)L(1, sym2f)

∞
∑

r=1

|λf (r)|2ψ
(

k − 1

4πr

)

∼ 3

π

∫ ∞

0

ψ(y)
dy

y2
. (4)

In this context we recall that by Rankin-Selberg theory we have
∑

n≤x

|λf (n)|2 ∼ L(1, sym2f)x,
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for x ≥ k1+ε. This makes our asymptotic above plausible, but just out of reach.
A subconvexity bound for the symmetric square L-function would give our
desired asymptotic, but as noted earlier this remains unknown.

Here Holowinsky introduces an important refinement of evaluating the
above inner product. The idea is to use the Siegel domain {0 ≤ x ≤ 1, y > 1/Y }
for some parameter Y . This Siegel domain contains essentially 3Y/π copies of
the fundamental domain for SL2(Z)\H, and further it is relatively easy to com-
pute inner products on this Siegel domain. In this manner we can reduce the
problem of establishing (4) to proving asymptotics for

∑

n≤x |λf (n)|2 for x
of size kY . In this argument Y will be chosen to be a power of (log k), and
this small extra flexibility allows the use of weak subconvexity to resolve this
problem.

5. Mean Values of Multiplicative Functions and

Weak Subconvexity

We saw in §3 how the Rudnick-Sarnak conjecture is related to obtaining sub-
convex bounds for values of certain L-functions on the critical line. We now give
some of the ideas behind the weak subconvexity result described there. We shall
confine ourselves to the case of the triple product L-function L(s, f × f × φ),
and refer the reader to [50] for the general result.

The class of L-functions covered by weak subconvexity satisfy the standard
properties of having a Dirichlet series, an Euler product, and a functional equa-
tion. In addition to these, we require an assumption on the size of the Dirichlet
series coefficients of our L-function, which we call a weak Ramanujan condi-
tion. From §3 recall that the triple product L-function has an Euler product and
functional equation. To explain the weak Ramanujan condition in this context,
write

−L
′

L
(s, f × f × φ) =

∞
∑

n=1

λ(n)Λ(n)

ns
,

where Λ(n) is the von Mangoldt function, and if n = pk then λ(n) = (αf (p)
k+

βf (p)
k))2(αφ(p)

k + βφ(p)
k) in the notation of §3. The Ramanujan conjecture

for Maass forms gives that |λ(pk)| ≤ 8 for all primes p, but this is not known
and we only have |λ(pk)| ≤ 4|αφ(p)k + βφ(p)

k|, using Deligne’s theorem for the
holomorphic form f . The Rankin-Selberg theory for φ now tells us that there
is a constant Aφ such that for all x ≥ 1 we have

∑

x<n≤ex

|λ(n)|2
n

Λ(n) ≤ A2
φ. (5)

It is this average form of the Ramanujan conjecture that we call a weak Ra-
manujan condition.
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Write L(s, f × f × φ) =
∑∞
n=1 a(n)n

−s. A straightforward argument using
the convexity bound shows that

∑

n≤x

a(n) � x

log x
, (6)

provided x ≥ k2(log k)B for some positive constant B; recall that the analytic
conductor of the triple product L-function was about k4, and more generally
one would have such cancellation for x a little larger than the square-root of
the analytic conductor. Our main idea is to show that similar cancellation holds
even when x = k2(log k)−B for any constant B: For any ε > 0, any positive
constant B, and all x ≥ k2(log k)−B we have

∑

n≤x

a(n) � x

(log x)1−ε
. (7)

The implied constant above may depend on φ, B and ε.

Once (7) is established, (3) will follow from a standard partial summation
argument using an approximate functional equation for L( 12 , f × f × φ). In
(7) and (3), by keeping track of the various parameters involved, it would be
possible to quantify ε. However, the limit of our method would be to obtain a
bound k

1
2 / log k in (3), and x/ log x in (7).

Why does the extrapolation (7) hold? At the heart of its proof is the fact
that mean values of multiplicative functions vary slowly. Knowing (6) in the
range x ≥ k2(log k)B , this fact will enable us to extrapolate (6) to the range
x ≥ k2(log k)−B .

The possibility of obtaining such extrapolations was first considered by
Hildebrand [19], [20]. If g is a multiplicative function, we shall denote by
S(x) = S(x; g) the partial sum

∑

n≤x g(n). Hildebrand [20] showed that if

−1 ≤ g(n) ≤ 1 is a real valued multiplicative function then for 1 ≤ w ≤ √
x

1

x

∑

n≤x

g(n) =
w

x

∑

n≤x/w

g(n) +O

(

(

log
log x

log 2w

)− 1
2

)

. (8)

In other words, the mean value of g at x does not change very much from the
mean-value at x/w. Hildebrand [19] used this idea to show that from knowing

Burgess’s character sum estimates for x ≥ q
1
4
+ε one may obtain some non-

trivial cancellation even in the range x ≥ q
1
4
−ε (we assume for simplicity that

q is cube-free).

Elliott [4] generalized Hildebrand’s work to cover complex valued multiplica-
tive functions with |g(n)| ≤ 1, and also strengthened the error term in (8). No-
tice that a direct extension of (8) for complex valued functions is false. Consider
g(n) = niτ for some real number τ 6= 0. Then S(x; g) = x1+iτ/(1 + iτ) +O(1),
and S(x/w; g) = (x/w)1+iτ/(1 + iτ) +O(1). Therefore (8) is false, and instead
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we have that S(x)/x is close to wiτS(x/w)/(x/w). Building on the pioneer-
ing work of Halasz [13], [14] on mean-values of multiplicative functions, Elliott
showed that for a multiplicative function g with |g(n)| ≤ 1, there exists a real
number τ = τ(x) with |τ | ≤ log x such that for 1 ≤ w ≤ √

x

S(x) = w1+iτS(x/w) +O

(

x

(

log 2w

log x

)
1
19

)

. (9)

In [10], Granville and Soundararajan give variants and stronger versions of (9),
with 1

19 replaced by 1− 2/π − ε.
In order to establish (7), we require similar results when the multiplica-

tive function is no longer constrained to the unit disc. The situation here is
considerably more complicated, and instead of showing that a suitable linear
combination of S(x)/x and S(x/w)/(x/w) is small, we will need to consider
linear combinations involving several terms S(x/wj)/(x/wj) with j = 0, . . ., J .
In order to motivate our main result, it is helpful to consider two illustrative
examples.
Example 1. Let k be a natural number, and take g(n) = dk(n), the k-th
divisor function. Then, it is easy to show that S(x) = xPk(log x)+O(x1−1/k+ε)
where Pk is a polynomial of degree k − 1. If k ≥ 2, it follows that S(x)/x −
S(x/w)/(x/w) is of size (logw)(log x)k−2, which is not o(1). However, if 1 ≤
w ≤ x1/2k, the linear combination

k
∑

j=0

(−1)j
(

k

j

)

S(x/wj)

x/wj
=

k
∑

j=0

(−1)j
(

k

j

)

Pk(log x/w
j) +O(x−

1
2k )

= O(x−
1
2k )

is very small.
Example 2. Let τ1, . . ., τR be distinct real numbers, and let k1, . . ., kR
be natural numbers. Let g be the multiplicative function defined by G(s) =
∑∞
n=1 f(n)n

−s =
∏R
j=1 ζ(s − iτj)

kj . Consider here the linear combination (for

1 ≤ w ≤ x1/(2(k1+...+kR)))

1

x

k1
∑

j1=0

· · ·
kR
∑

jR=0

(−1)j1+...+jR
(

k1
j1

)

· · ·
(

kR
jR

)

wj1(1+iτ1)+...+jR(1+iτR)

× S
( x

wj1+...+jR

)

.

By Perron’s formula we may express this as, for c > 1,

1

2πi

∫ c+i∞

c−i∞

R
∏

j=1

ζ(s− iτj)
kj (1− w1+iτj−s)kjxs−1 ds

s
.

Notice that the poles of the zeta-functions at 1 + iτj have been cancelled by
the factors (1− w1+iτj−s)kj . Thus the integrand has a pole only at s = 0, and
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a standard contour shift argument shows that this integral is � x−δ for some
δ > 0.

Fortunately, it turns out that Example 2 captures the behavior of mean-
values of the multiplicative functions of interest to us. In order to state our
result, we require some notation. For a multiplicative function g we writeG(s) =
∑∞
n=1 g(n)n

−s and we suppose that this series converges absolutely in Re(s) >
1. Moreover we write

−G
′

G
(s) =

∞
∑

n=1

λg(n)Λ(n)

ns
=

∞
∑

n=1

Λg(n)

ns
,

where λg(n) = Λg(n) = 0 unless n is the power of a prime p. In analogy with
the weak Ramanujan hypothesis (5), we suppose that there exists a constant
A such that for all x ≥ 1 we have

∑

x<n≤ex

|λf (n)|2Λ(n)
n

≤ A2. (10)

Let R be a natural number, and let τ1, . . ., τR denote R real numbers. Let
` = (`1, . . . , `R) and j = (j1, . . . , jR) denote vectors of non-negative integers,
with the notation j ≤ ` indicating that 0 ≤ j1 ≤ `1, . . ., 0 ≤ jR ≤ `R. Define

(

`

j

)

=

(

`1
j1

)

· · ·
(

`R
jR

)

.

Finally, we define a measure of the oscillation of the mean-values of g by setting

O`(x,w) = O`(x,w; τ1, . . . , τR)

=
∑

j≤`

(−1)j1+...+jR
(

`

j

)

wj1(1+iτ1)+...+jR(1+iτR)S
( x

wj1+...+jR

)

.

With the above notations, the estimate (7) follows from the following result:
Let X ≥ 10 and 1 ≥ ε > 0 be given. Let R = [10A2/ε2]+1 and put L = [10AR],

and L = (L, . . . , L). Let w be such that 0 ≤ logw ≤ (logX)
1

3R . There exist real
numbers τ1, . . ., τR with |τj | ≤ exp((log logX)2) such that for all 2 ≤ x ≤ X
we have

|OL(x,w; τ1, . . . , τR)| �
x

log x
(logX)ε. (11)

The implied constant above depends on A and ε. In other words, as in Example
2, we can find a linear combination of mean values of g that is guaranteed to
be small.

Before expanding on the result (11), we indicate how (7) follows from it.
Let x0 = k2(log k)B be such that the convexity bound gives cancellation in
∑

n≤x a(n) for x ≥ x0 as mentioned in(6). Let x0 ≥ x ≥ k2/(log k)B , and take

w = x0/x and X = xwLR. Applying (11) to the multiplicative function a(n)
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(note that (5) gives the assumption (10)) we find that for an appropriate choice
of τ1, . . ., τR that

|OL(X,w)| �
X

(logX)1−ε
. (12)

But, by definition, the LHS above is

wLR

∣

∣

∣

∣

∣

∣

∑

n≤X/wLR

a(n)

∣

∣

∣

∣

∣

∣

+O





LR−1
∑

j=0

wj

∣

∣

∣

∣

∣

∣

∑

n≤X/wj

a(n)

∣

∣

∣

∣

∣

∣



 . (13)

Now X/wLR = x, and for 0 ≤ j ≤ LR − 1 we have X/wj ≥ xw = x0 so that
the bound of (6) applies. Therefore (13) equals

wLR

∣

∣

∣

∣

∣

∣

∑

n≤x

a(n)

∣

∣

∣

∣

∣

∣

+O

(

X

logX

)

,

From (12) we conclude that

∣

∣

∣

∣

∣

∣

∑

n≤x

a(n)

∣

∣

∣

∣

∣

∣

� w−LR X

(logX)1−ε
� x

(log x)1−ε
,

which proves (7).
For a general multiplicative function, we cannot hope for any better bound

for the oscillation than x/ log x. To see this, suppose w ≥ 2, and consider
the multiplicative function g with g(n) = 0 for n ≤ x/2 and g(p) = 1 for
primes x/2 < p ≤ x. Then S(x) � x/ log x whereas S(x/wj) = 1 for all
j ≥ 1, and therefore for any choice of the numbers τ1, . . ., τR we would have
OL(x,w) � x/ log x.

Our proof of (11) builds both on the techniques of Halasz (as developed in
[4] and [10]), and also the idea of pretentious multiplicative functions developed
by Granville and Soundararajan (see [11] and [12]). We describe just a couple
of the main ideas used: how the numbers in τj in (11) are defined, and more
generally what is special about mean-values of multiplicative functions?

We start by describing the numbers τj appearing in (11). As suggested
by Example 2 these points correspond to large values of the generating func-
tion G(1 + 1/ logX + it). A precise description is as follows. Write T =
exp((log logX)2), and define τ1 to be that point t in the compact set C1 =
[−T, T ] where the maximum of |G(1 + 1/ logX + it)| is attained. Now remove

the interval (τ1 − (logX)−
1
R , τ1 + (logX)−

1
R ) from C1 = [−T, T ], and let C2

denote the remaining compact set. We define τ2 to be that point t in C2 where
the maximum of |G(1 + 1/ logX + it)| is attained. Next remove the interval

(τ2 − (logX)−
1
R , τ2 + (logX)−

1
R ) from C2 leaving behind the compact set C3.

Define τ3 to be the point where the maximum of |G(1+1/ logX+ it)| for t ∈ C3
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is attained. We proceed in this manner, defining the successive maxima τ1, . . .,
τR, and the nested compact sets C1 ⊃ C2 ⊃ . . . ⊃ CR. Notice that all the points
τ1, . . ., τR lie in [−T, T ], and moreover are well-spaced: |τj − τk| ≥ (logX)−

1
R

for j 6= k.
From the assumption (10) we see that |G(1 + 1/ logX + it)| � (logX)A.

For t ∈ [−T, T ] a much better bound holds for |G(1 + 1/ logX + it)| unless t
happens to be near one of the points τ1, . . ., τR. Precisely, if 1 ≤ j ≤ R and t
is a point in Cj , then

|F (1 + 1/ logX + it)| � (logX)A
√

1/j+(j−1)/(jR). (14)

In particular if t ∈ CR we have |F (1+1/ logX+ it)| � (logX)ε/2. The estimate
(14) is inspired by the ideas in [11] and [12], and a proof may be found in [50].

Finally we indicate very briefly why we may expect mean values of multi-
plicative functions to behave nicely. For simplicity consider a completely mul-
tiplicative function g with |g(n)| ≤ 1. We start with

log x
∑

n≤x

g(n) =
∑

n≤x

g(n) log n+O





∑

n≤x

log x/n



 =
∑

n≤x

g(n) log n+O(x).

Writing log n =
∑

d|n Λ(d) we obtain that

∑

n≤x

g(n) log n =
∑

d≤x

g(d)Λ(d)
∑

m≤x/d

g(m),

so that we deduce

|S(x)| log x ≤
∑

d≤x

Λ(d)|S(x/d)|+O(x),

and by a “partial summation” argument (this needs some elaboration and is
not obvious) we find that this is

� x+

∫ x

1

|S(x/t)|dt = x

∫ x

1

|S(t)|dt
t2
.

We conclude that

|S(x)| � x

log x
+

x

log x

∫ x

1

|S(t)|dt
t2
. (15)

The relation above is crucial, and it shows how the mean value of a multiplica-
tive function is dominated by an average of such mean values. This forces
a smoother structure of these mean values than one would have expected.
Wirsing’s pioneering result [52] (on mean-values of real valued multiplicative
functions) and Halasz’s work, [13] and [14], on complex valued multiplicative
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functions both exploit this feature very nicely. See also the work of Granville
and Soundararajan [9] on the “spectrum of multiplicative functions” where the
analogy with integral equations is made precisely.

We have mentioned several times Halasz’s theorem without stating it prop-
erly. We now describe the result in general terms. If g is real valued multi-
plicative function with |g(n)| ≤ 1 then Wirsing, proving a conjecture of Erdos
and Wintner, showed that limx→∞

1
x

∑

n≤x g(n) exists. Moreover the limit is
non-zero if and only if

∑

p≤x(1 − g(p))/p converges; that is g looks like the
function that is 1 always. To see that this result is non-trivial, just consider
g(n) = µ(n). Halasz generalized Wirsing’s result to complex valued multiplica-
tive functions with |g(n)| ≤ 1. If we consider the example g(n) = niα where
∑

n≤x g(n) ∼ x1+iα

1+iα we see that the limiting mean-value need no longer ex-
ist. Halasz realized that this example is the only obstruction, and the limiting
mean-value tends to zero (and he quantified this nicely) unless it happens that
∑

p(1−Re g(p)p−iα)/p converges for some α; that is, g is pretending to be the

function niα. When g is no longer restricted to the unit circle, matters are more
complicated. But, extending Halasz’s insight we may look for functions of the
form n−iαj which g correlates with (or pretends to be). This is the motivation
for the successive maxima that we identified earlier, and the oscillation result
shows that we can handle the effect of those bounded number of functions that
g can pretend to be.

6. Sieve Methods and Holowinsky’s Work

Here we describe Holowinsky’s approach to bounding the shifted convolution
sums that arose in §4. We only deal with the inner products with Poincare
series Pm(z | ψ) with m 6= 0; as discussed in §4, the case m = 0 requires more
care. We begin by explaining why we might expect the size of Hecke eigenvalues
to be small on average; such a result goes back to work of Elliott, Moreno and
Shahidi [5] in the context of Ramanujan’s τ -function.

Consider, for simplicity, a completely multiplicative function g which is non-
negative, and bounded by 1. Then

log x
∑

n≤x

g(n) =
∑

n≤x

g(n) log n+O





∑

n≤x

log(x/n)



 =
∑

n≤x

g(n) log n+O(x).

Writing log n =
∑

d|n Λ(d) we obtain that

log x
∑

n≤x

g(n) =
∑

m≤x

g(m)
∑

d≤x/m

g(d)Λ(d)+O(x) ≤ (1+o(1))x
∑

m≤x

g(m)

m
+O(x),
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using the prime number theorem. We conclude that

∑

n≤x

g(m) � x

log x

∑

n≤x

g(n)

n
� x

log x
exp





∑

p≤x

g(p)

p



 . (16)

In fact the estimate above can be established for a larger class of non-negative
multiplicative functions whose values on the primes are bounded on average and
satisfying some mild conditions on the values at prime powers. Such results were
first explored by Hall [16], and see also Halberstam and Richert [15]

The estimate (16) while simple, is nevertheless extremely useful. Take
g(n) = τ(n)n−11/2 where τ denotes Ramanujan’s function

∑∞
n=1 τ(n)q

n =
q
∏∞
n=1(1 − qn)24. By Deligne’s theorem |g(n)| ≤ d(n), and the estimate (16)

applies to the non-negative multiplicative function |g(n)|. We obtain that

∑

n≤x

|g(n)| � x

log x

∑

n≤x

|g(n)|
n

� x

log x
exp





∑

p≤x

|τ(p)p−11/2|
p



 .

By Rankin-Selberg theory we know that

∑

p≤x

g(p)2

p
∼ log log x.

Using Rankin-Selberg for the GL(3) automorphic form associated to g(p2) =
g(p)2 − 1 (see [7]) we obtain that

∑

p≤x

(g(p)2 − 1)2

p
∼ log log x.

But (g(p)2 − 1)2 ≤ 9(|g(p)| − 1)2 so that

∑

p≤x

(|g(p)| − 1)2

p
≥ 1

9
log log x+O(1),

and we deduce that

∑

p≤x

|g(p)|
p

≤ 17

18
log log x+O(1).

Consequently
∑

n≤x

|τ(n)n− 11
2 | � x(log x)−

1
18 ,

which shows that on average the values of |f(n)| are somewhat small.
Here is an explanation of why we might expect |f(n)| to be small. By

Rankin-Selberg we know that
∑

n≤x g(n)
2 ∼ cx, for a positive constant c
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(which is related to the symmetric square L-function of ∆ evaluated at 1).
So by Cauchy-Schwarz we know that

∑

n≤x |g(n)| � x. For this estimate to be
tight, one would need that the g(n) should be of constant size, and since g is
multiplicative this means that most |g(p)| should be close to 1. However the
distribution of g(p) is governed by the Sato-Tate law (now known thanks to
the work of Taylor and others), and so there is considerable fluctuation in the
sizes of |g(n)|. The mean square is dominated by the large values of |g(n)|, and
so naturally we would expect the average of |g(n)| to be small. Our argument
above uses information about the first four symmetric powers of ∆, which was
known for a while, whereas Sato-Tate amounts to using information about all
symmetric powers.

In Holowinsky’s work, roughly speaking we need an estimate for the shifted
convolution sums

∑

n≤k |λf (n)λf (n + m)| where m 6= 0. We want an analog
of (16) for these shifted convolution sums. There is a lovely result of Mohan
Nair [38] which establishes such an analog for general classes of multiplicative
functions evaluated on polynomials. Nair’s work extends work of Peter Shiu
[48] who had considered such estimates for multiplicative functions in short
intervals and arithmetic progressions.

We do not describe Nair’s result in full generality, but restrict ourselves to
the special case at hand. The basic point is that if m is a fixed non-zero integer
then the multiplicative structure of the integers n and n+m should have very
little in common (e.g. if m = 1 the two numbers are coprime), and hence the
values |λf (n)| and |λf (n +m)| should behave independently of each other. In
other words we may expect the average of |λf (n)λf (n+m)| to behave like the
product of the average of |λf (n)| and the average of |λf (n +m)|; i.e. like the
square of the average of |λf (n)|. Such an analog of (16) is guaranteed by Nair’s
theorem: we have for m 6= 0

∑

n≤k

|λf (n)λf (n+m)| �m k exp





∑

p≤k

2|λf (p)| − 2

p



 . (17)

Holowinsky [23] gives an independent proof of a slightly weaker result using a
simple Selberg sieve argument.

Using the bound (17) in our work in §4 we find that

∣

∣

∣

∣

∣

∫

Γ\H

yk|f(z)|2Pm(z | ψ)dx dy
y2

∣

∣

∣

∣

∣

�m,ψ
1

L(1, sym2f)
exp





∑

p≤k

2|λf (p)| − 2

p



 .

(18)

In the next section we show how this estimate complements the weak sub-
convexity bounds of §3, and together the two approaches give a proof of the
Rudnick-Sarnak conjecture.
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7. Proof of Mass Equidistribution

We begin by observing that

L(1, sym2f) � exp





∑

p≤k

λf (p
2)

p



 . (19)

In fact L(1, sym2f) is of the same size as the RHS above, and the RHS is
essentially the Euler product defining L(s, sym2f). This can be established
generally for any L-function at the edge of the critical strip, provided there are
no Siegel zeros. In the symmetric square case, we already noted that the work
of Hoffstein-Lockhart and Goldfeld-Hoffstein-Lieman rules out the existence of
Siegel zeros. A slightly weaker version of this bound is described in Lemma 2
of [24].

Using this bound, and noting that λf (p
2) = λf (p)

2 − 1, in (18) we deduce
that

∣

∣

∣

∣

∣

∫

Γ\H

yk|f(z)|2Pm(z | ψ)dx dy
y2

∣

∣

∣

∣

∣

�m,ψ exp



−
∑

p≤k

(|λf (p)| − 1)2

p



 .

Thus Holowinsky’s argument would give the decay of inner products with
Poincare series unless it so happened that

∑

p≤k

(|λf (p)| − 1)2

p
� 1.

But if the above holds then

∑

p≤k

λf (p
2)

p
=
∑

p≤k

(λf (p) + 1)(λf (p)− 1)

p
≥ −3

∑

p≤k

||λf (p)| − 1|
p

,

and using Cauchy-Schwarz we have

∑

p≤k

||λf (p)| − 1|
p

�
√

log log k.

Inserting this in (19) we find that in the case when Holowinsky’s argument fails
we must have L(1, sym2f) � (log k)−ε. But recall from §3 that the argument

via weak subconvexity succeeds if L(1, sym2f) � (log k)−
1
2
+δ. In other words,

if Holowinsky’s method fails then weak subconvexity succeeds! A variant of
this argument is described in [24], together with the more delicate arguments
needed for the incomplete Eisenstein series case that we have ignored here.
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8. The Escape of Mass Argument

In this last section we give a description of the argument in [49] which eliminates
the possibility of escape of mass for Hecke-Maass cusp forms, and thus completes
Lindenstrauss’s proof of QUE for SL2(Z)\H.

As remarked in the introduction, Lindenstrauss has shown that any weak-∗
limit of the micro-local lifts of Hecke-Maass forms is a constant c (in [0, 1])
times the normalized volume measure on Y = SL2(R)\SL2(Z). Projecting
these measures down to the modular surface X, we see that any weak-∗ limit
of the measures µφ associated to Hecke-Maass forms is of the shape c 3π

dx dy
y2 .

Our aim is to show that in fact c = 1, and there is no escape of mass. If on the
contrary c < 1 for some weak-∗ limit, then we have a sequence of Hecke-Maass
forms φj with eigenvalues λj tending to infinity such that for any fixed T ≥ 1
and as j → ∞

∫

z∈F
y≤T

|φj(z)|2
dx dy

y2
= (c+ o(1))

3

π

∫

z∈F
y≤T

dx dy

y2
= (c+ o(1))

(

1− 3

πT

)

;

here F = {z = x + iy : |z| ≥ 1, −1/2 ≤ x ≤ 1/2, y > 0} denotes the usual
fundamental domain for SL2(Z)\H. It follows that as j → ∞

∫

|x|≤ 1
2

y≥T

|φj(z)|2
dx dy

y2
= 1− c+

3

πT
c+ o(1). (20)

Now uniformly for any Hecke-Maass form of eigenvalue λ = 1
4 + r2 (and

normalized to have Petersson norm 1) we may show that
∫

|x|≤ 1
2

y≥T

|φ(z)|2 dx dy
y2

� log(eT )√
T

. (21)

Clearly (21) contradicts (20) if c < 1 for suitably large T , and this establishes
that c = 1.

Now let us explain why (21) holds. Letting λ(n) denote the n-th Hecke
eigenvalue of the form φ, we recall that φ has a Fourier expansion of the form

φ(z) = C
√
y

∞
∑

n=1

λ(n)Kir(2πny) cos(2πnx),

or

φ(z) = C
√
y

∞
∑

n=1

λ(n)Kir(2πny) sin(2πnx),

where C is a constant (normalizing the L2 norm),K denotes the usualK-Bessel
function, and we have cos or sin depending on whether the form is even or odd.

Using Parseval we find that

∫

|x|≤ 1
2

y≥T

|φ(x+ iy)|2 dx dy
y2

=
C2

2

∫ ∞

T

∞
∑

n=1

|λ(n)|2|Kir(2πny)|2
dy

y
.
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By a change of variables we may write this as

C2

2

∞
∑

n=1

|λ(n)|2
∫ ∞

nT

|Kir(2πt)|2
dt

t
=
C2

2

∫ ∞

1

|Kir(2πt)|2
∑

n≤t/T

|λ(n)|2 dt
t
.

Now for t ≥ 1 if we know that

∑

n≤t/T

|λ(n)|2 ≤ 108
log eT√

T

∑

n≤t

|λ(n)|2, (22)

then the above is

� log eT√
T

C2

2

∫ ∞

1

|Kir(2πt)|2
∑

n≤t

|λ(n)|2 dt
t

=
log eT√

T

∫

|x|≤ 1
2

y≥1

|φ(x+ iy)|2 dx dy
y2

� log eT√
T

,

since the region |x| ≤ 1
2 , y ≥ 1 is contained inside a fundamental domain for

SL2(Z)\H. This would prove (21).
Lastly it remains to justify (22). In fact this statement is a general fact about

a large class of multiplicative functions that we will call Hecke-multiplicative.
We say that a function f is Hecke-multiplicative if it satisfies the Hecke relation

f(m)f(n) =
∑

d|(m,n)

f(mn/d2),

and f(1) = 1. If f is Hecke-multiplicative, then for all 1 ≤ y ≤ x we have

∑

n≤x/y

|f(n)|2 ≤ 108
(

1 + log y√
y

)

∑

n≤x

|f(n)|2. (23)

Clearly this statement proves (22).
We won’t go into the proof of (23), but just mention that it is based on

elementary analytic and combinatorial arguments. It is noteworthy that (23)
makes no assumptions on the size of the function f . Hecke-multiplicative func-
tions satisfy f(p2) = f(p)2 − 1, so that at least one of |f(p)| or |f(p2)| must be
bounded away from zero; this observation plays a crucial role in our proof. We
also remark that apart from the log y factor, (23) is best possible: Consider the
Hecke-multiplicative function f defined by f(p) = 0 for all primes p. The Hecke
relation then mandates that f(p2k+1) = 0 and f(p2k) = (−1)k. Therefore, in
this example,

∑

n≤x |f(n)|2 =
√
x+O(1) and

∑

n≤x/y |f(n)|2 =
√

x/y+O(1).
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We discuss some problems of arithmetic distribution, including conjectures of
Cohen-Lenstra, Malle, and Bhargava; we explain how such conjectures can be
heuristically understood for function fields over finite fields, and discuss a gen-
eral approach to their proof in the function field context based on the topology
of Hurwitz spaces. This approach also suggests that the Schur multiplier plays
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1. Arithmetic Counting Problems

We begin with a concrete example, which has been well-understood for many
years.

Let SX denote the set of squarefree integers in [0, X] that are congruent to 1
modulo 4; let CX denote the set of isomorphism classes of cubic field extensions
K/Q whose discriminant belongs to SX . Davenport and Heilbronn proved [6]
that

|CX |
|SX | −→

1

6
, as X → ∞. (1)

Our goal is to understand why limits like that of (1) should exist, why they
should be rational numbers, and what the rational numbers represent.

More precisely, we will study several variants on (1) – replacing cubic fields
by extensions with prescribed Galois group, and “squarefree discriminant” by
other forms of prescribed ramification. We make a heuristic argument as to what
the corresponding limits should be when Q is replaced by the function field of a
curve over a finite field, and lay out a program for a proof in certain cases. This
program has been partially implemented by us in certain settings, leading to a
weak form of the Cohen–Lenstra heuristics (see §4.2) over a rational function
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field. In the number field case we have no new theorems; however, the study
of the function field case suggests interesting refinements of known heuristics,
related to the size of Schur multipliers.

Let us describe – briefly and approximately – how the 1
6 makes an appear-

ance over a function field. Let k be a finite field, and k̄ an algebraic closure
of k; we consider cubic extensions L of k(t) with squarefree discriminant and
totally split at ∞. By a marking of L we shall mean an ordering of the three
places above ∞. “Marked” cubic extensions can be descended: they are identi-
fied with fixed points of a Frobenius acting on marked cubic extensions of k̄(t).
Recall that the average number of fixed points of a random permutation on a
finite set is 1; thus, if the Frobenius behaves like a random permutation, we
expect there to be on average one marked cover per squarefree discriminant.
Since there are six markings for each cubic field that is totally split at ∞, we
recover 1

6 .
The rest of this paper will discuss methods for trying to make this heuristic

into a proof, and how it suggests corrections to our view of number fields. In
the function field case, results such as (1) are related to the group-theoretic
structure of étale π1; we may speculate that results such as (1) are reflections
of some (as yet, not understood) group-theoretic features of the absolute Galois
group of Q.

1.1. Context. There has been a great deal of work on the topics discussed
here. We note in particular that related topics have been discussed [1, 3, 7]
in the last three ICMs. Indeed, [1] contains an overview of Bhargava’s results
for quartic and quintic fields, and [3] discusses both theoretical and numerical
evidence for conjectures of the type described in the present paper.

Our point of view is influenced very much by the study of the function field
case; in turn, our study of that case was influenced by both Cohen and Lenstra’s
work and the more recent paper [8] of Dunfield and Thurston on finite covers
of hyperbolic 3-manifolds.

The present paper has three sections; although related, they are also to a
large extent independent, and can be considered as “variations on the theme
of (1).”

– §2 discusses the conjectures of Bhargava-Malle about distribution of num-
ber fields, generalizing (1). We also discuss the role that Schur multipliers
may play in formulating sharp versions of such conjectures (§2.4). The
reader may wish to first look at Section 3.4, which provides the geometric
motivation guiding the computations in Sections 2.4 and 2.5.

– §3 discusses the function field setting and its connection with the geometry
of Hurwitz spaces; in particular, how purely topological results on the
stable homology of Hurwitz spaces would imply function field versions of
Bhargava-Malle conjectures.

– §4 discusses the special case of the Cohen–Lenstra heuristics, and our
proof (with Westerland) of a weak version in the function field setting.
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This proof suggests more general connections between analytic number
theory and stable topology.

1.2. Notation. By a G-extension algebra (resp. field) of a number field
K, we shall mean a conjugacy class of homomorphisms (resp. surjective homo-
morphisms) from the Galois group GK := Gal(K/K) to G. In other words,
G-extension fields are in correspondence with isomorphism classes of pairs
(L ⊃ K,G

∼→ Gal(L/K)), where an isomorphism of pairs (L, f) and (L′, f ′)
is simply a K-isomorphism φ : L → L′ which commutes with the induced
G-actions.

A pair (G, c) of a group G and a conjugacy class c ⊂ G will be called
admissible – for short, we say that c is an admissible conjugacy class – if

1. c is a rational conjugacy class, i.e., g ∈ c =⇒ gn ∈ c whenever n is prime
to the order of g;

2. c generates the group G.

Given a tamely ramified G-extension and an admissible conjugacy class, we say
that all ramification is of type c if the image of every inertia group is either
trivial or a cyclic subgroup generated by some g ∈ c.

Acknowledgements. We thank Craig Westerland, our collaborator on
the work described here, for many years of advice and ideas about the topolog-
ical side of the subject. We have also greatly benefited from conversations with
Manjul Bhargava, Nigel Boston, Ralph Cohen, Henri Cohen, David Roberts,
and Melanie Wood.

2. Number Fields

In this section, we discuss Bhargava’s heuristics for discriminants of Sn-
extensions of Q, and propose that for extensions with certain Galois groups
G these heuristics should be modified by a term related to the Schur multiplier
of G.

Before proceeding, however, we warn the reader of the alarming gap be-
tween theory and experiment. For example, the statement “there are 1

6 totally
real cubic fields per odd squarefree discriminant” is indeed only asymptotically
valid; for instance, the smallest squarefree discriminants of real cubic fields are
229, 257 and 321, and in fact (1) looks quite inaccurate for small X. However,
there is convincing numerical evidence [22] that the ratio of (1) converges from
below, with a secondary term decreasing proportionally toD−1/6. This unpleas-
ant situation – very slow numerical convergence to the expected limit – persists
in all the examples we shall discuss in this paper, making it very difficult to
test ideas except in somewhat indirect ways. For more discussion of this point,
see §2.6.
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2.1. Malle’s conjecture. For definiteness, we work over the base field
Q for the moment; the ideas generalize in a straightforward fashion, and we
will anyway pass to the case of a general number field in §2.4.

Suppose G is provided with an embedding into Sn. In that case, there is a
well-defined “discriminant” of any G-extension algebra or field L, since the map
G ↪→ Sn associates to L an étale Q-algebra of degree n which has a discriminant
in the usual sense. (In what follows, then, the “discriminant” of an Sn extension
field refers to the discriminant of the associated degree n field, and not to the
discriminant of its Galois closure.)

In this case, Malle has conjectured [18, 19] that

lim
X→∞

# G-extension fields of discriminant less than X

X1/a(logX)b
(2)

exists and is nonzero, for certain integers a and b depending on G. For instance,
n − a is the maximal number of orbits of any nontrivial g ∈ G ⊂ Sn.

1 This
statement has some consequences which are surprising at first glance: for in-
stance, a positive fraction of quartic fields (ordered by discriminant) contain
Q(

√
−1).

Malle’s conjecture has been proved by Davenport–Heilbronn in the case
G = S3 (prior to Malle’s general formulation!) and by Bhargava in the case
S4, S5, in each instance with a precise description of the limit in (2) as an Euler
product.

2.2. The asymptotic constant. As originally stated, Malle’s conjec-
ture gives no information about the asymptotic constant, i.e. the limit of (2)
as X → ∞.

In fact, we do not regard the limiting value of (2) as the object of primary
interest. This is because it conflates several independent issues; in particular, it
mingles together fields with many different types of ramification, and it is also
strongly influenced by the notion of “discriminant” (if we change the embedding
G ↪→ Sn, the limit will change).

Instead, we shall study the asymptotic constant only after “controlling” for
these effects. For example: if we prescribe a set of primes and the ramification
type at each prime, what is the expected number of global extensions realizing
this “ramification data”? The word “expected” implies a suitable average; we
usually mean to average over all sets S of primes with

∏
p∈S p ≤ X, and then

let X → ∞.
In the rest of this paper, we shall discuss the case where we fix a conjugacy

class c ⊂ G and study G-extensions where all ramification is of type c. (See
§1.2 for the notation.) For instance, (1) corresponds to the case of G = S3 and
c the class of transpositions; in the next section, we shall discuss totally real

1The value of b in Malle’s original conjecture is now known to be incorrect in some cases
when the extension fields being counted can contain extra roots of unity: see [17],[25].
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Sn-extensions of odd squarefree discriminant, which corresponds to the case
where G = Sn and c is the class of transpositions.

The ideas that we describe can be generalized to multiple ramification types,
and one can eventually return to the setting of (2) by putting this information
together.

2.3. The asymptotic constant: Bhargava’s heuristic. On the
basis of his results for G = S4 and G = S5, Bhargava has formulated a general
and very beautiful conjecture [2, Conjecture 1.2] for the constant in the case
G = Sn. We quote from his paper [2, page 10] and then explain by example:

The expected (weighted) number of global Sn-number fields of dis-
criminant D is simply the product of the (weighted) number of local
extensions of Qv that are discriminant-compatible with D, where v
ranges over all places of Q (finite and infinite).

By a local extension of Qv, we mean simply a degree n étale algebra E over
Qv; by discriminant–compatible, we mean (in the non-archimedean case) that
the valuation of the discriminant of E coincides with the valuation of D and (in
the archimedean case) that the signs match. Bhargava conjectures further that
the expected number of Sn-extensions of discriminant D with a specified local
behavior at v is obtained by the appropriate modification of the local factor at
v in the above product.

Let us consider, for instance, what this means for totally real fields of odd
squarefree discriminant D, i.e. totally real Sn-extensions all of whose ramifica-
tion is of “transposition” type. To compute the expected number, one takes the
product of local factors weight(v), where

weight(v) =
∑ 1

|Aut(E/Qv)|
,

the sum being taken over all degree n étale algebras E/Qv that are:

– unramified, if v is a place not dividing D;

– have discriminant of valuation 1, if v(D) = 1;

– totally real, if v is infinite.

The weights in these cases are computed to be 1, 1 and 1
n! respectively; so

Bhargava’s heuristic suggests that

There are, on average, 1
n! totally real Sn-extensions of Q per odd

squarefree discriminant,

where this is to be interpreted in a fashion analogous to (1) – in particular, we
again restrict to discriminants that are congruent to 1 modulo 4, a necessary
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condition by Stickelberger’s theorem. This statement is compatible with the
limit 1

6 that appears in (1).
One of the remarkable features of Bhargava’s heuristic, as well as of the

known results in degree ≤ 5, is that there is no restriction to tamely ramified
extensions. Our knowledge in more general situations is sadly limited, and we
shall unfortunately have to restrict to tame ramification.

2.4. General groups; the role of the Schur multiplier. Let us
now consider the case of a general group G. In this case, we shall propose that
in many cases a version of Bhargava’s heuristic applies: but that the heuristic
as stated above often gives too few extensions, and must be modified by a term
related to the size of the Schur multiplier of G. The reader will find motivation
for this modification in Section 3.4.

Particularly in the number field case, what follows is speculative: We have,
in the function field case, theoretical evidence for this modification, described
in §3. But in the number field case we do not yet have serious numerical or
theoretical evidence.

Let K, then, be a global field – either a number field, or a function field of
a curve over a finite field; allowing this generality now allows ease of compar-
ison later. To isolate as far as possible the particular phenomenon we wish to
describe, we consider G-extensions L/K with the following properties:

1. G is center-free and has trivial abelianization;

2. c ⊂ G is an admissible conjugacy class;

3. If K is a function field, we suppose that the characteristic of K does not
divide |G|;

4. All ramification in L/K is tame of type c;

5. Fixing a set of places S∞ of K containing all archimedean places, we
consider only extensions L/K that are totally split at S∞.

In what follows, we regard G, c, S∞,K as fixed, subject to restrictions 1, 2,
3, and will count extensions L satisfying 4, 5.

The direct analogue of Bhargava’s Sn heuristic would suggest that the av-
erage number of G-extensions L, for each set of ramified primes compatible
with conditions 4 and 5, is |G|−|S∞|. More precisely, let V be S∞ together
with all places whose residue characteristic divides the order of an element of
c; if we denote by SX the collection {S a subset of finite places of K : S ∩ V =
∅,∏v∈S qv ≤ X}, and by FX the set of G-extensions L satisfying conditions
4,5 and which are ramified precisely at some S ∈ SX , then

|FX |
|SX | −→ |G|−|S∞|, as X → ∞.
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Based on our results in the function field case, we do not think this is right
in general, and we speculate instead that

|FX |
|SX | −→

h(G, c,K)

|G||S∞|
, as X → ∞, (3)

for some rational number h(G, c,K) related to the order of the Schur multiplier
of G. We make precise predictions for the value of h(G, c,K) in some special
cases below.

Let Q = Qc ⊂ H2(G,Z) be the subgroup generated by φ∗(H2(Z × Z,Z)),
as φ ranges over homomorphisms Z×Z −→ G taking (0, 1) to an element of c.
We put

H2(G, c;Z) := H2(G,Z)/Qc. (4)

The following interpretation in terms of covering groups will be useful: Fix
a universal central covering H2(G,Z) → G̃ → G (such exists because G is as-
sumed perfect). Fix g ∈ c and a lift g̃ ∈ G̃. Then any element h ∈ G centralizing
g has the property that h̃g̃h̃−1 ∈ g̃Qc. Consequently, the natural projection in-
duces a bijection from the conjugacy class of g̃Qc in G̃/Qc to the conjugacy
class c. Write G̃c for the quotient of G̃ by Qc; it is the “largest covering to
which the conjugacy class of c lifts bijectively.” Then H2(G, c;Z) is precisely
the kernel of G̃c → G.

If the ground field K contains sufficiently many roots of unity (i.e., if µN ⊂
K where N depends only on (G, c)) and S∞ is large enough, we believe that

h(G, c,K) = #H2(G, c;Z). (5)

In the general case, we anticipate h(G, c,K) will be a rational number between
0 and #H2(G, c;Z) that depends on the number of roots of unity in K.

For instance, if the order of elements of c are relatively prime to
#H2(G, c;Z), then we believe that h(G, c,K) = #H2(G, c;Z) as soon as the
number m of roots of unity in K annihilates H2(G, c;Z) and S∞ contains all
the primes dividing m.

In fact, in the next section, we shall associate (under these conditions) a
fundamental class z(ρ) ∈ H2(G, c;Z) to any G-extension ρ, and we suggest
even the following refinement of (3): for any α ∈ H2(G, c;Z),

|Fα
X |

|SX | −→ |G|−|S∞|, as X → ∞, (6)

where Fα
X is now restricted to those G-extensions with fundamental class α.

Remark. Heuristic (3) is definitely not valid as stated for general (G, c) with
no hypotheses on the extension. The case G = D4 is one whose difficulties have
been much studied. There are no quartic extensions of Q with Galois group D4

and squarefree discriminant, although there are no local obstructions to this;
indeed, squarefree discriminant implies that the Galois group is Sn. When one
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counts quartic dihedral extensions with |disc| ≤ X, one gets a positive multiple
of X, by a result of Cohen, Diaz y Diaz, and Olivier [5]; however, the constant
is not equal to that predicted by the heuristics discussed here. The point is
that the conjugacy class of “transpositions” in D4 is not admissible – it fails to
generate D4.

2.5. Lifting invariants over global fields. Motivated by the con-
siderations of the prior section, we shall now associate to a homomorphism
ρ : GK → G, satisfying certain local conditions, a “fundamental class” z(ρ) in
H2(G, c;Z). (This association depends on the choice of a generator for the roots
of unity in K.) This fundamental class is an invariant of the conjugacy class of
ρ, meant to analogize the Fried-Serre “lifting invariant” of branched G-covers
of the projective line [11, 24].

In addition to the group-theoretic conditions from §2.4 (namely, G center-
free with trivial abelianization, c ⊂ G admissible) we impose the following
restrictions:

1. Let µn be the group of roots of unity inK. Then n annihilatesH2(G, c;Z).

2. The order e of any element of c is relatively prime to #H2(G, c;Z).

These conditions are satisfied, for instance, when G = A5 and c is the class of
3-cycles. If these conditions fail, one may still obtain an invariant by passing
to a sufficiently large cyclotomic extension, but we have not yet studied the
resulting construction in sufficient detail to be confident about its properties.

Let G̃c be the covering of G constructed after (4). Condition (2) of the
prior paragraph implies that there is a unique conjugacy class c̃ of G̃c which
projects bijectively onto c, and whose elements have order e. Moreover, if x is
an element of c, there exists a unique lifting of the cyclic subgroup 〈x〉 ⊂ G to
a cyclic subgroup of G̃c of order e.

For brevity, we denote H2(G, c;Z) by A. We fix an algebraic closure K̄ of
K and let GK = Gal(K̄/K) be the absolute Galois group; for each place v of
K, we let Gv ⊂ GK be a decomposition group and (for v finite) Iv ⊂ Gv an
inertia group.

Lemma. Let S∞ be a finite set of places of K, containing archimedean places.
Let ρ : GK → G be a homomorphism satisfying the following local properties:

a. ρ is trivial on Gv for v ∈ S∞.

b. ρ is tamely ramified;

c. If v is a ramified place, ρ(Iv) is a cyclic subgroup of G generated by an
element of c.

Then ρ lifts to a representation ρ̃ : GK → G̃c. Moreover ρ̃ can be chosen so
that it has properties (a), (b), i.e. it is everywhere tame, and trivial on Gv for
v ∈ S∞.
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Proof. The obstruction to such a lift lies in H2(GK , A); it suffices to compute
the obstruction locally, since the map

H2(GK , A) −→
⊕

v

H2(Gv, A)

is injective, by virtue of the assumption that µn ⊂ K.

For v infinite it is clear that ρ|Gv can be lifted to a homomorphismGv → G̃c.
For v finite, ρ|Gv factors through the maximal tame quotient of Gv. Fixing a
generator τv for tame inertia as well as a Frobenius element Frv, we can specify
ρ|Gv by means of a pair (t = ρ(τv), F = ρ(Frv)) ∈ G×G satisfying

FtF−1 = tq. (7)

where q = qv is the cardinality of the residue field at v.

Let t̃ be the unique preimage of t with exact order e, and F̃ an arbitrary
lift of F . By (7), tq has order e, and so q is relatively prime to e; thus

F̃ t̃F̃−1 = t̃q, (8)

since both sides are lifts of tq with order e.

Thus ρ|Gv lifts to G̃c for all v; thus ρ also lifts to a representation ρ̃ : GK →
G̃c.

It remains to check that ρ̃ can be chosen to be tame at all finite places and
trivial at v ∈ S∞. We have already constructed a tamely ramified lift of ρ|Gv

for each finite v. It follows that there exists, for every v /∈ S∞ for which ρ̃|Gv

is wild, a character χ : Gv → A so that χvρ̃ is tame at v. Similarly, for v ∈ S∞,
there exists a character χ : Gv → A so that χvρ̃ is trivial on Gv.

We now twist ρ̃ by any character χ : GK → A which extends χv at S∞ and
all other places wildly ramified in ρ̃, and which is tame at all other places; one
checks that such a χ exists by using weak approximation.

We now take S∞ to be the set of archimedean places, together with all
places dividing n. We shall associate an invariant z(ρ) ∈ H2(G, c;Z) to any
ρ : GK → G that satisfies the condition of the Lemma. Fix a lifting ρ̃ as in the
Lemma.

For each place v /∈ S∞ consider the sequence

Iv →W ab
v

∼→ K×
v ,

whereWv is the local Weil group and the latter isomorphism is class field theory.
This induces a map Itame

v → k×v , where kv is the residue field at v.

Fix a generator g for µn ⊂ K; regarding it as an element of k×v , let gv be
any preimage of g inside Itame

v with the property that the image of gv inside
the tame quotient Itame

v generates a subgroup of index qv−1
n .
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Such gv exist and any two choices gv, g
′
v satisfy g′v = gλv , gv = g′v

λ−1

where

λ lies in the kernel of the reduction Ẑ×
� (Z/nZ)×.

Recall that the image ρ(Iv) is either trivial or a cyclic subgroup generated
by some element of c and, in either case, admits a unique lift x 7→ x∗ to a
cyclic subgroup of the same order in G̃c. We define the lifting invariant of the
homomorphism ρ : GK → G as

z(ρ) =
∏

v/∈S∞

zv, zv = ρ̃(gv) (ρ(gv)
∗)

−1 ∈ A.

1. Independence of ρ̃: Any other lift of ρ as in the Lemma is necessarily of the
form ρ̃ψ, for some character ψ : GK → A that is everywhere tame, and
trivial on all Gv (v ∈ S∞). Independence now follows from the reciprocity
law of class field theory.

2. Independence of gv (while fixing g): let g′v = gλv , with λ ∈ ker(Ẑ× →
(Z/nZ)×). Then

ρ̃(g′v) = (ρ̃(gv))
λ

= (zvρ(gv)
∗)λ

= zv(ρ(gv)
∗)λ = zvρ(g

λ
v )

∗ = zvρ(g
′
v)

∗.

3. Independence on the choice of Iv: the inertia subgroups of GK are defined
up to conjugacy, and it is clear that replacing each gv by a conjugate does
not affect zv, and thus leaves z(ρ) unchanged.

The invariant does depend on g; replacing g with gα for α ∈ (Z/nZ)∗ has the
effect of replacing z with z

α.

Example. Take G = A5 and K = Q. For the conjugacy class c of 3-cycles,
we have #H2(G, c;Z) = 2; on the other hand, for the conjugacy class c′ of
products of two commuting transpositions we have #H2(G, c;Z) = 1. Thus, we
expect there to be twice as many tamely ramified totally real A5-extensions,
all of whose ramification is of type c, than those all of whose ramification is of
type c′.

In this case, the lifting invariant is defined as follows: The universal cover
of A5 is just SL2(F5) → PSL2(F5) ∼= A5. Using the lemma, lift the given
homomorphism ρ : GQ → A5 to ρ̃ : GQ → SL2(F5). Let S be the set of primes
p congruent to 3 mod 4 for which ρ̃(Ip) has even order (cf. [24]).

Then the invariant z(ρ) is determined by the parity of |S|. This is indepen-
dent of our choice of ρ̃, since, for any homomorphism χ : GQ → {±1} that is
tame and trivial at ∞ – i.e., the character associated to a quadratic field of
positive odd discriminant – the set of p ≡ 3 mod 4 for which χ(Ip) 6= {1} has
even cardinality.
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Numerical inspection of John Jones’ number field tables [16] indeed shows,
amongst totally real, tame A5-fields of small discriminant, a preponderance of
inertial types of order 3, although, as we discuss in the next section, the data
is very scarce and one should be very cautious about treating it as evidence.

Remark. Relaxing the condition that |A| and e are coprime leads to more
subtle behavior than that discussed here. For instance, take G = PSL2(F7) and
c the unique conjugacy class of order 4, so that G̃c = SL2(F7) and A = Z/2Z.
One can check that c does not lift to any conjugacy class of order-4 elements
of G̃c, and ρ : GK → G need not lift locally to G̃c even though µ2 ⊂ K. In this
case different modifications to Bhargava’s heuristics are needed.

2.6. Numerics. The difficulty of investigating conjectures of this kind in-
creases very rapidly with the degree, not only because of slow convergence but
because of the scarcity of examples. For instance, Jones’s database of number
fields shows that there are just eight totally real quintics with Galois group S5

and discriminant less than 105, while Bhargava’s asymptotic (which is provably
correct as the discriminant goes to infinity!) would predict around 600.

One can think of this scarcity as following, in part, from analytic lower
bounds for the discriminant [21]. Alternatively, one might imagine that the
number of Sn-extensions of discriminant in [0..X] has a secondary main term
with negative coefficient. In the S3 case, Roberts has given convincing evi-
dence [22] that the number of totally real cubics of discriminant ≤ X admits
an asymptotic formula

aX − bX5/6 +O(X1/2+ε),

for certain explicit constants a, b > 0. This modified heuristic, which arises
naturally from the pole structure of the pertinent Shintani zeta function, fits
numerical data far better than does the Davenport-Heilbronn asymptotic aX.

Question. Describe the lower order terms in the counting function for Sn-
discriminants, the main term of which is provided by the conjectures of Malle
and Bhargava.

It seems quite likely that the phenomenon of lower-order terms only slightly
smaller than the main term is rather general; thus (barring a sudden increase in
the range where number fields can be counted exhaustively) a principled answer
to the Question above is likely necessary for any serious numerical investigation
of the conjectures, even insofar as the main term is concerned.

3. Function Fields and Hurwitz Spaces

We now discuss features of the topology of Hurwitz spaces that are responsible
for the truth of theorems such as (1) over the function fields of finite fields.
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We begin by discussing Hurwitz spaces in a purely topological setting (§3.1,
§3.2); then, in §3.3, we discuss Hurwitz schemes over finite fields and their
relevance to function field analogues of Bhargava-type heuristics; finally in §3.4
we discuss motivation for the “Schur correction” from §2.4.

We fix throughout an admissible pair (G, c) of a finite group G and a con-
jugacy class c ⊂ G; for simplicity we suppose that G is center-free.

3.1. Hurwitz spaces. In this section, P1
C denotes the complex points

of the projective line; however, in §3.1 and §3.2 we are only interested in its
topology, and the reader could replace it by a two-sphere without changing the
meaning.

We will consider the Hurwitz space HurG,c(n) that, informally speaking,
parameterizes G-covers of P1

C, branched at n points distinct from ∞, with
the monodromy around each branch point lying in c, and with a “marking”
of the fiber above ∞, i.e. a G-equivariant identification of this fiber with G.
For brevity, we shall regard (G, c) as fixed and write simply Hur(n) in place of
HurG,c(n).

Here is the precise definition of Hur(n): Let Conf(n) be the configuration
space of n points in the complex plane C. It is a K(π, 1) whose fundamental
group, the Artin braid group, is generated by elements {σi : 1 ≤ i ≤ n − 1}
which pull one point in front of the next. The generators σi and σj commute
when |i − j| 6= 1, and σi and σi+1 satisfy the braiding relation σiσi+1σi =
σi+1σiσi+1; these relations give a presentation of the braid group. Let Hur(n)
be the covering space of Conf(n) whose fiber above a configuration D ∈ Conf(n)
is the set of homomorphisms

π1(P
1
C −D,∞) −→ G,

sending a loop around each puncture to an element of c.

Equivalently, the action of the fundamental group of Confn on the fiber of
Hur(n) → Conf(n) is equivalent to the standard action of the braid group on
{(g1, . . . , gn) ∈ cn : g1g2 . . . gn = 1}, given by the rule

σi : (g1, . . . , gi, gi+1, . . . , gn) −→ (g1, . . . , gi+1, g
−1
i+1gigi+1, . . . , gn). (9)

3.2. Stable homology. The first thing to note is that the Hurwitz space
Hur(n) need not be connected: Let CHur(n) ⊂ Hur(n) be the subspace of
Hur(n) corresponding to surjective homomorphisms π1(P

1
C − D,∞) −→ G;

then CHur(n) parametrizes connected covers of P1
C. Then CHur(n) is open and

closed in Hur(n).

It was proved in the nineteenth century by Clebsch, Lüroth, and Hurwitz
that CHur(n) has only one component when G is the symmetric group and c is
the conjugacy class of transpositions. However, in general, even CHur(n) may
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not be connected, an issue we study further in §3.4. These questions can be
reduced to problems in combinatorial group theory: by (9), the components of
Hur(n) are in bijection with the orbits of the braid group on {(g1, . . . , gn) ∈
cn : g1g2 . . . gn = 1}; the components of CHur(n) are the orbits consisting of
n-tuples which generate G.

More generally (that is, for arbitrary G, c) it is a pleasant exercise to check
that the connected components stabilize: that is, there exists an integer E so
that CHur(n) and CHur(n+E) have the same number of connected components
whenever n is large enough relative to G, c.

One can think of this as a stabilization statement for the degree-zero ho-
mology group H0(CHur(n)). What about the higher homology?

We say that (G, c) satisfies the stability (resp. vanishing) condition if:

1. Stability condition: There exists A > 0, E ∈ Z so that

dimHj(CHur(n),Q) = dimHj(CHur(n+ E),Q), j < An− 1.

2. Vanishing condition: There exists A > 0 so that the map CHur(n) −→
Conf(n) induces an isomorphism on rational homology

Hj(X,Q)
∼−→ Hj(Conf(n),Q)

in degrees j < An, for each connected component X (if any) of CHur(n).

Note that Hj(Conf(n),Q) is vanishing for j > 1 and one-dimensional for j = 1,
thus the name “vanishing condition.” It is very interesting to ask to what
extent the regularities above might be satisfied with integral coefficients, or
Z[ 1

|G| ]-coefficients. In these settings, Conf(n) has nontrivial cohomology in many

degrees.

In [9], we prove a first theorem in this direction.

Theorem. (E., V., Westerland). Let A be an abelian group of odd order, and
D(A) the generalized dihedral group A o Z/2Z, where the Z/2Z acts on A by
a 7→ −a. Then the pair (D(A), involutions) satisfies the stability condition.

The proof follows, in the large, the same lines as Harer’s proof [14] of ho-
mological stability for Mg. As in his argument, an essential element is the high
connectivity of a combinatorially defined complex – in this case, the “arc com-
plex” studied by Hatcher and Wahl [15] – on which the braid group acts. In
the Hurwitz space case, a key role is played by the stable H0 discussed above:

R = ⊕n≥0H0(Hur(n),Q) (10)

As the notation suggests, R is a ring, with product given by concatenation of
n-tuples. The animating principle of our argument is that, under the conditions
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of the theorem, the homological algebra of the category of R-modules is “ap-
proximately” the same as that of the category of Q[t]-modules. (Warning: this
ring R is not exactly the same as that used in [9], where we consider covers of
A1

C rather than P1
C.)

We believe that far more than the Theorem above is true: not only the
stability but also the vanishing condition will hold for a wide range – perhaps
all – admissible pairs (G, c). For safety, we formulate this as a conjecture only
in the case where we feel most secure:

Conjecture. (Sn, transpositions) satisfies the vanishing condition.

The significance for arithmetic lies in the fact that the vanishing condition
essentially implies the function field version of Malle-Bhargava heuristics (in-
cluding Schur corrections as in §2.4). For instance, the stated conjecture implies

There are, on average, 1
n! totally real Sn-extensions of Fq(T ) per

squarefree discriminant,

where in this context “totally real” means that the extension is totally split
at ∞; also – analogous to restricting to discriminants congruent to 1 mod 4
in (1) – we restrict to discriminants of even degree, since there are no such
extensions if the discriminant degree is odd.

Similarly, the Theorem implies a (somewhat weaker) form of Malle’s con-
jecture in the case of dihedral groups; since this particular case is usually for-
mulated in terms of the “Cohen–Lenstra heuristics,” we return to it separately
in §4.

More generally, it seems that many questions of analytic number theory,
when considered over a function field, are related to topological phenomena
of homology stabilization, a topic that is discussed in [9, §1.7], and which we
intend to take up elsewhere.

We now turn to explaining the relation between homological stability condi-
tions, as discussed above, and counting extensions of function fields. The crucial
tool that allows us to pass from topology of complex moduli spaces to enumer-
ative questions over finite fields is, as might be expected, the Grothendieck-
Lefschetz trace formula.

3.3. Hurwitz schemes. We now explain how the homology of the Hur-
witz space is related to function-field analogues of Malle’s conjecture. In what
follows, all schemes are over Spec Z[ 1

|G| ].

Let C (n) be the scheme parameterizing configurations of n unordered dis-
tinct points on A1. This can be identified with the complement of the discrim-
inant divisor inside the affine space SymnA1 of degree n monic polynomials; it
is an algebraic version of Conf(n).

It is also possible to define an algebraic version of the space CHur(n), i.e., a
Hurwitz scheme C H (n) over Z[ 1

|G| ]; it is an étale cover of C (n) parameterizing
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branched G-covers of P1 with n branch points, all of whose ramification is tame
of type c, and which are endowed with an extra structure called “marking at
∞.” The complex points of C H (n) are naturally identified with the topological
space CHur(n) of the previous section. For an exposition of the construction of
C H (n) we refer to [23].

In particular, if k is a finite field, the size of C H n(k) is equal to the num-
ber of isomorphism classes of G-extensions of k(t), totally split at ∞ and all
ramification of type c, together with a “marking at ∞.”

The Grothendieck–Lefschetz fixed point formula gives a relation between
the number of Fq-points of an algebraic variety and its étale cohomology. It
is possible (cf. [9, §7]) to compare the singular homology of the Hurwitz space
CHur(n), and the étale cohomology of the Hurwitz scheme C H (n) over Fq. In
this way, we obtain a relation between the singular homology of the Hurwitz
space and Malle’s conjecture.

The stability condition for (G, c) alone, together with relatively elementary
bounds, shows that the étale cohomology of the Hurwitz scheme is “not too
large;” although the only a priori control on the Frobenius action comes from
the Weil conjectures, this already suffices for interesting upper and lower bounds
for |C H (Fq)|. An example of a result thus obtained is the theorem given in
§4.2; see also [9, pp. 5–6] for further discussion of this technique.

However, if the Hurwitz scheme and the configuration scheme have the same
rational homology in some range – as the vanishing conjecture predicts, in
cases where CHur(n) is connected – then |C H (n)(Fq)| and |C (n)(Fq)| will
be approximately equal, as long as q is sufficiently large relative to (G, c).
Equivalently, as n → ∞ with q fixed there will be an average of one marked
G-extension per discriminant. (The 1/n! term in the conjecture stated in the
previous section comes from the existence of n! different markings on each
extension that is totally split at ∞.)

3.4. Stable components and the Schur correction. The van-
ishing condition of §3.2 gives very strong control of the homology of each com-
ponent of CHur(n); but CHur(n) is not connected in general, and indeed, the
description of the set of connected components is somewhat subtle, especially
when the Galois action is taken into account.

Remarkably, it is possible to completely understand the connected com-
ponents in the large n limit, owing to a beautiful theorem of Conway–Parker
and Fried-Völklein. Only a proof of a special case is available in print: [12,
Appendix], but it contains all the necessary ideas. We also do not attempt to
formulate it in the most general case, restricting to G perfect. For the definition
and basic properties of G̃c used in the definition below, we refer the reader to
the discussion after (4).

Theorem. (Conway-Parker-Fried-Völklein). Suppose G is perfect; let g 7→ g∗

be a conjugacy-equivariant bijection from c ⊂ G to a conjugacy class of G̃c
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lifting c. Then, for sufficiently large n, the map

(g1, . . . , gn) ∈ cn −→ g∗1 . . . g
∗
n ∈ G̃c

induces a bijection from the stable component group to H2(G, c;Z), as defined
in (4). In particular, the number of components of CHur(n) equals #H2(G, c;Z)
for n sufficiently large.

The source of the “Schur correction” in the function field case is now appar-
ent: it arises from the fact that the Hurwitz scheme C H n may have multiple
components, and therefore more points than expected; the number of compo-
nents is related to the size of a Schur multiplier. More precisely, the group
H2(G, c;Z) bijects onto the set of geometric components of C H n/Fq; if some
of these components are not defined over Fq, there may be fewer G-covers than
expected. This is what happens in the situation of the Remark, page 393; and
this is the reason why we have postulated “enough roots of unity” in (5).

Let us make precise the relation to §2.4. Let k be a finite field of order q
and K = k(t). We maintain the hypotheses that (G, c) is admissible, that q is
relatively prime to |G|, that G is center-free and that Gab is trivial; we take the
set S∞ of §2.4 to consist of the place corresponding to the point at ∞.

The methods of [9] establish the following: if k contains sufficiently many
roots of unity (that is, if q−1 is sufficiently divisible), and q is sufficiently large
– both notions depending on (G, c) – then, with h = #H2(G, c;Z) the number
of connected components of CHur(n),

The vanishing condition for (G, c) implies the function field case of

(3):
|Fqm |
|Sqm | ∼ h

|G| , as m→ ∞.

and the weakened version:

The stability condition for (G, c) implies that
∣∣∣ |Fqm |
|Sqm | − h

|G|

∣∣∣ ≤
Aq−1/2, where the constant A = A(G, c) is independent of q,m.

Concerning the notion of “enough” roots of unity: It is very likely2 that
the assumptions of §2.5 – i.e. µm ⊂ K and (e,m) = 1 where e is the order
of an element of c and m annihilates #H2(G, c;Z) – are sufficient to ensure
the validity of the above results, and moreover that, in this case, the refined
statement (6) is valid.

Remark. It is particularly interesting to examine from this point of view the
phenomenon of “lower order terms” discussed in §2.6. It is natural to sup-
pose that such lower order terms correspond to natural families of cohomology
classes on the Hurwitz schemes (albeit classes in degrees which increase with

2To verify this amounts to checking compatibility between certain definitions in charac-
teristic zero and positive characteristic; we have not done so carefully.
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the dimension of the scheme). Is there any explicit description of these unstable
cohomology classes?

4. Special Case: The Cohen–Lenstra Heuristics

The Cohen-Lenstra heuristics – as originally formulated in [4] – are concerned
with the average behavior of class groups of quadratic fields; in particular, they
try to explain numerical observations such as

Z/9Z occurs in class groups more often than Z/3Z× Z/3Z. (11)

As we explain, they can be considered a special case of the Bhargava–Malle
type conjectures formulated earlier, in the case of dihedral groups. Indeed, (1)
establishes one of the few known cases of the Cohen-Lenstra heuristics.

These heuristics are of particular importance because they are readily for-
mulated and relatively easy to investigate numerically.

4.1. Number fields. For any global field L, denote by CL the class group.
Let QX be the set of imaginary quadratic extensions of Q with discriminant in
[−X, 0]. Let ` be an odd prime. The Cohen-Lenstra conjecture asserts that, for
any finite abelian `-group A,

lim
X→∞

∑
L∈QX

|Epi(CL, A)|
|QX | = 1. (12)

where Epi(CL, A) denotes the set of surjective homomorphisms from CL to A.
This implies that3, for any `-group B, the fraction of L ∈ QX with CL[`

∞] ∼= B

is asymptotically
∏

∞

i=1
(1−`−i)

|Aut(B)| . This makes manifest why (11) should be true.

But the formulation (12) emphasizes the “rationality” feature of the answer.
Before returning to function fields, let us describe a heuristic for (12) in

the spirit of Cohen and Lenstra’s original work. The class group of CL is the
quotient of all ideals by principal ideals. If we fix a sufficiently large set of
finite places V , CL will be isomorphic to the quotient of the free group Z[V ]
by the image U of the V ∪ {∞}-units. There are A|V | homomorphisms from
Z[V ] to A; the chance that a homomorphism is trivial on U is |A|−rank U ; since
rank(U) = |V |, this suggests (12).

The Cohen-Lenstra heuristics can be viewed as a special case of Malle’s
conjecture: let D(A) be the group AoZ/2Z, where Z/2Z acts on A via a 7→ −a,
and let c be the set of elements which project to the nontrivial element of
Z/2Z. Then there is a bijection between D(A)-extensions of Q, all of whose
ramification is of type c, and pairs (L, f : CL � A), where f is defined only
up to ±1. Thus (12) becomes equivalent to a question of the type considered
in §2.

3For the implication, see [10] for the case of `-torsion, [9, Corollary 8.2] in general.
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4.2. Function fields. Now let k be a finite field of odd cardinality q and
let Q′

X be the set of imaginary4 quadratic extensions of k(t) with discriminant
less than X. The following counting result then follows from the homological
stability proved in [9]:

Theorem. (E. , V., Westerland). Suppose q 6≡ 0, 1 modulo `.

lim sup
X→∞

∑
L∈Q′

X
|Epi(CL, A)|
|Q′

X | = 1 +O(q−1/2), (13)

for all q sufficiently large (this notion depending only on A). The same is true
for lim inf.

There is a similar statement [9, Theorem 1.2] concerning the fraction of L
for which CL[`

∞] lies in a specific isomorphism class.
The proof of this theorem is based on the “program” outlined in §3.3 and in

particular is a corollary to Theorem of §3.2. As discussed in §3.3, a proof of the
vanishing conjecture would remove the factor O(q−1/2) and show the existence
of the limit, as long as q is sufficiently large relative to A.

Remark. The restriction q 6≡ 1 modulo ` ensures that k does not contain
µ`. If k contains µ`, the methods of [9] give a corresponding theorem, but
the limit changes, because the pertinent Hurwitz scheme acquires more Fq-
rational connected components. A corresponding phenomenon in the number
field case has been predicted by Malle [20]. We regard this as an example of
a Schur correction phenomenon, even though we did not formulate §2.4 in
sufficient generality to include dihedral groups. Forthcoming work of Garton [13]
will provide an explanation of the phenomena discovered by Malle from the
viewpoint of function-field analogies.
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Abstract

We will discuss recent work on the relations between the intersection theory
of homogeneous spaces (and their quantum, and higher genus generalizations),
invariant theory, and non-abelian theta functions. The main theme is that the
analysis of transversality in enumerative problems can be viewed as a bridge
from intersection theory to representation theory. Some of the new results
proved using these ideas are reviewed: multiplicative generalizations of the Horn
and saturation conjectures, generalizations of Fulton’s conjecture, the deforma-
tion of cohomology of homogeneous spaces, and the strange duality conjecture
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1. Introduction

An enumerative problem is a problem of counting the number of points in
a space that satisfy certain geometrically defined conditions. For example, one
may consider the classical problem of intersecting Schubert varieties (in general
position) in a Grassmannian, or the more recent problem in quantum cohomol-
ogy of counting maps from the projective line to a homogeneous space satisfying
certain incidence conditions, or of counting subbundles of a fixed (general) vec-
tor bundle of a given degree and rank on an algebraic curve.

Take an enumerative problem such as one of the above. Under suitable
conditions the enumerative problem counts the number of points of a certain
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schemeX (which is frequently an intersection of several smooth subvarieties of a
smooth variety). In many casesX is reduced as a scheme, and of dimension zero.
Such enumerative problems will be said to have the transversality property.

The general theme of this report is to review recent work analyzing the
implications of transversality in such situations. The following questions will
be considered.

(a) Can we obtain (hopefully “simpler”) consequences of a (non-empty)
transversal intersection which are equivalent to the enumerative problem
having a non-empty solution?

(b) Transversality can be immediately translated as the non-zeroness of suit-
able determinants (see Section 5 for an example). This leads one to sec-
tions (“the theta sections”) of line bundles over suitable moduli-spaces
which have representation theoretic significance. How effective is this link
between intersection theory and representation theory?

Note that the assumptions on the scheme X (that it is smooth and of the ex-
pected dimension) is often the consequence of powerful theorems in algebraic
geometry. It usually comes about by combining Kleiman’s transversality theo-
rem and Grothendieck’s computation of tangent spaces of quot schemes.

The following enumerative problems will be considered in this report. In
each case we will try to analyze the implications of transversality. Quite sur-
prisingly, the transversality properties often link up to invariant theory (and
generalizations).

• The classical Schubert calculus in a Grassmannian Gr(r, n): In this case
a tangent space analysis can be made to illuminate the known relation
of the Schubert structure constants to invariant theory of GL(r) and
GL(n− r). Analysis of tangent spaces can be used to geometrically prove
many (previously known) results in the area: Geometric proofs of Horn
and Saturation conjectures; Fulton’s conjecture.

• The (small) quantum cohomology of a Grassmannian: In this case the
transversality analysis illuminates the known relation of structure con-
stants in the small quantum cohomology to fusion rings. It also allows for
a generalization of the Horn and Saturation conjectures to this setting.

• The classical Schubert calculus in arbitrary homogeneous spaces G/P ’s:
The relationship between intersection theory and invariant theory is more
complicated here. The analysis of tangent spaces reveals a deformation of
the product in the singular cohomology H∗(G/P,Z). This deformed prod-
uct has links to invariant theory and is closely tied in with the Hermitian
eigenvalue problem. In particular an analogue of Fulton’s conjecture holds
here.

• Higher genus generalizations: There are many “quantum cohomology”
type enumerative problems in higher genus. The structure coefficients in
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the fusion rings above are dimensions of the spaces of parabolic theta func-
tions. In higher genus, there are several flavors of these spaces (because
of the non triviality of the Jacobian). But the transversality techniques
manage to illuminate the picture here, leading to the proof of the strange
duality conjecture.

There are a few other enumerative problems that have not yet been ana-
lyzed in the above fashion. I want to single out the big quantum cohomology
rings, and the enumerative problems of mapping curves into non-homogeneous
spaces. Transversality may not hold in general in the last problem, but recent
work in enumerative geometry has found a way around this difficulty (virtual
fundamental classes etc). Could one hope for a variation of the above theme of
analyzing tangent spaces to shed further light on these problems?

I have tried to make the sections independent of each other. Section 2 pro-
vides the background to the context in which the transversality techniques were
developed (this section can be skipped by a more knowledgeable reader).

The focus for this report is the relation between enumerative questions and
invariant theory. We will not discuss relations to geometric invariant theory (a
recent highlight here is the work of Ressayre [52]), or questions in representation
theory (“saturation conjectures”, a highlight here is the work of Kapovich and
Millson [32]), or relations to the eigenvalue problem. We refer the reader to
[26, 30, 38] for many related aspects of these questions.

There are other ways of relating the number of points of intersections of
Schubert varieties with invariant theory [42, 56]. The approach of [42] incor-
porates an asymptotic study of solutions to the Kniznik-Zamolodchikov (KZ)
equations. It can be hoped that this will somehow link to the discussion on
non-abelian theta functions in Section 6, which in turn incorporates the study
of the Hitchin connection, a higher genus generalization of the KZ equations.

We will work over the field of complex numbers. The representations con-
sidered are complex representations of complex algebraic groups. In fact, the
methods considered here allow one to prove transversality in some enumera-
tive problems in characteristic p (see e.g. [12]), but we will not consider these
applications here.

I would like to thank V. Srinivas for his comments on a preliminary version
of this report and L. Matusevich for some references in Section 4.1.

2. The Context for Many of the Problems

The following questions have been the source of some recent developments in
geometry and representation theory. Many of the tangent space techniques were
developed while trying to understand the geometry behind these problems.

Question 2.1. Given the eigenvalues of two hermitian matrices, what are the
possible eigenvalues of their sum?
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Question 2.2. Given irreducible representations Vλ and Vµ of GL(n), which
irreducible representations of GL(n) appear in the tensor product Vλ ⊗ Vµ?

Question 2.3. Given the eigenvalues of two unitary matrices, what are the
possible eigenvalues of their product?

Question 2.4. (“The Schubert calculus”) Given cycle classes of Schubert vari-
eties [ωI ] and [ωJ ] ∈ H∗(Gr(r, n)) in the cohomology of a Grassmannian, which
cycle classes [ωK ] appear with non-zero coefficient in the cup product of [ωI ]
and [ωJ ]?

Question 2.1 has an interesting history going back to the work of Weyl
(see the survey article of Fulton [26]). Question 2.3 can be seen as a Riemann-
Hilbert problem by restating it as: “What are the possible eigenvalues of uni-
tary matrices A, B and C which satisfy ABC = 1?”, and recognizing the
equation ABC = 1 as the fundamental relation in the fundamental group of
P1 −{0, 1,∞}. It has a very illustrious history (the unitary group can be re-
placed by any group, for example the general linear group). Question 2.1 can
be considered to be the Lie algebra version of Question 2.3. Questions 2.1 and
2.3 are examples of “eigenvalue problems”.

In 1962, Horn [29] gave a conjectural solution to Question 2.1, by a recur-
sively determined system of inequalities. This conjecture was free of cohomol-
ogy. Klyachko [35] gave another solution to Question 2.1; in terms of a list of
inequalities parameterized by non-vanishing structure constants in the Schubert
calculus of Grassmannians Gr(r, n) (Question 2.4).

In [36], Knutson and Tao proved the saturation theorem which says that for
irreducible representations Vλ, Vµ and Vν of Gl(n) given by Young diagrams λ,
µ and ν, Vν appears in Vλ ⊗ Vµ if and only if for some positive integer N , VNν

appears in VNλ ⊗ VNµ.
It turns out that the problem: “Does there exist N so that VNν appears in

the tensor product of VNλ and VNµ?” is equivalent to the Hermitian eigenvalue
problem for n × n matrices (for eigenvalues of the summands given by λ and
µ, and that of the sum by ν); and the Schubert calculus problem is equivalent
to an instance of Question 2.2 for the smaller group GL(r). Note that Schubert
cycle classes for the Grassmannians Gr(r, n) are also parameterized by Young
diagrams, see Section 3.

These works taken together implied Horn’s original conjecture. They also
implied that the non-vanishing question for a product of Schubert cohomology
classes (Question 2.4) in a given Grassmannian has an inductive solution: It is
characterized by a series of inequalities coming from knowing the answer to the
same question for smaller Grassmannians (see Theorem 3.3).

This set of questions, solved in the late nineties, forms a point of confluence
of combinatorics, algebraic geometry, representation theory and symplectic ge-
ometry (see Fulton’s survey [26]). For the generalizations considered below,
the combinatorial apparatus is largely missing. The numerical relationship be-
tween the invariant theory of GL(r) and the Schubert calculus of Grassmannians



The Tangent Space to an Enumerative Problem 409

Gr(r, n), which at first glance seems to be a phenomenon restricted to the gen-
eral linear groups, was used rather crucially at several places in the first known
proofs of many of these results.

2.1. Generalizations. There are three basic objects in this picture. The
first one is a topological one concerning representations of fundamental groups
(or the Lie algebra version). The second one is representation theoretic (ten-
sor product problem), and the third is intersection theoretic (cohomology of
Grassmannians).

Viewed in this way, there are many potential generalizations. We may re-
place the group GL(n) by an arbitrary reductive group. Actually, we will find
it convenient to state results for semi-simple rather than reductive groups.

We may also consider multiplicative eigenvalue problems (see Question 2.3),
replace invariant theory by the fusion ring, and the cohomology by quantum
cohomology of Grassmannians (one can change the group too).

Another generalization is to replace P1 by an arbitrary curve (with or with-
out punctures), the fusion ring by the non-abelian theta functions and quantum
cohomology by some higher genus generalization.

There are also potential generalizations to the subgroup embedding prob-
lems pioneered by Berenstein and Sjamaar [20].

3. Intersection Theory in an Ordinary

Grassmannian

Let I be a subset of [n] = {1, . . . , n} of cardinality r. Write I = {i1 < i2 <
· · · < ir}. Let

E
•
: 0 = E0 ( E1 ( · · · ( En = Cn

be a complete flag of subspaces of Cn. Define the Schubert variety

ΩI(E•
) = {V ∈ Gr(r,W ) | rk(V ∩ Eia) ≥ a, for 1 ≤ a ≤ r}

Denote the cycle class in the cohomology of this subvariety by ωI . The
codimension of ΩI(E•

) in Gr(r, n) is codim(ωI) =
∑r

a=1(n− r + a− ia).
Now suppose that we are given three subsets I, J and K of [n] of cardinality

r each such that

codim(ωI) + codim(ωJ) + codim(ωK) = dimGr(r, n).

The prototypical enumerative problem is the one of counting the number of
points in the intersection

ΩI(E•
) ∩ ΩJ(F•

) ∩ ΩK(H
•
) (1)

when the triple of complete flags (E
•
, F

•
, G

•
) is in general position. This

number also equals the number m such that

ωI · ωJ · ωK = m[class of a point] (2)
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3.1. The work of Klyachko and Knutson-Tao. Irreducible poly-
nomial representations of the GL(r), (or equivalently, the unitary group U(r))
are parameterized by weakly decreasing sequences of non-negative integers
λ = (λ1 ≥ λ2 ≥ · · · ≥ λr). These restrict to irreducible representations λ̄
of SL(r) (equivalently the special unitary group SU(r)). Sequences λ and µ
restrict to give the same irreducible representation of SU(r) if and only if, the
difference λa−µa = c for some constant c and all a ∈ [r]. The congruence class
|µ̄| = ∑r

a=1 µa (mod r) ∈ Z/rZ is therefore well defined.
In [36], Knutson and Tao and proved the saturation conjecture for SL(r):

Theorem 3.1. Consider representations Vλ, Vµ and Vν of SL(r), such that

|λ̄|+ |µ̄|+ |ν̄| ≡ 0 (mod r) (3)

then the following are equivalent

1. (V (λ)⊗ V (ν)⊗ V (ν))SL(r) 6= 0

2. For some positive integer N, (V (Nλ)⊗ V (Nµ)⊗ V (Nν))SL(r) 6= 0.

By the work of Klyachko [35], the second property in Theorem 3.1 is char-
acterized by a system of inequalities which is parameterized by non vanishing
structure constants in smaller Grassmannians Gr(r̃, r) where 1 ≤ r̃ < r. A proof
of the saturation conjecture using the quiver theory was later given by Derken
and Weyman [25].

3.2. Numerical relations between intersection numbers
and invariant theory. Intersection theory of Grassmannians and invari-
ant theory of the special linear group GL(r) are related, and this has been
known for a long time. To describe this, note that sequences I, J andK as above
also parameterize some irreducible (polynomial) representations of GL(r). The
association takes

I 7→ λI = (λ1 ≥ λ2 ≥ · · · ≥ λr), λa = n− r + a− ia, 1 ≤ a ≤ r.

Denote the corresponding representation of GL(r) by V (λI). Then, the inter-
section multiplicity m (from (2)) equals the dimension of the space of invariants

(

V (λI)⊗ V (λJ)⊗ V (λK)
)SL(r)

(4)

(See [26] for some history, and for the proof of this assertion.) Note that since
Gr(r, n) and Gr(n − r, n) are isomorphic, these sets up a “numerical strange
duality” between the invariant theories of GL(r) and GL(n− r).

A geometric “reason” was given in [9], and [8]: Each point of intersection V
of the Schubert varieties (1) produces an non-zero invariant θV in the dual of
the vector space (4).

It is easy to describe θV , using the Borel-Weil theorem. It is known that
Vλ

∗ = H0(Fl(r),Lλ) where Fl(r) is the variety of complete flags in Cr, and Lλ
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is a suitable line bundle with a SL(r)-action. The dual of the space of invariants
(4) is therefore a subspace of H0(Fl(r)3,Lλ � Lµ � Lν).

Therefore, to describe θV up to scalars, we may as well describe its zero
scheme. Fix a point V as above, let Q = Cn/V . The given flags on Cn induce
flags E′

•
, F ′

•
and G′

•
on V and also E′′

•
, F ′′

•
and G′′

•
on Q. The zero locus

of θV is the set of points (R
•
, S

•
, T

•
) ∈ Fl(r)3 such there exists a non-zero

homomorphism (of vector spaces) φ : Cr → Q so that for every a ∈ [r], φ(Ra) ⊂
E′′

ia−a, φ(Sa) ⊂ F ′′
ja−a and φ(Ta) ⊂ G′′

ka−a. These conditions were suggested by
a computation of tangent spaces of Schubert varieties. They can be readily
converted into a determinantal condition [8] and are reminiscent of the theta
divisor from the theory of vector bundles (the parabolic version).

It is easy to see that each point V as above also gives a point V in Fl(r)3

(well defined upto the diagonal SL(r) action). We can show that if Vi and Vj

are in the transversal intersection (1), then θVi
vanishes at Vj if and only if

i 6= j. These claims for i 6= j hold because there is a natural non-zero map
Vj → Cn/Vi (inclusion into Cn followed by projection) satisfying the above
conditions. For i = j, we use the fact that the intersection (1) is transverse at
Vi.

The linear independence of the sections θVi
follows immediately. Together

with the known agreement of m with the dimension of (4), we get [9, 8]:

Theorem 3.2. Let V1, . . . , Vm be the points in (1). Then, θV1
, . . . , θVm

form a
basis for the space of invariants (4).

3.3. The Geometric Horn Property. The work of Klyachko-
Knutson-Tao and the numerical relation between intersection numbers and in-
variant theory implies the following theorem which says that we can decide
whether m 6= 0 by writing down a series of inequalities coming from knowing
the answer to the same question for smaller Grassmannians. Here m is the
intersection number from (1).

Theorem 3.3. Let λ = λI , µ = λJ and ν = λK .The following are equivalent

1. m 6= 0.

2. For every 1 ≤ r̃ < r and choice of subsets A,B,C of [r] each of cardinality
r̃ so that ωA · ωB · ωC 6= 0 ∈ H∗(Gr(r̃, r)) the following inequality holds

∑

a∈A

λa +
∑

b∈B

µb +
∑

c∈C

νc ≤ r̃(n− r)

Fulton proposed the challenge of finding a geometric proof of Theorem 3.3.
This was achieved in [10]. It was based on the following idea: If general Schubert
varieties intersect at a point, then by Kleiman’s transversality, they intersect
transversally there. Conversely, one can detect if general Schubert varieties
intersect, by a tangent space calculation (also see [49] where similar ideas were
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pursued independently). The tangent space of the Grassmannian Gr(r,W ) at
point V is isomorphic to Hom(V,W/V ). One may use the action of GL(V ) ×
GL(W/V ) on Hom(V,W/V ) (this action has only finitely many orbits) to study
the reasons for a non-transverse intersection.

It was shown in [10] that Theorem 3.3 immediately implies the Knutson-Tao
saturation theorem. In fact using Theorem 3.2, we can construct geometrically
“explicit” elements of the space of invariants (4). The explicitness of these
sections should be of use, when analyzing functoriality issues [18].

3.4. Fulton’s conjecture. Fulton conjectured a statement which runs
parallel to the saturation conjecture:

If |λ|+ |µ|+ ν| ≡ 0 (mod r) then, rk(V (λ)⊗ V (µ)⊗ V (ν))SL(r) = 1 implies
that for all positive integers N , rk(V (Nλ)⊗V (Nµ)⊗V (Nν))SL(r) = 1 (the op-
posite implication is also true, but that follows from the saturation conjecture)

As in Section 3.2, one may view the representations V (λ) via the Borel-Weil
theorem, as the space of global sections of certain line bundles over complete flag
varieties. Using GIT, one can view the space of invariants in a tensor product
as the space of global sections of a certain line bundle over a suitable moduli
space M (of “semi-stable” parabolic vector spaces of rank r). The property
rk(V (Nλ)⊗ V (Nµ)⊗ V (Nν))SL(r) = 1, for all positive integers N , implies the
rigidity statement that M is a point.

Fulton’s conjecture was first proved by Knutson, Tao and Woodward [37]
using combinatorial methods. In [13], a geometric proof was given. The proof
used the connections to intersection theory and the special theta sections θV
from Section 3.2.

Remark 1. The saturation theorem of Knutson-Tao also takes a nice form in
terms of M:

M 6= ∅ =⇒ h0(M,L) 6= 0

Here L on M is a natural line bundle obtained through descent (see e.g. [13]
for more details).

4. Quantum Cohomology

The intersection theoretic problem considered here is the (small) quantum co-
homology of Grassmannians. For simplicity we restrict to three punctures, al-
though the results are valid for any number of punctures. Fix three points 0, 1
and ∞ on P1. Let I, J and K be subsets of [n] each of cardinality r. Let d be
a non-negative integer such that

codim(ωI) + codim(ωJ) + codim(ωK) = dimGr(r, n) + dn

Define the Gromov-Witten number 〈ωI , ωJ , ωK〉 to be the number of maps
P1 → Gr(r, n) of degree d such that f(0) ∈ ΩI(E•

), f(1) ∈ ΩJ(F•
), f(∞) ∈
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ΩK(G
•
). The triple of flags (E

•
, F

•
, G

•
) is assumed to be in general position.

The (small) quantum cohomology ring, a generalization of ordinary cohomol-
ogy of Grassmannians encapsulates the Gromov-Witten numbers as structure
coefficients [39, 27].

It is easy to see that sub-bundles of the trivial rank n bundle O⊕n
P1 , of degree

rank r and degree −d correspond bijectively to maps P1 → Gr(r, n) of degree
d. The conditions at 0, 1 and ∞ above, can be interpreted in terms of the
corresponding sub-bundle.

The analogue of the Hermitian eigenvalue problem is the problem of charac-
terizing possible eigenvalues of a product of unitary matrices. This problem can
be reinterpreted as the problem of determining the possible local monodromies
in a unitary representation of the fundamental group of P1 −{0, 1,∞}.

The analogue of the ring of invariants is the fusion ring (see e.g. [5]) of
the special unitary group SU(r), which incorporates an additional parameter
of a nonnegative “level”. The structure coefficients in the fusion ring are the
dimensions of spaces of sections of suitable line bundles on moduli stacks of
parabolic bundles on P1 [46]. Therefore, the quantum generalization replaces
GIT quotients of products of flag varieties with the moduli spaces of parabolic
bundles.

A theorem of Witten [59] relates the (small) quantum cohomology of Grass-
mannians to the fusion rings of unitary groups.

The theorems of Sections 3 generalize to the quantum setting. The gener-
alizations of Klyachko’s theorem are known [22, 3, 7]; these works are based
on the theorem of Mehta and Seshadri [41] which relates unitary representa-
tions of the fundamental group of a punctured curve and semi-stable parabolic
bundles. According to this generalization, the multiplicative eigenvalue prob-
lem is controlled by a system of inequalities, parameterized by non-vanishing
Gromov-Witten numbers.

The analogue of theorem 3.3 is the following theorem, proved in [12]. The
proof is by an examination of the transversality in the enumerative problem.
We will use notation from Section 3.

Theorem 4.1. Let I, J and K be subsets of [n], each of cardinality r and let
d be a non-negative integer such that

codim(ωI) + codim(ωJ ) + codim(ωK) = dn+ r(n− r),

Write d = qr + h with 0 ≤ h < r and (q, h) ∈ Z2. Let

L = {x ∈ [n] | ∃ y ∈ I, x ≡ y − ih (mod n)}

(where ih = 0 if h = 0). Let (λ̃1, . . . , λ̃r) = λL, µ = λJ and ν = λK . The
following are equivalent:

(a) 〈ωI , ωJ , ωK〉d 6= 0.
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(b) For any integers d̃ and r̃ with 0 < r̃ < r, d̃ ≥ 0, and A,B,C subsets of [r]
each of cardinality r̃, such that 〈ωA, ωB , ωC〉d̃ = 1, the following inequality
holds:

∑

α∈A

λ̃a +
∑

b∈B

µb +
∑

c∈C

νc ≤ d̃(n− r) + r̃(qn+ ih) + r̃(n− r).

The following version of the above theorem links non-vanishing Gromov-
Witten numbers and the multiplicative eigenvalue problem for a smaller group:

Recall that conjugacy classes in SU(r) are in one to one correspondence
with points in the (n− 1)-simplex

∆(r) =

{

α = (α1, . . . , αr) | α1 ≥ · · · ≥ αr ≥ α1 − 1,

r
∑

t=1

αt = 0

}

⊆ Rr

where, to (α1, . . . , αr), we associate the conjugacy class of the diagonal matrix
with entries exp(2π

√
−1αt) for t = 1, . . . , r.

For a subset of [n] of cardinality r, with associated sequence λI = (λ1 ≥
· · · ≥ λr), define a conjugacy class β(I) = (β1, . . . , βr) for SU(r) as follows:

β(I) =
1

n− r
(λ1, . . . , λr)−

|λ(I)|
r(n− r)

(1, . . . , 1)

where |λ(I)| = ∑r
a=1 λa.

The center of SU(r) acts on the conjugacy classes of elements in SU(r). Set

ζr = exp( 2π
√
−1

r ) ∈ C. Given a conjugacy class α for SU(r) we can multiply α
by ζr and obtain a new conjugacy class ζrα.

Theorem 4.2. [12] Under the conditions of Theorem 4.1, the assertions (a),
(b) there are equivalent to each of the following

1. There exist U, V,W ∈ SU(r) satisfying

• UVW = I.

• U , V and W are in the conjugacy classes corresponding to ζdrβ(I),
β(J), and β(K) respectively.

2. There exists a SU(n)-local system L on P1 −{0, 1,∞} such that the local
monodromies of L at 0, 1 and ∞ are ζdrβ(I), β(J) and β(K) respectively.

4.1. Fulton’s conjecture. It can be shown that, using the techniques of
[13] we have the following generalization of Fulton’s conjecture (unpublished).
In the setting of Theorem 4.2, let M be the moduli-space of unitary local
systems L on P1 −{0, 1,∞} such that the local monodromies of L at 0, 1 and
∞ are ζdrβ(I), β(J) and β(K) respectively.
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Theorem 4.3. The following are equivalent.

1. 〈ωI , ωJ , ωK〉d = 1.

2. M is a point.

In the above setting, if 〈ωI , ωJ , ωK〉d = 1, and the corresponding local sys-
tem L is irreducible, then one gets examples of rigid local systems, in the sense of
[33], with unitary monodromy. Could this relation of unitary rigid local systems
to quantum cohomology shed light on the problem of classifying (and construct-
ing) rigid local systems with finite global monodromy? (see [7, 21, 28]). We note
that Theorem 4.3 has an extension to an arbitrary number of punctures.

4.2. Fusion rings, and saturation. A theorem of Witten [59] relates
the (small) quantum cohomology of Grassmannians to the fusion rings of uni-
tary groups. We can use this numerical information to obtain a geometrically
defined basis of the space of global sections of the corresponding line bundle on
a moduli stack of parabolic bundles on P1, in exactly the same manner as in
Section 3.2.

Theorem 4.1 and Witten’s theorem can be used to obtain a generalization
of the Knutson-Tao saturation theorem to fusion rings (see [12]).

5. Intersection Theory in an Arbitrary

Homogeneous Space

Let G be a connected semi-simple complex algebraic group. We choose a Borel
subgroup B and a maximal torus H ⊂ B. Let P ⊇ B be a (standard) parabolic
subgroup of G. The enumerative problem that we want to consider is the prob-
lem of intersecting Schubert varieties in G/P . The representation theoretic
problem is the invariant theory of G. Let L be the Levi subgroup of P , and
Lss = [L,L] its semi-simple part.

Let K be a maximal compact in G, and let k be the Lie algebra of K.
K acts on k via the adjoint representation. The orbits of this conjugation (or
adjoint) action are parameterized by the positive Weyl chamber in h, the Lie
algebra of H. The analogue of the Hermitian eigenvalue problem is the problem
of characterizing the conjugacy class of a sum C = A+B where A,B ∈ k, given
the conjugacy classes of A and B. Recall that Hermitian matrices of trace zero
form the Lie algebra of SU(n).

There are some genuine surprises in the case of arbitrary groups. Many of
the known properties for the case G = SL(n) fail (without suitable modifica-
tions). For example, the saturation conjecture has to be amended [32] and the
generalized Klyachko inequalities (as in [20, 31]) describing the solution to the
Hermitian eigenvalue problem turn out to be redundant. In joint work with S.
Kumar [17], the author discovered a deformation of H∗(G/P ) which seems to
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be more finely tuned to the cohomological/intersection theoretic issues and to
eigenvalue problems.

Let us first recall the definition and parameterizations of Schubert varieties
in G/P . Let W be the Weyl group of G, WP the Weyl group of P , and let WP

be the set of minimal length coset representatives in W/WP . For any w ∈ WP ,
define the (shifted) Schubert cell

ΛP
w = w−1BwP/P ⊂ G/P

Let [Λ̄P
w ] ∈ H2 dim(G/P )−2`(w)(G/P,Z) denote the cycle class of the closure

Λ̄P
w of ΛP

w . Here, dim(G/P ) − `(w) is the codimension of the Schubert variety
ΛP
w in G/P .

5.1. Intersection of Schubert varieties in a G/P . Now assume
that we are given a triple (u, v, w) ∈ WP ×WP ×WP (we will state results for
three factors, but these results are valid for any number of factors) such that

codim(ΛP
u ) + codim(ΛP

v ) + codim(ΛP
w) = dim(G/P ) (5)

In this case, by Kleiman’s theorem, for general (g, h, k) ∈ G3, gΛP
u , hΛ

P
v and

kΛP
u meet transversally in a finite set of points. The number of points of inter-

section
m = |gΛP

u ∩ hΛP
v ∩ kΛP

w |
can be calculated using cohomology of G/P . More precisely,

[Λ̄P
u ] · [Λ̄P

v ] · [Λ̄P
w ] = m[Λ̄P

e ]

where e ∈ WP is the identity element.
The enumerative problem is the one of calculating m. It is easy to see that

m 6= 0 if (and only if) we can get gΛP
u , hΛ

P
v and kΛP

u to intersect transversally
at some point. We may assume by translations that this point is ė ∈ G/P . Note
that

• gΛP
u passes through ė ∈ G/P if and only if gΛP

u = pΛP
u for some p ∈ P .

• The Borel BL of the Levi L of P does not move the Schubert varieties
BLΛ

P
u = ΛP

u . Therefore, P/BL is a complete parameter space of Schubert
varieties (having fixed u ∈ WP ) passing through ė.

Lemma 5.1. [17] The following are equivalent

1. |gΛP
u ∩ hΛP

v ∩ kΛP
w | 6= 0 for general (g, h, k) ∈ G3.

2. For general p1, p2, p3 ∈ P , the following map between vector spaces of the
same dimension is an isomorphism

Tė(G/P ) → Tė(G/P )

p1T (G/P )ė
⊕ Tė(G/P )

p2T (G/P )ė
⊕ Tė(G/P )

p3T (G/P )ė
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By taking determinants in (2), we can view (2) as the non-vanishing of a natural
section θ of a line bundle L on a product (P/BL)

3 which is invariant for the
diagonal P -action. This line bundle L can easily be identified as a product
of line bundles from the factors. By the Borel-Weil theory, global sections of
positive line bundles on G/B, give irreducible representations. Therefore one is
tempted to view θ in a tensor product of irreducible representations of P .

But P is not reductive. This problem is not serious when P is a cominiscule
maximal parabolic, where the unipotent radical of P acts as zero on the tangent
space T (G/P )ė, so θ is really a invariant section of a line bundle over (L/BL)

3

(in the case of Grassmannians, the author had shown this before, in [8]).

5.2. A deformation of cohomology. We are led to the following
definition (see [17]).

Definition 1. We call a triple (u, v, w) satisfying (5) Levi-movable if, for generic
(l1, l2, l3) ∈ L3, the intersection l1Λ

P
u ∩ l2Λ

P
v ∩ l3Λ

P
w is a transverse intersection

at ė (Hence the number m 6= 0).

It turns out that Levi-movable triples with m = 1, and P maximal parabolic
are exactly the ones required in eigenvalue problems (all others are redundant)
[17]. By Ressayre’s work [52], the reduced set of inequalities corresponding to
the Levi-movable triples form an irredundant set of inequalities (this generalizes
a theorem of Knutson-Tao-Woodward [37] in the case of G = SL(n)).

In the case of the ordinary Grassmannians, and more generally for cominis-
cule flag varieties, the above condition is vacuous. In general, the condition of
Levi-movability is equivalent to having m 6= 0 and a system of linear equalities
(see [17], Theorem 15). A triple (u, v, w) satisfying these numerical equalities
will be called numerically Levi-movable in this report.

Definition 2. Suppose we write the structure coefficients in the usual cup
product in H∗(G/P ) by

[Λ̄P
u ] · [Λ̄P

v ] =
∑

cwu,v[Λ̄
P
w ]

Define the deformed product �0 by the following rule

[Λ̄P
u ]�0 [Λ̄

P
v ] =

∑

′

cwu,v[Λ̄
P
w ]

where the sum is restricted to w so that the triple (u, v, woww
P
o ) is Levi-

movable. Here wo (resp. wP
o ) is the longest element of W (resp. WP ).

Remark 2. 1. It is an open problem to find combinatorial “manifestly non-
negative” rules for the structure coefficients in the usual cup product on
H∗(G/P ) (in the Schubert basis). However such rules are known, for
cominiscule (maximal) parabolics. In these cases, the deformation of co-
homology is trivial. One is therefore tempted to ask if there are combina-
torial rules for the structure coefficients in the product �0 (for arbitrary
G and P ).
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2. Are there formulas analogous to the Pieri rules, which give a description of
�0 in terms of generators and relations? Is there a description analogous
to the classical Giambelli formula, of cycle classes of Schubert varieties in
terms of the generators?

5.3. The deformed product and invariant theory. A prelimi-
nary connection to the representation theory of the Levi subgroup is established
in [17]. For every w ∈ WP , a line bundle L(χw) on P/BL was constructed
where χw is a corresponding character in h∗ (see [17] for the definitions). It
was shown there that if (u, v, w) are L-movable, then H0((L/BL)

3, L(χu) �
L(χv)�L(χw))

Lss 6= 0. Note that H0(L/BL, L(χu)) = V (χu) is an irreducible
representation of L and we have the following result [17]:

Proposition 5.2. If [Λ̄P
u ] �0 [Λ̄

P
v ] �0 [Λ̄

P
v ] = m[Λ̄P

e ] ∈ H∗(G/P ),m 6= 0, then
I = rk(V (χu)⊗ V (χv)⊗ V (χw))

Lss 6= 0.

The corresponding construction in the case of G = GL(n) and G/P =
Gr(r, n) was previously carried out in [8]. In this case, Lss = SL(r)×SL(n−r).
Starting from the Schubert cell parameterized by λ, the corresponding repre-
sentation of Lss coincides with V (λ)∗ ⊗V (λ̃), where V (λ) is the corresponding
irreducible representation of SL(r) and λ̃ is the conjugate partition giving rise
to the irreducible representation V (λ̃) of SL(n − r). We therefore have the
stronger relation I = m2.

In general, however there are no known numerical relations between m and
I. In fact we know that m is not given by a formula in I (or the other way).
The following question is expected (at least by this author!) to have a positive
answer. Suppose (u, v, w) is numerically Levi-movable.

Question 5.3. For every semi-simple group G and every maximal parabolic
P , does I 6= 0 imply that m 6= 0 (the opposite implication is true by the above
discussion).

Also note that if we set IN = rk(V (Nχu) ⊗ V (Nχv) ⊗ V (Nχw))
Lss

, then
there is a finite set of inequalities characterizing the stable tensor product prob-
lem: IN 6= 0 for some N (see [20]). It is not known if the following is true:

Question 5.4. Does IN 6= 0 for some N ≥ 1 imply that I 6= 0.

A positive answer to Question 5.4 will constitute saturation for some spe-
cial representations of Lss (“of intersection theoretic origin”). If Questions 5.3
and 5.4 have positive answers, then we would have a generalization of the ge-
ometric version of the Horn conjecture (Theorem 3.3). In the case of miniscule
parabolics [50], and in the case of maximal parabolics in symplectic and odd
orthogonal groups [18], there are known versions of the geometric form of the
Horn conjecture. These are different from the generalization that would follow
from the truth of Questions 5.3 and 5.4.
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The analogue of Fulton’s conjecture holds [19]:

Theorem 5.5. If m = 1, then for every positive integer N , IN = 1.

Let M be the GIT quotient by the diagonal action of Lss of the space
(L/BL)

3 linearized by L(χu)⊗ L(χv)⊗ L(χw). The conclusion of the theorem
is equivalent to the rigidity statement that M = point. Therefore, multiplicity
one in intersection theory leads to rigidity in representation theory.

The converse to Theorem 5.5 is not true as stated. There are examples where
IN = 1 for all N , but m > 1 (see [19] for an example).

The condition m = 1 in Theorem 5.5 can be translated into the state-
ment that a certain map of parameter spaces X → Y = (G/B)3 appearing
in Kleiman’s theorem is birational. Here X is the “universal intersection” of
closed Schubert varieties. If X were smooth, we could argue as follows: Let
R ⊂ X be the ramification divisor. Since X → Y is birational, no mul-
tiple of R can move (even infinitesimally). We may therefore conclude that
h0(X,O(NR)) = 1 for every positive integer N . In the case at hand, X is not
smooth, and H0(X,O(NR)) needs to be connected to invariant theory.

Remark 3. Let G = SL(n), and P a maximal parabolic. It would be very
interesting to obtain the numerical relation I = m2 using (only) the geometry of
the map X → (G/B)3. Let X0 be the universal intersection of the smooth parts
of the (closed) Schubert varieties. X−X0 has codimension ≥ 2 in X. It is shown
in [19] that (V (Nχu)⊗V (Nχv)⊗V (Nχw))

Lss

is dual to H0(X0,O(R))G. The
intersection number m is the degree of the generically finite map X → (G/B)3.
Perhaps a clever application of a (suitable) equivariant-Riemann-Roch theorem
will achieve this end?

6. Non-abelian Theta Functions

We have seen that invariant theory of a group G generalizes to the fusion ring.
The structure coefficients in the fusion rings are the dimensions of the spaces
of certain line bundles over suitable moduli spaces of parabolic bundles on P1.
We will now consider higher genus generalizations. For simplicity, we will not
consider parabolic structures. There are different flavors of moduli spaces of
vector bundles on curves.

6.1. Moduli spaces and theta functions. To define these objects,
let X be a connected smooth projective algebraic curve X of genus g ≥ 1 over
C. Let SUX(r) be the moduli space of semi-stable vector bundles of rank r with
trivial determinant over X. For any line bundle L of degree g − 1 on X define
ΘL = {E ∈ SUX(r), h0(E ⊗ L) ≥ 1} which is a Cartier divisor on SUX(r) and
let L = O(ΘL) (which is independent of L). The spaces H0(SUX(r),Lk) should
be considered as a non-abelian generalization of invariant theory.
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Because of the non-triviality of the Jacobian of X, we can consider a slightly
different space as well. Let U∗

X(k) be the moduli space of semi-stable rank k and
degree k(g−1) bundles onX. Recall that on U∗

X(k) there is a canonical non-zero
theta (Cartier) divisor Θk whose underlying set is {F ∈ U∗

X(k), h0(X,F ) 6= 0}.
Put M = O(Θk). The spaces H0(U∗

X(k),Mr) may also be considered to be
higher genus generalizations of invariant theory (in this way, Riemann-Jacobi
theta functions are generalizations of invariant theory). In fact, these spaces can
be considered as a twisted version of the spaces from the previous paragraph.

The analogue of the Hermitian eigenvalue problem is the problem of the
moduli of special unitary representations of the fundamental group of X. By
the classical Narasimhan-Seshadri theorem [45], this topological moduli-space is
homeomorphic to the algebraic variety SUX(r). A significant departure from the
genus zero situation is that unitary local systems with given local monodromies
at a set of punctures always exist on curves of genus ≥ 1. Motivated by Remark
1, we asked if the spaces of parabolic theta functions (with an arbitrary number
of punctures), satisfying conditions analogous to (3) are always non-zero in
genus g ≥ 1 (for G = SL(n)). This was proved by Boysal [23].

6.2. Strange duality. The intersection theoretic generalization in the
higher genus setting is not immediately clear. In analogy with Section 3.2, we
may expect that having a corresponding enumerative problem would lead to
spanning sets for the spaces H0(SUX(r),Lk). The strange duality conjecture
predicts a good spanning set for the space H0(SUX(r),Lk) which we will now
describe (also see [48, 47] for expository accounts, especially for the history of
this problem).

Consider the natural map τk,r : SUX(r)×U∗
X(k) → U∗

X(kr) given by tensor
product. From the theorem of the square, it follows that τ∗k,rM is isomorphic

to Lk
�Mr. The canonical element Θkr ∈ H0(U∗

X(kr),M) and the Kunneth
theorem gives a map well defined up to scalars:

H0(U∗
X(k),Mr)∗ → H0(SUX(r),Lk). (6)

The strange duality conjecture asserts that (6) is an isomorphism. Consider the
restriction of Θkr to SUX ×{F} for each F ∈ U∗

X(k). This gives rise to a section
θF ∈ H0(SUX(r),Lk) well defined up to scalars. The strange duality conjecture
is equivalent to the statement that the sections θF spanH0(SUX(r),Lk). Notice
that this situation is strikingly analogous to the discussion in Section 3. To have
the analogy lead to the strange duality, we need an enumerative problem with
the same number of solutions as the dimension of the space H0(SUX(r),Lk)
(we would then need to analyze the consequences of transversality).

6.2.1. The enumerative problem. This led to the work in [14]. The enu-
merative problem was not on X but on a nodal degeneration of X. Let T be a
general vector bundle of degree k(g − 1) and rank r + k on P1. Let p1, , . . . pg
and q1, . . . , qg be distinct points on P1. For i = 1, . . . , g, consider vector space
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homomorphisms ηi : Tpi
→ Tqi with kernel of rank 1 (but general up to this

condition). The enumerative problem is the following: Count the set of subbun-
dles E of T of degree zero and rank r such that the following two conditions
are satisfied:

1. ηi(Epi
) ⊂ Eqi

2. Epi
contains the kernel of ηi.

Say we get bundles E1, . . . , Em above. The enumerative number m above equals
h0(SUX(r), Lk), where X as before, is an arbitrary connected, smooth and
projective curve of genus g. This follows from the degeneration formulas of [57],
the known agreement of the structure coefficients of the fusion and quantum
cohomology rings (in genus 0), and a study of the cohomology class of the
diagonal in a (self) product of a Grassmannian.

Now consider the nodal curve X ′ obtained by gluing pi to qi, for i = 1, . . . , g.
It can be shown that ηi descend to give isomorphisms (T/Ei)pi

→ (T/Ei)qi .
These can then be used to glue, and therefore one obtains vector bundles
F ′
1, . . . , F

′
m of rank k and degree k(g − 1) on X ′. Consider the deformations

F1, . . . , Fm of F ′
1, . . . , F

′
m to a general smooth X. The strange duality on the

general curve X was proved in [14] in the following form:

Theorem 6.1. The theta sections θF1
, . . . , θFm

form a basis of
H0(SUX(r),Lk).

Notice that this is formally analogous to Theorem 3.2 (In Theorem 3.2, the
θV are defined through the quotient Q = Cn/V ).

In fact there is a very natural enumerative problem on the curve (not neces-
sarily general) X itself. Let T be a general vector bundle of degree k(g−1) and
rank r+ k on X. The enumerative problem is the problem of counting subbun-
dles of T of degree zero and rank k(g − 1). It is easy to see that transversality
holds in this enumerative problem (using the first order consequence of the
fact that the sub-bundle deforms with deformations of T ). There are finitely
many such bundles (E1, . . . , Em′). It is also immediate that Hom(Ei, T/Ej) is
non-zero if and only if i 6= j (such a calculation occurred first in [8], variants of
this calculation occur in both [14] and [40]). Now if Ei had trivial determinants
we could use the T/Ej as candidates for the spanning set of F ’s predicted by
the strange duality conjecture. However this may not be the case, and m′ may
not equal m = h0(SUX(r),Lk) (it is in fact larger). In [14] a part of m′ was
identified (in a degeneration) which corresponds to m = h0(SUX(r),Lk)

In subsequent work, Marian and Oprea built an enumerative problem on an
arbitrary curve that corresponds to a variant of H0(SUX(r),Lk) and succeeded
in proving strange duality for all curves [40]. This work introduced an interesting
variant of the original strange duality map which is symmetric in both sides.

6.3. Other perspectives. Conformal field theory introduces a new per-
spective in the study of the spaces H0(SUX(r),Lk). The starting point is an
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observation (made rigorous by many authors) that since vector bundles with
trivial determinant on X minus a point p are trivial, the moduli stack of rank
r vector bundles with trivialized determinant is a double quotient (where z is
a formal coordinate at p)

SLr(O(X − p))\SLr(C((z)))/SLr(C[[z]])

Let Q = SLr(C((z)))/SLr(C[[z]]) and L′ the pull back of Lk under the natural
map from Q to the double quotient. The space H0(SUX(r),Lk) is the subspace
of sections of H0(Q,L′) invariant under the action of SLr(C[[z]]). However the
bundle L′ is linearized not for the action of SLr(C((z))), but rather, for a central
extension of it, and the space H0(Q,L′) is the dual V ∗

k of an irreducible repre-
sentation of this central extension (a result of Kumar and Mathieu). Therefore,
there is a nice Borel-Weil picture of H0(SUX(r),Lk) as a subspace of V ∗

k . This
point of view makes contact with the theory of conformal blocks [57] and the
representation theory of Kac-Moody algebras (for more details, see Sorger’s
Bourbaki report [55]).

The intuition from physics gave rise to many surprises in the theory of non-
abelian theta functions. One of the surprises is the existence of a flat projective
connection (Hitchin’s connection) on the spaces H0(SUX(r),Lk) as X varies in
a family. In [15], I pointed out that the strange duality map (6) is projectively
flat for Hitchin’s connection (and hence the conjecture for general curves implies
it for all curves). The flatness of the strange duality in the genus zero case lies
at the very heart of the physics expectation on strange duality (see [43, 44]),
and follows easily from the theory of conformal embeddings.

The work of Abe ([1, 2], also see [44, 16]) in proving Beauville’s symplectic
strange duality conjecture [6] shows that monodromy arguments may play an
essential role in proving strange duality type theorems in their most general
context. An interesting aspect of Beauville’s symplectic duality is that it seems
to have no classical analogue. The author is not aware of any numerical rela-
tionships between the invariant theories of different symplectic groups. There
are no known relations to enumerative geometry either. Similarly, the work of
Boysal-Pauly [24] on the strange duality for the exceptional groups does not
seem to have classical analogues, or relations to enumerative geometry!

6.3.1. Motives and strange duality:. The KZ/Hitchin connection in genus
zero with insertions (and the choice of representations of SL(n) associated to the
insertion points) is known to be motivic (see [58] and the references therein) i.e.,
the non-abelian theta functions can be realized as a subspace of the cohomology
group of a smooth variety (which varies with the pointed curve), consistent with
the KZ/Hitchin and Gauss-Manin connections (also see [51]).

Question 6.2. Is the strange duality also of a motivic origin?

One may ask a similar question in higher genus as well. It is not known
whether the Hitchin connection in genus ≥ 1 is motivic.
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1. Introduction

Let X be a smooth complex projective variety of dimension n. In order to study
the geometry of X one would like to choose a natural embedding X ⊂ PN

C . This
is equivalent to the choice of a very ample line bundle L onX i.e. of a line bundle
L such that its sections define an embedding

φL : X ↪→ PH0(X,L).

(If s0, . . . , sN is a basis of H0(X,L), then we let φL(x) = [s0(x) : . . . : sN (x)].)
Conversely, given an embedding φ : X ↪→ PN

C , we have that L := φ∗OPN (1) is
a very ample line bundle on X. Since any projective variety X may have many
different embeddings in PN it is important to find a “natural” choice of this
embedding (or equivalently a natural choice of a very ample line bundle).
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The only known natural choice is the canonical bundle ωX = ∧nT∨
X and its

tensor powers ω⊗m
X for m ∈ Z.

When dimX = 1, we have that ωX is a line bundle of degree degωX = 2g−2
where g denotes the genus of X so that degωX > 0 if and only if g ≥ 2. There
exist curves with genus g ≥ 2 such that ωX is not very ample, however we have
the following classical result.

Theorem 1.1. If X is a curve of genus g ≥ 2, then ω⊗m
X is very ample for

any integer m ≥ 3.

Proof. Let φm = φω⊗m
X

. In order to show the theorem, we must show that φm

is a morphism and separates points and tangent directions. This is equivalent
to showing (cf. [Hartshorne77, II.7.3, IV.3.1]) that

1. h0(X,ω⊗m
X (−P )) = h0(X,ω⊗m

X )− 1 for any P ∈ X, and

2. h0(X,ω⊗m
X (−P −Q)) = h0(X,ω⊗m

X )− 2 for any points P and Q on X.

Considering the short exact sequence of coherent sheaves on X

0 → ω⊗m
X (−P ) → ω⊗m

X → CP → 0

(where the last homomorphism is given by evaluating sections at P ) we obtain
a short exact sequence of vector spaces over C

0 → H0(X,ω⊗m
X (−P )) → H0(X,ω⊗m

X ) → C → H1(X,ω⊗m
X (−P )) . . .

Since degω
⊗(1−m)
X (P ) = (1−m)(2g − 2)− 1 < 0, we have that

H1(X,ω⊗m
X (−P )) ∼= H0(X,ω

⊗(1−m)
X (P ))∨ = 0,

and so the homomorphism H0(X,ω⊗m
X ) → C is surjective (or equivalently

h0(X,ω⊗m
X (−P )) = h0(X,ω⊗m

X )− 1). Therefore φm is a morphism.
The proof that φm separates points and tangent directions is similar.

Remark 1.2. Note that:

1. If L is a line bundle, then L(−P ) denotes the coherent sheaf of sections
of L vanishing at P . Since dimX = 1 this is also a line bundle.

2. h0(X,L) denotes the dimension of the C-vector space H0(X,L).

3. The isomorphism H1(X,ω⊗m
X (−P )) ∼= H0(X,ω

⊗(1−m)
X (P ))∨ is implied

by Serre Duality: If X is a smooth projective variety of dimension n and
F is locally free, then Hi(X,F ) ∼= Hn−i(X,ωX ⊗ F∨)∨.

4. The vanishing H1(X,ω⊗m
X (−P )) is also implied by Kodaira vanishing

which says that if X is a smooth projective variety and L is an ample
line bundle, then Hi(X,ωX ⊗ L) = 0 for all i > 0.
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It follows that we can hope to use somemultiple of ωX to study the geometry
of most varieties. In dimension ≥ 2 the situation is further complicated by the
fact that there exist (smooth) birational varieties which are not isomorphic. For
example if P ∈ X is a point on a smooth projective surface (i.e. dimX = 2),
then one can construct a new surface X ′ = BlPX the blow up of X at P
such that there is a morphism f : X ′ → X which is an isomorphism over
the complement of P and whose fiber over P is a curve E ⊂ X ′ which is
isomorphic to P1 ∼= P(TxX). It is easy to see that E · E = −1 and (since
ωX′ = f∗ωX ⊗ OX(E)) that ωX′ · E = −1. Therefore, E is known as a −1-
curve.

Consider now the example of a quintic surface X ⊂ P3 which is a smooth
surface defined by a homogeneous polynomial of degree 5 in C[x0, . . . , x3]. By
adjunction, one has ωX

∼= ωP3(X)⊗OX
∼= OP3(1)|X so that ωX is very ample

(and φ1 : X ↪→ P3 coincides with the given embedding). However, if f : X ′ → X
is the blow up of X at a point P ∈ X and E is the exceptional curve, then
ωX′ · E = −1. Therefore, for any m > 0, sections of H0(X ′, ω⊗m

X′ ) must vanish
along E and so φm is not a morphism along points of E. If we remove the
singularities of φm (or more precisely we subtract the fixed divisor mE of ω⊗m

X′ ),
we obtain a morphism φω⊗m

X′ (−mE) : X
′ → P3 whose image is X.

Therefore in dimension ≥ 2, we can not expect that, for most varieties,
multiples of ωX define an embedding in projective space. We can only hope
that for most varieties, multiples of ωX define a birational map (i.e. there is an
open subset of X on which the given map is an embedding).

We have the following definition.

Definition 1.3. Let X be a smooth projective variety, then X is of general
type if the sections of ω⊗m

X define a birational map for some m > 0.

It is known that if X is of general type, then in fact the sections of ω⊗m
X

define a birational map for all sufficiently big integers m > 0.
When dimX = 2 (and X is of general type), it is known by a result of

Bombieri (cf. [Bombieri70]) that:

Theorem 1.4. If X is a surface of general type, then φm is birational for all
m ≥ 5.

In fact we have that (after subtracting the fixed divisor) φm : X → PN is
a morphism whose image Xcan is uniquely determined by Xcan

∼= ProjR(ωX)
where R(ωX) = ⊕m≥0H

0(X,ω⊗m
X ) is the canonical ring. Note that Xcan has

rational double point singularities so that ωXcan
is a line bundle. We have ωX =

φ∗
mωXcan

⊗OX(E) for some effective exceptional divisor E or equivalently ω⊗m
X ⊗

OX(−mE) ∼= φ∗
mOPN (1).

Since Xcan may be singular, it is convenient to consider the minimal desin-
gularization Xmin → Xcan. For surfaces of general type, the minimal model
is uniquely determined. It can also be obtained from X by contracting all −1
curves. Therefore there is a morphism X → Xmin. It is known that ω⊗m

Xmin
is
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base point free for all m ≥ 5 (in fact φm defines the morphism Xmin → Xcan

and φ∗
mωXcan

= ωXmin
).

By Riemann-Roch and (a generalization of) Kodaira vanishing, we have
that for all m ≥ 2

h0(ω⊗m
X ) = h0(ω⊗m

Xmin
) =

m(m− 1)

2
K2

Xmin
+ χ(OXmin

)

where K2
Xmin

∈ Z>0 is the self intersection of the canonical divisor KXmin
(a

divisor corresponding to the zeroes of a section of ωXmin
). Note that as X is of

general type

χ(OX) = χ(OXmin
) =

∑

(−1)ihi(OXmin
) > 0.

In particular we have that for all m ≥ 2

Pm(X) := h0(ω⊗m
X ) >

m(m− 1)

2
K2

Xmin
.

One important consequence of the above results is that Xcan is a subvariety

of P10K2

Xmin
+χ(OXmin

)−1 of degree 25K2
Xmin

. It follows by a Hilbert scheme type
argument that there exists a parameter space for canonical (and hence also for
minimal) surfaces of general type:

Theorem 1.5. Let M ∈ Z>0. There exists a morphism X → S such that
for any s ∈ S, the fiber Xs is a canonical surface of general type and for any
canonical surface of general type X such that K2

X ≤ M , there is a point s ∈ S
and an isomorphism X ∼= Xs .

Remark 1.6. The moduli space for minimal complex projective surfaces of
general type was constructed in [Gieseker77].

It is then important to generalize (1.4) to higher dimensions. Even though
many of the features of the classification of surfaces of general type were shown
to hold for threefolds in the 80’s (cf. [Kolláretal92]), the generalization of
(1.4) turned out to be more difficult than expected and was only completed
in [Tsuji07], [HM06] and [Takayama06]. One of the difficulties encountered, is
that in dimension ≥ 3 even though minimal models Xmin are known to exist
(but are not uniquely determined cf. [BCHM09]), they have mild (terminal) sin-
gularities and so KdimX

Xmin
is a positive rational number. In fact the threefold X46

given by a degree 46 hypersurface in weighted projective space P(4, 5, 6, 7, 23),
satisfies K3

Xmin
= 1/420 and φm is birational if and only if m = 23 or m ≥ 27

(cf. [Iano-Fletcher00]). A further complication is given by the fact that we have
little control over other terms of the Riemann-Roch formula for multiples of the
canonical bundle (however see Section 2.1 for the 3-fold case). In particular we
do not control χ(OX). (This should be contrasted with the above mentioned
results for surfaces: K2

Xmin
≥ 1 and χ(OX) ≥ 1.)

Using ideas of Tsuji, the following result was proven in [HM06],
[Takayama06] and [Tsuji07].
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Theorem 1.7. For any positive integer n, there exists an integer rn such that
if X is a smooth variety of general type and dimension n, then φr : X 99K

P(H0(X,ω⊗r
X )) is birational for all r ≥ rn.

In fact it turns out that proving the above result is equivalent to showing
that the volume

vol(ωX) := lim
m→∞

n!h0(ω⊗m
X )

mn

is bounded from below by a positive constant vn depending only on the dimen-
sion n = dimX. We will discuss the ideas behind the proof of this result in
Section 2.

Remark 1.8. Notice that in characteristic p > 0 Theorem 1.7 is only known
to hold in dimension ≤ 2.

It should be observed that the proof (1.7) is not effective so that we are
unable to compute rn the minimum integer such that φr is birational for all
n-dimensional varieties of general type and for all r ≥ rn.

Recently, effective results were proven for 3-folds of general type. In
[Todorov07], it is shown that if vol(ωX) is sufficiently big, then φm is bira-
tional for all m ≥ 5 (see [DiBiagio10] for related results in dimension 4). In
[CC08], J. A. Chen and M. Chen show the following almost optimal result.

Theorem 1.9. Let X be a smooth projective 3-fold of general type, then φr is
birational for all r ≥ 77.

Their proof is based on a detailed analysis of Reid’s exact plurigenera for-
mula for threefolds (see also [CC08b], [Zhu09a], [Zhu09b] for related results).
In higher dimensions the situation is more complicated and effective results are
not known.

Naturally, one may ask whether similar results are known for varieties not
of general type. Recall that by definition the Kodaira dimension of a complex
projective variety X is given by

κ(X) = max{dimφm(X)|m ∈ Z>0}.

Here we make the convention that if h0(ω⊗m
X ) = 0 for all m ∈ Z>0, then

κ(X) = −1 so that κ(X) ∈ {−1, 0, 1, . . . , dimX}. Note that in this case some
authors define κ(X) = −∞ (instead of κ(X) = −1) and some others simply say
κ(X) < 0. With our convention we have κ(X) = tr.deg.CR(ωX)−1. (Note that
by [BCHM09], the graded ring R(ωX) is finitely generated.) Another equivalent
definition is κ(X) = dimProjR(ωX). In fact, φr is birational to the Iitaka
fibration and its image is birational to ProjR(ωX) for all sufficiently divisible
integers r > 0. The natural conjecture is then:

Conjecture 1.10. Fix n ∈ Z>0 and κ ∈ Z≥0. Then there exist a positive
integer kn depending only on n and κ such that for all smooth complex projective
varieties of dimension dimX = n and Kodaira dimension κ(X) = κ, the image
of φr is birational to ProjR(ωX) for all integers r > 0 divisible by kn.



432 Christopher D. Hacon and James McKernan

By work of Fujino and Mori cf. [FM00], it is known that there exist positive
integers m1 and m2 such that

R(KX)(m1) ∼= R(KZ +B)(m2)

where (Z,B) is a klt pair of general type birational to ProjR(ωX) and for any
positive integer m, R(m) = ⊕t≥0Rmt is the m-th truncation of the graded ring
R = ⊕t≥0Rt. Therefore, this problem is closely related to the natural problem
of studying pluricanonical maps for varieties of log general type. These issues
will be discussed in Section 3.

Pluricanonical maps for varieties of log general type also arise when studying
the automorphism groups of varieties of general type. We now illustrate this in
dimension 1.

Theorem 1.11 (Hurwitz). Let X be a curve of genus g ≥ 2 with automorphism
group G. Then |G| ≤ 84(g − 1).

Proof. Let f : X → Y = X/G be the induced morphism, then

KX = f∗

(

KY +
∑

(

1−
1

ni

)

Pi

)

where ni is the order of ramification of f over Pi. We have

2(g − 1) = degKX = |G| · deg

(

KY +
∑

(

1−
1

ni

)

Pi

)

.

Therefore, the theorem follows since by (1.12), we have

deg

(

KY +
∑

(

1−
1

ni

)

Pi

)

≥
1

42
.

Theorem 1.12. Let A ⊂ [0, 1] be a DCC set (so that any non-increasing
sequence ai ∈ A is eventually constant). Then

V := {2g − 2 +
∑

di|g ∈ Z≥0, di ∈ A} ∩ (0, 1]

is a DCC set and in particular there is a minimal element v0 ∈ V.
If A = {1− 1

m |m ∈ Z>0}, then v0 = 1
42 .

The proof is elementary, but we recall it for the convenience of the reader.

Proof. We may assume that g ∈ {0, 1}. It is easy to see that the set A+ =
{
∑

ai|ai ∈ A} ∩ [0, 1] is also a DCC set and hence so is V.
If A = {1 − 1

m |m ∈ Z>0} then v0 =
∑

ai + 2g − 2 where g ∈ {0, 1} and
ai = 1− 1

ni
for some ni ∈ Z>0. If g = 0, a1 = 1− 1

2 , a2 = 1− 1
3 and a3 = 1− 1

7 ,

then v0 = 1
42 .
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If g = 1, then
∑

ai ≥ 1
2 . Therefore, we may assume that g = 0. In this

case v0 =
∑t

i=1 ai − 2. Since 1 ≥ ai = 1 − 1
ni

≥ 1
2 , we may assume t ∈ {3, 4}.

Let 2 ≤ n1 ≤ n2 ≤ .... If t = 4, then as v0 > 0, we have n4 ≥ 3 and hence
v0 = 2 −

∑

1
ni

≥ 1
6 . If t = 3, then v0 = 1 −

∑

1
ni
. If n1 > 3, then v0 ≥ 1

4 . If

n1 = 3, as v0 > 0, we have n3 ≥ 4 and hence v0 ≥ 1
12 . If n1 = 2 and n2 ≥ 5,

then v0 ≥ 1
10 . If n1 = 2 and n2 = 4, then as v0 > 0, n3 ≥ 5 and so v0 ≥ 1

20 .
If n1 = 2 and n2 = 3, then as v0 > 0, n3 ≥ 7 and so v0 ≥ 1

42 . Finally, if
n1 = n2 = 2, then v0 < 0.

One expects results similar to (1.11) to hold for automorphism groups of
varieties of general type (regardless of their dimension). Results in this direction
will be discussed in Section 3.1.

Another reason to be interested in pluricanonical maps for varieties of log
general type is that they naturally arise when studying moduli spaces of canon-
ically polarized varieties of general type cf. Section 3.3 and open varieties cf.
Section 3.4.

At the opposite end of the spectrum, we have varieties with κ(X) < 0. From
the point of view of the minimal model program, the typical representatives of
this class of varieties are Fano varieties. For these varieties we have that ω∨

X

is ample. Therefore, we consider the maps induced by sections of ω⊗m
X for

m ∈ Z<0. The geometry of Fano varieties is briefly discussed in Section 3.5.

2. Varieties of General Type

In this section we will explain the main ideas behind the proof of (1.7). Our
goal is to show that if X is an n-dimensional projective variety of general type,
then φr is birational for all r � rn. To this end, it suffices then to show that
there exists a subset X0 ⊂ X given by the complement of countably many
closed subsets of X such that φr is defined at points of X0 and φr separates
any two distinct points x, y ∈ X0. The first major reduction in the proof of
(1.7) is to show the following.

Proposition 2.1. In order to prove (1.7) it suffices to show that there exist
positive constants A and B (depending only on n) such that for any integer

r ≥
A

vol(ωX)1/n
+B,

the rational map φr is birational.

Proof. If vol(ωX) ≥ 1, then the assertion is clear as φr is birational for all
r ≥ A+B. We may therefore assume that vol(ωX) < 1. Let r0 be the smallest
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integer such that φr0 is birational, then

1 ≤ deg φr0(X) ≤ vol(ω⊗r0
X ) = rn0 vol(ωX) ≤

(

A

vol(ωX)1/n
+B + 1

)n

vol(ωX) < (A+B + 1)n.

It follows that the degree of the closure of φr0(X) is bounded. Therefore, by
a Hilbert scheme type argument, there is a projective morphism of quasi-
projective varieties f : X → S such that if X is any smooth n-dimensional
complex projective variety with 0 < vol(ωX) < 1, then there exists a point
s ∈ S such that X is birational to the fiber Xs. By Noetherian induction, pos-
sibly replacing S by a union of locally closed subsets, we may assume that f is
smooth and S is irreducible. Let η = Spec(K) be the generic point of S and XK

be the generic fiber. Then there exists rη such that φω⊗r
XK

is birational for all

rη ≤ r ≤ 2rη (and hence for all r ≥ rη). It then follows that there exists an open
subset S0 of S such that φω⊗r

Xt

is birational for all t ∈ S0 and all rη ≤ r ≤ 2rη

(and hence for all r ≥ rη).
By Noetherian induction, there is an integer rS such that φω⊗r

Xt

is birational

for all t ∈ S and all r ≥ rS .

Remark 2.2. By the above discussion, (1.7) implies that for any n ∈ Z>0,
there exist a positive constant vn > 0 such that if X is a projective variety of
general type and dimX = n, then vol(ωX) ≥ vn.

In order to show that a rational map φr is birational, we would like to
imitate the proof of the curve case of this theorem cf. (1.1) and show that the
evaluation map

H0(X,ω⊗r
X ) → Cx ⊕ Cy

at very general points x, y ∈ X is surjective. The problem is that in higher
dimensions it is very hard to ensure that cohomology groups of the form
H1(X,ω⊗r

X ⊗mx⊗my) vanish (here mx denotes the maximal ideal of x ∈ X). In
order to achieve this, the usual strategy is to use a far reaching generalization of
Kodaira vanishing known as Kawamata-Viehweg vanishing or Nadel vanishing.
Recall the following:

Theorem 2.3 (Nadel vanishing). Let X be a smooth complex projective variety,
L a line bundle on X and D a Q-divisor such that L(−D) is nef and big. Then
Hi(X,ωX ⊗ L⊗ J (D)) = 0 for all i > 0.

Remark 2.4. Recall that a line bundle is nef if deg(L|C) ≥ 0 for any curve
C ⊂ X. In this case, L is big if and only if LdimX > 0. These definitions readily
extend to Q-divisors.

Remark 2.5. Recall that if D ⊂ X is a Q-divisor, then the multiplier ideal
J (D) ⊂ OX is defined as follows. Let f : Y → X be a log resolution so that f
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is a projective birational morphism, Y is smooth, Exc(f) and Exc(f) ∪ f−1
∗ D

are divisors with simple normal crossings support. Then

J (D) := f∗OY (KY/X − xf∗Dy).

It is well known that J (D) is trivial at points x ∈ X where multx(D) < 1
and mx ⊂ J (D) if multx(D) ≥ dimX. The interested reader can consult
[Lazarsfeld05] for a clear and comprehensive treatment of the properties of mul-
tiplier ideal sheaves.

Using Nadel vanishing we obtain the following.

Proposition 2.6. In order to prove (1.7) it suffices to show that there exists
positive constants A and B (depending only on n) such that for any two distinct
very general points x, y ∈ X there is a Q-divisor Dx,y such that

1. Dx,y ∼ λKX where λ < A
vol(ωX)1/n

+B − 1;

2. x is an isolated point of the co-support of J (Dx,y) and y is contained in
the co-support of J (Dx,y).

Proof. Let r ≥ A
vol(ωX)1/n

+B be any integer. By (2.1), it suffices to show that

φr is birational.
Since ωX is big, there exists an integer m > 0, an ample divisor H and an

effective divisor G ≥ 0 such that mKX ∼ G + H. We may assume that x, y
are not contained in the support of G. We let D′

x,y = Dx,y + r−1−λ
m G. Then

(r−1)KX−D′
x,y ∼Q

r−1−λ
m H is ample so that by (2.3)H1(X,ω⊗r

X ⊗J (D′
x,y)) =

0.
Consider the short exact sequence of coherent sheaves on X

0 → ω⊗r
X ⊗ J (D′

x,y) → ω⊗r
X → Q → 0

where Q denotes the corresponding quotient. Since, as observed above,
H1(X,ω⊗r

X ⊗ J (D′
x,y)) = 0, the homomorphism

H0(X,ω⊗r
X ) → H0(X,Q)

is surjective. Since x is an isolated point in the co-support of J (D′
x,y), Cx is

a summand of Q. Since y is also contained in the support of Q, we may find
a section s ∈ H0(X,ω⊗r

X ) vanishing at y but not at x. Since x and y are very
general points on X, by symmetry we may also find a section t ∈ H0(X,ω⊗r

X )
vanishing at x but not at y. It follows that the evaluation map

H0(X,ω⊗r
X ) → Cx ⊕ Cy

is surjective and hence φr is birational.
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Proof of Theorem 1.7. By (2.6), it suffices to show that there exists posi-
tive constants A and B (depending only on n) such that for any two dis-
tinct very general points x, y ∈ X there is a Q-divisor Dx,y ∼Q λKX where
λ < A

vol(ωX)1/n
+ B − 1 such that x is an isolated point of the co-support of

J (Dx,y) and y is contained in the co-support of J (Dx,y).
For ease of exposition, we will however just show that there is a Q-divisor

Dx ∼Q λKX where λ < A
vol(ωX)1/n

+ B − 1 such that x is an isolated point

of the co-support of J (Dx). The interested reader can consult [Tsuji07] or
[Takayama06] for the remaining details or [HM06] for an alternative argument.

We will also assume that ωX is ample. This can be achieved replacing X by
its canonical model. Of courseX is no longer smooth, but it has mild (canonical)
singularities and the proof goes through with minor changes.

We will proceed by induction on the dimension and hence we may assume
that (1.7) holds for varieties of dimension ≤ n− 1. Note that by (1.1), the the-
orem holds when n = 1. We will not keep careful track of the various constants
and so we will say that λ = O(vol(ωX)−1/n) (instead of λ < A

vol(ωX)1/n
+B−1).

Since

h0(OX(mKX)) =
vol(ωX)

n!
mn +O(mn−1)

and since vanishing to order k at a smooth point x ∈ X imposes at most
kn/n! + O(kn−1) conditions, by an easy calculation it follows that for any
smooth point x ∈ X, we may find m � 0 and a Q-divisor Dm

x ∼ mKX such
that multx(D

m
x ) > m

2 vol(ωX)1/n. Note that if we assume that x ∈ X is a very
general point, then we can assume that the integer m is independent of the
point x. Let τ be defined by

τ = sup{t ≥ 0|mx ⊂ J (X, tDm
x )}.

By (2.5), τ < 2n
m·vol(ωX)1/n

. Note that if Dx := τDm
x , then mx ⊂ J (X,Dx) and

Dx ∼ λKX where λ ≤ 2n
vol(ωX)1/n

so that λ = O(vol(ωX)−1/n).

By a standard perturbation technique, we may assume that on a neigh-
borhood of x ∈ X there is a unique irreducible subvariety Vx contained in
the co-support of J (Dx). (More precisely, if f : Y → X is a log resolution
of (X,Dx), we may assume that there is a unique divisor E ⊂ Y such that
multE(KY/X − f∗Dx) = −1 and E ∩ f−1(x) 6= ∅. Vx is then the center of E
on X.) The problem is that we may have dimVx > 0. The idea is to then use
the techniques of [AS95] to “cut down” the cosupport of J (Dx) i.e. to reduce
to the case when dimVx = 0. We will use the following result:

Proposition 2.7. Let Vx and (X,Dx) be as above. If for a general point x′ ∈ Vx

there exists a divisor Fx′ on X whose support does not contain Vx such that
multx′(Fx′ |Vx

) > dimVx, then there exist rational numbers 0 < α, β < 1 such
that mx′ ⊂ J (αDx + βFx′) and in a neighborhood of x′, every component of
the co-support of J (αDx + βFx′) has dimension less than dimVx.
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The established strategy to produce the Q-divisor Fx′ is as follows:

1. produce a divisor Ex′ on Vx such that multx′(Ex′) > dimVx, and then

2. lift this divisor to X, that is find a Q-divisor Fx′ ∼Q λ′KX such that
Fx′ |Vx

= Ex′ and λ′ = O(vol(ωX)−1/n).

In order to complete the first step, we need to bound the volume of ωX |Vx

from below. This is achieved by comparing KX +Dx with KVx
via a result of

Kawamata (cf. [Kawamata98]):

Theorem 2.8. Let Vx and (X,Dx) be as above, and let A be an ample divisor.
If ν : V ν

x → Vx is the normalization, then for any rational number ε > 0, there
exists a Q-divisor ∆ε ≥ 0 such that

ν∗(KX +Dx + εA) ∼Q KV ν
x
+∆ε.

Remark 2.9. Kawamata’s Subadjunction Theorem says that if moreover Vx is
a minimal non-klt center at a point y ∈ Vx, then (on a neighborhood of y) V is
normal and we may assume that (Vx,∆ε) is klt.

Since X is of general type and x ∈ X is a very general point, it follows
that Vx is also of general type. Let n′ = dimVx and µ : Ṽx → V ν

x be a resolu-
tion of singularities. Assume for simplicity that Vx is normal. By our inductive
hypothesis, for general x′ ∈ Ṽx there is a Q-divisor Ex′ ∼Q γKṼx

on Ṽx with
multx′(Ex′) > n′ and 0 < γ < n/vn′ so that γ = O(1) (for the definition of vn′

see (2.2)). Fix a rational number 0 < ε � 1 and let A = KX . Pushing forward,
we obtain a Q-divisor

ν∗(µ∗Ex′ + γ∆ε) ∼Q γν∗(KV ν
x
+∆ε) ∼Q γ(1 + λ+ ε)KX |Vx

on Vx with multx′ν∗(µ∗Ex′ + γ∆ε) > n′.
Since we have assumed that KX is ample, by Serre vanishing, the homo-

morphism
H0(X,OX(mKX)) → H0(X,OVx

(mKX))

is surjective for all m � 0 and so there exists a Q-divisor Fx′ ∼Q γ(1+λ+ε)KX

such that Fx′ |Vx
= ν∗(µ∗Ex′ + γ∆ε).

By (2.7), we then have that for some 0 < α, β < 1

1. mx′ ⊂ J (αDx + βFx′),

2. in a neighborhood of x′, every component of the co-support of J (αDx +
βFx′) has dimension < dimVx, and

3. αDx + βFx′ ∼Q λ′KX where λ′ = O(vol(ωX)−1/n).

Repeating this procedure at most n−1 times, we may assume that for any very
general point x∗ ∈ X, there is a Q-divisor D∗

x∗ ∼Q λ∗KX such that x∗ is an
isolated point in the co-support of J (D∗

x∗) and λ∗ = O(vol(ωX)−1/n).
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2.1. Reid’s 3-fold exact plurigenera formula. In dimension 3,
an almost optimal version of (1.7) can be obtained using Reid’s 3-fold exact
plurigenera formula.

Theorem 2.10. Let X be a minimal 3-fold with terminal singularities, then

χ(OX(mKX)) =
1

12
m(m− 1)(2m− 1)K3

X − (2m− 1)χ(OX) + l(m),

where the correction term l(m) depends only on the (finitely many) singularities
of X. More precisely, there is a finite set (basket) of pairs of integers B(X) =
{(bi, ri)} where 0 < bi < ri are uniquely determined by the singularities of X
such that

l(m) :=
∑

Qi∈B(X)

lQi
(m) :=

∑

Qi∈B(X)

m−1
∑

j=1

jbi(ri − jbi)

2ri
,

where x denotes the smallest non-negative residue modulo ri, so that, x :=
x− rib

x
ri
c.

When X is of general type, KX is nef and big so that by Kawamata-Viehweg
vanishing we have

Pm(X) := h0(OX(mKX)) = χ(OX(mKX)) for all m ≥ 2.

One can therefore hope to use (2.10) to find values of m such that Pm(X) ≥ 1
or Pm(X) ≥ 2. If, for example χ(OX) ≤ 0, then since l(m) ≥ 0 and K3

X > 0,
we have Pm(X) ≥ 1 for all m ≥ 2.

More generally, it is not hard to see that if Pm(X) = 0 for some m ≥ 2 and
if −χ(OX) is bounded from below, then there are only finitely many possible
baskets of singularities B(X). This implies that the index r of KX (i.e. the
smallest integer r > 0 such that rKX is Cartier) is bounded from above. In
turn this means that K3

X ≥ 1
r3 and hence one obtains an integer m0 such that

Pm(X) ≥ 1 for all m ≥ m0.

By a detailed study of the above Riemann-Roch formula, J.-A. Chen and
M. Chen prove the following (cf. [CC08]).

Theorem 2.11. Let X be a non-singular 3-fold of general type then

1. vol(ωX) ≥ 1
2660 ,

2. P12(X) ≥ 1,

3. P24(X) ≥ 2, and

4. φr is birational for all r ≥ 77.
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Remark 2.12. The second and third inequalities are optimal.
There exist examples with vol(ωX) = 1

420 (cf. [Iano-Fletcher00]) and hence
the first inequality is “almost optimal”. By [CC08b], it is known that if
χ(OX) ≤ 0, then vol(ωX) ≥ 1

30 . This inequality is optimal as shown by the ex-
ample of a canonical hypersurface of degree 28 in the weighted projective space
P(1, 3, 4, 5, 14).

When χ(OX) = 1, it is known that vol(ωX) ≥ 1
420 (cf. [Zhu09b]) and that

φr is birational for all r ≥ 46 (cf. [Zhu09a]).
As mentioned in the introduction, there are examples where φ26 is not bira-

tional and so the fourth inequality is also “almost optimal”.

Remark 2.13. Using similar methods, in [CC08c] it is shown that if X is a ter-
minal weak Q-Fano 3-fold (so that −KX is nef and big), then h0(OX(−6KX)) >
0, h0(OX(−8KX)) > 1 and −K3

X ≥ 1
330 (which is the optimal possible lower

bound).

As mentioned above, the idea of using Reid’s exact plurigenera formula
in this context is not new (see for example [Iano-Fletcher00]). The main new
insight of [CC08] is to use (2.10) for various values of m to prove the following
inequality:

2P5 + 3P6 + P8 + P10 + P12 ≥ χ(OX) + 10P2 + 4P3 + P7 + P11 + P13.

It follows that if Pm = 0 for m ≤ 12, then χ(OX) ≤ 0 which as observed above
is the well understood case.

The precise results obtained in [CC08] are then a consequence of a detailed
study of the terms appearing in Reid’s exact plurigenera formula.

3. Varieties of Log General Type

One would like to generalize Theorem 1.7 to the case of log canonical pairs.
This is a natural question in its own right, but it is also motivated by the desire
to study the geometry of open varieties, of varieties of intermediate Kodaira di-
mension, of the moduli spaces of varieties of general type, of the automorphism
groups of varieties of general type and other related questions.

We start by considering the case of curves. Let (X,D) be a pair consisting of
a smooth curve X and a Q-divisor D =

∑

diDi such that KX +D has general
type. We ask the following:

Question 3.1. Is there a lower bound for the volume of KX +D?

The answer in this case is simple:

vol(KX +D) = deg(KX +D) = 2g − 2 +
∑

di > 0

where g denotes the genus of the curve X. If g ≥ 2, then vol(KX + D) ≥ 2,
but if g ≤ 1, one sees immediately that no such bound exists unless we impose
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some restrictions on the possible values that di are allowed to take. The most
natural answer was given in (1.12): If A ⊂ [0, 1] is a DCC set, then there exists
a constant v0 > 0 such that 2g − 2 +

∑

di ≥ v0 for any g ∈ Z≥0 and di ∈ A.
The most optimistic generalizations of Theorem 1.12 are the following two

conjectures.

Conjecture 3.2. Let A ⊂ (0, 1] be a DCC set, n ∈ Z>0 and

V = {vol(KX +D)|(X,D) is lc, dimX = n, D ∈ A}.

Then V is a DCC set.

Conjecture 3.3. Let A ⊂ (0, 1] be a DCC set and n ∈ Z>0. Then there exists
a positive integer N > 0 such that if (X,D) is a lc pair of dimension n with
KX +D big and D ∈ A, then |xm(KX +D)y| is birational for all m ≥ N .

Notice that the above conjectures were proven in dimension 2 by Alexeev
and Alexeev-Mori (cf. [Alexeev94] and [AM04]).

At first sight one may hope to apply the techniques used in the proof of
Theorem 1.7, however there are several problems that arise:

It is easy to produce a divisor Dx ∼Q k(KX +D) such that mx ⊂ J (Dx)
for very general x ∈ X and k = O(vol(KX + D)1/n). Assume for simplicity
that there is an irreducible subvariety Vx ⊂ X such that J (Dx) = IVx

on a
neighborhood of x ∈ X. If dimVx > 0, we must bound vol((KX +D)|Vx

) from
below. To this end, one applies Kawamata sub-adjunction

ν∗(KX +Dx + εA) = KV ν
x
+∆ε

where ν : V ν
x → Vx is the normalization morphism, A is an ample line bundle

and 0 < ε � 1.
In order to proceed by induction on the dimension, we must show thatKV ν

x
+

∆ε satisfies the inductive hypothesis. This is problematic. Even if we ignore the
dependence on ε (which is at least conjecturally a reasonable assumption), in
order to control the coefficients of ∆ε, we must control the coefficients of Dx.
In higher dimension, there is no known strategy to accomplish this.

3.1. Automorphism groups of varieties of general type. Let
X be a variety of general type with automorphism group G, then it is known
that G is finite. It is a natural question to find effective bounds on the order of
G.

Naturally, one would hope to generalize Hurwitz’s Theorem cf. (1.11) to
higher dimensions. The natural conjecture is:

Conjecture 3.4. For any n ∈ Z>0, there exists a constant C > 0 (depending
only on n) such that if X is an n-dimensional variety of general type with
automorphism group G, then

|G| ≤ C · vol(ωX).
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Over the years there has been much interest in results related to the above
conjecture; see for example [Andreotti50], [Corti91], [HS91], [Xiao94], [Xiao95],
[Xiao96], [Szabo96], [CS96], [Ballico93] and [Cai00].

One would hope to use the ideas in the proof of (1.11) to attack Conjecture
3.4 in higher dimensions. We can still write

KX = f∗

(

KY +
∑

(1−
1

ni
)Pi

)

where f : X → Y = X/G is the induced morphism and ni is the order of
ramification of f over Pi. We also have

vol(ωX) = |G| · vol

(

KY +
∑

(1−
1

ni
)Pi

)

.

Therefore, a positive answer to Conjecture 3.2, would imply a positive answer
to Conjecture 3.4.

Remark 3.5. It is likely that proving that vol(KY +
∑

(1− 1
ni
)Pi) is bounded

from below, is substantially easier than Conjecture 3.2, and that this problem is
even more accessible when (Y,

∑

(1− 1
ni
)Pi) arises as the quotient of a variety

of general type by its automorphism group.

3.2. Varieties of intermediate Kodaira dimension. Let X be
a smooth projective variety of Kodaira dimension 0 ≤ κ(X) < dimX, then it
is known that for all m > 0 sufficiently divisible φm : X → Z defines a map
birational to the Iitaka fibration so that dimZ = κ(X) and κ(F ) = 0 where F is
a general fiber of φm. (In fact Z is birational to ProjR(KX).) When κ(X) = 0,
Z = Spec(k) and there is an integer N > 0 such that Pm(X) > 0 if and only if
m is divisible by N .

It is natural to conjecture the following:

Conjecture 3.6. Fix positive integers 0 ≤ κ < n. Then there exists an integer
N > 0 (depending only on κ and n) such that if X is a smooth projective variety
of dimension n and Kodaira dimension κ, and m > 0 is an integer divisible by
N , then φN is birational to the Iitaka fibration.

For surfaces, this conjecture is known to be true. In fact we have the fol-
lowing:

1. If κ(X) = 0 then P12(X) > 0, and

2. if κ(X) = 1, then P12(X) > 0 and Pm(X) > 1 for some m ≤ 42.

In dimension 3 the following results are known:

1. If κ(X) = 0 then by [Kawamata86] and [Morrison86]

P25·33·52·7·11·13·17·19(X) > 0;
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2. if κ(X) = 1, then by [FM00] there exists an explicit constant N > 0
(presumably far from optimal) such that φm is birational to the Iitaka
fibration for all m > 0 divisible by N ; and

3. if κ(X) = 2, then by [VZ09] and [Ringler07], there exists an explicit
constant N > 0 such that φm is birational to the Iitaka fibration for all
m > 0 divisible by N (in fact m ≥ 48 and divisible by 12 suffices).

We now outline a strategy for proving Conjecture (3.6). Let X be a smooth
projective variety of dimension n and Kodaira dimension κ ≥ 0.

Step 1. By the minimal model program, it is expected that there is a minimal
model φ : X 99K X ′ (given by a finite sequence of flips and divisorial contrac-
tions) such that R(KX) ∼= R(KX′), X ′ has terminal singularities and KX′ is
semiample. This means that for some m0 > 0, the linear series |m0KX′ | is base
point free and it defines a morphism f ′ : X ′ → Z ′ which is birational to the
Iitaka fibration of X. In particular dimZ = κ and κ(F ′) = 0 where F ′ is a
very general fiber of f ′. In fact we have KF ′ ∼Q 0. Note this step requires the
abundance conjecture.

Step 2. Using the ideas of Fujino and Mori [FM00], we write the “canonical
bundle formula”

KX′ ∼Q f ′∗(KZ +B +M)

where the “boundary” partB is determined by the singularities of the morphism
f ′ and the “moduli” part M is determined by the variation in moduli of the
general fiber F ′.

When f ′ is an elliptic fibration, then M = 1
12j

∗OP1(1) where j : Z → P1 is
the j-function. In general, one expects M to be the pull-back of a big semiample
Q-divisor on a moduli scheme.

In order to make use of Fujino-Mori’s canonical bundle formula, it is impor-
tant to bound the denominators of the Q-divisors B and M .

By [FM00, 3.1], there exists a positive integer k = k(b,Bm) > 0 such that
kM is a divisor, where b is the smallest positive integer such that Pb(F

′) > 0,
m = n − κ and Bm is the m-th Betti number of a desingularization of the
Zm-cover E → F ′ determined by the divisor in |bKF ′ |. In fact we have k =
lcm{y ∈ Z>0|φ(y) ≤ Bm} where φ is Euler’s function.

The boundary part, B is defined as follows: Let P be a codimension 1 point
on Z and let bP be the supremum of b ≥ 0 such that (X, bf∗P ) is log canonical
over the general point of P . We then set B =

∑

(1 − bP )P . Note that bP = 1
for all but finitely many codimension 1 points P on Z. An interesting feature
is that the coefficients of bp are of the form b− v

ku where 0 < v ≤ bk cf. [FM00,
2.8].

The upshot is that if we control the invariants b and Bm of the general fiber
F ′, then we can bound the denominators of B and M .

Step 3. Apply Conjecture (3.3) to conclude.
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Remark 3.7. Note that Step 2 depends on bounding k independently of the
general fiber F ′. If m = 1 then F ′ is a curve of genus 1 and hence b = 1
and B1 = 2. If m = 2, then F is either an abelian, a K3, and Enriques or
a bielliptic surface. As mentioned above, we have b ≤ 12. Let E → F ′ be the
corresponding cover. We again have κ(E) = 0 and hence B2(E) ≤ 24. If m = 3,
by Kawamata’s result mentioned above, there is a known bound for b, but there
is no known bound for B3. In higher dimensions, these questions are completely
open.

Remark 3.8. One may make the analogous conjecture for log pairs. The case
when dimX ≤ 3 and κ(KX + ∆) = dimX − 1 is treated in [Todorov08]. The
case where dimX ≤ 4 and κ(KX +∆) = dimX − 2 is treated in [TX08].

3.3. Moduli spaces of varieties of general type. As we have
remarked above, boundedness of varieties of general type is an essential ingre-
dient in the proof of the existence of a moduli space for canonically polarized
varieties of general type.

Recall that if X is a projective variety of general type, then its canonical
model Xcan is defined by Xcan := ProjR(KX). Xcan has canonical singularities
(in particular KXcan

is Q-Cartier and R(KXcan
) ∼= R(KX)) and KXcan

is ample.
As a consequence of (1.7), we have:

Theorem 3.9. For every n, v ∈ Z>0 then there exists a projective morphism
of normal quasi-projective varieties f : X → B such that any fiber Xb is a
canonically polarized variety of general type with canonical singularities, and if
X is a canonically polarized variety of general type with canonical singularities
and vol(ωX) ≤ v, then there exists b ∈ B such that X ∼= Xb.

Idea of the proof. By (1.7) and its proof, there exists a projective morphism of
normal quasi-projective varieties f : Z → B such that for any X as above,
there exists b ∈ B such that Zb is birational to X. Note that

X ∼= ProjR(KX) ∼= ProjR(KYb
)

where Yb → Zb is any log resolution.

We may assume that B is irreducible. Let η = Spec(K) be its generic point
and Yη → Zη be a log resolution. By [BCHM09], it follows that R(KYη

) is
finitely generated. We may therefore pick an integer N > 0 such that R(NKYη

)
is generated in degree 1. There is an open subset B0 ⊂ B such that R(NKY0) is
generated over B0 in degree 1 where Y0 = Y ×B B0. By Noetherian induction,
we may assume that R(NKY) is generated over B in degree 1. Replacing Y
by an appropriate resolution, we may assume that |NKY | defines a morphism
φN : Y → X ∼= ProjBR(KY). We then have

X ∼= ProjR(KYb
) ∼= ProjR(KX).
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Ideally, one would like to construct proper moduli spaces for varieties of
general type. In order to do this, it is necessary to allow certain degenerations
of these varieties. For example in dimension 1 it is necessary to consider stable
curves and in higher dimensions we must consider semi-log canonical varieties
i.e. varieties X such that

1. X is reduced and S2,

2. KX is Q-Cartier, and

3. if f : X̃ → X is a semiresolution of singularities, then KX̃ ≡ f∗KX +
∑

aiEi where ai ≥ −1.

This is the generalization of log canonical singularities to the non-normal situ-
ation.

If we let ν : Xν → X be the normalization, then Xν =
∐

i=1,...,m Xi and we
may write KXi

+ ∆i = (ν∗KX)|Xi
where (Xi,∆i) is a log canonical pair and

∆i is a reduced divisor.
If we are to construct proper moduli spaces, it is therefore important to

prove the boundedness of n-dimensional canonically polarized semi log canon-
ical varieties X with fixed volume Kn

X = M .
The first step is provided by an affirmative answer to Conjecture 3.2: Since

Kn
X =

∑

i=1,...,m(KXi
+ ∆i)

n and since by (3.2) the numbers (KXi
+ ∆i)

n

belong to a DCC set V, then there exists a positive constant v > 0 such that
(KXi

+∆i)
n ≥ v for all i. In particular there is an upper bound for the number

of irreducible components of X i.e. m ≤ M/v. Moreover, by (3.3) and arguing
as in the proof of (3.9), one expects that the pairs (Xi,∆i) (and hence the
variety X) belong to a bounded family.

3.4. Open varieties. Let X be a smooth quasi-projective variety, and
consider X̄ a smooth projective variety such that X = X̄ − F where F is a
simple normal crossing divisor on X̄.

The geometry of X is then studied in terms of the rational maps defined
by H0(ω⊗m

X̄
(mF )) for m > 0. Note these maps are independent of the chosen

compactification X̄ of X. Conjectures 3.2 and 3.3 would allow us to generalize
(1.7) to this context.

3.5. Fano varieties. A terminal Fano variety X is a normal projective
variety with terminal singularities such that −KX is ample. (We have similar
definitions for canonical singularities, log terminal singularities, etc.) These
varieties naturally arise in the context of the minimal model program, which
predicts that if Y is a variety with κ(Y ) < 0, then there is a finite sequence
of flips and divisorial contractions Y 99K Y ′ and a projective morphism f :
Y ′ → Z whose general fiber is a terminal Fano variety (of dimension > 0).
Therefore, one can think of terminal Fano varieties with Picard number one
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as the building blocks for smooth projective varieties with negative Kodaira
dimension κ(Y ) < 0.

If dimX = 1, there is only one terminal Fano variety: the projective line
P1. If dimX = 2, terminal Fano varieties are known as Del Pezzo surfaces (a
terminal surface is necessarily smooth). There are ten families of such surfaces.
In higher dimensions, one expects a similar result to hold. The following funda-
mental result (cf. [Nadel90], [Nadel91], [Campana91], [Campana92], [KMM92a],
[KMM92b]) shows that at least for smooth Fano varieties, this is the case:

Theorem 3.10. Let n ∈ Z>0. Then there are only finitely many families of
n-dimensional smooth projective Fano varieties.

The proof of this Theorem is based on the study of the properties of rational
curves on these manifolds. When X has singularities, then the behavior of ra-
tional curves on X is more subtle. Nevertheless we have the following conjecture
known as the BAB (or Borisov-Alexeev-Borisov) Conjecture.

Conjecture 3.11. Let n ∈ Z>0. Then there are only finitely many families of
canonical Q-factorial Fano varieties.

Remark 3.12. The above conjecture is already interesting for Fano varieties
of Picard number 1.

One also expects a similar conjecture for ε-log terminal Fano varieties (not
necessarily Q-factorial with arbitrary Picard number). Recall that if ε > 0, then
X is ε-log terminal if for any log resolution f : X ′ → X, we have KX′ =
f∗KX +

∑

aiEi where ai > ε− 1. The example of cones over a rational curve
of degree n show that the ε-log terminal condition is indeed necessary.

Conjecture 3.11 is known for canonical Fano varieties of dimension ≤ 3
(in characteristic zero) of arbitrary Picard number cf. [Kawamata92] and
[KMMT00]; for toric varieties [BB92] and for spherical varieties [AB04].

A positive answer to Conjecture 3.11 would have profound implications on
the birational geometry of higher dimensional projective varieties. In particular
(3.11) is related to the famous conjectures on the ACC for mld’s, the ACC for
log canonical thresholds and the termination of flips.

The techniques for the study of varieties of positive Kodaira dimension
(that we have described above) do not readily apply to this context. However
we would like to mention [McKernan03] for a related approach and [HM10b]
for one possible connection showing that it is possible that results for varieties
of log general type may be useful in the study of log-Fano varieties.
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no. 1, 113–137.

[DiBiagio10] L. Di Biagio, Pluricanonical systems for 3-folds and 4-folds of gen-
eral type. arXiv:1001:3340

[FM00] O. Fujino, S. Mori, A canonical bundle formula. J. Differential
Geom. 56 (2000), no. 1, 167–188.

[Gieseker77] D. Gieseker, Global moduli for surfaces of general type. Invent.
Math. 43 (1977), no. 3, 233–282.

[HM06] C. Hacon, J. McKernan, Boundedness of pluricanonical maps of
varieties of general type. Invent. Math. 166 (2006), no. 1, 1–25.

[HM07] C. Hacon, J. McKernan, Extension Theorems and the existence of
Flips. To appear in: Flips for 3-folds and 4-folds, A. Corti editor.
Oxford Lecture Series in Mathematics and Its Applications, 35.

[HM10a] C. Hacon, J. McKernan, Existence of minimal models for varieties
of log general type II J. Amer. Math. Soc. 23 (2010), 469–490.

[HM10b] C. Hacon, J. McKernan, Flips and flops. Preprint (2010).

[Hanamura85] M. Hanamura, Pluricanonical maps of minimal 3-folds. Proc. Japan
Acad., Ser. A. Math. Sci. 61, 116–118 (1985)

[Hartshorne77] R. Hartshorne, Algebraic geometry. Graduate Texts in Mathemat-
ics, No. 52. Springer-Verlag, New York-Heidelberg, 1977. xvi+496
pp.

[HS91] A. T. Huckleberry, M. Sauer, On the order of the automorphism
group of a surface of general type. Math. Z. 205 (1990), no. 2, 321–
329.

[Iano-Fletcher00] A.R. Iano-Fletcher, Inverting Reid’s exact plurigenera formula.
Math. Ann. 284 (1989), no. 4, 617–629.

[Iano-Fletcher00] A.R. Iano-Fletcher, Working with weighted complete intersections.
In: Explicit Birational Geometry of 3-folds. Lond. Math. Soc. Lect.
Note Ser., vol. 281, pp. 101–173. Cambridge: Cambridge Univ. Press
(2000)

[Kawamata86] Y. Kawamata, On the plurigenera of minimal algebraic 3-folds with
K ≡ 0. Math. Ann. 275 (1986), no. 4, 539–546.

[Kawamata92] Y. Kawamata, Boundedness of Q-Fano threefolds. Proceedings of the
International Conference on Algebra, Part 3 (Novosibirsk, 1989),
439–445, Contemp. Math., 131, Part 3, Amer. Math. Soc., Provi-
dence, RI, 1992.

[Kawamata98] Y. Kawamata, Subadjunction of log canonical divisors. II.
MR1646046 (2000d:14020) Kawamata, Yujiro Subadjunction of log
canonical divisors. II. Amer. J. Math. 120 (1998), no. 5, 893–899.
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Abstract

Moduli spaces of hyperkähler manifolds or of sheaves on them are often non-
separated. We will discuss results where this phenomenon reflects interesting
geometric aspects, e.g. deformation equivalence of birational hyperkähler man-
ifolds or cohomological properties of derived autoequivalences. In these con-
siderations the Ricci-flat structure often plays a crucial role via the associated
twistor space providing global deformations of manifolds and bundles.
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K3 surfaces and (over the last ten years or so) also their higher dimensional
analogues, compact hyperkähler manifolds, have been studied intensively from
various angles. In the case of abelian varieties, the interplay between algebraic,
arithmetic, and complex geometric techniques makes the study of this partic-
ular class of varieties interesting and rewarding. In many respects, K3 surfaces
and hyperkähler manifolds behave very much like abelian varieties, one can
even pass from one to the other via the Kuga–Satake construction. There are
however two features that are new: Non-separation (of various moduli spaces)
and twistor spaces (associated to Ricci-flat metrics).

In a way, it is the group structure that prevents both issues from playing
any role for abelian varieties. For example, Ricci-flat metrics on complex tori
are actually flat and hence without much geometric significance. As for the non-
separation, we will discuss birational hyperkähler manifolds giving rise to non-
separated points in the moduli space of varieties, whereas the group structure
allows one to extend any birational correspondence between abelian varieties
to an isomorphism right away.
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The first is the more intriguing of the two features. Usually, non-Hausdorff
phenomena, e.g. for an algebraic geometer non-separated schemes, are consid-
ered unpleasant and better avoided. As it turns out, the occurrence of non-
separated points, e.g. in the moduli space of manifolds or of (complexes of)
sheaves, can be turned into a useful technique applicable to various problems.
This general idea seems to work best when combined with the existence of
twistor spaces. The latter also allows one to go back and forth between alge-
braic and non-algebraic complex geometry. For purists this technique might be
a weakness of the theory, but we shall try to convince the reader that it is
indeed very powerful.

The aim of this note is to review a few scattered results for which non-
separation phenomena and twistor spaces play a decisive role. We will touch
upon questions concerning the birational geometry of hyperkähler manifolds,
derived categories of coherent sheaves on K3 surfaces and their autoequiva-
lences, Brauer classes, hyperholomorphic bundles, Chow groups, etc. There is
no attempt at completeness and I apologize for not covering the material in a
more concise form. I believe that some of the techniques can be pushed further
to treat other interesting open problems in the area, some of which will be
mentioned at the end.

Acknowledgement. I wish to thank Emanuele Macr̀ı, Paolo Stellari, and
Richard Thomas for the pleasant and stimulating collaboration over the years.

1. Introduction

To get an idea what kind of non-Hausdorff phenomena we have in mind let us
recall the following two classical examples.

– The bundles Et on the projective line P1 (say over a field k) parametrized
by classes t ∈ Ext1(O(1),O(−1)) ∼= H1(P1,O(−2)) ∼= k are isomorphic to
O ⊕ O for t 6= 0 and to O(1) ⊕ O(−1) for t = 0. In other words, there exists
a vector bundle E on P1 × A1 such that on all fibres of the projection P1 ×
A1 → A1 with the exception of the fibre over the origin the bundle is the
trivial bundle of rank two. Equivalently, there exist two bundles E and E′ on
P1 × A1 → A1 which are isomorphic on the open set P1 × A1 \ {0} but with
different restrictions E0

∼= O(1)⊕O(−1) respectively E′
0
∼= O⊕O to the special

fibre. This classical observation can easily be translated into a more geometric
non-separation phenomenon for Hirzebruch surfaces: F2 = P(O ⊕ O(2)) and
F0 = P1 × P1 define non-separated points in the moduli space of varieties

– The Atiyah flop describes two crepant resolutions Z → Z0 ← Z ′ of the
three-dimensional rational double point Z : xy − zw = 0 both replacing the
singular point by a P1. Equivalently, the blow-up Z̃ → Z0 of the singular point
admits two projections Z ← Z̃ → Z ′ extending the two projections of the ex-
ceptional divisor P1 × P1. Put in a more global context this observation can
be used to construct two non-isomorphic families of K3 surfaces X → D ← X ′
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over a disk D isomorphic over the punctured disk D∗, i.e. X|D∗
∼= X ′|D∗ . In

particular, all fibres Xt,X
′
t , t 6= 0, are isomorphic in a way compatible with

the projection to D, but these isomorphisms do not converge to an isomor-
phism of the special fibres X0 and X ′

0
. In fact, the graph Γt of the fibrewise

isomorphism for t 6= 0 degenerates to a cycle Γ0 + P1 × P1 ⊂ X0 × X
′
0
with Γ0

itself being, somewhat accidentally due to the small dimension, the graph of an
isomorphism.

A compact hyperkähler manifold or irreducible holomorphic symplectic
manifold is, by the definition we adopt here, a simply-connected compact com-
plex Kähler manifold X such that H0(X,Ω2

X) is spanned by a nowhere degen-
erate two-form σ. Since all our manifolds will be compact, we simply call them
hyperkähler. The definition can be adapted to projective varieties over other
fields, but most of the existing theory is concerned with complex manifolds. K3
surfaces are the two-dimensional hyperkähler manifolds and for them there is
also a rich theory over number fields and in finite characteristic.

What makes the complex case special is the Calabi–Yau theorem proving the
existence of a unique Ricci-flat Kähler metric in each Kähler class on X. In fact,
Ricci-flat Kähler metrics exist on the larger class of Calabi–Yau manifolds, but
for hyperkähler manifolds they lead to a global complex geometric structure,
the twistor space.

To be more precise, let KX ⊂ H2(X,R) ∩ H1,1(X) denote the open cone
of Kähler classes (among them all ample classes if X is projective). With any
α ∈ KX there is associated a complex manifold X (α) together with a smooth
proper holomorphic map π : X (α) → P1. One of the fibres, say X0 is actually
isomorphic to X, but most of the other fibres are not.

Note that by construction the twistor space as a differentiable manifold is
simply X × P1 and π is the second projection. Moreover, the natural (twistor)
sections {x} × P1 of π are holomorphic with normal bundle O(1)⊕ . . .⊕O(1).

2. Non-separation for Hyperkähler Manifolds

Birational K3 surfaces are always isomorphic, e.g. because the minimal model
of a surface of non-negative Kodaira dimension is unique. In fact, any birational
correspondence extends to an isomorphism. (Note that by abuse of language we
will speak about birational maps etc. even when the manifolds are not algebraic
and one should more accurately say bimeromorphic.)

In higher dimension the situation changes. The easiest example of a
non-trivial birational correspondence between, in general non-isomorphic, hy-
perkähler manifolds has been constructed already in [21] and is called the Mukai
flop. Any hyperkähler manifold containing a half-dimensional projective space
can be flopped replacing the projective space P by its dual P∗. The new manifold
is holomorphic symplectic, but not always Kähler and hence not hyperkähler
(see [29] for an example that starts with a projective moduli space of sheaves).



Hyperkähler Manifolds and Sheaves 453

In general and in particular in dim > 4, birational correspondences between
hyperkähler manifolds will be more complicated than simple Mukai flops. But
as it turns out, any birational correspondence between hyperkähler manifolds
can be obtained as the limit of isomorphisms (see [10, 11]):

2.1. Any two birational hyperkähler manifolds X and X ′ define non-separated
points in the moduli space of varieties. Equivalently, there exist two smooth
proper families X → D ← X ′ over a disk D with central fibres X0

∼= X respec-
tively X ′

0
∼= X ′ and such that the two families are isomorphic over the punctured

disk D∗, i.e. X|D∗
∼= X ′|D∗ .

This result had first been proved for projective hyperkähler manifolds and
under an additional assumption on the codimension of the exceptional locus by
projective techniques which are valid over arbitrary fields. Later, twistor spaces
have been used instead to prove the result in the above form. Note that even
for X and X ′ projective, the nearby fibres in the families in (2.1) are usually
non-projective.

The result is intimately related to the description of the Kähler cone and
its birational variant. For K3 surfaces the Kähler cone is determined by smooth
rational curves and a less explicit version of this holds true also in higher di-
mensions. In particular, for generic hyperkähler manifolds, which do not admit
any curves, the Kähler cone is maximal, i.e. coincides with the positive cone.
For the general theory see the survey [7] and references therein. A detailed
investigation of the shape of the ample cone in the known examples has been
initiated by Hassett and Tschinkel, see e.g. [8].

Let us state explicitly the following immediate consequence of (2.1):

2.2. Two birational hyperkähler manifolds are deformation equivalent. In
particular, their Hodge, Betti, and Chern numbers coincide.

The result was used to show that most of the known examples, with the
exception of O’Grady’s exceptional examples in dimension six and ten, are
deformations of the two standard series provided by Hilbert schemes of points
on K3 surfaces and generalized Kummer varieties.

Note that deformation equivalence does not hold for birational Calabi–Yau
manifolds in general, which need not even be homeomorphic and might even
have different Chern numbers (see [2, 26]). For general Calabi–Yau manifolds
the result that comes close to (2.1) is due to Batyrev and Kontsevich and
proves equality of Hogde and Betti numbers. Motivic integration originated by
Kontsevich for this purpose has been developed to a beautiful general theory
by Denef and Loeser (see [20]). Applied to birational Calabi–Yau manifolds
X and X ′ it shows that the (infinite-dimensional) spaces of formal arcs J(X)
respectively J(X ′) differ only by insignificant bits. For birational hyperkähler
manifolds and the non-separating families X ,X ′ as in (2.1) one can consider
the spaces J0(X ) and J0(X

′) of formal arcs with support in the central fibre.
The twistor sections provide a canonical section of the projection J0(X ) → X
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which should lead to a stratified isomorphism of X and X ′ (non-holomorphic
on the exceptional locus). It would be interesting to incorporate the Ricci-flat
metric in a stronger way into birational geometry of hyperkähler manifolds and
also to extend some of it to general Calabi–Yau manifolds.

The graph Γt of the isomorphism of the general fibres Xt
∼= X ′

t in (2.1)
degenerates to a cycle Z +

∑
Yi ⊂ X × X ′ where Z is the original birational

correspondence. This is reminiscent of the Atiyah flop. The additional compo-
nents Yi do not dominate the factors but are in general difficult to describe
explicitly. E.g. in the case of a Mukai flop there is only one additional com-
ponent which is simply P × P∗. So, more in the spirit of our philosophy here,
(2.1) says that up to adding non-dominating components any birational corre-
spondence X ← Z → X ′ between hyperkähler manifolds can be deformed to
an isomorphism of generic deformations of X respectively X ′. Derived versions
will be discussed later, see (4.2) and (5.1).

3. Twistor Spaces

Deformation theory is a technical but well developed subject. The standard
techniques deal with finite order or formal deformations. Convergence or al-
gebraicity is usually more difficult. Global deformations of a variety X, i.e. a
flat family X → B with X0

∼= X over a proper base B of positive dimension
are hardly ever constructed explicitly. This makes twistor spaces stand apart.
The twistor space X = X (α) → P1 associated with a Kähler class α on a hy-
perkähler manifold X connects X with other, possibly far away, hyperkähler
manifolds Xt. The price one has to pay is the loss of algebraicity. In fact, the
total space X is not even Kähler and only countable many fibres Xt are pro-
jective. Nevertheless, it seems that essential information about the geometry
of a projective hyperkähler manifold X is preserved along the twistor space
deformation to other projective fibres.

Twistor spaces or almost equivalently hyperkähler metrics play a central role
already in the standard theory of K3 surfaces and, partially due to the absence
of a proper analogue of the Global Torelli theorem, even more so in higher
dimensions (see [7, 11]). We will not go into the details of the general theory of
hyperkähler manifolds, but let us mention that twistor spaces are crucial e.g.
for the proof of the surjectivity of the period map and the description of the
(birational) Kähler cone.

To underpin the global nature of twistor spaces let us just mention that for
any polarized K3 surface (X,L), e.g. X ⊂ P3 a quartic and L the restriction of
O(1), and any Kähler class on X, e.g. the one given by c1(L), the associated
twistor space will also parametrize polarized K3 surfaces (X ′, L′) of other de-
grees, e.g. a double cover of the plane. In dimension four the twistor space can
be used to connect e.g. the Hilbert scheme Hilb2(S) of a K3 surface S with the
Fano variety of lines on a cubic fourfold. The reason behind this observation is
that the base of the twistor space yields a curve in the moduli space of marked
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hyperkähler manifolds whereas the other loci are of codimension one, which
therefore are expected to intersect.

By construction, twistor spaces are associated to hyperkähler metrics. A
similar relation exists, due to the work of Donaldson, Hitchin and others, be-
tween stable vector bundles and Hermite–Einstein metrics. A combination of
both leads to the following result of Verbitsky [27] which applies to stable vector
bundles with trivial first Chern class on K3 surfaces.

3.1. Let X be a hyperkähler manifold and E a holomorphic bundle on X which
is stable with respect to a Kähler class α. If the first and second Chern classes
of E stay algebraic (i.e. of type (1, 1) resp. (2, 2)) on the fibres of the associated
twistor space X (α)→ P1, then E is hyperholomorphic, i.e. extends naturally to
a holomorphic vector bundle on X (α).

The idea of the proof is to show that the curvature of the Hermite–Einstein
connection on E is of type (1, 1) with respect to all complex structures as-
sociated to the Ricci-flat structure given by α. That this is controlled by the
first two Chern classes is reminiscent of Simpson’s observation that the van-
ishing of the second Chern character of a stable bundle implies its (projective)
flatness. Then on each fibre Xt the (0, 1)-part of the natural Hermite–Einstein
connection defines the ∂̄-operator for E on this fibre.

The result can be applied to cases where the first Chern class is not trivial or
not even orthogonal to the Kähler class α, but then it is only P(E) that deforms
and not the bundle E itself. In [12] this was used to prove that cohomological
and geometric Brauer group coincide for K3 surfaces, a result well known for
algebraic surfaces. Roughly, the idea is to follow a given cohomological Brauer
class along a twistor space and show that it becomes trivial somewhere. (Picard
and hence Brauer group jump in a countable and dense subset.) When the class
is trivial one represents it by a stable vector bundle which deforms back to the
original K3 surface as a projective bundle that represents the chosen Brauer
class.

Verbitsky used his result to deduce that very general (and hence non-
projective) K3 surfaces have equivalent abelian categories Coh(X). This is in
contrast to Gabriel’s result (see [6]) that the abelian category Coh(X) of an
algebraic variety, or more generally any scheme, determines X, but confirms
the belief that for non-algebraic manifolds the abelian category of coherent
sheaves is too small. Note that even for a very general K3 surface the category
of coherent sheaves is very rich due to the many stable bundles that continue
to exist.

Another point of view on Verbitsky’s result, already studied by Itoh and
others, is that the moduli space of stable vector bundles on a K3 surface inher-
its a natural hyperkähler structure. Equivalently, the relative moduli space of
stable bundles on the fibres of X (α) → P1 is nothing but the twistor space of
the moduli space on one fibre. Note however that this does not extend to the
boundary, i.e. to the moduli space of (semi-)stable sheaves and hence does not
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allow one to construct the hyperkähler structure on the Hilbert scheme or on
the moduli space of stable sheaves.

4. Non-separation for Sheaves and Complexes

That there are bundles that define, like O(1)⊕O(−1) and O ⊕O on P1, non-
separated points in the moduli space of bundles is a common feature and not
special to P1. Also the existence of non-trivial homomorphisms between the
bundles (in both directions) is frequently observed even for simple bundles (see
[24]). The moduli space of simple bundles on a variety, an algebraic space, is
in general not expected to be separated. Only stability prevents sheaves of the
same slope (or normalized Hilbert polynomial, or phase, etc.) to have non-
trivial homomorphisms between each other and this leads to separated and in
fact quasi-projective moduli spaces.

The situation seems easier for simple sheaves not allowing any deformation,
they do define isolated and hence separated points in their moduli space. Recall
that a sheaf F has no infinitesimal deformations if and only if Ext1(F, F ) = 0.
Simple sheaves with this property on a K3 surface X are called spherical, i.e.
they satisfy Ext∗(F, F ) = H∗(S2, k). So in particular, two spherical sheaves F
and F ′ on X will always define separated points in the moduli space of sheaves
on X, but this changes if also deformations of X are allowed. For the rest of
this section X will be a projective K3 surface.

4.1. Suppose F and F ′ are spherical sheaves with the same numerical invariants
on a K3 surface X. Then there exists a deformation X → D of X over a
disk D and two D-flat sheaves F and F ′ on X with isomorphic restrictions to
X ∗ := X|D∗ and special fibres F respectively F ′.

In fact, X can be deformed together with F and F ′ such that simple implies
stable with respect to any Kähler class or polarization. A beautiful observation
going back to Mukai says that moduli spaces of stable sheaves with fixed nu-
merical invariants are irreducible (see e.g. [9] or the original [22]). This allows
one to conclude that in particular the generic deformations of F and F ′ are
isomorphic.

A rather straightforward consequence of this is that numerically equiva-
lent spherical bundles can also not be distinguished by any other continuous
invariants, e.g. they are also rationally equivalent, i.e. their Chern characters
in CH∗(X) coincide. The result also holds for spherical objects in the derived
category, see below.

The result can be generalized to sheaves on products of K3 surfaces. This is
central for the proof of a conjecture of Szendrői [25] as we shall explain shortly.

Let X be an algebraic K3 surface and let Φ := ΦE0
: Db(X)

∼
// Db(X) be a lin-

ear exact autoequivalence of the derived category Db(X) := Db(Coh(X)) given
as a Fourier–Mukai transform F 7→ pr2∗(E0 ⊗ pr∗

1
F ) with E0 ∈ Db(X × X).
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Then E0 is rigid, i.e. Ext1(E0, E0) = 0, but Ext2(E0, E0) is of dimension 22. In
[15] it was proved that X and Φ (or rather E0) can be deformed together to a
very general K3 surface and an equivalence that can be written as a product
of explicitly described autoequivalences (shifts and spherical twists TO) when-
ever the action of Φ on the cohomology of X allows it. Informally, it can be
rephrased by saying that any autoequivalence acting trivially on cohomology
is a degeneration of the identity. This should be compared to (2.1). As we will
mention later, the group of cohomologically trivial autoequivalences is a very
rich group. More in the spirit of this review we state the result as (see [15]):

4.2. If Φ,Φ′ : Db(X)
∼

// Db(X) are two linear exact autoequivalences in-
ducing the same action on H∗(X,Z), then there exist formal deformations
X → Spf(C[[t]]) of X and (Φ̃, Φ̃′) of (Φ,Φ′) whose restrictions to the generic
fibre XK of X over K := C((t)) are isomorphic Fourier–Mukai transforms up
to shift and a power of the simple spherical twist TO.

The assumption in (4.1) that the two sheaves have the same Chern charac-
ters in H∗(X) is here replaced by Φ,Φ′ inducing the same action on H∗(X). In
fact, any spherical sheaf F induces an autoequivalence TF , the spherical twist,
which on cohomology acts by reflection. In this sense, (4.2) is a generalization
of (4.1), but due to the deformation theory involved its proof is rather more
technical.

Note also that the deformation X → Spf(C[[t]]) used in [14] is the formal
neighbourhood of a very generic twistor space X (α) → P1 and thus highly
non-algebraic. In particular, the generic fibre XK does not exist as a projective
variety. Instead of working with rigid analytic varieties, [14] makes only use of
Coh(XK) and its derived category which can both be constructed directly as
quotients of Coh(X ) respectively Db(X ) without ever defining XK .

The result (4.2) has interesting consequences. Firstly, in [15] it was proved
that autoequivalences of K3 surfaces, thought of as mirrors of symplectomor-
phisms, behave as predicted by mirror symmetry (see [25]):

4.3. If Φ : Db(X)→ Db(X) is a linear exact autoequivalence, then the induced
action on H∗(X,Z) preserves the natural orientation of any positive four-space.

The orthogonal group O(H∗(X,R)) has four connected components and
the result says that derived autoequivalences avoid two of them. The result
completes earlier work of Mukai, Orlov, and others and allows one to describe
the image of Aut(Db(X))→ O(H∗(X,Z)) explicitly as the group of orientation
preserving Hodge isometries. This can be seen as a derived version of the Global
Torelli theorem for automorphisms of K3 surfaces.

Secondly, since the Fourier–Mukai kernels E0 and E ′
0
of Φ respectively Φ′

as in (4.2) cannot be separated in the larger moduli space of complexes on
deformations of X × X ′, all their usual invariants will be the same. E.g. the
action on cohomology determines the action on the much larger (at least over C)
Chow groups CH∗(X). Combined with Lazarsfeld’s result that indecomposable
curves on K3 surfaces are Brill–Noether general this leads to (see [16]):
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4.4. For ρ(X) ≥ 2 all spherical complexes F ∈ Db(X) take Chern classes in
the Beauville–Voisin ring R(X) ⊂ CH∗(X) .

Recall that the Beauville–Voisin ring naturally splits the cycle map
CH∗(X) → H∗(X,Z) (see [1]) and for X defined over Q̄ it is conjectured
(Bloch–Beilinson) to be the Chow ring of X over Q̄ (see [16]). The assump-
tion on the Picard number ρ(X) in (4.4) should be superfluous.

5. Open Problems

5.1. It is generally believed that birational Calabi–Yau varieties are derived
equivalent. The conjecture seems more accessible for hyperkähler manifolds.
One approach could be to use (2.1) and put the two birational hyperkähler
manifolds X and X ′ as special fibres of the same family and then construct the
Fourier–Mukai kernel as a degeneration of the diagonal. How to degenerate the
diagonal explicitly is not clear. This has been worked out in a few cases (e.g.
[17, 23]) and progress in the non-compact situation has been made in [5]. One
could wonder whether the autoequivalence can be produced without actually
explicitly giving the Fourier–Mukai kernel E . Again, the degeneration argument
could be helpful, but since not a single Fourier–Mukai equivalence has ever been
described without also giving its Fourier–Mukai kernel, this seems not obvious.

5.2. As explained, all equivalences in the kernel of the natural representation

ρ : Aut(Db(X))→ O(H∗(X,Z))

can be obtained as degenerations of the diagonal on deformations of X (up to
shift and twist TO). Conjecturally, ker(ρ) is described by Bridgeland [3] as the
fundamental group of a certain period domain depending only on the Hodge
structure of H2(X,Z). In particular, ker(ρ) is usually a non-residually finite
group. Also, it should be viewed as the group of deck-transformations of the
space of stability conditions on Db(X). How exactly the spaces of stability
conditions Stab(Xt) on the generic deformation Xt of X = X0, which has been
shown to be simply connected in [13], fit together and ‘degenerate’ to Stab(X)
is unclear.

5.3. Can non-separation be avoided for hyperkähler manifolds? I believe it
cannot and this should be seen as a good thing. E.g. hyperkähler manifolds
giving rise to non-separated points are birational and non-isomorphic birational
correspondences produce rational curves. The existence and the counting of
rational curves on K3 surfaces is a highly interesting subject, see e.g. [4] and
[18]. Clearly, if a hyperkähler manifold contains a rational curve, it cannot be
hyperbolic as predicted by the Kobayashi conjecture. In fact, non-separated
points should be dense in the moduli space of hyperkähler manifolds which
could eventually prove non-hyperbolicity for all hyperkähler manifolds. Note



Hyperkähler Manifolds and Sheaves 459

that non-separation would also imply topological restrictions, e.g. b2 > 3 which
is widely expected but proved only in small dimensions.

5.4. Another interesting subject concerns the arithmetic of hyperkähler mani-
folds and whether certain arithmetic properties, e.g. to be defined over partic-
ular fields or to admit (many) rational points, is transferred along the twistor
space from one algebraic fibre to another. (Compare the work of Hausel and
Rodriguez-Villegas on moduli spaces of bundles on curves and the character
variety.)

5.5. In analogy to (3.1) it would be interesting to define hyperholomorphic
complexes, i.e. complexes of sheaves that naturally deform to the whole twistor
space. The stability condition should be phrased in terms of Bridgeland stabil-
ity. However, since (3.1) works only for bundles, one would also need to find a
derived version for locally freeness. How exactly the Hermite–Einstein metric
should come in seems unclear.

5.6. The general fibre of a twistor space is a rigid analytic variety. In [14]
its category of sheaves was studied, and somehow identified with the variety.
As a geometric object or as a category, it should be viewed as naturally as-
sociated to the Ricci-flat metric. However, in the construction only the formal
neighbourhod of one twistor fibre was used and it would be interesting to see
whether this leads to equivalent notions for all fibres. For an algebraic family
it would just be the fibre over the generic point.
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(2002), 267–297.

[21] S. Mukai Symplectic structures of the moduli space of sheaves on an abelian or
K3 surface, Invent. Math. 77 (1984), 101–116.

[22] S. Mukai, On the moduli space of bundles on K3 surfaces, I, In: Vector Bundles
on Algebraic Varieties, Oxford University Press, Bombay and London (1987),
341–413.

[23] Y. Namikawa Mukai flops and derived categories II, Alg. struct. and moduli
spaces, CRM Proc. Lect. Not. 38 AMS (2004), 149–175.

[24] A. Norton Non-separation in the moduli of complex vector bundles, Math. Ann.
235 (1978), 1–16.
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Abstract

We review recent theorems and conjectures saying that periodic cyclic homol-
ogy of a smooth non-commutative algebraic variety carries all the additional
structures the usual de Rham cohomology has in the commutative case, such
as a mixed Hodge structure, and a structure of a filtered Dieudonné module.

Mathematics Subject Classification (2010). 14F05, 14F30 and 14F40.

Keywords. Motivic, non-commutative, cyclic, p-adic, Hodge-de Rham.

1. Generalities on Mixed Motives

The conjectural category MM of mixed motives, as described by Deligne,
Beilinson and others, unifies and connects various cohomology theories which
appear in modern algebraic geometry. Recall that one expects MM to be a
symmetric tensor abelian category with a distiguished invertible object Z(1)
called the Tate motive. One expects that for any smooth projective algebraic
variety X defined over Q, there exist a functorial motivic cohomology com-
plex H

q

(X) ∈ Db(MM) with values in the derived category Db(MM), whose
cohomology groups

Hi(X) ∈MM

are called motivic cohomology groups. If X is the projective space Pn, n ≥ 1,
then one expects to have

H2i(Pn) ∼= Z(−i)

for 0 ≤ i ≤ n, and 0 otherwise. For a general X and any integer j, one defines
the absolute cohomology complex by

H
q

abs(X,Z(j)) = RHom
q

MM(Z(−j), H
q

(X)),
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with its cohomology groups Hi
abs(X,Z(j)) known as absolute cohomology

groups. It is expected that the absolute cohomology groups are related to the
algebraic K-theory groups K q(X) by means of a functorial regulator map

r : K q(X)→
⊕

j

H2j− q

abs (X,Z(j)), (1.1)

and it is expected that the regulator map is “not far from an isomorphism” (for
example, it ought to be an isomorphism modulo torsion).

The above picture, with its many refinements which we will not need, is,
unfortunately, still conjectural. In some applications, one can get away with
considering the “triangulated category of motives” of Hanamura, Levine and
Voevodsky, see e.g. [Le]. In other applications, one has to be content with
categories of realizations. These follow the same general pattern, but the hypo-
thetical categoryMM is replaced with a known category Real whose definition
axiomatizes the features of a particular known cohomology theory. The proto-
type example is that of l-adic cohomology. Recall that for any algebraic variety
X/Q, its l-adic étale cohomology groups

Hi
et(X,Ql)

are Ql-vector spaces equipped with an additional structure of an l-adic repre-
sentation of the Galois group Gal(Q/Q). These representations form a tensor
symmetric abelian category Repl(Gal(Q/Q)) with a distiguished Tate module
Ql(1), and one can treat l-adic cohomology as taking values in this category.
One can them define a double-graded absolute cohomology theory

H
q

abs(X,Ql(j)) = H
q

(Gal(Q/Q), H
q

et(X,Ql(j))),

known as absolute l-adic cohomology, and construct a regulator map of the form
(1.1). Conjecturally, we have an exact tensor “realization functor” MM →
Repl(Gal(Q/Q)), l-adic cohomology is obtained by applying realization to mo-
tivic cohomology, and the étale regulator map factors through the motivic
one. In practice, one can treat Repl(Gal(Q/Q)) as a replacement for MM,
and hope that the regulator map still captures essential information about
K q(X).

In this paper, we will be concerned with another family of cohomology
theories and realizations which appear as refinements of de Rham cohomology.
By its very nature, de Rham cohomology of a smooth algebraic variety X has
coefficients in the field or ring of definition of X. Thus it is not necessary to
require that X is defined over Q, and it is convenient to classify de Rham-type
cohomology theories by their rings of definitions. There are two main examples.

(i) The ring of definition is either R or C; the corresponding category of real-
izations is Deligne’s category of mixed R-Hodge structures, and the abso-
lute cohomology theory is Hodge-Deligne cohomology (with a refinement
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by Beilinson). The regulator map is the subject of the famous Beilinson
Conjectures [Be].

(ii) The ring of definition is Zp; the corresponding category of realizations is
the category of filtered Dieudonné modules of Fontaine-Lafaille [FL], and
the absolute cohomology theory is syntomic cohomology of Fontaine and
Messing [FM].

The goal of this paper is to report on recent discoveries and conjectures which
state, roughly speaking, that all these additional “motivic” structures on de
Rham cohomology of an algebraic variety should exist in a much more general
setting of periodic cyclic homology of properly understood non-commutative
algebraic varieties. As opposed to the usual commutative setting, the “classi-
cal” case (i) is more difficult and largely conjectural; in the p-adic case (ii),
most of the statements have been proved. Moreover, the p-adic story shows an
unexpected relation to algebraic topology which we will also explain. Before we
start, however, we should define exactly what we mean by a “non-commutative
algebraic variety”, and recall basic facts on cyclic homology.

2. Non-commutative Setting

We start by a brief recollection on cyclic homology; a very good overview can
be found in J.-L. Loday’s book [Lo], and an old overview [FT] is also quite
useful. Hochschild homology HH q(A/k) of an associative unital algebra A flat
over a commutative ring k is given by

HH q(A) = HH q(A/k) = TorA
opp⊗kA
q

(A,A),

where Aopp is A with multiplication written in the opposite direction. It has
been discovered by Hochschild, Kostant and Rosenberg [HKR] that if A is
commutative and X = SpecA is a smooth algebraic variety over k, then

HHi(A) ∼= H0(X,Ωi(X)),

the space of i-forms on X over k. Cyclic homology HC q(A) is a refinement of
Hochschild homology discovered independently by A. Connes and B. Tsygan.
It is functorial in A, and related to HH q(A) by the Connes’ long exact sequence

HH q(A) −−−−→ HC q(A)
u

−−−−→ HC q−2(A) −−−−→ ,

where u is a canonical periodicity map of degree 2. Both HH q(A) and HC q(A)
can be represented by functorial complexes CH q(A), CC q(A), and the Connes’
exact sequence then becomes a short exact sequence of complexes. The complex
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CC q(A) is the total complex of a bicomplex

. . . −−−−→ A
id

−−−−→ A
0

−−−−→ A
xb

xb′

xb

. . . −−−−→ A⊗A
id+τ
−−−−→ A⊗A

id−τ
−−−−→ A⊗A

xb

xb′

xb

. . . . . . . . . . . .
xb

xb′

xb

. . . −−−−→ A⊗n
id+τ+···+τn−1

−−−−−−−−−−→ A⊗n
id−τ
−−−−→ A⊗n

xb

xb′

xb

(2.1)

Here it is understood that the whole thing extends indefinitely to the left, all
the even-numbered columns are the same, all odd-numbered columns are the
same, and the bicomplex is invariant with respect to the horizontal shift by
2 columns which gives the periodicity map u. The map τ : A⊗i → A⊗i is the
cyclic permutation of order i multiplied by (−1)i+1, and b, b′ are certain explicit
differentials expressed in terms of the multiplication map m : A⊗2 → A. The
complex CH q(A) is the rightmost column of (2.1), and also any odd-numbered
column when counting from the right; the even-numbered columns are acyclic.

Periodic cyclic homology HP q(A) is obtained by inverting the map u,
namely, HP q(A) is the homology of the complex

CP q(A) = lim
u
←

CC q(A)

(explictily, this is the total complex of a bicomplex obtained by extending (2.1)
to the right as well as to the left). Negative cyclic homology HC−

q
(A) is the

homology of the complex CC−
q
(A) obtained as the third term in a short exact

sequence

0 −−−−→ CC−(A) −−−−→ CP q(A) −−−−→ CC q−2(A) −−−−→ 0

(equivalently, one extends (2.1) to the right but not to the left).
The reason cyclic homology is interesting in algebraic geometry is the follow-

ing comparison theorem. In the situation of the Hochschild-Kostant-Rosenberg
Theorem, let d be the dimension of X = SpecA, and assume in addition that
d! is invertible in the base ring k. Then there exists a canonical isomorphism

HP q(A) ∼= H
q

DR(X)((u)), (2.2)

where the right-hand side is a shorthand for “formal Laurent power series in
one variable u of degree 2 with coefficients in de Rham cohomology HDR(X)”.
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By (2.2), periodic cyclic homology classes can be thought of as non-
commutative generalizations of de Rham cohomology classes. Some informa-
tion is lost in this generalization: because of the presense of u in the right-hand
side of (2.2), what we recover from HP q(A) is not the de Rham cohomol-
ogy of X but rather, the de Rham cohomology of the product X × P∞ of
X and the infinite projective space P∞, where we moreover invert the gen-
erator u ∈ H2

DR(P
∞). Thus given a category of realizations Real and a Real-

valued refinement of de Rham cohomology, the appropriate target for its non-
commutative generalization is not the derived category D(Real) but the twisted
2-periodic derived category Dper(Real) obtained by inverting quasiisomorphisms
in the category of complexes M q of objects in Real equipped with an isomor-
phism u : M q

∼= M q(1)[2], where we denote M(n) = M ⊗ Z(n), n ∈ Z.
We note, however, that this causes no problem with the regulator map,

since the summation in the right-hand side of (1.1) is the same as in the right-
hand side of (2.2). Thus for a Real-valued refinement H

q

Real
(−) of de Rham

cohomology and any smooth affine algebraic variety X = SpecA, the regulator
map (1.1) takes the form

K q(A)→ RHom
q

Dper(Real)(k,HP q(A)) = RHom
q

Dper(Real)(k,H
q

Real(X)((u))),

where k in the right-hand side is the unit object of Real.
Somewhat surprisingly, non-affine algebraic varieties can be included in the

above picture with very little additional effort. To do it, it is convenient to
use the machinery of differential graded (DG) algebras and DG categories. An
excellent overview can be found in [Ke2]; for the convenience of the reader, let
us summarize the relevant points.

Roughly speaking, a k-linear DG category is a category C
q

whose Hom-sets
C
q

(−,−) are equipped with a structure of complexes of k-modules in such a way
that composition maps are k-linear and compatible with the differentials (for
precise definitions, see [Ke2, Section 2]). For any small k-linear DG category C

q

,
one defines a triangulated derived category of DG modules D(C

q

) ([Ke2, Section
3]). Any k-linear DG functor γ : C

q

1 → C
q

2 induces a triangulated functor γ∗ :
D(C

q

2)→ D(C
q

1). The functor γ ia a derived Morita equivalence if the induced
functor γ∗ is an equivalence of triangulated categories. It turns out – this mostly
due to the work of G. Tabuada and B. Toën, see [Ke2, Section 4] and references
therein – that there is a closed model structure on the category of small k-linear
DG categories whose weak equivalences are exactly derived Morita equivalences.
Denote byMorita(k) the corresponding homotopy category, that is, the category
of “small k-linear DG categories up to a derived Morita equivalence”.

Any k-algebra A is a k-linear DG category with one object pt and
Hom(pt, pt) = A placed in degree 0, so that we have an embedding Alg(k) →
Morita(k) from the category Alg(k) of associative k-algebras to Morita(k). Then,
as explained in [Ke2, Section 5], Hochschild homology, cyclic homology, periodic
cyclic homology and negative cyclic homology extend to functors

Morita(k)→ D(k).
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Moreover, so does the algebraic K-theory functor K
q

(−), and other “additive
invariants” in the sense of [Ke2, Section 5].

In general, a DG category with one object pt is the same thing as an as-
sociative unital DG algebra A

q

= Hom
q

(pt, pt). The category of DG algebras
over k has a natural closed model structure whose weak equivalences are quasi-
isomorphisms, and whose fibrations are surjective maps. The corresponding
homotopy category DG-Alg(k) is the category of DG algebras “up to a quasi-
isomorphism”. One shows that a quasiisomorphism between DG algebras is in
particular a derived Morita equivalence, so that we have a natural functor

DG-Alg(k)→ Morita(k). (2.3)

It is not diffucult to show that for every cofibrant DG algebra A
q

, the individ-
ual terms of the complex A

q

are flat k-modules. In this case, the Hochschild,
cyclic etc. homology of A

q

are especially simple – they are given by exactly
the same bicomplex (2.1) and its versions as in the case of ordinary algebras.
This is manifestly invariant under quasiisomorphisms, so that the Hochschild,
cyclic etc. homology obviously descend to functors from DG-Alg(k) to the de-
rived category D(k). The DG category approach shows that there is even more
invariance: even if two DG algebras A

q

1, A
q

2 are not quasiisomorphic but only
have isomorphic images in Morita(k), their Hochschild, cyclic etc. homology is
naturally identified. This statement is already non-trivial in the case of usual
algebras, see [Lo, Section 1.2].

Definition 2.1. A DG category T q ∈ Morita(k) is derived-affine if it lies in the
essential image of the functor (2.3).

Remark 2.2. A small k-linear DG category C
q

with a finite number of objects
is automatically derived-Morita equivalent to a DG algebra A

q

, thus affine. For
example, one can take

A
q

=
⊕

c,c′

C
q

(c, c′),

where the sum is taken over all pairs of objects in C
q

.

Now, it has been proved ([BV] combined with [Ke1]) that for any quasisep-
arated quasicompact scheme X over k, there exists a DG algebra A

q

/k such
that the derived category D(X) of quasicoherent sheaves on X is equivalent to
the derived category D(A

q

),

D(X) ∼= D(A
q

),

and such a DG algebra A
q

is unique up to a derived Morita equivalence, so
that we have a canonical functor from the category of algebraic varieties over
k to the category Morita(k). Roughly speaking, any algebraic variety is derived
Morita-equivalent to a DG algebra, or, in a succint formulation of [BV], “every
algebraic variety is derived-affine”.
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Moreover, it turns out that the properties of X which are relevant for the
present paper are reflected in the properties of a Morita-equivalent DG algebra
A
q

. For example, one introduces the following (see e.g. [KKP]).

Definition 2.3. (i) A DG algebra A
q

/k is proper if A
q

is perfect as an object
in the derived category D(k) of complexes of k-modules.

(ii) A DG algebra A
q

/k is smooth if A
q

is perfect as an object in the derived
category D(A

qopp ⊗A
q

) of A
q

-bimodules.

Then A
q

is proper, resp. smooth if and only if X is proper, resp. smooth
(in the affine case X = SpecA, the second claim is the famous Serre regularity
criterion). Moreover, the correspondence X 7→ A

q

is compatible with algebraic
K-theory, K q(X) ∼= K q(A

q

), and if the variety X/k is smooth of dimension
d, and d! is invertible in k, then the Hochschild homology of such a Morita-
equivalent DG algebra A

q

is canonically isomorphic to

HHi(A
q

) ∼=
⊕

j

Hj(X,Ωi+j(X)),

the so-called “Hodge cohomology” of X, while the periodic cyclic homology
HP q(A) is exactly as in (2.2).

Thus as far as homological invariants are concerned, one can treat DG alge-
bras “up to a derived Morita-equivalence” as non-commutative generalizations
of algebraic varieties:

• A non-commutative algebraic variety over k is a DG algebra A
q

over k
considered as an object of the Tabuada-Toën category Morita(k).

This is the point of view we will adopt.

3. Hodge-to-de Rham Spectral Sequence

A convenient way to pack all the structures related to Hochschild homology
HH q(A

q

) of a DG algebra A
q

/k is by considering the equivariant derived
category DS1(k) of S1-equivariant constructible sheaves of k-modules on the
point pt. Then the claim is that the Hochschild homology complex CH q(A

q

),
while a priori simply a complex of k-modules, in fact underlies a canonical
object C̃H q(A

q

) ∈ DS1(k) (loosely speaking, “CH q(A
q

) carries a canonical S1-
action”). The negative cyclic homology appears as S1-equivariant cohomology

H
q

S1(pt, C̃H q(A
q

)),

the periodicity map u is the generator of H
q

S1(pt) ∼= H
q

(BS1), and HP q(A
q

) is
the localization HC−

q
(A

q

)(u−1).
Another way to pack the same data is by considering the filtered derived

category DF(k) of k-modules of [BBD] – that is, the triangulated category



468 D. Kaledin

obtained by considering complexes V q of k-modules equipped with a descreasing
filtration F

q

numbered by all integers, and inverting those maps which induce
quasiisomorphisms on the associated graded quotients grF . This has a “twisted
2-periodic” version DFper(k), obtained from filtered complexes V q equipped
with an isomorphism V q

∼= V q[2](1), where (1) means renumbering the filtration:
F iV (1) = F

q−1V .

Lemma 3.1. We have
DS1(k) ∼= DFper(k).

Sketch of the proof. Let us just indicate the equivalence: it sends V q ∈ DS1(k) to
the equivariant cohomology complex C

q

S1(pt, V q)(u−1), with the (generalized)
filtration given by

F iH
q

S1(pt, V q)(u−1) = uiC
q

S1(pt, V q),

where u ∈ C2
S1(k) represents the generator of the equivariant cohomology ring

H
q

S1(pt, k) ∼= k[u]. �

In the case of the Hochschild homology complex C̃H q(A
q

), the correspond-
ing periodic filtered complex is CP q(A

q

), with the filtration given by

F iCP q((A
q

) = uiCC−
q
(A

q

) ⊂ CP q(A
q

).

One can treat DFper(k) as a very crude “category of realization” Real in
the sense of Section 1, or rather, of its periodic derived category Dper(Real).
The expected regulator map then takes the form

K q(A
q

)→ HC−
q
(A

q

) = RHom
q

DFper(k)(k,HP q(A)). (3.1)

Such a map does indeed exist, see [Lo, Chapter 8]. In general, it is very far from
being an isomorphism. The only general result is a theorem of T. Goodwillie
[Good] which shows that at least the tangent spaces to both sides are the same.
Namely, given an alegbra A with an ideal I ⊂ A, one defines the relative K-
theory K q(A, I) spectrum as the cone of the natural map K q(A) → K q(A/I),
and analogously for the cyclic homology functors. Then it has been proved in
[Good] that if k is a field of characteristic 0 and I ⊂ A is a nilpotent ideal, then
the map

K q(A, I)→ HC−(A, I)

induced by the regulator map (3.1) is a quasiisomorphism. An analogous state-
ment also holds for DG algebras over k.

While filtered complexes are a very crude approximation to mixed motives,
already on this level the smoothness and properness of a DG algebra leads to
non-trivial consequences. Namely, a filtered complex gives rise to a spectral
sequence. In the case of cyclic homology, it takes the form

HH q(A
q

)((u))⇒ HP q(A
q

), (3.2)
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where we use the same shorthand as in (2.2). When the DG algebra A
q

/k
is Morita-equivalent to a smooth algebraic variety X/k, the filtration F

q

on
HP q(A

q

) ∼= H
q

DR(X)((u)) is just the Hodge filtration on de Rham cohomology,
and (3.2) is the usual Hodge-to-de Rham spectral sequence

Hp(X,Ωq(X))⇒ Hp+q
DR (X)

tensored with k((u)). Because of this, (3.2) in general is also called “Hodge-to-
de Rham spectral sequence”. Then the following is a partial proof of a general
conjecture of M. Kontsevich and Ya. Soibelman [KS].

Theorem 3.2 ([Ka1]). Assume that A
q

is a smooth and proper DG algebra
over a field k of characteristic char k = 0. Assume further that Ai = 0 for
i < 0. Then the Hodge-to-de Rham spectral sequence (3.2) degenerates.

The assumption Ai = 0, i < 0 is technical (note, however, that it can
always be achieved for a DG algebra A

q

corresponding to a smooth and proper
algebraic variety X/k, see e.g. [O, Theorem 4]).

In the usual commutative case, the Hodge-to-de Rham degeneration state-
ment is well-known and has two proofs. Classically, it follows from the general
complex-analytic package of Hodge theory and harmonic forms. An alternative
proof by Deligne and Illusie [DI] uses reduction to positive characteristic and
p-adic methods. So far, it is only the second technique that has been generalized
to the non-commutative case. We will now explain this.

4. Review of Filtered Dieudonné Modules

A p-adic analog of the notion of a mixed Hodge structure has been introduced
in 1982 by Fontaine and Lafaille [FL]. Here is the definition.

Definition 4.1. Let k be a finite field of characteristic p, with its Frobenius
map, and let W be its ring of Witt vectors, with its canonical lifting ϕ of the
Frobenius map. A filtered Dieudonné module over W is a finitely generated W -
module M equipped with a decreasing filtration F

q

M , indexed by all integers
and such that ∩F iM = 0, ∪F iM = M , and a collection of Frobenius-semilinear
maps ϕi : F

iM →M , one for each integer i, such that

(i) ϕi|F i+1M = pϕi+1, and

(ii) the map ∑
ϕi :

⊕

i

F iM →M

is surjective.

We will denote by FDM(W ) the category of filtered Dieudonné modules
over W . It is an abelian category. A symmetric tensor product in FDM(W )
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is defined in the obvious way, and we have the Tate object W (1) given by:
W (1) = W as a W -module, F 1W (1) = W (1), F 2W (1) = 0, ϕ1 : F 1W (1) →
W (1) equal to ϕ. We also have the derived category D(FDM(W )).

If a filtered Dieudonné module M ∈ FDM(W ) is annihilated by p, then (i)
of Definition 4.1 insures that the map in (ii) factors through a surjective map

ϕ̃ : gr
q

F M →M.

Since both sides are k-vector spaces of the same dimension, ϕ̃ must be an
isomorphism. For a general filtered W -module 〈M,F

q

〉, one lets M̃ be the
cokernel of the map ⊕

i F
iM

t−p id
−−−−→

⊕
i F

iM, (4.1)

where t : F
q+1M → F

q

M is the tautological embedding. Then again, (i) insures
that the map

∑
i ϕi factors through a map

ϕ̃ : M̃ →M (4.2)

and this map must be an isomorphism if (ii) were to be satisfied. This allows
to generalize the definition of a filtered Dieudonné module: instead of a finitely
generated filtered W -module, one can consider a filtered W -module 〈M,F

q

〉
such that M is p-adically complete and complete with respect to the topology
induced by F

q

(these conditions together with the non-degeneracy conditions
∩F iM = 0, ∪F iM = M insure that the map (4.1) is injective). Then a un-
bounded Dieudonné module structure on M is given by a Frobenius-semilinear
isomorphism ϕ̃ of the form (4.2).

I do not know whether the category of unbounded filtered Dieudonné mod-
ules is still abelian. However, complexes of unbounded filtered Dieudonné mod-
ules can be defined in the obvious way, and the correspondence M 7→ M̃ sends
filtered quasiisomorphisms into quasiisomorphisms, so that we obtain a triangu-
lated derived category DFDM(W ) ⊃ D(FDM(W )) and its twisted 2-periodic
version DFDMper.

Moreover, one can drop the requirement that the map ϕ̃ is an isomor-
phism and allow it to be an arbitrary map. Let us call the resulting objects
“weak filtered Dieudonné modules”. The category of weak filtered Dieudonné
modules is definitely not abelian, but the above procedure still applies: we
can invert filtered quasiisomorphisms and obtain triangulated categories de-

noted D̃FDM(W ), D̃FDM
per

(W ). We then have a fully faithful inclusions

DFDM(W ) ⊂ D̃FDM(W ), DFDMper(W ) ⊂ D̃FDM
per

(W ), and their es-

sential images consist of those M q in D̃FDM(W ), resp. D̃FDM
per

(W ) for
which the map ϕ̃ of (4.2) is a quasiisomorphism.

Assume given a algebraic variety X smooth over W , of dimension d < p.
Then de Rham cohomology H

q

DR(X/W ) equipped with the filtration induced
by the stupid filtration on the de Rham complex has the structure of a com-
plex of generalized filtered Dieudonné modules. If X/W is proper, the groups
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Hi
DR(X/W ) are finitely generated, so that they are filtered Dieudonné mod-

ules in the strict sense (and the filtration is then the Hodge filtration). This
Dieudonné module structure can be seen explicitly under the following strong
additional assumption:

• the Frobenius endomorphism Fr of the special fiber Xk = X⊗W k of X/W

lifts to a Frobenius-semilinear endomorphism F̃r : X → X.

Then one checks easily that for any i ≥ 0, the natural map F̃r
∗
: Ωi(X/W ) →

Ωi(X/W ) is divisible by pi. The Dieudonné module structure maps ϕi are

induced by the corresponding maps 1
pi F̃r

∗
. We note that in this special case,

the map ϕi sends F i into F i. In the general case, the construction is due to
G. Faltings [F, Theorem 4.1]; roughly speaking, it uses a comparison theorem
which gives a quasiisomorphism

H
q

cris(Xk) ∼= H
q

DR(X),

where in the left-hand side, we have the cristalline cohomology of the special
fiber Xk. The Frobenius endomorphism of Xk induces an endomorphism on
cristalline cohomology, and this gives the structure map ϕ0. By an additional
argument, one shows that ϕ0|F

i is canonically divisible by pi, and this gives the
other structure maps ϕi (in general, they do not preserve the Hodge filtration
F
q

).
In particular, for any smooth X/W , one has the isomorphism (4.2). Its

reduction mod p is an isomorphism

gr
q

F H
q

DR(Xk) ∼=
⊕

i

H
q−i(Xk,Ω

i(Xk)) ∼= H
q

DR(Xk) (4.3)

between Hodge and de Rham cohomology of the special fiber Xk.
If X is affine, this is nothing but the inverse to the Cartier isomorphism,

discovered by P. Cartier back in the 1950-ies; as such, it depends only on the
special fiber Xk and not on the lifting X/W . In the general case, it has been
shown by Deligne and Illusie in [DI] that (4.3) depends on the lifting X ⊗W

W2(k) of Xk to the second Witt vectors ring W2(k) = W (k)/p2 (but not on
the lifting to higher orders, nor even on the existence of such a lifting).

The absolute cohomology theory associated to the FDM-valued refinement
of de Rham cohomology is the syntomic cohomology of Fontaine and Messing.
As it happens, the functors RHom

q

(W (−j),−) in the category DFDM are easy
to compute explicitly — for any complex M q ∈ DFDM, RHom

q

(W (−j),−) is
the cone of the natural map

F jM q

id−ϕj

−−−−→ M q.

When applied to a smooth proper varietyX/W , this gives syntomic cohomology
groups H

q

synt(X,Zp(j)). The construction can even be localized with respect
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to the Zariski topology on Xk, so that the syntomic cohomology is expressed
as hypercohomology of Xk with coefficients in certain canonical complexes of
Zariski sheaves, as in [FM].

The existence and properties of the regulator map for the syntomic cohomol-
ogy have been studied by M. Gros [Gr1, Gr2]. In principle, one can construct the
regulator by the standard procedure for “twisted cohomology theories” in the
sense of [BO], but there is one serious problem: the filtered Dieudonné module
structure on H

q

DR(X) only exists if p > dimX. Since the standard procedure
works by considering infinite projective spaces and Grassmann varieties, this
condition is inevitably broken no matter what p we start with. To circumvent
this, Gros had to modify (in [Gr2]) the definition of syntomic cohomology by
including additional structures such as the rigid analytic space associated to
X/W . The resulting picture becomes extremely complex, and at present, it is
not clear whether it can be generalized to non-commutative varieties.

5. FDM in the Non-commutative Case

What we do have for non-commutative varieties is the following result.

Definition 5.1. The Hochschild cohomology HH
q

(A
q

/R) of a DG algebra A
q

over a ring R is given by

HH
q

(A
q

/R) = RHom
q

A
q

opp⊗RA(A
q

, A
q

).

Theorem 5.2 ([Ka1]). Assume given an associative DG algebra A
q

over a
finite field k. Assume that Ai = 0 for i < 0. Assume also that A

q

is smooth,
that it can be lifted to a flat DG algebra Ã

q

over W2(k), and that HHi(A
q

) = 0
for i ≥ 2p− 1. Then there exists a canonical Cartier-type isomorphism

HH q(A
q

)((u)) ∼= HP q(A
q

).

Remark 5.3. If a DG algebra A
q

is derived Morita-equivalent to a smooth alge-
braic variety X/k, then we have HHi(A

q

) = 0 automatically for i > 2 dimX, so
that the last condition on A

q

in Theorem 5.2 reduces to the condition p > dimX
already mentioned in Section 4.

Remark 5.4. Theorem 3.2 easily follows from Theorem 5.2 by the same di-
mension argument as in the original proof of Deligne and Illusie in [DI]. The
only non-trivial additional input is a beautiful recent theorem of B. Toën [To2]
which claims that a smooth and proper DG algebra A

q

over a field K comes
from a smooth and proper DG algebra A

q

R over a finitely generated subring
R ⊂ K, A

q ∼= A
q

R ⊗R K. This allows one to reduce problems from char 0 to
char p.

Let us give a very rough sketch of how Theorem 5.2 is proved (for more
details, see [Ka2], and the complete proof in a slightly different language is in
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[Ka1]). As in the commutative story, there are two cases for Theorem 5.2: the
easy case when one can construct the Cartier map explicitly, and the general
case. The easy case is when A

q

= A is concentrated in degree 0, and the algebra
A admits a so-called quasi-Frobenius map.

Lemma 5.5 ([Ka1]). For any vector space V over the finite field k of charac-
teristic char k = p > 0, there is a canonical Frobenius-semilinear isomorphism

Ȟ
q

(Z/pZ, V ) ∼= Ȟ
q

(Z/pZ, V ⊗p),

where Ȟ
q

(Z/pZ,−) means the Tate (co)homology of the group Z/pZ, the ac-
tion of Z/pZ on V is trivial, and the action on V ⊗p is by the longest cycle
permutation σ : V ⊗p → V ⊗p. �

Definition 5.6. [[Ka1]] A quasi-Frobenius map for an algebra A/k is a Z/pZ-
equivariant algebra map

Φ : A→ A⊗p

which induces the standard isomorphism of Lemma 5.5 on Tate cohomology
Ȟ

q

(Z/pZ,−).

If the algebra A admits a quasi-Frobenius map Φ, then the construction of
the Cartier isomorphism proceeds as follows. First, recall that for any algebra
B equipped with an action of a group G, the smash product algebra B#G is
the group algebra B[G] but with the twisted product given by

(b1 · g1)(b2 · g2) = b1b
g1
2 · g1g2,

and one has a canonical decomposition

HP q(B#G) =
⊕

〈g〉

HP q(B#G)g (5.1)

into components numbered by conjugacy classes of elements in G (these com-
ponents are sometimes called twisted sectors). Next, let G be the cyclic group
Z/pZ, and let σ ∈ G be the generator. Then one can show that if the G-action
on B is trivial, then

HP q(B#G)σ ∼= H̃P q(B), (5.2)

where HP q(B) in the right-hand side is equipped with the Hodge filtration, and

M̃ for a filtered group M means the cokernel of the map (4.1), as in Section 4.
One the other hand, if we take the p-th power B⊗p with σ acting by the longest
cycle permutation, then one can show that

HP q(B⊗p#G)σ ∼= HP q(B). (5.3)

Both the isomorphisms (5.2) and (5.3) are completely general and valid for al-
gebras over any ring. So is the decomposition (5.1), which is moreover functorial
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with respect to G-equivariant maps. We now apply this to our algebras A and
A⊗p over k, with the G-action as in Lemma 5.5. The quasi-Frobenius map Φ
induces a map

ϕ : H̃P q(A) ∼= HP q(A#G)σ → HP q(A⊗p#G)σ ∼= HP q(A),

and since p annihilates HP q(A), we have

H̃P q(A) ∼= gr
q

F HP q(A) ∼= HH q(A)((u)).

The map ϕ is the Cartier map of Theorem 5.2. One then shows that it is an
isomorphism; this requires one to assume that A is smooth.

The general case of Theorem 5.2 is handled by finding a replacement for a
quasi-Frobenius map; as far as the cyclic homology is concerned, the argument
stays the same. One first shows that for any unital associative algebra A/k,
there exists a completely canonical diagram

A
α

←−−−− Q q(A)
Φ

−−−−→ P q(A)
β

←−−−− A⊗p

of DG algebras equipped with an action of G = Z/pZ and G-equivariant maps
between them. The G action on A and Q q(A) is trivial. In addition, if A is
smooth, the map

HP q(A⊗p#G)σ → HP q(P q(A)#G)σ

induced by the map β is an isomorphism (although in general, this isomorphism
does not preserve the Hodge filtration). Thus as before, Φ induces a canonical
map

ϕ : HH q(Q q(A))((u)) ∼= ˜HP q(Q q(A))→ HP q(A).

To construct the Cartier map for the algebra A, it remains to construct a map

HH q(A)→ HH q(Q q(A)).

To do this, one applies obstruction theory and shows that the map α : Q q(A)→
A admits a splitting in the category DG-Alg(k). The homology of the DG algebra
Q q(A) is given by

Hi(Q q(A)) = A⊗ Sti(k), (5.4)

where St q(k) is the dual k-Steenrod algebra — that is, the dual to the algebra of
k-linear cohomological operations in cohomology with coefficients in k. We have
St0(k) ∼= St1(k) ∼= k, and Sti(k) = 0 for 1 < k < 2p−2. The map a : Q q(A)→ A
is an isomorphism in degree 0. The splitting is constructed degree-by-degree.
In degree 1, the obstruction to splitting is exactly the same as the obstruction
to lifting the algebra A/k to the ring W2(k). In any higher degree i > 1, the
obstruction lies in the Hochschild cohomology group HH2+i(A ⊗ Sti(k)), and
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this vanishes in the relevant range of degrees by the assumption HHi(A) = 0,
i ≥ 2p− 1.

In the DG algebra case, the construction breaks down since Lemma 5.5 does
not have a DG version. Thus one first has to replace a DG algebra A

q

with a
cosimplicial algebra A by the Dold-Kan equivalence, and then apply the above
construction to A “pointwise”. It is at this point that one has to require Ai = 0
for i < 0.

Although [Ka1] only provides a Cartier map for DG algebras defined over a
finite field k, the same technology should apply to DG algebras over W = W (k)
with very little changes, so that for any smooth DG algebra A

q

/W (k) with
HHi(A

q

) = 0 for i ≥ 2p − 1, one should be able to construct a canonical
isomorphism

ϕ̃ : ˜HP q(A
q

) ∼= HP q(A
q

).

Equivalently, HP q(A
q

) should carry a filtered Dieudonné module structure
(in other words, underlie a canonical object of the periodic derived cate-
gory DFDMper(W )). One also should be able to check that if A

q

is Morita-
equivalent to a smooth variety X/W , the comparison isomorphism (2.2) is com-
patible with the filtered Dieudonné module structures on both sides. However,
at present, none of this has been done.

We note that the problem with the regulator map in the p-adic setting
mentioned in the end of Section 4 survives in the non-commutative situation.
Namely, the standard technology for constructing the regulator map (3.1) ([Lo,
Section 8.4]) involves considering the group algebras k[G] for G = GLn(A),
for all n ≥ 1. As n goes to infinity, the homological dimension of these group
alegbras becomes arbitrarily large, and the conditions of Theorem 5.2 cannot
be satified.

6. Generalities on Stable Homotopy

The appearance of the Steenrod algebra in (5.4) suggests that the whole story
should be related to algebraic topology. This is indeed so. To explain the rela-
tion, we need to recall some standard facts on stable homotopy theory.

6.1. Stable homotopy category and homology. Roughly speaking, the
stable homotopy category StHom is obtained by inverting the suspension func-
tor Σ in the category Hom of pointed CW complexes and homotopy classes of
maps between them. Objects of StHom are called spectra. A spectrum consists
of a collection of pointed CW complexes Xi, i ≥ 0, and maps ΣXi → Xi+1

for all i (in some treatments, these data are required to satisfy additional tech-
nical conditions). For the definitions of maps between spectra and homotopies
between such maps, we refer the reader to a number of standard references,
for example [Ad]. Any CW complex X ∈ Hom defines its suspension spectrum



476 D. Kaledin

Σ∞X ∈ StHom consisting of the suspensions ΣiX. For any two CW complexes
X, Y , we have

HomStHom(Σ
∞X,Σ∞Y ) = lim

i
→

[ΣiX,ΣiY ],

where [−,−] denotes the set of homotopy classes of maps.
Any complex of abelian groups M q defines a spectrum EM(M q) called the

Eilenberg-Maclane spectrum of M q. This is functorial in M q, so that for any
commutative ring R, we have a functor

EM : D(R)→ D(Ab)→ StHom,

where D(R) is the derived category of the category of R-modules. This functor
has a left-adjoint H(R) : StHom→ D(R), known as homology with coefficients
in R.

The category StHom is a tensor triangulated category. Both functors EM

and H(R) are triangulated. Moreover, the homology functor H(R) is a tensor
functor – for any two spectra X,Y ∈ StHom with smash-product X ∧ Y , there
exists a functorial isomorphism

H(R)(X)
L

⊗R H(R)(Y ) ∼= H(R)(X ∧ Y ).

The adjoint Eilenberg-Maclane functor EM is pseudotensor – we have a natural
map

EM(V q) ∧ EM(W q)→ EM(V q

L

⊗R W q)

for any two objects V q,W q ∈ D(R). Thus for any associative ring object A in
StHom, its homology H(R)(A) is a ring object in D(R), and conversely, for any
associative ring object A q ∈ D(R), the Eilenberg-Maclane spectrum EM(A q) is
a ring object in StHom.

In the homological setting, we know that the structure of a “ring object in
D(R)” is too weak, and the right objects to consider are DG algebras over R.
To define an analogous notion for spectra is non-trivial, since the traditional
topological interpretation of spectra does not behave too well as far as the
products are concerned. Fortunately, new models for StHom have appeared
more recently, such as for example S-modules of [EKMM], orthogonal spectra
of [MM], or symmetric spectra of [HSS]. All these approaches give equivalent
results; to be precise, let us choose for example the last one. As shown in [HSS],
symmetric spectra form a symmetric monoidal category; denote it by Sym.
Then in this paper, a ring spectrum will denote a monoidal object in Sym, and
StAlg will denote the category of ring spectra considered up to a homotopy
equivalence (formally, this is defined by putting a closed model structure on
the category of ring monoidal objects in Sym whose weak equivalences are
homotopy equivalences of the underlying symmetric spectra). The homology
functor H(R) and the Eilenberg-Maclane functor EM extend to functors

H(R) : StAlg→ DG-Alg(R), EM : DG-Alg(R)→ StAlg .
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where as in Section 2, DG-Alg(R) is the category of DG algebras over R con-
sidered up to a quasiisomorphism.

6.2. Equivariant categories. For any compact group G, a pointed “G-CW
complex” is a pointed CW complex X equipped with a continuous action of
G such that the fixed-point subset Xg ⊂ X is a pointed subcomplex for any
g ∈ G. We will denote by Hom(G) the category of pointed G-CW complexes and
G-equivariant homotopy classes of G-equivariant maps between them. We note
that for any closed subgroup H ⊂ G, sending X to the fixed-point subspace
XH ⊂ X gives a well-defined functor

Hom(G)→ Hom .

This functor is representable in the following sense: for any X ∈ Hom(G), we
have a homotopy equivalence

XH ∼= MapsG([G/H]+, X), (6.1)

where MapsG(−,−) means the space of G-equivariant maps with its natural
topology, and [G/H]+ is the pointed G-CW complex obtained by adding a
(disjoint) marked point to the quotient G/H with the induced topology and
G-action.

To define a stable version of the category Hom(G), one could again simply
invert the suspension functor. However, there is a more interesting alternative:
by definition, n-fold suspension Σn is the smash-product with an n-sphere,
and in the equivariant setting, one can allow the sphere to carry a non-trivial
G-action. The corresponding equivariant stable category has been constructed
in [LMS]; it is known as the genuine G-equivariant stable homotopy category
StHom(G). To define it, one needs to fix a real representation U of the group G
which is equipped with a G-invariant inner product and contains every finite-
dimensional inner-product representation countably many times; this is called a
“complete G-universe”. Then a genuine G-equivariant spectrum is a collection
of G-CW complexes X(V ), one for each finite-dimensional G-invariant inner-
product subspace V ⊂ U , and maps SW ∧ X(V ) → X(V ⊕W ), one for each
inner-product G-invariant subspace V ⊕ W ⊂ U , where SV is the one-point
compactification of the underlying topological space of the representation V ,
with its natural G-action. As in the non-equivariant case, StHom(G) is a tensor
triangulated category. We have a natural suspension spectrum functor Σ∞ :
Hom(G)→ StHom(G), and for any two objects X,Y ∈ Hom(G), we have

HomStHom(G)(Σ
∞X,Σ∞Y ) = lim

V ⊂U
→

[SV ∧X,SV ∧ Y ]G,

where [−,−]G is the set of G-homotopy classes of G-equivariant maps, and
the limit is over all the finite-dimensional G-invariant inner-product subspaces
V ⊂ U . The category StHom(G) does depend on U , but this is not too drastic:
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all complete G-universes are isomorphic, and for any isomorphism U ∼= U ′

between complete G-universes, there is a “change of universe” functor which is
an equivalence between the corresponding versions of StHom(G).

Forgetting the G-action gives a natural forgetful functor StHom(G) →
StHom, and equipping a spectrum with a trivial G-action gives an embedding
StHom → StHom(G). Thus for any X ∈ StHom and Y ∈ StHom(G), we have
a functorial smash product X ∧ Y ∈ StHom(G). This has an adjoint: for any
X,Y ∈ StHom(G), we have a natural spectrum MapsG(X,Y ) ∈ StHom such
that for any Z ∈ StHom, there is a functorial isomorphism

HomStHom(G)(Z ∧X,Y ) ∼= HomStHom(Z,MapsG(X,Y )).

For any closed subgroup H ⊂ G and any X ∈ StHom(G), one can extend (6.1)
and define the fixed point spectrum XH by the same formula,

XH = MapsG(Σ
∞[G/H]+, X). (6.2)

However, this does not commute with the suspension spectrum functor Σ∞. In
[LMS], a second fixed-points functor is introduced, called the geometric fixed
points functor and denoted ΦH . It does commute with Σ∞, and also commutes
with smash products, so that there are functorial isomorphisms

ΦH(Σ∞X) ∼= Σ∞XH , ΦH(X ∧ Y ) ∼= ΦH(X) ∧ ΦH(Y )

for any X,Y ∈ StHom(G). For any X ∈ StHom(G), there exists a canonical
map

can : XH → ΦH(X), (6.3)

functorial in X. Moreover, let NH ⊂ G be the normalizer of the subgroup
H ⊂ G, and let WH = NH/H be the quotient. Then ΦH can be extended to a
functor

Φ̂H : StHom(G)→ StHom(WH),

and the same is true for the usual fixed-points functor X 7→ XH of (6.2).
The map can of (6.3) then lifts to a map of WH -equivariant spectra. Here if
StHom(G) is defined on a complete G-universe U , then StHom(WH) should be

defined on the complete WH -universe UH . The functor Φ̂H has a right-adjoint
which is a fully faithful embedding StHom(WH) → StHom(G) (for example, if
H = G, then this is the trivial embedding StHom→ StHom(G)).

6.3. Mackey functors. Assume from now on that the compact group G is a
finite group with discrete topology. It is not difficult to extend the homology
functor H(R) to a functor

H(R) : StHom(G)→ D(G,R)

with values in the derived category of R[G]-modules. However, this version of
equivariant homology looses a lot of information such as fixed points. A more
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natural target for equivariant homology is the category of the so-called Mackey
functors. To define them, one considers an additive category BG whose objects
are G-orbits G/H for all subgroups H ⊂ G, and whose Hom-groups are given
by

BG([G/H1], [G/H2]) = HomStHom(G)(Σ
∞[G/H1]+,Σ

∞[G/H2]+) =

= π0(MapsG(Σ
∞[G/H1]+,Σ

∞[G/H2]+)).
(6.4)

An R-valued G-Mackey functor ([Dr], [Li], [tD], [M1]) is an additive functor
from BG to the category of R-modules. The category of such functors is an
abelian category, denotedM(G,R).

More explicitly, for any subgroups H1, H2 ⊂ G, one can consider the
groupoid Q([G/H1], [G/H2]) of diagrams [G/H1] ← S → [G/H2] of fi-
nite sets equipped with a G-action, and isomorphisms between such dia-
grams. Then disjoint union turns these groupoids into symmetric monoidal
categories, the Cartesian product turns the collection Q(−,−) into a 2-
category with objects [G/H], and it seems very likely that the map-
ping spectra MapsG(Σ

∞[G/H1]+,Σ
∞[G/H2]+) are in fact obtained from

the classifying spaces |Q([G/H1], [G/H2])| of symmetric monoidal groupoids
Q([G/H1], [G/H2]) by group completion. At present, this has not been proved
([M2]); however, the corresponding isomorphism is well-known at the level of
π0: we have

π0(MapsG(Σ
∞[G/H1]+,Σ

∞[G/H2]+)) ∼= π0(ΩB|Q([G/H1], [G/H2])|),

so that the groups BG(−,−) are given by

BG([G/H1], [G/H2]) = Z[Iso(Q([G/H1], [G/H2]))]/{[S1

∐
S2]− [S1]− [S2]},

(6.5)

where Iso means the set of isomorphism classes of objects.
For any X ∈ StHom(G), individual homology groups Hi(R)(X) can be

equipped with a natural structure of a Mackey functor in such a way that
Hi(R)(X)([G/H]) ∼= Hi(R)(XH), H ⊂ G (for more details, see [M1]). To
collect these into a single homology functorH(R), one has to work out a natural
derived version of the abelian categoryM(G,R). This has been done recently in
[Ka3]. Roughly speaking, instead of π0 in (6.4), one should the chain homology
complexes C q(−,Z) of the corresponding spectra, and one should set

BG
q
([G/H1], [G/H2]) = C q(MapsG(Σ

∞[G/H1]+,Σ
∞[G/H2]+),Z).

In practice, one replaces this with complexes which compute the homology
of the spectra obtained by group completion from the symmetric monoidal
groupoids Q([G/H1], [G/H2]). This can be computed explicitly, so that the
complexes BG

q
(−,−) introduced in [Ka3, Section 3] are given by an explicit for-

mula, and spectra are not mentioned at all. One then shows that the collection
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BG
q
(−,−) is an A∞-category in a natural way, and one defines the triangulated

category DM(G,R) of derived R-valued G-Mackey functors as the derived cat-
egory of A∞-functors from BG

q
to the category of complexes of R-modules.

In general, the categoryDM(G,R) turns out to be different from the derived
category D(M(G,R)) (although both contain the abelian category M(G,R)
as a full subcategory). On the level of slogans, one can hope that the cate-
gory DM(G,R) is the “brave new product” of the category StHom(G) and
the derived category D(R) of R-modules, taken over the non-equivariant stable
homotopy category StHom, so that we have a diagram

D(M(G,R)) −−−−→ DM(G,R) −−−−→ StHom(G)
y

y

D(R) −−−−→ StHom,

where the square is Cartesian in some “brave new” sense. On a more mun-
dane level, it is expected that the triangulated category DM(G,R) reflects the
structure of the category StHom(G) in the following way.

(i) There exists a symmetric tensor product −⊗− on the triangulated cate-
gory DM(G,R), and for any subgroup H ⊂ G, we have natural triangu-
lated fixed-point functors ΦH ,ΨH : DM(G,R)→ D(R).

(ii) There exists a natural triangulated equivariant homology functor

HG(R) : StHom(G)→ DM(G,R)

and natural functorial isomorphisms

ΦH(HG(R)(X)) ∼= H(R)(ΦH(X)),

ΨH(HG(R)(X)) ∼= H(R)(XH),

HG(X ∧ Y ) ∼= HG(X)⊗HG(Y )

for any X,Y ∈ StHom(G), H ⊂ G.

In fact, most of these statements has been proved in [Ka3], although only for
the so-called “Spanier-Whitehead category”, the full triangulated subcategory
in StHom(G) spanned by the suspension spectra of finite CW complexes (the
only thing not proved is the compatibility ΨH(HG(R)X) ∼= H(R)(XH) which
requires one to leave the Spanier-Whitehead category). It has been also shown
in [Ka3] that as in the case of spectra, the fixed point functor ΦH extends to a
functor

Φ̂H : DM(G,R)→ DM(WH , R) (6.6)

with a fully faithful right-adjoint. These fixed-points functors allow one to give
a very explicit description of the category DM(G,R). Namely, let I(G) be the
set of conjugacy classes of subgroups in G, and for any c ∈ I(G), let

DMc(G,R) ⊂ DM(G,R)
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be the full subcategory of such M ∈ DM(G,R) that ΦH(M) = 0 unless H ⊂ G
is in the class c.

Proposition 6.1 ([Ka3]). For any c ∈ I(G), DMc(G,R) ⊂ DM(G,R) is an
admissible triangulated subcategory, and for any subgroup H ⊂ G is a subgroup
in the class c, the functor Φ̂H of (6.6) induces an equivalence

ϕ̂H : DMc(G,R) ∼= D(WH , R).

Moreover, equip I(G) with the partial order given by inclusion. Then it
has been shown in [Ka3] that unless c ≤ c′, DMc(G,R) is left-orthogonal to
DMc′(G,R), so that DMc(G,R), c ∈ I(G) form a semiorhtogonal decomposi-
tion of the triangulated category DM(G,R) indexed by the partially ordered
set I(G) (for generalities on semiorthogonal decompositions, see [BK]). To de-
scribe the gluing data between the pieces of this semiorthogonal decomposition,
one introduces the following.

Definition 6.2. Assume given a finite group G and a module V over R[G].
The maximal Tate cohomology Ȟ

q

max(G,V ) is given by

Ȟ
q

max(G,V ) = RHom
q

Db(G/R)/ Ind
(R, V ),

where RHom
q

is computed in the quotient Db(G,R)/ Ind of the bounded de-
rived category Db(G,R) by the full saturated triangulated subcategory Ind ⊂
Db(G,R) spanned by representrations IndHG (W ) induced from a representation
W of a subgroup H ⊂ G, H 6= G.

Then for any two subgroups H ⊂ H ′ ⊂ G with conjucacy classes c, c′ ∈ I,
c ≤ c′, the gluing functor between DMc(G,R) and DMc′(G,R) is expressed in
terms of maximal Tate cohomology of the group WH and its various subgroups.

This description turns out to be very effective because maximal Tate coho-
mology often vanishes. For example, if the order of the group G is invertible in
R, Ȟ

q

max(G,V ) = 0 for any R[G]-module V , and the category DM(G,R) be-
comes simply the direct sum of the categories DMc(G,R) ∼= D(WH , R) (for the
abelian category M(G,R), a similar decomposition theorem has been proved
some time ago by J. Thevenaz [Th]). On the other hand, if R is arbitrary but
the group G = Z/nZ is cyclic, then Ȟ

q

max(G,V ) = 0 for any V unless n = p
is prime, in which case Ȟ

q

max(G,V ) reduces to the usual Tate cohomology
Ȟ

q

(G,V ).

7. Cyclotomic Traces

Returning to the setting of Theorem 5.2, we can now explain the appearance
of the Steenrod algebra in (5.4): up to a quasiisomorphism, the DG algebra
Q q(A) of (5.4) is in fact given by

Q q(A) = H(k)(EM(A))k
∗

,
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where the k∗-invariants are taken with respect to the natural action of the
multiplicative group k∗ of the finite field k induced by its action on k.

In particular, this shows that it is not necessary to use dimension arguments
to construct a splitting A → Q q(A) of the augmentation map Q q(A) → A.
For example, if we are given a ring spectrum A with homology DG algebra
A
q

= H(k)(A), then a canonical map

A
q

= H(k)(A)→ H(k)(EM(H(k)(A))) (7.1)

exists simply by adjunction, and being canonical, it is in particular k∗-invariant.
Thus for any DG algebra of the form A

q

= H(k)(A), the same procedure as in
the proof of Theorem 5.2 allows one to construct a Cartier map. However, in this
case one can do much more – namely, one can compare the homological story
with the theory of cyclotomic traces and topological cyclic homology known in
algebraic topology. Let us briefly recall the setup (we mostly follow the very
clear and concise exposition in [HM]).

7.1. Topological cyclic homology. For any unital associative algebra A
over a ring k, the Hochschild homology complex CH q(A) of Section 2 is in fact
the standard complex of a simplicial k-module A# ∈ ∆oppk-mod. Topological
Hochschild homology is a version of this construction for ring spectra. It was
originally introduced by Bökstedt [Bo] long before the invention of symmetric
spectra, and used the technology of “functors with a smash product”. In the lan-
guage of symmetric spectra, one starts with a unital associative ring spectrum
A, and one defines a simplicial spectrum A# by exactly the same formula as in
the algebra case. The terms of A# are the iterated smash products A∧· · · ∧A,
and the face and degeneracy maps are obtained from the multiplication and
the unit map in A. Then one sets

THH(A) = hocolim∆opp A#.

As in the algebra case, this spectrum is equipped with a canonical S1-action,
but in the topological setting this means much more: one shows that THH(A)
actually underlies a canonical S1-equivariant spectum THH(A) ∈ StHom(S1).

However, this is not the end of the story. Note that the finite subgroups
in S1 are the cyclic groups Cn = Z/nZ ⊂ S1 numbered by integers n ≥ 1,
and for every n, we have S1/Cn

∼= S1. Fix a system of such isomorphisms
which are compatible with the embeddings Cn ⊂ Cnm ⊂ S1, n,m ≥ 1, and
fix a compatible system of isomorphisms UCn ∼= U , where U is the complete
S1-universe used to define StHom(S1). Then the following notion has been
introduced in [BM].

Definition 7.1. A cyclotomic structure on an S1-equivariant spectrum T is
given by a collection of S1-equivariant homotopy equivalences

rn : Φ̂CnT ∼= T,
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one for each finite subgroup Cn ⊂ S1, such that r1 = id and rn ◦ rm = rnm for
any two integer n,m > 1.

Remark 7.2. Here it is tacitly assumed that one works with specific model of
equivariant spectra, so that a spectrum means more than just an object of the
triangulated category StHom(S1); moreover, the functors Φ̂Cn are composed
with the change of universe functors so that we can treat them as endofunctors
of StHom(S1). Please refer to [BM] or [HM] for exact definitions.

Example 7.3. Assume given a CW complex X, and let LX = Maps(S1, X)
be its free loop space. Then for any finite subgroup C ⊂ S1, the isomorphism
S1 ∼= S1/C induces a homeomorphism

Maps(S1, X)C = Maps(S1/C,X) ∼= Maps(S1, X),

and these homeomorphism provide a canonical cyclotomic structure on the sus-
pension spectrum Σ∞LX.

For any S1-equivariant spectrum T and a pair of integers r, s > 1, one has
a natural non-equivariant map

Fr,s : T
Crs → TCr .

On the other hand, assume that T is equipped with a cyclotomic structure.
Then we have a natural map

Rr,s : T
Crs ∼= (TCs)Cr

can
−−−−→ (Φ̂CsT )Cr

rs−−−−→ TCr ,

where can is the canonical map (6.3), and rs comes from the cyclotomic struc-
ture on T . To pack together the maps Fr,s, Rr,s, it is convenient to introduce
a small category I whose objects are all integers n ≥ 1, and whose maps are
generated by two maps Fr, Rr : n→ m for each pair m, n = rm, r > 1, subject
to the relations Fr ◦ Fs = Frs, Rr ◦ Rs = Rrs, Fr ◦ Rs = Rs ◦ Fr. Then the
maps Tr,s, Fr,s turn the collection TCn , n ≥ 1 into a functor T̃ from I to the
category of spectra.

Definition 7.4. The topological cyclic homology TC(T ) of a cyclotomic spec-
trum T is given by

TC(T ) = holimI T̃ .

Given a ring spectrum A, Bökstedt and Madsen equip the S1-equivariant
spectrum THH q(A) with a canonical cyclotomic structure. Topological cyclic
homology TC(A) is then given by

TC(A) = TC(THH(A)).

Further, they construct a canonical cyclotomic trace map

K(A)→ TC(A) (7.2)
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from theK-theory spectrumK(A) to the topological cyclic homology spectrum.
The topological cyclic homology functor TC(A) and the cyclotomic trace

were actually introduced by Bökstedt, Hsiang and Madsen in [BHM]; the more
convenient formulation using cyclotomic spectra appeared slightly later in [BM].
Starting with [BHM], it has been proved in many cases that the cyclotomic trace
map becomes a homotopy equivalence after taking profinite completions of both
sides of (7.2). Moreover, in [Mc] MacCarthy generalized Goodwillie’s Theorem
and proved that after pro-p completion at any prime p, the cyclotomic trace

gives an equivalence of the relative groups K̂(A, I)p
∼= ̂TC(A, I)p, where I ⊂ A

is a nilpotent ideal.

7.2. Cyclotomic complexes. To define a homological analog of cyclotomic
spectra, one needs to replace S1-equivariant spectra with derived Mackey func-
tors. The machinery of [Ka3] does not apply directly to non-discrete groups,
since this would require treating the groupoids Q(−,−) of Subsection 6.2 as
topological groupoids. However, for finite subgroups C1, C2 ⊂ S1, the category
Q([S1/C1], [S

1/C2]) is still discrete. Thus one can define a restricted version
of derived S1-Mackey functors by discarding the only infinite closed subgroup
in S1 (which is S1 itself). This is done in [Ka4]. The category DMΛ(R) of
R-valued cyclic Mackey functors introduced in that paper has the following
features.

(i) For every proper finite subgroup C = Cn ⊂ S1, n > 1, there is a fixed-

point functor Φ̂n : DMΛ(R) → DMΛ(R) whose right-adjoint functor
ι̂n : DMΛ(R) → DMΛ(R) is a full embedding. Moreover, there are

canonical isomorphisms Φ̂n ◦ Φ̂m
∼= Φ̂mn.

(ii) Let DS1(R) be the equivariant derived category of Section 3. Then there
is a full embedding ι1 : DS1(R) → DMΛ(R) with a left-adjoint Φ1 :
DMΛ(R)→ DS1(R).

(iii) The images DMΛn(R) of the full embeddings ιn = ι̂N ◦ ι1 : DS1(R) →
DMΛ(R), n ≥ 1, generate the triangulated category DMΛ(R), and
DMΛn(R) ⊂ DMΛ(R) is left-orthogonal to DMΛm(R) ⊂ DMΛ(R)
unless n = mr for some integer r ≥ 1.

Thus as in the finite group case of [Ka3], the subcategories DMΛn(R) ⊂
DMΛ(R) form a semiorthogonal decomposition of the category DMΛ(R). The
gluing data between DMΛmr(R) and DMΛr(R) can be expressed in terms of
the maximal Tate cohomology Ȟ

q

max(Cm,−) of the cyclic group Cm = Z/mZ.
For any n ≥ 1, let Φn : DMΛ(R) → D(R) be the composition of the left-

adjoint Φn = Φ1 ◦ Φ̂n to ιn and the forgetful functor DS1(R)→ D(R); then the
functors Φn play the role of fixed points functors ΦH . There are also functors
Ψn : DMΛ(R)→ DS1(R) analogous to the functors ΨH . The homology functor
H(R) extends to a functor

HS1(R) : StHom(S1)→ DMΛ(R),
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and we have functorial isomorphisms

Φn(HS1(R)(T )) ∼= H(R)(ΦCn(T )), Ψn(HS1(R)(T )) ∼= H(R)(TCn)

for every n ≥ 1 and every T ∈ StHom(S1).
Another category defined in [Ka4] is a triangulated category DΛR(R) of R-

valued cyclotomic complexes. Essentially, a cyclotomic complex M q ∈ DΛR(R)
is a cyclic Mackey functor M q equipped with a system of compatible quasiiso-
morphisms

Φ̂nM q

∼= M q,

as in Definition 7.1 (although as in Remark 7.2, the precise definition is different
for technical reasons). The homology functor HS1(R) : StHom(S1)→ DMΛ(R)
extends to a functor from the category of cyclotomic spectra to the category
DΛR(R). Moreover, all the constructions used in the definition of topological
cyclic homology make sense for cyclotomic complexes, so that one has a natural
functor

TC : DΛR(R)→ D(R)

and a functorial isomorphism

TC(HS1(R)(T )) ∼= H(R)(TC(T )) (7.3)

for every cyclotomic spectrum T .

7.3. Comparison theorem. We can now formulate the comparison theorem
relating Dieudonné modules and cyclotomic complexes. We introduce the fol-
lowing definition.

Definition 7.5. A generalized filtered Dieudonné module M over a commuta-
tive ring R is an R-module M equipped with a decreasing filtration F

q

M and
a collection of maps

ϕp
i,j : F

iM →M/pj ,

one for every integers i, j, j ≥ 1, and a prime p, such that

ϕp
i,j+1 = ϕp

i,j mod pj , ϕp
i,j |F i+1M = pϕp

i,j .

For any integer i, we define the generalized filtered Dieudonné module R(i)
as R with the filtration F iR(i) = R, F i+1R(i) = 0, and ϕp

i,j = pi id for any p and
j. Generalized filtered Dieudonné modules in the sense of Defintion 7.5 do not
form an abelian category; however, by inverting the filtered quasiisomorphisms,
we can still construct the derived category DFDMg(R) and its twisted 2-
periodic version DFDMper

g (R).
Definition 7.5 generalizes (4.1) in that it collects together the data for all

primes p. Note, however, that one can rephrase Definition 7.5 by putting to-
gether all the maps ϕp

i,j , j ≥ 1, into a single map

ϕ̂p
i : F iM → (̂M)p
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into the pro-p completion (̂M)p of the module M . Then if R = Zp and M is
finitely generated over Zp, we have

(̂M)p
∼= M, (̂M)l = 0 for l 6= p,

so that for such an M , the extra data imposed onto M in Definition 7.5 and in
Definition 4.1 are the same. In general, for any prime p, we have a fully faithful
embedding

D̃FDM(Zp) ⊂ DFDMg(Z),

where D̃FDM(Zp) is as in Section 4, and similarly for the periodic categories.
The essential images of these embeddings are spanned by complexes which
are pro-p complete as complexes of abelian groups. Note, however, that what
appears here are weak filtered Dieudonné modules. The requirement that the
map (4.2) is a quasiisomorphism can be additionally imposed at each individual
prime p; I do not know whether it is useful to impose it in the universal category
DFDMg(Z).

Here is then the main comparison theorem of [Ka4].

Theorem 7.6 ([Ka4, Section 5]). For any commutative ring R, there is a
canonical equivalence of categories

DFDMper
g (R) ∼= DΛR(R).

Thus the category DΛR(R) of cyclotomic complexes over R admits an ex-
tremely simple linear-algebraic description. Roughly speaking, the reason for
this is the vanishing of maximal Tate cohomology Ȟ

q

(Z/nZ,−) for non-prime
n mentioned at the end of Subsection 6.3. Due to this vanishing, the only non-
trivial gluing between the pieces DMΛm(R), DMΛn(R) of the semiorthogo-
nal decomposition of the category DMΛ(R) of cyclic Mackey functors occurs
when n = mp for a prime p (and this gluing is described by the Tate cohomol-
ogy of the group Z/pZ). The gluing data provide the maps ϕ̂p

i in the equiva-
lence of Theorem 7.6; the periodic filtered complex comes from the equivalence
DS1(R) ∼= DFper(R) of Lemma 3.1. These are the main ideas of the proof.

Moreover, there is a second comparison theorem which expresses topological
cyclic homology in terms of generalized Dieudonné modules.

Theorem 7.7 ([Ka4, Section 6]). Under the equivalence of Theorem 7.6, there
is functorial isomorphism

̂TC(M q)f
∼= ̂RHom

q

(R,M q)f (7.4)

for any M q ∈ DΛR(R), where R = R(0) ∈ DFDMper
g (R) is the trivial gener-

alized filtered Dieudonné module, and (̂−)f stands for profinite completion.
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Remark 7.8. Both TC(−) and RHom
q

(R,−) commute with profinite com-
pletions, so that if M q itself is profinitely complete, the completions in (7.4)
can be dropped. In general, it is better to keep the completion; to obtain an
isomorphism in the general case, one should, roughly speaking, replace T with
the homotopy fixed points ThS1

in the definition of topological cyclic homology
TC(T ).

Remark 7.9. It is not unreasonable to hope that Theorem 7.7 has a topological
analog: one can define a triangulated category of cyclotomic spectra which is
enriched over StHom, and then for any profinitely complete cyclotomic spectrum
T , we have a natural homotopy equivalence

TC(T ) ∼= Maps(S, T ),

where Maps(−,−) is the mapping spectrum in the cyclotomic category, and
S = Σ∞pt is the sphere spectrum with the trivial cyclotomic structure (obtained
as in Example 7.3). This would give a conceptual replacement of the somewhat
ad hoc definition of the functor TC.

7.4. Back to ring spectra. Return now to our original situation: we have
a ring spectrum A ∈ StAlg, and the DG algebra A q = H(W )(A) is obtained
as its homology with coefficients in the Witt vector ring W = W (k) of a finite
field k. Assume for simplicity that k = Z/pZ is a prime field, so that W = Zp.

Then on one hand, we have the cyclotomic spectrum THH(A) of [BM], and
since the homology functor H(Zp) commutes with tensor products, we have a
quasiisomorphism

H(Zp)(THH(A)) ∼= CH q(A q).

But the left-hand side underlies a cyclotomic complex, and by Theorem 7.6, this
is equivalent to saying that it has a structure of a generalized filtered Dieudonné
module. And on the other hand, CH q(A q) has a Dieudonné module structure
induced by the splitting map (7.1). We expect that the two structures coincide
(although at present, this has not been checked).

Moreover, the functor TC commutes with H(Zp) by (7.3), and Theorem 7.7
shows that we have

H(Zp)(TC(A)) ∼= H(Zp)(TC(THH(A))) ∼= TC(CH q(A q))
∼= RHom

q

(Zp, CH q(A)),

where RHom
q

(−,−) is taken in the category DFDMper(Zp) of filtered
Dieudonné modules. In other words:

• The homology functor H(Zp) sends topological cyclic homology into syn-
tomic periodic cyclic homology.

This principle can be used to study further the regulator map for syntomic
homology. Namely, applyingH(Zp) to the cyclotomic trace map (7.2), we obtain
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a functorial map

H(Zp)(K q(A))→ H(Zp)(TC(A)),

and the right-hand side is the target of the desired regulator map for the DG
algebra A q. The desired source of this map is K q(A q) ∼= K q(H(Zp)(A)). Thus
the question of existence of the syntomic regulator maps reduces to a problem
in algebraic K-theory: describe the relation between the homology of the K-
theory of a ring spectrum, and the K-theory of its homology.

To finish the Section, let us explain how things work in a very simple par-
ticular case. Assume given a CW complex X, and let A = Σ∞ΩX, the sus-
pension spectrum of the based loop space ΩX. Then since ΩX is a topological
monoid, A is a ring spectrum. The DG algebra A q = H(Zp)(A) is given by
A q = C q(ΩX,Zp), the singular chain complex of the topological space ΩX. It
is known that in this case, we have

CH q(A q) ∼= C q(LX,Zp),

the singular chain complex of the free loop space LX. Analogously, we have
THH(A) ∼= Σ∞LX. The S1-action on THH(A) and CH q(A q) is induced by
the loop rotation action on LX. The cyclotomic structure on THH(A) is that
of Example 7.3. The corresponding Dieudonné module structure map ϕ on
CP q(A q) is induced by the cyclotomic structure map LXZ/pZ ∼= LX of the free
loop space LX. To compare this with the constructions of Section 5, specialize
even further and assume that ΩX is discrete, so that A q is quasiisomorphic
to an algebra A concentated in degree 0. In this case X ∼= BG for a discrete
group G, and A = Zp[G] is its group algebra. Then the diagonal map G →
Gp induces a map A → A⊗p which is a quasi-Frobenius map in the sense of
Section 5, thus induces another Dieudonné module structure on the filtered
complex CP q(A). One checks easily that the two structures coincide. For a
general X, the Diedonné module structure on CP q(A q) can also be described
explicitly in the same way as in Section 5, by using the map

A q → A⊗p
q

induced by the diagonal map ΩX → (ΩX)p in place of the quasi-Frobenius
map.

8. Hodge Structures

In the archimedian setting of (i) of Section 1, much less is known about periodic
cyclic homology than in the non-archimedian setting of (ii). One starts with a
smooth proper DG algebra A

q

over C and considers its periodic cyclic homology
complex CP q(A

q

) with its Hodge filtration. In order to equip HP q(A
q

) with an
R-Hodge structure, one needs to define a weight filtration W qCP q(A

q

) and a
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complex conjugation isomorphism : CP q(A
q

) → CP q(A
q

). The gradings in
the isomorphism (2.2) suggest that W q should be simply the canonical filtration
of the complex CP q(A

q

). However, the complex conjugation is a complete mys-
tery. There is only one approach known at present, albeit a very indirect and
highly conjectural one; the goal of this section is to describe it. I have learned
all this material from B. Toën and/or M. Kontsevich – it is only the mistakes
here that are mine.

The so-called D−-stacks introduced by B. Toën and G. Vezzosi in [ToVe]
generalize both Artin stacks and DG schemes and form the subject of what is
now known as “derived algebraic geometry”; a very nice overview is avaiable in
[To1]. Very approximately, a D−-stack over a ring k is a functor

M : ∆opp Comm(k)→ ∆opp Sets

from the category of simplicial commutative algebras over k to the category
of simplicial sets. This functor should satisfy some descent-type conditions,
and all such functors are considered up to an appropriately defined homotopy
equivalence (made sense of by the technology of closed model structures). This
generalizes the Grothendieck approach to schemes which treats a scheme over
k as its functor of points – a sheaf of sets on the opposite Comm(k)opp to the
category of commutative algebras over k. The category Comm(k) is naturally
embedded in ∆opp Comm(k) as the subcategory of constant simplicial objects,
and resticting a D−-stack M to Comm(k) ⊂ ∆opp Comm(k) gives an ∞-stack
in the sense of Simpson [S] (this is called the truncation ofM).

If k contains Q, one may replace simplicial commutative algebras with
commutative DG algebras R q over k placed in non-negative homological de-
grees, Ri = 0 for i < 0. If we denote the category of such DG algebras by
DG-Comm−(k), then a D−-stack is a functor

M : DG-Comm−(k)→ ∆opp Sets,

again satisfying some conditions, and considered up to a homotopy equivalence.
The category of D−-stacks over k is denoted D−st(k). For every DG algebra
R q ∈ DG-Comm−(k), its derived spectrum RSpec(R q) ∈ D−st(k) sends a DG
algebra R′

q
∈ DG-Comm−(k) to the simplicial set of maps from R q to R′

q
,

with the simplicial structure induced by the model structure on the category
DG-Comm−(k). We thus obtain a Yoneda-type embedding

RSpec : DG-Comm−(k)opp → D−st(k).

For any DG algebra R q ∈ DG-Comm−(k), its de Rham cohomology comple
Ω
q

(R q) is defined in the obvious way; Ω
q

(−) gives a functor

Ω
q

: DG-Comm−(k)→ SpacesQ

from DG-Comm−(k) to the category SpacesQ of rational homotopy types in the
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sense of Quillen [Q]. By the standard Kan extension machinery, Ω
q

extentds to
a de Rham realization functor

Ω
q

: D−st(k)→ SpacesQ .

Alternatively, one can take the 0-th homology algebra H0(R q) and consider its
cristalline cohomology; this gives a DG algebra quasiisomorphic to Ω

q

(R q) (the
higher homology groups behave as nilpotent extensions and do not contribute
to cohomology). This shows that the de Rham realization Ω

q

(M) of a D−-stack
M∈ D−st(k) only depends on its truncation.

Moreover, for D−-stacks satifying a certain finiteness condition (“locally
geometric” and “locally finitely presented” in the sense of [ToVa]), instead
of considering de Rham cohomology, one can take the underlying topological
spaces Top(M(R)) of the simplicial complex algebraic varieties M(R), R ∈
Comm(k); by Kan extension, this gives a topological realization functor

Top : D−st(k)→ Spaces

into the category of topological spaces. By the standard comparison theorems,
Top(M) and Ω

q

(M) represent the same rational homotopy type.
Now, it has been proved in [ToVa] that for any associative unital DG alge-

bra A
q

over k, there exists a D−-stack M(A
q

) classifying “finite-dimensional
DG modules over A

q

”. By definition, for any commutative DG algebra R q ∈
DG-Comm−(k), the simplicial setM(A

q

)(R q) is given by

• M(A
q

)(R q) is the nerve of the category Perf(A
q

, R q) of DG modules over
A
q

⊗R q which are perfect over R q, and quasiisomorphisms between such
DG modules.

Toën and Vaquié prove that this indeed defines a D−-stack. Moreover, they
prove that if A

q

satisfies certain finiteness conditions, the D−-stackM(A
q

) is
locally geometric and locally finitely presented.

In particular, a smooth and proper DG algebra A
q

∈ DG-Alg(k) satisfies the
finiteness conditions needed for [ToVa], so that there exists a locally geometric
and locally finitely presented D−-stackM(A

q

). Consider its de Rham realiza-
tion Ω

q

(M(A
q

)). For any R q ∈ DG-Comm−(k), the category Perf(A
q

, R q) is
a symmetric monoidal category with respect to the direct sum, so that the
realization Top(M(A

q

)) is automatically an E∞-space.

Lemma 8.1 (Toën). The E∞-space Top(M(A
q

)) is group-like.

Sketch of a possible proof. One has to show that π0(Top(M(A
q

))) is not only
a commutative monoid but also an abelian group. A point in Top(M(A

q

)) is
represented by a DG module M q over A

q

which is perfect over k. One observes
that M q ⊕M q[1] can be deformed to a acyclic DG module; thus the sum of
points represented by M q and M q[1] lies in the connected component of 0 in
Top(M(A

q

)). �
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Thus for any smooth and proper DG algebra A
q

∈ DG-Alg(k), the realization
Top(M(A

q

)) is an infinite loop space, that is, the 0-th component of a spectrum.

Definition 8.2. The semi-topological K-theory Kst
q
(A

q

) of a smooth and
proper DG algebra A

q

is given by

Kst
q
(A

q

) = π q(Top(M(A
q

))),

the homotopy groups of the infinite loop space Top(M(A
q

)).

If we are only interested in Kst
q
(A

q

) ⊗ k, we may compute it using the de
Rhammodel Ω

q

(M(A
q

)). ThenKst
q
(M(A

q

)) is exactly the complex of primitive
elements with respect to the natural cocommutative coalgebra structure on
M(A

q

) induces by the direct sum map

M(A
q

)×M(A
q

)→M(A
q

).

Since Q ⊂ k, and rationally, spectra are the same as complexes of Q-vector
spaces, the groups Kst

q
(A

q

)⊗ k are the only rational invariants one can extract
from the spaceM(A

q

).

Assume for the moment that A
q

∈ DG-Alg(k) is derived-Morita equivalent
to a smooth and proper algebraic variety X/k. Then one can also consider the
∞-stackM(X) of all coherent sheaves on X; for any noetherian R ∈ Comm(k),
M(X)(R) is by definition the nerve of the category of coherent sheaves on
M ⊗R and isomorphisms between them. The realization Top(M(X)) is again
an E∞-space, no longer group-like. By definition, we have a natural map

M(X)→M(A
q

),

and the induced E∞-map of realizations.

Lemma 8.3 (Toën). The natural E∞-map

Top(M(X))→ Top(M(A
q

)) (8.1)

induces a homotopy equivalence between Top(M(A
q

)) and the group completion
of the E∞-space Top(M(X)).

Sketch of a possible proof. Since Top(M(A
q

)) is group-like by Lemma 8.1, it
suffices to prove that the delooping

B Top(M(X))→ B Top(M(A
q

))

of the E∞-map (8.1) is a homotopy equivalence. Delooping obviously commutes
with geometric realization, so that B Top(M(A

q

)) is the realization of the D−-
stack BM(A

q

), and similarly for B Top(M(X)). Instead of taking deloopings,
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we can apply Waldhausen’s S-construction. The resulting map

SM(X)→ SM(A
q

)

is then an equivalence by Waldhausen’s devissage theorem, so that it suffices
to prove that the natural map

Top(BM(A
q

))→ Top(SM(A
q

))

is a homotopy equivalence, and similarly for M(X). For this, one argues as
in Lemma 8.1: since every filtered complex can be canonically deformed to its
associated graded quotient, the terms Top(SnM(A

q

)) of the S-construction
can be retracted to n-fold products Top(M(A

q

) × · · · ×M(A
q

)), that is, the
terms of the delooping Top(BM(A

q

)), and similarly forM(X). �

Corollary 8.4. The semitopological K-theory Kst
q
(Q) is given by

Kst
q
(k) ∼= Z[β],

the algebra of polynomials in one generator β of degree 2.

Proof. By Lemma 8.3, computing Kst
q
(k) reduces to studying the group com-

pletion of the realization

Top(M(pt)) ∼=
∐

n

Top([pt/GLn]) ∼=
∐

n

BUn,

where [pt/GLn] is the Artin stack obtained as the quotient of the point by the
trivial action of the algebraic group GLn. This group completion is well-known
to be homotopy equivalent to the classifying space Z×BU . �

Remark 8.5. At present, Lemma 8.1 and Lemma 8.3 are unpublished, as well
as Corollary 8.4. The above sketches of proofs have been kindly explained to
me by B. Toën. Lemma 8.1 is slightly older, and it also appears for example in
[To3].

Now, since k ⊃ Q by our assumption, we have a well-defined tensor product
M q ⊗ V q for any DG module M q over A

q

and every complex V q of Q-vector
spaces. On the level of the stacks M(−), this tensor product turns Kst

q
(A

q

)
into a module over Kst

q
(Q) = Z[β]. We can now state the main conjecture.

Conjecture 8.6. Assume that k is a ring conatining Q, and assume that a
DG algebra A

q

DG-Alg(k) is smooth and proper. Then there exists a map

c : Kst
q
(A

q

)→ HP q(A
q

)

such that c(β(α)) = u(c(α)) for any α ∈ Kst
q
(A

q

), where u is the periodicity
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map. The map c is functorial in A
q

. Moreover, the induced map

Kst
q
(A

q

)⊗Z[β] k[β, β
−1]→ HP q(A

q

) (8.2)

is an isomorphism.

The reason this conjecture is relevant to the present paper is that the tensor
productKst

q
(A

q

)⊗k by its very definition has all the structures possessed by the
de Rham cohomology of an algebraic variety. In particular, if k = C, Kst

q
(A

q

)
has a canonical real structure.

Conjecture 8.7. Assume that K = C, and assume given a smooth and proper
DG algebra A

q

/K for which Conjecture 8.6 holds. Equip CP q(A
q

) with the
real structure induced from the canonical real structure on Kst

q
(A

q

)⊗K by the
isomorphism 8.2. Then for any integer i, the periodic cyclic homology group
HP q(A

q

) this real structure and the standard Hodge filtration F
q

is a pure R-
Hodge structure of weight i.

The two conjectures above are a slight refinement and/or reformulation of a
conjecture made by B. Toën [To3] with a reference to A. Bondal and A. Neeman,
and described by L. Katzarkov, M. Kontsevich and T. Pantev in [KKP, 2.2.6].

Apart from the basic case A
q

= k of Corollary 8.4, the only real evidence for
Conjecture 8.6 comes from recent work of Fiedlander and Walker [FW], where
it has been essentially proved for a DG algebra A

q

equivalent to a smooth
projective algebraic variety X/k. The definition of semi-topological K-theory
used in [FW] is different from Definition 8.2, but it is very close to the homo-
topy groups of the group completion of the E∞-space Top(M(X)); Lemma 8.3
should then show that the two things are the same. Friedlander and Walker also
show that their constructions are compatible with the complex conjugation, so
that Conjecture 8.7 then follows by the usual Hodge theory applied to X.

In the general case, as far as I know, both Conjecture 8.6 and Conjecture 8.7
are completely open. They are now a subject of investigation by B. Toën and
A. Blanc.
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N. Markarian, J.P. May, G. Merzon, D. Orlov, T. Pantev, S.-R. Park, B. Toën,
M. Verbitsky, G. Vezzosi, and V. Vologodsky; discussions with M. Kontsevich,
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Norm. Sup. (4) 40 (2007), 387–444.
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Abstract

We describe some recent progress and open problems in Gromov-Witten theory
of Calabi-Yau 3-folds, focusing on the quintic 3-fold and toric Calabi-Yau 3-
folds.
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1. Gromov-Witten Invariants of Calabi-Yau
3-folds

1.1. Moduli spaces of stable maps. Let X be a nonsingular pro-
jective variety over C. Gromov-Witten (GW) invariants of X can be viewed
as intersection numbers on moduli spaces of (parametrized) complex alge-
braic curves in X. Let Mg,n(X,β) be the moduli space of morphisms f :
(C, x1, . . . , xn) → X, where C is a smooth complex algebraic curve of genus
g, x1, . . . , xn are distinct points on C, and f∗[C] = β ∈ H2(X;Z). We
call β the degree of the map. Two maps are equivalent if they differ by an
automorphism of the domain (C, x1, . . . , xn). To do intersection theory, we
should compactify Mg,n(X,β). The standard compactification in Gromov-
Witten theory is Mg,n(X,β), the Kontsevich’s moduli space of stable maps
f : (C, x1, . . . , xn) → X of genus g, degree β, where the domain curve C has
at most nodal singularities, x1, . . . , xn are distinct smooth points on C, and
the map f is stable in the sense that the automorphism group of f is finite.
When X is projective, the compactified moduli space Mg,n(X,β) is a proper
Deligne-Mumford stack [6].
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1.2. Perfect obstruction theory and the virtual fundamen-
tal class. The tangent space T 1 and the obstruction space T 2 at a moduli
point [f : (C, x1, . . . , xn) → X] ∈ Mg,n(X,β) fit in the following exact se-
quence:

0 → Ext0(ΩC(x1 + · · ·+ xn),OC) → H0(C, f∗TX) → T 1

→ Ext1(ΩC(x1 + · · ·+ xn),OC) → H1(C, f∗TX) → T 2 → 0

where

• Ext0(ΩC(x1 + · · ·+ xn),OC) is the space of infinitesimal automorphisms
of the domain (C, x1, . . . , xn),

• Ext1(ΩC(x1 + · · ·+ xn),OC) is the space of infinitesimal deformations of
the domain (C, x1, . . . , xn),

• H0(C, f∗TX) is the space of infinitesimal deformations of the map f , and

• H1(C, f∗TX) is the space of obstructions to deforming the map f .

T 1 and T 2 form sheaves T 1 and T 2 on the moduli space Mg,n(X,β).

We sayX is convex ifH1(C, f∗TX) = 0 for all genus 0 stable maps f . Projec-
tive spaces Pn, or more generally, generalized flag varieties G/P , are examples
of convex varieties. When X is convex and g = 0, the moduli space M0,n(X,β)
is a smooth Deligne-Mumford stack (orbifold). In general, Mg,n(X,β) is a sin-
gular Deligne-Mumford stack equipped with a perfect obstruction theory: there
is a two term complex of locally free sheaves E → F on Mg,n(X,β) such that

0 → T 1 → F∨ → E∨ → T 2 → 0

is an exact sequence of sheaves. The virtual dimension dvir of Mg,n(X,β) is
the rank of the virtual tangent bundle T vir = F∨ − E∨. By Riemann-Roch,

dvir =

∫

β

c1(TX) + (dimX − 3)(1− g) + n (1)

There is a virtual fundamental class

[Mg,n(X,β)]vir ∈ H2dvir(Mg,n(X,β);Q).

The virtual fundamental class has been constructed by Li-Tian [40], Behrend-
Fantechi [5] in algebraic Gromov-Witten theory, and by Li-Tian [41], Fukaya-
Ono [19], Ruan [58], Siebert [61] (more recently, Hofer-Wysocki-Zehnder [26,
27, 28, 29]) in symplectic Gromov-Witten theory. In this paper we will mostly
discuss algebraic Gromov-Witten theory.
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1.3. GW invariants of compact Calabi-Yau 3-folds. When
X is Calabi-Yau, in the sense that the canonical line bundle O(KX) of X is
trivial, we have c1(TX) = 0. By (1), the virtual dimension of Mg,0(X,β) is
(dimX − 3)(1 − g), which is independent of the degree β. In particular, when
X is a Calabi-Yau 3-fold, the virtual dimension of Mg,0(X,β) is zero for any
genus g and any degree β, and the virtual fundamental class is a degree zero
rational homology class:

[Mg,0(X,β)]vir ∈ H0(Mg,0(X,β);Q).

The genus g, degree β Gromov-Witten invariant of a Calabi-Yau 3-fold X is
defined by

NX
g,β =

∫

[Mg,0(X,β)]vir
1, (2)

where
∫

stands for the pairing between H0(Mg,0(X,β);Q) and
H0(Mg,0(X,β);Q). If Mg,0(X,β) were a compact complex manifold of
dimension zero, it would consist of finitely many points, and the right
hand side of (2) would be the number of points in Mg,0(X,β). In general,
Mg,0(X,β) can be singular and can have positive actual dimension. Then the
right hand side of (2) defines the “virtual number” of points in Mg,0(X,β). In
general NX

g,β is a rational number instead of an integer because Mg,0(X,β) is
a stack instead of a scheme.

1.4. GW invariants of noncompact Calabi-Yau 3-folds. Let
X be a nonsingular projective Calabi-Yau 3-fold. The construction of the virtual
fundamental class [Mg,0(X,β)]vir requires two properties of the moduli space
Mg,0(X,β): having a prefect obstruction theory, and being proper. When X
is noncompact nonsingular Calabi-Yau 3-fold, the moduli space Mg,0(X,β)
is usually not proper, but still equipped with a perfect obstruction theory of
virtual dimension zero. Therefore, if X is noncompact but the moduli space
Mg,0(X,β) is proper for a particular genus g and degree β, then the Gromov-
Witten invariant NX

g,β is defined for the particular genus g and degree β.
An important class of examples is the total space of the canonical line

bundle of a Fano surface. Let X be the total space of the canonical line bundle
over a nonsingular Fano surface S, for example, S = P2 and X is the total
space of OP2(−3). Then X is a noncompact Calabi-Yau 3-fold. Given any β ∈
H2(S;Z) = H2(X;Z) such that Mg,0(S, β) is nonempty, the inclusion of the
zero section i0 : S ↪→ X induces an inclusion of moduli spaces Mg,0(S, β) ↪→
Mg,0(X,β) which is an isomorphism of Deligne-Mumford stacks when β 6= 0.
We conclude that Mg,0(X,β) is proper when β 6= 0, so the Gromov-Witten
invariants of X are defined for any genus g and any nonzero degree β. Moreover:

1. When β 6= 0 and Mg,0(S, β) = Mg,0(X,β) is nonempty, the perfect
obstruction theories on Mg,0(S, β) and on Mg,0(X,β) are different: the
virtual dimension of Mg,0(S, β) is

∫
β
c1(TS) + g − 1, while the virtual
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dimension of Mg,0(X,β) is zero. Indeed, let π : Mg,1(S, β) → Mg,0(S, β)
be the universal curve, and let ev : Mg,1(S, β) → S be the evaluation
map, which sends [f : (C, x1) → S] ∈ Mg,1(S, β) to f(x1) ∈ S. Then
π∗ev∗OS(KS) = 0, so Vg,β := R1π∗ev∗OS(KS) is a vector bundle of rank∫
β
c1(TS) + g − 1 over Mg,0(X,β), and

[Mg,0(X,β)]vir = e(Vg,β)∩[Mg,0(S, β)]
vir, NX

g,β =

∫

[Mg,0(S,β)]vir
e(Vg,d),

where e(Vg,β) is the Euler class (i.e. top Chern class) of Vg,β .

2. When β 6= 0 and Mg,0(S, β) = Mg,0(X,β) is empty, we define NX
g,β = 0.

3. When β = 0, Mg,0(S, 0) = Mg,0 × S is proper, while Mg,0(X, 0) =
Mg,0 ×X is not.

When X is a toric Calabi-Yau 3-fold (which must be noncompact), the
(C∗)3-action on X induces a (C∗)3-action on Mg,0(X,β). The fixed point set

Mg,0(X,β)(C
∗)3 is a proper Deligne-Mumford stack. For i = 1, 2, let T i,f and

T i,m be the fixed and moving parts of the restriction of the sheaf T i to the fixed
point set Mg,0(X,β)(C

∗)3 . Then T 1,f − T 2,f is the virtual tangent bundle of

Mg,0(X,β)(C
∗)3 , and Nvir = T 1,m − T 2,m is the virtual normal bundle of

Mg,0(X,β)(C
∗)3 in Mg,0(X,β). We have

H∗
(C∗)3(pt;Q) = H∗(B(C∗)3;Q) = H∗((P∞)3;Q) = Q[t1, t2, t3].

The genus g, degree β, (C∗)3-equivariant Gromov-Witten invariant of X is
defined to be

NX
g,β(t1, t2, t3) =

∫

[Mg,0(X,β)(C∗)3 ]vir

1

e(C∗)3(Nvir)
∈ Q(t1, t2, t3)

where

e(C∗)3(N
vir) ∈ H

∗
(C∗)3(Mg,0(X,β)(C

∗)3 ;Q) ∼= H
∗(Mg,0(X,β)(C

∗)3 ;Q)⊗QQ[t1, t2, t3]

is the (C∗)3-equivariant Euler class of the virtual normal bundle Nvir.
In general, NX

g,β(t1, t2, t3) is a rational function in t1, t2, t3 with Q coef-
ficients, homogeneous of degree 0. In some cases, this equivariant invariant
becomes a topological invariant independent of the equivariant parameters ti.

1. If X is the total space of the canonical line bundle of a toric Fano surface,
then NX

g,β(t1, t2, t3) is a constant rational number independent of t1, t2, t3.

2. As a consequence of the topological vertex (see Section 3.1 below), for
any toric Calabi-Yau 3-fold,

NX
g,β(t1, t2,−t1 − t2) (3)

is a rational number independent of t1, t2, for any genus g and degree β.
This is a surprising result since a priori (3) is a element in Q(t2/t1).
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2. The Quintic 3-fold

The quintic 3-fold Q is a nonsingular degree 5 hypersurface in P4. It is a
nonsingular projective Calabi-Yau 3-fold. By Lefschetz hyperplane theorem,
H2(Q;Z) ∼= H2(P

4;Z) = Z`, where ` is the class of a projective line. We write
Mg,0(Q, d) and Mg,0(P

4, d) instead of Mg,0(Q, d`) and Mg,0(P
4, d`), respec-

tively. We define

Ng,d := NQ
g,d` =

∫

[Mg,0(Q,d)]vir
1.

The generating functions Fg of genus g Gromov-Witten invariants of Q are
defined by (see e.g. [54, Section 3]):

F0(T ) =
5

6
T 3 +

∞∑

d=1

N0,de
dT , (4)

F1(T ) = −
25

12
T +

∞∑

d=1

N1,de
dT , (5)

and for g ≥ 2,

Fg(T ) =
−50 · (−1)g · |B2gB2g−2|

g(2g − 2) · (2g − 2)!
+

∞∑

d=1

Ng,de
dT ,

where B2g and B2g−2 are Bernoulli numbers.

2.1. Genus g = 0. In 1991, P. Candelas, X. de la Ossa, P. Green, and
L. Parkes [10] derived the number nd of rational curves of any degree d > 0
from mirror symmetry. Their stunning predictions motivated the development
of Gromov-Witten theory. To state their enumerative prediction, we introduce
Ik(t) defined by

4∑

k=0

Ik(t)H
k =

∞∑

d=0

e(H+d)t

∏5d
m=1(5H +m)

∏d
m=1(H +m)5

where H ∈ H2(P4,C) is the hyperplane class. For example,

I0(t) = 1 +
∞∑

d=1

edt
(5d)!

(d!)5
, I1(t) = tI0(t) +

∞∑

d=1

edt

(
(5d)!

(d!)5

5d∑

m=d+1

5

m

)
.

Let T = I1(t)/I0(t). In terms of the genus 0 Gromov-Witten invariants of the
quintic 3-folds, the prediction in [10] can be stated as

F0(T ) =
5

2

(
I1(t)

I0(t)

I2(t)

I0(t)
−

I3(t)

I0(t)

)
, (6)
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where F0(T ) is defined by (4) above. The conjectural formula (6) was proved
independently by Givental [21], and by Lian-Liu-Yau [38].

We now explain one of the ingredients of the proof: evaluation of N0,d

by localization on the moduli space M0,0(P
4, d). This approach was proposed

by Kontsevich [33], and is fully justified once the foundation of the algebraic
Gromov-Witten theory has been established [40, 5, 4].

The inclusion Q ↪→ P4 induces an inclusion of moduli spaces ι :
M0,0(Q, d) → M0,0(P

4, d). The following properties hold when g = 0 but
fail when g > 0.

1. M0,0(P
4, d) is a smooth proper Deligne-Mumford stack of dimension 5d+

1, and has a fundamental class (instead of a virtual fundamental class)

[M0,0(P
4, d)] ∈ H2(5d+1)(M0,0(P

4, d);Q).

2. There is a vector bundle V0,d of rank 5d+1 over M0,0(P
4, d) and a section

s̃ of V0,d such that M0,0(Q, d) is the zero locus s̃−1(0).

3. ι∗[M0,0(Q, d)]vir = e(V0,d) ∩ [M0,0(P
4, d)], where e(V0,d) = c5d+1(V0,d) is

the Euler class. Therefore

N0,d =

∫

[M0,0(P4,d)]

e(V0,d). (7)

We now describe V0,d and the section s̃ explicitly. Let π : M0,1(P
4, d) →

M0,0(P
4, d) be the universal curve, and let ev : M0,1(P

4, d) → P4 be the
evaluation map. Then R1π∗ev∗OP4(5) = 0, so V0,d := π∗ev∗OP4(5) is a rank
5d + 1 locally free sheaf over M0,0(P

4, d) whose fiber over [f : C → P4]
is H0(C, f∗OP4(5)). The quintic 3-fold Q is the zero locus of a section s ∈
H0(P4,OP4(5)). The image of a stable map f : C → P4 is contained in
Q = s−1(0) if and only if f∗s = 0 ∈ H0(C, f∗OP4(5)). Let s̃ = π∗ev∗(s) :
M0,0(P

4, d) → V0,d be the section whose value at the moduli point [f : C → P4]
is f∗s. Then s̃−1(0) = M0,0(Q, d).

The torus T = (C∗)5 acts on P4 by

(t0, t1, . . . , t4) · [z0, z1, . . . , z4] = [t0z0, t1z1, . . . , t4z4]

for (t0, t1, . . . , t4) ∈ T and [z0, z1, . . . , z4] ∈ P4. The T -action on P4 can be lifted
to a T -action on OP4(5). The T -action on P4 induces a T -action on the moduli
space M0,0(P

4, d) by moving the image of a stable map, and the T -action on
OP4(5) induces a T -action on V0,d such that V0,d → M0,0(P

4) is a T -equivariant
vector bundle. The fixed points set M0,0(P

4, d)T of the T -action on M0,0(P
4, d)

consists of finitely many isolated points. The genus 0 GW invariants N0,d can
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be evaluated using localization:

N0,d =

∫

[M0,0(P4,d)]

e(V0,d) =

∫

[M0,0(P4,d)]

eT (V0,d)

=
∑

ξ∈M0,0(P4,d)T

eT ((V0,d)ξ)

eT (Tξ)
,

(8)

where eT is the T -equivariant Euler class, Tξ is the tangent space of the moduli
space M0,0(P

4, d) at ξ, and (V0,d)ξ is the fiber of V0,d at ξ. The last equality in
(8) follows from the Atiyah-Bott localization formula [3].

2.2. Genus g = 1. In 1993, M. Bershadsky, S. Cecotti, H. Ooguri, and C.
Vafa [7] made the following prediction on genus one Gromov-Witten invariants
of the quintic 3-fold.

2F1(T ) = −
25

6
t+ ln

(
I0(t)

−62/3(1− 55et)−1/6J ′
1(t)

−1
)

(9)

where T = J1(t) = I1(t)/I0(t), and F1(T ) is defined by (5).

The conjectural formula (9) was proved by A. Zinger in [68]. To prove (9),
Zinger and his collaborators have developed a theory of reduced genus one
Gromov-Witten invariants for Q. Indeed, the theory is defined for a degree
(r + 1) hypersurface in Pr, where r is arbitrary.

Unlike M0,n(P
r, d), M1,n(P

r, d) is singular and reducible in general. The
open substack M1,n(P

r, d) of M1,n(P
r, d) is smooth and irreducible. The clo-

sure M
0

1,n(P
r, d) of M1,n(P

r, d) is called the main component M1,n(P
r, d).

Let Qr−1 be a degree r+1 smooth hypersurface in Pr. Then Qr−1 = s−1(0)
for some section s ∈ H0(Pr,OPr (r+1)). Note that Qr−1 is a Calabi-Yau (r−1)-
fold, and that the virtual dimension of M1,0(Q

r−1, d) is zero for any r, d. The
(standard) genus one, degree d Gromov-Witten invariant of Qr−1 is defined by

NQr−1

1,d =

∫

[M1,0(Qr−1,d)]vir
1.

The main component of M1,n(Q
r−1, d) is given by

M
0

1,n(Q
r−1, d) := M1,n(Q

r−1, d)×M1,n(Pr,d) M
0

1,n(P
r, d).

The reduced genus one invariants NQr−1,red
1,d can be viewed as the contribu-

tion to the standard genus one invariant NQr−1

1,d from the main component

M
0

1,0(Q
r−1, d). Zinger defined reduced genus one invariants in [66], and related

them to standard genus zero and genus one invariants in [67]. In particular,
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when r = 4, Q3 = Q, Zinger showed that

N1,d = Nred
1,d +

1

12
N0,d,

where N0,d = NQ
0,d, N1,d = NQ

1,d, and Nred
1,d = NQ,red

1,d .

Let π : M1,1(P
r, d) → M1,0(P

r, d) be the universal curve, and let ev :
M1,1(P

r, d) → Pr be the evaluation map. Let π0 and ev0 denote the restrictions
of π and ev to the main component. The sheaf (V1,d)0 := (π0)∗(ev0)∗OPr (r+1)
is not locally free; it restricts to a locally free sheaf of rank (r + 1)d on
M1,0(P

r, d). Nevertheless, Zinger showed that the Euler class e((V1,d)0) ∈
H2(r+1)d(M1,0(P

r, d);Q) is defined. J. Li and Zinger proved in [42] that

NQr−1,red
1,d =

∫

[M0
1,0(P

r,d)]vir
e((V1,d)0).

Vakil and Zinger constructed a desingularization M̃0
1,n(P

r, d) →

M
0

1,n(P
r, d) of the main component [63]. The Vakil-Zinger desingularization

has the following nice properties:

1. M̃0
1,n(P

r, d) is a smooth proper Deligne-Mumford stack of dimension
(r + 1)d+ n.

2. The map M̃0
1,n(P

r, d) → M
0

1,n(P
r, d) is T -equivariant.

3. Let π̃ : M̃0
1,1(P

r, d) → M̃0
1,0(P

r, d) be be the universal family, and let ẽv :

M̃0
1,1(P

r, d) → Pr be the evaluation map. Then Ṽ1,d = π̃∗ẽv
∗OPr (r + 1)

is a locally free sheaf of rank (r + 1)d.

4.

NQr−1,red

1,d =

∫

[M̃1,0(Pr,d)]

e(Ṽ1,d) (10)

The right hand side of (10) can be computed by localization.
The above results are proved using the symplectic approach. The algebraic

approach to reduced Gromov-Witten invariants is developed in recent work of
Y. Hu and J.Li [30] and work in progress of H. Chang and J. Li [11]. In partic-
ular, Hu-Li reproved Vakil-Zinger desingularization via an algebraic approach.

2.3. Genus g ≥ 2. D. Maulik and R. Pandharipande [50] provided a
calculation scheme which determines Ng,d for any given genus g and degree d
in terms of previously determined Gromov-Witten invariants of the following
targets: P3, a K3 surface, three Fano surfaces (P2, P1 × P1, the blow-up of P2

at 6 points), and four curves (including P1).
In 2006, M. Huang, A. Klemm, and S. Quackenbush [25] determined Fg(t)

for 2 ≤ g ≤ 51 using string theory. These predictions have not been verified
mathematically yet.
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3. Toric Calabi-Yau 3-folds

3.1. The topological vertex.

3.1.1. The physical theory. Based on the large N duality [22] between the
topological string theory on Calabi-Yau 3-folds and the Chern-Simons theory
on 3-manifolds, Aganagic-Klemm-Mariño-Vafa proposed the topological vertex
[1], an algorithm of computing open and closed Gromov-Witten invariants in
all genera of any nonsingular toric Calabi-Yau 3-folds. The algorithm of AKMV
can be summarized in the following three steps.

O1. Topological vertex. There exist certain open Gromov-Witten invariants
that count holomorphic maps from bordered Riemann surfaces to C3 with
boundaries mapped to three Lagrangian submanifolds L1, L2, L3. Such
invariants depend on the following discrete data:

(i) the topological type of the domain, classified by the genus g and the
number h of boundary circles;

(ii) the topological type of the map, described by a triple of partitions
~µ = (µ1, µ2, µ3) where µi = (µi

1, µ
i
2, . . .) are degrees (“winding num-

bers”) of boundary circles in Li
∼= S1 × C;

(iii) the “framing” ni ∈ Z of the Lagrangian submanifolds Li (i = 1, 2, 3).

The topological vertex C~µ(λ;n) is a generating function of such invariants
where one fixes the winding numbers ~µ = (µ1, µ2, µ3) and the framings
n = (n1, n2, n3) and sums over the genus of the domain.

O2. Gluing algorithm. Any toric Calabi-Yau 3-fold X can be constructed by
gluing C3 charts. The open and closed Gromov-Witten invariants ofX can
be expressed in terms of local open Gromov-Witten invariants C~µ(λ;n)
of C3 by explicit gluing algorithm.

O3. Closed formula. By the large N duality, the topological vertex is given by

C~µ(λ;n) = q
1
2 (

∑3
i=1 κ

µini)W~µ(q), q = e
√−1λ, (11)

where κµ =
∑

µi(µi − 2i+ 1) for a partition µ = (µ1 ≥ µ2 ≥ · · · ), and

Wµ1,µ2,µ3(q) = q(κµ2+κ
µ3 )/2

∑
cµ

1

ηρ1c
(µ3)t

η(ρ3)t

W(µ2)tρ1(q)Wµ2(ρ3)t(q)

Wµ2(q)
. (12)

In (12), cµηρ be the Littlewood-Richardson coefficients and Wµν can be
expressed in terms of the skew Schur functions sµ/λ (see [53]):

Wµν(q) = q(κµ+κν)/2
∑

λ

sµt/λ(q
− 1

2 , q−
3
2 , . . .)sνt/λ(q

− 1
2 , q−

3
2 , . . .).

The left hand side of (11) is an infinite series while the right hand side of
(11) is a finite sum.
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When the toric Calabi-Yau 3-fold is the total space of the canonical line
bundle KS of a toric surfaces S (e.g. KP2 = OP2(−3)), only C̃µ1,µ2,∅ are re-
quired to evaluate its Gromov-Witten invariants. The algorithm in this case
was described in [2].

3.1.2. The mathematical theory. In [39], Li-Liu-Liu-Zhou developed a
mathematical theory of the topological vertex based on relative Gromov-Witten
theory. The relative Gromov-Witten theory has been developed in symplectic
geometry by Li-Ruan [34] and Ionel-Parker [31, 32]. In our context, we need to
use the algebraic version developed by J. Li [35, 36]. The algorithm of LLLZ
can be summarized as follows.

R1. LLLZ defined formal relative and absolute Gromov-Witten invariants for
relative formal toric Calabi-Yau (FTCY) 3-folds. These invariants are
refinements and generalizations of open and closed Gromov-Witten in-
variants of smooth toric Calabi-Yau 3-folds.

R2. Formal relative and absolute Gromov-Witten invariants satisfy the degen-
eration formula. In particular, they can be expressed in terms of C̃~µ(λ;n),
formal relative Gromov-Witten invariants of an indecomposable relative
FTCY 3-fold. The degeneration formula agrees with the gluing formula
in O2, with C~µ(λ;n) replaced by C̃~µ(λ;n).

R3. C̃~µ(λ;n) = q(
∑3

i=1 κ
µini)/2W̃~µ(q), where

W̃ρ1,ρ2,ρ3
(q) =q−(κρ1

−2κρ2
− 1

2κρ3
)/2
∑

cν
+

(ν1)tρ2c
ρ1

(η1)tν1c
ρ3

η3ν3

· q(−2κ
ν+−κ

ν3
2 )/2Wν+,ν3(q)

1

zµ
χη1(µ)χη3(2µ)

(13)

A more detailed survey of [39] can be found in [43] and in [37, Section 3].

3.1.3. Comparison. The equivalence of the physical theory and the mathe-
matical theory of the topological vertex boils down to the following identity of
classical symmetric functions:

W̃µ1,µ2,µ3(q) = Wµ1,µ2,µ3(q). (14)

The 1-leg case W̃µ,∅,∅ = Wµ,∅,∅ is directly related to a formula of Hodge integrals
conjectured by Mariño-Vafa [46] and proved in [44] and in [52] by different
methods. The 2-leg case W̃µ1,µ2,∅ = Wµ1,µ2,∅ is directly related to a formula of
two-partition Hodge integrals (see [39, 45]). The full 3-leg case of (14) follows
from the results in [49] (c.f. Section 4.1).
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3.2. The BKMP conjecture. Given an affine plane curve

C = {(x, y) ∈ C2 | E(x, y) = 0},

B. Eynard and N. Orantin [16] constructed the k-point correlation functions to

order g, W
(g)
k (p1, . . . , pk), which are meromorphic multilinear forms on C, for

any g ∈ Z≥0 and k ∈ Z>0. They are determined by the initial values W
(0)
1 = 0,

W
(0)
2 (p1, p2) = B(p1, p2) (the Bergmann kernel on C), and a recursive equation.
V. Bouchard, A. Klemm, M. Mariño and S. Pasquetti [9] adapted the re-

cursive method of Eynard-Orantin and constructed

W
(g)
h1,...,hk

(p11, . . . , p
1
h1
; · · · ; pk1 , . . . , p

k
hk
;n1, . . . , nk)

from the mirror curve of a toric Calabi-Yau 3-fold X. They conjectured that
after a mirror transformation, the integrated correlation functions

A
(g)
h1,...,hk

(p11, . . . , p
1
h1
; · · · ; pk1 , . . . , p

k
hk
;n1, . . . , nk)

=

∫
W

(g)
h1,...,hk

(p11, . . . , p
1
h1
; · · · ; pk1 , . . . , p

k
hk
;n1, . . . , nk)

are equal to the open Gromov-Witten invariants of X relative to k Lagrangian
submanifolds L1, . . . , Lk with framings n1, . . . , nk ∈ Z. By R1 of Section 3.1.2,
these open Gromov-Witten invariants can be defined mathematically as formal
relative GW invariants of an FTCY 3-fold relative to k divisors. The BKMP
conjecture has been proved for the framed 1-legged topological vertex by L.
Chen [12] and by J. Zhou [64]. J. Zhou later proved the conjecture for the
framed 3-legged topological vertex [65].

Note that the BKMP conjecture is a different algorithm from the topo-
logical vertex. For the framed 3-legged vertex, the topological vertex provides
a closed formula of a generating function of invariants of all genera for fixed
winding numbers µ1, µ2, µ3; the BKMP conjecture provides a closed formula of
a generating function of invariants of all winding numbers for a fixed genus g.

4. Generalization to Non-toric Non-Calabi-Yau
3-Folds

Let X be a nonsingular, possibly non-Calabi-Yau, projective 3-fold.

4.1. GW/DT Correspondence. The Donaldson-Thomas invariants
of X are defined via integration against a virtual fundamental class over Hilbert
schemes of curves in X. Unlike Gromov-Witten invariants, Donaldson-Thomas
invariants are integers, and are defined only in dimension 3. The foundation of
Donaldson-Thomas theory was developed by Donaldson and Thomas [15, 62].
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D. Maulik, N. Nekrasov, A. Okounkov, and R. Pandharipande conjectured
a correspondence between the GW (Gromov-Witten) and DT (Donaldson-
Thomas) theories for any nonsingular projective 3-fold [47, 48]. This correspon-
dence can also be formulated for certain noncompact 3-folds in the presence of
a torus action; the correspondence for toric Calabi-Yau 3-folds is equivalent
to the algorithm of the topological vertex [47, 53]. For non-Calabi-Yau toric
3-folds the building block is the equivariant vertex (see [47, 48, 55, 56]) which
depends on equivariant parameters. D. Maulik, A. Oblomkov, A. Okounkov and
R. Pandharipande proved GW/DT correspondence for all toric 3-folds [49].

4.2. GW/PT Correspondence. R. Pandharipande and R.P. Thomas
define integral invariants counting pairs (C,D) where C ⊂ X is an embedded
curve and D ⊂ C is a divisor [55]. Pandharipande-Thomas (PT) invariants
are defined via integration against a virtual fundamental class over the moduli
space of stable pairs, viewed as objects in the derived category of X. They con-
jecture that the PT invariants are equal to the reduced DT invariants (obtained,
roughly, from DT invariants by removing contributions from zero dimensional
subschemes). This leads to a conjectural GW/PT correspondence for nonsin-
gular projective 3-folds, and for certain noncompact 3-folds in the presence of
a torus action [55, 56, 57]. D. Maulik, R. Pandharipande, and R.P. Thomas
proved the GW/PT correspondence for all toric 3-folds [51].
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Flips and flops are elementary birational maps which first appear in dimen-
sion three. We give examples of how flips and flops appear in many different
contexts. We describe the minimal model program and some recent progress
centred around the question of termination of flips.
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1. Birational Geometry

1.1. Curves and Surfaces. Before we start talking about flips perhaps
it would help to understand the birational geometry of curves and surfaces.
For the purposes of exposition we work over the complex numbers, and we will
switch freely between the algebraic and holomorphic perspective.

Example 1.1. Consider the function

φ : C2
99K C defined by the rule (x, y) −→ y/x.

Geometrically this is the function which assigns to every point (x, y) the slope
of the line connecting (0, 0) to (x, y). This function is not defined where x = 0
(the slope is infinite here). One can partially remedy this situation by replacing
the complex plane C by the Riemann sphere P1 = C ∪ {∞}. We get a function

φ : C2
99K P1 defined by the rule (x, y) −→ [X : Y ].
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However φ is still not defined at the origin of C2. Geometrically this is clear,
since it does not make sense to ask for the slope of the line connecting the
origin to the origin. In fact, if one imagines approaching the origin along a
line through the origin then φ is constant along any such line and picks out
the slope of this line. So it is clear that we cannot extend φ to the whole of C2

continuously.

It is convenient to have some notation to handle functions which are not
defined everywhere:

Definition 1.2. Let X be an irreducible quasi-projective variety and let Y be
any quasi-projective variety. Consider pairs (f, U), where U ⊂ X is an open
subset and f : U −→ Y is a morphism of quasi-projective varieties. We say two
pairs (f, U) and (g, V ) are equivalent if there is an open subset W ⊂ U ∩ V
such that f |W = g|W .

A rational map φ : X 99K Y is an equivalence class of pairs (f, U).

In fact if φ is represented by (f, U) and (g, V ) then φ is also represented by
(h, U ∪ V ) where

h(x) =

{

f(x) x ∈ U

g(x) x ∈ V.

So there is always a largest open subset where φ is defined, called the domain

of φ, denoted domφ. The locus of points not in the domain of φ is called the
indeterminacy locus.

Example 1.3. Let C be the conic in P2 defined by the equation

X2 + Y 2 = Z2.

Consider the rational map

φ : C 99K P1 defined by the rule [X : Y : Z] −→ [X : Z − Y ].

It would seem that φ is not defined where both X = 0 and Y = Z and of course
X2 + Y 2 = Z2, that is, at the point [0 : 1 : 1].

If one passes to the open subset U = C2, where Z 6= 0, and introduces
coordinates x = X/Z and y = Y/Z then C0 = C ∩ U is defined by the equation
x2 + y2 = 1 and the map above reduces to the function

C0 99K C defined by the rule (x, y) −→ x/(1 − y),

which would again not seem to be defined at the point (0, 1) of the curve C0.
However note that (Z − Y )(Y + Z) = Z2 − Y 2 = X2 on the curve C.

Therefore, on the open set C − {[0 : 1 : 1], [0 : −1 : 1]},

[X(Y + Z) : (Z − Y )(Y + Z)] = [X(Y + Z) : X2] = [Y + Z : X].
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Thus φ is also the function

φ : C 99K P1 defined by the rule [X : Y : Z] −→ [Y + Z : X].

It is then clear that φ is in fact a morphism, defined on the whole of the smooth
curve C.

In fact the most basic result in birational geometry is that every map from
a smooth curve to a projective variety always extends to a morphism:

Lemma 1.4. Let f : C 99K X be a rational map from a smooth curve to a
projective variety. Then f is a morphism, that is, the domain of f is the whole
of C.

Proof. As X is a closed subset of Pn, it suffices to show that the composition
C 99K Pn is a morphism. So we might as well assume that X = Pn. C is
abstractly a Riemann surface. Working locally we might as well assume that
C = ∆, the unit disk in the complex plane C. We may suppose that f is defined
outside of the origin and we want to extend f to a function on the whole unit
disk. Let z be a coordinate on the unit disk. Then f is locally represented by a
function

z −→ [f0 : f1 : · · · : fn],

where each fi is a meromorphic function of z with a possible pole at zero. It
is well known that fi(z) = zmigi(z), where gi(z) is holomorphic and does not
vanish at zero and m0,m1, . . . ,mn are integers. Let m = minmi. Then f is
locally represented by the function

z −→ [h0 : h1 : · · · : hn],

where hi(z) = z−mfi(z). As h0, h1, . . . , hn are holomorphic functions and at
least one of them does not vanish at zero, it follows that f is a morphism.

Note that the birational classification of curves is easy. If two curves are
smooth and birational then they are isomorphic. In particular, two curves are
birational if and only if their normalisations are isomorphic.

Definition 1.5. Let φ : X 99K Y be a rational map between two irreducible
quasi-projective varieties. The graph of φ, denoted Γφ, is the closure in X×Y
of the graph of the function f : U −→ Y , where φ is represented by the pair
(f, U). We say that φ is proper if the projection of Γφ down to Y is a proper
morphism.

Note that the inclusion of C into P1 is not proper. In this paper, we will
only be concerned with proper rational maps.

Definition 1.6. Consider the rational function

φ : C2
99K C defined by the rule (x, y) −→ y/x,
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which appears in (1.1). Then the graph Γφ ⊂ C2 × P1 is the zero locus of the
polynomial xT = yS, where (x, y) are coordinates on C2 and [S : T ] are homoge-
neous coordinates on P1. Consider projection onto the first factor π : Γφ −→ C2.
Away from the origin this morphism is an isomorphism but the inverse image
E of the origin is a copy of P1. π is called the blow up of the origin and E is
called the exceptional divisor.

We note that π has a simple description in terms of toric geometry. C2

corresponds to the cone spanned by (0, 1) and (1, 0). Γφ is the union of the
two cones spanned by (1, 0) and (1, 1) and (1, 1) and (0, 1); it is obtained in an
obvious way by inserting the vector (1, 1).

Given any smooth surface S, we can define the blow up of a point p ∈ S
by using local coordinates. More generally given any smooth quasi-projective
variety X and a smooth subvariety V , we may define the blow up π : Y −→ X
of V inside X. π is a birational morphism, which is an isomorphism outside
V . The inverse image of V is a divisor E; the fibres of E over V are projective
spaces of dimension one less than the codimension of V in X and in fact E is
a projective bundle over V . V is called the centre of E.

For example, to blow up one of the axes in C3, the toric picture is again quite
simple. Start with the cone spanned by (1, 0, 0), (0, 1, 0) and (0, 0, 1), correspond-
ing to C3 and insert the vector (1, 1, 0) = (1, 0, 0) + (0, 1, 0). We get two cones
one spanned by (1, 0, 0), (1, 1, 0) and (0, 0, 1) and the other spanned by (0, 1, 0),
(1, 1, 0) and (0, 0, 1). To blow up the origin, insert the vector (1, 1, 1). There
are then three cones. One way to encode this data a little more efficiently is
to consider the triangle (two dimensional simplex) spanned by (1, 0, 0), (0, 1, 0)
and (0, 0, 1) and consider the intersection of the corresponding cones with this
triangle.

1.2. Strong and weak factorisation. We have the following conse-
quence of resolution of singularities, see [16]:

Theorem 1.7 (Resolution of indeterminancy; Hironaka). Let φ : X 99K Y be
a rational map between two quasi-projective varieties.

If X is smooth, then there is a sequence of blow ups π : W −→ X along
smooth centres such that the induced rational map ψ : W −→ Y is a morphism.

For surfaces we can do much better in the case of a birational map:

Theorem 1.8. Let φ : S 99K T be a birational map between two smooth quasi-
projective surfaces.

Then there is a smooth surface W and two birational morphisms π : W −→
S and π′ : W −→ T , both of which are compositions of blow ups along smooth
centres.

Example 1.9. Consider the function

φ : P2
99K P2 defined by the rule [X : Y : Z] −→ [X−1 : Y −1 : Z−1].
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Then φ is a birational map, an involution of P2. As

[X−1 : Y −1 : Z−1] = [Y Z : XZ : Y Z],

it is not hard to see that φ sends the three coordinate axes to the coordinate
points. But then it follows that the coordinate points [1 : 0 : 0], [0 : 1 : 0]
and [0 : 0 : 1] are part of the indeterminacy locus of φ. In fact, if we blow up
π : W −→ P2 the three coordinate points, then φ blows down the strict transform
of the three coordinate axes π′ : W −→ P2.

Consider the standard fan for P2, given by the union of the three cones
spanned by (1, 0), (0, 1) and (−1,−1). Blowing up the coordinate points, cor-
responds to inserting the three vectors (1, 1) = (1, 0) + (0, 1), (0,−1) =
(1, 0)+(−1,−1) and (−1, 0) = (−1,−1)+(0, 1). The resulting fan is the fan for
the toric variety W . Note that the strict transforms of the three coordinate axes
are now contractible as (1, 0) = (1, 1) + (0,−1), (−1,−1) = (−1, 0) + (0,−1)
and (0, 1) = (1, 1) + (−1, 0).

1.3. Flips and Flops. It is conjectured that a result similar to (1.8)
holds in all dimensions:

Conjecture 1.10 (Strong factorisation). Let φ : X 99K Y be a birational map
between two quasi-projective varieties.

Then there is a quasi-projective variety W and two birational morphisms
π : W −→ X and π′ : W −→ Y which are both the composition of a sequence of
blow ups of smooth centres.

Unfortunately we only know a weaker statement, see [1] and [44]:

Theorem 1.11 (Weak factorisation: Abramovich, Karu, Matsuki, W lodarczyk;
W lodarczyk). Let φ : X 99K Y be a birational map between two quasi-projective
varieties.

Then we may factor φ into a sequence of birational maps φ1, φ2, . . . , φm,
φi : Xi 99K Xi+1 and there are quasi-projective varieties W1,W2, . . . ,Wm and
two birational morphisms πi : Wi −→ Xi and π′

i : Wi −→ Xi+1 which are both
the composition of a sequence of blow ups of smooth centres.

The problem is that beginning with threefolds there are birational maps
which are isomorphisms in codimension two:

Example 1.12. Suppose we start with C3 and blow up both the x-axis and the
y-axis. Suppose we first blow up the x-axis and then the y-axis to get X −→ C3.
Let Ex be the exceptional divisor over the x-axis, with strict transform E′

x and
let Ey be the exceptional divisor over the y-axis. The strict transform of the
y-axis intersects Ex in a point. When we blow this up, we also blow up this
point of Ex. So E

′

x has one reducible fibre with two components and Ey is a P1-
bundle over the y-axis. If we blow up Y −→ C3 in the opposite order then Ex is
now a P1-bundle and the strict transform E′

y contains one reducible fibre. The
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resulting birational map X 99K Y is an isomorphism outside the extra copies of
P1 belonging to E′

x and E′

y. On the other hand it is not an isomorphism along
these curves. This is the simplest example of a flop.

The language of fans and toric geometry is very convenient. We start with
the cone spanned by e1 = (1, 0, 0), e2 = (0, 1, 0) and e3 = (0, 0, 1). Blowing up
the x-axis corresponds to inserting the vector e2 + e3 and we get two cones, σ1,
spanned by e1, e2 + e3 and e2 and σ2 spanned by e1, e2 + e3 and e3. Blowing up
the y-axis we insert the vector e1 + e3, so that we subdivide σ2 into two more
cones, one spanned by e1, e2 + e3 and e1 + e3 and the other spanned by e3,
e2 + e3, e1 + e3.

Now suppose that we reverse the order. At the first step we insert the vector
e1 + e3 and we get two cones, τ1 spanned by e1, e1 + e3 and e2 and τ2 spanned
by e2, e1+e3 and e3. At the next step we insert the vector e2+e3, and subdivide
τ2 into two cones, one spanned by e2, e1 +e3 and e2 +e3 and the other spanned
by e3, e1 + e3 and e2 + e3.

In fact to prove (1.10) it suffices to prove it in the special case of toric
varieties. For an interesting explanation of the difficulties in proving strong
factorisation, see [17].

There is another way to construct this flop:

Example 1.13. Let Q be the quadric cone xz − yt = 0 inside C4. If we blow
up the origin we get a birational morphism W −→ Q with exceptional E divisor
isomorphic P1×P1. We can partially contract E, by picking one of the projection
maps, W −→ X and W −→ Y . The resulting birational map X 99K Y is the
same as the flop introduced above.

Perhaps the easiest way to see this is to use toric geometry. Q corresponds
to the cone spanned by four vectors v1, v2, v3 and v4 in R3, belonging to the
standard lattice Z3, any three of which span the standard lattice, such that
v1 +v3 = v2 +v4. W corresponds to inserting the vector v1 +v3 and subdividing
the cone into four subcones. X and Y correspond to the two different ways to
pair off the four maximal cones into two cones.

One particularly nice feature of the toric description is that we can modify
the picture above to get lots of examples of flips and flops. Suppose we pick
any four vectors v1, v2, v3 and v4 belonging to the standard lattice which span a
strongly convex cone. Then a1v1+a3v3 = a2v2+a4v4, for some positive integers
a1, a2, a3 and a4. Once again we can insert the vector a1v1 + a3v3 and pair
off the resulting cones to get two different toric threefolds X and Y which are
isomorphic in codimension one.

The simplest example of a flip is when 2v1 + v3 = v2 + v4. If we start with
the wall connecting v2 and v4 then the flip corresponds to replacing this by the
wall connecting v1 and v3. X has one singular point, which is a Z2-quotient
singularity, corresponding to the cone spanned by v2, v3 and v4. Indeed, 2v1 is
an integral linear combination of these vectors but not v1. On the other hand,
Y is smooth.
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Another place that flops appear naturally is in the example of a Cremona
transformation of P3.

Example 1.14. Consider the function

φ : P3
99K P

3 defined by the rule [X : Y : Z : T ] −→ [X−1 : Y −1 : Z−1 : T−1].

Then φ is a birational automorphism of P3. The graph of this function first blows
up the four coordinate points, to get four copies of P2, then the six coordinate
axes, to get six copies of P1 × P1. The reverse map then blows down those six
copies of P1 × P1, but this time using the other projection and then we finally
blow down the strict transforms of the four coordinate planes.

Note that if we just blow up the four coordinate points on both sides then
the resulting threefolds are connected by six flops. All of this is easy to describe
using toric geometry; the picture is similar to the picture above of the Cremona
transformation of P2.

One can use flops to construct some interesting examples.

Example 1.15 (Hironaka). Suppose we start with X = P3 and two conics C1

and C2 which intersect in two points p and q. Imagine blowing up both C1 and
C2 but in a different order at p and q. Suppose we blow up first C1 and then
C2 over p but first C2 and then C1 over q. Let π : M −→ P3 be the resulting
birational map.

We claim that even the exceptional locus E1∪E2 is not a projective variety.
Let l be general fibre of the exceptional divisor E1 over C1, let l1 + l2 be the
reducible fibre over p, let m be the general fibre of E2 over C2 and let m1+m2 be
the reducible fibre over q. Suppose the irreducible fibre of E2 over p is attached
to l1 and the irreducible fibre of E1 over q is attached to m1. Note that

m1 ≡ l ≡ l1 + l2 ≡ m+ l2 ≡ m1 +m2 + l2,

where ≡ denotes numerical equivalence. This implies that l2 + m2 ≡ 0. If M
is projective then a hyperplane class H would intersect l2 + m2 positively, a
contradiction.

Note that M is related to a projective variety Y over X by an (analytic)
flop. Just flop either l2 or m2.

Example 1.16 (Atiyah). Suppose that we start with a family of quartic surfaces
in P3 degenerating to a quartic surface with a simple node (a singularity which
in local analytic coordinates resembles x2 + y2 + z2 = 0 in C3). It is a simple
matter to find a degeneration whose total space has a singularity locally of the
form xz − yt. In this case we can blow up this singularity in two different
ways, see (1.13), to get two different families of smooth K3 surfaces, which are
connected by a flop.

But now we have two distinct families of K3 surfaces, which agree outside
one point. In fact even though the families are different they have isomorphic
fibres. It follows that the moduli space of K3 surfaces is not Hausdorff.
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Example 1.17 (Reid). Let X0 ⊂ C4 be the smooth threefold given by the
equation

y2 = ((x− a)2 − t1)((x− b)2 − t2),

where x, y, t1, t2 are coordinates on C4 and a 6= b are constants. Let X be
the closure of X0 in P1 × P1 × C2. Projection π : X −→ C2 down to C2 with
coordinates t1 and t2 realises X as a family of projective curves of genus one
over C2. If t1t2 6= 0 then we have a smooth curve of genus one, that is an
elliptic curve. If t1 = 0 and t2 6= 0 or t2 = 0 and t1 6= 0 then we get a nodal
rational curve (a copy of P1 with two points identified). If t1 = t2 = 0 then we
get a pair C1 ∪ C2 of copies of P1 joined at two points.

One can check that both C1 and C2 can be contracted individually to a simple
node. Therefore we can flop either C1 or C2. Suppose that we flop C1. Since
C1 is contracted by π this flop is over S so that the resulting threefold Y admits
a morphism to ψ : Y −→ C2. We haven’t changed the morphism π outside s
and one can check that the fibre over (0, 0) of ψ is a union D1 ∪ D2 of two
copies of P1 which intersect in two different points. Once again we can flop
either of these curves. Suppose that D2 is the strict transform of C2 so that
D1 is the flopped curve. If we flop D1 then we get back to X but if we flop
D2 then we get another threefold which fibres over S. Continuing in this way
we get infinitely many threefolds all of which admit a morphism to S and all
of which are isomorphic over the open set S − {s}. Let G be the graph whose
vertices are these threefolds, where we connect two vertices by an edge if there
is a flop between the two threefolds over S. Let G′ be the graph whose vertices
are the integers where we connect two vertices i and j if and only if |i− j| = 1.
Then G and G′ are isomorphic.

2. Minimal Model Program

The idea behind the minimal model program (which we will abbreviate to
MMP) is to find a particularly simple birational representative of every pro-
jective variety. For curves we have already seen that two smooth curves are
birational if and only if they are isomorphic. For surfaces there are non-trivial
birational maps, but by (1.8) only if there are rational curves (non-constant
images of P1). Roughly speaking, simple means that we cannot contract any
more rational curves. In practice it turns out that we don’t want to contract
every curve, just those curves on which the canonical divisor is negative.

Definition 2.1. Let X be a normal projective variety. A divisor D =
∑

niDi

is a formal linear combination of codimension one subvarieties.

The canonical divisor KX is the divisor associated to the zeroes and poles
of any meromorphic differential form ω.

Note that the canonical divisor is really an equivalence class of divisors.
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Example 2.2. If X = P1 and z is the standard coordinate on C then dz/z is
a meromorphic differential form. It has a pole at zero and a pole at infinity,
since

d(1/z)

1/z
= −

dz

z
.

If p represents zero and q infinity then KP1 = −p− q. If we started with dz/z2

then KP1 = −2p (a double pole at zero) but if we start with dz then KP1 = −2q
(a double pole at infinity). And so on. If X is an elliptic curve E then it is
a one dimensional complex torus, the quotient of C by a lattice isomorphic to
Z2. In this case the differential form dz descends to the torus (as it is trans-
lation invariant) and KE = 0 (no zeroes or poles). If C has genus g ≥ 2 then
degKC = 2g − 2 > 0.

For Pn we have KPn = −(n + 1)H, where H is the class of a hyperplane.
More generally still, suppose X is a projective toric variety. Then a dense open
subset of X is isomorphic to a torus (C∗)n. A natural holomorphic differential
n-form which is invariant under the action of the torus is

dz1
z1

∧
dz2
z2

∧ · · · ∧
dzn
zn

.

This form extends naturally to a meromorphic differential on the whole toric
variety with simple poles along the invariant divisors. In other words,

KX + ∆ ∼Q 0,

where ∆ =
∑

Di is a sum of the invariant divisors. In the case of Pn there are
n+ 1 invariant divisors corresponding to the n+ 1 coordinate hyperplanes.

One of the most useful ways to compute the canonical divisor is the adjunc-
tion formula. If M is a smooth variety and X is a smooth divisor then

(KM +X)|X = KX .

For example, if X is a quartic surface in P3 then

KX = (KP3 +X)|X = (−4H + 4H)|X = 0.

Together with the fact that smooth hypersurfaces of dimension at least two are
simply connected this implies that X is a K3 surface.

Suppose that T −→ S is the blow up of a point with exceptional divisor
E ' P1. It is straightforward to check that the self-intersection E2 = E·E = −1.
By adjunction we have

−2 = KP1 = KE = (KT + E)|E = KT · E + E2.

It follows that KT · E = −1. For obvious reasons we call any such curve a −1-
curve. The idea of the MMP is to only contract curves on which the canonical
divisor is negative.
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Definition 2.3. Let X be a normal projective variety and let D be a Cartier
divisor (something locally defined by a single equation). We say that D is nef

if D · C ≥ 0 for every curve C ⊂ X.

Let us first see how the minimal model program works for surfaces.

Step 0: Start with a smooth surface S.

Step 1: Is KS nef? If yes, then stop. S is a minimal model.

Step 2: If no, then there must be a curve C such that KS · C < 0. We can
always choose C so that there is a contraction morphism π : S −→ T which
contracts C and we are in of the following three cases:

(i) S = P2, T is a point and C is a line.

(ii) T is a curve, S is a P1-bundle over T and C is a fibre.

(iii) T is a smooth surface, π is a blow up of a point on T and C is the
exceptional divisor.

Step 3: If we are in case (i) or (ii), then stop. Otherwise replace S by T and
go back to Step 1.

The fact that we can always find a curve C to contract is a non-trivial
result, due to the Italian school of algebraic geometry. It is possible that at
Step 1 there is more than one choice of π.

Example 2.4. Suppose that we start with the blow up S of P2 at two different
points p and q. There are three relevant curves, E and F the exceptional divisors
over p and q and L, the strict transform of the line connecting p and q.

At the first step of the KS-MMP we are presented with three choices. We
can choose to contract E, F or L, since all three of these curves are −1-curves.
If we contract E, π : S −→ T , then at the next step we are presented with two
choices of curves to contract on T . We can either contract the image of F ,
in which case the end product of the MMP is the original P2. On the other
hand, there is a morphism T −→ P1. Every fibre is isomorphic to P1, L is a
fibre and F is a section of this morphism. This is a possible end product of
the MMP. If instead we decide to contract F , then we get almost exactly the
same picture; note however that even though the two P1-bundles we get are
isomorphic, the induced birational map between them is not an isomorphism.
However if we choose to contract L then the resulting surface is isomorphic to
P1 × P1. Projection to either factor P1 × P1 −→ P1 are two possible other end
products of the MMP.

Once again the language of toric geometry gives a convenient way to encode
this picture. S corresponds to the fan with one dimensional rays spanned by
(1, 0), (0, 1), (−1, 0), (−1,−1) and (0,−1). Blowing down E and F corresponds
to removing the two rays (−1, 0) and (0,−1). Blowing down E corresponds to
removing (−1, 0) and the morphism to P1 corresponds to the projection of R2
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onto the x-axis. Contracting L corresponds to removing (−1,−1); the resulting
fan is clearly the fan for P1 × P1.

The most important feature of any algorithm is termination. Termination
for surfaces is clear. Every time we contract a copy of P1, topologically we
are replacing a copy of the sphere S2 by a point. Consequently the second
Betti number b2(S) drops by one and so the MMP terminates after at most
b2(S)-steps. Equivalently the Picard number drops by one at every step.

One interesting application of the MMP for surfaces is in the construction
of a compactification Mg of the moduli space of curves Mg of genus g ≥ 2.
In particular suppose we are given a family π : S0 −→ C0 of smooth projective
curves over a smooth affine curve C0. Then there is a unique projective curve C
which contains C0 as an open subset. We would like to complete S0 to a family
of curves π : S −→ C, which makes the following diagram commute:

S0 −−−−→ S

π0





y





y

π

C0 −−−−→ C.

Here the horizontal arrows are inclusions. We would like the fibres of π to be
nodal projective curves, whose canonical divisor is ample. The first observation
is that this is not in fact possible. In general we can only fill in this family after
a finite cover of C0.

Here is the general algorithm. The first step is to pick any compactification
of S0 and of the morphism π0. The next step is to blow up S, so that the reduced
fibres are curves with nodes. After this we take a cover of C and replace S by
the normalisation of the fibre product. If the cover of C is sufficiently ramified
along the singular fibres of π this step will eliminate the multiple fibres. The
penultimate step is to run the MMP over C. This has the effect of contracting
all −1-curves contained in the fibres of π. The final step is to contract all
−2-curves, that is, all copies of P1 with self-intersection −2, which are fibres
of π.

We now consider the MMP in higher dimension. There is a similar picture,
except that we also encounter flips:

Definition 2.5. Let π : X −→ Z be a birational morphism. We say that π is
small if π does not contract a divisor. We say that π is a flipping contraction

if −KX is ample over Z and the relative Picard number is one. The flip of π is
another small birational morphism ψ : Y −→ Z of relative Picard number one
such that KY is ample over Z.

The relative Picard number is the difference in the Picard numbers. The
relative Picard number is one if and only if every two curves contracted by π
are numerically multiples of each other. In this case a Q-Cartier divisor D is
ample over Z if and only if D · C > 0 for one curve C contracted by π.
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Flops are defined similarly, except that now KX and KY are trivial over Z
and yet the induced birational map X 99K Y is not an isomorphism. The MMP
in higher dimensions proceeds as follows:

Step 0: Start with a smooth projective variety X.

Step 1: Is KX nef? If yes, then stop. X is a minimal model.

Step 2: If no, then there must be a curve C such that KX · C < 0. We can
always choose C so that there is a contraction morphism π : X −→ Z which
contracts C and there are two cases:

(i) dimZ < dimX. C is contained in a fibre. The fibres F of π are Fano
varieties, so that −KF is ample. π is a Mori fibre space.

(ii) dimZ = dimX. In this case π is birational and there are two sub cases:

(a) π contracts a divisor E.

(b) π is small.

Step 3: If we are in case (i), then stop. If we are in case (a) then replace X by
Z and go back to (1). If we are in case (b) then replace X by the flip X 99K Y
and go back to (1).

The fact that we may find C and π at step 2 is quite subtle, and is due to
the work of many people, including Kawamata, Kollár, Miyaoka, Mori, Reid,
Shokurov and many others. For more details see, for example, the book by
Kollár and Mori, [25]. For an excellent survey of flips and flops, especially for
threefolds, see [22]. We should also point out that if we are in step 3 it is possible
(and in fact common) for Z to be singular, even if we just contract a divisor.
However the singularities are mild (Q-factorial terminal singularities) and this
algorithm works with these singularities.

Existence of terminal 3-fold flips was first proved by Mori, [31]. Kollár and
Mori give a complete classification of all terminal 3-fold flips in [24], at least
when the flipping curve is irreducible. Shokurov proved the existence of 4-fold
flips, [40]. Existence in all dimensions was proved in [14] and [15]:

Theorem 2.6 (Existence: Hacon, McKernan). Flips exist in all dimensions.

Actually stating things this way is a considerable simplification; we also need
the main result of [6] to finish a somewhat involved induction. The proof of (2.6)
draws considerable inspiration and ideas from two sources. First, Siu’s theory
of multiplier ideals and his proof of deformation invariance of plurigenera, see
[43], especially the recasting of these ideas in the algebraic setting [19], due to
Kawamata. Second, Shokurov’s theory of saturation of the restricted algebras
and his proof of the existence of flips for fourfolds, [40], all of which is succinctly
explained in Corti’s book, [9].

We have already seen (2.4) that the end product of the MMP is not unique.
For surfaces the minimal model is unique. If X is a threefold and X 99K Y is a
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flop then X is minimal if and only if Y is minimal, so there is often more than
minimal model. In fact, Kawamata [20] proved that any two minimal models
are connected by a sequence of flops.

Example 2.7. Suppose we start with the elliptic fibration π : X −→ S given in
(1.17). Possibly replacing S by a finite cover, we may assume that S contains no
rational curves. Suppose that we run the KX-MMP. At every step of the MMP
the locus we contract is covered by rational curves. It follows that every step of
the MMP is over S and the end product of the MMP is a minimal model. The
MMP preserves the property that one isolated fibre is the union of two copies of
P1 meeting in two points. It follows that X has infinitely many minimal models.

Kawamata has similar examples of Calabi-Yau threefolds with infinitely
many minimal models, [18].

If we get down to a Mori fibre space the situation is considerably more
complicated, as (1.9) and (1.14) demonstrate. However Sarkisov proposed a
way to use the MMP to connect any two birational Mori fibre spaces by a
sequence of four types of elementary links, see [8]. The Sarkisov program was
recently shown to work in all dimensions in [13].

Note that termination of the MMP is far more subtle in dimension at least
three. It is clear that we cannot keep contracting divisors. As in the case of
surfaces the relative Picard number drops every time we contract a divisor and
is unchanged under flips and so we can only contract a divisor finitely many
times. However it is far less clear which discrete invariants improve after each
flip.

Conjecture 2.8. There is no infinite sequence of flips.

The rest of this paper will be devoted to exploring (2.8).
We know that the MMP always works for toric varieties, due to the work

of Reid, [35] and Kawamata, Matsuda and Matsuki, [21]. The proof is almost
entirely combinatorial.

3. Local Approach to Termination

We review the first approach to the termination of flips. The idea is to find an
invariant of X which has three properties:

1. The invariant takes values in an ordered set I.

2. The invariant always increases after a flip.

3. The set I satisfies the ascending chain condition (abbreviated to ACC).

Typically the invariant is some measure of the complexity of the singularities
of X. Usually it is not hard to ensure that properties (1) and (2) hold. There
are many sensible ways to measure the complexity of a singularity and flips



526 Christopher D. Hacon and James McKernan

tend to improve singularities. The most subtle part seems to be checking that
(3) holds as well.

The most naive invariant of any singularity is the multiplicity. If X ⊂ Cn+1

and X is defined by the analytic function f(z1, z2, . . . , zn) the multiplicity

m of X at the origin is the smallest positive integer such that f ∈ m
m =

〈z1, z2, . . . , zn〉
m. If we take the reciprocal of the multiplicity then the set

I = {
1

m
|m ∈ N },

is naturally ordered and clearly satisfies the ACC. Unfortunately it is hard to
keep track of the behaviour of the multiplicity under flips.

The idea is to pick an invariant which is more finely-tuned to the canonical
divisor:

Definition 3.1. Let X be a normal quasi-projective variety. A log resolution

is a projective morphism π : Y −→ X such that Y and the exceptional locus is
log smooth, that is, Y is smooth and the exceptional locus is a divisor with
simple normal crossings.

If KX is Q-Cartier then we may write

KY + E = π∗KX +
∑

aiEi,

where E =
∑

Ei and ai are rational numbers. The log discrepancy of Ei

with respect to KX is ai. The log discrepancy of X is the infimum of the
ai, over all exceptional divisors on all log resolutions.

We say that X is terminal, canonical, log terminal, log canonical if
a > 1, a ≥ 1, a > 0 and a ≥ 0.

If V ⊂ X is a closed subset, then the log discrepancy of X at V is the
infimum of the ai, over all exceptional divisors whose image is V , and all log
resolutions.

The log discrepancy along V is the infimum of the ai, over all exceptional
divisors whose image is contained in V , and all log resolutions.

Let us start with some simple examples.

Example 3.2. Let S be a smooth surface and let p ∈ S. Let π : T −→ S blow
up p, with exceptional divisor E. Suppose we write

KT + E = π∗KS + aE.

If we intersect both sides with E then we get

−2 = KP1 = KE = (KT + E) · E = (π∗KS + aE) · E = aE2 = −a.

So a = 2. It is a simple matter to check that if we blow up more over the point
p then every exceptional divisor has log discrepancy greater than two. So the log
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discrepancy of a smooth surface is 2. It is also not hard to check that if X is
not log canonical then the log discrepancy is −∞ and that if X is log canonical
the log discrepancy is the minimum of the log discrepancy of the exceptional
divisors of any log resolution.

If X is an affine toric variety, corresponding to the cone σ, then KX is Q-
Cartier if the primitive generators of the one dimensional faces of σ ⊂ Rn lie in
an affine hyperplane (this is always the case if σ is simplicial). In this case there
is a linear functional φ : Rn −→ R which takes the value 1 on this hyperplane.
The log discrepancy of any toric divisor is the value of φ on the primitive
generator of the extremal ray corresponding to this divisor. In particular X is
log terminal.

For example if X is smooth of dimension n, then X corresponds to the cone
spanned by the standard generators e1, e2, . . . , en of the standard lattice Zn ⊂
Cn. If we insert the vector e1 + e2 then the log discrepancy of the exceptional
divisor of the blow up of the corresponding codimension two coordinate subspace
is 2 and this is the log discrepancy of X. If we insert the sum e1 + e2 + · · ·+ en
this corresponds to blowing up the origin. The log discrepancy of the exceptional
divisor is n and this is the log discrepancy of X at the origin.

Lemma 3.3. Let X be a normal variety.
Then X is the disjoint union of finitely many locally closed subsets

Z1, Z2, . . . , Zm and there is a function f such that the log discrepancy of X
at a subvariety V is equal to f(i, d), where V has dimension d and 1 ≤ i ≤ m
is the unique index such that V ∩ Zi is dense in V .

Proof. Pick a log resolution π : Y −→ X. If V is a subvariety of X then the
log discrepancy at V is either computed by an exceptional divisor of π, or it is
computed by some divisor which is exceptional over Y . There are only finitely
many divisors extracted by π and the log discrepancy of a subvariety over Y
is just determined by its dimension and the list of exceptional divisors which
contain it.

Proposition 3.4. If π : X 99K Y is a flip, then the log discrepancy of any
divisor E never goes down and always goes up if the centre of E is contained
in the indeterminacy locus of π.

Proof. See (5.11) of [21].

Definition 3.5 (Shokurov). Let X be a threefold with canonical singularities.
The difficulty of X is the number of divisors of log discrepancy less than two.

Lemma 3.6. Let X be a threefold with canonical singularities.
Then

1. the difficulty is finite, and

2. the difficulty always goes down under flips.



528 Christopher D. Hacon and James McKernan

Proof. It is easy to check that (1) holds by direct computation on a log resolu-
tion.

Let φ : X 99K Y be a flip. Let C be a flipped curve, that is, a curve contained
in the indeterminacy locus of φ−1. As the log discrepancy goes up under flips,
Y is terminal about a general point of C. It follows that Y is smooth along the
generic point of C so that there is an exceptional divisor E with centre C of
log discrepancy two. The log discrepancy of E with respect to X must be less
than two, by (3.4). It follows that the difficulty decreases by at least one, which
is (2).

Note that (3.6) easily implies that there is no infinite sequence of flips, start-
ing with a threefold with canonical singularities. There have been many papers
which extend Shokurov’s work to higher dimensions, most especially to dimen-
sion four, for example [28], [11] and [3]. Unfortunately in higher dimensions
there are infinitely many divisors of log discrepancy at most two and singu-
lar varieties of log discrepancy greater than two. It seems hard to control the
situation using only the difficulty.

To remedy this situation, Shokurov has proposed some amazing conjectural
properties of the log discrepancy:

Conjecture 3.7 (Shokurov). Fix a positive integer n. The set

Ln = { a ∈ Q | a is the log discrepancy at a subvariety of a normal

variety of dimension n },

satisfies the ACC.

Conjecture 3.8 (Ambro, Shokurov). Let X be a quasi-projective variety. The
function

a : X −→ Q,

which sends a point x to the log discrepancy of X at x is lower semi-continuous.

Theorem 3.9 (Shokurov). Assume (3.7)n and (3.8)n.
Then every sequence of flips in dimension n terminates, that is, (2.8)n holds.

Proof. We sketch Shokurov’s beautiful argument.
Suppose not, that is, suppose we are given an infinite sequence of flips

φi : Xi 99K Xi+1. Let Ei be the locus of indeterminacy of φi. Then Ei is a
closed subset of Xi.

Let ai be the log discrepancy of Xi along Ei. Let

αi = inf{ aj | j ≥ i }.

Then αi ≤ αi+1, with equality, unless αi = ai. As we are assuming (3.7)n it
follows that αi is eventually constant. Suppose that αi = a, for i sufficiently
large. (3.3) implies that the sets

Ii = { l | l is the log discrepancy at a subvariety of Xi },
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are finite. If j > i and aj ≤ al for all i ≤ l ≤ j, then (3.4) implies that aj ∈ Ii.
Since Ii is finite, it follows that ai ≥ a for all i, with equality for infinitely many
i. Let

J = { i ∈ N | ai = a }.

By assumption for each i ∈ J there is a log resolution and at least one excep-
tional divisor Fi whose centre is contained in Ei such that the log discrepancy
of Fi is a. Let di be the maximal dimension of the centre on Xi of any such
exceptional divisor Fi. Pick d such that di ≤ d for all but finitely many i ∈ J ,
with equality for infinitely many i ∈ J .

Let

W ′

i = {x ∈ Xi |x ∈ V , dimV = d, log discrepancy of X at V is at most a }.

As we are assuming (3.8)n, W ′

i ⊂ Xi is a closed subset. Let Wi be the union of
those components of W ′

i for which there is a subvariety V of dimension d such
that the log discrepancy of Xi at V is a. Then (3.3) implies that if V ⊂ Wi is
a closed subset of dimension d, then the log discrepancy of Xi at V is at most
a with equality if V passes through the general point of Wi.

(3.4) implies that every component of Wi+1 is birational to a unique com-
ponent of Wi. It follows that eventually Wi and Wi+1 have the same number of
components. Let φi : Wi 99KWi+1 be the induced birational map. φi is eventu-
ally an isomorphism along any centre in Wi of dimension d. If V ⊂ Wi+1 is of
dimension d then the log discrepancy of Xi+1 at V is at most a. It follows that
φ−1
i must be an isomorphism along V , since the log discrepancy of Xi along Ei

is a and log discrepancies only go up under flips, (3.4).

If φi is not an isomorphism in dimension d, then it must contract a subvariety
of dimension d. But this cannot happen infinitely often, a contradiction.

Note that there are more general versions of (3.7) and (3.8), which involve
log pairs (X,∆) and that Shokurov proves that if one assumes these more
general conjectures then any sequence of log flips terminates. For more details
see [41].

Unfortunately both (3.7) and (3.8) seem to be hard conjectures. We know
(3.7)2 and (3.8)2, by virtue of Alexeev’s classification of log canonical surface
singularities. We know that

L3 ∩ [1,∞) =

{

1 +
1

r
| r ∈ N ∪ {∞}

}

∪ {3},

by virtue of the classification of terminal singularities due to Mori, [30] and Reid
[36] and a result of Kawamata, see the appendix to [37]. Borisov [7] proved that
(3.7) holds for toric varieties. Ambro proved [4] that (3.8)3 holds and that (3.8)
holds for toric varieties.
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One interesting consequence of (3.8) is the following:

Conjecture 3.10 (Shokurov). Let X be a normal quasi-projective variety of
dimension n.

Then the log discrepancy of any point is at most n.

Indeed if x ∈ X, then pick a curve C which contains x and intersects the
smooth locus X0 of X. Then x is the limit of points y ∈ C ∩ X0. We have
already seen that the log discrepancy of X at y is n. So if we assume (3.8)n
then the log discrepancy of X at x is at most n.

Note that to prove (3.10) we may assume that the log discrepancy is greater
than one, that is, we may assume that X is terminal. Even though (3.10) would
appear to be much weaker than (3.8), we only know that (3.10)3 holds by
virtue of Mori’s classification of threefold terminal singularities and a result of
Markushevich, [27].

4. Global Approach to Termination

Instead of focusing on showing that some invariant satisfies the ACC, the global
approach to termination tries to use the global geometry of X. At this point it
is convenient to work with:

Definition 4.1. A log pair (X,∆) is a normal variety together with a divisor
∆ ≥ 0 such that KX + ∆ is R-Cartier.

One can define the log discrepancy and the various flavours of log terminal,
just as for the canonical divisor.

Example 4.2. Let X be a toric variety and let ∆ =
∑

Di be the sum of the
invariant divisors. Then KX + ∆ ∼Q 0 so that (X,∆) is a log pair. We may
find π : Y −→ X a toric log resolution. Note that

KY + Γ = π∗(KX + ∆),

where Γ =
∑

Gi is the sum of the invariant divisors on Y , since both sides are
zero. As π is toric, Γ contains all of the exceptional divisors with coefficient
one. It follows that (X,∆) is log canonical.

We use the following finiteness result:

Theorem 4.3 (Birkar, Cascini, Hacon, McKernan). Let X be a smooth projec-
tive variety. Fix an ample divisor A and finitely many divisors B1, B2, . . . , Bk

such that (X,
∑

Bi) is log smooth.
Then there are finitely many 1 ≤ i ≤ m rational maps φi : X 99K Yi such

that if (b1, b2, . . . , bk) ∈ [0, 1]k and φ : X 99K Y is a weak log canonical model of
KX +A+

∑

biBi then φ = φi for some index 1 ≤ i ≤ m.
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We have already remarked (2.7) that there are examples due to Reid of
threefolds with infinitely many minimal models. The presence of the divisor A
is therefore important in the statement of (4.3). However Shokurov [38] proves
a similar result for threefolds, but now without the ample divisor A and shows
that the same result holds in all dimensions if one knows the abundance con-
jecture, (5.7). In a related direction, Kawamata, [18] and Morrison [32] have
conjectured that the number of minimal models is finite up to birational auto-
morphisms of X, when X is Calabi-Yau and ∆ is empty.

We use (4.3) to run a special MMP, known as the MMP with scaling.

Step 0: Start with a projective variety X, an ample divisor A, a divisor B =
∑

biBi, where (X,
∑

Bi) is log smooth and (b1, b2, . . . , bk) ∈ [0, 1]k and an
ample divisor H such that KX +A+B +H is nef.

Step 1: Let

λ = inf{ t ∈ [0, 1] |KX +A+B + tH is nef },

be the nef threshold.

Step 2: Is λ = 0? If yes, then stop.

Step 3: If no, then there must be a curve C such that (KX + A+ B) · C < 0
and (KX + A + B + λH) · C = 0. We can always choose C so that there is a
contraction morphism π : X −→ Z which contracts C and there are two cases:

(i) dimZ < dimX. C is contained in a fibre. −(KX +A+B) is ample on a
fibre.

(ii) dimZ = dimX. In this case π is birational and there are two subcases:

(a) π contracts a divisor E.

(b) π is an isomorphism in codimension at least two.

Step 4: If we are in case (i), then stop. If we are in case (a) then replace X by
Z and go back to (2). If we are in case (b) then replace X by the flip X 99K Y
and go back to (2).

Note that if H is any ample divisor then KX +A+B+ tH is ample for any
t sufficiently large. So finding an ample divisor H such that KX + A+ B +H
is nef is never an issue. Note also that if λ = 0 then KX +A+B is nef and we
have arrived at a log terminal model. The only significant difference between
the MMP with scaling and the usual MMP is that we only choose to contract
those curves on which KX +A+B+λH is zero. With this choice, it is easy to
see that we keep the condition that KX +A+B+λH is nef. More to the point,
every step of the MMP is a weak log canonical model of KX +A+(B+λH), for
some choice of λ ∈ [0, 1]. Finiteness of models, (4.3) and the fact that we never
return to the same model, (3.4), implies that the MMP with scaling always
terminates.
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To run the MMP with scaling, we need the ample divisor A. If we start with
KX + ∆ kawamata log terminal, we can find A ample and B ≥ 0 such that
KX + ∆ ∼R KX +A+B, where KX +B is kawamata log terminal if and only
if ∆ is big. If we start with a birational map π : X −→ Y then every divisor is
big over Y and so the MMP with scaling always applies if we work over Y .

For example, we may use the MMP with scaling to show that every complex
manifold which is birational to a projective variety but which is not a projective
variety must contain a rational curve. For example, one might modify Hiron-
aka’s example, (1.15), by starting with any smooth projective threefold X with
two curves intersecting transversely at two points. It is easy to find many exam-
ples which don’t contain any rational curves. But the next step involves blowing
up both curves and so M contains lots of rational curves.

Shokurov [39] proved the following result assuming the full MMP and our
proof is based heavily on his ideas:

Theorem 4.4 (Birkar, Cascini, Hacon, McKernan). Let M be a complex man-
ifold. Suppose there is a proper birational map π : X −→ M such that X is
smooth and projective.

If M does not contain a rational curve then M is projective.

Proof. Pick an ample divisor H such that KX +H is ample. We run the KX -
MMP with scaling of H. Suppose that π : X −→ Y is a KX -negative contrac-
tion. By a result of Miyaoka and Mori, [29], the locus contracted by π is covered
by rational cuves. As M does not contain a rational curve, it follows that π is a
morphism over M . In particular the (KX +H)-MMP is automatically a MMP
over Y . As π is birational, it follows that the MMP with scaling terminates, as
observed above. At the end we have a projective variety Y such that KY is nef
and a birational morphism f : Y −→ M . As M is smooth it follows that f is
an isomorphism so that M is a projective variety.

5. Local-global Approach to Termination

Even though the MMP with scaling is useful, it is becoming increasingly clear
that we would still like to have the full MMP, even in the special case when ∆
is big. This would be useful in the construction of the moduli space of varieties
of general type. One possible approach is to try to blend both the local and the
global approach to termination of flips.

We have already seen that the log discrepancy always improves under flips.
However the most fundamental invariant of any singularity would seem to be
the multiplicity. The log canonical threshold is a more sophisticated version of
the multiplicity which takes into account higher terms and is at the same time
more adapted to the canonical divisor. If X ⊂ Cn is a hypersurface, then the
log canonical threshold λ of X at the origin, is the largest t such that (Cn, tX)
is log canonical in a neighbourhood of the origin. If X has multiplicity m at
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the origin, then we have
1

m
≤ λ ≤

n

m
.

Shokurov has conjectured that the set of log canonical thresholds should
satisfy the ACC:

Conjecture 5.1 (Shokurov). Fix a positive integer n and a subset I ⊂ [0, 1]
which satisfies the descending chain condition (abbreviated to DCC).

Then there is a finite set I0 ⊂ I such that if

1. X is a variety of dimension n,

2. (X,∆) is log canonical,

3. every component of ∆ contains a non kawamata log terminal centre of
(X,∆), and

4. the coefficients of ∆ belong to I,

then the coefficients of ∆ belong to I0.

Example 5.2. Let X ⊂ Cn be the hypersurface given by the equation

xa1

1 + xa2

2 + · · · + xan

n = 0.

Then the log canonical threshold is

min

(

1

a1
+

1

a2
+ · · · +

1

an
, 1

)

.

It is elementary to check that these numbers satisfy the ACC.

Theorem 5.3 (Special termination; Shokurov). Assume (2.8)n−1.
Let (X,∆) be a projective log canonical pair of dimension n. Let φi : Xi 99K

Xi+1 be a sequence of flips. Let Zij ⊂ Xi be the locus where the induced bira-
tional map Xi 99K Xj is not an isomorphism. Let

Zi =
⋃

j>i

Zij .

Let Vi be the locus where KXi
+ ∆i is not kawamata log terminal.

Then Vi and Zi eventually don’t intersect.

Note that Vi is a closed subset of Xi, whilst Zi is a countable union of closed
subsets of Xi.

Theorem 5.4 (Birkar). Assume (2.8)n−1 and (5.1)n. Let (X,∆) be a projective
kawamata log terminal pair of dimension n.

If there is a divisor M ≥ 0 which is numerically equivalent to KX +∆, then
every sequence of (KX + ∆)-flips terminates.
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Proof. We sketch Birkar’s ingenious argument.
Let φi : Xi 99K Xi+1 be a sequence of (KX + ∆)-flips. Let Zij ⊂ Xi be the

locus where the induced birational map Xi 99K Xj is not an isomorphism. Let

Zi =
⋃

j>i

Zij .

Let ∆i and Mi be the strict transforms of ∆ and M . Note that KXi
+ ∆i

is numerically equivalent to Mi. In particular φ1, φ2, . . . is also a sequence of
(KX + ∆ + tM)-flips for any t ≥ 0. Let

λi = sup{ t ∈ R |KXi
+ ∆i + tMi is log canonical along Zi },

be the log canonical threshold along Zi. Note that λi ≤ λi+1, as log discrep-
ancies only go up under flips. In particular if I is the set of all coefficients of
∆i +λiMi, then I satisfies the DCC. As we are assuming (5.1)n, it follows that
λ1, λ2, . . . is eventually constant. Suppose that λi = λ, for all i ≥ i0. As we are
assuming (2.8)n−1, (5.3) implies that Vi ∩ Zi is eventually empty, that is, the
sequence of flips is finite.

Note that we cheated a little in the proof of (5.4). Eventually KXi
+ ∆i +

λiMi is not log canonical, so that strictly speaking (5.3) does not apply. In
practice one can get around this by passing to a log terminal model. For more
details, see [5].

To give a complete proof of termination of flips using (5.4), note that we
need to do two things. Obviously we need to prove (5.1). However to complete
the induction we need to deal with the case when KX + ∆ is not numerically
equivalent to a divisor M ≥ 0. This part breaks up into two separate pieces.

Definition 5.5. Let X be a normal projective variety. We say that D is
pseudo-effective if D is a limit of big divisors.

Conjecture 5.6. Suppose that KX + ∆ is kawamata log terminal.
If KX + ∆ is pseudo-effective then there is a divisor M ≥ 0 such that

KX + ∆ ∼R M ≥ 0.

One should understand this conjecture as being part of the abundance con-
jecture:

Conjecture 5.7 (Abundance). Let (X,∆) be a projective log canonical pair.
If KX + ∆ is nef then it is semiample.

In particular (5.6) seems very hard. One way to get around this gap in our
knowledge is to assume that ∆ is big. In this case we have, [6] and [42]:

Theorem 5.8 (Birkar, Cascini, Hacon, McKernan; Siu). Suppose that KX +∆
is kawamata log terminal.

If KX + ∆ is pseudo-effective and ∆ is big then there is a divisor M ≥ 0
such that KX + ∆ ∼R M ≥ 0.
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Lazić [26] and Păun [34] have since given simpler proofs of (5.8). Note that
the steps of the MMP preserve the property that ∆ is big. The final piece of
the puzzle is to deal with the case that KX +∆ is not pseudo-effective. It seems
that ideas from bend and break, [29], might prove useful in this case.

Part of the appeal of this approach to termination is that (5.1) seems far
more tractable than (3.7). We know (5.1) in some highly non-trivial examples.
For example, Alexeev proved (5.1)3 [2], using boundedness of log del Pezzo
surfaces whose log discrepancy is bounded away from zero. Further, de Fernex,
Ein and Mustaţă, have proved the case when X is smooth, see [10] and the
references therein.

We end with some speculation about a way to attack (5.1). We first note
a reduction step due originally to Shokurov, see [33]. To prove (5.1)n we just
need to prove:

Corollary 5.9. Fix a positive integer n and a subset I ⊂ [0, 1] which satisfies
DCC.

Then there is a finite set I0 ⊂ I such that if

1. X is a projective variety of dimension n,

2. (X,∆) is kawamata log terminal,

3. ∆ is big,

4. the coefficients of ∆ belong to I, and

5. KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.

in dimension n− 1. To this end, consider:

Conjecture 5.10. Fix a positive integer n.
Then there is a constant m such that if

• X is a projective variety of dimension n,

• (X,∆) is log canonical and log smooth,

• KX + ∆ is big and

• r is a positive integer such that r(KX + ∆) is Cartier,

then the rational map determined by the linear system |mr(KX + ∆)| is bira-
tional.

Note that (5.10) closely resembles some results and conjectures stated in
[12]. We note that this is slightly deceptive, since (5.10) seems quite a bit
harder than these conjectures. Hopefully (5.10) has a better formulation, which
is more straightforward to prove and has the same consequences. Note that if
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we add the condition that KX + ∆ is nef then the existence of m is a result
due to Kollár, [23], an effective version of the base point free theorem.

The following is standard:

Lemma 5.11. Let X be a smooth projective variety of dimension n and let D
be a Cartier divisor on X such that φD is birational.

Then φKX+(2n+1)D is birational.

The hope is to prove (5.9)n using:

Lemma 5.12. Assume (5.10)n. Let I ⊂ [0, 1] be a finite set and let n be a
positive integer. Suppose that I ∪ {1} are linearly independent real numbers
over the rationals.

Then there is a positive real number ε > 0 such that if

• X is a projective variety of dimension n,

• (X,∆) is log canonical and log smooth,

• the coefficients of ∆ belong to I, and

• KX + ∆ is big

then KX + (1 − ε)∆ is big.

Proof. Let m be the constant given by (5.10). By simultaneous Diophantine
approximation applied to the finite set I, we may pick a positive integer r with
the following properties: if a ∈ I then there is a rational number b ≥ a such
that rb is an integer and

b− a <
1

2m(2n+ 1)r
.

If we set
t = m(2n+ 1)r,

then we may pick Θ ≥ ∆ such that

‖∆ − Θ‖ <
1

2t
,

where rΘ is Cartier. By (5.11),

KX +m(2n+ 1)r(KX + Θ) = (t+ 1)

(

KX +
t

t+ 1
Θ

)

,

defines a birational map. In particular

KX +

(

1 −
1

2t

)

Θ,

is big. So we may take

ε =
1

2m(2n+ 1)r
.
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1. L
2 Extension Results

One of the most important achievements of the L2 theory is the extension result
established by T. Ohsawa and K. Takegoshi in 1987 (cf. [40]). This theorem was
subsequently refined in [2], [17], [32] [35], [36], [41], [42], [48] and its implications
to both algebraic and analytic geometry turned out to be fundamental: various
forms of approximation of closed positive currents, study of the adjoint linear
systems, deformational invariance of plurigenera and positivity of direct images,
to quote only a few.

We first recall here the original result [40], and then we state a few gener-
alizations which will be needed in the following paragraphs.

Let Ω ⊂ Cn be a ball of radius r and let h : Ω → C be a holomorphic
function, such that supΩ |h| ≤ 1; moreover, we assume that the gradient ∂h of
h is nowhere zero on the set V := (h = 0). We denote by ϕ a plurisubharmonic
function, such that its restriction to V is well-defined (i.e., ϕ|V 6≡ −∞). Then
the extension theorem in [40] is as follows.
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Theorem 1.1 ([40]). For any holomorphic function f on V , there exists a
function F , holomorphic in all of Ω, such that F = f on V , and moreover

∫

Ω

|F |2 exp(−ϕ)dλ ≤ C0

∫

V

|f |2 exp(−ϕ)
dλV
|∂h|2

.

Here, C0 is an absolute constant : this is the main point in all applications
of the result above we are aware of.

The first “geometric form” of 1.1 was obtained by Manivel in [35], and it was
further refined in [17], and in [36]. In algebraic geometry, the quantitative part
of this result (i.e., the estimates for the extension) is not available. However,
the Kawamata-Viehweg vanishing theorem is used as a substitute in many
applications (see e.g. [33]).

Theorem 1.2 ([35], [17], [36]). Let X be a projective manifold, and let S ⊂ X
be the zero set of a holomorphic section s ∈ H0(X,E) of a line bundle E → X;
the hypersurface S is assumed to be non-singular. Let (L, hL) be a line bundle,
endowed with a (possibly singular) metric h, such that:

Θh(L) ≥ 0, Θh(L) ≥
1

α
Θ(E) (1)

and such that |s|2 ≤ exp(−α) on X. We assume that the restriction of the
metric hL to S is well defined.

Then every section u ∈ H0
(
S, (KX + S + L|S)⊗ I(hL|S)

)
admits an extension

U to X such that

∫

X

|U |2e−ϕL−ϕS

|s|2(− log |s|)2
≤ C0

∫

S

|u|2e−ϕL

|ds|2
,

where h = e−ϕL , provided the right hand side is finite.

Let p : X → D be a projective family over the unit disk, for which 0 ∈ D is
a regular value. We state next the version of 1.1 established by Y.-T. Siu.

Theorem 1.3 ([48]). Let (L, hL) be a line bundle on X , endowed with a posi-
tively curved metric, whose restriction to the central fiber is not identically +∞.
Let u be a holomorphic section of the bundle KX +L|X0

which is L2 with respect
to hL, i.e.

∫

X0

|u|2e−ϕL <∞. (2)

Then there exists a section U of the bundle KX + L whose restriction to X0 is
equal to u, and such that

∫

X

|U |2e−ϕL ≤ C0

∫

X0

|u|2e−ϕL .
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Let m ≥ 1 be a real number. We conclude this paragraph by an Ohsawa-
Takegoshi-type theorem with L

2
m estimates, which is derived in [5] from the

original result by a fixed point method.

Proposition 1.4 ([5]). For any holomorphic function f : V → C with the
property that ∫

V

|f |2/m exp(−ϕ)
dλV
|∂h|2

<∞,

there exists a function F ∈ O(Ω) such that:

(i) F|V = f i.e. the function F is an extension of f ;

(ii) The next L2/m bound holds
∫

Ω

|F |2/m exp(−ϕ)dλ ≤ C0

∫

V

|f |2/m exp(−ϕ)
dλV
|∂h|2

,

where C0 is the same constant as in theorem 1.1.

Proof. We include here a sketch of the proof of the proposition above, as it is
simple and flexible enough to be used in other contexts.

In the first place we can assume that the function ϕ is smooth, and that
the functions h (respectively f) can be extended in a neighbourhood of Ω (of V
inside V ∩Ω, respectively). Once the result is established under these additional
assumptions, the general case follows by approximations and standard normal
families arguments.

Since Ω is a bounded Stein subset of Cn we can certainly construct holo-
morphic extensions of f ; among all of these extensions, we consider one which
minimizes the following semi-norm

‖g‖2m :=

(∫

Ω

|g|
2
m exp(−ϕ)dλ

)m

and we call it F . The minimal extension F automatically satisfies the estimate
(ii). Indeed, we consider the psh function ϕ1 := ϕ + (1 − 1/m) log |F |2 on Ω,
and then we have

∫

V

|f |2 exp(−ϕ1)
dλV
|∂h|2

=

∫

V

|f |2/m exp(−ϕ)
dλV
|∂h|2

<∞.

By theorem 1.1, there exists an extension F1 of f , such that
∫

Ω

|F1|
2

|F |2
m−1
m

exp(−ϕ)dλ ≤ C0

∫

V

|f |2/m exp(−ϕ)
dλV
|∂h|2

, (3)

and we claim that the left hand side of (3) is greater than ‖F‖
2
m
m . If this is not

the case, then we have
‖F1‖

2
m < ‖F‖2m

by Hölder inequality, which in turn contradicts the choice of F ; the result is
therefore proved.
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During the next two sections, we will highlight some algebro-geometric set-
tings for which the results above are very useful.

2. Effective Pseudoeffectivity of Relative

Pluricanonical Bundles

Let p : X → Y be a surjective projective map between the non-singular man-
ifolds X and Y . We denote by KX/Y := KX − p?KY the relative canonical
bundle of p. Let (L, hL) be a line bundle on X, endowed with a (possibly sin-
gular) metric with positive curvature current, and let m be a positive integer.

In this paragraph we indicate the construction of a natural, positively curved
metric on the bundle

mKX/Y + L (4)

by using sections of its restriction to the fibers Xy which are L2/m-integrable
with respect to hL. Here y ∈ Y is a very general point, and Xy is the fiber of
p over y. Part of the motivation for considering this metric is to get a better
understanding of the positivity properties of twisted relative canonical bundles
in algebraic geometry.

To start with, we will assume that hL is a genuine metric (i.e. non-singular)
and that the map p is a smooth fibration.

The above data induces a metric h
(m)
X/Y on the bundle mKX/Y + L. The

corresponding dual metric can be described intrinsically as follows. Let ξ be a
vector in the fiber −(mKX/Y + L)x; then we define its norm

‖ξ‖2 := sup |U(x) · ξ|2

the “sup” being taken over all sections u of mKXy
+ L such that

‖u‖2/mm,y :=

∫

Xy

|u|
2
m e−

1
mϕL ≤ 1; (5)

in the above equality we assume that p(x) = y and we denote by U the section
of the bundle mKX/Y +L|Xy

corresponding to u via the standard identification
(see e.g. [4], section 1). To our knowledge, this kind of metrics first appeared
in the article [39] by Narasimhan-Simha.

We now describe the local weights of the metric h
(m)
X/Y ; we denote by (zj)

and (ti) respectively some local coordinates centered at x, respectively y. These
coordinates provides us with a trivialization of the relative canonical bundle,

with respect to which the weight of h
(m)
X/Y reads as

exp
(
ϕ
(m)
X/Y (x)

)
= sup

‖u‖m,y≤1

|fU (x)|
2 (6)
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where u ∈ H0
(
Xy,mKXy

+L
)
is a global section; the notations are as follows:

U := u∧(p∗dt)⊗m/(dt)⊗m is the section of bundlemKX/Y +L|Xy
corresponding

to u, and the above (local) holomorphic function fU appearing in (5) is defined
by the equality U = fU (dz)

⊗m.

The above construction has a meaning even if the metric hL we start with is
allowed to be singular (but we still assume that the map p is a non-singular
fibration). In this case some fibers Xy may be contained in the unbounded locus
of hL, i.e. hL|Xy

≡ ∞, but for such y ∈ Y we adopt the convention that the

metric h
(m)
X/Y is identically +∞ as well. As for the fibers in the complement of

this set, the family of sections we consider in order to define the metric consists
in twisted pluricanonical forms whose mth root is in L2, normalized as in (5).

In this context, the result proved in [4] (see also [53] and the references
therein) is the next one.

Theorem 2.1 ([4]). Let p : X → Y be a proper projective non-singular fibra-
tion, and let L→ X be a line bundle endowed with a metric hL such that:

(1) The curvature current of the bundle (L, hL) is positive, i.e. ΘhL
(L) ≥ 0;

(2) For each y ∈ Y , all the sections of the bundle mKXy
+ L extend near y;

(3) There exist z ∈ Y and a section u ∈ H0
(
Xz,mKXz

+ L
)
such that

∫

Xy

|u|
2
m e−

1
mϕL <∞.

Then the above metric h
(m)
X/Y has semi-positive curvature current.

The main technical tool in the proof of the theorem above is the semi-
positivity of the direct image of bundles of type KX/Y + L, established for
smooth and proper Kähler families p : X → Y by B. Berndtsson in [3]. Actu-
ally, this field has a very rich and interesting history: on the analytic side, we
mention the articles by F. Maitani, H. Yamaguchi, cf. [34], [59]; their results
were understood geometrically and widely generalized by B. Berndtsson in [3]
(see also the “foliated” version due to M. Brunella in [12]). On the algebraic
geometry side, we refer to the important contributions of F. Campana, T. Fu-
jita, P. Griffiths, A. Höring, Y. Kawamata, J. Kollár, C. Mourougane, M. S.
Narasimhan-R. R. Simha, G. Schumacher, S. Takayama and E. Vieweg among
many others, cf. [14], [22], [23], [24], [26], [31], [37], [39], [57], [58].

In case of a smooth projective family p, theorem 2.1 is proved for m = 1 by
using the ideas in [3], together with a regularization argument (actually, this is
the reason why we cannot get the same result for Kähler families).

If m ≥ 2, then the “classical” argument in algebraic geometry consists in
a reduction to the case m = 1 via a ramified cover trick. This is not how we
proceed in [4], for several reasons. In order indicate our proof, we assume that
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Y is equal to the unit disk D, so that p is a smooth projective family over D.
We then consider the space

Y := D×H0(X,mKX/D + L)

and we regard the direct image E of mKX/D + L as a (trivial) vector bundle
over Y, endowed with the non-trivial metric

‖u‖2y,v :=

∫

Xy

|u|2

|v|2
m−1
m

e−
ϕL
m (7)

=

∫

Xy

|u|2e−
ϕL
m −m−1

m log |v|2 .

We remark that the semi-norm in (5) is the “restriction to the diagonal”
(i.e. u = v) of the expression (7). In [4], we show that E endowed with the
metric (7) is semi-positively curved, and moreover that this implies theorem
2.1.

We come back here to the case of an arbitrary map p : X → Y ; we argue as
follows. By standard semi-continuity results, there exists a (non-empty) Zariski
open set Y0 ⊂ Y such that the condition (2) of 2.1 above is fulfilled; by restrict-
ing further the set Y0 we can assume that if we denote by X0 the inverse image
of the set Y0 via the map p, then p : X0 → Y0 is a non-singular fibration.

Then we use theorem 2.1 (where we replace Y by Y0 and X by X0) and

obtain a metric h
(m)
X0/Y0

is explicitly given over the fibers Xy, as soon as y ∈ Y0
and the restriction of hL to Xy is well defined. This metric admits an extension
to the whole manifold X: the justification of this fact requires the estimate in
(ii) of proposition 1.4, which provides us with an uniform L

2
m bound of the

functions fU (since the sections we are using in order to construct the metric
are normalized by the relation (5)). In conclusion, we have.

Theorem 2.2 ([5]). Let p : X → Y be a proper projective fibration, and let
L → X be a line bundle endowed with a metric hL such that the curvature
current of the bundle (L, hL) is positive. Then the bundle mKX/Y + L admits

a metric h
(m)
X/Y with semi-positive curvature current, provided that there exists

a general point z ∈ Y and a section u ∈ H0
(
Xz,mKXz

+ L
)
such that

∫

Xy

|u|
2
m e−

1
mϕL <∞.

Moreover, the weights of the metric h
(m)
X/Y are explicitly described by (6) if

y ∈ Y0.

We refer to [5] for the details of the proof. In the paragraph 5 of the recent
preprint [50], the relevance of these topics in the context of the abundance
conjecture is discussed (see also [7], [45]).
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We add here a few observations concerning the metric h
(m)
X/Y (2.4 and 2.5

below turned out to be useful in [6]).

Remark 2.3. The fact that the metric h
(m)
X/Y is “the right one” is also illus-

trated by the example provided in [4]: if p : X̂ → X is the blow-up of e.g. a
point, then the corresponding metric on the relative canonical bundle of p is
precisely the one induced by the exceptional divisor.

Remark 2.4. Let (Lm, hm) be a sequence of positively curved bundles, such
that the corresponding metrics have the next uniformity property: there ex-
ists a constant C > 0 such that ϕLm

≤ Cm. The above arguments apply to the

sequence mKX/Y +Lm; the upshot is that the weights ϕ
(m)
X/Y of the correspond-

ing metrics are bounded by a function which is linear with respect to m. If we
denote by L∞ the limit of 1

mLm, then weak limits of the sequence of metrics( 1

m
ϕ
(m)
X/Y

)
exist, and provides the Chern class of the bundle KX/Y +L∞ with

a closed positive current, see [5].

Remark 2.5. One drawback of the construction of the metric h
(m)
X/Y is the fact

that over a (proper) Zariski closed subset Y1 ⊂ Y we ignore everything about
its singularities. We show here that in some special cases this can be improved
(see [5] for a more ample discussion).

Let y ∈ Y be a regular value of p, which does not necessarily belong to
the set Y0, but such that the multiplier ideal sheaf associated to hL|Xy

is the
structural sheaf. Let U be a holomorphic section of the bundle mKX/Y + L
over the whole family X. Then (modulo an abuse of notation) we have

|U(x)|2e−ϕ
(m)

X/Y
(x)

( ∫
Xy

|U |2/me−
ϕL
m dλ

)m ≤ 1 (8)

where x ∈ Xy is an arbitrary point.
Indeed, if y ∈ Y0, then the above claim is a consequence of the definition.

If not, then we use in [5] a limit argument–since the weights ϕ
(m)
X/Y are upper

semi-continuous. Hence the extendable sections of the bundle mKX/Y + L|Xy

provides us with a bound of the singularities of ϕ
(m)
X/Y over Xy.

3. Minimal Singularities Metrics and their

Restriction Properties

In a series of articles (cf. [47] and [48]), Y.-T. Siu established the deformational
invariance of plurigenera of smooth, projective families, a long-standing con-
jecture concerning the classification of algebraic manifolds. This result plays
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a key rôle in many of the recent developments in algebraic geometry (effec-
tive birationality of pluricanonical maps for general type manifolds, finiteness
of the canonical algebra...). The original techniques invented to prove it can
be adapted to a wide range of geometric situations, as it is illustrated by the
articles [13], [18], [21], [25], [27], [30], [43], [44], [52], [53], [55].

We first recall here the result in [48]; let p : X → D be a smooth, projective
family, and let u ∈ H0(X0,mKX0

) be a pluricanonical section over the fiber X0.
Then we have.

Theorem 3.1 ([48]). There exists a section U of the bundle mKX , whose
restriction to X0 is equal to u ∧ dp⊗m.

For a simplified proof of this result we refer to [43]. The main technical tool
in the proof of 3.1 is theorem 1.3: if m ≥ 2, we write mKX = KX +(m−1)KX ,
so the heart of the matter is to construct a positively curved metric hL on
the bundle L := (m − 1)KX , such that u satisfies the L2 condition (2). The
construction of the metric is done via an algorithm based on 1.3, which will not
be detailed here. We rather remark:

(a) the absence of any strict positivity hypothesis in 3.1;

(b) that in [48], the metric hL depends on the section u we want to extend.

Motivated by applications in algebraic geometry, one has to generalize this kind
of results for twisted pluricanonical forms. In other words, we are asking for
the analogue of 3.1 if u is a section of the bundle

m(KX +∆+ E)|X0
, (9)

where ∆ :=
∑
j∈J ν

jYj is an effective Q-divisor, such that νj < 1 and such that
the hypersurfaces (Yj) are non-singular and mutually disjoint; the Q-divisor E
is (usually) assumed to be ample, and m is assumed to be divisible enough.

As shown by examples in [21], in general it is not true that all the sections
of the bundle (9) extend to X (strangely enough, this has something to do
with the diophantine properties of the cohomology class associated to ∆+E).
However, it is established in the articles [21], [25] the existence of an effective
Q-divisor

Ξ :=
∑

j∈J

ρjYj|X0
, (10)

with ρj ≤ νj , such that a section u of the bundle (9) extends to X if and only
if its zero divisor is greater than mΞ.

In order to formulate and discuss our results, we need first to recast 3.1 in
metric terms. To start with, we recall the next important notion.
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Definition 1. Let F be a line bundle, endowed with a non-singular, reference
metric h∞. We assume that F is pseudo-effective, and then we define the metric
with minimal singularities in the sense of Demailly as follows

hDmin := e−ψ
D
minh∞, ψD

min := supψ (11)

where the real-valued functions ψ above belong to the space L1(X), they are
normalized by the condition supX ψ = 0, and the curvature current of the
associated metric e−ψh∞ is positive.

Definition 2. If the Kodaira dimension of F is positive, then the metric with
minimal singularities in the sense of Siu will be denoted by hSmin; it is defined
in a similar fashion, modulo the fact that in (11) we only use functions ψ =
1

m
log |u|2h∞

, where u is a section of mL, for all m.

Thus, from metric point of view, the results in [48], [21] suggest that if F :=
KX + ∆ + E, then the restriction ϕS

min|X0
is well-defined, and it is equivalent

to the minimal metric corresponding to KX +∆′ + E|X0
plus the tautological

function associated to Ξ, where ∆′ := ∆− Ξ.
We show in [6] that this is indeed the case, in a more general framework. We

will analyze here the extension of sections of (9) under the hypothesis that the
curvature form of E is only assumed to be semi-positive. Hence, unlike the usual
setting, the bundle E (or its restriction to the central fiber) is not necessarily
big, but a natural vanishing assumption for the section to be extended is needed.
Our next result can be seen as an effective version of the L. Ein-M. Popa theorem
in [21]; also, it is a generalization of results due to J.-P. Demailly and H. Tsuji
in [19], respectively [53], [54].

Let L→ X be a hermitian line bundle such that c1(L) contains the current

m([∆] + α) ∈ c1(L) (12)

where the notations are as follows.

(a) ∆ :=
∑
j∈J ν

jYj is an effective Q-divisor, such that m > mνj ∈ Z for any
j ∈ J ; the hypersurfaces Yj ⊂ X are mutually disjoint, and they intersect X0

transversally.

(b) α is a closed, non-singular, semi-positive form of (1,1)-type, with the prop-
erty that {mα} ∈ H2(X ,Z).

Furthermore, we assume that the bundle KX + 1/mL is pseudoeffective, and
let hmin := hDmin be a metric with minimal singularities corresponding to it; we
denote by Θmin its curvature current. We assume that

νmin

(
{KX + 1/mL},X0

)
= 0 (13)

that is to say, the minimal multiplicity of the class {KX + 1/mL} along the
central fiber X0 is equal to zero (see e.g. [11], [38]). Let A→ X be an ample line
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bundle. The assumption (13) implies that the metric with minimal singularities
hmin,ε corresponding to the class KX +1/mL+ εA is not identically +∞ when
restricted to X0, so that we can write

Θmin,ε|X0
=

∑

j∈J

ρjmin,ε[Yj0] + Λ0ε (14)

where Yj0 := Yj ∩X0 and where (ρjmin,ε) are positive real numbers. For each j,

the sequence (ρjmin,ε) is decreasing, and we define

ρjmin,∞ := lim
ε→0

ρjmin,ε. (15)

We introduce the notation J ′ := {j ∈ J : ρjmin,∞ < νj}.

Let h0 = e−ϕ0 be a metric on the Q-bundle KX0
+ 1/mL with the property

that

Θh0
(KX0

+ 1/mL) ≥ 0

and such that the following inequality is satisfied

ϕ0 ≤
∑

j∈J ′

ρjmin,∞ log |fYj
|2 +

∑

j∈J\J ′

νj log |fYj
|2. (16)

We remark that ϕ0 plays the role of the section u of the bundle (9). The
inequality (16) is the analogue of the vanishing of u along the obstruction to
extension divisor Ξ mentioned above.

We denote by ϕL the singular metric on L induced by the decomposition (12),
and for each j we denote by fYj

in (16) the local equations of the hypersurface
Yj ; we have.

Theorem 3.2 ([6]). Under the hypothesis (a), (b) and (12) − (16) above, the
restriction ϕmin|X0

is well-defined, and there exists a constant C < 0 such that
the following inequality holds at each point of X0

ϕmin|X0
≥ C + ϕ0. (17)

In particular, given any section u of the bundle mKX0
+ L whose zero divisor

is greater than

m
∑

j∈J ′

ρjmin,∞[Yj0] +m
∑

j∈J\J ′

νj [Yj0] (?)

there exists a section U of mKX + L extending u, and such that

∫

X

|U |
2
m e−

1
mϕL ≤ C0

∫

X0

|u|
2
m e−

1
mϕL .
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We remark that as a consequence of (17) we obtain Ohsawa-Takegoshi type
estimates for the extension U , provided that the section u vanishes along the
divisor (?).

If the form α in (b) is strictly positive, then the second part of the preceding
result was established in [21], [25]. Also, we refer to the section 17 of the article
[19] (and the references therein) for an enlightening introduction and related
results around this circle of ideas.

In order to give an interpretation of the result 3.2, we define

L′ = L|X0
−m

∑

j∈J ′

ρjmin,∞[Yj0]−m
∑

j∈J\J ′

νj [Yj0];

it is not too difficult to show that the bundleKX0
+1/mL′ is pseudoeffective. We

denote by ϕ′
min the metric with minimal singularities in the sense of Demailly

corresponding to the bundle KX0
+ 1/mL′; then we have

∣∣∣∣∣∣
ϕmin|X0

−
∑

j∈J ′

ρjmin,∞ log |fj |
2 −

∑

j∈J\J ′

νj log |fj |
2 − ϕ′

min

∣∣∣∣∣∣
≤ C. (18)

so the singularities of the restriction ϕmin|X0
are completely understood in terms

of the extremal metric ϕ′
min. Except for the rationality of the coefficients ρjmin,∞,

the relation (18) is the metric version of the description of the restricted algebra

in [1], [21], [25].

Furthermore, we show in [6] that the inequality (17) of 3.2 has a compact
counterpart, i.e. when the couple (X ,X0) is replaced by (X,S), where we denote
S ⊂ X a non-singular hypersurface of the projective manifold X. The bundle
L→ X is assumed to have the properties (a), (b) above; in addition, we assume
that we have

α ≥ γΘh
(
O(S)

)
, (†)

where γ is a positive real, and h is a non-singular metric on the bundle O(S)
associated to S.

The hypothesis concerning {KX + S +
1

m
L}, its corresponding minimal

metric ϕmin and the metric ϕ0 on KX + S +
1

m
L|S encoded in relations (12)-

(16) are assumed to hold transposed in the actual setting. In this case, the
perfect analogue of (17) is true, as follows: we have

ϕmin|S ≥ C + ϕ0 (19)

as it is shown by theorem B.9 in [6].

We will not reproduce here the arguments for theorem 3.2 or (19); we just
mention that the proof is a sophisticated version of the usual arguments, to-
gether with an additional input needed in order to gain a good enough control
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of some constants, which in turn justifies a limit process. In case of 3.2, the ad-
ditional argument needed relies on theorem 2.1, together with remarks 2.4 and
2.5. As for the inequality (19), the theorem 2.1 is not available in this context,
but instead we use the a version of proposition 1.4, which we explain next.

We assume that we find ourselves in the following context: X is a projective
manifold, (s = 0) := S ⊂ X is a non-singular hypersurface, ∆ :=

∑
j ν

jYj is
an effective Q-divisor on X, such that the pairs (X,∆) and (S,∆|S) are klt (so
in particular, S does not belong to the support of ∆). Let E be a Q-bundle
on X, whose Chern class contains a non-singular form θE , with the following
positivity properties

θE ≥ 0, θE ≥ δΘ
(
O(S)

)
(20)

for a real 0 < δ < 1. We assume moreover that the section

u ∈ H0
(
S,m(KS +∆+ E|S)

)
(21)

admits some extension to X; then there exists a section

U ∈ H0
(
X,m(KX + S +∆+ E)

)
(22)

such that U|S = u ∧ (ds)⊗m and such that

∫

X

|U |
2
m e−ϕ∆−ϕE−ϕS ≤ C

∫

S

|u|
2
m e−ϕ∆−ϕE . (23)

In (23), we denote by ϕS a non-singular metric on O(S), and the constant C
depends only on δ in (20) and the norm of the section s with respect to ϕS
(hence it is independent on the particular section u, and independent on m as
well). The existence of the extension U is obtained precisely as in the proof of
1.4: for example, one can consider the extension which minimizes the semi-norm
on the left hand side of (23). Therefore, by this simple procedure we convert a
non-effective extension of u into an effective one; we refer to [6] for the relevance
of this observation.

A last remark here is that once the inequality (17) is established, the second
part of the theorem 3.2 follows by an immediate application of 1.3, together
with (an appropriate version of) 1.4.

4. Non-vanishing

In this last paragraph we will present our version of the so-called non-vanishing
theorem in [44]. The statement is the following.
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Theorem 4.1. Let X be a projective manifold, and let θL ∈ NSR(X) be a
cohomology class in the real Neron-Severi space of X, such that:

(a) The adjoint class c1(KX) + θL is pseudoeffective, i.e. there exist a closed
positive current

ΘKX+L ∈ c1(KX) + θL;

(b) The class θL contains a Kähler current ΘL such that we have

eϕKX+L−ϕL ∈ L1(X,x)

where ϕKX+L (resp. ϕL) is a local potential of the current ΘKX+L (resp.
ΘL) locally near x ∈ X.

Then the adjoint class c1(KX) + θL contains an effective R–divisor, i.e. there
exists a finite family of positive reals µj and hypersurfaces Wj ⊂ X such that

N∑

j=1

µj [Wj ] ∈ c1(KX) + θL.

In connection with this result, we mention here the following theorem, estab-
lished in [9] by C. Birkar, P. Cascini, C. Hacon and J. McKernan (which in
some sense was part of the motivation for our work [44]; see also [8], [10], [20],
[28]): let (X,∆) be a klt pair, where ∆ is a big R–divisor such that KX +∆ is

pseudo-effective. Then KX +∆ is R–linearly equivalent to an effective divisor.

The integral hypothesis (b) in 4.1 is much more general than the klt as-
sumption of the pair (X,∆). However, it is enough to consider this latter case:
this is a consequence of a theorem due to H. Skoda. Nevertheless, we prefer to
state our result in this form, since the hypothesis (b) is canonical, in the sense
that it concerns a global measure on X. Also, the important aspect of our proof
is that it is direct and Char p-free, we avoid the explicit use of the minimal
model program algorithm. Finally, many arguments in [44] are borrowed from
Y.-T. Siu’s analogue statement in [49], [50].

In order to put 4.1 in a proper perspective, we will highlight next its relationship
with the classical “non-vanishing” theorems of V. Shokurov and Y. Kawamata,
cf. [46], [26]; we have.

Theorem 4.2 ([46]). Let D and G be a nef line bundle, respectively a Q-divisor.
We assume that the following relations hold :

(i) The Q–divisor D +G−KX is nef and big ;

(ii) The pair (X,−G) is klt.

Then for all large enough integers m ∈ Z+, the bundle mD + dGe is effective.



Positivity and Applications 553

We can assume that the support of the divisor G has normal crossings,
and we write G = G+ − G− as a difference of two effective divisors. Let L :=
D + G+ − KX ; according to (i), (ii), the pair (X,L) is big and klt. Then the
equality

KX + L = D +G+

holds, hence the non-vanishing statements in [9], [49], [44] appear to be a natural
generalization of Shokurov’s result, in the sense that the divisor D is only
assumed to be pseudoeffective rather than numerically effective.

To push a bit further the analogy, a quick glance at the proof of 4.2 in [46]
shows that the main use of the nefness of D is for Kawamata-Viehweg theorem
to hold: the vanishing of an h1 cohomology group makes possible extension of
twisted pluricanonical sections from subvarieties. In [44], the heart of our proof
is to show that under some precise circumstances, the extension of pluricanon-
ical forms is still possible, even if the vanishing of h1 is not known to hold (cf.
4.3, 4.4 below). From our point of view, this is why the generalization of the
classical non-vanishing to the pseudoeffective case can be achieved.

We will not discuss here the structure of the proof of 4.1, since it is quite
detailed in [44], as well as in [10]. Instead, we will extract from it two pseudo-
effectivity criteria, which are implicit in [44], and besides from the proof of 4.1
may have some independent interest. The framework is as follows.

Let X be a projective manifold, and let S, Yj be a set of strictly normal
crossing hypersurfaces, such that Yj ∩ Yk = ∅ if j 6= k. We fix a Q-bundle A
on X, such that for every δ > 0, there exists a set 0 < δj < δ of positive real
numbers, such that A−

∑
j δ

jYj is ample. Then we have the next statements.

Theorem 4.3 ([44]). Let 0 ≤ νj < 1; we assume that for all ε� 1, there exists
a current

Tε ∈
{
KX + S +

∑

j

νjYj +A
}

whose Lelong number along S is equal to zero, and such that Tε ≥ −εω, where
ω is a Kähler form on X. Then the class {KX + S +

∑
j ν

jYj + A} contains
an effective R-divisor whose support does not include S.

One of the important tools in the proof of the above theorem is the following
result (see [44], paragraph 1.H).

Theorem 4.4 ([44]). We assume that the numbers νj above are rational; there
exists a positive real ε� 1 such that the following property holds true.

Any section u ∈ H0
(
S, q(KX +S+

∑
j ν

jYj +A)|S
)
extends to X, provided

that there exists T ∈ {KX+S+
∑
j ν

jYj+A} a closed current whose restriction
to S is well-defined, such that T ≥ −ε/qω and such that

ordYj|S
(u) ≥ qmin

(
ν
(
T|S , Yj|S

)
, νj

)
− ε
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for all j. In particular, the bundle KX + S +
∑
j ν

jYj +A is (pseudo)effective,
if a couple (u, T ) as above exists.

We remark here the differences between the statement 4.4 and the results quoted
in the preceding paragraph: the current T is allowed to have a slightly negative
part, and the vanishing of the section is assumed to be smaller than what it
should. The reason why the extension of pluricanonical forms algorithm can be
applied is that the negativity of T , respectively the lack of vanishing of u are
“errors” which can be absorbed by the ample part A of the boundary, provided
that their relationship with the degree q of u are as indicated in 4.4.

We stress on the fact that the hypothesis of the statement above may look
artificial, but in the context of the proof in [44] they appear to be very natu-
ral. Indeed, our arguments involve a diophantine approximation process, which
induce a loss of positivity quantified as in 4.4.

Another important consequence of the techniques developed in [44] is the equiv-
alence of the metrics hDmin and hSmin for effective bundles of type KX +L, where
L is a big and klt Q-divisor. The proof relies on the fact that the algebra asso-
ciated to KX + L is of finite type (cf. [9]); translated in metric language, this
means that hSmin has analytic singularities. This fact is used as follows: if the
two metrics above are not equivalent, then hSmin can be seen as an incomplete
linear system (i.e., when both sections and metrics are taken into account), and
the procedure in [44] allows the construction of a Q-section of KX + L, whose
vanishing at some point is strictly smaller than the one of the metric hSmin; this
is impossible.

As pointed out in [53], it would be extremely interesting to establish a
similar relationship between hDmin and hSmin without the strict positivity of L.
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[24] A. Höring, Positivity of direct image sheaves - a geometric point of view, in
preparation, available on the author’s home page.

[25] C.D. Hacon, J. McKernan, Existence of minimal models for varieties of general
type, II, (Existence of pl-flips) arXiv:math.AG/0808, 2009.

[26] Y. Kawamata; Kodaira dimension of algebraic fiber spaces over curves, Invent.
Math. 66, 1982.



556 Mihai Păun
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Abstract

In 1985 Kazuya Kato formulated a fascinating framework of conjectures which
generalize the Hasse principle for the Brauer group of a global field to the so-
called cohomological Hasse principle for an arithmetic scheme X. He defined
an invariant KHa(X) (a ≥ 0), called the Kato homology of X, that reflects
the arithmetic nature of X. As a generalization of the classical Hasse principle,
Kato conjectured the vanishing of KHa(X) = 0 for a > 0, when X is a proper
smooth variety over a finite field, or a regular scheme proper and flat over the
ring of integers in a number field or in a local field. The conjecture turns out to
play a significant rôle in arithmetic geometry. We will explain recent progress on
the conjecture and its implications on finiteness of motivic cohomology, special
values of zeta functions, a generalization of higher dimensional class field theory,
and a geometric application to quotient singularities.
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Introduction

A fundamental fact in number theory is the Hasse principle for the Brauer
group of a global field K, which is a global-local principle for a central simple
algebra A over K:

A 'Mn(K) if and only if A⊗K Kx 'Mn(Kx) for all places x of K,
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where Mn(∗) is the matrix algebra and Kx is the completion of K at x. In
1985 Kazuya Kato [K] formulated a fascinating framework of conjectures which
generalizes this fact to higher dimensional arithmetic schemes, namely schemes
of finite type over a finite field or the ring of integers in a number field or a
local field. For an integer n > 0 and for an arithmetic scheme X, he defined a
collection of Z/nZ-modules

KHa(X,Z/nZ) (a ≥ 0)

which we call the Kato homology of X. The Hasse principle for the Brauer
group of a global field K is equivalent to the vanishing KH1(X,Z/nZ) = 0
for all n > 0, where X = Spec(OK) with the ring OK of integers in K. As
a generalization of this fact, he proposed the following conjecture called the
cohomological Hasse principle.

Conjecture 0.1. Let X be either a proper smooth variety over a finite field,
or a regular scheme proper flat over the ring of integers in a number field or in
a local field. Then

KHa(X,Z/nZ) = 0 for a > 0.

There is work on the conjecture by Kato [K], Colliot-Thélène [CT] and
Jannsen-Saito [JS1], where the vanishing KHa(X,Z/nZ) = 0 for small degree
a is shown. The first aim of this article is to report on the recent progress on
the conjecture, the work of U. Jannsen, M. Kerz and the author, which proves
the vanishing in all degrees under suitable conditions. The second aim is to
give applications of these results. It turns out that the cohomological Hasse
principle plays a significant rôle in arithmetic geometry, in particular in the
study of motivic cohomology of arithmetic schemes.

Motivic cohomology is an important object to study in arithmetic geometry.
It includes the ideal class group and the unit group of a number field, and the
Chow groups of algebraic varieties. It is closely related to zeta-functions of
algebraic varieties over a finite field or an algebraic number field. One of the
important open problems is the conjecture that motivic cohomology of regular
arithmetic schemes is finitely generated, a generalization of the known finiteness
results on the ideal class group and the unit group of a number field (Minkowski
and Dirichlet), and the group of the rational points on an abelian variety over a
number field (Mordell-Weil). There have been only few results on the conjecture
except the cases stated above and the one-dimensional case (Quillen). In [JS2] it
was found that the Kato homology KHa(X,Z/nZ) fills a gap between motivic
cohomology with finite coefficient and étale cohomology of X. Thus, thanks to
known finiteness results on étale cohomology, the cohomological Hasse principle
implies new finiteness results on motivic cohomology.

We will also give other implications. One is a result on special values of the
zeta function ζ(X, s) of a smooth projective variety over a finite field, which
expresses

ζ(X, 0)∗ := lim
s→0

ζ(X, s) · (1− q−s)
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by the cardinalities of the torsion subgroups of motivic cohomology groups of
X. It may be viewed as a geometric analogue of the analytic class number
formula for the Dedekind zeta function of a number field.

Another application is a generalization of the higher dimensional class field
theory by Schmidt-Spiess [ScSp] which describes the abelian fundamental group
of a smooth variety over a finite field by using its Suslin homology of degree 0.
Suslin homology is an algebraic analogue of singular homology for topological
spaces and is compared to motivic homology defined by Voevodsky. We gener-
alize the work of Schmidt-Spiess to its higher-degree variant and establish an
isomorphism between Suslin homology of higher degree and the dual of étale
cohomology.

Finally we give an application to a geometric problem on singularities. A
consequence is the vanishing of weight homology groups of the exceptional
divisors of desingularizations of quotient singularities.

The paper is organized as follows.

In §1 we give a brief review on motivic cohomology. There are mainly two
ways of definition. The first one is due to Voevodsky [V1] who constructed the
triangulated category of motives and defined motivic (co)homology as the space
of maps in this category. We will not go into details of this construction but
we explain another (more concrete) definition of motivic (co)homology given
by Bloch’s higher Chow group and Suslin’s homology.

In §2 we state the finiteness conjecture of motivic cohomology and recall
some known results on the conjecture. As a tool to approach the conjecture,
we introduce the cycle class map from motivic cohomology to étale cohomology
constructed by Bloch [B1] and Geisser-Levine [GL] and K.Sato [Sat2].

In §3 we state the Kato conjectures on the cohomological Hasse principle
together with a lemma which affirms that the Kato homology controls the kernel
and cokernel of the cycle class map introduced in §2.

In §4 we recall all known results on the Kato conjectures and give a very
rough sketch of the proof of the most recent result due to Kerz-Saito [KeS],
[Sa3].

In §5 we state some new results on the finiteness conjecture of motivic
cohomology as an application of the result of Kerz-Saito.

In §6 we give its application to special values of the zeta function of a smooth
projective variety over a finite field.

In §7 we give as another application a higher-degree variant of the higher
dimensional class field theory of Schmidt-Spiess [ScSp].

In §8 we explain a geometric application to quotient singularities.

The author is grateful to Prof. J.-L. Colliot-Thélène and Prof. T. Geisser
for their helpful comments on the first version of this paper.
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1. Motivic Cohomology

The purpose of this section is to give a quick review on motivic cohomology.
We start with the class number formula for an algebraic number field K:

lim
s→0

ζK(s) · s−ρ0 = −
|Cl(K)| ·RK

|(O×K)tors|
(1.1)

where ζK(s) is the Dedekind zeta function of K, ρ0 is the rank of the unit group
O×K of the ring OK of integers, (O×K)tors is the torsion part of O×K (namely the
group of the roots of unity in K), Cl(K) is the ideal class group of OK , and
RK is Dirichlet’s regulator

The philosophical question arises whether one could view the above formula
as an arithmetic index theorem:

index (analytic invariant) = characteristic class (e.g. Euler characteristic)

An answer to the question is given by motivic cohomology

Hi
M (X,Z(r))

which is defined for a scheme X (satisfying a reasonable condition) and for
integers i and r. Indeed, in case X = Spec(OK) with OK as above, we have

Cl(K) = H2
M (X,Z(1)), O×K = H1

M (X,Z(1)).

Motivic cohomology theory may be considered universal cohomology theory
in view of the existence of regulator maps to other cohomology theories, defined
according to the context where X lives:

Hi
M (X,Z(r)) →

Hi
B(X,Z(r)) (Betti cohomology)

Hi
D(X,Z(r)) (Deligne cohomology)

Hi
ét(X,Z`(r)) (étale cohomology )

Hi
crys(X/W (k)) (crystalline cohomology)

· · · · · · · · ·

Dirichlet’s regulator map that defines RK in (1.1) can be viewed as a special
case of the regulator map to Deligne cohomology.

Another important property of motivic cohomology is its relation to alge-
braic K-theory via the spectral sequence for smooth X

Ep,q
2 = Hp

M

(
X,Z

(
−
q

2

))
⇒ K−p−q(X) (1.2)

which is an algebraic analogue of the Atiyah-Hirzebruch spectral sequence for
toplogical K-theory (see [Gra2] and [Le]).
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Here we introduce two kinds of constructions of motivic cohomology. The
first one is due to Voevodsky [V1] who constructed DM(k), the triangulated
category of motives over a field k. It is a tensor category equipped with a functor

M : Sm/k → DM(k) ; X →M(X)

where Sm/k is the category of smooth schemes over the field k. Motivic coho-
mology and homology of X ∈ Sm/k are then defined as the space of maps in
DM(k):

Hi
M (X,Z(r)) = HomDM(k)(M(X),Z(r)[i]),

HM
i (X,Z(r)) = HomDM(k)(Z(r)[i],M(X))

respectively, where Z(1) is a distinguished object in DM(k) called the Tate
object. It is invertible for the tensor structure and Z(r) for r ∈ Z is the r-th
tensor power of Z(1). We do not go into details on DM(k).

Another (more concrete) definition of motivic (co)homology is given by

CHr(X, q), Bloch’s higher Chow group ([B2], [Le])

HS
i (X,Z), Suslin homology ([SV1], [Sc])

defined for a scheme X of finite type over a field or a Dedekind domain. We
note that CHr(X, q) for q = 0 is the Chow group of algebraic cycles on X of
codimension r modulo rational equivalence. We have the following comparison
result ([V4], [MVW], Lecture 19):

Theorem 1.1. For a smooth scheme X over a field, we have natural isomor-
phisms

Hi
M (X,Z(r)) ' CHr(X, 2r − i), HM

i (X,Z(0)) ' HS
i (X,Z).

Before going to a brief review of the definition of Bloch’s higher Chow group
and Suslin homology, we first recall the singular homology of a topological space
X:

Hq(X,Z) := Hq(s(X, •))

where s(X, •) is the singular chain complex:

· · · → s(X, q)
∂
−→ s(X, q − 1)

∂
−→ · · · → s(X, 0),

s(X, q) =
⊕

Γ

Z[Γ], Γ ranges over all continuous maps ∆q
top → X.

Here

∆q
top =



(x0, x1, . . . , xq) ∈ Rq+1

∣∣∣∣∣∣

∑

0≤i≤q

xi = 1, xi ≥ 0





is the standard simplex and the boundary map ∂ is the alternating sum of the
restrictions to the faces of codimension 1 in ∆q

top.
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The definition of Bloch’s higher Chow group and Suslin homology is an
algebraic analogue of the above construction. Here we assume that X is of
finite type over a field k while it is possilbe to treat more general cases (cf. [Le]
and [Sc]). The standard simplex is replaced by its algebraic analogue

∆q = Spec

(
k[t0, . . . , tq]/

(
q∑

i=0

ti − 1

))
,

whose faces are ∆s = {ti1 = · · · = tiq−s
= 0} ⊂ ∆q. We have two kinds of

analogues of s(X, q) given by the spaces of algebraic cycles on X ×∆q:

zr(X, q) =
⊕

Γ⊂X×∆q

Z[Γ], c0(X, q) =
⊕

Ξ⊂X×∆q

Z[Ξ]

where Γ (resp. Ξ) ranges over all integral closed subschemes of X ×∆q, which
have codimension r and intersect properly all faces ∆s ⊂ ∆q (resp. which are
finite surjective over ∆q). One may be tempted to take Γ and Ξ as maps of
schemes f : ∆q → X but this does not give a correct answer (such f give rise
to algebraic cycles on X×∆q by taking its graphs but there are not sufficiently
many maps of schemes).

These groups fit into the so-called cycle complexes (graded homologically)

zr(X, •) : · · · → zr(X, q)
∂
−→ zr(X, q − 1)

∂
−→ · · ·

∂
−→ zr(X, 0),

c0(X, •) : · · · → c0(X, q)
∂
−→ c0(X, q − 1)

∂
−→ · · ·

∂
−→ c0(X, 0).

Bloch’s higher Chow group and Suslin homology are defined as the homology
groups of these complexes:

CHr(X, q) := Hq

(
zr(X, •)

)
,

HS
q (X,Z) := Hq

(
c0(X, •)

)
.

One may also consider the versions with finite coefficients:

CHr(X, q;Z/nZ) := Hq

(
zr(X, •)⊗ Z/nZ

)
,

HS
q (X,Z/nZ) := Hq

(
c0(X, •)⊗ Z/nZ

)
.

In what follows, for a regular scheme of finite type over a perfect field or a
Dedekind domain, we denote (cf. Theorem 1.1)

Hi
M (X,Z(r)) = CHr(X, 2r − i),

Hi
M (X,Z/nZ(r)) = CHr(X, 2r − i;Z/nZ).

(1.3)
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We have an exact sequence

0→ Hi
M (X,Z(r))/n→ Hi

M (X,Z/nZ(r))→ Hi+1
M (X,Z(r))[n]→ 0 (1.4)

where M [n] = Ker(M
n
−→M) for an abelian group M .

2. Finiteness Conjecture on Motivic

Cohomology

A fundamental question in arithmetic geometry is the following.

Conjecture 2.1. For a regular scheme X of finite type over Fp or Z,
Hq

M (X,Z(r)) is finitely generated.

In view of the spectral sequence (1.2), the conjecture would imply that the
algebraic K-groups Ki(X) of X are finitely generated, which is the so-called
Bass conjecture. The above conjecture is a basis of the conjectures on special
values of zeta functions of arithmetic varieties due to Beilinson and Bloch-Kato.

Remark 2.2. For a (not necessarily regular) scheme X of finite type over Fp or
Z, CHr(X, q) is conjectured to be finitely generated. Indeed this follows from
Conjecture 2.1 by the localization sequence for higher Chow groups.

In §5 we will present new finiteness results on motivic cohomology. Very
little had been known about the conjecture except the following results. Let X
be a regular scheme of finite type over Fp or Z.

Theorem 2.3. Hq
M (X,Z(1)) is finitely generated for all integers q.

In factCwe have

Hq
M (X,Z(1)) = CH1(X, 2− q) =





Pic(X)

Γ(X,O×X)

0

q = 2

q = 1

otherwise

Therefore the above theorem is a consequence of the finiteness results on the
ideal class group and the unit group for the ring of integers in a number field
(Minkowski and Dirichlet), and the Mordell-Weil theorem on the rational points
of an abelian variety over a number field.

Theorem 2.4. If dim(X) = 1, Hq
M (X,Z(r)) is finitely generated up to torsion.

This follows from the fact that Ki(X) is finitely generated, due to Quillen
[Q] (see also [Gra1]), together with a result on the degeneracy of the spectral
sequence (1.2) up to torsion ([Le], Theorem 11.7). As for the torsion part of
Hq

M (X,Z(r)), one can show that it is finite assuming the Bloch-Kato conjecture
stated later in this section (see Theorem 2.7 and [Le], Theorems 14.3 and 14.5).
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Theorem 2.5. H2d
M (X,Z(d)) is finitely generated where d = dim(X).

Note that H2d
M (X,Z(d)) coincides with the Chow group CH0(X) of zero

cycles on X modulo rational equivalence. Theorem 2.5 is a consequence of
higher unramified class field theory due to Bloch[B1] and Kato-Saito[KS1]:

Theorem 2.6. Let X be a regular scheme proper over Fp or Z. Assume X(R) =
∅ for simplicity. Then the higher reciprocity map

ρX : CH0(X)→ πab
1 (X)

is an isomorphism if X is flat over Z, and injective with dense image otherwise.

Here πab
1 (X) is the abelian fundamental group of X and the definition of ρX

will be given in §8. Theorem 2.5 follows from Theorem 2.6 and the finiteness
result of πab

1 (X) due to Katz-Lang.
A way to approach Conjecture 2.1 is to use the cycle class map. Let X be a

regular scheme of finite type over a perfect field or the ring Ok of integers in a
number field or in a local field. Under a technical condition (which is necessary
only in the case X is flat over Ok and n is not invertible in Ok), there is a cycle
class map

ρX : Hi
M (X,Z/nZ(r))→ Hi

ét(X,Z/nZ(r)) (2.1)

from the motivic cohomology with finite coefficient to the étale cohomology
with suitable coefficient (explained below). The constructions of the cycle class
map are due to Bloch [B1] and Geisser-Levine [GL] and K.Sato [Sat2]. The
target group of the cycle class map varies according to the context: In case n
is invertible on X,

Hi
ét(X,Z/nZ(r)) = Hi

ét(X,µ⊗rn ),

where µn is the étale sheaf of the n-th roots of unity. In case X is smooth over
a perfect field k and n = mpν with p = ch(k) and (p,m) = 1,

Hi
ét(X,Z/nZ(r)) = Hi

ét(X,Z/mZ(r))⊕Hi−r(X,WνΩ
r
X,log), (2.2)

where WνΩ
r
X,log is the logarithmic part of the de Rham-Witt sheaf WνΩ

r
X

([Il1], I 5.7). Finally, in case X is flat over Ok and and n is not invertible on
Ok, H

i
ét(X,Z/nZ(r)) is the hyper cohomology of a certain object of the derived

category of complexes of étale sheaves, which is defined by K. Sato [Sat1] as an
étale incarnation of the motivic complex on X with finite coefficient.

We note that the target group of the cycle class map is known to be finite.
Thus the injectivity of the map would imply a finiteness result for motivic
cohomology of X. Indeed we have the following result due to Suslin-Voevodsky
[SV2] and Geisser-Levine [GL] (see also K.Sato [Sat2]).

Theorem 2.7. Let X be as above. Assume (BK)
r
X,` (see below) for every

prime ` dividing n. Then the cycle class map

ρX : Hi
M (X,Z/nZ(r))→ Hi

ét(X,Z/nZ(r))

is an isomorphism for i ≤ r and injective for i = r + 1.
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In case X is smooth over a perfect field of characteristic p > 0 and n = pr,
this is a theorem of Geisser-Levine, which is used in Sato’s work for the mixed
characteristic case.

Corollary 2.8. Let X be as above and assume X is of finite type over Fp or
Z. Then Hi

M (X,Z/nZ(r)) is finite for i ≤ r + 1.

We now explain the condition (BK)
t
X,`. For a field L and a prime ` and an

integer t > 0, we have the Galois symbol map

ht
L,` : K

M
t (L)/`→ Ht(L,Z/`Z(t))

where H∗(L,Z/`Z(t)) = H∗ét(Spec(L),Z/`Z(t)) is the Galois cohomology of L
and KM

t (L) denotes the Milnor K-group of L. It is conjectured that ht
L,` is

surjective. The conjecture is called the Bloch-Kato conjecture in case l 6= ch(L)
(the case l = ch(L) is known to hold due to Bloch-Gabber-Kato [BK]). The
surjectivity of ht

L,` is known if t = 1 (the Kummer theory) or t = 2 (Merkurjev-
Suslin [MS]) or ` = 2 (Voevodsky [V1]). Recently a proof of the conjecture has
been announced by Rost and Voevodsky (see [SJ] and [V2], and [HW], [V3],
[We1] and [We2] for details).

For a scheme X, we introduce the condition:

(BK)
t
X,`: ht

L,` is surjective for any field L finitely generated over a residue field
of X.

3. Cohomological Hasse Principle

In this section we discuss the cohomological Hasse principle which generalizes
the following theorem of Hasse-Minkowski to higher dimensional arithmetic
schemes. It plays an important role in the study of motivic cohomology of
arithmetic schemes (see Lemma 3.6 below).

Theorem 3.1. A quadratic form with rational coefficients

a1X
2
1 + · · · anX

2
n (a1, . . . , an ∈ Q)

has a non-trivial zero in Q if and only if it has in R and Qp for every prime p.

In general, a quadratic form over a field k with ch(k) 6= 2:

X2 − aY 2 − bZ2 (a, b ∈ k×)

has a non-trivial zero in k if and only if

h(a) ∪ h(b) = 0 ∈ H2(k,Z/2Z)

where h : k×/2 ' H1(k,Z/2Z) is the Kummer isomorphism, and

∪ : H1(k,Z/2Z)×H1(k,Z/2Z)→ H2(k,Z/2Z)
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is the cup product. Therefore the case n = 3 (which is the most crucial to the
proof) of the theorem is equivalent to the injectivity of the restriction map

H2(Q,Z/2Z)→
⊕

p∈PQ

H2(Qp,Z/2Z) ⊕ H2(R,Z/2Z)

where PQ is the set of the rational primes. Moreover we have the residue iso-
morphism for p ∈ PQ:

∂p : H2(Qp,Z/2Z) ' H1(Fp,Z/2Z), (3.1)

and Theorem 3.1 is equivalent to the injectivity of the residue map:

H2(Q,Z/2Z)
∂
−→

⊕

p∈PQ

H1(Fp,Z/2Z) ⊕ H2(R,Z/2Z). (3.2)

This fact has been extended to the following.

Theorem 3.2. (Brauer-Hasse-Noether and Witt) Let X be either Spec(OK)
with OK the ring of integers in a number field or in a local field, or a proper
smooth curve over a finite field. Let K be the function field of X. For simplicity,
in case K is a number field, we assume that n is odd or that X(R) = ∅ (namely
K is totally imaginary). Then the residue map

H2(K,Z/nZ(1))
∂
−→

⊕

x∈X(0)

H1(κ(x),Z/nZ) (3.3)

is injective, where X(0) is the set of the closed points of X, κ(x) is the residue
field of x ∈ X, and Z/nZ(1) is defined as in (2.2).

We remark that there is a natural isomorphism

H2(K,Z/nZ(1)) ' Br(K)[n],

where Br(K) is the Brauer group of K (the set of equivalence classes of cen-
tral simple algebras over K endowed with a suitable group structure). Thus
Theorem 3.2 in case K is a global field, is equivalent to the Hasse principle for
the Brauer group of K, namely the following global-local principle for such an
algebra A:

A 'Mn(K)⇔ A⊗K Kx 'Mn(Kx) (∀x ∈ X(0))

where Mn(∗) is the matrix algebra and Kx is the completion of K at x.
In 1985 K.Kato [K] formulated a fascinating framework of conjectures which

generalize Theorem 3.2 to higher dimensional arithmetic schemes X, namely a
scheme of finite type over a finite field or the ring of integers in a number field



568 Shuji Saito

or a local field. He defined a complex of abelian groups KC•(X,Z/nZ) (now
called the Kato complex of X):

· · ·
∂
−→

⊕

x∈X(a)

Ha+1(x,Z/nZ(a))
∂
−→

⊕

x∈X(a−1)

Ha(x,Z/nZ(a− 1))
∂
−→ · · ·

· · ·
∂
−→

⊕

x∈X(1)

H2(x,Z/nZ(1))
∂
−→

⊕

x∈X(0)

H1(x,Z/nZ)

Here H∗(x,Z/nZ(a)) is the Galois cohomology of the residue fields κ(x) of x
and Z/nZ(a) is defined as in (2.2). The term in degree a is the direct sum of
the Galois cohomology group for x ∈ X(a), where

X(a) = {x ∈ X | dim {x} = a},

the set of those points of X whose closure in X has dimension a. Note that
x ∈ X(a) if and only if trdegFp

κ(x) = a or trdegQκ(x) = a− 1.
In case X is as in Theorem 3.2, KC•(X,Z/nZ) coincides with the complex

(3.3), and the assertion of Theorem 3.2 is equivalent to the vanishing of the
first homology group H1

(
KC•(X,Z/nZ)

)
.

We define Kato homology of an arithmetic scheme X as

KHa(X,Z/nZ) = Ha

(
KC•(X,Z/nZ)

)
(a ≥ 0). (3.4)

We will also use

KHa(X,Q/Z) = lim
−→
n

KHa(X,Z/nZ),

KHa(X,Q`/Z`) = lim
−→
n

KHa(X,Z/`nZ),

where ` is a prime. Kato notices that Theorem 3.2 admits the following conjec-
tural generalization.

Conjecture 3.3. Let X be a proper smooth variety over a finite field. Then

KHa(X,Z/nZ) = 0 (∀a > 0).

We remark that Geisser [Ge2] defined Kato homology with integral coeffi-
cient and studied an integral version of Conjecture 3.3.

Conjecture 3.4. Let X be a regular scheme proper flat over the ring Ok of
integers in a number field. Assume

(∗) either n is odd or k is totally imaginary.

Then
KHa(X,Z/nZ) = 0 (∀a > 0).
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We note that the assumption (∗) may be removed by modifying
KHa(X,Q/Z) (see [JS1] Conjecture C on page 482).

Conjecture 3.5. Let X be a regular scheme proper and flat over Spec(Ok)
where Ok is the ring of integers in a local field. Then

KHa(X,Z/nZ) = 0 for a ≥ 0.

The relationship of Kato homology of an arithmetic scheme to its motivic
cohomology is explained in the following lemma (see [JS2], Lemma 6.2).

Lemma 3.6. Let X be a connected regular scheme of finite type over a finite
field or the ring Ok of integers in a number field or of a local field with d =
dim(X). For an integer i ≥ 0, assume (BK)

t
X,` with t = 2d − i + 1 (see §2).

Then the cycle class map (2.1)

ρX : Hi
M (X,Z/nZ(r))→ Hi

ét(X,Z/nZ(r))

is an isomorphism for r > d := dim(X), and there is an exact sequence

KH2d−i+2(X,Z/nZ)→ Hi
M (X,Z/nZ(d))

ρX
−→

Hi
ét
(X,Z/nZ(d))→ KH2d−i+1(X,Z/nZ).

4. Results on Cohomological Hasse Principle

In this section we state the known results on the Kato conjectures 3.3, 3.4 and
3.5. Let X be as in the conjectures. As explained, the Kato conjectures in case
dim(X) = 1 rephrase the classical fundamental facts on the Brauer group of a
global field and a local field.

Kato [K] proved Conjectures 3.3, 3.4, and 3.5 in case dim(X) = 2. He
deduced it from higher class field theory for X proved in [KS2] and [Sa1].
For X of dimension 2 over a finite field, the vanishing of KH2(X,Z/nZ) in
Conjecture 3.3 had been earlier established in [CTSS] (prime-to-p-part), and
by M. Gros [Gr] for the p-part.

The first result after [K] is the following:

Theorem 4.1. (Saito [Sa2]) Let X be a smooth projective 3-fold over a finite
field F . Then KH3(X,Q`/Z`) = 0 for any prime ` 6= ch(F ).

This result was immediately generalized to the following:

Theorem 4.2. (Colliot-Thélène [CT], Suwa [Sw]) Let X be a smooth projective
variety over a finite field. Then

KHa(X,Q/Z) = 0 for 0 < a ≤ 3
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[CT] handled the prime-to-p part where p = ch(F ), and Suwa [Sw] later
adapted the technique of [CT] to handle the p-part. A tool in [Sa2] is a class
field theory of surfaces over local fields, while the technique in [CT] is global
and different from that in [Sa2].

The arithmetic version of the above theorem was established in the follow-
ing:

Theorem 4.3. (Jannsen-Saito [JS1]) Let X be a regular projective flat scheme
over S = Spec(Ok) where k is a number field or a local field. Fix a prime `.
Assume that for any closed point v ∈ S, the reduced part of Xv = X ×S v is a
divisor with simple normal crossings on X and that Xv is reduced if v|`. For
simplicity, if k is a number field, we assume that ` 6= 2 or k is totally imaginary.
Then

KHa(X,Q`/Z`) = 0 for 0 < a ≤ 3

The following theorem is a direct consequence of [J], Theorem 0.5. It reduces
Conjecture 3.4 to Conjecture 3.5 for Kato homology with Q/Z-coefficient.

Theorem 4.4. (Jannsen [J]) Let X be a regular projective flat scheme over
S = Spec(Ok) where k is a number field. For each closed point v ∈ S, let
Sv = Spec(Okv

) where kv is the completion of k at v and write XSv
= X×S Sv.

Fix a prime ` and assume for simplicity that ` 6= 2 or k is totally imaginary.
Then we have a natural isomorphism

KHa(X,Q`/Z`) '
⊕

v∈S(0)

KHa(Xv,Q`/Z`) for a > 0.

In the next theorem, Conjecture 3.3 is shown assuming resolution of singu-
larities.

Theorem 4.5. (Jannsen [J], Jannsen-Saito [JS2]) Let X be a projective
smooth variety of dimension d over a finite field. Let t ≥ 1 be an integer.
Then we have

KHa(X,Q/Z) = 0 for 0 < a ≤ t

if either t ≤ 4 or (RS)d, or (RES)t−2 (see below) holds.

(RS)d: For any X integral and proper of dimension≤ d over F , there exists
a proper birational morphism π : X ′ → X such that X ′ is smooth
over F . For any U smooth of dimension≤ d over F , there is an open
immersion U ↪→ X such that X is projective smooth over F with
X − U a divisor with simple normal crossings on X.

(RES)t: For any smooth projective varietyX over F , any divisor Y with simple
normal crossings on X with U = X − Y , and any integral closed
subscheme W ⊂ X of dimension≤ t such that W ∩U is regular, there
exists a birational proper map π : X ′ → X such that X ′ is projective
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smooth over F and π−1(U) ' U , and that Y ′ = X ′ − π−1(U) is
a divisor with simple normal crossings on X ′, and that the proper
transform of W in X ′ is regular and intersects transversally with Y ′.

We note that a proof of (RES)2 is given in [CJS] based on an idea of Hiron-
aka, which enables us to obtain the unconditional vanishing of Kato homology
in degree a ≤ 4.

The above approach has been improved to remove the assumptions (RS)d
and (RES)t on resolution of singularities, at least if we are restricted to the
prime-to-ch(F ) part:

Theorem 4.6. (Kerz-Saito [KeS], [Sa3]) Let X be a proper smooth variety
over a finite field F . For a prime ` 6= ch(F ), we have KHa(X,Q`/Z`) = 0 for
a > 0.

A key to the proof is the following refinement of de Jong’s alteration theorem
due to Gabber (see [Il2]).

Theorem 4.7. (Gabber) Let F be a perfect field and X be a variety over F . Let
W ⊂ X be a proper closed subscheme. Let ` be a prime different from ch(F ).
Then there exists a projective morphism π : X ′ → X such that

• X ′ is smooth over F and the reduced part of π−1(W ) is a divisor with
simple normal crossings on X.

• π is generically finite of degree prime to `,

The same technique proves the following arithmetic version as well:

Theorem 4.8. (Kerz-Saito [KeS], [Sa3]) Let X be a regular scheme, proper
flat scheme over a henselian discrete valuation ring with finite residue field F .
Then, for every prime ` 6= ch(F ), we have KHa(X,Q`/Z`) = 0 for a ≥ 0.

We remark that one can prove the above results with Z/`nZ-coefficient
instead of Q`/Z`-coefficient by using the Bloch-Kato conjecture:

Theorem 4.9. Let X and ` be as in Theorem 4.6 or Theorem 4.8. Assume
(BK)

t
X,` holds. Then we have KHa(X,Z/`nZ) = 0 for 0 < a ≤ t.

In the rest of this section we give a very rough sketch of the proof of Theorem
4.6. We fix a finite field F and work in the category C of schemes separated of
finite type over F . We first recall the following:

Definition 4.10. Let C∗ be the category with the same objects as C, but
morphisms are the proper maps in C. Let Ab be the category of abelian group.
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A homology theory H = {Ha}a∈Z on C is a sequence of covariant functors:

Ha(−) : C∗ → Ab

satisfying the following conditions:

(i) For each open immersion j : V ↪→ X in C, there is a map j∗ : Ha(X) →
Ha(V ), associated to j in a functorial way.

(ii) If i : Y ↪→ X is a closed immersion in X, with open complement j : V ↪→
X, there is a long exact sequence (called localization sequence)

· · ·
∂
−→ Ha(Y )

i∗−→ Ha(X)
j∗

−→ Ha(V )
∂
−→ Ha−1(Y ) −→ · · · .

(The maps ∂ are called the connecting morphisms.) This sequence is func-
torial with respect to proper maps or open immersions, in an obvious way.

It is an easy exercise to check that Kato homology (3.4)

KH(−,Λ) = {KHa(−,Λ)}a∈Z (Λ = Z/nZ, Q/Z, Q`/Z`)

provides us with a homology theory on C. Another homology theory which we
use is the étale homology theory H ét(−,Λ) on C given by

H ét
a (X,Λ) := H−a(Xét, R f !Λ) for f : X → Spec(F ) in C.

where Rf ! is the right adjoint of Rf! defined in [SGA 4], XVIII, 3.1.4. Using
a result of [JSS], we can identify KHa(X,Λ) with an E2-term of the niveau
spectral sequence to get the following map as an edge homomorphism

εa : H ét
a−1(X,Λ)→ KHa(X,Λ) for each a ≥ 1 and X ∈ C.

This gives rise to a natural transformation of homology theories

ε : H ét(−,Λ)[−1]→ KH(−,Λ).

We now keep our attention to the above homology theories in case Λ =
Q`/Z` with ` 6= ch(F ) and in this case we simply write KHa(X) and H ét

a (X).
For each integer d > 0 consider the following condition:

KC(d): For any connected X ∈ C with dim(X) ≤ d which is proper and
smooth over F we have KHa(X) = 0 for a ≥ 1.

We prove KC(d) by induction on d. One of the basic ingredients in the
proof is a result of Jannsen and Saito [JS2], Lemma 3.4 relying on weight
arguments [D] which implies the following (see [Sa3], Lemma 3.10 for its proof):

Claim 4.11. Assume KC(d− 1). Let X ∈ C be connected proper smooth over
F , and let Y be a divisor with simple normal crossings on X such that one of
the irreducible components of Y is ample. Put U = X −Y . Then the composite
map

δa : H ét

a−1(U)
εa−→ KHa(U)

∂
−→ KHa−1(Y )

is injective for 1 ≤ a ≤ d and surjective for a ≥ 2.
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Now we sketch a proof of KC(d− 1) =⇒ KC(d). Let X ∈ C be a connected
proper smooth over F with dim(X) = d. Fix an element α ∈ KHa(X) for
a ≥ 1. We have to show α = 0. From the construction of εa, it is easy to see
that there is a dense open subscheme j : U → X satisfying the condition

(∗) j∗(α) is in the image of εa : H ét
a−1(U)→ KHa(U).

Suppose for the moment that Y = X − U is a divisor with simple normal
crossings on X. Then one can use a Bertini argument to find a hypersurface
section H ↪→ X such that Y ∪ H is a divisor with simple normal crossings.
Replacing Y by Y ∪ H and U by U − U ∩ H, the condition (∗) is preserved.
Consider the commutative diagram

KHa+1(U)
∂

// KHa(Y ) // KHa(X)
j∗

// KHa(U)
∂

// KHa−1(Y )

H ét
a (U)

εa+1

OO

δa+1

88
q

q
q

q
q

q
q

q
q

q
q

H ét
a−1(U)

εa

OO

δa

88
q

q
q

q
q

q
q

q
q

q

By the assumption KC(d− 1), Claim 4.11 implies that the map δa is injective
and the map δa+1 is surjective. A simple diagram chase shows that α = 0.

In the general case in which Y ↪→ X is not necessarily a divisor with simple
normal crossings we use Theorem 4.7 to find an alteration f : X ′ → X of degree
prime to ` such that f−1(Y ) is a divisor with simple normal crossings. We then
construct a pullback map

f∗ : KHa(X)→ KHa(X
′)

which allows us to conduct the above argument for f∗(α) ∈ KHa(X
′). This

implies f∗(α) = 0 and taking the pushforward gives f∗f
∗(α) = deg(f)α = 0.

Since deg(f) is prime to ` we conclude α = 0 and therefore we have finished
the proof.

The construction of the necessary pullback map on Kato homology, espe-
cially in the arithmetic case, and its compatibility with the pullback map on
etale homology are the most severe technical difficulties. This problem is solved
using Rost’s version of intersection theory and the method of deformation to
normal cones [R].

5. Application: Finiteness of Motivic

Cohomology

In the following sections we present some applications of the results on the
cohomological Hasse principle of §4. The first apllication is on the finiteness
conjecture for motivic cohomology.
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Theorem 5.1. Let X be a quasi-projective scheme over either a finite field F
or a henselian discrete valuation ring with finite residue field F . Let n > 0 be
an integer prime to ch(F ) and assume (BK)

t
X,` for all primes `|n and integers

t ≥ 0. Then CHr(X, q;Z/nZ) is finite for all r ≥ dim(X) and q ≥ 0.

Proof When X is regular and projective over the base, the assertion follows
from Theorem 4.9 and Lemma 3.6. The general case is reduced to the special
case by using the localization sequence for CHr(X, q;Z/nZ) and Gabbers’s
theorem 4.7 (and its variant for schemes over a discrete valuation ring). For
simplicity we only treat the case over a finite field F . We may assume n = `m

for a prime ` 6= ch(F ). We proceed by induction on dim(X). First we remark
that the localization sequence for higher Chow groups implies that for a dense
open subscheme U ⊂ X, the finiteness of CHr(X, q;Z/nZ) for all r ≥ dim(X)
and q is equivalent to that of CHr(U, q;Z/nZ). Thus it suffices to show the
assertion for any smooth variety U over F . If U is an open subscheme of a
smooth projective variety X over F , we have already seen that the assertion
holds for X and hence for U by the above remark. In general Gabbers’s theorem
4.7 implies that there exist an open subscheme V of a smooth projective variety
X over F , an open subscheme W of U , and a finite étale morphism π : V →W
of degree prime to `. We know that the assertion holds for V so that it holds
for W by a standard norm argument. This completes the proof by the above
remark. �

We note that the above theorem implies an affirmative result on the Bass
conjecture. Let K ′i(X,Z/nZ) be Quillen’s higher K-groups with finite coeffi-
cients constructed from the category of coherent sheaves on X (which coincide
with the algebraic K-groups with finite coefficients constructed from the cate-
gory of vector bundles when X is regular).

Corollary 5.2. Under the assumption of Theorem 5.1, K ′i(X,Z/nZ) is finite
for i ≥ dim(X)− 2.

Proof Theorem 2.7 implies that CHr(X, q;Z/nZ) is finite for r ≤ q+1. Hence
the assertion follows from Theorem 5.1 and the Atiyah-Hirzebruch spectral
sequence (see [Le] for its construction in the most general case):

Ep,q
2 = CH−q/2(X,−p− q;Z/nZ)⇒ K ′−p−q(X,Z/nZ)

(note Ep,q
2 can be nonzero only if q ≤ 0 and p+ q ≤ 0). �

6. Application: Special Values of Zeta Functions

Let X be a smooth projective variety over a finite field F . We consider the zeta
function

ζ(X, s) =
∏

x∈X(0)

1

1−N(x)−s
(s ∈ C)
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where N(x) is the cardinality of the residue field κ(x) of x. The infinite product
converges absolutely in the region {s ∈ C | <(s) > dim(X)} and can be contin-
ued to the whole s-plane as a meromorphic function. Indeed the fundamental
results of Grothendieck and Deligne imply that

ζ(X, s) =
∏

0≤i≤2d

P i
X(q−s)(−1)

i+1

,

where P i
X(t) ∈ Z[t], and that for every integer r

ζ(X, r)∗ := lim
s→r

ζ(X, s) · (1− qr−s)ρr

is a rational number, where ρr = −ords=rζ(X, s). The problem is to express
these values in terms of arithmetic invariants associated to X. It has been
studied by Milne [Mil] (who used étale cohomology) and Lichtenbaum [Li] (who
used (conjectural) étale motivic complexes) and Geisser [Ge1] (who used Weil-
étale cohomology). As an application of Theorem 4.9, we get the following new
result on the problem.

Theorem 6.1. Let X be a smooth projective variety over a finite field F . Let
p = ch(F ) and d = dim(X).

(1) For all integers j, the torsion part Hj
M (X,Z(d))tors of Hj

M (X,Z(d)) is

finite modulo the p-primary torsion subgroup. Moreover, Hj
M (X,Z(d))tors

is finite if d ≤ 4.

(2) We have the equality up to a power of p:

ζ(X, 0)∗ =
∏

0≤j≤2d

|Hj
M (X,Z(d))tors|

(−1)j (6.1)

The equality holds also for the p-part if d ≤ 4.

Remark 6.2. Let X = Spec(OK) where OK is the ring of integers in a number
field. The formula (6.1) should be compared with the formula

lim
s→0

ζ(X, s) · s−ρ0 = −
|H2

M (X,Z(1))tors|

|H1
M (X,Z(1))tors|

·RK

which is obtained by rewriting the class number formula (1.1) using motivic
cohomology. Thus (6.1) may be viewed as a geometric analogue of the class
number formula. Note that the regulator RK does not appear in (6.1) since
Hj

M (X,Z(d)) is (conjecturally) finite for j 6= 2d.
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Proof of Theorem: For simplicity we treat only the case ` 6= ch(F ). Put

Hj
M (X,Q`/Z`(d)) = lim

−→
n

Hj
M (X,Z/`nZ(d)),

Hj
ét(X,Q`/Z`(d)) = lim

−→
n

Hj
ét(X,Z/`nZ(d)).

By Theorem 4.6 and Lemma 3.6 we have an isomorphism

Hj
M (X,Q`/Z`(d)) ' Hj

ét(X,Q`/Z`(d)). (6.2)

By (1.4) we have an exact sequence

0→ Hj
M (X,Z(d))⊗Q`/Z` → Hj

M (X,Q`/Z`(d))→ Hj+1
M (X,Z(r)){`} → 0

(6.3)

whereM{`} denotes the `-primary torsion part for an abelian groupM . Assum-
ing j 6= 2d, one can show using Deligne’s proof of the Weil conjecture [D] and a
theorem of Gabber [Ga] that Hj

ét(X,Q`/Z`(d)) is finite and trivial for almost all

` (see [CTSS], Theorem 2). Thus (6.2) and (6.3) implyHj
M (X,Z(d))⊗Q`/Z` = 0

and we get an isomorphism of finite groups

Hj+1
M (X,Z(r)){`} ' Hj

ét(X,Q`/Z`(d)). (6.4)

This shows the first assertion (1). For the proof of (2), we use the formula

ζ(X, 0)∗ =
[H0

ét(X,Z)tors][H
2
ét(X,Z)cotor][H

4
ét(X,Z)] · · ·

[H1
ét(X,Z)][H3

ét(X,Z)][H5
ét(X,Z)] · · ·

(6.5)

due to Milne [Mil], Theorem 0.4. Here H0
ét(X,Z) = Z, H1

ét(X,Z) = 0, and

Hj
ét(X,Z) is finite for j ≥ 3, and the cotorsion part H2

ét(X,Z)cotor of H
2
ét(X,Z)

is finite. By arithmetic Poincaré duality we have

H2d−i
ét (X,Q`/Z`(d)) ' Hom(Hi+1

ét (X,Z`),Q`/Z`),

where Hi+1
ét (X,Z`) = lim

←−
n

Hi+1
ét (X,Z/`nZ), and this group is finite for i ≥ 1.

Thus the desired assertion follows from the following isomorphisms

Hj
ét(X,Z`) ' Hj

ét(X,Z){`} for j ≥ 3,

H2
ét(X,Z`) ' H2

ét(X,Z)cotor{`},

which can be easily shown by using the exact sequence of étale sheaves

0→ Z
`n
−→ Z→ Z/`nZ→ 0. �
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7. Application: Higher Class Field Theory

Another application of Theorem 4.9 is a generalization of the higher dimen-
sional class field theory by Schmidt-Spiess [ScSp] which describes the abelian
fundamental group of a smooth scheme over a finite field by using its Suslin
homology of degree 0 (see (7.2) below). The generalization is its higher-degree
variant and establishes an isomorphism between the Suslin homlogy of higher
degree and the dual of étale cohomology (see Theorem 7.2 below).

We start with a brief review of higher dimensional class field theory. Let X
be a regular scheme of finite type over Fp or Z. Higher dimensional class field
theory aims at describing all relations among the Frobenius elements

σx ∈ πab
1 (X)

associated to closed points of X. Here πab
1 (X) is the abelian fundamental group

of X, which classifies the abelian finite étale coverings of X. To be more precise,
let X(0) be the set of the closed points of X. For x ∈ X(0), the residue field κ(x)

of x is finite. The closed immersion x → X induces ρx : πab
1 (x) → πab

1 (X) and
πab
1 (x) is the absolute Galois group of κ(x) which is topologically generated by

the q-th power map where q = |κ(x)|. The Frobenius element σx ∈ πab
1 (X) is

defined as its image under ρx. This defines the map

ρX : Z0(X)→ πab
1 (X) ;

(
nx

)
x∈X(0)

→
∏

x∈X(0)

(σx)
nx

where Z0(X) =
⊕

x∈X(0)

Z is the group of zero cycles on X. It was shown by Lang

that the image of ρX is dense in πab
1 (X) and the problem is to determine its

kernel.
The question was first answered by Kato-Saito [KS2], which used the higher

idele class group of X defined as the cohomolgy group of the sheaf of relative
Milnor K-group with respect to the Nisnevich topology. Unfortunately, the
description of the kernel of ρX in this formulation is not direct and does not
give a clear answer to the above question except in the case where X is proper
over the base. It is the higher unramified class field theory stated as an (almost)
isomorphism:

ρX : CH0(X)→ πab
1 (X)

(see Theorem 2.6). Recall

CH0(X) = Coker



⊕

y∈X(1)

κ(y)×
δ
−→

⊕

x∈X(0)

Z




where X(1) is the set of the generic points of the integral curves on X and δ is
given by taking the divisors of functions on those curves.
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An essential improvement has been given by the following theorem due to
Schmidt-Spiess [ScSp] and Kerz-Schmidt-Wiesend [W], [KeSc] (see also [Sz]).

Theorem 7.1. Let X be a connected regular scheme of finite type over Fp or
Z. Let n > 0 be an integer prime to the characteristic of the function field of
X. Then ρX : Z0(X)→ πab

1 (X) induces an isomorphism

Coker



⊕

y∈X(1)

κ(y)Σ,n
δ
−→

⊕

x∈X(0)

Z/nZ


 ' πab

1 (X)/n

For y ∈ X(1), κ(y)Σ,n is a subgroup of κ(y)× defined as follows. For simplic-
ity we restrict to the case X is over Fp. Let C ⊂ X be the closure of y in X,

C̃ be its normalization, and C be the smooth compactification of C̃, and put
Σy = C − C̃. Then

κ(y)Σ,n =
{
a ∈ κ(y)×

∣∣ a ∈
(
κ(y)×x

)n
for all x ∈ Σy

}

where κ(y)x is the completion of κ(y) at x.

In what follows we assume that X is smooth over a finite field. Schmidt-
Spiess [ScSp] have established a canonical isomorphism

Coker



⊕

y∈X(1)

κ(y)Σ,n
δ
−→

⊕

x∈X(0)

Z/nZ


 ' HS

0 (X,Z/nZ). (7.1)

(A similar isomorphism was shown by Schmidt [Sc] when X is flat over Z

under a certain tameness condition). Thus Theorem 7.1 can be rephrased as a
canonical isomorphism

HS
0 (X,Z/nZ) ' πab

1 (X)/n. (7.2)

As an application of Theorem 4.9, we can extend this to the following.

Theorem 7.2. ([KeS]) Let X be a connected smooth scheme over a finite field
Fq and let n > 0 be an integer prime to ch(Fq). Then there exists a canonical
isomorphism for all integers i ≥ 0

HS
i (X,Z/nZ) ' Hi+1

ét
(X,Z/nZ)∗ := Hom

(
Hi+1

ét
(X,Z/nZ),Z/nZ

)
,

where HS
i (X,Z/nZ) is the Suslin homology defined in §1. In particular

HS
i (X,Z/nZ) is finite.

The case i = 0 of Theorem 7.2 is reduced to the isomorphism (7.2) by the
natural isomorphism H1

ét(X,Z/nZ)∗ ' πab
1 (X)/n.
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Remark 7.3. Let X be separated of finite type over a finite field F . Assuming
resolution of singularities over F , Geisser [Ge3] proved that HS

i (X,Z/nZ) is
finite for all integers i and n.

8. Application: Resolution of Quotient

Singularities

We fix a field k and assume ch(k) = 0. Let C be the category C of separated
schemes of finite type over k. Let S ⊂ C be the subcategory of smooth projective
schemes over k. Fix an abelian group Λ. Based on work of Gillet and Soulé [GS],
Jannsen ([J], Theorem 5.9) proved the following.

Theorem 8.1. There exists a homology theory (cf. Definition 4.10)

HW (−,Λ) : C∗ → Ab

such that for all X ∈ S, we have

HW
a (X,Λ) =

{
Λπ0(X)

0

a = 0

a 6= 0,

where π0(X) is the set of connected components of X. We call HW
a (X,Λ) the

weight homology group of X with coefficient Λ.

We briefly review the construction of [GS]. To a simplicial object in S:

X• : · · ·X2

δ0−→
s0←−
δ1−→
s1←−
δ2−→

X1

δ0−→
s0←−
δ1−→

X0,

we associate a chain complex of abelian groups

W (X•,Λ) : · · · → Λπ0(Xn) ∂
−→ Λπ0(Xn−1) ∂

−→ · · ·
∂
−→ Λπ0(X0),

where ∂ : Λπ0(Xn) → Λπ0(Xn−1) is defined as ∂ =
∑n

a=0(−1)
a∂a with

∂a : Λπ0(Xn) → Λπ0(Xn−1) ; (xi)i∈π0(Xn) →



∑

δa(i)=j

xi




j∈π0(Xn−1)

.

For X ∈ C choose an open immersion j : X → X with X ∈ C proper over k
and let i : Y = X −X → X be the closed immersion for the complement. By
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[GS] 1.4, one can find a diagram

Y•
i•−→ X•

↓ πY ↓ πX

Y
i
−→ X

(8.1)

where Y• and X• are simplicial objects in S and πX and πY are hyperenvelopes.
To this diagram one associates a complex

Cone
(
W (Y•,Λ)

i•∗−→W (X•,Λ)
)
.

By [GS], 1.4, the imageW (X,Λ) of the above complex in the homotopy category
of chain complexes of abelian groups depends only on X and not on a choice
of the diagram (8.1). The homology theory in Theorem 8.1 is defined as

HW
a (X,Λ) := Ha(W (X,Λ)) for X ∈ C.

For example, if X is a divisor with simple normal crossings on a smooth pro-
jective variety over k, HW

a (X,Λ) is a homology group of the complex:

· · · → Λπ0(X
(a)) ∂
−→ Λπ0(X

(a−1)) ∂
−→ · · ·

∂
−→ Λπ0(X

(1)).

where X1, . . . , XN are the irreducible components of X and

X(a) =
∐

1≤ii<···<ia≤N

Xi1,...,ia (Xi1,...,ia = Xi1 ∩ · · · ∩Xia),

and the differentials ∂ are obvious ones.

Theorem 8.2. ([KeS2]) Let X be a quasi-projective smooth variety over k with
action of a finite group G. Let X/G be the geometric quotient ([Mu], Ch.II §7,
SGA 1 V §1).

(1) Assume that X is projective. Then HW
a (X/G,Z) = 0 for all a > 0.

(2) Assume that the singular locus Z of X/G is proper over k. Let π : Y →
X/G be a proper birational morphism such that Y is smooth over k and π
is an isomorphism over outside Z. Let E be the reduced part of π−1(Z).
Then HW

a (E,Z) ' HW
a (Z,Z) for all a. In particular, if Z is regular, then

HW
a (E,Z) = 0 for all a > 0.

Here we explain an idea of the proof of Theorem 8.2(1). The second assertion
(2) is an easy consequence of (1). SinceHW

a (Y,Z) for Y ∈ C is finitely generated,
it suffices to show the assertion for the weight homology group with coefficient
Λ = Q/Z. Without loss of generality, we assume that k is finitely generated
over Q. Then the basic idea of the proof is to introduce an arithmetic invariant
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KHa(Y ) for Y ∈ C which is defined without referring to desingularizations (or
hyperenvelopes) and to show the following facts:

(∗1) HW
a (Y,Q/Z) ' KHa(Y ) for all Y ∈ C.

(∗2) KHa(X/G) = 0 for a 6= 0, where X/G is as in Theorem 8.2(1).

To define such an invariant we consider

Ha(X) := lim
−→
n

Hom
(
Ha

c (Xét,Z/nZ),Q/Z
)

for X ∈ Ob(C). (8.2)

where Ha
c (Xét,Z/nZ) is the étale cohomology with compact support (cf. [JS2],

Example 2.5). It provides a homology theory on C and gives rise to the niveau
spectral sequence:

E1
p,q(X) =

⊕

x∈X(p)

Hp+q(x) ⇒ Hp+q(X) with Ha(x) = lim
−→

V⊆{x}

Ha(V ). (8.3)

Here the limit is over all non-empty open subschemes V ⊆ {x}. The affine
Lefschetz theorem implies E1

p,q(X) = 0 for q < 0 and the desired arithmetic
invariant KHa(X) is defined as E2

a,0(X), an E2 term of the spectral sequence.
By the same techniques as the proof of Theorems 4.5 and 4.6, one can prove
the following.

Theorem 8.3. For X ∈ S, we have

KHa(X) =

{
(Q/Z)π0(X)

0

a = 0

a 6= 0,

The assertion (∗1) follows from Theorem 8.3 and a result of Jannsen [J],
Theorem 5.13. We note that the proof of Theorem 8.3 uses the weight argument
([D]) and requires the assumption that k is finitely generated. In order to show
the assertion (∗2), we apply the same argument to the equivariant version of
(8.2). We fix a finite group G and let CG be the category of quasi-projective
schemes over k with a G-action. We consider

HG
a (X) := lim

−→
n

Hom
(
Ha

c (G;Xét,Z/nZ),Q/Z
)

for X ∈ Ob(C). (8.4)

Here
Ha

c (G;Xét,Z/nZ) := RΓ(G,RΓ(X ét, j!Z/nZ))),

is the equivariant étale cohomology with compact support, where j : X ↪→ X is
any equivariant compactification of X, and RΓ(G,−) is the derived functor of
taking G-invariants. This provides a homology theory on CG and the equivariant
version KHG

a (X) of KHa(X) is defined as an E2-term of the associated niveau
spectral sequence. Then (∗2) follows from the following.
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Theorem 8.4. ([KeS2]) Let X ∈ CG be smooth over k.

(1) We have a natural isomorphism KHG
a (X) ' KHa(X/G) for all a.

(2) If X is projective, we have

KHG
a (X) =

{
(Q/Z)π0(X/G)

0

a = 0

a 6= 0,
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Abstract

The Betti numbers of a graded module over the polynomial ring form a table of
numerical invariants that refines the Hilbert polynomial. A sequence of papers
sparked by conjectures of Boij and Söderberg have led to the characterization
of the possible Betti tables up to rational multiples—that is, to the rational
cone generated by the Betti tables. We will summarize this work by describing
the cone and the closely related cone of cohomology tables of vector bundles
on projective space, and we will give new, simpler proofs of some of the main
results. We also explain some of the applications of the theory, including the
one that originally motivated the conjectures of Boij and Söderberg, a proof of
the Multiplicity Conjecture of Herzog, Huneke and Srinivasan.

Mathematics Subject Classification (2010). Primary 13D02; Secondary 14F05.

Keywords. Betti numbers, free resolutions, syzygies, cohomology of coherent sheaves,

multiplicity

1. Introduction

Hilbert’s Syzygy theorem states that every finitely generated graded module
over a polynomial ring S = K[x1, . . . , xn] has a finite free resolution of length
at most n. Hilbert’s motivation was to show that the Hilbert function hM (k) :=
dimK Mk is given by a polynomial pM (k) for large k, as follows: for a graded
module M = ⊕kMk over the standard graded polynomial ring S consider a
finite free graded resolution, that is, an exact sequence

F : (0←M←)F0←F1← . . .←Fr←0
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with Fi = ⊕jS(−j)
βi,j and S(−j) the free cyclic S module with generator in

degree j. The numbers βi,j are called the graded Betti numbers of the resolution.
From the exactness of the resolution Hilbert deduced the formula

hM (k) = dimK Mk =

r∑

i=0

(−1)i
∑

j

βi,j

(
k + n− j

n

)

for the Hilbert function hM . Since the combinatorial binomial coefficient
(
m
n

)

agrees with the polynomial

m(m− 1) · · · (m− n+ 1)

n!
∈ Q[m]

when m is large enough, the same formula defines the Hilbert polynomial
pM (k) ∈ Q[k]. The Hilbert polynomial pM (k) captures the most important
properties of M . For example, deg pM = dimM , and the leading coefficient of
pM times (dimM)! is the the multiplicity of M .

A minimal free resolution of a module M is a free resolution F such that no
proper summand of Fi+1 maps surjectively onto the kernel ker(Fi → Fi−1). It is
determined up to isomorphism by M (see for example [6]), and thus the graded
Betti numbers βi,j = βi,j(M) of a minimal free resolution are invariants of M .
We collect the Betti numbers of M as usual in a Betti table β(M) = (βi,j(M)).
Hence, β(M) is a numerical invariant that refines the Hilbert polynomial.

There are many papers whose goal is to describe this invariant and its
possible values in special cases. In 2006 Mats Boij and Jonas Söderberg sug-
gested a relaxation of this problem that opened the door to a radically different
approach. The set of Betti tables form a semigroup, since the direct sum of
modules corresponds to the addition of Betti tables. Allowing multiplication
by positive rational numbers instead of just positive integers, we get a ratio-
nal convex cone, the cone of Betti tables. Boij and Söderberg conjectured that
the extremal rays of this cone are spanned by Betti tables of so called pure

resolutions, described below.
In [11] we showed that these conjectures were true. Besides proving the

existence of pure resolutions this involved finding the equations of the facets
of the cone of Betti tables. To describe how this was done, we must introduce
another invariant of a finitely generated graded module M that also refines
the Hilbert polynomial. Consider the coherent sheaf E on Pn−1 represented
by M . The value of the Hilbert polynomial pM (k) coincides with the Euler
characteristic of the twisted sheaf: χE(k). Since the Euler characteristic is the
alternating sum of the dimensions of the cohomology groups, we can also think
of the cohomology table γ(E) = (hjE(k)) of E as a refinement of the Hilbert
polynomial. And, just as with Betti tables, it is natural to consider the convex
rational cone generated by the cohomology tables.

The key idea in our proof of the Boij-Söderberg conjecture was to show
that the facets of the cone of Betti tables of finite length modules come from
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the extremal rays in the closed cone of cohomology tables of vector bundles
on projective space. We identified these extremal rays and showed that vector
bundles with such extremal cohomology tables exist, so that the cone of coho-
mology tables, like the cone of Betti tables, is closed. Using our results, Boij and
Söderberg extended the theory to arbitrary modules [2]. On the cohomology
side, we generalized the results to arbitrary coherent sheaves [12].

A flurry of other papers and preprints including [9], [24], [14] [15] and [7]
have added to the basic picture and its applications. In this note we give a new
and simpler proof of our main result on the cone of Betti tables, and we give
a simpler treatment of the theorem of Boij and Söderberg on Betti tables of
arbitrary finitely generated modules. We also explain some applications, and
survey what is known in some other cases.

2. Betti Tables

As above, let S = K[x1, . . . , xn] be a polynomial ring over a field K, graded
with each xi of degree 1. For a finitely generated graded S-module M we may
regard its Betti table as an integral point in an infinite dimensional Q-vector
space:

β(M) = (βi,j(M)) ∈

n⊕

i=0

⊕

j∈Z

Q.

The cone generated by finite positive rational linear combinations of Betti
tables is called the Boij-Söderberg cone. Our main result on Betti tables is a
description of this cone in terms of its extremal rays.

Definition 1. A finitely generated graded S-module M is called pure of type
d := (d0, . . . , dr) if

1. M is Cohen-Macaulay of codimension r; that is, Fi = 0 for i > r and
dimM = n− r

2. in a minimal free resolution ofM as above, the free module Fi is generated
by elements of degree di; that is, βi,j = 0 when j 6= di.

Proposition 2.1. If M is a pure module of type d, then β(M) is determined

up to a rational factor by d. Further, β(M) spans an extremal ray in the Boij-

Söderberg cone of Betti tables.

Proof. Suppose β(M) =
∑N

`=1
q`β(M`) with rational numbers q` > 0. We have

to prove that the Betti tables β(M`) all lie in the same ray as β(M). Each of the
modules M` has dimM` ≤ dimM , because otherwise the Hilbert polynomial of
M would have larger degree. Since by the Auslander-Buchsbaum-Serre formula,
the length of a free resolution is at least the codimension, the equality of Betti
tables implies that each M` is Cohen-Macaulay with the same codimension r as
M and that each M` is pure with the same type (d1, . . . , dr) as M . The proof
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that each β(M`) lies in the same ray as β(M) follows by an argument of Herzog
and Kühl [17]: Consider the Hilbert series of M defined as

HM (t) =
∑

d∈Z

dimMdt
d =

∑
i,j(−1)

iβi,jt
j

(1− t)n
∈ Q[[t]][t−1].

This rational function has a pole of order dimM at t = 1, or equivalently,
the numerator

∑
i,j(−1)

iβi,jt
j has a zero of order codimM . In case of a pure

module the numerator simplifies to

r∑

i=0

(−1)iβi,di
tdi .

Hence, the r + 1 numbers β0,d0
, . . . , βr,dr

satisfy a system of r linear equations

r∑

i=0

βi,di
dsi = 0 for s = 0, . . . r − 1

of Vandermond type. Hence by Cramer’s rule,

βi,di
= q

∏

t>s, t,s 6=i

(dt − ds)

are determined by the type up to a common rational factor q.

With β(d) we denote the rational table on the ray of type d normalized such
that

βi,di
(d) =

∏

j 6=i

1

|dj − di|
.

To formulate our main result one more preparation is necessary: we order
the strictly increasing sequences d as follows:

d = (d0, . . . , dr) ≤ d′ = (d′0, . . . , d
′
r′)

if r ≥ r′ and di ≤ d′i for i = 1, . . . , r′. One can think of this as the termwise order
if one simply extends each sequence d = (d0, . . . , dr) to (d0, . . . , dr,∞,∞, . . . ).

We can now state the main result of the theory concerning the cone of Betti
tables:

Theorem 2.2 ([2, 11]). Let S = k[x1, . . . , xn] be as above.

1. For every strictly increasing sequence of integers d = (d0, . . . , dr) with

r ≤ n, there exist pure S-modules of type d.

2. The Betti table of any finitely generated graded S-module may be written

uniquely as a positive rational linear combination of the Betti tables of a

set of pure modules whose types form a totally ordered sequence.
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The second statement of the theorem has two nice interpretations that may
help to clarify its meaning. First, geometrically, it really says that the cone
of Betti tables is a simplicial fan, that is, it is the union of simplicial cones,
meeting along facets. The maximal simplicial cones in the fan correspond to
maximal chains (totally ordered subsets) in the partially ordered set of degree
sequences: the simplicial cone is the set of finite positive rational combinations of
Betti tables whose degree sequences lie in the chain. These simplices and cones
are thus infinite ascending unions of finite-dimensional cones, corresponding to
Betti tables with finite support, that is, resolutions where the free modules are
generated in a given bounded range of degrees.

Second, algorithmically, the theorem implies that there is a greedy algorithm
that gives the decomposition. Rather than trying to specify this formally, we
give an example with n = 3. To describe it compactly, we will write the Betti
table of a module M as an array whose entries in the i-th column are the
βi,j—that is, the i-th column corresponds to the free module Fi. For reasons of
efficiency and tradition, we put βi,j in the (j − i)-th row.

Consider the K[x, y, z]-module M = S/(x2, xy, xz2). The minimal free res-
olution of M has the form

S←S(−2)2 ⊕ S(−3)←S(−3)⊕ S(−4)2←S(−5)←0

and is represented by an array

β(M) =



1

2 1
1 2 1




where all the entries not shown are equal to zero.
To write this as a positive rational linear combination of pure diagrams, we

first consider the “top row”, corresponding to the generators of lowest degree
in the free modules of the resolution. These are in the positions



∗
∗ ∗

∗




corresponding to the degree sequence (0, 2, 3, 5). There is in fact a pure module
M1 = S/I1 with resolution

β(M1) =



1

5 5
1


 .

The greedy algorithm now instructs us to subtract the largest possible q1 that

will leave the resulting table β(M)− q1β(M1) having only non-negative terms.

We see at once that q1 = 1/5.
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We now repeat this process starting from β(M) − q1β(M1); the theorem
guarantees that there will always be a pure resolution whose degree sequence
matches the top row of the successive remainders. In this case we arrive at the
expression

β(M) =



1

2 1
1 2 1


 = 1/5



1

5 5
1


+ 1/10



3

10
15 8




+1/6



1

4 3


+ 1/3



1

1


 .

All the fractions and tables that occur are of course invariants—apparently new
invariants—of M .

3. Facets of the Cone and Cohomology Tables

We next focus on the facets of the cone of Betti tables (compare with [1, 2]).
Consider a finite chain of degree sequences. Since the rays corresponding to the
degree sequences are linearly independent, these rays generate a simplicial cone.
A facet (maximal face) of this cone is generated by all but one of the rays in
our chain. If this ray corresponds to the degree sequence b, then we may assume
that b is neither the largest nor the smallest degree sequence by replacing our
chain with a longer chain of degree sequences. Consider the degree sequences
a > b and c < b immediately above and below in our chain. By inserting a finite
number of degree sequences between a and b if necessary, we can achieve that
a and b differ in at most one position. Similarly, we can achieve that b and c
differ in at most one position. Then the facet of this simplicial cone obtained
by deleting b is an outer face—that is, it will lie on the boundary of the cone
of Betti tables—if either a and c differ in precisely one position τ , or a and c
differ in precisely two consecutive positions τ and τ+1 and aτ ≥ cτ+1, compare
[1], Proposition 2.2. Indeed, suppose that a and c differ in the position τ and k
with k > τ and, moreover, k > τ + 1 or k = τ + 1 and aτ < cτ+1. Then both
sequences b = (. . . , aτ , . . . , ck, . . .) and b′ = (. . . , cτ , . . . , ak, . . .) are increasing,
hence valid degree sequences between with a and c. For ak < ∞ we have the
numerical identity

(ak − aτ )β(a) + (ck − cτ )β(c) = (ck − aτ )β(b) + (ak − cτ )β(b
′),

which becomes β(a) + (ck − cτ )β(c) = (ck − aτ)β(b) + β(b′), in case ak = ∞.
Hence, once we know that pure modules for arbitrary degree sequences exist,
we can deduce that the facet of the simplicial cone obtained by dropping b (or
b′) lies in the interior of the cone of Betti tables.
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Hence, apart from the existence of pure resolution, we have to show that
every potential outer face as above is indeed an outer face. A typical example
which could lead to an outer face is the chain

a = (0, 3, 4) > b = (0, 2, 4) > c = (0, 1, 4)

for the case that a and c differ in only one position and

a = (0, 2, 3, 4) > b = (0, 1, 3, 4) > c = (0, 1, 2, 4)

in case a and c differ in two positions. In the first case, the linear function
β 7→ βτ,bτ is positive on the ray corresponding to b and vanishes on all other
rays in any simplex corresponding to a chain of degree sequence containing
a, b, c. Clearly, this functional is also non-negative on Betti tables of arbitrary
module. So these are indeed outer faces.

The second case is more complicated. We start by replacing a, b and
c by (. . . , aτ−1, cτ+1, cτ+1 + 1, . . .), (. . . , aτ−1, cτ+1 − 1, cτ+1 + 1, . . .) and
(. . . , aτ−1, cτ+1 − 1, cτ+1, . . .). For example, we will replace the triple

(0,∞,∞) > (0, 1,∞) > (0, 1, 3)

by
(0, 3, 4) > (0, 2, 4) > (0, 2, 3).

We will see that the equation, which we will derive below in this new situation,
works for the face obtained by deleting the original b as well.

Now take a complete chain extending a > b > c. We can compute the
coefficient δi,j of a functional δ : β 7→

∑
ij δi,jβi,j vanishing on the facet opposite

to b recursively. We start by taking δi,ai
= 0 and work our way up and down

in the chain. The condition δ(β(c)) = 0 determines the ratio of δτ,cτ while
δτ+1,cτ+1

and δ(β(b)) > 0 determines the sign. Moving one step down from c in
the chain, determines one more coefficient of δ. In the example above we can
look at the degree sequence

(0, 1, 3, 4) > (0, 1, 2, 4) > (0, 1, 2, 3) = (0, 1, 2, 3,∞) > . . . > (0, 1, 2, 3, 6) >

(0, 1, 2, 3, 5) > (0, 1, 2, 3, 4) > (−1, 1, 2, 3, 4) > . . .

whose Betti tables are


2 4

4 2






3 8 6

1






1 3 3 1


···



10 36 45 20

1






4 15 20 10

1






1 4 6 4 1







1

10 20 15 4


 . . .
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and obtain

δ = (δi,j) =




...
...

...
...

...
21 −12 5 0 −3
12 −5 0 3 −4
5 0 −3 4 −3
0 3 −4 3 0
0 0 0 0 5
0 0 0 0 12
...

...
...

...
...




Of course, moving up in degree from a will always yield zero coefficients. Note,
that the results of these computations apparently do not depend on the specific
choice of the complete chain extending a > b > c.

To prove Theorem 2.2, we have to show that each such δ is nonnegative
on the Betti table β(M) of an arbitrary module. Our key observation is that
the numbers appearing are dimensions of cohomology groups of what we call
supernatural vector bundles on Pr−1.

Definition 2. A vector bundle E on Pm has natural cohomology [16] if for each
k at most one of the groups

Hi(E(k)) 6= 0.

It has supernatural cohomology if in addition the Hilbert polynomial

χ(E(k)) =
rank E

m!

m∏

j=1

(k − zj)

has m distinct integral roots z1 > z2 > . . . > zm.

Note that a supernatural vector bundle E has non-vanishing cohomology in the
following range (see [11]):





H0(E(k)) 6= 0

Hi(E(k)) 6= 0

Hm(E(k)) 6= 0

if and only if





k > z1

zi > k > zi+1

zm > k

.

For a coherent sheaf E on Pm we denote by

γ(E) = (γj,k) ∈

m⊕

j=0

∏

k∈Z

Q with γj,k = hj(E(k))

its cohomology table. Analogous to the theorem on free resolutions we have
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Theorem 3.1 ([11]). The extremal rays of the rational cone of cohomology ta-

bles of vector bundles on Pm are generated by cohomology tables of supernatural

vector bundles.

More precisely: Every cohomology table of a vector bundle is a unique pos-

itive rational combination of cohomology tables of supernatural vector bundles,

whose root sequences form a chain.

Here we order the root sequences component wise.

The crucial new concept is the following pairing between Betti tables of
modules and cohomology tables of coherent sheaves. We define 〈β, γ〉 for a
Betti table β = (βi,k) and a cohomology table γ = (γj,k) by

〈β, γ〉 =
∑

i≥j

(−1)i−j
∑

k

βi,kγj,−k

Theorem 3.2 (Positivity 1,[11, 12]). For F any free resolution of a finitely

generated graded K[x0, . . . , xm]-module M and E any coherent sheaf on Pm, we

have

〈β(F), γ(E)〉 ≥ 0.

Moreover, if M has finite length and Hi+1(F̃i ⊗ E) = 0 for all i ≥ 0, then

〈β(F), γ(E)〉 = 0.

Note that if F̃i = ⊕j∈ZO(−j)
βi,j then

〈β(F), γ(E)〉 =
∑

i≥j

(−1)i−jhj(F̃i ⊗ E)

Proof. We first treat the case where E is a vector bundle. In this case we have
an exact complex

0←M0←F̃0 ⊗ E → F̃1 ⊗ E← . . .←F̃r ⊗ E←0

withM0 = M̃ ⊗ E . Breaking it up in short exact sequences

0 ← M0 ← F̃0 ⊗ E ← M1 ← 0

0 ← M1 ← F̃1 ⊗ E ← M2 ← 0

0 ← M2 ← F̃2 ⊗ E ← M3 ← 0
...

we get the desired functional by taking the alternating sum of the Euler char-
acteristics of initial parts of the corresponding long exact sequences in coho-
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mology:

H0(F̃0 ⊗ E) ← H0(M1) ← 0

H1(F̃1 ⊗ E) ← H1(M2) ←

H0(M1) ← H0(F̃1 ⊗ E) ← H0(M2) ← 0

H2(F̃2 ⊗ E) ← H2(M3) ←

H1(M2) ← H1(F̃2 ⊗ E) ← H1(M3) ←

H0(M2) ← H0(F̃2 ⊗ E) ← H0(M3) ← 0
...

Hence, 〈β(F), γ(E)〉 =
∑m

j=0
dim cokerHj(Mj+1)→ Hj(F̃j ⊗ E)) ≥ 0.

In the general case, where E is not necessarily locally free, the complex at
the beginning of the proof may not be exact. However, we note that what we
need to prove depends only on the cohomology table of E , not on the sheaf
itself. Hence, we can replace E with a translate g∗E for any g ∈ PGL(m + 1).
When g is a general element, [23] shows that the sheaves Tori(M̃, E) = 0 for
i > 0; that is, the complex

0←M̃ ⊗ g∗E←F̃0 ⊗ g∗E → F̃1 ⊗ E← . . .←F̃r ⊗ g∗E←0

is exact, and the same argument applies.
For the vanishing statement, we note that in this case F̃⊗E is exact as well,

andM0 = 0. By induction we obtain Hi(Mi) = 0 from Hi(F̃i−1⊗E) = 0, and
all the Euler characteristics are in fact zero.

The facet equation in the example above is obtained from the vector bundle

E on P2
ι
↪→ P3, that is the kernel of a general map O5

P2(−1) → O3
P2 . The

coefficients of the functional 〈−, γ(ι∗E)〉 are




...
...

...
...

...
21 −12 5 0 −3
12 −5 0 3 −4
5 0 −3 4 −3
0 3 −4 3 0
0 4 −3 0 5
0 3 0 −5 12
0 0 5 −12 21
0 0 12 −21 32
...

...
...

...
...




This is not quite the functional we wanted, which had zeros in place of some of
the nonzero values. To correct this, we define “truncated” functionals 〈−, γ〉τ,κ
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by putting zero coefficients in the appropriate spots:

〈β, γ〉τ,κ =
∑

k≤κ βτ,kγτ,−k +
∑

j<τ

∑
k βj,kγj,−k

−
∑

k≤κ+1
βτ+1,kγτ,−k −

∑
j<τ

∑
k βj+1,kγj,−k

+
∑

i>j+1
(−1)i−j

∑
k βi,kγj,−k

Theorem 3.3 (Positivity 2, [11, 12]). For F the minimal free resolution of

a finitely generated graded K[x0, . . . , xm]-module and E any coherent sheaf on

Pm, we have

〈β(F), γ(E)〉τ,κ ≥ 0.

Proof. We replace E by a general translate as above, to achieve homologi-
cal transversaltity to F. Let E be a graded module representing the sheaf
E . Consider the Čech resolution 0 → C0 → C1 → C2 → . . . of E with
Cp = ⊕i0<...,ipE[x−1

i0
, . . . , x−1

ip
] and the tensor product

...
...

...
↑ ↑ ↑

0 ← F0 ⊗ C2 ← F1 ⊗ C2 ← F2 ⊗ C2 ← . . .
↑ ↑ ↑

0 ← F0 ⊗ C1 ← F1 ⊗ C1 ← F2 ⊗ C1 ← . . .
↑ ↑ ↑

0 ← F0 ⊗ C0 ← F1 ⊗ C0 ← F2 ⊗ C0 ← . . .
↑ ↑ ↑
0 0 0

of complexes.
By the homological transversality the horizontal cohomology is concentrated

in the F0-column. Hence, the total complex has homology only in non-negative
cohomological degrees. The vertical cohomology in internal degree 0 on the
diagonal or below are the groups

H2(F̃2 ⊗ E)

H1(F̃1 ⊗ E) H1(F̃2 ⊗ E)

H0(F̃0 ⊗ E) H0(F̃1 ⊗ E) H0(F̃2 ⊗ E)

The Euler characteristic of this diagram is again 〈β(F), γ(E)〉. If we split the
internal degree 0 part of the spectral sequence Hvert(C ⊗F )⇒ Htot(C ⊗F ) as
a sequence of K-vector spaces, then we obtain a complex

. . .← Ap =
⊕

i−j=p

Hj(F̃i ⊗ E) ←
⊕

i−j=p+1

Ap+1 = Hj(F̃i ⊗ E)← . . .

that is exact in negative cohomological degrees. Note that this gives a different
proof (essentially our original proof) of part of the positivity result of Theorem
3.2, since 〈β(F), γ(E)〉 = dim coker(A1 → A0) ≥ 0.
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Consider the submodules

B0 =
⊕

j<τ

Hj(F̃j ⊗ E)⊕
⊕

k≤κ

Hτ (O(−k)βτ,k ⊗ E) ⊂ A0

and
B1 =

⊕

j<τ

Hj(F̃j+1 ⊗ E)⊕
⊕

k≤κ+1

Hτ (O(−k)βτ+1,k ⊗ E) ⊂ A1

corresponding to the truncation. The diagram

A0 ← A1

↑ ↑
B0 ← B1

commutes, because F is minimal. Hence,

〈β(F), γ(E)〉τ,κ = 〈β(F), γ(E)〉 − dimA0 + dimB0 + dimA1 − dimB1

= dimker(A1 → A0) + dim coker(B1 → B0)
− dimker(B1 → B0) ≥ 0,

because ker(B1 → B0) ⊂ ker(A1 → A0).

These stronger versions of the vanishing results of [11] allow us to give a
direct proof of the main theorem of [2]:

Final part of the Proof of Theorem 2.2. The facet equation, which cuts out the
desired face corresponding to a degree sequence a > b > c with c of length r
that only differ in positions τ and τ + 1 ≤ r and satisfies aτ ≥ cτ+1, is given
by taking a supernatural vector bundle E on Pr−1 ⊂ Pn−1 with root sequence
(z1 > z2 > . . . > zr−1) = (−b0 > . . . > −bτ−1 > −bτ+2 > . . . > −br),
κ = cτ+1 − 1 and the functional

〈−, γ(E)〉τ,κ.

Indeed, for a pure module M with a degree sequence d ≤ c, we have

〈β(M), γ(E)〉τ,κ = 〈β(M), γ(E)〉,

and the vanishing follows from Theorem 3.2: Since the length of d is at least the
length of c we can reduce to the case where M has finite length, because the
Betti numbers of M and M/xM as an S/xS-module for a linear nonzero divisor
x of M coincide. Furthermore, Hi+1(E(−di)) = 0 because −di ≥ −ci ≥ zi+1 or
i+ 1 ≥ r.

The vanishing 〈β(M), γ(E)〉τ,κ = 0 for all pure M with a degree sequence
d ≥ a is trivially true by our choice of E and the truncation.

Finally, 〈β(b), γ(E)〉τ,κ > 0, because zτ = −bτ−1 > −bτ = −cτ ≥ −κ =
−cτ+1 + 1 > −cτ+1 > −cτ+2 = −bτ+2 = zτ+1 and hence Hτ (E(−bτ )) 6= 0.
Thus 〈−, γ(E)〉τ,κ = 0 cuts out the desired face.
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Conversely, the essential facet equations of the cone of cohomology tables
of vector bundles are of type 〈F(M),−〉τ,κ for an appropriate finite length pure
module M , see [11].

4. Existence

To complete the proof of both Boij-Söderberg decompositions, it is now enough
to establish the existence of supernatural vector bundles and pure resolutions for
arbitrary root or degree sequences. In each case there are two methods known.
For equivariant resolutions or homogeneous vector bundles in characteristic 0
one can use Schur functors [9, 10, 24]. For arbitrary fields, one can use a push
down method [11]. For bundles this is a simple application of the Künneth
formula applied to E = π∗O(a1, . . . , am), where π is a finite linear projection
π : P1 × . . . × P1 → Pm and O(a1, . . . , am) is a suitable line bundle on the
product.

For resolutions this is an iteration of the Lascoux method [22] to get the
Buchsbaum-Eisenbud family of complexes associated to generic matrices [4]: We
start with K, a Koszul complex on Pr−1×Pm1× . . .×Pms of r+

∑s

i=1
mi forms

of multidegree (1, . . . , 1) tensored with O(−d0, a1, . . . , as). Here s is the number
of desired non-linear maps andmj+1 is the desired degree of the j-th non-linear
map. The spectral sequence for Rπ∗K of the projection π : Pr−1 × Pm1 × . . .×
Pms → Pr−1 gives rise to the desired complex if we choose a1, . . . , as suitably.
Indeed, we may apply Proposition 4.1 s-times: For any product X1 ×X2 with
projections p : X1 × X2 → X1 and q : X1 × X2 → X2 and sheaves Li on Xi,
we set

L1 � L2 := p∗L1 ⊗ q∗L2.

Proposition 4.1. Let F be a sheaf on X × Pm, and let p : X × Pm → X be

the projection. Suppose that F has a resolution of the form

0→ GN �O(−eN )→ · · · → G0 �O(−e0)→ F → 0

with degrees e0 < · · · < eN . If this sequence contains the subsequence

(ek+1, . . . , ek+m)
= (1, 2, . . . ,m) for some k ≥ 0 then

R`p∗F = 0 for ` > 0

and p∗F has a resolution on X of the form

0→ GN ⊗HmO(−eN )→ · · ·

→ Gk+m+1 ⊗HmO(−ek+m+1)
φ
→ Gk ⊗H0O(−ek)→

· · · → G0 ⊗H0O(−e0) (1)
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Proof. From the numerical hypotheses we see that ei ≤ 0 for i ≤ k and ei ≥
m+ 1 for i ≥ k +m+ 1. Consider the spectral sequence

Ei,−j
1 = Rip∗(Gj �O(−ej))⇒ Ri−jp∗F .

By the projection formula, the terms of the E1 page are

Rip∗(Gj �O(−ej)) =





Gj ⊗Hm(Pm,O(−ej)) if j ≥ k +m+ 1 and i = m

Gj ⊗H0(Pm,O(−ej)) if j ≤ k and i = 0

0 otherwise.

Thus, the spectral sequence degenerates to the complex (1), where φ is a dif-
ferential from the m-th page and the other maps are differentials from the first
page. In particular, only terms Ei,−j

∞ with i ≤ j can be nonzero. On the other
hand, the terms Ri−jp∗F can be nonzero only for i ≥ j. Hence, the complex (1)
is exact and resolves ⊕i≥0E

i,−i
∞ = E0,0

∞ = p∗F , while the higher direct images
of F vanish.

5. Applications, Extensions of the Basic Theory

and Open Questions

The application that motivated Boij and Söderberg to make their Conjecture,
was the following sharp version of the Multiplicity Conjecture of Huneke and
Srinivasan [18].

Theorem 5.1 ([2]). For any finitely generated module M of projective dimen-

sion r and codimension s generated in degree 0, we have the following bounds

for the Hilbert series:
(

r∏

i=1

ai

)
H(β(a), t) ≤

H(M, t)

β0,0(M)
≤

(
s∏

i=1

bi

)
H(β(b), t) ,

where a = (0, a1, a2, ..., ar) are the minimal shifts and b = (0, b1, b2, ..., bs) are

the maximal shifts in a minimal free resolution of M . Equality on either side

implies that the resolution is pure. In particular, the right hand inequality im-

plies the Multiplicity Conjecture, that is, the multiplicity of M is bounded by

mult (M) ≤ β0,0(M)
b1 · . . . · bs

s!

with equality if and only if M is Cohen-Macaulay with a pure resolution.

Sketch. If a is a degree sequence of length r with a0 = 0, then the Betti table
(
∏r

i=1
ai)β(a) is normalized such that β0,0 = 1. Given two degree sequences

a < b with a0 = b0 = 0, then the Hilbert series of the normalized tables satisfy

H

((
r∏

i=1

ai

)
β(a), t) < H

((
s∏

i=1

bi

)
β(b), t

)
.
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The result follows because the normalized Boij-Söderberg decomposition is a
convex combination.

Let a < b be two degree sequences of equal length. The part of the Boij-
Söderberg cone of tables β = (βi,j) with βi,j = 0 unless ai ≤ j ≤ bi is a finite,
equi-dimensional simplical fan.

Turning to the monoid of Betti tables of modules, we have:

Theorem 5.2 (Erman, [14]). The monoid of Betti tables of Cohen-Macaulay

modules with Betti tables bounded by the degree sequences a < b is finitely

generated.

Note that the index of actual Betti tables among the integral points on
a ray of the Boij-Söderberg cone can be arbitrary large [7]. However, along
the extremal rays, Eisenbud and Weyman conjecture that any sufficiently large
integral point is the Betti table of a module.

To understand the monoid is substantially more difficult than understanding
the cone. For example, unlike the Boij-Söderberg cone the monoid of Betti
tables depends on the characteristic of the ground field [21]. A case where we
understand the monoid completely can be found in [7].

We believe that the most important next step in trying to understand the
monoid better, would be a proof of the Eisenbud-Buchsbaum-Horrocks rank
conjecture [5]. Daniel Erman [15] uses the Boij-Söderberg decomposition to
prove the rank conjecture for M = S/I a cyclic module, provided that the min-
imal generators of the ideal I are sufficiently large compared to the regularity.

Turning to coherent sheaves, it is no longer true that the cohomology table of
any sheaf is a finite sum of tables of supernatural sheaves of various dimensions.
What remains true is that a cohomology table of an arbitrary coherent sheaf on
Pm is an infinite (convergent) sum with non-negative coefficients of cohomology
tables of supernatural sheaves, whose zero sequences form a chain, see [12].
This result, however, does not characterize the Boij-Söderberg cone of coherent
sheaves on Pm but only its closure in

⊕m

i=0

∏
j∈Z

R.
If X ⊂ Pm is a subvariety of dimension d we can ask about the Boij-

Söderberg cone of its coherent sheaves. Consider a linear Noether normalization
π : X → Pd. Then, for any sheaf F on X, the cohomology table of F and π∗F
coincide. Hence the Boij-Söderberg cone of (X,OX(1)) is a subcone of the one of
(Pd,O(1)). If they coincide then there exists a sheaf U on X, whose cohomology
table coincides with that of OPd up to a multiple. By Horrocks criterion [19],
this implies π∗U ∼= O

r
Pd . By the very definition [10], this means that U is an

Ulrich sheaf on X.
Conversely, if an Ulrich sheaf exists then for a sheaf G on Pd, the cohomology

table of U ⊗ π∗G and G coincide up to the factor r. This proves

Theorem 5.3 ([13]). The Boij-Söderberg cone of the coherent sheaves on a

variety X of dimension d with respect to a very ample polarization OX(1) co-

incides with the Boij-Söderberg cone of (Pd,O(1)) if and only if X carries an

Ulrich sheaf.
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Varieties that have an Ulrich sheaf include curves and hypersurfaces. They
are closed under Segre products, Veronese re-embeddings and transversal inter-
sections. In [10] we conjecture that every variety has an Ulrich sheaf.

Very little is known for the extension of this theory to the multi-graded
setting. I believe that there will be beautiful results ahead in this direction.
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Abstract

We discuss algebraic cycles on singular varieties, in relation to the Grothendieck
group of vector bundles. This theory, which is still not fully worked out, seems
to admit some surprises. On the other hand, conjectured aspects of the refined
structure of cycle groups of nonsingular varieties, predicted by motivic consid-
erations, seem to have plausible extensions to singular varieties, which can be
verified in some nontrivial examples.
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1. Introduction

The aim of this article is to discuss algebraic cycles on (quasi-)projective alge-
braic varieties, which may have singularities. Our goal is to see to what extent
the theory of the Chow ring of a smooth variety can be generalized to the sin-
gular case, keeping in mind an expected relation with the Grothendieck group
of vector bundles, and the analogy with the even degree singular cohomology
ring in topology.

We will work over an algebraically closed ground field k. Eventually we will
restrict to the case when k has characteristic 0.

Now suppose X is a non-singular projective variety. We first review proper-
ties of the Chow ring, as developed in Fulton’s book [1]. We begin by recalling
a definition.

Definition 1.

Zp(X) = Group of algebraic cycles of codimension p in X

= Free abelian group on subvarieties of X which are irreducible

of codimension p.

∗Supported by J.C. Bose Fellowship of the Department of Science and Technology, India.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road,

Colaba, Mumbai-400005, India. E-mail: srinivas@math.tifr.res.in.



604 Vasudevan Srinivas

It is standard to impose various equivalence relations on algebraic cycles,
and pass to the quotient groups, to get more “reasonable” invariants; a basic
one is rational equivalence.

Definition 2. The group Rp(X) ⊂ Zp(X) of cycles rationally equivalent to 0
is generated by cycles of the form

∑

i

niAi −
∑

j

mjBj

where, for some suitable irreducible W ⊂ X × P1 of codimension p, we have

{A1, A2, . . .} = irreducible components of W ∩X × {0},

{B1, B2, . . .} = irreducible components of W ∩X × {∞}.

Here 0,∞ denote any two distinct points of P1
k; the coefficients ni, mj are

certain intersection multiplicities.

We think of the cycles obtained from the intersections

W ∩X × {t}, ∀ t ∈ P1
k,

as a rational 1-parameter family of codimension p algebraic cycles in X. Since
AutP1

k = PGL2(k) acts transitively on pairs of distinct points of P1, the equiv-
alence relation above does not depend on which pair of points {0,∞} ⊂ P1

k is
chosen, and all the cycles in such a rational 1-parameter family are rationally
equivalent to each other.

Definition 3.

CHp(X) =
Zp(X)

Rp(X)

= Chow group of codim. p cycles modulo rational equivalence.

For example, if X is a curve, CH0(X) = Z, CH1(X) = Z ⊕ J(X), where
J(X) is the Jacobian variety of X, studied classically (Riemann, Abel, Jacobi
. . .).

One of the important results proved in [1] is the following.

Theorem 1.1. For a nonsingular variety X,

CH∗(X) =
dimX⊕

p=0

CHp(X)

has a multiplication, defined by intersecting suitable pairs of irreducible subva-
rieties of X, making it into a commutative graded ring, the Chow ring of X.
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The Chow ring CH∗(X) is an important and subtle invariant of the variety
X, which is usually very difficult to compute. But some structural results are
known about it, and there are important conjectures related to it, including the
famous Hodge Conjecture (we return to this later).

A first reason to study the Chow ring is that it is an algebraic version of
the even degree cohomology ring defined in algebraic topology. Thus, if X is a
complex projective variety of dimension n, we have the ring

H2∗(X,Z) =

dimX⊕

i=0

H2i(X,Z)

which has the following properties.

• It is a commutative, graded ring, which is additively a finitely generated
abelian group. (If we also include the cohomology of odd degree, we obtain
a Z/2Z-graded algebra over the even degree cohomology.)

• It is contravariant functorial for arbitrary (continuous) maps, and in fact
for homotopy classes of maps.

• There are Chern classes

ci(V ) ∈ H2i(X,Z)

for complex vector bundles V , which are functorial under pull-backs: if
f : Y → X is a morphism of complex varieties, then

ci(V ) 7→ ci(f
∗V ) under f∗ : H2i(X,Z) → H2i(Y,Z).

In fact, if Ktop
0 (X) denotes the Grothendieck ring of (continuous) com-

plex vector bundles on X, where the multiplication is induced by tensor
products of bundles, then by a result of Atiyah and Hirzebruch, the Chern
character gives an isomorphism of rings

Ktop
0 (X)⊗Q → H2∗(X,Q)

The individual cohomologiesH2i(X,Q) correspond to distinct eigenspaces
for Adams operations, which are certain ring endomorphisms of Ktop

0 (X)
defined using the tensor and exterior power operations on vector bundles.

• (Cycle classes) If Z ⊂ X is an irreducible subvariety of codimension p
which satisfies Z ∩Xsing = ∅, then one finds that

Hj(X,X \ Z,Z) =

{
0 if i < 2p
Z for i = 2p

(excision, together with the “Thom isomorphism theorem”). The image
of 1 under the natural map

Z = H2p(X,X \ Z,Z) → H2p(X,Z)

thus defines a cycle class of the subvariety Z.
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For nonsingular X, we get an induced homomorphism of graded rings

CH∗(X) → H2∗(X,Z),

so that the intersection product of algebraic cycles is compatible with the
cup product in cohomology.

• If X is a non-singular complex projective variety, then its cohomology
satisfies Poincaré duality, an isomorphism of graded groups

H2 dimX−∗(X,Z) → H∗(X,Z)

induced by the cap product with the fundamental homology class

µ[X] ∈ H2 dimX(X,Z).

However, if X has singularities, then although there is a fundamental
class, the cap product with it need not be an isomorphism.

• The cohomology of an algebraic variety carries “extra structure”, reflect-
ing the very special nature of algebraic varieties among topological spaces.
Grothendieck’s theory of motives and it generalizations are an attempt to
elucidate this extra structure.

One aspect of this “extra structure” comes from Hodge theory. If X ⊂ Pn
C

is a nonsingular complex projective variety, then its cohomology has a Hodge
decomposition for each 0 ≤ i ≤ 2 dimX,

Hi(X,Z)⊗ C =
⊕

0≤r,s≤dimX, r+s=i

Hr,s(X)

where Hr,s(X) are complex vector spaces, satisfying

Hr,s(X) = Hs,r(X) ⊂ Hi(X,Z)⊗ C,

where the overbar denotes the natural complex conjugation on Hi(X,Z) ⊗ C

obtained from that on C, which maps any C-subspace into another such; thus
rankHi(X,Z) is even if i is odd.

Define

Hgp(X) = inverse image of Hp,p(X) under H2p(X,Z) → H2p(X,Z)⊗ C

= group of Hodge cycles on X of codimension p.

It can be shown that the cycle map defined above has the property that

image
(
CHp(X) → H2p(X,Z)

)
⊂ Hgp(X).
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The Lefschetz (1, 1) Theorem is the statement that

image
(
CH1(X) → H2(X,Z)

)
= Hg1(X)

= {α ∈ H2(X,Z) | αC ∈ H1,1(X) ⊂ H2(X,Z)⊗ C}.

The Hodge Conjecture asserts that

image
(
CHp(X) → H2p(X,Z)

)
⊗Q = Hgp(X)⊗Q.

It is natural to ask if there are generalizations/conjectures for singular va-
rieties; we will return to this theme later.

2. The Singular Case: First Steps

From analogy between the Chow ring and cohomology, we might look for a
“Chow ring” for a singular projective variety X satisfying the following prop-
erties.

• It should be a commutative, graded ring, contravariant in X for arbitrary
morphisms.

• We should have a natural isomorphism CH1(X) ∼= Pic (X), the Picard
group of line bundles.

• CH∗(X) should admit a suitable theory of Chern classes for vector bun-
dles.

• CHp(X) should admit cycle classes for arbitrary subvarieties of codimen-
sion p which are disjoint from the singular locus.

• The Chern Character should give an isomorphism of rings

K0(X)⊗Q ∼= CH∗(X)⊗Q

where K0(X) is the Grothendieck group of algebraic vector bundles on X,
such that the individual CHi(X)⊗Q are identified with the appropriate
eigenspaces for Adams operators on K0(X)⊗Q.

• When k = C, there should be a (functorial) “cycle class” ring homomor-
phism

CH∗(X) → H2∗(X,Z)

which coincides with the earlier cycle class map on irreducible Z ⊂ X with
Z ∩Xsing = ∅. The algebraic and topological Chern classes of (algebraic)
vector bundles should be compatible with this homomorphism.

• The Chow ring should carry “extra structure” corresponding to the “extra
structure” on cohomology.
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In his book [1], Fulton develops the theory of the Chow ring of a non-
singular variety, and in particular, its intersection product, using an analogy
with Poincaré duality. Here are some features of his theory, from our perspec-
tive.

• The Chow group defined earlier

CHp
F (X) = Zp(X)/Rp(X)

is seen as analogous to the homology group

H2 dimX−2p(X,Z),

even if X has singularities. We use the notation CHp
F (X) to indicate it

is Fulton’s definition.

• Chern classes are defined “directly” for vector bundles as certain operators
on these “homology groups”, satisfying suitable functorial properties.

• A “Poincaré dualtiy theorem” is proved for non-singular varieties, iden-
tifying the underlying additive group of a suitable ring of such operators
with the additive “homology group”, through a sort of “cap-product”.

Even for projective varieties with singularities, the whole machinery makes
sense, except that we do not have “Poincaré duality” any more. This leads to
a “Fulton-Chow ring of operators”, even for singular projective varieties.

One property of the Fulton Chow groups CH∗
F (X) is that, if

G0(X) = the Grothendieck group of coherent sheaves on X,

then there is an isomorphism of rational vector spaces

G0(X)⊗Q ∼=

dimX⊕

p=0

CHp
F (X)⊗Q

(this is a version of the singular Riemann-Roch theorem, proved in [1]). Note
that G0(X) is also covariantly functorial, for projective varieties, and so has a
“homology like” character.

However, in general the Grothendieck groups K0(X) and G0(X) of vector
bundles and coherent sheaves, respectively, are not isomorphic, even tensored
with Q. This is somehow analogous to the fact that Poincaré dualty fails for
singularX. They even have different functoriality:K0 is contravariant functorial
for arbitrary morphisms, using the pull-back operation on vector bundles.

The Fulton-Chow ring of operators, with rational coefficients, does not co-
incide with K0(X)⊗Q, for some projective varieties X.

For example, if π : Y → X is a resolution of singularities, then it is easy to
see that with rational coefficients, the Fulton-Chow ring of operators of X is a
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subring of CH∗(Y )⊗Q. This is a simple consequence of the surjectivity of the
corresponding pushforward map π∗ : CH∗

F (Y ) ⊗ Q → CH∗
F (X) ⊗ Q. However

K0(X)⊗Q → K0(Y )⊗Q need not be injective in general, even for curves.
Similarly, we do not expect to have a cycle class homomorphism from the

Fulton-Chow ring of operators to cohomology, in general.
Hence the Fulton-Chow ring of operators is not the ring we are looking for.

3. The Singular Case: Continued

3.1. A Chow ring. In fact, a theory of the Chow ring for singular vari-
eties, with all of the above desired features, has not yet been constructed in the
published literature, to the best of our knowledge. But there are partial results.

Of course, we first postulate that

CH1(X) ∼= Pic (X),

where Pic (X) is the group of line bundles, and the isomorphism determines
the 1st Chern class.

For d = dimX, Levine and Weibel [2] gave the following definition, in 1985,

CHd(X) =
Free abelian group on points of X \Xsing

Modified rational equivalence

where “modified rational equivalence” is generated by divisors of rational func-
tions on curves, where the curves meet the singular locus “correctly”, and the
rational functions are invertible at the points of intersection. For example, if
d = 2, we consider only curves which are reduced Cartier divisors; if Xsing has
codimension ≥ 2, we consider only curves disjoint from Xsing. Some further
properties are:

• for nonsingular X, we recover the usual definition of CHd(X)

• CHd(X)⊗Q ∼= F dK0(X)⊗Q, where F dK0(X) is the subgroup generated
by classes of smooth points

• if k = C, then CHd(X)tors ∼= H2d−1(X,Q/Z) (“Roitman Theorem”, [3]),
originally due to Roitman in the smooth case

• there is a good “Albanese theory” associated to CHd(X) (see [4]).

Marc Levine has an unpublished preprint (circa 1984), with a construc-
tion of a Chow ring for quasi-projective varieties X, satisfying all the desired
properties, except possibly functoriality for arbitrary morphisms (see [5] for an
overview; the detailed construction is in the preprint cited there, entitled “A
Geometric Theory of the Chow ring for singular varieties”; the surface case is
worked out in [18]). Levine’s technique did not yield a proof of functoriality,
though there is no reason to think it is wrong for his Chow ring.

So we may reasonably conjecture that such a theory of the “Chow cohomol-
ogy ring” exists, and possibly equals the ring defined by Levine.
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3.2. A cohomological formula? One may try to guess a cohomolog-
ical formula for the desired Chow ring. One plausible guess is

dimX⊕

p=0

Hp(X,Kp,X),

where Kp,X are the sheafified Quillen K-groups; this is a true formula in the
non-singular case (Bloch’s Formula, proved in general by Quillen [6], see also
[7]), and Levine [8] extended it to singular surfaces. But Levine and I (2002,
unpublished) found a counterexample in dim 3.

Another guess, where we use the Milnor K-theory sheaves (which again gives
the Chow groups for smooth X), instead of the Quillen sheaves, also turns out
to be wrong in the singular case.

Our counterexample, for both formulas, is the “boundary of a 4-simplex”,
which is a singular union of copies of affine 3-spaces A3

C, given by an equation

xyzw(1− x− y − z − w) = 0

in A4
C, with coordinates x, y, z, w, for which the Grothendieck group of vector

bundles can be shown to be Z⊕K3(C). Thus,K0(X)⊗Q has 3 nontrivial Adams
weight subspaces: of weight 0, corresponding to the rank map on vector bundles
(the summand Z in K0), of weight 2, given by K ind

3 (C)⊗Q, the indecomposable
part of K3, and of weight 3, given by KM

3 (C)⊗Q, the Milnor K3. Hence, these
must be the rational Chow groups CHi(X)⊗Q, i = 0, 2, 3, and they are known
to be nontrivial.

The group H3(X,K3) ⊗ Q is seen to account for the whole of K3(C) ⊗ Q,
including the indecomposable part. This means thatH2(K2)⊗Q vanishes, while
at the same time, CH2(X)⊗Q 6= 0. Thus we end up having a counterexample
to both possible cohomological formulas for the “Chow ring”, even with rational
coefficients.

3.3. Codimension of support. We comment next on our desired cycle
class property:

CHp(X) should admit cycle classes for arbitrary subvarieties of
codimension p which are disjoint from the singular locus.

At first sight, this seems formulated in too weak a form: we might well ex-
pect that if F is a coherent sheaf on a projective variety X, which has a finite
resolution by vector bundles (i.e., whose stalks have finite homological dimen-
sion as modules over the respective local rings), then there is an associated
“cycle class” in CHp(X), where p is the codimension of the support of F . With
Q-coeffcients, we might further expect to be able to express this cycle class
using the p-th graded component of the Chern character of F , and this Chern
character should vanish in graded degrees < p.
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In particular, if X has dimension d, and F is supported at a finite set of
points, we should thus expect the corresponding cycle to lie in CHd(X), and
to be a rational multiple of the Chern character of F .

However, it turns out that this is false in general. A counterexample comes
from suitably interpreting the work of Dutta,Hochster and Maclaughlin [9].
They showed that if X ⊂ P4

k is the 3-dimensional quadric cone defined by

X = {x1x2 − x3x4 = 0} ⊂ P4
k,

which has a unique singular point (the vertex of the cone)

P = {x0 = 1, x1 = x2 = x3 = x4 = 0},

then there is a sheaf F of finite homological dimension, supported only at the
point P , such that if L = {x1 = x3 = 0} ∼= P2

k is a plane contained in X, then

χ(F ,OL) =
∑

j≥0

(−1)j`P

(
T orOX

j (F ,OL)
)
= −1

where `P denotes the length of the stalk of a sheaf supported at P .
χ(F ,OL) is the K-theoretic expression of the “intersection product” of

chX(F) and L, which corresponds to Fulton’s cap product, where chX denotes
the Chern character.

This means that the Chern character of F must have a component in
CH2(X) ⊗ Q, even though we would naively think it must lie solely in
CH3(X)⊗Q!

The example F is given by writing down explicitly a module of length 15
over the local ring

k[x1, x2, x3, x4](x1,x2,x3,x4)

(x1x2 − x3x4)
.

They construct 15 × 15-matricies A,B,C,D of numbers, which are nilpotent,
mutually commute, and satisfy AB = CD, and explicitly construct a free reso-
lution of the resulting module. They also explicitly compute all the Tor modules,
which also have finite length, and finally the alternating sum of the lengths, to
obtain the answer −1.

It is natural to ask: what is the “conceptual meaning” of this example, and
can we construct others? It turns out that Thomason’s localization theorem in
algebraic K-theory leads to an explanation of this phenomenon.

Given a local ring of (say) an isolated singularity R = OX,P (where X is a
projective variety, P ∈ Xsing an isolated point), there is a Grothendieck group
KP

0 (R) of bounded complexes of finite rank, free R-modules whose homology
has finite length.

One may ask:

• what is the structure of KP
0 (R)?
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• what linear functionals can be defined on CH∗
F (X)⊗Q using cap products

with Chern characters of elements of KP
0 (X)⊗Q?

Let K̃P
0 (R) be the kernel of the obvious map KP

0 (R) → Z given by

F • 7→ χ(F •) =
∑

i

(−1)i`(Hi(F •)).

Then Thomason’s theorem implies a formula

K̃P
0 (R) ∼= K1(U)/K1(SpecR) = K1(U)/R∗,

where U = SpecR \ {P} is the punctured spectrum of the local ring, and K1

is the Quillen algebraic K1-group (special cases of this formula were proved
earlier, from works of Levine, and myself).

Now U is a regular scheme of Krull dimension d − 1, where d = dimX,
and its K-theory in general has a nontrivial eigenspace decomposition under
the Adams operations, with d − 1 pieces, one of which is Γ(U,O∗

U ), which is
“usually” R∗ (see, for example, [10] for a discussion of Adams operations for
higher K-theory). If d ≥ 2, we may well have other nontrivial pieces in this
eigenspace decomposition. This is a (crude) answer to the first question.

Paul Roberts and I gave an answer in [11] to the second question, on the
possible functionals on the Chow group obtained by “intersection products”,
in the case when X ⊂ Pn

k is the projective cone over Y ⊂ Pn−1
k , a smooth

projective variety, and P ∈ X is the vertex (so that Xsing = {P}).
We found the following precise answer: if h ∈ CH1(Y ) is the class of a hy-

perplane section, let V be the kernel in CH∗(Y )⊗Q of multiplication by h, and
let W be the image of V in the quotient of CH∗(Y )⊗Q by numerical equiva-
lence (this quotient of the Chow ring is known to be a finite dimensional vector
space over Q). Then the desired space of functionals is naturally isomorphic to
W .

This precise answer is rather difficult to compute. However, suppose k has
characteristic 0, and Y satisfies the following properties:

• Y is defined over the field Q of algebraic numbers

• Y satisfies Grothendieck’s Standard Conjectures (in particular, that the
inverse of the Lefschetz operator is given by an algebraic correspondence)

• Y satisfies the Bloch-Beilinson Conjecture, that the cycle map to rational
Deligne-Beilinson cohomology is injective on CH∗(YQ)⊗Q.

Then: the dimension of the desired space of functionals on CH∗
F (X)⊗Q equals

the rank of the algebraic primitive cohomology of Y .
Of course Y = P1 × P1 ⊂ P3 is known to satisfy all the above properties,

and has a primitive cohomology class inH2, so the Dutta-Hochster-Maclaughlin
example is “explained”. Other related calculations, trying to make the “inter-
esting” functionals more explicit, may be found in [12].
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For arbitrary (smooth projective) Y , the dimension of algebraic primitive
cohomology gives an upper bound for the dimension of the space of functionals,
which can in general be strict, for varieties not defined over Q.

For general local rings, we presumably cannot expect to find such a detailed
answer. However, Kurano has introduced the notion of numerical equivalence
on the rational (Fulton) Chow groups of a Noetherian local ring (R,m), or
equivalently of the rational Grothendieck group G0(R) ⊗ Q. An element α ∈
G0(R) is called numerically equivalent to 0 if for any bounded complex F•

of finitely generated free R-modules with homology of finite length, the class
(defined using the tensor product of modules)

[F•] · α ∈ G0(R/m) = Z

vanishes. In terms of the rational Chow group, this is expressed in terms of
vanishing of the local Chern character (in the sense of [1]) of the perfect complex
on the element of the Chow group.

Using localization techniques, as well as other tools (etale cohomology, de
Jong’s alterations, etc.) Kurano has shown [13] that for an excellent local ring,
under a mild hypothesis1, the rational Chow groups modulo numerical equiva-
lence of local ring are finite dimensional vector spaces. These are rather myste-
rious invariants of local rings; for example, I believe we do not understand much
about even the “Neron-Severi group” of a local ring, obtained as a quotient of
its divisor class group.

3.4. Hodge conjecture. We now turn to the question: is there a rea-
sonable Hodge Conjecture for singular complex projective varieties?

If X is a smooth projective variety, we can interpret the Hodge cycle groups
as

Hgp(X) = HomHS
(
Z(−p), H2p(X,Z)

)
.

Here Z(−p) is the abelian group Z with a “Hodge decomposition” Z ⊗ C =
(Z ⊗ C)p,p, the symbol HomHS denotes the Hom group in the category of
Hodge structures, which is an abelian category.

The homology and cohomology groups of a complex algebraic variety carry
mixed Hodge Structures, and these form an abelian category MHS, from the
work of Deligne. One possibility in the singular case is to look at the homology
groups instead (and use Poincaré duality to relate to the non-singular case).

In fact there is a cycle map CHp
F (X) → H2 dimX−2p(X,Z), and one can ask

if

imageCHp
F (X)⊗Q → H2 dimX−2p(X,Q)

= HomMHS (Z(dimX − p), H2 dimX−2p(X,Z))⊗Q,

1Assume the ring contains Q, or is essentially of finite type over a field, Z or a complete

discrete valuation ring.
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(with the “twist” Z(dimX−p) instead of Z(−p), because we work with homol-
ogy).

In the smooth case, this is actually a restatement of the usual Hodge Con-
jecture. However, one can see using Hironaka’s resolution of singularities [14],
and Deligne’s foundational work [15], that this “singular homology Hodge con-
jecture” is a consequence of the usual Hodge conjecture for smooth varieties;
this was pointed out by U. Jannsen (see [16]).

However, we can instead ask: what is the “Hodge theoretic” characteriza-
tion, if any, of the image of

CH∗(X) → H2∗(X,Z),

or of this image tensored withQ (which we may define using the Chern character
on K0(X))?

The first step here is to ask: what is the analogue, if any, of the Lefschetz
(1, 1) theorem?

Before proceeding further, we remark that if X is a singular complex variety,
it may be possible to find a proper morphism f : Y → X which is a bijection
on points, but not an isomorphism. It will then be a homeomorphism on the
underlying topological spaces, and so induce an isomorphism on singular coho-
mology, which will be compatible with the underlying Mixed Hodge structures.
However, we need not have that K0(X) → K0(Y ) is an isomorphism, and can
even have a cokernel of positive rank (see [17] for an example).

So, for statements related to the cycle map into singular cohomology, it
makes sense to restrict to the class of seminormal varieties. For our purposes,
a variety X (in characteristic 0) is seminormal if, for any proper morphism
f : Y → X which is bijective on points, f must be an isomorphism. This can
be expressed intrinsically in terms of the local rings of X. In char. p > 0 there
is also a definition, taking inseparability into account (see [19], [20] for more on
this notion).

Now, even for a hypersurface X ⊂ P3
C with an isolated singularity (which is

thus normal, Cohen-Macaulay, etc.), it is false in general that

image
(
CH1(X) → H2(X,Z)

)
= HomMHS

(
Z(−1), H2(X,Z)

)
.

A simple counterexample is the projective surface

X = {w(x2z − y3) + (x4 + y4 + z4) = 0} ⊂ P3
C.

This is a rational quartic surface with a triple point, resolved by 1 blow-up,
whose exceptional divisor is an irreducible rational curve with a cusp. From
this, one can show (see [21]) that

rankPic (X) < rankH2(X,Z) = rankHomMHS(Z(−1), H2(X,Z)).

To remedy this, for any projective variety X, we may consider the subspace

L1H2(X,Z) = Zariski locally trivial classes in H2(X,Z)
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= {α ∈ H2(X,Z) | α ∈ ker
(
H2(X,Z) → ⊕iH

2(Ui,Z)
)

for some Zariski open cover {Ui} of X}.

The choice of notation L1H2(X,Z) is explained later.
From Deligne’s results [15], L1H2(X,Z) ⊂ H2(X,Z) is a “sub-Mixed-Hodge

structure” (it should in fact correspond to a “submotive”), and clearly

image
(
CH1(X) → H2(X,Z)

)
⊂ L1H2(X,Z)

since CH1(X) = Pic (X), and any algebraic line bundle on X is, by definition,
locally trivial for the Zariski topology. Hence we in fact have that for any
projective complex variety X,

image
(
CH1(X) → H2(X,Z)

)
⊂ HomMHS

(
Z(−1), L1H2(X,Z)

)
.

Now one can show:

Theorem 3.1. (Singular Lefschetz (1,1) Theorem) If X is a seminormal com-
plex projective variety, , then

image
(
CH1(X) → H2(X,Z)

)
= HomMHS

(
Z(−1), L1H2(X,Z)

)
.

This was proved for normal varieties by J. Biswas and myself [17] in 2000,
and more recently by Barbieri, Rosenschon and myself in general (see [22]) by
somewhat different arguments (the argument with Biswas seems to also yield
a similar version of the Tate Conjecture, in the normal case; the analogue of
the Tate conjecture in the seminormal case seems to be an interesting open
question).

Now we may ask: can we also similarly formulate a version of the Hodge
Conjecture?

An attempt to do this goes as follows. We may regard the identity map on a
complex variety X as a continuous map πX : X → XZar between the analytic
and Zariski sites, and so have a Leray spectral sequence

Ep,q
2 = Hp(XZar, R

qπX
∗ Z) ⇒ Hp+q(X,Z),

where on the abutment, we are working with the complex topology, and singular
cohomology is thought of as cohomology of the constant sheaf Z. In particu-
lar, the spectral sequence determines a decreasing filtration on each singular
cohomology group

Hi(X,Z) ⊃ L1Hi(X,Z) ⊃ · · · ⊃ LiHi(X,Z) ⊃ Li+1Hi(X,Z) = 0.

It is clear that

L1Hi(X,Z) = ker
(
Hi(X,Z) → H0(XZar, R

iπX
∗ Z)

)

consists of the elements which are locally trivial in the Zariski topology, in the
same sense as before.



616 Vasudevan Srinivas

One can also show that

• the image of the p-th component of the topological Chern character from
K0(X)⊗Q to H2∗(X,Q) has image contained in LpH2p(X,Q)

• if X is nonsingular, then in fact

image
(
CHp(X) → H2p(X,Z)

)
= LpH2p(X,Z),

and Lp+1H2p(X,Z) = 0. Both these assertions are part of what was called
Washnitzer’s Conjecture, proved by Bloch and Ogus [23] (see also [24])
that the filtration L∗ coincides with Grothendieck’s “coniveau filtration”
N∗, sometimes also called the “arithmetic filtration”.

• It should be remarked that the naive definition of the filtration N i in the
singular case is not the “correct” one, for example, one has L1H2(X,Z) (
N1

naiveH
2(X,Z) for certain singular projective X.

This suggests the following questions:
(i) is {LpHi(X,Z)} a filtration by Mixed Hodge structures (or “submotives”)?
(ii) assume this holds; then if chp

X is the p-th component of the topological
Chern character on K0(X), is

image chp
X = HomMHS(Z(−p), LpH2p(X,Z))⊗Q?

Assuming a positive answer to the first question, we may regard the second
question as an analogue of the Hodge Conjecture.

Note that if X is non-singular, both questions have a positive answer, inde-
pendent of conjectures, from the results of Bloch and Ogus. Results of Collino
[25] imply that if X has exactly 1 singular point, then the above questions have
a positive answer.

I expect that
(i) always holds, and
(ii) holds if X is seminormal, and defined over Q, while it might be false in
general.

3.5. Fine structure. Finally, I turn to the “extra structure” of the Chow
ring, first in the smooth case, and then discuss the singular case.

For smooth complex varieties, one important aspect of such “extra struc-
ture” is the Bloch Conjecture, and its refinement and generalization by Beilin-
son, which we may formulate as the existence of “good filtrations” on the Chow
rings with rational coefficients of smooth varieties, which are compatible with
pull-backs, and push-forwards under proper maps, in the natural way (see [26],
[27], [28] for more on this theme). Key additional properties are that

• ker
(
CH∗(X)⊗Q → H2∗(X,Q)

)
is the first level of this filtration

• the filtration induced on CHi(X)⊗Q has at most i+ 1 steps
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• each graded piece of CHi(X)⊗Q is “governed” by a certain graded piece
of the cohomology H∗(X,Q).

We do not elaborate on the vague last condition above. Instead, a concrete
assertion, with d = dimX, is:
CHd(X \Y )⊗Q = 0 for some i-dimensional subvariety Y ⇐⇒ H0(X,Ωj) = 0
for all j > d− i.
Here =⇒ is in fact an old theorem of Mumford, extended by Roitman (see
[29], [30]).

Another aspect of the “extra structure” on Chow groups is the system of
Bloch-Beilinson Conjectures (see [31], [32]), relating Chow and motivic coho-
mology groups to the behaviour of L-functions, and refinements (like the Bloch-
Kato conjecture [33]). A consequence of these conjectures is the following state-
ment:

if X is a smooth projective variety over Q, and XC is the corre-
sponding complex variety, then the composite cycle map

CHp(X)⊗Q → CHp(XC)⊗Q → H2p(XC,Z(p)D)⊗Q

is injective, for all p.

Here, H2p(XC,Z(p)D) is the Deligne cohomology, which fits into an exact
sequence

0 → Jp(XC) → H2p(XC,Z(p)D) → Hgp(XC) → 0

where Hgp(XC) is the group of Hodge cycles, which appeared while formu-
lating the Hodge Conjecture, and Jp(XC) is the p-th Intermediate Jacobian,
first defined by Griffiths, and given in terms of the Hodge decomposition of
H2p−1(XC,Z)⊗ C by the formula

Jp(XC) =
H0,2p−1(XC)⊕H1,2p−2(XC)⊕ · · · ⊕Hp,p−1(XC)

H2p−1(XC,Z)
.

A special case of the above, when p = d = 2, when combined with the
Lefschetz hyperplane theorem, yields the following Conjecture:

let X = SpecA be an affine smooth variety of dimension d > 1 over
Q, then CHd(X) = 0.

A remarkable feature of this conjecture is that the geometry of XC plays no role
in the conjecture. It is thus a deep, arithmetical conjecture about Q-algebras.

The Bloch Conjecture for complex affine surfaces says, on the other hand:

letX = SpecA be a smooth affine surface over C; then CH2(X) = 0
⇐⇒ X has a smooth compactification X which has no non-zero
global 2-forms (or equivalently satisfies H2(X,OX) = 0).

The equivalence of the 2 conditions follows from Serre duality.
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At present, we do not have a single example of (say) a complex smooth affine
surface, which is obtained by complexification of a surface defined over Q, for
which we can verify that the class of any Q-rational point is 0, but where there
exist C-points with non-trivial class (e.g., by the Mumford-Roitman result, if
H0(X,Ω2

X
) 6= 0).

For example, the conjecture predicts that the class of any Q-point of the
affine Fermat hypersurface

{x4 + y4 + z4 = 1} ⊂ A3
C

is 0 in CH2; this is not known. However, there exist “many” C-points whose
classes are not mutually rationally equivalent, since the projective Fermat hy-
persurface

{x4 + y4 + z4 = w4} ⊂ P3
C

has a non-zero global 2-form (in fact it is a K3 surface).

Now I can state a result obtained jointly with Amalendu Krishna (see [35],
[36]). We have more general results (on normal surfaces, and on graded Q-
algebras, and he has further generalizations [37], [38], but I will not go into all
that here).

Theorem 3.2. Let Y ⊂ Pn
k be a smooth projective curve, and let X be the

affine cone over Y . Let X ⊂ Pn+1
C be the projective cone over Y .

(i) if k = C, then CH2(X) = 0 ⇐⇒ H2(X,OX) = 0 ⇐⇒ H1(Y,OY (1)) = 0.

(ii) if k = Q, then CH2(X) = 0.

Thus, one finds that if

A =
Q[x, y, z]

(x4 + y4 + z4)

then

CH2(SpecA) = 0,

while

CH2(Spec (A⊗ C)) ∼= C-vector space of uncountable dimension.

This suggests that at least in some form, the “fine structure” present/
conjectured on the Chow groups of smooth varieties might have extensions
to the singular case. Furthermore, in some cases, one can find nontrivial sin-
gular examples verifying the conjectures, which are still elusive in the smooth
case. These ideas need to be developed further, to get a more precise general
picture.
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4. Some Additional Remarks

4.1. Some new tools from K-theory. We now report briefly on
some techniques from K-theory that may help shed light on the study of cycles
in the singular case.

At the level of singular cohomology, an important tool which relates the
structure of the cohomology of a singular variety to that of smooth varieties is
the notion of chomological descent. Thus, if X is a singular projective complex
variety, and X• → X is a smooth, proper hypercovering, then cohomological
descent identifes H∗(X,Z) with the simplicial cohomology H∗(X•,ZX•

), which
in turn is the abutment of two spectral sequences; this relationship is the basis
of Deligne’s definition of the Mixed Hodge structure on the cohomology of a
singular projective variety, and many other constructions.

However, at the level of Grothendieck groups of vector bundles, there is no
simple relationship between K0(X) and (say) K0 of locally free sheaves on X•;
thus we do not have any direct technique to relate the Grothendieck group of X
with the K-theory of the (nonsingular) components Xn in the simplicial scheme
X•.

This is related to the phenomenon that K-theory for singular schemes is not
“homotopy invariant”, i.e., that Ki(X × A1) 6= Ki(X) in general, for singular
schemes, though we do have such an identification for regular schemes. Thus,
such a smooth proper hypercover somehow “cannot see” the non-homotopy
invariant part of K-theory.

One way this has been addressed in the literature is to consider a new def-
inition of K-theory, called “homotopy invariant K-theory”, which agress with
the Quillen K-theory of vector bundles for regular schemes, does satisfy “ho-
motopy invariance” in the above sense, and (in general) gives different results
than Quillen K-theory for non-regular schemes. This is a reasonable approach
from the perspective of, say, A1-homotopy theory.

However, even for Pic (X), the homotopy invariant K-theory seems to give
in general a different result than the usual one, even if X is a hypersurface
with isolated singularities. So, from our perspective of trying to understand K0

of vector bundles in the presence of singularities, homotopy invariant K-theory
does not provide a satisfactory substitute.

Some new techniques have emerged, which have made progress in the di-
rection of relating the K-theory of a singular variety with (say) the K-theory
of the components of a smooth proper hypercover. These rely on two things:
(i) the notion of the cdh topology, a Grothendieck topology on schemes which
is a variant of the h-topology of Voevodsky, and (ii) Cortiñas’ infinitesimal K-
theory groups, which are homotopy groups of a suitable homotopy fiber, and so
fit into an exact sequence involving the Jones-Goodwillie trace maps between
K-theory and negative cyclic homology (see [39], [40].

This allows one, in principle, to understand (in some fashion) the differ-
ence between the K-theory of a singular scheme and that of a smooth proper
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hypercover, in terms of a similar difference between the corresponding negative
cyclic homologies, which in turn are closely related to Kahler differentials. It is
technically difficult to extract information relevant to us from this package, but
it offers new possibilities, and allows us to make new calculations, seemingly
impossible with earlier techniques. For example, the interested reader can con-
sult [41], to get an idea about these techniques, and their scope; other articles
and preprints are available at [42].

4.2. Intersection Chow groups? In a direction somewhat different
from our theme so far, we comment on what we might mean by “intersection
Chow groups”, or at least “intersection K0”. This is motivated by the notion of
intersection cohomology, introduced by Goresky and MacPherson, and devel-
oped further by Deligne, Beilinson, Bernstein and Gabber [43]. One important
result in [43] is the decomposition theorem, which in principle identifies the
intersection cohomology of a singular projective variety as a subquotient of the
cohomology of a resolution of singularities, and thus determines a “pure mo-
tive”, whose Chow groups (say, with rational coefficients) might be thought of
as “intersection Chow groups”. As far as I understand it, this is basically the
approach of Hanamura and Corti in [44], [45].

A different idea might be to look for subcategories of the derived category of
coherent sheaves of a projective variety, which are closed under Grothendieck-
Serre duality. This is analogous to the defining conditions for perverse sheaves,
which involve Grothendieck-Verdier duality. In an unpublished work, Deligne
studied such categories, and an account of this was given by Bezrukavnikov [46].
The resulting notions of “perverse coherent sheaves” seem to be of interest in
representation theory (see for example [47]).

From a K-theory perspective, it may be interesting to study the
Grothendieck groups, and perhaps the “K-theory” of these categories, which
might yield interesting new invariants for singular varieties. At this point, this
is little more than speculation; thinking of “perverse coherent sheaves”, we
might ask if there is some “direct” definition of an “interesting” group which is
“in-between” the Picard group and the divisor class group. We leave this poser
to the reader!
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Abstract

This expository article is an attempt to illustrate the power of Kontsevich’s
homological mirror symmetry conjecture through one example, the heuristics of
which lead to an algebro-geometric construction of knot invariants.
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1. Introduction

This paper can be thought of as a companion to the paper [32], giving the
background, mirror symmetric motivation, and helpful pictures that are miss-
ing there. Along the way we give a geometric description of Manolescu’s iso-
morphism [18] between an open subset of a Hilbert scheme of points on an ALE
space and the Slodowy slice to a nilpotent matrix with two equal Jordan blocks
considered by Seidel and Smith, along the lines of the construction in [11]. We
use a description of these ALE spaces as blow ups which is probably well known
to experts but was new to me, giving maps between them that are crucial to
our construction.

Heuristics. We treat mirror symmetry as a heuristic device to motivate
constructions on one side of the mirror that reflect better known constructions
on the other. We make no rigorous claims for our putative mirrors; for instance
we are not claiming that a hyperkähler resolution of a singularity is mirror to a
hyperkähler smoothing. Though we will use examples where this ansatz works
well, in the key example it fails (see Section 5.1) and has to be augmented with
a deformation.
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2. Symplectic Geometry

We begin by surveying some standard constructions in symplectic geometry.
We skate over many technical issues, in particular Floer cohomology, gradings,
the construction of the Fukaya category, and the difficulties in doing symplectic
parallel transport in noncompact spaces. Most of these are dealt with manfully
in the wonderful papers of Paul Seidel [23, 24, 25].

2.1. Parallel transport. A family of projective manifolds

p : X → B

will not in general be locally trivial over its smooth locus B∗ ⊂ B; the com-
plex structure will vary. As Paul Seidel once taught me, symplectic geometry is
what is left when you look for what is locally constant. (I liked this because it
sounded like it might subordinate symplectic geometry to algebraic geometry.)
Here the symplectic form ω is given by pulling back the Fubini-Study form via a
projective embedding. Over B∗ there is a connection on the family: take the an-
nihilator of the fibrewise tangent bundle TX/B under ω to define the horizontal
subbundle of TX . Parallel transport along this connection preserves the sym-
plectic form, and so identifies smooth fibres Xb0 , Xb1 by symplectomorphisms,
once we pick a path between their images b0, b1 in the base B∗. In particular
the monodromy around a loop in B∗ can be taken to be a symplectomorphism
of any such fibre (X,ω) ∼= (Xb, ω|Xb

).
This connection is not flat. Any two tangent vectors v1, v2 ∈ TbB

∗ have
unique horizontal lifts ṽi ∈ Γ(TX |Xb

). Thinking of

h := ω(ṽ1, ṽ2)

as a Hamiltonian function on Xb it defines an infinitesimal symplectomorphism
of Xb by the Hamiltonian vector field Xh whose contraction with ω|Xb

is dh.
This Ham(Xb, ω|Xb

)-valued 2-form on B∗ is the curvature of the connection.
Therefore isotopic loops in B∗ give rise to different but Hamiltonian isotopic
monodromies. We get a homomorphism

π1(B
∗) → Aut(X,ω)

to the group of symplectomorphisms modulo Hamiltonian isotopies.
Pick a singular point x0 lying above a point b0 ∈ B in the discriminant locus,

and a path in B∗ to b ∈ B∗. The locus L of points of Xb that flow to x0 by
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Figure 1. Vanishing cycle L of the family (2.1).

parallel transport along the path is called the vanishing cycle of the singularity
x0. Because the flow preserves the symplectic structure, L is isotropic (where
it is smooth): ω|TL ≡ 0. If x0 is an isolated critical point then L is in fact
Lagrangian.

The curvature of the symplectic connection blows up as we approach such
singular points. Taking smaller and smaller loops in B∗ around b0 the mon-
odromy symplectomorphism approaches the identity away from the vanishing
cycle.

2.2. The ordinary double point. We start with a basic affine local
model. Consider the family

f : Cn+1 −→ C, f(x) =
n+1
∑

i=1

x2
i . (2.1)

Over 0 we get the n-dimensional ordinary double point
∑

x2
i = 0, while over

ε 6= 0 we find its smoothing Xε = {∑x2
i = ε}. We use the symplectic structure

inherited from the standard Kähler form on C
n+1.

Using the O(n + 1) symmetry it is easy to see that the vanishing cycle L
over ε 6= 0 along the straight line path to 0 ∈ C is the real slice

xi ∈
√
ε.R ⊂ C

of X. Scaling coordinates by ε−1/2 this is just the sphere

L = Sn =
{

∑

x2
i = 1

}

⊂ R
n+1.

In fact take ε ∈ (0,∞), without loss of generality, and take real and imaginary
parts: xj = aj + ibj . Consider a = (ai) and b = (bi) as lying in R

n+1 and
(Rn+1)∗ respectively, and give Cn+1 = R

n+1⊕ (Rn+1)∗ = T ∗
R

n+1 its canonical
symplectic structure. Then the equation f = ε becomes

∑

a2i − b2i = ε,
∑

aibi = 0.
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In particular |a|2 = ε + |b|2 > 0 so we may divide a and multiply b by |a| to
give a symplectomorphism of f−1(ε) to

T ∗Sn = {(a,b) ∈ T ∗
R

n+1 : |a| = 1, b(a) = 0}.

The monodromy on going once anticlockwise around ε = 0 is Seidel’s generalised
Dehn twist TL [22] about L (first suggested by Arnol’d). This is (Hamiltonian
isotopic to) the time π flow by the Hamiltonian φ(|b|), where φ is a smooth
monotonic function with φ(x) = x for small x ≥ 0 and φ ≡ const for large
x. This flow is discontinuous across the vanishing cycle b = 0, but after time
π comes back to the antipodal map there and so becomes continuous again.
(Alternatively use the standard metric to identify T ∗Sn with TSn. The latter
has a canonical vector field which at a point v ∈ TpS

n is the horizontal lift ṽ
of v to T(p,v)(TS

n). Flowing down ṽ/|ṽ| is again discontinuous, cutting T ∗Sn

along its zero section then regluing after time π. Then use a bump function to
glue this symplectomorphism to the identity away from the zero section.)

When n = 1 this reduces to the classical Dehn twist along an embedded S1 in
a Riemann surface: cut along S1, rotate everything to one side of it through 2π,
then reglue. Figure 2 shows its action on one of the cotangent fibres R ⊂ T ∗S1.
More generally given any middle dimensional cycle, the action of the Dehn

Figure 2. Action of the Dehn twist on a cotangent fibre a of T ∗Sn.

twist, i.e. the monodromy around ε = 0, can be described similarly: for every
transverse intersection point with the vanishing cycle L, the cycle picks up a
copy of L (connect summed to it at the intersection point). In particular in any
projective family acquiring an ordinary double point we have the above local
model near the vanishing cycle L (by Weinstein’s theorem) and the action on
middle degree homology Hn is given by the Picard-Lefschetz reflection

a 7→ (a.[L])[L] + a. (2.2)

One can keep more of the symplectic information by instead using the Fukaya
A∞-category [8, 25]. This has as objects certain Lagrangian submanifolds (with
some extra decorations) and morphisms the Floer cochain complex CF ∗(L1, L2)
whose generators are intersection points of generic Hamiltonian perturbations
of L1, L2 with differential given by counting holomorphic discs running between
the intersection points with boundary in the Li. (The result is independent of
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the choices of (almost) complex structure and Hamiltonian isotopy up to quasi-
isomorphism.) The tautological evaluation map in this Fukaya category

CF ∗(L,L′)⊗ L → L′ (2.3)

has a cone in the derived category F(Xε, ω) of twisted complexes in the Fukaya
category. Under certain conditions on the Maslov degree of the intersection
points, this cone is equivalent to the (graded) Lagrangian connect sum of L′

and L at its intersection points [7, 22, 23, 33]. The induced action of the Dehn
twist on the derived Fukaya category indeed takes L′ to the above cone [23],
clearly categorifying the Picard-Lefschetz reflection (2.2) to which it reduces at
the level of cohomology. Another way of saying this is that there is an exact
triangle

HF ∗(L,L′)⊗ L → L′ → TL(L
′) (2.4)

in F(Xε, ω).

2.3. Families of quadrics. Another way of seeing the smoothing of the
ordinary double point – i.e. a smooth fibre of (2.1) – is by fibring it over C

using the last coordinate xn+1 = t:

{

n
∑

i=1

x2
i = ε− t2

}

⊂ C
n
xi

× Ct −→ Ct. (2.5)

This expresses the n-dimensional affine quadric as a family of (n − 1)-
dimensional affine quadrics – the fibres

∑n
i=1 x

2
i =const where t is fixed. Each

contains a canonical Lagrangian Sn−1 real slice, except the two singular fibres
where ε − t2 vanishes and the vanishing cycle collapses to a point. Picking a
path between t = ±ε1/2, the Sn−1-bundle over it (collapsing at the endpoints)
gives a Lagrangian Sn as in Figure 3. This is the vanishing cycle of the degen-
eration of the total space given by tending ε → 0 (so that the path and the

Figure 3. Lagrangian Sn fibred by Sn−1 s over a matching path between the critical
points of the fibration (2.5).
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Figure 4. Action of the Dehn twist Ti on the Ak−1-chain.

vanishing cycle both collapse). Monodromy around this simply rotates the path
anticlockwise through 180o, exchanging the endpoints and giving another way
to view the Dehn twist.

This picture generalises by considering a degree k polynomial p on the right
hand side of (2.5):

X = Xλ :=

{

n
∑

i=1

x2
i = p(t)

}

⊂ C
n
xi

× Ct. (2.6)

We fix pmonic, with set λ = (λ1, . . . , λk) of distinct, unordered roots with centre
of mass 0 ∈ C. Then Xλ is smooth (but acquires ordinary double points when
p has double roots). By the same reasoning, paths between zeros λi of p give
O(n)-invariant Lagrangian spheres inXλ. Such a sphere is the vanishing cycle of
the degeneration given by bringing the two roots of p at its endpoints together
along the path to produce an ordinary double point. We will be particularly
interested in the n = 2 case of this construction, in which case the fibres are
the type-Ak−1 ALE surfaces Sλ.

We get a smooth family of Xλ s over C
0
k , the configuration space of k distinct

unordered points λ in the plane C with centre of mass the origin. Now π1(C
0
k) =

Bk, the braid group on k strands: a loop in Ck can be considered as a motion, as
time runs from 0 to 1, of the k points through C (never touching, and starting
and ending at the same set of points, possibly permuted); plotting the graph of
this motion in C× [0, 1] gives a braid. So the monodromy is a representation

Bk → Aut(X,ω),

which is faithful [15]. Take as basepoint of C0
k a configuration of k points along

the real line R ⊂ C, with the obvious Ak−1-chain of paths given by the intervals
between them. Then the braid given by rotating the ith and (i + 1)st points
about each other in C while fixing the others gives the generator Ti of Bk.
The corresponding automorphism Ti ∈ Aut(X,ω) is the monodromy about
the ordinary double point that Xλ acquires when the two points are brought
together along the interval between them. Thus it is the Dehn twist in the
Lagrangian sphere Li fibring over that interval. It takes our Ak−1-chain of
Lagrangian spheres to a different Ak−1-chain, as shown in Figure 4. The Ti

satisfy the braid relations

TiTjTi
∼= TjTiTj , |i− j| = 1,

TiTj
∼= TjTi, |i− j| > 1,

(2.7)
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in Aut(X,ω) and so also in Aut(F(X,ω)). (To be more careful one has to
show that the Ti can be lifted to act on the decorations in the derived Fukaya
category, in particular the grading.)

2.4. Spaces of matrices. The family (2.6) is a baby version of another
natural family over C0

k ; the space M0
k of complex k × k trace-free matrices

with distinct eigenvalues. This has a natural Kähler, and so symplectic, form
ω inherited from C

k2

. Consider the map

M0
k → C0

k (2.8)

taking a matrix to its set of eigenvalues λ ∈ C0
k . It has smooth fibre Mλ,

the adSL(k)-orbit of similar matrices with the same eigenvalues λ. We get the
monodromy representation

Bk → Aut(Mλ, ω). (2.9)

In fact the family (2.1) for n = 2 is the above family (2.8) when k = 2, and (2.6)
is also a Slodowy slice (at a nilpotent matrix with Jordan blocks of size (1, k−1))
of the fibration (2.8). The monodromies can also be described as coisotropic
family Dehn twists modelled on relative versions of the 2-dimensional Dehn
twist of Section 2.2 with n = 2; see [16, Section 3.4].

A different slice of the family (2.8) when k = 2m is considered by Seidel and
Smith [27]. Let SS2m denote the space of trace-free matrices A with distinct
eigenvalues and the following block form

A :=













A1 I2 0 0 0
A2 0 I2 0 0
. . . . . .
Am−1 0 0 0 I2
Am 0 0 0 0













, (2.10)

where Ai is any 2×2 matrix, A1 is trace-free, and I2 is the 2×2 identity matrix.
Again the eigenvalue map makes this a smooth symplectic bundle

SS2m → C0
2m, (2.11)

with monodromy representation B2m → Aut(SSλ, ω) on a fibre SSλ.

2.5. The Manolescu isomorphism. Manolescu [18] found another
beautiful relationship between the Seidel-Smith family and the basic family
(2.6) over C0

2m. Namely, he showed that SS2m can be identified with an explicit
open subset of the relative Hilbert scheme of m points on the smooth fibres of
the family of ALE surfaces given by (2.6) with n = 2 and deg p = 2m.

Manolescu described his isomorphism by ingenious algebraic manipulation,
but it is possible to describe it geometrically as follows. We fix m and work on
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one fibre SSλ, fixing the degree 2m monic polynomial pλ(x) with roots λ that
is the characteristic polynomial of matrices in SSλ.

Since the Ai commute with the other 2×2 blocks in A (2.10), we can evaluate
the determinant of xI2m −A blockwise to give the 2× 2 matrix polynomial

A(x) := I2x
m −A1x

m−1 −A2x
m−2 − . . .−Am (2.12)

with determinant det(A(x)) = pλ(x).
In fact it is convenient to work with the matrices

B(x) := A(x)J = Jxm − (A1J)x
m−1 − (A2J)x

m−2 − . . .− (AmJ), (2.13)

where multiplication by

J =

(

0 1
−1 0

)

, J2 = −1,

is invertible, preserves determinants, and takes trace-free matrices to symmetric
matrices. Therefore writing the polynomial-valued 2 × 2 matrices B(x) in the
form

B(x) =

(

V (x) U(x)
W (x) X(x)

)

, (2.14)

we have that U and −W are monic of degreem, U andW have equal coefficients
of xm−1 (the trA1 = 0 condition), and V, X have degree m− 1 and satisfy

det(B(x)) = V (x)X(x)− U(x)W (x) = pλ(x). (2.15)

Matrices B(x) (2.14) satisfying these conditions are entirely equivalent to ma-
trices A ∈ SSλ (2.10).

Considering B(x) to be an endomorphism of the trivial rank 2 bundle over
Cx, we study it via its spectral curve. Plotting the two eigenvalues y1(x), y2(x)
of B(x) gives a curve

CB := {(x, y) : det(yI2 −B(x)) = 0} ⊂ Cx × Cy

double covering Cx. Expanding out gives the equation of CB ⊂ Cx × Cy as

y2 − tr(B(x))y + pλ(x) = 0. (2.16)

Over this curve is the natural line subbundle Eig → CB of the trivial rank
two bundle given by the corresponding eigenspace of B(x). At (x, y) ∈ CB ,
yI2−B(x) has rank≤ 1 and top row (y−V (x) −U(x)), so an obvious element
of the kernel is its perpendicular

(

U(x)

y − V (x)

)

.

This defines a generator of the eigenspace except when it vanishes, i.e. except
at the points (αi, V (αi)), where αi are the m roots of U(x). (And from (2.14)
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or (2.16) one sees that indeed y = V (x) is on one branch of CB at the roots of
U(x); the other branch being y = X(x).)

So we have exhibited a section of Eig vanishing on the length-m divisor
D = {(αi, V (αi))}, or, more precisely,

D = {U(x) = 0 = y − V (x)} ∈ Hilbm CB . (2.17)

In particular, at smooth points of CB , we find that

Eig ∼= OCB
(D). (2.18)

Write the equation (2.16) of the curve CB ⊂ Cx × Cy as

y(tr(B(x)− y) = pλ(x).

Plotting the graph of the other eigenvalue

Y = tr(B(x))− y

of B(x) embeds CB in

Sλ := {yY = pλ(x)} ⊆ Cx × Cy × CY . (2.19)

This is the affine blow up of C2
xy in the points (λi, 0) defined by y = 0 = pλ(x),

and is isomorphic to the ALE surface (2.6) (with n = 2 and k = 2m). (The
usual blow up is given by the same equation in C

2 × P
1
Y but we are removing

the locus Y = ∞ – the proper transform of y = 0 – to get Sλ. Since by (2.15)
the curve CB ⊂ C

2 never hits y = 0 except at the roots of pλ(x) it more
naturally lies in the blow up (2.19) of C2 than in C

2 itself. This will help us to
invert the construction below. What is going on here is that a point (x, y) ∈ CB

determines the other eigenvalue Y = pλ(x)/y by (2.15) except when y = 0. At
such points, i.e. when x is one of the roots λi, the fact that y = 0 tells us
nothing as we already knew that CB goes through (λi, 0) by (2.15). To invert
the construction we will need to know the gradient of CB at this point instead,
and this determines the other eigenvalue. The blow up (2.19) achieves this.)

Manolescu’s map then maps A (2.10) (or equivalently B(x) (2.13)) to the
image of the divisor D (2.17) under the inclusion

Hilbm CB ⊂ Hilbm Sλ.

By its definition (2.17) we see that D projects to the length m subscheme
{U(x) = 0} ∈ Hilbm Cx under the obvious projection Sλ → Cx. In other words
no part of D is tangent to the fibres of this projection and the restriction of
the projection to D is an isomorphism. This proves one half of the following.

Theorem 2.20. [18, Prop 2.7] The above construction gives an isomorphism
between the space SSλ and the open subset of Hilbm Sλ consisting of subschemes
whose projection to Cx also have length m.



An Exercise in Mirror Symmetry 633

The proof of the converse is now easy. Fix D ∈ Hilbm Sλ whose projection
to Cx has length m. This defines a unique degree m monic polynomial U(x)
with those roots. The function y|D defines a function on the projection of D
in Cx, and there is a unique degree m − 1 polynomial V (x) on Cx whose
restriction takes the same values. Similarly Y |D defines X(x). Finally a degree
m polynomial W (x), with leading two coefficients −1 and the xm−1 coefficient
of U(x) respectively, is uniquely determined by comparing coefficients in the
equation (2.15), using the fact that the coefficient of x2m−1 in pλ is

∑

λi =
trA = 0. This determines B(x) (2.14), as required.

More geometrically, we are saying that D determines the curve CB through
it, and (at least at smooth points of CB) the eigensheaf Eig = OCB

(D) (2.18).
Pushing this down gives the trivial rank two bundle, on Cx, while the scalar
endomorphism y descends to an endomorphism B(x) of this trivial rank two
bundle. This is the classical spectral curve construction for Higgs bundles [10].
I only recently discovered that the link to Hilbert schemes was discovered 15
years ago by Hurtubise [11].

2.6. Digression – fixed point locus. In [28] Seidel and Smith also
consider the involution on SSλ given by replacing each Ai by its transpose. The
fixed point locus consists of those matrices A(x) (2.12) which are symmetric;
after multiplying by J we get those matrices B(x) (2.13) which are trace-free.

This fixes the eigenvalues of B(x) (since its determinant is also fixed (2.15))
and so the (smooth) spectral curve,

CB := {y2 = pλ}. (2.21)

Restricted to this locus, the above gives a geometric description of the algebraic
construction in [28] (a precursor [29] of Manolescu’s construction). The result
is an embedding of the fixed point locus of SSλ in

Symm CB .

The image is the complement of the “hyperelliptic locus” of Symm CB – i.e. it is
the length-m subschemes of the hyperelliptic curve CB → Cx whose projection
to Cx also have length m. In [28] Seidel and Smith use this to make a beautiful
link between their construction of Khovanov cohomology (of Section 2.8) to
Ozsváth-Szabó theory. So in this setting the passage from Ozsváth-Szabó theory
to Khovanov cohomology is a form of complexification, replacing the Riemann
surface (2.6 with n = 1) by the hyperkähler ALE surface (2.6 with n = 2) – i.e.
replacing (2.21) by (2.19) – and taking Hilbm of either.

2.7. ALE spaces as affine blow ups. Buried in the description of
the Manolescu embedding we saw how to describe the ALE surfaces Sλ (2.6)
as affine blow ups. Here we emphasise the construction and a consequence.

Fixing monic p with roots λ, we consider the ALE surface

Sλ = {xy = p(t)} ⊂ Cx × Cy × Ct (2.22)
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with its obvious projection to Cx ×Ct. This is an isomorphism except over the
points x = 0 = p(t) of C2, where the fibre is an exceptional copy of C. This is
the affine blow up of C2 in x = 0 = p(t): the usual blow up given by the same
formula in Cx × P

1
y × Ct but with y = ∞ (the proper transform of the t-axis

x = 0) removed.

The usual Ak−1-chain of Lagrangian S2s in (2.22) can be seen as follows.
Pick an Ak−1-chain of paths in Ct between the roots of p(t). Multiplying by
the radius ε circle about the origin in Cx gives k Lagrangian S1× [0, 1] tubes in
C

2. Blow up C
2 symplectically by removing balls of radius ε about each point

of x = 0 = p(t) and collapsing the Hopf fibration on the boundary S3s. This
collapses the tubes to Lagrangian S2s forming our Ak−1-chain; see for instance
[31].

As Ivan Smith explained to me, this can also be seen as a “spinning” ([26]
is a good recent reference) of Ct over the roots λ of p(t). The fibres of the
projection to Ct are conics C

∗ (the fibres of Cx × Ct → Ct with the t-axis
(x = 0) removed) except over the roots of p(t) where we get the singular conics
C ∪0 C (the exceptional fibre union the original fibre Cx).

What is nice about the description as an affine blow up is that it demon-
strates natural maps between the ALE spaces that are compatible with the
Ak-chains. Ignoring the centre of mass condition for simplicity, let

Sk−1 ⊂ Sk−1

denote the ALE surface (2.22) with λ = (1, 2, . . . , k) inside the full blow up of
C

2 in the points (0, 1), (0, 2), . . . , (0, k).

Then Sk is the blow up of Sk−1 in the point (0,∞, k + 1). On removing
y = ∞ we get a projection Sk → Sk−1. And since we have removed the blow up
point (0,∞, k+1), we also get an inclusion Sk−1 ↪→ Sk which is a right inverse.
These maps are holomorphic; there are also maps preserving the real symplectic
structure once we remove a ball about (0,∞, k + 1) from Sk−1, which will be
sufficient for our needs in the next Section.

2.8. The Seidel-Smith construction. Seidel and Smith managed to
produce an invariant of links using the space SS2m (2.10). Via the Manolescu
isomorphism, and using plait closure in place of braid closure, the construction
should become the following. (Since the technical details have only been carried
out carefully [27] in the open subset SSλ ⊂ Hilbm Sλ, the following is partly
conjectural, and should be thought of only as motivation for the mirror con-
struction. In particular Hilbm Sλ is not an exact symplectic manifold, so the
definition of Floer cohomology needs some care.)

We fix one of the ALE surfaces (2.22), writing it as

S2m−1 :=

{

xy =

2m
∏

i=1

(t− λi)

}

⊂ Cx,y × Ct,
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where λ is a collection of 2m distinct numbers λi ∈ C (with average zero). We
also choose an A2m−1-configuration of paths γi running between them, as in
Figure 4, and so an A2m−1-chain of Lagrangian spheres Li ⊂ S2m−1.

In turn this defines the Lagrangian (S2)m

L = Lm := L1 × L3 × . . .× L2m−3 × L2m−1 (2.23)

in the Hilbert scheme

Hm := Hilbm S2m−1,

via the map L1 × . . .× L2m−1 ⊂ (S2m−1)
m → Symm S2m−1 −→ Hilbm S2m−1.

(Since the L2i−1 are disjoint, the map’s image lies in the complement of the
large diagonal, over which Hilbm S2m−1 → Symm S2m−1 is an isomorphism.)

The relative Hilbert schemes of the family of Sλs (2.6) gives a quasi-
projective family over C0

2m. Taking monodromy, we see that the braid group
lifts to the symplectomorphism group of Hilbm S2m−1. The Kähler form is the
one pulled back via the resolution Hilbm → Symm, minus ε[E], where E is the
exceptional divisor. By making ε → 0 we can ensure that the action of β ∈ B2m

is arbitrarily close, away from the exceptional locus, to the action of β× . . .×β
on Symm S2m−1.

Then for any β ∈ Bm define the braid invariant

SS∗(β) := HF ∗+m+w(L, βL) (2.24)

to be the Floer cohomology of L and its image under β (assuming the technical
details can be overcome to define this, and as a graded C-vector space rather
than a module over a Novikov ring). Here the writhe w is the number of positive
minus the number of negative crossings in the braid β.

In fact SS∗(β) should be an invariant of the isotopy class of the link given by
the plait closure of β. By a result of Birman [3], modified slightly in [2], and the
fact that Floer cohomology is functorial under (graded) symplectomorphisms
(so that HF ∗(L, αβL) = HF ∗(α−1L, βL), for instance), to deduce this it is
sufficient to prove the following; see Figure 5 and the further explanation below.

1. T1L ∼= L[−1],

2. T2i−1T2iL ∼= T−1
2i−1T

−1
2i L,

3. T2iT2i−1T2i+1T2iL ∼= L, and

4. HF ∗(Lm, βLm) ∼= HF ∗+1(T±1
2mLm+1, βLm+1).

We now explain these relations, starting with (1). As we have already seen,
T1 simply flips the path running between the first two roots λ1, λ2. This pre-
serves L1 but shifts its grading by the [−1] on the right hand side of (1). Since
we are skating over the issue of grading we content ourselves with noting only
that it reverses the orientation of L1 (this is equivalent to the action on grading
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β ' ' ' ββ 'β β

(2)(3)(1)

β

(4)

Figure 5. Equivalent plait closures of a braid β ∈ B4.

Figure 6. Action of the moves (1) – (4) on the Lagrangians Li fibring over the paths
shown. This gives the action on L ⊂ Hilbm S2m−1, which is a product (2.23) of Li s.

mod 2). Since the other L2i−1, i ≥ 2 are untouched by T1 the relation (1)
follows.

Secondly we consider (3). As shown in Figure 6, T2iT2i−1T2i+1T2i simply
swaps L2i±1 (and leaves the other L2j−1 alone). But in Hilbm S2m−1 the order
of the factors of L is unimportant, so (3) follows.

Relation (4) (stabilisation as we increase the number of strands in our braid,
or Markov II as it is called in [27]) is slightly more involved. The left hand side
is computed in Hm, with β an element of B2m. The right hand side takes place
in Hm+1, with β considered as an element of B2m+2 via the standard inclusion
B2m ↪→ B2m+2. Here we are using the inclusion of ALE spaces S2m−1 ⊂ S2m+1

of Section 2.7.

In Figure 6 is drawn part of an arbitrary O(2)-invariant Lagrangian A which
is generated in F(S2m−1) by Li, i ≤ 2m − 1 (βLm in (4) being a product of
such things). We have drawn intersections of A with L2m−1 in either the root
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λ2m or elsewhere. This corresponds to a splitting

HF ∗(L2m−1, A) ∼= HF ∗+1(L2m, A) ⊕ HF ∗(T2mL2m−1, A) (2.25)

coming from the exact triangle (cf. (2.4))

L2m−1 → T2mL2m−1 → L2m (2.26)

in F(S2m−1). (One can show that HF ∗( · , A) applied to the second arrow
vanishes for A = Li, i ≤ 2m− 1, and so for any A, to give the splitting (2.25).)
The first summand in (2.25) corresponds to the intersections at the root λ2m;
these come from intersections with the next Lagrangian L2m along via cup
product with the HF 1(L2m, L2m−1) class of the intersection of L2m−1 and L2m

(the extension class of the triangle (2.26)). The other intersection points are
those which survive when L2m−1 is Dehn twisted about L2m, as shown in Figure
6, and form the second summand of (2.25).

Since A has no intersections with L2m+1 the first summand is isomorphic
to HF ∗+1(T2mL2m+1, A), as can also be seen from Figure 6. The upshot is
that if A is a product of Lagrangians of the form A, the intersection points
used to calculate HF ∗(Lm,A) can be matched with intersection points used
to calculate HF ∗+1(T2mLm+1,A). More precisely their Floer cohomologies can
be matched using (2.25). Applied to A = βLm this gives (4).

Finally we come to relation (2). We calculate on S2n−1 that both T2i−1T2i

and T−1
2i−1T

−1
2i leave L2j+1 alone for j 6= i, i− 1, and take L2i−1 to L2i. This is

clear from Figure 6. Their actions on L2i+1 differ, however. They both take it
to connect sums of L2i−1, L2i and L2i+1, but in the opposite direction:

T2i−1T2iL2i+1
∼= L2i+1#L2i#L2i−1, (2.27)

T−1
2i−1T

−1
2i L2i+1

∼= L2i−1#L2i#L2i+1. (2.28)

Here # is the graded Lagrangian connect sum [22, 33], and is not symmetric. It
can be described in an O(2)-symmetric manner by the connect-summed paths
in Figure 6 – with the connect sums in opposite directions corresponding to
paths above and below their intersection point.

The two Lagrangians (2.27, 2.28) are certainly not Hamiltonian isotopic in
S2m−1, so that T2i−1T2iL and T−1

2i−1T
−1
2i L are not Hamiltonian isotopic in ei-

ther the product (S2m−1)
m or symmetric product Symm S2m−1. However Seidel

and Smith prove they are Hamiltonian isotopic in SS2m, and therefore also in
Hilbm S2m−1. We want to think about this categorically as follows.

In the derived Fukaya category, we see T2i−1T2iL and T−1
2i−1T

−1
2i L as exten-

sions of the same objects in the opposite direction. On deforming the symplec-
tic space Symm S2m−1 to Hilbm S2m−1 (by “inflating” the exceptional divisor
– subtracting a small amount of the class of the exceptional divisor from the
degenerate symplectic form pulled back from Symm S2m−1) the Lagrangians
T±1
2i−1T

±1
2i L deform because both L and the symplectomorphisms Ti do. How-

ever the pieces L2i±1 × L2i of the extensions do not deform as Lagrangians
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– the class [E] restricts to a nonzero class thereon (because L2i±1 intersects
L2i inside S2m−1). And then for general reasons, if two extensions of the same
pieces deform while the pieces do not then the deformations of the extensions
become isomorphic. The algebro-geometric analogue of this will be clearer to
see in Section 5.

Using slightly different techniques in a fibre of SS2m, Seidel and Smith prove
carefully that they get an invariant of links up to isotopy. Conjecturally their
invariant can be derived from the famous Khovanov cohomology KH∗,∗⊗C [14]
by a certain collapse of the latter’s bigrading. In the algebro-geometric mirror
described later, it will in fact be possible to get the full bigrading and prove
the isomorphism to KH∗,∗ ⊗ C.

3. Simultaneous Resolution

In each of the examples (2.1), (2.6), (2.8) and (2.11) – in the first two cases only
in dimension n = 2 – the families have a remarkable property. The complete
family X → B (including the singular fibres now) can be pulled back to a
new family X ′ → B′ via a finite basechange B′ → B, such that X ′ admits a
simultaneous resolution

π : X → X ′.

This is a map which is birational, and a resolution of singularities on each
fibre. In particular on each smooth fibre it restricts to an isomorphism. So the
smooth fibres fit together with the resolutions of the singular fibres in a smooth
family X → B′. Thus the smoothings and resolutions of the singular fibres of
X → B are diffeomorphic (something which is obviously not true for the n = 1
dimensional node (2.1), for instance) and is related to the fact that they are
hyperkähler [12].

3.1. Surface ordinary double point. The simplest case is the
smoothing of the surface ordinary double point,

X = {x2 + y2 + w2 = t} ⊂ C
3
xyw × Ct → Ct.

If we pull this back by the double cover t 7→ t2 of the base then the total space
becomes singular itself, with the threefold ordinary double point singularity

X ′ = {x2 + y2 + w2 = t2} ⊂ C
3
xyw × Ct → Ct. (3.1)

Setting X = x+ iy, Y = x− iy, T = t+ w,W = t− w this becomes

X ′ = {XY = TW} ⊂ C
4

fibring over C by the function (T+W )/2. Blowing up the Weil divisor (X = 0 =
T ) gives a resolution X → X ′ which is an isomorphism away from the origin.
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More explicitly, X is the graph of the rational function X/T = W/Y : X ′ → P
1

in X ′ × P
1:

X := {(X,Y, T,W, [λ : µ]) ∈ C
4 × P

1 : XY = TW, µX = λT, µW = λY }.

Then X → X ′ is an isomorphism on all of the smooth fibres of (3.1), and
replaces the central fibre’s surface ordinary double point by its minimal reso-
lution – i.e. its blow up with a P

1 exceptional set C. (So the exceptional set
of the whole family is this C ∼= P

1, which is not a divisor: X → X ′ is a small
resolution).

Figure 7. Simultaneous resolution X of the family (3.1), with the Lagrangian vanishing
cycles L ∼= S2 limiting to the holomorphic exceptional curve C ∼= P

1.

We picture this in Figure 7. By its definition as a vanishing cycle, under
symplectic parallel transport the Lagrangian L limits to the holomorphic ex-
ceptional P1 = C. This is remarkable but no contradiction; the pull back of the
standard Kähler form from X ′ is symplectic on the general fibre (and zero on
restriction to L) but degenerate on the central fibre (it is precisely zero along
C). One could perturb to get a nondegenerate Kähler form on X , giving nonzero
area to C, but this would then also have nonzero area on the (homologous) L
which would therefore cease to be Lagrangian.

One can also ask what the limit of the Dehn twists is on the central fibre.
Consider the graph in Xε × Xε of the monodromy about the circle of radius
ε. As ε → 0, this approaches the identity away from the vanishing cycle L.
Arbitrarily close to L we can always find ε > 0 and a point that the Dehn twist
takes to any other given point. So in the limit we get all of C × C (since C is
the limit of Lε).
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The upshot is that as ε → 0 the limit of the Dehn twists about the Lε is
the holomorphic correspondence

∆ ∪ (C × C) (3.2)

in X 0 × X 0, where ∆ is the diagonal.

Figure 8. The graph of the Dehn twist limits to the correspondence ∆ ∪ (C × C).
(Despite the crude picture, the two irreducible components ∆ and C × C have the same

dimension 2.)

The family of Sλ s over C0
k (2.22) also admits a simultaneous resolution

after basechange, with the Ak−1-chain of Lagrangian S2s limiting to the Ak−1-
chain of holomorphic P

1s in the minimal resolution. When k = 2m, taking the
relative Hilbert scheme of this new family gives (a birational model of) a similar
simultaneous resolution for the space SS2m (2.11) via Manolescu’s embedding.
Instead of describing these examples in detail we pass straight to the final, and
universal example. The previous examples can be obtained from this by taking
slices.

3.2. Adjoint quotient and the Flag variety. We partially com-
pactify the adjoint quotient (2.8) with the space of all trace-free k×k matrices,
mapping via the roots of its characteristic polynomial to Symk

C :

Mk → Symk
C. (3.3)

We basechange by the projection C
k → Symk

C that forgets the order of k-
tuples. In other words we consider the space of matrices with a chosen ordering
of the roots (with multiplicities) of its characteristic polynomial:

M ′
k → C

k.

At a point (A, λ1, . . . , λ2k) ∈ M ′
k with distinct roots, so that the matrix has

distinct eigenvalues λi with eigenspaces Li, there is a canonical associated flag
0 < V1 < . . . Vk−1 < V given by Vi = ⊕j≤iLj . This is preserved by A, and
characterised by the property that A acts on Vi/Vi−1 with weight λi. Therefore
the space Mk defined as
{

(

A, λ, (0 < V1 < · · · < Vk−1 < V )
)

: AVi ⊆ Vi ∀i, A acts on Vi/Vi−1 as λi

}

(3.4)
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has a forgetful map to M ′
k which is an isomorphism over the good locus of ma-

trices with distinct eigenvalues. In fact Mk → M ′
k is a simultaneous resolution,

restricting over each fibre of M ′
k → C

k to a resolution of singularities. The
central fibre is the cotangent bundle T ∗Fl of the Flag variety, because its fibre
over a point (0 < V1 < · · · < Vk−1 < V ) ∈ Fl is

{A : V → V : AVi ⊆ Vi−1}.

It provides a resolution of the central fibre ofMk → Symk
C, i.e. of the nilpotent

cone of matrices with no nonzero eigenvalues. The general fibre is diffeomorphic
to it; in fact it is symplectomorphic to T ∗Fl with its canonical real symplectic
structure as the cotangent bundle of a real manifold.

A similar picture to Figure 7 holds. While Fl is a holomorphic subvariety
of the central fibre, it is the limit of Lagrangian vanishing cycles Fl ⊂ T ∗Fl in
the general fibre.

In the central fibre T ∗Fl live the divisors

Ni := π∗
i T

∗Fli ⊂ T ∗Fl, (3.5)

where πi : Fl → Fli is the map to the partial flag variety that forgets the ith
term Vi in the flag. In the general fibre (seen as symplectomorphic to T ∗Fl)
they are coisotropic with characteristic foliation πi|Ni

a fibration by isotropic
S2s. As λi and λi+1 come together in the base Symk

C = {eigenvalues} (3.3), Ni

is the relative vanishing cycle that collapses along this characteristic foliation
to a family of surface ordinary double points. Doing the family generalised
Dehn twist about Ni ([21, Section 1.4], [19, Section 2.3]) should give the braid
group of symplectic monodromies of (2.9). The limit of the graphs of these
symplectomorphisms is the subvariety

∆ ∪ (Ni ×Fli Ni) ⊂ T ∗Fl × T ∗Fl. (3.6)

4. Homological Mirror Symmetry

Kontsevich’s homological mirror symmetry conjecture [17] is an amazing cate-
gorical expression of Witten’s formulation of mirror symmetry in terms of A-
and B-models. It has become a vast subject that we will only touch on through
our example.

Roughly speaking, Kontsevich says that two closed Calabi-Yau manifolds
should be considered as mirror pairs when the derived Fukaya category of one is
isomorphic to the derived category of coherent sheaves on the other. Symplectic
geometry (the “A-model”) on one side is equated with complex geometry (the
“B-model”) on the other side. In particular the plentiful automorphisms of a
symplectic manifold should be mirrored not by holomorphic automorphisms
of the mirror (of which there are few) but by autoequivalences of its derived
category.
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4.1. Surfaces. For the examples of the last section, passing from the gen-
eral fibre to the resolution of the central fibre (using symplectic parallel trans-
port and simultaneous resolution) gives a cheap way to swap complex and sym-
plectic structures. As we have seen, Lagrangian submanifolds can become, in the
limit, holomorphic (in fact complex Lagrangian, in the canonical holomorphic
symplectic structure). Taking the structure sheaves of these limits means we
have turned objects of the derived Fukaya category into objects of the derived
category of coherent sheaves.

So it seems a reasonable guess that the mirror of the (symplectic) general
fibre might be related to the (holomorphic) resolution of the central fibre. (That
mirror symmetry is so simple here, not even changing the topology, is a feature
of hyperkähler manifolds, with the mirror map being related to hyperkähler ro-
tation. To make this more precise would involve complexifying our symplectic
forms with B-fields, putting connections with curvature B|L on our Lagrangians
L, introducing coisotropic branes, worrying about noncompactness, and work-
ing much harder. But we use mirror symmetry here only as a motivational
guide.)

So in the simplest case we would like to think of the mirror of the sym-
plectic manifold T ∗S2 (the smoothing of the surface ordinary double point) as
something like the complex surface S = T ∗

P
1 (the resolution of the surface

ordinary double point). As usual we denote the Lagrangian S2 by L and the
holomorphic P

1 by C, so we would like mirror symmetry to relate

L ∈ F(T ∗S2) to OC(−1) ∈ D(S),

where D denotes the bounded derived category of coherent sheaves with com-
pact support. (Work of Auroux and Seidel suggests one should remove certain
loci from T ∗S2 and T ∗

P
1 before they can sensibly be considered as mirror, but

for our heuristic purposes we can ignore this.) The twist by the line bundle
O(−1) is unimportant (since it defines an autoequivalence of D(S)) and is just
for convenience.

Since the graph of the Dehn twist TL about L limits (3.2) to the holomorphic
subvariety

∆ ∪ (C × C)
ι
↪→ S × S, (4.1)

it is natural to use this as a holomorphic correspondence on S. In fact we
would like to lift this to an action on D(S), mirror to the induced action of TL

on F(T ∗S2). So we might use the structure sheaf of (4.1) as a Fourier-Mukai
kernel. For convenience we twist by the line bundle L which is OS(C) on ∆
glued to O(−1,−1) on C × C (both are isomorphic to OC(−2) on ∆C):

TC := π2∗

(

ι∗L ⊗ π∗
1( · )

)

: D(S) → D(S).

(Here π1, π2 : S × S → S are the obvious projections, and the functors ⊗ and
π2∗ are derived. It turns out that using the untwisted structure sheaf gives the
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inverse of the functor TC ; I don’t know if this is significant or a coincidence.)
Equivalently, the action of TC on E ∈ D(S) is

E 7→ TCE = Cone
(

RHom(OC(−1), E)⊗OC(−1) → E
)

, (4.2)

where the arrow is the obvious evaluation map. (Taking E to be a complex of
injectives, this map is canonical rather than defined up to homotopy, so the
cone turns out to be functorial here [30].) Compare its mirror (2.3, 2.4).

More generally, the simultaneous resolution of the family of ALE surfaces
(2.22) has central fibre the minimal resolution of

{xy = tk} ⊆ C
3. (4.3)

Call this S, with its Ak−1-chain of exceptional −2-curves Ci ⊂ S (the limit of
an Ak−1-chain of Lagrangian vanishing cycles Li on a general fibre). In fact
the sheaves Ai := OCi

(−1) satisfy the following homological definition of an
Ak−1-chain in any derived category of coherent sheaves.

Definition 4.4. [30] Objects Ai ∈ D(S), i = 1, . . . , k − 1 form an Ak−1-chain
of n-spherical objects if for all i, j,

• Ext∗(Ai, Ai) ∼= H∗(Sn,C),

• Ai ⊗ ωS
∼= Ai,

• ⊕

p Ext
p(Ai, Aj) =

{

C |i− j| = 1,
0 |i− j| > 1.

For us n = 2, and the second, Calabi-Yau condition always holds since the
canonical bundle ωS of S is trivial. One can then define the Dehn twists about
the Ai as in (4.2) by

TAi
E := Cone

(

RHom(Ai, E)⊗Ai → E), (4.5)

or by Fourier-Mukai transform with the kernel

Cone
(

A∨
i �Ai → O∆

)

.

Here ∨ denotes derived dual, and the arrow is restriction to the diagonal followed
by evaluation (trace).

Theorem 4.6. [15, 30] If the Ai form an Ak−1-chain then the Ti = TAi
define

a (weak) faithful action of the braid group Bk ↪→ Aut(D(S)).
In particular, the Ti are invertible and satisfy the braid relations

TiTjTi
∼= TjTiTj , |i− j| = 1,

TiTj
∼= TjTi, |i− j| > 1.

So our putative mirrors of Dehn twists really satisfy the same relations as the
original twists (2.7). And we have put things in a more categorical framework,
allowing twists around arbitrary spherical objects, as mirror symmetry suggests
should be possible – according to Kontsevich’s conjecture, all mirror symmetry
needs to see is categorical properties, rather than specific geometry. For more
on mirror symmetry for ALE surfaces see [13].
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4.2. Higher dimensions. Our other examples of families over C0
k fit

into a similar hyperkähler mirror symmetry picture. In fact they all follow from
the case of the space of matrices of Section 3.2 by taking slices. In much the
same way as described above, the family Dehn twists around the divisors Ni

limit to the Fourier-Mukai transforms with kernels the structure sheaves of the
limits ∆∪ (Ni×Fli Ni) (3.6) of the graphs of these symplectomorphisms. Up to
twisting by a line bundle, these are the relative versions of the derived category
Dehn twist (4.5), with action

E 7→ Cone
(

ιi∗p
∗
i pi∗ι

!
iE → E

)

.

Here the arrow is evaluation, and pi and ιi are the obvious maps

Ni

ι
i

↪→ T ∗Fl
↓pi

T ∗Fli.

(4.7)

Again these define autoequivalences Ti : D(T ∗Fl) → D(T ∗Fl) which satisfy the
braid relations [1, 16]. In fact the Ti (both here and on the slices S of the last
section) even admit natural transformations between them which satisfy the
relations of the braid cobordism category, and these give rise to maps between
the Khovanov cohomology groups of links of the next Section, when we fix a link
cobordism. But we refer to [16] for this further extension of mirror symmetry.

The braid relations in this case are much harder than those in 2 dimen-
sions. But Manolescu’s isomorphism means that they follow from the simple
two dimensional case for the spaces relevant to Khovanov cohomology.

5. Hilbert Schemes of ALE Spaces and

Khovanov Cohomology

By now it should be clear how one would go about trying to mirror the Seidel-
Smith construction to define Khovanov cohomology in a derived category of
coherent sheaves. There is a slice of (3.4) that provides a simultaneous reso-
lution of (the basechange of) SS2m. The derived category of its central fibre
carries a braid group action and a complex Lagrangian submanifold that L
(2.23) limits to. Taking its structure sheaf (and possibly twisting by a line bun-
dle) as an object of the derived category, one would like to show that the Exts
from this object to its image under a braid give an invariant of the link closure
of the braid.

Such a programme has been carried out in beautiful work of Cautis and
Kamnitzer [5]. In fact they use a compactification of the above space related,
via the geometric Satake correspondence, to the sl(2) representations of the
Reshetikhin-Turaev tangle calculus. This has the huge advantage of being gen-
eralisable to other Lie algebras [6]. However, as mentioned above, it is also hard
work, involving calculations in high dimensions.
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Manolescu’s isomorphism suggests we might work with something like the
Hilbert scheme of points on S = S2m−1, the minimal resolution of the A2m−1-
singularity (4.3). This reduces most of the work to much simpler calculations
with sheaves on the surfaces S2m−1. In fact, by [4, 9] the category

Dm := D(Hilbm S2m−1)

has a canonical identification with the Σm-equivariant derived category of
(S2m−1)

m, where the symmetric group Σm permutes the factors:

D(Hilbm S2m−1) ∼= D(Sm
2m−1)

Σm . (5.1)

5.1. However. One would expect the right hand side of (5.1) to be mirror
to the Σm-equivariant Fukaya category of Sλ (2.19), which is not the Fukaya
category of its Hilbert scheme, but can be thought of as playing the role of the
Fukaya category of the singular symplectic space Symm S2m−1. Considering the
Hilbert scheme as a symplectic deformation of this (subtracting a small multi-
ple of the exceptional divisor of Hilb → Sym from the degenerate symplectic
form one gets by pulling back from Sym) suggests the mirror might be a defor-
mation of Hilbm S2m−1. We will indeed use such a deformation related to the
exceptional divisor.

This is an example where our naive description of mirror symmetry fails.
The mirror of the smoothing Hilbm Sλ of a hyperkähler singularity Hilbm S0

appears not to be the obvious choice Hilbm S2m−1 (which is birational to a
resolution of Hilbm S0) but a deformation thereof.

5.2. The construction. Any E ∈ D(Sm
2m−1) defines an element

Σm.E :=
⊕

σ∈Σm

σ∗E ∈ D(Sm
2m−1)

Σm , (5.2)

with its obvious Σm-linearisation. Thus from the spherical objects Li :=
OCi

(−1) ∈ D(S2m−1) we define

L = Lm := Σm.(L1 � L3 � . . .� L2m−1) ∈ D(Sm
2m−1)

Σm . (5.3)

Equivalently, the object L ∈ D(Hilbm S2m−1) can be described via the Haiman-
BKR equivalence (5.1) as follows. As in (2.23), the composition

C1 × C3 × . . .× C2m−1 ↪→ Sm
2m−1 → Symm S2m−1

//___ Hilbm S2m−1

is an embedding since the C2i−1 do not intersect each other so their product
avoids the diagonal locus over which the last map is not regular. Then

L = OC1×C3×...×C2m−1
(−1,−1, . . . ,−1) ∈ D(Hilbm S2m−1). (5.4)



646 Richard P. Thomas

Any autoequivalence T ∈ Aut(D(S2m−1) induces a canonical autoequivalence
Φ(T ) ∈ Aut(D(Sm

2m−1)
Σm) [20]. Its action on objects of the form (5.3) is the

obvious one:

Φ(T )
(

Σm.(E1 � . . .� Em)
)

= Σm.
(

T (E1)� . . .� T (Em)
)

. (5.5)

We apply this to the spherical twists Ti := TOCi
(−1):

Ti := Φ(Ti)[1] ∈ Aut
(

D(Sm
2m−1)

Σm

)

. (5.6)

Since Φ is a homomorphism, these define generators of a braid group action
B2m → Aut(Dm). (The braid relations are homogeneous, so the extra shift
[1] makes no difference.) Thus any β ∈ B2m gives an autoequivalence Tβ ∈
Aut(Dm). We define the braid invariant

kh∗(β) := Ext∗Dm
(L,Tβ L[m]). (5.7)

The shifts in the definitions (5.6, 5.7) match with the shift w+m in the mirror
Seidel-Smith construction (2.24).

5.3. Maps between ALE spaces. To study the dependence of (5.7)
on m we will need the holomorphic analogue (or hyperkähler rotation) of the
symplectic maps between ALE spaces of Section 2.7. So let Sk−1 be the minimal
resolution of Ak−1 := {xk = yz} ⊂ C

3. We will exhibit a natural inclusion
Sk−1 ⊂ Sk taking the Ak−1-chain of −2-curves Ci

∼= P
1, i = 1, . . . , k− 1 in the

former to the first k − 1 curves of the Ak-chain C1, . . . , Ck−1, Ck in the latter.
Consider the blow up of C2 in the ideal (xk, y). Call this Ak−1. It can be

constructed inductively via blow ups and a blow down in smooth centres:

1. Blow up the origin in C
2, giving an exceptional divisor E1

∼= P
1.

2. Blow up the point ∞ ∈ E1 (its intersection with the proper transform of
the x-axis). We get a new exceptional divisor E2, and the proper transform
of E1 which is a −2-curve C1.

(r) At the rth stage, blow up ∞ ∈ Er−1 to produce a new exceptional divisor
Er, and the proper transform of Er−1 is a −2-curve Cr.

After the kth step we get a surface Sk−1 with an Ak−1-chain of −2-curves Ci

and a −1-curve Ek; see Figure 9. Now blow down the Ci, i = 1, . . . , k − 1 to
get Ak−1.

Now Ak−1 = Bl(xk,y) C
2 = {µxk = λy} ⊂ C

2
x,y × P

1
[λ:µ]. Therefore if we

remove the proper transform {y = 0} = {µ = 0} of the x-axis we can set
[λ : µ] = [z : 1] to get the affine variety

{xk = yz} ⊂ C
2
x,y × Cz,
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C1

C2

C3

E4

C1

C2

E3

Figure 9. Newton polygon diagram of the blow up map S2 ← S3. On removing the
divisors corresponding to the dashed lines (the proper transforms of the x-axis) we
get an inclusion S2 ⊂ S3 in the opposite direction.

which is precisely Ak−1. Thus Ak−1 and Sk−1 are partial compactifications of
Ak−1 and Sk−1 respectively (since Sk−1 is the minimal resolution of Sk−1).

We obtained Sk from Sk−1 by blowing up the latter in the point ∞ ∈ Ek.
But ∞ = {y = 0} ∩ Ek lies in the divisor {y = 0} that we remove from Sk−1

to get Sk−1, so the inclusion Sk−1 ⊂ Sk−1 lifts to the blow up: Sk−1 ⊂ Sk. Its
image is clearly contained in the open subset Sk, and maps the curves Ci ⊂ Sk−1

to the corresponding curves Ci ⊂ Sk, as claimed.

As in Section 2.8, to prove that kh∗ is a link invariant under plait closure
it is sufficient to prove the following; again see Figure 5.

1. T1L ∼= L,

2. T2i−1T2i L ∼= T
−1
2i−1T

−1
2i L,

3. T2iT2i−1T2i+1T2i L ∼= L, and

4. Ext∗Dm
(Lm,Tβ Lm[m]) ∼= Ext∗Dm+1

(T±1
2mLm+1,Tβ Lm+1[m+ 1]).

In the last relation we use the inclusion S2m−1 ↪→ S2m+1 exhibited above.

Theorem 5.8. [32] The relations (1), (3) and (4) hold in the categories Dm,
but (2) does not.

The proof is reduced by (5.5) to simple computations inD(S2m−1) mirroring
those of Section 2.8.

Firstly, T1L2i+1
∼= L2i+1 for i ≥ 1 by (4.2), because Ext∗(L1, L2i+1) = 0.

Since Ext∗(L1, L1) ∼= H∗(S2,C) we get the exact triangle in D(S2m−1)

L1 ⊕ L1[−2] −→ L1 −→ T1L1.

The first map is the identity on the first factor, so T1L1
∼= L1[−1]. Therefore

by (5.5), T1L ∼= L[−1][1] = L, which proves relation (1).
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For (2) we note the following calculation on S2m−1. If A,B ∼= P
1 are (possi-

bly reducible) rational curves in S2m−1 intersecting in a single transverse point,
then Ext∗(OA,OB) = C[−1] and the resulting exact triangle

OB → TOA
OB → OA (5.9)

expresses TOA
OB as the nontrivial extension

TOA
OB

∼= OA∪B(1, 0). (5.10)

By (1, 0) we mean to twist by the line bundle which is the gluing of the trivial
bundle on A and the degree 1 bundle OB(A∩B) on B. (A similar result to (5.10)
holds when OA,OB and TOA

OB are all twisted by the same line bundle.) If we
denote this extension by OB#OA it is the mirror of the Lagrangian connect
sum of (2.27, 2.28). So, for instance, we picture

TiLi−1 = Li−1#Li = OCi−1∪Ci
(0,−1)

as the path in C, running from λi−1 over λi to λi+1, over which its mirror is S1-
fibred. Similarly the connect sum in the opposite direction, which is Ti−1Li =
OCi−1∪Ci

(−1, 0), corresponds to the path under λi. (See [34] for more on these
pictures for objects of D(S2m−1).)

Applying this twice we find that

T2i−1T2iL2i+1 = T2i−1OC2i∪C2i+1
(−1, 0) = OC2i−1∪C2i∪C2i+1

(−1, 0, 0), (5.11)

the second equality following from (5.10) applied to A = C2i−1 and B = C2i ∪
C2i+1. Similarly,

T−1
2i−1T

−1
2i L2i+1

∼= OC2i−1∪C2i∪C2i+1
(0, 0,−1). (5.12)

Finally T2i−1T2i and T−1
2i−1T

−1
2i both take L2i−1 to L2i, by similar calculations

mirroring Figure 6, and they leave L2j+1 alone for j 6= i, i− 1.
Since (5.11) and (5.12) are not isomorphic it follows from (5.5) that

T2i−1T2i L 6∼= T
−1
2i−1T

−1
2i L, i.e. (2) does not hold.

Repeated calculations with (5.10) on S2m−1 show that T2iT2i−1T2i+1T2i also
leaves L2j+1 alone for j 6= i, i− 1, but swaps L2i±1 (see Figure 6):

T2iT2i−1T2i+1T2iL2i±1 = L2i∓1.

Relation (3) then follows again from (5.5).
Finally (4) follows just as in the mirror situation of Section 2.8. The exact

triangle (2.26) holds just as well in D(S2m−1) – see (5.9) – giving the splitting

Ext∗(L2m−1, A) ∼= Ext∗+1(L2m, A) ⊕ Ext∗(T2mL2m−1, A)
∼= Ext∗+1(T2mL2m+1, A) ⊕ Ext∗(T2mL2m−1, A)

that replaces (2.25) for any A ∈ D(S2m−1) generated by Li, i ≤ 2m−1. Relation
(4) follows easily; see [32] for full details.
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5.4. Deformation. As suggested in Section 5.1, to get something which
acts as a better mirror of Hilbm Sλ in which relation (2) holds, we should deform
by something concentrated on the diagonal.

The exceptional divisor E of Hm := Hilbm(S2m−1) → Symm(S2m−1) has
a class [E] ∈ H1(ΩHm

) despite the noncompactness. (For instance the ex-
act sequence 0 → ΩHm

→ ΩHm
(logD) → OD → 0 has extension class

in Ext1(OD,ΩHm
); its image in Ext1(OHm

,ΩHm
) = H1(ΩHm

) is [E].) Via
the holomorphic symplectic form ΩHm

∼= THm
, and we get a canonical class

e ∈ H1(THm
), the space of first order deformations of Hm.

Using some twistor theory we get a canonical family H → P
1 of holomorphic

symplectic deformations (Ht, σt) of Hm = H0 in the direction of e; see [32]. The
Lagrangian L (5.4) deforms along this deformation because it is disjoint from
[E]. We show in [32] that the functors Tβ also deform. Both sides of the relations
(1), (3) and (4) therefore also deform along H, and by rigidity of the complexes
involved the equalities continue to hold.

Finally then we come to (2). As in (5.11, 5.12) we have (cf. (2.27, 2.28)),

T2i−1T2iL2i+1
∼= L2i+1#L2i#L2i−1,

T−1
2i−1T

−1
2i L2i+1

∼= L2i−1#L2i#L2i+1,

are extensions of the same objects but in opposite directions. On deforming
Hilbm S2m−1 along H, the Lagrangians T±1

2i−1T
±1
2i L deform because both L and

the symplectomorphisms Ti do. However the pieces L2i±1 × L2i × . . . of the
extensions do not deform (essentially because [E] restricts to a nonzero class
on their support since L2i±1 intersects L2i inside S2m−1). For general reasons,
if two extensions of the same pieces deform while the pieces do not then the
deformations of the extensions become isomorphic.

The baby model to keep in mind is to deform S itself so that [C1] and [C2]
do not remain of type (1, 1), but their sum [C1] + [C2] does. Then neither of
OC1

(−1) or OC2
(−1) deform, but their extensions in different directions,

OC1∪C2
(0,−1) and OC1∪C2

(−1, 0)

both deform and become isomorphic to OC(−1), where C is the unique
(smooth) rational curve that degenerates back to C1 ∪ C2 on the central fi-
bre.

5.5. Bigrading and Khovanov cohomology. There are also C
∗-

actions on the spaces Si with respect to which the inclusion maps Sk−1 ⊂ Sk

are equivariant [32]. Since the constructions of this paper are equivariant with
respect to this C

∗-action, we get extra C
∗-action, and so a bigrading, on the

link invariant kh∗.
Finally, using the method of [5], one can show that the resulting kh∗,∗ is in

fact Khovanov cohomology KH∗,∗ ⊗ C (up to a shift in bigrading). Building
up a link from standard cobordisms one presents both kh∗,∗ and KH∗,∗ ⊗ C
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as iterated cones on the same standard pieces. (For KH∗,∗ this is Khovanov’s
famous “cube of resolutions”.) Because of some vanishing of Ext groups, this
iterated cone is unique.
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vanced Mathematics, EMS, 2008.

[26] P. Seidel, Suspending Lefschetz fibrations, with an application to local mirror

symmetry, to appear in Comm. Math. Phys., 2010. arXiv:0907.2063.

[27] P. Seidel and I. Smith, A link invariant from the symplectic geometry of nilpotent

slices, Duke Math. Jour. 134, 453–514, 2006. math.SG/0405089.

[28] P. Seidel and I. Smith, Localization for involutions in Floer cohomology,
arXiv:1002.2648.

[29] P. Seidel and I. Smith, Symplectic geometry of the adjoint quotient, I & II, Lec-
tures, MSRI, April 2004.

[30] P. Seidel and R. P. Thomas, Braid group actions on derived categories of sheaves,
Duke Math. Jour. 108, 37–108, 2001. math.AG/0001043.

[31] I. Smith, Quadrics, quilts and representation varieties, in preparation.

[32] I. Smith and R. P. Thomas, Khovanov homology from ALE spaces, preprint.

[33] R. P. Thomas, Moment maps, monodromy and mirror manifolds, Symplectic
geometry and mirror symmetry (Seoul, 2000), 467–498, World Sci. Publishing,
2001.

[34] R. P. Thomas, Stability conditions and the braid group, Comm. Anal. Geom. 14,
135–161, 2006. math.AG/0212214.



Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

Invariants Entiers en Géométrie
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Résumé

Je rappelle les divers problèmes de géométrie énumérative réelle desquels j’ai
pu extraire des invariants à valeurs entières, fournissant un pendant réel aux
invariants de Gromov-Witten. Je discute l’optimalité des bornes inférieures four-
nies par ces invariants ainsi que certaines de leurs propriétés arithmétiques. Je
présente enfin davantage de résultats garantissant la présence ou l’absence de
disques pseudo-holomorphes à bord dans une sous-variété lagrangienne d’une
variété symplectique donnée.
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Introduction

Le nombre de racines complexes d’un polynôme générique à une variable de
degré d ne dépend pas du choix du polynôme et vaut d, tandis que lorsque ce
polynôme est à coefficients réels, le nombre de ses racines réelles peut prendre
toutes les valeurs de même parité que d comprises entre 0 et d. Ceci tient au
fait que le corps des nombres complexes est algébriquement clos au contraire du
corps des nombres réels. Bien plus généralement, le nombre de solutions d’un
� système de n équations génériques �sur une variété projective complexe lisse
de dimension n ne dépend que du degré de ces équations, alors qu’il dépend
fortement du choix, même générique, de ces équations lorsqu’elles sont à coeffi-
cients réels et considérées sur le lieu réel d’une variété algébrique réelle. (En fait
d’équations, il conviendrait plutôt de parler de sections génériques de n fibrés
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en droites holomorphes disons très amples). Chaque problème de géométrie
énumérative réelle peut en principe s’interpréter de cette manière. La variété
projective réelle est l’espace des modules des objets géométriques que l’on veut
compter et les équations proviennent des conditions d’incidences que l’on im-
pose à ces objets.

Le principal phénomène présenté dans cet article de synthèse est le sui-
vant : il est parfois possible de compter ces objets géométriques réels en fonction
d’un signe ± de manière à extraire un entier indépendant du choix générique
des conditions d’incidence. Dans le premier paragraphe, nous observons ce
phénomène en comptant les courbes J-holomorphes rationnelles réelles dans
une variété symplectique réelle de dimension quatre en fixant leur classe d’ho-
mologie et leur imposant de passer par un nombre adéquat de points réels ou
bien complexes conjugués. Nous utilisons en effet le langage de la géométrie sym-
plectique pour étudier ces problèmes énumératifs, tenant compte des résultats
de M. Gromov [9] selon lesquels le caractère algébrique des variétés ne joue
aucun rôle dans ces problèmes énumératifs, seule l’ellipticité de l’opérateur
de Cauchy-Riemann sous-jacent intervient. Les entiers que l’on extrait de ce
problème énumératif fournissent un invariant par déformation des variétés sym-
plectiques réelles de dimension quatre (X,ω, cX), qui prend la forme d’une
fonction χ : d ∈ H2(X;Z) 7→ χd[T ] ∈ Z[T1, . . . , TN ] où N désigne le nombre de
composantes connexes du lieu réel RX de la variété. On définit des invariants
analogues pour les variétés symplectiques de dimension six � fortement semi-
positives �, par exemple positives, dans le troisième paragraphe et en incluant
des conditions de tangence à une courbe réelle dans le deuxième. Ces der-
niers résultats s’appliquent en particulier à un problème classique de géométrie
énumérative, le comptage des coniques tangentes à cinq coniques génériques
données. Le nombre de solutions complexes vaut 3264, un résultat établi par
de Joncquières au milieu du dix-neuvième siècle. On montre que le nombre de
solutions réelles se trouve minoré par trente-deux lorsque les coniques réelles
bordent cinq disques disjoints par exemple. En effet, la valeur absolue des inva-
riants entiers que l’on introduit dans cet exposé borne inférieurement le nombre
de solutions réelles du problème énumératif que l’on considère.

Un deuxième phénomène apparâıt dans cet article, l’optimalité de ces bornes
inférieures. On montre en effet dans le premier paragraphe que dans le cas des
variétés symplectiques réelles de dimension quatre, lorsque le lieu réel possède
une sphère, un tore ou bien, sous des conditions plus restrictives, un plan pro-
jectif réel et lorsqu’au plus un point est choisi réel et dans cette composante,
il existe une structure presque complexe générique J pour laquelle le nombre
de courbes J-holomorphes rationnelles réelles satisfaisant nos conditions d’inci-
dence vaut exactement la valeur absolue de notre invariant, ceci quelle que soit
la classe d’homologie de ces courbes rationnelles. Ce résultat vaut également
pour la quadrique ellipsöıde de dimension trois, comme établi dans le troisième
paragraphe. Cette optimalité est établie à l’aide de méthodes issues de la théorie
symplectique des champs, méthodes qui nous permettent également parfois de
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calculer le signe de notre invariant, d’établir des congruences satisfaites par ce
dernier ainsi que de fournir des formules le calculant dans certains cas, cal-
culs que l’on mène explicitement en bas degrés. Tous ces résultats font l’objet
du premier paragraphe de cet article. En utilisant la notion d’involution an-
tibirationnelle sur une variété symplectique de dimension quatre, on montre
de la même manière dans le quatrième paragraphe l’existence de disques J-
holomorphes à bords dans le tore de Clifford et satisfaisant des conditions d’in-
cidences ponctuelles. Dans le cas d’une sphère lagrangienne dans une variété
symplectique négative ou nulle, on montre au contraire dans ce même para-
graphe, pour tout E > 0, l’existence de structures presque-complexes J pour
lesquelles aucun disque ou membrane J-holomorphe d’énergie inférieure à E ne
repose sur cette sphère, un résultat analogue à nos résultats d’optimalités puis-
qu’on atteint ainsi le minimum possible du nombre de disques ou membranes
J-holomorphes. Remarquons à propos que l’obtention d’invariants entiers ou
rationnels à partir du comptage des disques J-holomophes à bords dans une
sous-variété lagrangienne est un problème classique de géométrie symplectique
(et de la théorie des cordes ouvertes en physique théorique) pour lequel peu de
solutions existent. Notre approche en fournit une lorsque la lagrangienne est
fixée par une involution antiholomorphe. Remarquons également que l’absence
de disques J-holomorphes pour certaines structures permet de définir l’homo-
logie de Floer pour des sphères lagrangiennes dans les variétés symplectiques
à première classe de Chern nulle, un autre problème classique de géométrie
symplectique (et de symétrie miroir en physique théorique).

Le présent article est largement issu de mon mémoire d’habilitation à diriger
des recherches, laquelle fut soutenue à l’École normale supérieure de Lyon en
mars 2008.

1. Invariants Énumératifs des Variétés
Symplectiques Réelles de Dimension Quatre

1.1. Définition des invariants. Soit (X,ω, cX) une variété symplec-
tique réelle fermée de dimension quatre, par quoi on entend une variété sym-
plectique fermée de dimension quatre (X,ω) équipée d’une involution cX satis-
faisant la relation c∗Xω = −ω. Le lieu fixe RX de cette involution est supposé
ici non-vide, c’est le lieu réel de la variété, lequel a la propriété d’être lagran-
gien. Ses composantes connexes sont étiquetées (RX)1, . . . , (RX)N . On note
Jω l’espace des structures presque-complexes ω-positives de (X,ω) de classe
Cl, l � 1 et RJω ⊂ Jω le sous-espace des structures J qui rendent l’involu-
tion cX J-antiholomorphe. Ce sont tous deux des variétés de Banach séparables
non-vides et contractiles.

Soit d ∈ H2(X;Z) une classe d’homologie satisfaisant la relation (cX)∗d =
−d et J ∈ RJω une structure presque-complexe générique. Les courbes J-
holomorphes rationnelles réelles homologues à d, c’est-à-dire les sphères J-
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holomorphes invariantes par cX et homologues à d, forment alors un espace
de dimension c1(X)d − 1, où c1(X) désigne la première classe de Chern de
la variété (X,ω). Nous supposons cette dimension positive ou nulle, puisque
le cas contraire signifie que l’espace en question est vide, puis faisons chu-
ter cette dimension à zéro en imposant quelques contraintes à ces courbes, à
savoir de passer par une collection x de c1(X)d − 1 points distincts. Ces der-
niers peuvent être choisis réels, c’est-à-dire fixés par cX , ou bien complexes
conjugués, c’est-à-dire échangés par cX ; nous noterons ri le nombre de points
réels choisis dans (RX)i, i ∈ {1, . . . , N}, et rX le nombre de paires de points

complexes conjugués, de sorte que 2rX +
∑N
i=1 ri = c1(X)d − 1. L’ensemble

Rd(x, J) des courbes J-holomorphes rationnelles réelles homologues à d qui sa-
tisfont ces contraintes supplémentaires est fini. Ces courbes sont de plus toutes
irréductibles, immergées et n’ont que des points doubles transverses comme sin-
gularités. Remarquons que le cardinal Rd(x, J) = #Rd(x, J) dépend en général
des choix auxiliaires de la structure presque complexe et de la configuration de
points, essentiellement parce que le corps des réels n’est pas algébriquement
clos. Nous allons montrer qu’il en devient indépendant lorsque l’on compte ces
courbes en fonction d’un signe convenablement choisi.

Soit C ∈ Rd(x, J), le nombre total de points doubles de C se calcule par la
formule d’adjonction et vaut δ = 1

2 (d2 − c1(X)d + 2). Les points doubles réels
de C sont de deux natures différentes. Ils peuvent être l’intersection locale de
deux branches réelles ou bien l’intersection locale de deux branches complexes
conjuguées. Ces points doubles réels sont dits non-isolés dans le premier cas et
isolés dans le second

Point double réel non isolé Point double réel isolé

Notons m(C) le nombre de points doubles réels isolés de C, c’est la masse
de C ; elle est majorée par δ. Pour tout entier m compris entre 0 et δ, on note
nd(m) le nombre de courbes C ∈ Rd(x, J) de masse m. Posons finalement

χdr(x, J) =

δ∑
m=0

(−1)mnd(m),

où r = (r1, . . . , rN ).
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Théorème 1.1 ([23], [25]). Soient (X,ω, cX) une variété symplectique réelle
fermée de dimension quatre, N le nombre de composantes connexes de son lieu
réel et d ∈ H2(X;Z) satisfaisant c1(X)d > 0. Soient x ⊂ X une configuration
réelle de c1(X)d − 1 points distincts et r = (r1, . . . , rN ) le N -uplet associé.
L’entier χdr(x, J) est indépendant du choix de x et du choix générique de J ∈
RJω.

Le Théorème 1.1 permet de noter cet entier χdr sans ambigüıté. Lorsque∑N
i=1 ri n’a pas la même parité que c1(X)d − 1, on pose χdr = 0. On note

alors χd[T ] la fonction génératrice
∑c1(X)d−1
|r|=0 χdrT

r ∈ Z[T1, . . . , TN ], où T r =

T r11 . . . T rNN et |r| = r1 + · · · + rN . Cette fonction est de même parité que
c1(X)d−1 et tous ses monômes ne dépendent en fait que d’une indéterminée. En
effet, la partie réelle d’une sphère holomorphe réelle étant connexe, l’invariant
χdr est contraint de s’annuler lorsque les points réels de x ne sont pas tous choisis
dans une même composante L du lieu réel. On adoptera la notation χdr(L) pour
indiquer que les |r| points réels sont choisis dans L. On renvoie le lecteur à [25]
pour une étude de la dépendance de χdr en fonction de r.

Ainsi, la fonction χ : d ∈ H2(X;Z) 7→ χd[T ] ∈ Z[T1, . . . , TN ] ne dépend
que de la variété symplectique réelle fermée de dimension quatre (X,ω, cX)
et est invariante par déformation de cette dernière. Ceci signifie que si ωt est
une famille continue de formes symplectiques satisfaisant c∗Xωt = −ωt, alors
la fonction χ est la même pour tous les triplets (X,ωt, cX). Existe-t-il des
invariants énumératifs analogues à ceux qui ressortent du Theorème 1.1 en
genre quelconque, en dimension quelconque et avec des conditions d’incidence
quelconques ? Nous n’avons que des débuts de réponses à ces questions.

1.2. Bornes inférieures et optimalité. Le nombre Rd(x, J) de
courbes J-holomorphes rationnelles réelles homologues à d qui contiennent l’en-
semble x de points que l’on s’est donné se retrouve ainsi borné inférieurement
par la valeur absolue de l’invariant χdr . Ce nombre est par ailleurs toujours ma-
joré par le nombre total de courbes J-holomorphes rationnelles homologues à
d et contenant x, lequel nombre Nd ne dépend ni de J générique, ni de x ; c’est
un invariant de Gromov-Witten de genre zéro de la variété (X,ω). Ainsi,

Corollaire ([25]). Sous les hypothèses du Théorème 1.1, l’encadrement

|χdr | ≤ Rd(x, J) ≤ Nd

vaut pour tout choix de x et tout choix générique de J ∈ RJω. �

Les bornes inférieures apparaissant dans ce Corollaire 1.2 se trouvent être
parfois optimales. C’est-à-dire qu’il est parfois possible d’exhiber une confi-
guration x et une structure générique J ∈ RJω telles que toutes les courbes
J-holomorphes rationnelles réelles comptées par χdr le sont en fonction d’un
unique et même signe. Nous présentons dans ce paragraphe les situations dans
lesquelles nous avons été en mesure de montrer cette optimalité.
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Théorème 1.2 ([29], [30]). Soit (X,ω, cX) une variété symplectique réelle
fermée de dimension quatre et soit d ∈ H2(X;Z) une classe d’homologie sa-
tisfaisant (cX)∗d = −d. Supposons que le lieu réel de cette variété possède
une sphère ou un plan projectif réel L. Dans ce dernier cas, supposons que
(X,ω, cX) est elle-même symplectomorphe au plan projectif complexe éclaté en
six boules complexes conjuguées au maximum. Les bornes inférieures apparues
dans le Corollaire 1.2 sont sous ces hypothèses optimales dès que 0 ≤ r ≤ 1.
Le signe de l’invariant χdr(L) est en outre dans ce cas déterminé par l’inégalité

(−1)
1
2 (d2−c1(X)d+2)χdr(L) ≥ 0.

Remarque 1. La dernière partie du Théorème 1.2 signifie que le signe du
coefficient de plus bas degré du polynôme χd(T ) introduit au paragraphe 1.1
s’interprète comme la parité du genre lisse de la classe d. Le fait que ce signe
puisse être négatif en degrés congrus à trois ou quatre modulo quatre dans le
plan projectif complexe met en défaut la Conjecture 6 de [14].

Corollaire ([30]). Soit d une classe d’homologie de dimension deux du plan
projectif complexe ou de la quadrique ellipsöıde et 0 ≤ r ≤ 1. Les bornes
inférieures (1.2) sont atteintes pour la structure complexe standard lorsque les
points complexes conjugués sont choisis très proches d’une conique imaginaire
pure dans le premier cas et d’une section hyperplane réelle disjointe de L dans le
second. �

Théorème 1.3 ([30]). Soit (X,ω, cX) une variété symplectique réelle fermée
de dimension quatre dont le lieu réel possède un tore L et soit d ∈ H2(X;Z) une
classe d’homologie satisfaisant (cX)∗d = −d. Les bornes inférieures du Corol-
laire 1.2 sont optimales lorsque r = 1. Lorsque le lieu réel est connexe -réduit
au tore L-, l’invariant χd1(L) est en outre positif. Dans le cas général, le signe

de l’invariant χd1(L) est déterminé par l’inégalité (−1)
1
2 (d2−c1(X)d+2)χd1(L) ≥ 0

lorsque le lieu réel des courbes rationnelles ne s’annule pas dans H1(L;Z/2Z),

tandis qu’il est déterminé par l’inégalité (−1)
1
2 (d2−c1(X)d+2)χd1(L) ≤ 0 lorsque

ce dernier s’annule.

Remarque 2. Dans le cas particulier de la quadrique hyperbolöıde, la positi-
vité de χd1(L) avait été observée dans [14] par d’autres méthodes.

De savoir si les bornes supérieures apparues dans le Corollaire 1.2 sont
optimales est un problème classique de géométrie énumérative réelle pour lequel
on ne sait presque rien. Le seule chose que je puisse signaler est le critère suivant.

Corollaire ([25]). Sous les hypothèses du Théorème 1.1, supposons que χdr est
positif (resp. négatif). Supposons qu’il existe une configuration réelle de points
x et une structure générique J ∈ RJω telles qu’il existe 1

2 (Nd−|χdr |) courbes J-
holomorphes rationnelles réelles de masses impaires (resp. paires) homologues
à d et passant par x. Alors, toutes les courbes J-holomorphes rationnelles ho-
mologues à d et passant par x sont réelles, de sorte que les bornes supérieures
du Corollaire 1.2 sont optimales. �
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Les bornes inférieures fournies par ces invariants sont-elles optimales en
général ? La question se pose déjà dans le cas du plan projectif (ou de l’espace
projectif de dimension trois, voir le §3.1).

1.3. Congruences. Étant donnée une classe d’homologie d ∈ H2(X;Z)
d’une variété symplectique réelle de dimension quatre (X,ω, cX), nous noterons
gd = 1

2 (d2− c1(X)d+ 2) le genre lisse de d et cd = c1(X)d− 1 le degré attendu
du polynôme χd(T ) défini au §1.1.

Théorème 1.4 ([30]). Soit (X,ω, cX) une variété symplectique réelle fermée
de dimension quatre dont le lieu réel possède une composante connexe L
homéomorphe à une sphère. Soient d ∈ H2(X;Z) et r ∈ N. Lorsque 2r+1 < cd,

la puissance 2
1
2 (cd−2r−1) divise χdr(L).

Exemple : Le Théorème 1.4 s’applique à l’ellipsöıde de dimension deux lorsque
d est un multiple positif, disons δ > 0, d’une section plane réelle. Dans ce cas,
cd = 4δ − 1 et gd = δ2 − 2δ + 1 = δ + 1 mod (2). Par conséquent, 22δ−r−1

divise χdr(L) lorsque r < 2δ − 1. Nous avons également montré dans [30] que
22δ−r divise χdr(L) lorsque de plus r = 2δ+ 1 mod (4) ainsi que la congruence
χd2δ−3(L) = 0 mod (16).

Théorème 1.5 ([30]). Soit (X,ω, cX) une variété symplectomorphe au plan
projectif complexe éclaté en six boules complexes conjuguées au maximum. Soit
d ∈ H2(X;Z) une classe satisfaisant cd = c1(X)d − 1 ≥ 0 et soient r, rX des
entiers naturels satisfaisant la relation r + 2rX = cd. Lorsque r + 1 < rX , la
puissance 2rX−r−1 divise χdr(L).

Exemple : Le Théorème 1.5 s’applique au plan projectif complexe où d est un
multiple positif, disons δ > 0, d’une droite complexe. Dans ce cas, 8

1
2 (δ−r−1)

divise χdr lorsque r + 1 < δ. Nous avons également montré dans [30] que

2
1
2 (3δ−3r−1) divise χdr lorsque de plus r = δ+1 mod (4) et χdδ−3 = 0 mod (64).

1.4. Calculs. L’invariant χdr qui ressort du Theorème 1.1 fut rapidement
estimé après que je l’ai introduit. G. Mikhalkin a proposé dans [16] un algo-
rithme permettant, dans le cas des surfaces toriques réelles, le calcul de cet
invariant lorsque le nombre r de points choisis réels est maximal. Cet algo-
rithme a été plus tard étendu par E. Shustin [20] pour un choix quelconque de
points réels. Il a été utilisé par I. Itenberg, V. Kharlamov et E. Shustin [12]
pour estimer cet invariant, fournissant notamment la minoration χd3d−1 ≥ 1

2d!
dans le cas du plan projectif, le calcul en degré inférieur ou égal à cinq, puis
l’asymptotique log |χdc1(X)d−1| ∼= logNd dans le cas des surfaces de Del Pezzo

réelles X, voir [14]. Ces derniers ont également plus récemment obtenu une
formule de type Caporaso-Harris tropicale [13] pour le calcul de χd3d−1 dans
le plan, après que A. Gathmann et H. Markwig [8] ont obtenus cette formule
pour le calcul tropical de Nd. J. Solomon a également annoncé une formule
calculant ces invariants χdr dans le plan. E. Shustin [21] a adapté ces méthodes
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tropicales pour obtenir des résultats analogues dans le cas de la quadrique el-
lipsöıde. Les méthodes de théorie symplectique des champs que j’ai pour ma
part utilisé ([29], [30]) m’ont également permis d’obtenir des formules de type
Caporaso-Harris mais avec des conditions de tangence imaginaires conjuguées.
Les invariants relatifs qui interviennent dans ces formules sont introduits au
§2.1.1. Je ne rappelle pas ici les formules générales qui se trouvent dans [30],
mais simplement quelques calculs explicites qui en découlent facilement.

Corollaire ([30]). Soit (X,ω, cX) une variété symplectomorphe au plan pro-
jectif complexe. Alors, χ4(T ) = o(T 2), χ5(T ) = 64 + 64T 2 + o(T 3), χ6(T ) =
1024T + 1536T 3 + o(T 4), χ7(T ) = −14336 + 11776T 2 + o(T 3) et χ8(T ) =
−280576T + o(T 2).

Remarquons que χ3(T ) = 2T 2 + 4T 4 + 8T 8 ; ce calcul de χd(T ) en degré
trois et les phénomènes discutés ici s’obtiennent simplement en éclatant les neuf
points base d’un pinceau de cubiques planes et en calculant la caractéristique
d’Euler du lieu réel de la surface obtenue, comme observé par V. Kharlamov [15]
déjà dans les années 90. Toutefois, même l’existence d’une quartique rationnelle
réelle plane passant par onze points réels en position générale n’était pas connue
avant l’introduction de ces invariants χdr . Les valeurs explicites de χdr pour d ≤ 9
et tout r furent entre temps obtenues dans [1] comme conséquence d’une formule
de type Caporaso-Harris tropicale. Ces résultats mirent en défaut la conjecture
de monotonie de [14], de sorte que la fonction r 7→ χdr n’est en général ni
positive, ni monotone.

Corollaire ([30]). Soit (X,ω, cX) une variété symplectomorphe à la quadrique
ellipsöıde de dimension deux. On note h la classe d’une section plane réelle de
bidegré (1, 1). Alors, χ2h(T ) = 2T 3 +4T 5 +6T 7, χ3h(T ) = 16T +16T 2 +o(T 3),
χ4h(T ) = −256T + 320T 3 + o(T 4) et χ5h(T ) = 26880T + o(T 2).

Remarque 3. Cet invariant χdr peut se définir purement en termes de frac-
tions rationnelles complexes. Lorsque r = 4d − 1 par exemple, il compte
algébriquement le nombre de fractions rationnelles u = P/Q, P,Q ∈ C[X]
de degrés d, modulo reparamétrage par les homographies réelles de PGL2(R),
telles que l’image u(RP 1) interpole un ensemble donné générique de 4d − 1
points de la sphère de Riemann. Le signe en fonction duquel il convient de
compter ces fractions rationnelles u est pair si u possède un nombre pair de
points critiques dans chaque hémisphère CP 1 \ RP 1 et impair sinon. Il serait
intéressant d’étudier cet invariant de la quadrique ellipsöıde en travaillant uni-
quement avec des fractions rationnelles.

Quelle est l’asymptotique de l’invariant χdr , r ≤ 1, calculé ici ? Nos formules
calculent l’invariant en fonction d’une somme sur des arbres décorés. Quels
sont les arbres qui sont asymptotiquement dominants/négligeables ? De plus,
dans le cas du plan projectif par exemple, lorsque r = 3d − 1, notre formule
calcule l’invariant comme une somme sur des arbres dont certains contribuent
positivement et d’autres négativement. Ceci garantit l’existence de structures
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presque-complexes pour lesquelles davantage de courbes rationnelles réelles sa-
tisfont nos conditions d’incidences que le nombre imposé par l’invariant χd3d−1.
Combien de courbes réelles a-t-on ainsi construit ? Enfin, notre méthode de cal-
cul suivie dans la première section s’applique à toute variété symplectique de
dimension quatre et calcule l’invariant χ en fonction d’invariants de Gromov-
Witten de surfaces rationnelles relatifs à des courbes de carré −2 ou −4 lorsque
L est une sphère ou un plan projectif réel. Que sait-on de ces invariants et qu’en
déduire pour l’invariant χ ? Cette direction de recherche reste à développer. Par
ailleurs, j’ignore dans quelles situations exactement il est possible de calculer
l’invariant χdr en fonction d’invariants relatifs imaginaires.

2. Invariants Relatifs des Variétés
Symplectiques Réelles de Dimension Quatre

Les invariants χdr introduits au §1.1 sont définis par un comptage de courbes
J-holomophes rationnelles réelles soumises à des conditions d’incidence ponc-
tuelles. Ils forment ainsi un analogue réel aux invariants de Gromov-Witten
de genre zéro ponctuels. J’ai également défini de tels invariants en admettant
que les courbes soient soumises à des conditions de tangence avec une courbe
donnée, dans l’esprit de la théorie des invariants relatifs. Ces conditions de
tangence peuvent être réelles ou bien complexe conjuguées. Dans le cas de
conditions réelles, je n’ai pu définir de tels invariants relatifs qu’en admettant
une seule condition de tangence et encore m’a-t-il fallu faire intervenir plusieurs
types de courbes singulières. J’expose ces résultats dans le §2.1.1. J’ai pu en
déduire des bornes inférieures pour le nombre de coniques réelles tangentes à
cinq coniques données, un problème classique de géométrie énumérative. Dans
le cas de conditions de tangence complexes conjuguées, la situation est bien
meilleure et de tels invariants peuvent s’obtenir avec les mêmes méthodes que
celles utilisées au §1.1. Je n’ai en fait introduit et utilisé ces invariants que dans
des cas très particuliers, en utilisant le langage de la théorie symplectique des
champs. Ils m’ont été utiles pour mener les calculs présentés au §1.4. J’expose
ces résultats dans le §2.2.

2.1. Invariants relatifs réels

2.1.1. Définition des invariants. Soient (X,ω, cX) une variété symplec-
tique réelle de dimension quatre, d ∈ H2(X;Z) une classe d’homologie telle
que c1(X)d ≥ 2 et x une configuration réelle de c1(X)d − 2 points distincts.
Comme au §1.1, on note RX1, . . . ,RXN les composantes connexes de RX et
ri le cardinal de x ∩ RXi, i ∈ {1, . . . , N}. Soit B ⊂ RX une surface à bord
lisse. En chaque point réel xi de x, on choisit une droite vectorielle Ti dans le
plan tangent Txi

RX. Pour toute structure presque complexe J ∈ RJω suffisam-
ment générique, on définit l’entier Γd,Br (J, x) comme la somme des nombres de
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courbes J-holomorphes rationnelles réelles qui réalisent la classe d’homologie d,
passent par la configuration x et qui proviennent des quatre familles suivantes :

– Les courbes tangentes au bord de B, elles sont comptées en fonction de
leurs masses et de leur contact intérieur ou extérieur à B au point de
tangence.

– Les courbes non-immergées, qui sont comptées en fonction de leurs masses
et de la position du point de rebroussement par rapport à B.

– Les courbes possédant une des droites Ti comme tangente, qui sont
comptées en fonction de leurs masses et de la position du point xi corres-
pondant à Ti par rapport à B.

– Les courbes réductibles, qui sont comptées en fonction de leurs masses et
d’une multiplicité qui est le nombre de points réels d’intersection entre
les deux composantes irréductibles de la courbe, chacun de ces points
devant être compté positivement ou négativement selon qu’il est intérieur
ou extérieur à B.

Ainsi, en notant respectivement T andB(J, x), Cuspd(J, x), T and(J, x) et
Redd(J, x) ces quatre ensembles finis de courbes J-holomorphes, l’entier
Γd,Br (J, x) s’écrit∑
C∈∪T and

L
(J,x)∪T and(J,x)∪Cuspd(J,x)

(−1)m(C)〈C,B〉 −
∑

C∈Redd(J,x)

(−1)m(C) multB(C).

Dans cette somme, l’indice de contact 〈C,B〉 vaut −1 (resp. +1) si C ∈
T andL(J, x) et RC se trouve localement incluse dans (resp. en dehors de) B
au voisinage du point de tangence y avec ∂B. Si C ∈ Cuspd(J, x) (resp. C ∈
T and(J, x)), le point de rebroussement (resp. la droite Ti, i ∈ I) est unique et
l’indice de contact 〈C,B〉 vaut −1 si ce point se situe en-dehors de B et +1
sinon. Si C est réductible, elle n’a que deux composantes irréductibles C1, C2,
toutes deux réelles et

multB(C) =
∑

y∈RC1∩RC2

〈y,B〉,

où 〈y,B〉 vaut −1 lorsque y est extérieur à B et +1 s’il est intérieur.

Théorème 2.1 ([28]). Soient (X,ω, cX) une variété symplectique réelle fermée
de dimension quatre et B ⊂ RX une surface à bord lisse. Soient N le nombre
de composantes connexes de RX et d ∈ H2(X;Z) satisfaisant c1(X)d > 1,
c1(X)d 6= 4. Soient x ⊂ X \ ∂B une configuration réelle de c1(X)d − 2 points
distincts et r = (r1, . . . , rN ) le N -uplet associé, supposé non nul. L’entier
Γd,Br (J, x) est indépendant du choix de x et du choix générique de J ∈ RJω.

Le Théorème 2.1 permet sans ambigüıté de noter Γd,Br cet entier. Lorsque∑N
i=1 ri n’a pas la même parité que c1(X)d, on pose Γd,Br = 0. Comme au §1.1,
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on note alors Γd,B [T ] la fonction génératrice
∑c1(X)d−2
|r|=0 Γd,Br T r ∈ Z[T1, . . . , TN ].

Cette fonction est de même parité que c1(X)d et tous ses monômes ne dépendent
en fait que d’une indéterminée.

Ainsi, la fonction ΓB : d ∈ H2(X;Z) 7→ Γd,B [T ] ∈ Z[T1, . . . , TN ] ne
dépend que du quadruplet (X,ω, cX , B). Elle est en outre invariante par
déformation de ce quadruplet au sens où si ωt est une famille continue de
formes symplectiques satisfaisant c∗Xωt = −ωt et Bt ⊂ RX une isotopie de
surfaces compactes, alors cette fonction est la même pour tout (X,ωt, cX , Bt).

Remarquons qu’en particulier Γd,Br (J, x) ne dépend pas de la position re-

lative de x par rapport à B, que Γd,Br = −Γ
d,RX\B
r et que le cas particulier

où B est vide est admissible et fournit un invariant que l’on a préalablement
introduit dans [27]. Montrer l’invariance de Γd,∅r (J, x) se trouve être une étape
importante dans la démonstration de l’invariance de Γd,Br (J, x).

Théorème 2.2 ([28]). Sous les hypothèses du Théorème 2.1, si B est un disque,
2χdr+1 = Γd,Br − Γd,∅r . Si de plus, (X,ω, cX) est symplectomorphe au plan pro-

jectif complexe, Γd,Br = −Γd,∅r , tandis que si elle est symplectomorphe à la
quadrique hyperbolöıde de dimension deux, Γd,Br = 2χdr+1 − Γd,∅r .

Corollaire ([28]). Sous les hypothèses du Théorème 2.2, χdr+1 = −Γd,∅r = Γd,Br
dans le cas du plan projectif complexe et Γd,Br = 2χdr+1, Γd,∅r = 0 dans le cas de
la quadrique hyperbolöıde de dimension deux. �

2.1.2. Sur les 3264 coniques tangentes à cinq coniques génériques.
Il est possible d’étendre les résultats du §2.1.1 à davantage de conditions de
tangence avec le bord de B, au moins dans le cas de coniques. J’ai illustré
ce phénomène en m’intéressant au problème ancien du comptage des coniques
tangentes à cinq coniques génériques données. Le nombre de solutions complexes
est 3264 comme l’a démontré de Joncquières en 1859 mais le nombre de solutions
réelles dépend du choix des cinq coniques génériques. Soient B1, . . . , B5 cinq
disques plongés dans RP 2 de sorte que leurs bords soient transverses deux à
deux, et J ∈ RJω. Notons ΓB le nombre de coniques J-holomorphes réelles qui
sont soit :

– irréductibles, tangentes à B1, . . . , B5, et comptées positivement si elles
sont tangentes intérieurement à Bi pour un nombre pair de i ∈ {1, . . . , 5},
négativement sinon.

– réductibles, tangentes à quatre des cinq disques B1, . . . , B5, et chacune
comptée en fonction de la parité du nombre de disques en lesquelles
elle est tangente intérieurement et de la position de son unique point
singulier par rapport au cinquième disque en lequel elle n’est pas tangente.
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Ainsi, en notant respectivement Con(J) et Conred(J) ces deux ensembles
finis de coniques J-holomorphes, on obtient

ΓB(J) =
∑

C∈Con(J)

〈C,B〉 −
∑

C∈Conred(J)

〈C,B〉multB(C) ∈ Z,

où lorsque C ∈ Con(J), l’indice de contact 〈C,B〉 vaut Π5
i=1〈C,Bi〉 ; tandis

que lorsque C ∈ Conred(J) et i1, . . . , i4 ∈ {1, . . . , 5} sont les entiers tels que C
soit tangent aux bords de Bi1 , . . . , Bi4 , 〈C,B〉 = Π4

j=1〈C,Bij 〉 et multB(C) =
+1 si le point singulier de C appartient à Bi5 et −1 sinon.

Théorème 2.3 ([28]). 1) Cet entier ΓB(J) ne dépend pas du choix générique
de la structure presque-complexe J ∈ RJω et est invariant par isotopie de
B = B1 ∪ · · · ∪B5.

2) Si B1, . . . , B5 sont cinq disques disjoints, alors ΓB = 272. Il en est de
même si B1, . . . , B5 sont proches de cinq droites doubles génériques.

Un disque est dit proche d’une droite double d’équation y2 = 0 s’il a une
équation de la forme {y2 ≤ ε2x2 − δ} pour ε et δ petits.

Corollaire ([28]). Si C1, . . . , C5 sont cinq coniques dont la classe d’isotopie est
donnée par la deuxième partie du Théorème 2.3, alors le nombre de coniques
réelles qui leur sont tangentes est minoré par 32 indépendamment du choix de
C1, . . . , C5 dans la classe d’isotopie.

Démonstration : Le nombre de droites tangentes à deux coniques génériques
vaut quatre, elles sont codées par les points d’intersection entre les deux
coniques duales. Le nombre de coniques tangentes à quatre des cinq coniques
C1, . . . , C5 se trouve donc majoré par 240 = 5 ∗ 3 ∗ 4 ∗ 4, de sorte que le résultat
découle de la définition de ΓB et de la deuxième partie du Théorème 2.3. �

Remarquons que le fait qu’il existe une configuration de cinq coniques réelles
pour lesquelles les 3264 coniques tangentes à ces cinq coniques sont toutes réelles
a été établi par F. Ronga, A. Tognoli et T. Vust [19]. Le théorème 2.1 montre
la difficulté à définir des invariants relatifs avec conditions de tangence réelles.
Dans le � monde tropical �, la situation est parfois bien meilleure, voir [13]. Il
en est de même avec des conditions de tangence complexes conjuguées, voir le
§2.2.

2.2. Invariants relatifs imaginaires. Soit L une sphère, un tore ou
un espace projectif réel de dimension n = 2 ou 3. Le fibré cotangent de L est
équipé de sa forme de Liouville λ et de l’involution cL définie par (q, p) ∈ T ∗L 7→
(q,−p) ∈ T ∗L. Cette dernière satisfait c∗Lλ = −λ de sorte que (T ∗L, dλ, cL)
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est une variété symplectique réelle. Soit g une métrique à courbure constante
sur L, U∗L l’ensemble des couples (q, p) ∈ T ∗L tels que g(p, p) ≤ 1 et S∗L
le bord de U∗L. La restriction de λ à S∗L est une forme de contact et l’on
note Rλ le champ de Reeb associé. Le flot engendré par Rλ n’est autre que le
flot géodésique. Notons Jλ l’espace des structures presque-complexes positives
pour dλ et asymptotiquement cylindriques sur une structure CR de S∗L. Plus
précisément, le champ radial de T ∗L identifie le complémentaire de la section
nulle avec la symplectisation (R×S∗L, d(eρλ)) de (S∗L, λ). On note Jλ l’espace
des structures presque-complexes J positives pour dλ, de classe Cl, l � 1, qui
satisfont J( ∂∂ρ ) = Rλ et préservent le noyau de λ pour ρ� 1 et qui enfin sont
invariantes par translation par ρ au-delà d’un certain rang ρ0. Nous notons alors
RJλ ⊂ Jλ le sous-espace des structures presque-complexes pour lesquelles cL
est J-antiholomorphe. Ces espaces Jλ et RJλ sont tous deux des variétés de
Banach séparables non-vides et contractiles. Nous allons compter les courbes
J-holomorphes rationnelles réelles pointées d’énergie de Hofer finie proprement
immergées dans T ∗L en fonction d’un signe ±1 de façon à obtenir un invariant
associé à T ∗L. Rappelons que d’après le Théorème 1.2 de [11] et d’après [3],
ces courbes rationnelles pointées convergent en leurs pointes vers des orbites
de Reeb parcourues un nombre entier de fois, que l’on appelle multiplicité.
La dimension de l’espace des modules de telles courbes dépend du nombre de
pointes et des multiplicités associées. Afin d’obtenir un nombre fini de courbes,
nous allons soumettre ces courbes à quelques contraintes, soit en les forçant à
converger vers des orbites de Reeb prescrites, soit en les forçant à passer par
des points de L ou des paires de points complexes conjuguées de T ∗L \ L.

Soit ei, i ≥ 1, la suite d’entiers partout nulle sauf au i-ème rang où elle vaut
un. Soient α =

∑
i∈N∗ αiei et β =

∑
i∈N∗ βiei deux suites d’entiers positifs qui

s’annulent à partir d’un certain rang. Ces deux suites codent respectivement
le nombre de paires d’orbites de Reeb complexes conjuguées limites prescrites
et non prescrites de nos courbes, avec leur multiplicités i ∈ N∗. Le nombre de
pointes de nos courbes vaut donc 2v = 2

∑
i∈N∗(αi + βi) et nous choisissons

un ensemble Γ de
∑
i∈N∗ αi géodésiques fermées disjointes de L pour prescrire

nos paires d’orbites de Reeb limites. À présent, afin de fixer nos contraintes
ponctuelles, soient r ∈ N et x1, . . . , xr des points distincts de L. De même,
soient rL ∈ N et ξ1, ξ1, . . . , ξrL , ξrL des paires distinctes de points complexes

conjugués de T ∗L \L, c’est-à-dire satisfaisant cL(ξi) = ξi. Nous supposons que

(n− 1)r+ 2(n− 1)rL + 2(n− 1)#Γ = 2v+ ε(n− 1)
∑
i∈N∗

i(αi + βi) +n− 3, (1)

où ε = 2 si L est homéomorphe à une sphère et ε = 1 si L est homéomorphe à
un espace projectif réel, tandis que nous supposons

(n− 1)r + 2(n− 1)rL = 2v + n− 3 et α = 0 (2)

si L est homéomorphe à un tore.
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Alors, lorsque la structure presque-complexe J ∈ RJλ est générique, il n’y
a qu’un nombre fini de courbes J-holomorphes rationnelles réelles d’énergie de
Hofer finie, proprement immergées dans T ∗L et ayant 2v pointes qui passent par
x, par chaque paire {ξi, ξi} et qui convergent vers les orbites de Reeb relevant
les éléments de Γ ainsi que vers βj autres paires d’orbites, j ∈ N∗, chacune avec
multiplicité j ou de classe d’homologie donnée si L est un tore. En effet, si L est
un tore, il y a une infinité de géodésiques fermées primitives non homologues
et la dimension (2) ne dépend pas du choix des classes d’homologies de sorte
qu’il y a une infinité d’espaces de modules ayant la même dimension. Pour
garantir la finitude, nous imposons les classes d’homologies des orbites de Reeb
limites. Notons R(α, β,Γ, x, ξ, J) cet ensemble fini de courbes, la généricité de
J garantit qu’elles sont toutes immergées. Si L est de dimension deux, on pose

F(r,rL)(α, β,Γ, x, ξ, J) =
∑

C∈R(α,β,Γ,x,ξ,J)

(−1)m(C) ∈ Z.

Si L est de dimension trois, on l’équipe d’une structure spin. Ceci permet d’as-
socier un état spinoriel sp(C) à chaque courbe C ∈ R(α, β,Γ, x, ξ, J) comme
expliqué au §3.1 et on pose

F(r,rL)(α, β,Γ, x, ξ, J) =
∑

C∈R(α,β,Γ,x,ξ,J)

sp(C) ∈ Z.

Théorème 2.4 ([30]). Soit L une sphère, un tore ou un espace projectif réel
de dimension n = 2 ou 3 muni d’une métrique à courbure constante. Soient
α, β deux suites d’entiers positifs qui s’annulent à partir d’un certain rang. On
choisit comme ci-dessus un ensemble Γ de géodésiques fermées et des ensembles
x, ξ de r et rL points dans L et T ∗L\L respectivement de sorte que ces nombres
satisfassent (2) dans le cas du tore et (1) sinon. Lorsque n = 3, on suppose r 6= 0
et lorsque de plus L ∈ {S3,RP 3}, on suppose que J est invariante par le flot
de Reeb pour ρ � 1. Alors, l’entier F(r,rL)(α, β,Γ, x, ξ, J) défini ci-dessus ne
dépend ni du choix des contraintes Γ, x, ξ, ni du choix générique de la structure
presque-complexe J ∈ RJλ.

L’entier F(r,rL)(α, β,Γ, x, ξ, J) étant indépendant de Γ, x, ξ, J d’après le
Théorème 2.4, nous le noterons F(r,rL)(α, β). Afin d’alléger encore cette no-
tation, nous noterons cet entier F (α, β) lorsque rL = 0, puisque la valeur de
r est alors définie sans ambigüıté par les calculs de dimensions (1) et (2). Les
Lemmes 2.5, 2.6 et 2.7 fournissent quelques calculs que l’on a pu mener. Les
résultats du §1.4 reposent sur ces calculs.

Lemme 2.5 ([30]). Si L est homéomorphe à une sphère de dimension deux et
rL = 0, on a F (e1, 0) = F (0, e1) = 1, F (e2, 0) = 2, F (0, e2) = 8, F (2e1, 0) = 2,
F (e1, e1) = 4 et F (0, 2e1) = 6.

Lemme 2.6 ([30]). Si L est homéomorphe à un plan projectif réel et rL = 0,
on a F (e1, 0) = F (0, e1) = F (e2, 0) = F (2e1, 0) = F (e1, e1) = F (0, 2e1) = 1 et
F (0, e2) = 4.
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Lemme 2.7 ([30]). Si L est homéomorphe à un plan projectif réel et rL = 0,
on a F (e3, 0) = 2, F (0, e3) = 12, F (e1+e2, 0) = 2, F (e1, e2) = 8, F (e2, e1) = 4,
F (0, e1 + e2) = 24, F (3e1, 0) = 2, F (2e1, e1) = 4, F (e1, 2e1) = 6 et F (0, 3e1) =
8.

Toutefois, la valeur de l’invariant F qui ressort du Théorème 2.4 n’est pas
connue en général. Il serait intéressant de développer des méthodes permettant
son calcul.

3. Invariants En Dimension Six

Nous exposons dans ce paragraphe les résultats analogues à ceux présentés
au §1 que l’on a pu établir en dimension six.

3.1. Définition des invariants dans les variétés algébriques
réelles convexes. Rappelons qu’une variété projective lisse est dite
convexe lorsque le groupe H1(CP 1;u∗TX) s’annule pour tout morphisme
u : CP 1 → X. Les principaux exemples que je connaisse sont les espaces ho-
mogènes projectifs, citons les produits d’espaces projectifs, la quadrique de CP 4

ou encore la variété des drapeaux de C3. Il est à nouveau possible de définir un
invariant en comptant algébriquement le nombre de courbes rationnelles réelles
qui réalisent une classe d’homologie d donnée et passent par une configuration
réelle de points x de cardinal 1

2c1(X)d, où c1(X) désigne la première classe
de Chern de la variété et c1(X)d est supposé pair. Toutefois, le signe ±1 en
fonction duquel il convient de compter les courbes rationnelles réelles est plus
délicat à définir. Le lieu réel RX = fixe(cX) de X est une variété lisse de dimen-
sion réelle trois que l’on suppose orientable pour simplifier. Munissons-la d’une
orientation ainsi que d’une métrique riemannienne auxiliaire. Son SO3(R)-fibré
principal des repères orthonormés directs s’étend alors en un Spin3-fibré prin-
cipal. En effet, l’obstruction à l’existence d’une telle extension est donnée en
général par la classe caractéristique w2(RX) et cette obstruction s’annule en
dimension trois comme il découle de la formule de Wu. Lorsque la configura-
tion réelle de points est suffisamment générique et possède au moins un point
réel, d’une part les courbes rationnelles réelles qui passent par x et réalisent d
sont toutes immergées (même lisses en général) et de partie réelle non vide, et
d’autre part elle sont équilibrées. Ce dernier point signifie que le fibré normal
de ces courbes se décompose sur C comme la somme directe de deux fibrés en
droite isomorphes L et M , fibrés qui de plus peuvent être choisis réels. Notons
Rd(x) cet ensemble fini de courbes rationnelles réelles. Chaque lieu réel de ces
courbes fournit donc un nœud immergé dans la variété de dimension trois RX,
et ce nœud est de plus canoniquement équipé d’un repère mobile ou plutôt
d’axes mobiles donnés par la tangente au nœud et les lieux réels des fibrés en
droites L et M (en fait, seule la classe d’homotopie de ces axes mobiles est
canoniquement définie, puisque la décomposition du fibré normal en somme
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L ⊕M n’est pas uniquement définie, mais c’est amplement suffisant pour nos
besoins). Lorsque les lieux réels de L et M sont orientables, c’est-à-dire lorsque
ces fibrés sont de degré pair, ces axes mobiles peuvent être enrichis de repères
orthonormés. Ainsi, les nœuds définis par les courbes rationnelles réelles sont
tous équipés de repères orthonormés mobiles qui fournissent des lacets dans le
SO3(R)-fibré principal des repères orthonormés, lacets qui relèvent les nœuds
de RX. Vient alors l’alternative suivante pour chaque lacet : soit ce lacet du
SO3(R)-fibré principal des repères se relève en un lacet du Spin3-fibré principal
donné par la structure Spin s, soit non. Ceci permet de définir l’état spinoriel
sp(C) de chaque courbe rationnelle réelle C comme valant +1 dans le premier
cas, et −1 dans le second. Lorsque les lieux réels de L et M ne sont pas orien-
tables, on modifie ces axes mobiles à l’aide d’un demi-tour à droite donné par
l’orientation de RX, ce qui permet de se ramener au cas précédent et de définir
l’état spinoriel également dans ce cas. L’entier χd,sr (x) n’est alors autre que le
nombre de courbes rationnelles réelles qui réalisent la classe d’homologie d et
passent par x, ces courbes étant comptées en fonction de leur état spinoriel, de
sorte que

χd,sr (x) =
∑

C∈Rd(x)

sp(C) ∈ Z.

On a noté r = (r1, . . . , rN ) le N -uplet associé à x ; c’est-à-dire que N désigne le
nombre de composantes connexes de RX et en notant (RX)1, . . . , (RX)N ces
composantes, ri = #(x ∩ (RX)i).

Théorème 3.1 ([26]). Soient (X, cX) une variété algébrique réelle convexe
lisse de dimension trois et s une structure Spin3 sur son lieu réel RX supposé
orientable. Soit d ∈ H2(X;Z) telle que c1(X)d soit pair et différent de quatre
et soit kd = 1

2c1(X)d ∈ N∗. Soient x = (x1, . . . , xkd) une configuration réelle
de kd points distinct dont au moins un réel et r le N -uplet associé. L’entier
χd,sr (x) ne dépend alors pas du choix générique de x.

Ce résultat est valable aussi pour les variétés dont le lieu réel n’est pas
orientable, moyennant le choix d’une structure Pin−3 sur le lieu réel ; l’invariant
s’annule alors lorsque kd est pair, voir [26].

Le Théorème 3.1 permet sans ambigüıté de noter cet entier χd,sr . Lorsque∑N
i=1 ri n’a pas la même parité que kd = 1

2c1(X)d, on pose χd,sr = 0. On

note alors χd,s[T ] la fonction génératrice
∑kd
|r|=0 χ

d,s
r T r ∈ Z[T1, . . . , TN ]. Cette

fonction est de même parité que 1
2c1(X)d et tous ses monômes ne dépendent

en fait que d’une indéterminée.
Ainsi, la fonction χs : d ∈ H2(X;Z) 7→ χd,s(T ) ∈ Z[T ] est invariante par

isomorphisme de la variété algébrique réelle convexe lisse de dimension trois
(X, cX). On en déduit à nouveau les bornes inférieures suivantes en géométrie
énumérative réelle.

Corollaire ([26]). Sous les hypothèses du Théorème 3.1, notons Rd(x) le
nombre de courbe rationnelles réelles connexes homologues à d qui passent par



668 Jean-Yves Welschinger

x et Nd l’invariant de Gromov-Witten de genre zéro associé. Alors, |χd,sr | ≤
Rd(x) ≤ Nd. �

Finissons ce paragraphe par une interprétation topologique de nos résultats.

Les singularités de l’espace RτM
d

kd
(X) sont de codimension au moins deux, de

sorte que cet espace possède une première classe de Stiefel-Whitney. Étant

donné D ∈ H3kd−1(RτM
d

kd
(X);Z/2Z), on note D∨ son image sous le mor-

phisme H3kd−1(RτM
d

kd
(X);Z/2Z)→ H1(RτM

d

kd
(X);Z/2Z).

Proposition 3.2 ([24]). La première classe de Stiefel-Whitney de toute com-
posante RM∗ de RτMd

kd
(X) qui contient une courbe équilibrée s’écrit

w1(RM∗) = (Rτevd)∗w1(RτXkd) +
∑

D⊂Red′

ε(D)D∨ ∈ H1(RM∗;Z/2Z),

où ε(D) ∈ {0, 1} et lorsque ε(D) = 1, la composante irréductible D de Red se
trouve contractée par l’application d’évaluation Rτevd. �

On a noté ici Red′ la réunion du diviseur des courbes réductibles Red
et de l’éventuel diviseur des courbes non-équilibrées (u,C, z) telles que
dimH1(C;Nu⊗OC(−z)) ≥ 2, si un tel diviseur existe. On note Red1 la réunion
des composantes irréductibles D de Red′ pour lesquelles ε(D) = 1. En di-
mension deux, cet ensemble a été déterminé dans [18]. Équipons RτXkd d’un
système de coefficients tordus entiers Z et notons [RτXkd ] ∈ H3kd(RτXkd ;Z)
sa classe fondamentale. Notons Z∗ le système de coefficients locaux induit sur
RM∗, tiré en arrière de Z par Rτevd.

Proposition 3.3 ([24]). Sous les hypothèses de la Proposition 3.2, il existe une
unique classe fondamentale [RM∗] ∈ H3kd(RM∗,Red1;Z∗) telle qu’en toute
courbe équilibrée (u,C, z) ∈ RM∗, le morphisme

(Rτ evd)∗ : H3kd(RM∗,RM∗ \ {(u,C, z)};Z∗)→ H3kd(RτXkd ,RτXkd \ {u(z)};Z)

envoie [RM∗] sur sp(u,C, z)[RτXkd ]. �

Comme Rτevd(Red1) est de codimension deux, le groupe
H3kd(RτXkd ,Rτevd(Red1);Z) est cyclique, engendré par [RτXkd ]. L’entier χd,sr
n’est autre que celui défini par la relation (Rτevd)∗[RτM

d

kd
(X)] = χd,sr [RτXkd ],

où la classe fondamentale [RτM
d

kd
(X)] est donnée par la Proposition 3.3.

3.2. Extension aux variétés symplectiques réelles forte-
ment semi-positives. L’extension des résultats du §3.1 aux variétés
symplectiques n’est pas immédiate, en partie parce-que le thérorème de Gro-
thendieck [10] selon lequel les fibrés holomorphes sur la sphère de Riemann
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sont entièrement décomposables n’est plus valable pour les fibrés normaux des
courbes pseudo-holomorphes. Ces derniers sont des fibrés vectoriels complexes
munis d’un opérateur de Cauchy-Riemann qui n’est que R-linéaire et non C-
linéaire comme dans le cas de fibrés holomophes. Ces premiers sont des pertur-
bations d’ordre zéro de ces derniers par des opérateurs C-antilinéaires et sont
parfois appelés � opérateurs de Cauchy-Riemann généralisés�. J’ai étendu dans
[24] la notion d’état spinoriel pour un opérateur de Cauchy-Riemann généralisé
surjectif.

La stratégie est la suivante. L’espace des opérateurs de Cauchy-Riemann
généralisés réels sur un fibré vectoriel complexe réel donné est un espace de Ba-
nach affine, il contient les opérateurs de Cauchy-Riemann C-linéaires comme
sous-espace de Banach. Or chaque opérateur de Cauchy-Riemann surjectif
définit une structure de fibré vectoriel holomorphe équilibré et possède donc un
état spinoriel d’après les résultats du §3.1. Étant donné un opérateur de Cauchy-
Riemann généralisé surjectif, on le relie à opérateur de Cauchy-Riemann sur-
jectif par un chemin générique et on définit son état spinoriel comme celui de
l’opérateur de Cauchy-Riemann si le chemin traverse un nombre pair de fois le
mur des opérateurs non-surjectifs et son opposé sinon.

Soit alors (X,ω, cX) une variété symplectique réelle fortement semi-positive
de dimension six, c’est-à-dire pour laquelle toute classe sphérique d ∈ H2(X;Z)
positive contre ω satisfait l’implication c1(X)d ≥ 2 − n =⇒ c1(X)d ≥ 1.
Les variétés symplectiques réelle positives, par exemple de Fano, satisfont
cette condition. On suppose à nouveau pour simplifier le lieu réel de cette
variété orientable et on l’équipe d’une structure spin s. Soit, comme au §3.1,
d ∈ H2(X;Z) telle que (cX)∗d = −d, c1(X)d soit pair et strictement plus grand
que deux. Soient kd = 1

2c1(X)d et x = (x1, . . . , xkd) ∈ Xkd une configuration
réelle de kd points distincts, dont au moins un réel. Lorsque J ∈ RJω est suffi-
samment générique, il n’y a qu’un nombre fini de courbes J-holomorphes ration-
nelles réelles connexes homologues à d et contenant x. Ces courbes sont toutes
irréductibles, lisses et de partie réelle non-vide. On note Rd(x, J) cet ensemble
fini de courbes. Le fibré normal de chacune de ces courbes C ∈ Rd(x, J) est
équipé d’un opérateur de Cauchy-Riemann généralisé surjectif DC qui possède
donc un état spinoriel sp(C) d’après ce qui précède. On pose

χd,sr (x, J) =
∑

C∈Rd(x,J)

sp(C) ∈ Z.

Théorème 3.4 ([24]). Soit (X,ω, cX) une variété symplectique réelle fortement
semi-positive de dimension six, de lieu réel orientable muni d’une structure spin
s. Soit d ∈ H2(X;Z) telle que (cX)∗d = −d, c1(X)d est pair et strictement
plus grand que deux. Soient kd = 1

2c1(X)d et x une configuration réelle de kd
points distincts, dont au moins un réel. et r = (r1, . . . , rN ) le N -uplet associé.
Alors, l’entier χd,sr (x, J) ne dépend ni du choix de x, ni du choix générique de
J ∈ RJω.
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Remarquons que ce résultat permet de noter sans ambigüıté l’invariant χd,sr ,
c’est un invariant par déformation fortement semipositive de (X,ω, cX). On en
déduit les bornes inférieures suivantes.

Corollaire ([24]). Sous les hypothèses du Théorème 3.4, |χd,sr | ≤ #Rd(x, J),
pour tout choix de configuration réelle x ∈ Xkd telle que x ∩ RX = r, et tout
choix générique de J ∈ RJω. �

Les invariants qui ressortent des Théorèmes 1.1 et 3.1 ont été interprétés
par C.-H. Cho [5] et J. Solomon [22]. Leur approche consiste à d’abord définir la

classe fondamentale [RτM
d

kd
(X)] donnée par la Proposition 3.3 en utilisant les

travaux de K. Fukaya, Y.-G. Oh, H. Ohta et K. Ono [6], [7], puis à en déduire
l’existence des invariants grâce à la relation entre classes fondamentales donnée
à la suite de cette proposition. J. Solomon a étendu ces invariants aux courbes
de genre strictement positifs mais de structure conforme fixée et aux variétés
symplectiques de dimension six, notamment de Calabi-Yau. Dans le cas des
quintiques de CP 4, l’invariant a été calculé par R. Pandharipande, J. Solomon
et J. Walcher [17].

3.3. Optimalité, congruences et calculs dans le cas de
l’ellipsöıde de dimension trois

Théorème 3.5 ([30]). Soient (X, cX) la quadrique ellipsöıde de dimension
trois et d ∈ H2(X;Z) satisfaisant c1(X)d = 2 mod (4). L’invariant χd1 est
alors négatif et les bornes inférieures apparues dans le Corollaire 3.1 sont op-
timales, atteintes lorsque les conditions d’incidence non réelles sont choisies
suffisamment proches d’une section hyperplane réelle disjointe du lieu réel RX.

Remarque 4. La condition c1(X)d = 2 mod (4) garantit la parité de l’entier
kd de sorte que l’on peut effectivement choisir un point réel. Lorsque c1(X)d =
0 mod (4), et r = 0, l’invariant χdr n’est pas défini. Toutefois, on a montré
dans ce cas là qu’il existe une structure presque-complexe générique J ∈ RJω
et kd points complexes conjugués pour lesquels aucune courbe J-holomorphe
rationnelle réelle homologue à d contient ces kd points, voir le Théorème 4.2.

Théorème 3.6 ([30]). Soient (X, cX) la quadrique ellipsöıde de dimension trois
et d un multiple positif, disons δ > 0, d’une section hyperplane réelle. Lorsque
6r + 1 ≤ 3δ, la puissance 2

3
4 (δ−2r) divise χdr .

Corollaire ([30]). Soit (X,ω, cX) une variété symplectomorphe à la quadrique
ellipsöıde de dimension trois. Alors, χ2

1 = −1, χ6
1 = 0 et χ10

1 = −896.

Dans le cas de l’espace projectif de dimension trois, une formule calculant
χd2d(CP 3) pour tout degré d est annoncée par E. Brugallé et G. Mikhalkin dans
[4]. En particulier, χ5

10 = 45, χ7
14 = −14589, tandis qu’en degré pair l’invariant

s’annule pour des raisons de symétrie.
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4. Sur la Présence et L’absence de Membranes
J-holomorphes

4.1. Absence de membranes J-holomorphes. Soit C une mem-
brane J-holomorphe à bord dans une sous-variété lagrangienne L d’une variété
symplectique fermée (X,ω). Notons χ la caractéristique d’Euler de cette mem-
brane, d ∈ H2(X,L;Z) sa classe d’homologie relative et µTX ∈ H2(X,L;Z)
la classe de Maslov de la paire (X,L). La dimension attendue de l’espace des
déformations de C s’écrit 〈µTX , d〉+(n−3)χ. Cette dimension chute lorsque l’on
impose à C des contraintes supplémentaires. Si l’on impose par exemple à cette
membrane de rencontrer p cycles de codimensions 2 + q1, . . . , 2 + qp, cette di-
mension attendue chute de la somme q = q1+· · ·+qp. Deux problèmes généraux
sous-tendent nos résultats. Il s’agit d’une part de compter les membranes J-
holomorphes homologues à d soumises à de telles conditions d’incidence de sorte
que ce comptage ne dépende pas de J et ne dépende des conditions d’incidence
qu’à homologie près. Il s’agit d’autre part de minimiser ce nombre de mem-
branes. Si nous ne pouvons répondre au premier problème dans ce degré de
généralité, il nous est par contre parfois possible de répondre au second sans
même supposer l’égalité q = 〈µTX , d〉+ (n− 3)χ, lorsque le minimum en ques-
tion est nul. Le présent paragraphe est consacré aux résultats que l’on a pu
obtenir dans cette direction. Ici encore le minimum est atteint en allongeant le
cou d’une structure presque complexe générale.

4.1.1. En dimension supérieure

Théorème 4.1 ([30], [31]). Soit L une sphère lagrangienne dans une variété
symplectique fermée (X,ω) satisfaisant c1(X) = λω, λ ≤ 0 et soit E > 0.
Supposons la dimension de X supérieure à cinq. Pour toute structure presque-
complexe J générale ayant un cou suffisamment long au voisinage de L, cette
variété ne possède ni membrane J-holomorphe reposant sur L ni courbe J-
holomorphe rencontrant L qui soit d’énergie inférieure à E. Ce résultat reste
valable en dimension quatre pour les courbes ou membranes de genre nul.

Rappelons que l’énergie d’une courbe C est par définition l’intégrale de la
forme ω sur cette courbe. Les variétés projectives à fibré canonique nul ou
ample, par exemple les intersections complètes de multidegrés (d1, . . . , dk) de

l’espace projectif de dimension N dès lors que
∑k
i=1 di ≥ N + 1, satisfont les

hypothèses du Théorème 4.1. Remarquons qu’une modification de ce dernier
s’applique également aux variétés dont le fibré canonique est le produit d’un
fibré ample et d’un fibré porté par un diviseur effectif disjoint de L. Le Théorème
4.1 permet de définir la cohomologie de Floer de sphères lagrangiennes dans les
variétés symplectiques dont la première classe de Chern s’annule, voir [31] et
[6], [7] pour une théorie de l’obstruction à définir en général une telle homologie.

Théorème 4.2 ([30]). Soit L une sphère lagrangienne dans une variété
symplectique fermée semipositive (X,ω) de dimension 2n ≥ 6 et soit d ∈
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H2(X,L;Z). Écrivons 〈µTX , d〉+(n−3)χ = q+r avec q ∈ Z, 0 ≤ r < 2+(n−3)χ
et χ ≤ 2. Lorsque q ≥ 0, choisissons p cycles de X \ L de codimensions
2 + q1, . . . , 2 + qp de sorte que q = q1 + · · · + qp. Dès que la structure presque
complexe générale J possède un cou suffisamment long au voisinage de L, cette
variété ne contient aucune membrane J-holomorphe homologue à d, de ca-
ractéristique d’Euler χ qui rencontre ces p cycles et repose sur L. Ce résultat
reste valable pour des membranes de genre nul lorsque n = 2.

Exemple : la quadrique ellipsöıde. Soit X la quadrique ellipsöıde de
dimension complexe n ≥ 3 et H une section hyperplane disjointe de L.
Le groupe H2(X,L;Z) est monogène, engendré par la classe d0 satisfaisant
〈H, d0〉 = +1. La première classe de Chern de X vaut nH, d’où l’on déduit le
calcul 〈µTX , ld0〉 = 2ln quel que soit l’entier l. Écrivons l = (n − 1)a + b, le
Théorème 4.2 s’applique par exemple lorsque n+ 1 ≤ 2b < 2n, les membranes
sont des disques et lorsque toutes les conditions d’incidence sont ponctuelles.
Rappelons que le Théorème 3.5 traite du cas r = n − 1 et montre ainsi en un
sens l’optimalité des hypothèses faites dans ce Théorème 4.2.

4.1.2. En dimension quatre. Nous noteronsMg,b l’espace des modules des
structures complexes de la surface compacte connexe orientée de genre g ayant
b composantes de bord.

Proposition 4.3 ([30]). Soit L une sphère lagrangienne dans une variété sym-
plectique fermée de dimension quatre (X,ω). On suppose que cette dernière
ne possède pas de sphère symplectique S satisfaisant 〈c1(X), [S]〉 > 0. Soit
(d, g, b) ∈ H2(X,L;Z) × N × N∗ et K un compact de Mg,b. Alors, pour toute
structure presque-complexe générale ayant un cou suffisamment long au voisi-
nage de L, la variété ne possède pas de membrane J-holomorphe homologue à
d à bord dans L et conforme à un élément de K.

Proposition 4.4 ([30]). Soit L une surface lagrangienne orientable hyperbo-
lique dans une variété symplectique fermée de dimension quatre (X,ω) et soit
d ∈ H2(X,L;Z). On note Ng

d (x, J) le nombre de courbes J-holomorphes ho-
mologues à d à bords dans L, de topologie et de structure conforme données
et qui passent par une configuration x de points distincts de (X,ω) de cardinal
adéquat, pour J ∈ Jω générique. Ce nombre Ng

d (x, J) s’annule pour toute struc-
ture presque-complexe générale ayant un cou suffisamment long au voisinage de
L.

Proposition 4.5 ([30]). Soit (X,ω, cX) une variété symplectique réelle fermée
de dimension quatre dont le lieu réel possède un tore lagrangien ou bien une sur-
face hyperbolique lagrangienne L, orientable ou non. On suppose que (X,ω, cX)
ne possède pas de sphère symplectique réelle S satisfaisant 〈c1(X), [S]〉 > 1 si L
est orientable et 〈c1(X), [S]〉 > 0 sinon. Soit (d, g, b) ∈ H2(X,L;Z)×N×N∗ et
K un compact de Mg,b. Alors, pour toute structure presque-complexe générale
ayant un cou suffisamment long au voisinage de L, la variété ne possède pas
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de membrane J-holomorphe homologue à d à bord dans L et conforme à un
élément de K.

4.2. Présence de membranes J-holomorphes. Les résultats
présentés aux §§1.1 et 3.1 permettent de garantir l’existence de disques J-
holomorphes reposant sur une sous-variété lagrangienne d’une variété symplec-
tique donnée, lorsque cette lagrangienne se trouve dans le lieu fixe d’une in-
volution antisymplectique, laquelle est J-antiholomorphe et à condition que
l’invariant que l’on a défini n’est pas nul. Nous souhaitons montrer ici qu’il est
possible d’obtenir ces résultats pour une classe plus large de sous-variété la-
grangiennes, en faisant intervenir la notion d’involutions antibirationnelles sur
les variétés symplectiques.

4.2.1. Involutions antibirationnelles des variétés symplectiques de di-
mension quatre. Une involution cX de la variété symplectique de dimension
quatre (X,ω) qui est définie en-dehors d’un nombre fini de points x1, . . . , xk
de X est dite antibirationnelle lorsqu’il existe un diagramme commutatif de la
forme suivante :

(Y, JY )
cY−→ (Y, JY )

π ↓ ↓ π
(X, JX)

cX−→ (X, JX)

où Y est une variété compacte de dimension quatre obtenue à partir de X en
réalisant un nombre fini d’éclatements topologiques au-dessus des points xi,
i ∈ {1, . . . , k}, JX , JY sont des structures presque-complexes lisses et cY une
involution JY -antiholomorphe sur Y toute entière. De plus, JX est supposée ω-
positive, cX est JX -antiholomorphe sur son lieu de définition et π est (JY , JX)-
holomorphe.

Les involutions antibirationnelles classiques sur les surfaces compactes de
Kähler fournissent des exemples de telles surfaces. Remarquons que pour tout
i ∈ {1, . . . , k}, π−1(xi) est un arbre de sphères JY -holomorphes n’ayant que des
points doubles transverses comme singularités.

Lemme 4.6. Supposons que pour tout i ∈ {1, . . . , k} et toute composante
irréductible C de l’arbre π−1(xi), cY (C) ne soit pas contractée par π sur
x1, . . . , xk. Alors, le diagramme ci-dessus est unique à équivalence près, une
fois donnée (X,ω, cX).

Soient (X,ω, JX , cX) satisfaisant les hypothèses du Lemme 4.6 et (Y, JY , cY )
la variété de dimension quatre associée. Soit y l’ensemble fini

(
∪ki=1 π

−1(xi)
)
∩

cY
(
∪ki=1 π

−1(xi)
)
. L’involution antibirationnelle cX est dite simple lorsqu’elle

satisfait les hypothèses du Lemme 4.6 et lorsque y se trouve en-dehors des

points doubles de ∪ki=1π
−1(xi).

Lemme 4.7. Soit cX une involution antibirationnelle simple de (X,ω) et
(Y, cY ) la variété de dimension quatre donnée par le Lemme 4.6. Alors, la
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deux-forme ωY = π∗ω − (π ◦ cY )∗ω est fermée et non-dégénérée en tout point
de Y \ y. Elle est également non-dégénérée en tout point d’intersection trans-

verse de
(
∪ki=1 π

−1(xi)
)
∩ cY

(
∪ki=1 π

−1(xi)
)
⊂ y.

Une telle deux-forme qui n’a qu’un nombre fini de noyaux de dimension
deux sera dite quasi-symplectique. Remarquons qu’en particulier, lorsque
l’intersection

(
∪ki=1 π

−1(xi)
)
∩ cY

(
∪ki=1 π

−1(xi)
)

est transverse, la deux-forme
ωY est symplectique.

La structure presque-complexe JY est ωY -positive dans le sens que pour
tous y ∈ Y et v ∈ TyY \ {0}, soit v et JY (v) engendrent le noyau de ωY |y,
soit ωY (v, JY (v)) > 0. Notons JωY

l’espace des structures presque-complexes
de classe Cl qui sont ωY -positives. Si J ∈ JωY

, alors c∗Y (J) = −dcY ◦ J ◦ dcY
appartient également à JωY

. Notons RJωY
le lieu fixe de cette action de Z/2Z

sur JωY
.

Lemme 4.8. Soient cX une involution antibirationnelle simple sur (X,ω) et
(Y, cY , ωY ) la variété de dimension quatre donnée par les Lemmes 4.6, 4.7. Il
existe J0 ∈ RJωY

tel que ωY (J0, J0) = ωY et gY = ωY (., J0) soit un deux-
tenseur symétrique positif sur Y , défini en-dehors de y.

Pour tout voisinage U de y et tout J0 ∈ RJωY
donné par le Lemme 4.9,

notons J U,J0ωY
(resp. RJ U,J0ωY

) le sous-espace des J ∈ JωY
(resp. J ∈ RJωY

)
telles que J = J0 sur U .

Lemme 4.9. Pour tous U, J0, l’espace J U,J0ωY
est une variété de Banach

séparable non-vide et contractile. Le sous-espace RJ U,J0ωY
en est une sous-variété

de Banach séparable non-vide et contractile. �

Remarque 5. La deux-forme π∗ω est limite d’une suite de formes symplec-
tiques sur Y obtenues après un nombre fini d’éclatements de boules symplec-
tiques dont les rayons convergent vers zéro. Par suite, la deux-forme ωY est
limite d’une suite de formes symplectiques (ωnY )n∈N. Alors, J ∈ JωY

est ωnY -
positif pour n assez grand, principalement parce-que les noyaux de ωY de-
viennent symplectiques pour ωnY .

4.2.2. Invariants énumératifs des involutions antibirationnelles
simples. Soient cX une involution antibirationnelle simple sur (X,ω) et
x1, . . . , xk ∈ X les points où elle n’est pas définie. Soit (Y, ωY , cY ) la variété
quasi-symplectique de dimension quatre associée, voir le Lemme 4.7. Soient π la
projection Y → X et y l’ensemble fini

(
∪ki=1 π

−1(xi)
)
∩ cY

(
∪ki=1 π

−1(xi)
)
. Soit

RY le lieu fixe de cY , on étiquette ses composantes connexes (RY )1, . . . , (RY )N .
Remarquons que la courbe

(
∪ki=1 π

−1(xi)
)
∪ cY

(
∪ki=1 π

−1(xi)
)

n’intersecte
RY qu’en un nombre fini de points, de sorte qu’elle ne déconnecte aucune des
courbes (RY )i, i ∈ {1, . . . , N}. Soient dY ∈ H2(Y ;Z) tel que (cY )∗dY = −dY ,
c1(Y )dY > 0 et y = (y1, . . . yc1(Y )dY −1) une configuration réelle de c1(Y )dY − 1
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points distincts de Y \
(
∪ki=1 π

−1(xi) ∪ cY
(
∪ki=1 π

−1(xi)
))

. Pour tout i ∈
{1, . . . , N}, notons ri = #(y ∩ (RY )i) puis r = (r1, . . . , rN ). Soient U , voi-
sinage de y et J0 ∈ RJωY

donnés par le Lemme 4.9. Alors, dès que U est

suffisamment petit, pour tout J ∈ RJ U,J0ωY
générique, il n’y a qu’un nombre

fini de courbes J-holomorphes rationnelles réelles homologue à dY dans Y qui
contiennent y. Ces courbes sont toutes irréductibles, immergées et n’ont que des
points doubles transverses comme singularités. Le nombre total de leurs points
doubles vaut δY = 1

2 (d2
Y − c1(Y )dY + 2). Pour tout entier m compris entre 0

et δY , notons nd(m) le nombre de ces courbes qui sont de masse m. On pose
alors

χdYr (y, J, U, J0) =

δY∑
m=0

(−1)mnd(m).

Théorème 4.10. L’entier χdYr (y, J, U, J0) ne dépend pas des choix de y, J, U
et J0. �

Remarquons que l’entier χdYr fourni par le Théorème 4.10 est un invariant
par déformation du triplet (X,ω, cX), puisque le triplet (Y, ωY , cY ) lui est ca-
noniquement associé.

4.2.3. Exemple : les tores isotopes au tore de Clifford. Soient a, b ∈
R∗+ et Ta,b ⊂ CP 2 le tore lagrangien défini par les équations |x| = a,
|y| = b dans les coordonnées affines (x, y) ∈ (C)2 ⊂ CP 2. Ce tore est le
lieu fixe de l’involution antibirationnelle de Cremona ca,b : (x, y, z) ∈ CP 2 \
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} 7→ (a2yz, b2xz, xy) ∈ CP 2. Cette involution antibi-
rationnelle ca,b, a, b ∈ R∗+, est simple. En effet, soit Y le plan projectif éclaté
aux trois points (1, 0, 0), (0, 1, 0), (0, 0, 1) et π : Y → CP 2 la projection associée.

L’involution ca,b se relève en une involution antiholomorphe ca,bY définie partout,
soit une structure réelle. Cette dernière envoie les trois diviseurs exceptionnels
sur les transformées strictes des côtés du triangle (1, 0, 0), (0, 1, 0), (0, 0, 1), d’où
la simplicité de ca,b. Ainsi, le Théorème 4.10 s’applique et fournit des invariants
χdYr par déformation du triplet (CP 2, ω, ca,b). Le deuxième groupe d’homolo-
gie de Y est engendré par une droite générique et les diviseurs exceptionnels
E1, . . . E3 de nos éclatements. La classe d’homologie dY de nos courbes ration-
nelles réelles de Y est déterminée par quatre entiers d, d1, . . . , d3 satisfaisant la
relation d = d1 +d2 +d3. Si l’on contracte E1, . . . E3, ces courbes se contractent
sur des courbes rationnelles de degré d du plan qui ont un point de multiplicité
d1, d2, d3 en (1, 0, 0), (0, 1, 0), (0, 0, 1) respectivement. Ces courbes rationnelles
immergées ont en outre la propriété de rencontrer le tore Ta,b en une collection
de points isolés et en un cercle immergé, elles consistent en fait en une paire de
disques J-holomorphes qui reposent sur Ta,b et sont échangés par ca,b. Si l’on
contracte plutôt un diviseur exceptionnel, disons E3, ainsi que son image sous
ca,bY , alors on obtient des courbes rationnelles de bidegré (d1 + d3, d2 + d3) sur
l’hyperbolöıde quadrique (CP 1×CP 1, conj× conj), qui ont une paire de points
de multiplicité d3 en deux points complexes conjugués, à savoir les points où E3
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et son image se contractent. Lorsque d3 = 0 ou 1, cet invariant χdYr vaut l’inva-
riant correspondant dans l’hyperbolöıde quadrique (CP 1×CP 1, conj× conj), à

savoir χ
(d1,d2)
r et χ

(d1+1,d2+1)
r respectivement. Des estimations de ces derniers

se trouvent dans [12].

Corollaire. Soient r, s, d ∈ N tels que r + 2s = 2d − 1 et supposons
donnée une collection de r points distincts dans Ta,b ⊂ CP 2, a, b ∈ R∗+
ainsi qu’une collection de s paires distinctes de points dans CP 2 \

(
Ta,b ∪

{(1, 0, 0), (0, 1, 0), (0, 0, 1)}
)

échangées par l’involution antibirationnelle ca,b.
Alors, pour tous d1, d2, d3 ∈ N tels que d = d1 + d2 + d3, il y a au moins
|χdYr | paires de disques JX-holomorphes reposant sur Ta,b, échangés par ca,b,
passant par les r points donnés et intersectant chacune des s paires de points
complexes conjugués, dès lors que JX se relève en une structure JY appartenant
à l’un des RJ U,J0ωY

donné par le Lemme 4.9. La réunion de ces deux disques dans
chacune de ces paires forme une courbe rationnelle plane de degré d ayant un
point de multiplicité d1, d2, d3 en (1, 0, 0), (0, 1, 0), (0, 0, 1) respectivement. �

Remarquons que des invariants énumératifs portant sur des disques à bords
dans le tore de Clifford ont été obtenus par P. Biran et O. Cornea [2]. Les disques
holomorphes à bords dans le tores de Clifford ont par ailleurs été étudiés par
C.-H. Cho dans sa thèse en termes de produits de Blaschke. En ce qui concerne
nos résultats présentés dans ce paragraphe 4.2, il reste à s’affranchir de la notion
de simplicité (des involutions antibirationnelles).
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We give a survey of recent results on the Poisson-Furstenberg boundaries of
random walks on groups, and their applications. We describe sufficient condi-
tions for random walk to have non-trivial boundary, or, on the contrary, to have
trivial boundary. We review recent progress in description of the boundary for
random walks on various groups, including wreath products. We describe how
the Poisson-Furstenberg boundary can be used to obtain lower bounds for the
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1. Boundaries of Random Walks on Groups

The Poisson boundary is a probability space, defined by a Markov chain (Feller
[41]). In the case when the Markov chain is a random walk on a group, this
space is naturally endowed with the action of this group, and there are several
equivalent ways to define it (see Furstenberg [43, 44, 45], Kaimanovich, Ver-
shik [61]). If the group acts on a symmetric space, then this action induces an
action on a naturally defined geometric boundary of this space. The Poisson-
Furstenberg boundary can be viewed in such cases as a probability measure
on the geometric boundary, and this measure adds essential information to the
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understanding of both algebraic and geometric properties of the group. An im-
portant feature is that, unlike the geometric boundary and unlike some other
notions of boundary such as the Martin boundary, the Poisson-Furstenberg
boundary behaves functorially with respect to the group homomorphisms. This
has far-reaching applications, such as Furstenberg’s approach to superrigidity
theorems (see Furstenberg, Margulis, [45, 74]). Besides superrigidity, measures
on the geometric boundaries appear for (not necessarily symmetric) hyperbolic
spaces. For example, the measure on the boundary appears in the proof of
monotonicity of the hyperbolic volume, where the use of this measure is cru-
cial for finite volume non-compact manifolds (Thurston, see the exposition in
Gromov [50]).

In the more general context, it happens that there is no natural geometric
boundary attached to the group. However, the Poisson-Furstenberg boundary
is always well defined, in so far as we fix some probability measure on the group.
This is the subject of the present paper. The Poisson-Furstenberg boundary,
regarded as a measure space with the group action, is related to many natural
questions in random walks and harmonic analysis, and in the last years it turned
out that this space has also applications to the growth of groups.

There are several ways to define the Poisson-Furstenberg boundary for a
random walk on a group. We recall some of the equivalent definitions.

Definition 1. Consider two infinite trajectories X and Y . We say that they
are equivalent if they coincide after some instant, possibly up to the time shift.
This means there exits N, k ≥ 0 such that Xi = Yi+k for all i > N . Consider
the measurable hull of this equivalence relation in the space of infinite trajecto-
ries. The quotient by this equivalence relation is called the Poisson-Furstenberg
boundary.

If in this definition we do not allow the time shift, that is, if we say that
X and Y are equivalent whenever Xi = Yi for all i > N , then the result-
ing quotient space is called the tail boundary. For a random walk on a group
these two definitions give the same space, while in a more general context of
random walks on graphs the tail boundary may happen to be larger than the
Poisson-Furstenberg boundary. The Poisson boundary is an interesting notion
to study in the more general contexts of Markov chains and random walks,
but there is more additional structure on such spaces in the case of random
walks on groups. Apart from the above mentioned fact about the tail bound-
aries, there are many other manifestations of such phenomena. The entropy
criterion, for example, which we recall below, does not hold in a more general
context of not necessarily homogeneous spaces, such as non vertex-transitive
graphs.

A function F : G → R is called µ-harmonic, if for all g ∈ G it holds
F (g) =

∑
h∈G F (gh)µ(h). The Poisson-Furstenberg boundary can be equiv-

alently defined in terms of bounded harmonic functions (from the subgroup,
generated by the support of µ to R):
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Definition 2. The space of all bounded µ-harmonic functions, can be endowed
with multiplication: given two bounded harmonic functions f1 and f2, put

(f1 × f2)(x) = lim
n→∞

∑

x

f1(gx)f2(gx)µ
∗n(x).

One can prove that the limit above exists, and that this product is asso-
ciative. It is easy to check that then f1 × f2 is harmonic. Since the limit
of bounded harmonic function with respect to the supremum norm is again
bounded and harmonic, one concludes that the space of bounded µ-harmonic
functions forms a commutative Banach algebra. Its spectrum Πµ is endowed
with a probability measure ν, defined by the following equality, which holds for
all f :

∫
f̂(x)dν(x) = f(e), where f̂ is the Gelfand transform of f . The set Πµ,

as a measure G-space, is isomorphic to the Poisson-Furstenberg boundary.
In particular, the equivalence of the definitions implies that the group G

admits nonconstant bounded harmonic functions with respect to some measure
µ, with the support generating G, if and only if the Poisson-Furstenberg bound-
ary of the random walk is non-trivial. To see one of the implications observe
that for any subset of the boundary, according to the first definition, the prob-
ability to hit this set (that is, the probability that the equivalence class of the
trajectory belongs to this set) is a harmonic function between 0 and 1, which is
non-constant so far as the set, as well as its compliment in the boundary, both
have positive probability.

For more on different definitions of the Poisson boundary see [61]. For more
recent surveys see [42, 6].

A harmonic function on a group is a discrete counterpart of a harmonic
function on a Riemannian manifold. The random walk is said to be symmetric
if µ(g) = µ(g−1) for any g ∈ G. Given a regular cover M , with deck transfor-
mation group G, there is a symmetric measure µ on G, such that the Poisson-
Furstenberg boundary of G can be identified with that of M , in particular, G
admits bounded µ-harmonic functions if and only if M does. This measure is
called Furstenberg discretization or Furstenberg-Lyons-Sullivan discretization
[71, 55]. This measure is in general infinitely supported. It has a rapid decay,
exponential moments of this measure are finite.

(We do not touch in this paper the questions concerning unbounded har-
monic functions, and their relation to the random walk, such as positive har-
monic functions and the corresponding Martin boundary, see [85]).

Some of the questions one asks about boundaries of random walks are as
follows:

• given a group G and a probability measure µ on G, can we say whether
the boundary of (G,µ) is trivial or not?

• If the boundary is non-trivial, can we describe at least some µ-boundaries,
that is, some non-trivial quotients of the Poisson-Furstenberg boundary?

• Can one provide a complete description of the boundary (G,µ)?



684 Anna Erschler

• Can one obtain some information on the large scale geometry of G, grant-
ing some information on µ and the boundary of (G,µ), such as the
triviality/non-triviality of the boundary of this random walk? Such as
the description of this boundary?

We recall that if the boundary of the random walk is trivial, then the
group, generated by the support of µ, is amenable, so the first question is
essentially about amenable groups. The random walk (G,µ) is said to be non-
degenerate, if the support of µ generates G as a semi-group. It is also known
that any amenable group admits a non-degenerate symmetric measure with
trivial boundary (Rosenblatt; Kaimanovich, Vershik [77, 60, 61]). For applica-
tion of this criterion, as well of the generalization of this criterion for the case
of amenable extension see [58, 83, 17, 7].

In many groups symmetric non-degenerate measures, provided by
Kaimanovich-Vershik-Rosenblatt criterion, can not be chosen to have finite sup-
port. In [31] it is shown that on some groups such measures can not be chosen
even in the class of measures with finite entropy. For a probability measure
µ, we denote by H(µ) the entropy of µ, that is, H(µ) = −∑

g µ(g) log(µ(g)),
and we recall the entropy criterion of boundary triviality. The notion of the
entropy of a random walk on a group is due to Avez [3]. The entropy of the
random walk (G,µ) is defined as the limit, as n tends to infinity, of H(µ∗n)/n.
Here µ∗n denotes the n-th convolution of µ, and the limit exists in view of the
subadditivity H(µ∗(n+k)) ≤ H(µ∗n) +H(µ∗k).

Entropy Criterion (Avez-Derriennic-Kaimanovich-Vershik). ([4, 23,
60, 61]) Let G be a countable group, µ be a probability measure on G such
that its entropy H(µ) is finite. Under this assumption the Poisson-Furstenberg
boundary is trivial if and only if entropy of the random walk h(µ) is equal to
zero.

This criterion shows that just one number, defined by the n-th convolution
of µ, gives an answer whether the boundary is trivial or not. The assumption
that the entropy is finite is essential. Even if we know exactly the distribution
of these n-th convolutions (in other words, if we know exactly the abstract
distribution after the n steps of the random walk), then we can not in general
forget the underlying group structure and say whether the boundary is trivial
or not. There exist examples of measures µ on G, such that the boundary of
(G,µ) is non-trivial, while the boundary of the random walk defined by the in-
verse measure (G, µ̆) is trivial (see Kaimanovich [54] and example 6.5 in [61]). It
is clear, however, that the distributions after n-th step of the random walk are
the same for the random walk and the inverse one. The entropy criterion tells
us that this kind of phenomena can not happen for measures of finite entropy.

Some applications of the entropy criterion are immediate: for example, it
tells us that any finitely supported (and more generally, any finite first moment)
measure on a group of sub-exponential growth has trivial boundary. In other
examples the estimate of the entropy, even understanding whether the entropy
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is zero or not, can be significantly harder. In the next section we review the
recent progress in this direction. In some classes of groups it seems easier to use
the part of the entropy criterion that tells us that if entropy is zero, then the
boundary is trivial. Though one can in many cases estimate the entropy from
below and show that it is positive, in various classes of groups that were studied
previously, this was not the only way to see that the boundary is non-trivial.
Indeed, in some of the examples one could see directly that there are some non-
trivial µ-boundaries [61], in others one was able to construct bounded harmonic
functions on the group or on some covers with a given deck transformation group
[71]. However, recently one has discovered other classes of groups, where the
entropy criterion is so far the only known way to show the non-triviality of the
boundary. In the next section we review some examples of this kind, for which
we can not answer so far the above mentioned question about µ-boundaries.

An important tool for the complete description of the boundary is condi-
tional entropy criterion, due to Kaimanovich, which is analogous to the entropy
criterion. This criterion tells that if we have some µ-boundary and if we want
to check whether this boundary is trivial it is necessary and sufficient (provided
we work with measures with finite entropies) to check whether the conditional
entropy is zero. In some sense it seems that “the larger the group is”, the easier
is to use this strategy. In Section 4 we try to give this statement a more precise
meaning and we review some known results.

Some applications of boundary are very well studied, for example the al-
ready mentioned relation of boundary to the space of harmonic functions. Ap-
plications to the growth of groups are more recent. Since entropy criterion was
established, it has been known that there is a strong relation between the growth
of a group and non-triviality of the boundary. It may seem that the growth of
a space or of a group is much easier to determine than triviality/non-triviality
of the boundary. However, one can use the boundary behavior of the random
walk in some cases (see section 3) as a tool for establishing lower estimates on
the growth.

We recall that the word length lS with respect to a finite generating set S
of G is defined as follows. For each g ∈ G the word lS(g) is the minimum of m,
such that g is equal to the product of m elements of S and of their inverses.
The i-th moment (i ∈ R) of a measure µ on G with respect to the word length
lS is

∑
g∈G µ(g)liS(g).

Remark 1. The rate of escape (or the drift) l of the random walk (G,µ) with
respect to some word metric lS is defined as the limit of L(n)/n, where L(n) is
the expectation of the distance to the origin after n steps of the random walk. If
µ is symmetric and has finite first moment with respect to some (and hence to
all) word metrics in G, then the entropy of the random walk is positive if and
only if the rate of escape of the random walk (G,µ) is positive (It is easy to see
that h ≤ vl, where v is the exponential growth rate of the group, (see Guivarc’h
[52]), and so it is clear that l = 0 implies h = 0. The converse was proved
by Varopoulos in [81] for finitely supported measures and then by Karlsson,
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Ledrappier in the general case [65]. Furthermore, it is shown in [39] that if µ
is symmetric and has finite second moment, then there exists C > 0 such that
H(µ∗n) ≥ C(L(n)/n)2 for all n. (It is shown by Ledrappier [69], that h ≥ l2

for the Brownian motion on the covering manifold).

Given two function f1, f2 : N → R+, the notation f1(n) ∼ f2(n) means that
there exists C > 0 such that f1(n) ≤ Cf2(Cn) and f2(n) ≤ Cf1(Cn). The
random walk (G,µ) is said to be simple, if µ is symmetric and if the support
of µ is a finite generating set of G.

Remark 2. The study of the asymptotics of L(n) was initiated by Vershik
and Guivarc’h. It turns out that L(n) can have various asymptotics [28]. For
example, L(n) ∼ n/ ln(n) for any finitely supported symmetric random walk on

the wreath product of Z2 with a finite group; L(n) ∼ n(1−2−k) for some simple
random walk on the k times iterated wreath product Z o (Z o (Z o · · · o Z) . . . )).
For further examples of evaluation and estimates of L(n) see [28], [39], Yadin
[86], and also Corollaries 1 and 2 in Section 3 and the remark after Theorem
6 in Section 5.

It is not known so far whether any function f(n) between
√
n and n, with

some regularity on its growth, is asymptotically equivalent to L(n) for a simple
random walk on some finitely generated group G. We also mention that upper
bounds on H(n) can be relevant for Liouville type theorems on the growth of
unbounded harmonic functions (see [39]).

2. Applications of Entropy Criterion

The entropy criterion can be used to show that simple random walks on poly-
cyclic groups and on solvable Baumslag-Solitar groups have trivial boundaries.
See also [27] for triviality of the boundary for some random walks on iterated
wreath products of Z and Z2.

A very interesting class of examples was discovered recently by Bartholdi
and Virag [11], who studied a group that was defined earlier by Grigorchuk and
Żuk. Using a notion of a “self-similar” random walk, they have shown that this
group admits a finitely supported measure with zero rate of escape. Originally
in their paper they used some special metric on this group, which is not a
word metric, and later the argument was simplified by Kaimanovich [62] who
works with H(µ∗n) instead of the rate of escape and shows that the entropy
of the random walk is zero. It turned out that this argument can be applied
to wider classes of groups acting on rooted trees. See Bartholdi, Kaimanovich,
Nekrashevych [12] for the case of groups generated by bounded automata and
Amir, Angel, Virag [2] for a more general case of groups generated by so called
linear activity automata (it is shown by Sidki in [78] that a group generated by
a polynomial activity automaton never contains a non-Abelian free subgroup,
and it is an open question whether all such groups are amenable). An interesting
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feature of the above mentioned examples is that the vanishing of the rate of
escape or of the entropy of a non-degenerated random walk is used to show that
the groups under consideration are amenable. Thus, random walks and Kesten
criterion help to understand in these examples whether the group is amenable.
In all previously known amenable finitely generated group there is some known
sequence of Følner sets.

Now we recall some examples of random walks with non-trivial boundaries.
The simplest class of examples of amenable groups such that the simple random
walks have non-trivial boundaries are wreath products Zd oA (that is, semidirect
products of Zd with

∑
Zd A, with Zd acting by shift on the index set), d ≥ 3

(Kaimanovich, Vershik, [61]). To see that the boundary of the simple random
walk is non-trivial, one observes that the projection of the random walk to
the base group Zd is transient, and that therefore for all x ∈ Zd the coordi-
nate ax stabilizes along infinite trajectories of the random walk. This argument
has generalizations in several contexts, where its application is less straight-
forward. Quotients of the Poisson-Furstenberg boundaries for certain groups
acting on rooted trees, that we describe in Section 3, are reminiscent of this
“lamplighter boundary” for wreath products. We recall also, that Kaimanovich
[63] has shown, that a simple random walk on the Thompson group F has non-
trivial boundary. Kaimanovich has observed that if a group acts on a line by
piecewise-linear mappings with finite number of pieces, then the boundary is
non-trivial whenever the orbits of the action are transient (since for such ac-
tions the ratio of the left and right derivatives at a given point stabilizes along
infinite trajectories), and he has proved that for the group F these orbits are
indeed transient. It would be interesting to understand the boundary behav-
ior of random walks on more general groups of diffeomorphisms of the interval
for a) simple random walks; b) for not necessarily finitely supported random
walks. It is a long standing question whether Richard Thompson group F is
non-amenable. If it turns out to be amenable, these questions become especially
interesting.

Now we return to the wreath products and recall some additional properties
of the boundaries of random walks on these groups. A transience argument, sim-
ilar to the argument used in the finitely-supported case in [61], shows that any
non-degenerate random walk with finite first moment has non-trivial boundary
[56]. Another argument, based on an entropy estimation, is introduced in [31].
It consists of subdividing the space of trajectories of length n into conditional
subspaces, such that there exists a subset of measure at least p, (p > 0 is a
constant not depending on n), with the following properties: the trajectories,
belonging to the same conditional event inside this subset, all have the following

form. There exits a sequence n
(n)
1 , n

(n)
2 , . . . , n

(n)
kn

, depending on each conditional
event, such that kn ≥ Cn, where C is a positive constant not depending on n.

The increments of the trajectory at times t others than n
(n)
i , 1 ≤ i ≤ kn are

fixed for a given conditional event. For each time instant t, t = n
(n)
i (for some

i) the increments take two possible values. All 2nk trajectories in each given
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conditional event visit at moment n distinct elements of the group. The time

instants n
(n)
1 , n

(n)
2 ... correspond to visits of distinct points by the projection

of our random walk to some space. In the case of wreath products Zd o A this
space is Zd.

If the random walk admits such partition into conditional events, then the
inequality between entropy and mean conditional entropy implies that the en-
tropy of the random walk is positive. It might seem that the assumption is
essentially stronger then the positivity of entropy, but it is shown in [31] that it
can applied to many classes of groups. Moreover, it is not clear whether there
are any obstructions for this type of entropy estimates: does there exist a simple
random walk (G,µ), having non-trivial boundary, and not admitting families
of conditional events, satisfying these properties?

Such question can be viewed as a probabilistic (entropic) counterpart of the
following still open question, raised by Rosenblatt in [77]: does any group G of
exponential growth admit a Lipschitz imbedding of the infinite binary tree?

The argument, applied to the wreath products, shows that any non-
degenerate random walk of finite entropy on wreath products Zd o A, d ≥ 3,
#A 6= 1, has non-trivial boundary. The same conclusion holds for the free
metabelian group on d generator: Metd = 〈g1, g2, gd|uw = wu, u,w ∈ [G,G]〉.
Another series of examples, studied in [31] is as follows. Consider a finitely
presented group Bd, defined by the following generators and relations

Bd = 〈a, si, tj |ati = aasi , [si, sj ] = [ti, tj ] = [si, tj ] = e, [au, aw] = e〉,

where i,j in the presentation take the values between 1 and d, and u and w are
any words in si and tj . The group Bd is a subgroup of GL(2,Z(X1, . . . , Xd)). It
is a metabelian (that is, solvable of solvability length 2) group, and its subgroup
generated by si and a is isomorphic to the wreath product of Zd oZ. The groups
Bd are particular cases of a more general construction due to Baumslag, that
assures that any finitely generated metabelian group can be imbedded into
finitely presented metabelian group. However, there is no known relation in
general between triviality of the boundary of random walks on a subgroup and
triviality of the boundary of random walks on the ambient group. There are
particular cases, where such relation does exist. For example, this relation is
well known in the case when the subgroup is recurrent for our random walk ,
that is, if the random walk (G,µ) returns to the subgroup H infinitely many
times with probability one. In this case one considers the probability measure µ′

on H, such that for any h ∈ H the probability µ′(h) is equal to the probability
that the random walk visits h at the instant of its first return to the subgroup.
One shows that there is a canonical measure preserving bijection between the
boundary of (G,µ) and that of (H,µ′). A recent result of Malyutin, Vershik
[73] shows that for any group G, containing a free subgroup, and any simple
random walk µ on G, the boundary of this free subgroup is a µ-boundary for
the random walk (G,µ)). (These particular cases are not relevant to random
walks we discuss). In general, it is not known whether non-triviality of some
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(all) simple random walks on the subgroup implies the non-triviality of some
(respectively all) simple random walks on a group, containing this subgroup.
Thus the non-triviality of the boundary for simple random walks on the wreath
products did not help to prove the non-triviality of the boundary of random
walks onBd. Entropy estimates from [31], applied toBd, show that for d ≥ 3 any
simple random walk on Bd (and, more generally, any non-degenerate random
walk of finite entropy) has non-trivial boundary.

Since Furstenberg discretization has finite entropy and since every finitely
presented group, in particular, our Bd, serves as the fundamental group of a
compact manifoldM of a given dimension d > 3, the above implies the following

Theorem 1. There exists a compact Riemannian manifold M , such that its
fundamental group is amenable and such that its universal cover is not Liouville
(that is, this universal cover admits non-constant bounded harmonic functions).

Question 1. What is the Poisson-Furstenberg boundary for the simple random
walks on groups Bd?

It is not clear even how to describe any non-trivial quotient of the boundary
for these random walks.

3. Choquet-Deny Theorems. Groups of

Intermediate Growth. Applications of

Random Walks to Growth of groups

It is known that any random walk on a finitely generated group of polynomial
growth has trivial Poisson-Furstenberg boundary. Indeed, it is shown by Dynkin
and Malyutov in [26] that this statement, generalizing the classical Choquet-
Deny theorem for Abelian groups (Blackwell [13]), holds for any finitely gen-
erated nilpotent group (see also Margulis [74] for description of all positive
harmonic functions on nilpotent groups). By Polynomial Growth Theorem of
Gromov [49] any group of polynomial growth is a finite extension of a nilpotent
one. This can be used to show that the triviality of the boundary for nilpotent
groups implies the triviality of the boundary for any measure on a group of
polynomial growth. Now let G be a group of subexponential growth. That is,
either G is of polynomial growth and is virtually nilpotent, or it has growth
strictly between polynomial and exponential.

If we suppose that the measure µ on G has finite first moment, then in
view of the entropy criterion the boundary is trivial. The question was whether
a counterpart of Choquet-Deny theorem holds for any measure on a group of
subexponential growth, that is, whether the condition to have finite first mo-
ment in the above mentioned statement is not essential. A negative answer is
given in [32], where it is shown that some among Grigorchuk groups of interme-
diate growth admit a measure with non-trivial boundary. Moreover, on some
of these groups this measure can be chosen to have finite entropy.
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The idea of the construction of such measures and of the proof that the
boundary is non-trivial is as follows. Given a group, acting on a rooted tree, we
consider the action on the boundary of the tree and an orbit of a point x of the
boundary under this action. In [32] we used an equivalent language of groups,
acting by permutation of the interval (where the points of the interval (0, 1]
are written as numbers in the k-ary numeral system, which correspond to the
points of the k-regular rooted tree together with its boundary). The main focus
in that paper is on Grigorchuk groups and their close generalizations. In this
situation x could be chosen (in the terminology of actions on a rooted tree) to
be the point of the boundary, corresponding to the right most ray of the tree.
We say that the action of G on the interval (0, 1] verify the strong condition
(∗) if the following holds. For any g ∈ G , x, y ∈ (0, 1] such that g(x) = y and
any δ > 0 there exist ε > 0 such that g((x − ε, x]) ⊂ (y − δ, y]. There exists a
finite generating set S of G such that for any s ∈ S and x ∈ (0, 1] satisfying
x 6= 1 or s(x) 6= 1 there exist a ∈ R and ε > 0 such that s(y) = y + a for any
y ∈ (x − ε, x]. The standard action on the interval of any Grigorchuk group
satisfies the strong condition (*).

Below we use the language of actions on trees, that seems slightly more
adequate for some more general questions we want to address. Let G be a
group acting on a rooted trees. For all y on the orbit of x one chooses a mapping
Tyx defined from a left neighborhood of y to a left neighborhood of x in such
a way that for all x, y, z the mapping TzyTyx coincides with Tzx in some left
neighborhood of y. Mappings Tyx allow us to multiply germs at different points,
and we consider then the group of germs, generated by all germ(g, y), where
g ∈ G and y is on the orbit of x. We say that the action on a tree satisfies
the strong condition (*) if the corresponding action on the interval satisfies this
condition.

Theorem 2. Let G be a group acting on the rooted tree, such that the action
satisfies the strong condition (*) and suppose that there exists a subgroup H,
such that the group of germs of H is not equal to the group of germs of G and
such that the orbit of x under the action of H is infinite. Then G admits a
measure with non-trivial boundary.

In [32] it was assumed in Theorem 2 above that the group of germs of
G is finite, but this condition can be easily dropped. One may check that the
assumption of this theorem is verified for some of Grigorchuk groups. Moreover,
on some of these groups one can additionally show that the constructed measure
can be chosen to have finite entropy. Thus we get

Theorem 3. i) There exist groups G of subexponential growth admitting prob-
ability measures µ with non-trivial Poisson boundary.

ii) Moreover, there exist groups G of subexponential growth admitting prob-
ability measures µ of finite entropy such that the entropy h(µ) of the random
walk (G,µ) is positive.
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Theorem 2 can be applied to groups acting on rooted trees, the growth of
which can be exponential or intermediate. It seems the most interesting that it
can be applied to a large range of groups of intermediate growth. We want to
stress however, that there are groups where it can not be applied and where we
still do not know the answer to the question: does this group admit a measure
with non-trivial boundary? In particular, this remains unknown for the first
Grigorchuk group, which is the most well studied among groups of intermediate
growth.

To prove Theorem 2, one constructs a measure µ such that its support
belongs to the union of the subgroup H with some finite set in G and such
that the induced random walk on the orbit is transient. One shows then that
germ(g, x) modulo the group of germs of H stabilizes along infinite trajectories
of the random walk.

The condition (*) in the way it is defined [32] is well suited for Grigorchuk
groups, considered in that paper. In last years many new interesting examples
of groups acting on rooted trees have been studied, for which this condition does
not hold. It seems that this assumption in the theorem above can be very much
weakened, and it is interesting to understand what is the optimal condition.

Our main motivation Theorem 2 is the construction of infinitely supported
measures with non-trivial boundary (Theorem 3). However, a particular case
of Theorem 2 above is when the orbital Schreier graph of H is transient. In
this case the theorem shows that the simple random walk on G has non-trivial
boundary. Recently Bondarenko [15] has shown that if G is generated by a
bounded automaton, then the orbital Schreier graph of G is recurrent. It is
known that such groups can be imbedded in a group, admitting a simple random
walk with trivial Poisson-Furstenberg boundary. It seems that the assumption
(*) in the corollary can be much weakened.

Question 2. Can the the criterion from [32] be extended to provide a general
criterion for recurrency/transiency of orbital Schreier graphes for groups acting
on rooted trees?

To have a sufficient condition for the Schreier graph being recurrent, we
have to exclude cases such as Zd, d ≥ 3, which act on a rooted trees and have
trivial boundary, but it is seems that there could be criteria, much more general
than those explained in [32], in terms of triviality of the boundary.

3.1. Application to growth. Let G be a finitely generated group and
S be a finite generating set of G. The growth function vG,S(n) is the number of
elements of G that can be written as a product of at most n elements of S and
their inverses. It is shown in [32] that some measures with non-trivial boundaries
on groups of intermediate growth can be used to obtain lower bounds on the
growth of these groups. They are used in [32] to obtain the following bounds
on the growth of certain Grigorchuk groups

exp(n/ log2+ε(n)) ≤ vG,S(n) ≤ exp(n/ log1−ε(n)),
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for all sufficiently large n. Here the upper bound is essentially due to Grig-
orchuk [46]. The lower bound follows from the fact, that the group G admits a
measure µ with non-trivial boundary, with a certain control on the decay of µ.
A generalization of this idea is introduced in [34], where we provide new lower
bounds for the growth of groups of the form exp(nα).

Another application in [34] provides lower bounds for the escape L(n) of
random walks on certain groups, acting on rooted trees. The strategy is as
follows. Given a group G, acting on a rooted tree, construct another auxiliary
group G2, G ⊂ G2, such that the group of germs of G2 is larger than the group
of germs of G. In this situation the upper bounds on growth of G2 provide
lower bounds for the asymptotic behavior of L(n) for random walks on G. We
introduce in [34] the critical constant cRT (G,H) of a subgroup H in a group
G. This constant is defined as supβ, where the supremum is taken over all
β, for which there exists a random walk on G, of finite β-moment, such that
the induced random walk on G/H is transient. Suppose that the action of
the auxiliary group G2 satisfies the strong condition (*) and that the growth
function of G2 is bounded from above by exp(nγ). One proves that in this
case the critical constant of the stabilizer of 1 in G is at most γ. The proof
uses the Poisson boundary argument similar to the proof of theorem 2. On
the other hand, one observes that if L(n) ≤ Cnξ, then cRT (G,H) ≥ 1/(2ξ)
for any finite index subgroup H in G. Moreover, if cRT (G,H) < 1/(2ξ), then∑

∞

n=1 L(n)n
−(1+ε+ξ) = ∞, for some ε > 0. Applying this for H which is equal

to the stabilizer of 1 in G, we conclude that the asymptotics of the escape
of any simple random walk (G,µ) satisfies LG,µ(n) ≥ n1/(2γ) for infinitely
many n. For example, let G be the first Grigorchuk group. In this case one is
able to construct the auxiliary group G2, with the growth at most exp(nγ),
where γ = log(2)/ log(2/X) and X is the positive solution of the equation
X3 + X2 + X − 2. (For the first Grigorchuk group such upper bound on the
growth function is due to Bartholdi [10], and a similar argument works also for
our group G2). We have γ < 0.768. This implies

Corollary 1. [34] For any simple random walk on the first Grigorchuk group∑
∞

n=1 LG,µ(n)n
−(1.65) = ∞, and LG,µ(n) > n0.65 for infinitely many n.

It is proved by Grigorchuk that some of his groups are close to the first
Grigorchuk group on one scale, and they are close to subgroups in direct sum
of several copies of a solvable group H of exponential growth on the other scale.
For this group H and for any symmetric finitely supported measure µ on H
one can check that LH,µ ≤ C1

√
n, and this can be used to obtain the following

corollary

Corollary 2. There exists a Grigorchuk group G, such that a simple random
walk on G satisfies lim sup(logLG,µ(n))/n ≥ 0.65 and lim inf(logLG,µ(n))/n ≤
1/2.
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It is known (Lee, Peres [70]) that if G is an infinite finitely generated group,
and µ is a symmetric finitely supported measure, such that its support generates
G, then LG,µ(n) ≥ C

√
n, for some C > 0 and all n.

Question 3. Let G be a finitely generated group. Suppose that LG,µ(n) ≤ C
√
n,

where the measure µ is such that its support generates G. Can the growth of G
be intermediate?

There is no Grigorchuk group for which we know precisely the asymptotics
of the growth function. And the estimates, obtained using random walks as ex-
plained above, provide in a sense the best known examples, where discrepancy
between the upper and lower bounds is not too large. It would be very inter-
esting to obtain more information on possible functions, that can be realized
as the growth function of some groups. Grigorchuk has shown that there are
groups with arbitrarily fast subexponential growth (more precisely, Grigorchuk
shows in [46] that among his groups there are groups such that their the growth
is minorized along a subsequence by a given subexponentially growing function,
and essentially the same argument [33] shows that by taking a direct sum of
two Grigorchuk groups we obtain a growth function, that is minorized by a
given subexponential function for all sufficiently large values of n). A natural
question would be: can any sufficiently fast growing subexponential function be
realized as a growth function of some group? In particular, we want to know:
does there exist a < 1 such any function f ≥ exp(na) is equivalent to a growth
function?

It is even more challenging to construct groups of super-polynomial growth
with the smallest possible growth. A conjecture due to Grigorchuk [47] states
that any super-polynomial growing function is bounded from below by exp(nb),
for some b > 0 (the strong form of this conjecture states that we can take
b = 1/2). It is tempting to understand better the possible applications of the
boundary theory for the class of groups of small intermediate growth. See [48] for
other question concerning the growth of groups and, in particular, of Grigorchuk
groups.

4. Complete Description of Poisson-Furstenberg

Boundaries

The complete description of the Poisson-Furstenberg boundary has been known
for the following finitely generated groups (under certain conditions on the
decay of the probability measure defining the random walk):

• discrete subgroups in semi-simples Lie group (Furstenberg [45] for a par-
ticular case of an infinitely supported measure, “Furstenberg approxima-
tion”, Ledrappier [68] for a more general class of measure on discrete
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subgroups of Sl(d,R), Kaimanovich [57] for a more general class of mea-
sures on discrete subgroup in an arbitrary semi-simple Lie group); see
also Schapira [79] and Brofferio, Schapira [18];

• free groups (Dynkin, Malyutov [26] for random walks, with the defining
measure supported on standard generators, Derriennic [24] for measures
with finite support), more generally, for hyperbolic groups (Ancona [1] for
measures with finite support, Kaimanovich [57] for measures of finite en-
tropy and with finite logarithmic moments; see also Ballman Ledrappier
[9]; for the question whether a given measure on the hyperbolic bound-
ary can be realized as the hitting measure of a certain random walk see
Connell, Muchnik [20]),

• Coxeter groups (follows from Karlsson, Margulis [66], see Theorem 6.1 in
[64] for an explanation),

• groups with infinitely many ends (Woess [84] for finitely supported mea-
sures, [57] for a more general class of measures),

• the mapping class group (Kaimanovich, Masur [59]) and braid groups
(Farb, Masur [40]).

We would like to stress that for some of the above mentioned groups, the
boundary is described in terms of the space on which the group acts. It could
be important and in some situations it seems to be harder to describe the
boundary in more algebraic terms (see Vershik [82] for the statement of the
problem and Malyutin, Vershik [73] for the results in this direction, including
the stability of the so-called Markov-Ivanovsky normal form for random walks
on braid groups).

• Wreath products of free groups with finite groups (Karlsson, Woess [67]),

• certain classes of groups acting by diffeomorphisms on a circle (Deroin,
[22]).

For some classes of groups it is easier to identify the boundary for certain
non-symmetric random walks, rather than for symmetric ones. It was done for

• random walks on the wreath product Zd oB, which have a non-zero drift
of the projection on Zd [57],

• random walks on solvable Baumslag-Solitar groups with a non-zero drift
of the projection on Z [56], and, more generally, for such random walks
on the group of rational affinities [16]. In the last two examples simple
random walks have trivial boundary.
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It was asked in [61] whether the “space of limit configurations”, described in
Section 2, provides a complete description of the Poisson-Furstenberg boundary
in the wreath products Zd o A (d ≥ 3). The positive answer for d ≥ 5 is given
in [36], where we prove

Theorem 4. Let A = Zd, d ≥ 5, #B ≥ 2. If µ is a measure on C = A o B,
such that the support of µ generates C as a group, the third moment of µ is
finite and the projection of µ to Zd is centered, then the Poisson-Furstenberg
boundary is equal to the space of limit configurations.

We hope that the argument in [36] can be extended also to the case of d = 3,
d = 4.

In fact, Theorem 4 holds in general, without the assumption that the pro-
jection of µ to Zd is centered. If this projection is not centered, then the pro-
jected random walk on Zd has positive drift. As we have already mentioned,
for measures such that the projection has positive drift, the result is due to
Kaimanovich. Another special case of the theorem that was known previously
is due to James and Peres, who have shown in [53] that the number of visits of
points of the base provides a complete description of the Poisson-Furstenberg
boundary of a certain measure on the semigroup Zd o Z+. The Poisson bound-
aries of certain random walks on wreath products of A with Z+ are equiva-
lent to the exchangeability boundary of the projection random walk on A (see
[14, 25, 56, 53, 36] for the definition of the exchangeability boundary, its prop-
erties and questions about this boundary).

A similar idea to that in the proof of Theorem 4 leads to description of the
boundary for the free metabelian groups ([36]). It can be applied also to other
groups with some resemblance to wreath products, such as extensions, by a
finitely generated group A, of the finitary symmetric group on elements of A.

In the previous work that provided complete description of the boundary
(see [45, 57, 68, 59, 66] and other above mentioned results), there was a natu-
ral candidate for the Poisson-Furstenberg boundary, and, moreover, there was
a natural guess along which “directions” the trajectories converge to the limit
point in this boundary. The main work was then to estimate conditional entropy
(in many cases this can be done using Ray Criterion, though in some situations:
modular group, a measure on a word-hyperbolic group without first moment, it
is easier to work with Strip Criterion). One of the difficulties in proving Theorem
4 is that for wreath products, though there exists a natural and easy to describe
candidate for the Poisson-Furstenberg boundary (lamplighter boundary), it is
however not straightforward even to guess how the trajectories converge to the
points of this boundary. The first step in the proof is to use the geometry and
connectivity properties of the support of the limiting lamplighter configuration
in order to “guess” approximatively which points the trajectory visits at certain
time instants; the second step is to use this as a “ray approximation”, to esti-
mate conditional entropy and to prove, that “lamplighter boundary” is indeed
the Poisson-Furstenberg boundary of the random walk under consideration.
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5. Different Scales of Amenability. Asymptotic

Invariants Related to Boundaries

Consider a symmetric non-degenerate probability finitely supported measure µ
on G. As we have already mentioned, the boundary triviality of the random
walk (G,µ) implies the amenability of G. For some amenable G the boundaries
of (G,µ) is trivial, while for others such boundaries can be non-trivial. It is an
open question whether the triviality of the boundary can depend on the choice
of a simple random walk. For other questions related to dependence of entropy
on the choice of defining measure see [37] and [38].

The fact that the Poisson-Furstenberg boundary of a simple random walk
on G is trivial can be viewed as a strengthening of the fact that G is amenable.

Recall that a group G is said to be amenable, if it admits a finitely additive
non-negative measure ν defined on all subsets of G, which is invariant under
left translations and which has total mass one.

Kesten criterion of amenability says that a finitely generated group G is
amenable if and only for some (and if and only if for all) non-degenerate finitely
supported symmetric random walk on G the decay of the probability to return
to the origin is subexponential. Another criterion is in terms of isoperimetric
inequalities. Let S be a finitely generating set S. Given a subset V ⊂ G, its
boundary ∂SV with respect to S is {v ∈ V : ∃s ∈ S : vs /∈ V }. By Følner
criterion of amenability a finitely generated group is amenable, if there exists a
sequence of finite subsets Vn such that |∂SVn|/|Vn| → 0, as n tends to ∞. Here
|V | denotes the cardinality of the set V . The sequence Vn is called a Følner
sequence, and the sets Vn are called Følner sets.

Given an amenable group G and a finite generating set S, the Følner func-
tion FolG,S(n) is defined as the minimum of cardinality of V , where the min-
imum is taken over all finite subsets of V of G, such that the cardinality of
the boundary of V with respect to the word metric lG,S is at least n times
smaller than the cardinality of V . It is easy to see that if the group admits
a sequence of Følner sets, then it admits an invariant mean: given a func-
tion on G, it suffices to consider the average value of this function for each
Følner set, and then take the limit of this average, as n tends to ∞, along any
non-principal ultrafilter. For a survey of equivalent definitions of amenability,
see [19, 80].

Understanding the asymptotics of Følner function (in other words, un-
derstanding optimal isoperimetric inequality), in particular, obtaining lower
bounds for Følner function is a question, related to large-scale geometry of
groups. The study of Følner function was initiated by Vershik, who conjectured
that Z o Z provides an example of a group, with super-exponentially grow-
ing Følner function and asked whether the asymptotics of this function is nn.
Følner function of nilpotent groups were studied by Pansu, who proved the first
asymptotically optimal isoperimetric inequality for a nilpotent, non virtually
Abelian group. Later Varopoulos has shown that for virtually nilpotent group
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of growth nd the Følner function is asymptotically equivalent to nd. His result
was generalized by Coulhon and Saloff-Coste in [21], who have proved that for
any group G the Følner function is asymptotically not less then the growth
function of G: there exists C such that FolG,S(Cn) ≥ vG,S(n).

Pittet and Saloff-Coste [75] have shown the the Følner function of Zd oZ/kZ,
d ≥ 2 is super-exponential (but their lower bound for the Følner function
for these groups was not asymptotically optimal). The question of Vershik is
answered in [29], where we prove the following more general

Theorem 5. There exists C > 0 such that the following holds Let A and B be
two finitely generated groups, B containing at least two elements. Let SA and
SB be finite generating sets of A and B respectively, and S be the generating
set of A oB, corresponding to the union of SA and SB. Then

FølAoB,S(n) ≥ CFølB,SB
(Cn)CFølA,SA

(Cn).

Under mild assumption on regularity of FølA(n), the theorem provides
asymptotically optimal lower bound for Følner function of the wreath product.
Thus we obtain the first explicit examples of super-exponential asymptotics of
FølG,S(n), for example, it shows FølZoZ ∼ nn, FølZdoZ/kZ ∼ exp(nd). The the-
orem also implies that m times iterated exponent (for any m ≥ 1) is a Følner
function of some group.

Wreath products and groups resembling wreath products (see Gromov [51])
are so far the only known examples of groups with super-exponential Følner
function, where we know the asymptotics of this function.

However, usually it is much easier to obtain a not necessarily optimal upper
bound for the Følner function, that is, to produce a not necessarily optimal
sequence of Følner sets in groups. For example, it is not difficult to see that if
G is a group of subexponential growth, then some subsequence of balls BG,s(ni)
and corresponding spheres SphG,s(ni) satisfies #SphG,s(ni)/#BG,s(ni) → 0,
that is, this subsequence of balls is a Følner sequence. This shows, that though
asymptotic geometry and the forms of balls in the intermediate growth case
are complicated and quite different from polynomial growth case, there are
certain common properties of such groups and Abelian and nilpotent groups
with respect to isoperimetry.

Conjecturably, there could be also some algebraic manifestation of the fact,
that groups of intermediate growth, however intriguing they may be, share some
common properties with nilpotent groups. We recall a question due to Grig-
orchuk: do all infinite simple groups have exponential growth? All Grigorchuk
group act on rooted trees, and hence they are residually finite, and thus not
simple. Not all groups of intermediate growth are residually finite: there exist
central extensions (finite and infinite) of first Grigorchuk groups that have in-
termediate growth and that are not residually finite [30]. One can show (see
Bajorska Macedonska [8]) that one of the two following statements hold: either
any group of intermediate growth in an extension of a residually finite group
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of intermediate growth; or there exist simple groups of intermediate growth.
Indeed, let G be a group of intermediate growth and let R be the intersection
of finite index subgroups in G. If G/R has super-polynomial growth, then this
group is a residually finite group of intermediate growth. If the growth of G/R
is polynomial, one proves that R is a finitely generated group, and concludes
that R is a group of subexponential growth without subgroups of finite index.
Take a simple quotient of R. It is clear that this quotient is an infinite group
of subexponential, and hence of intermediate growth.

Another question is due to Grigorchuk and Pak: does an infinite group of
subexponential growth always admit two infinite commuting subgroups? As to
the first question, all infinite simple groups, known until now, are non-amenable.
It is worth mentioning, that even the following weaker statement is unknown
for the class of infinite groups of subexponential growth (and one might ask the
same question for the larger class of groups, admitting simple random walk with
trivial Poisson-Furstenberg boundary, and there are no known counterexamples
even among amenable groups):

Question 4. Let G be an infinite group of subexponential growth. Does there
always exist an infinite subgroup H, which has infinite index in G?

One could be inclined to say, that groups of subexponential growth are
amenable in a very strong sense. For all Grigorchuk groups it is known ad-
ditionally, that the Følner function of any of these groups is asymptotically
bounded by exp(nA). Moreover, A can be taken equal to 2 using to a self-similar
random walk argument: see Kaimanovich [62], where it is explained that first
Grigorchuk group has a self-similar measure with additional weight 1/2 at the
identity. This mesure is supported on standard generators of the group, and
it is symmetric. A similar argument shows that all Grigorchuk groups have a
sequence of self-similar symmetric measures (that is, the measures are simi-
lar to the corresponding measure on a group of shifted measures), also with
additional weight 1/2 at the identity. The latter fact can be used to show
that for any Grigorchuk group, the entropy of the random walk, defined by
the above mentioned measure, satisfies H(n) ≤ Cn1/2. This implies that for
this (and hence also for any other simple random walk, see Pittet, Saloff-Coste
[76]) on any Grigorchuk group, the probability to return to the origin satisfies
pn(e, e) ≤ exp(−Cn1/2). The latter implies that Følner function of any of Grig-
orchuk groups is bounded from above by exp(Cn2), for some C > 0. The main
result of [35] shows, however, that Følner function of a group of subexponential
growth can be arbitrarily large, that is

Theorem 6. Given a function f : N → R, there exists a group Gf of interme-
diate growth such that

FolGf ,S(n) ≥ f(n)

for all n.
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The group Gf in this theorem can be chosen to be a torsion-group. Alter-
natively, it can be chosen to be a group without torsion. It would be interesting
to understand in more detail growth and isoperimetry of such groups.

Another application of the construction from [35] is the existence of finitely
generated group H of intermediate growth such that for any µ on G the escape
satisfies lim sup(logLH,µ(n))/n = 1, lim inf(logLH,µ(n))/n ≤ γ, for some γ <
1. (In terminology of [35] the group H is equal to an appropriate “piecewise
automatic group” of the first Grigorchuk group with a non-amenable group).
Moreover, one can use the construction from [35] to produce examples of groups
H such that for any simple random walk onH it holds lim sup(logLH,µ(n))/n =
1, lim inf(logLH,µ(n))/n = 1/2.

The groups in Theorem 6 provide the first examples of groups with very
large isoperimetry, such that simple random walks on these groups have trivial
boundary.

Question 5. Can such phenomenon occur for elementarily amenable group?

Question 6. What is the asymptotically largest possible Følner function for a
solvable group, admitting a simple random walk with trivial boundary?

As we have already mentioned, Theorem 6 shows that there is no upper
bound for Følner function for groups with trivial boundary of simple random
walks. If we suppose on the contrary, that the boundary of a simple random walk
is non-trivial, Følner function of G can not be too small. Indeed, by the entropy
criterion we know that the growth of G under this assumption is exponential,
and by Coulhon Saloff-Coste isoperimetric inequality this implies that Følner
function is asymptotically at least exponentially growing.

Question 7. Suppose that a simple random walk on G has non-trivial bound-
ary. What is the asymptotically smallest possible Følner function of G?

I would like to thank Vadim Kaimanovich and Bruno Schapira for useful
comments on this paper.
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The solution of the Strominger system can be viewed as a canonical structure
on non-Kähler Calabi-Yau threefolds with balanced metrics. In this talk, we
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1. Introduction

The principal concern of this paper is on non-Kähler Calabi-Yau threefolds
with balanced metrics. Calabi-Yau manifolds are compact complex manifolds
with trivial canonical line bundle. When the manifold is Kähler, Yau’s theorem
[34] on the Calabi conjecture provides a unique Ricci-flat Kähler metric in each
Kähler class. Such metrics are called the Calabi-Yau metrics.

By the Clemens-Friedman construction, a large class of non-Kähler Calabi-
Yau threefolds are obtained from Kähler Calabi-Yau threefolds by blowing down
rational curves and smoothing the resulting singularities. For example, the con-
nected sum of k copies of S3×S3 for any k ≥ 2 can be given a complex structure
in this way. Based on this construction, Reid speculated that any two projec-
tive Calabi-Yau threefolds can be connected by a sequence of deformations,
contractions and smoothing through non-Kähler Calabi-Yau threefolds. This
speculation demonstrates the potential role of non-Kähler complex manifolds.

It is therefore important to construct canonical metrics on non-Kähler
Calabi-Yau manifolds. At first one should choose in general a good hermitian
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metric which is weaker than Kähler. One proposal is the balanced metric, which
is also called the semi-Kähler metric in older references. Then one can consider
how to construct a canonical metric in each “balanced class”. In principle, we
have a 1-1 correspondence between balanced metrics/forms and d-closed strictly
positive definite (n− 1, n− 1)-forms, where n is the complex dimension of the
manifold. In this sense, the balanced class of a balanced metric/form ω can be
defined as

P(ω) = {ωn−1 +
√
−1 ∂∂̄ϕ > 0 | ϕ is a real (n− 2, n− 2)-form}.

When the complex dimension of the manifold is three, the solution to the
Strominger system can be viewed as a canonical structure on such manifolds. In
1986, Strominger made a proposal for supersymmetric compactification in the
theory of the heterotic string. He proposed a system consisting of a pair (ω, h)
– a hermitian metric ω on a Calabi-Yau threefold X and a hermitian metric
h on a holomorphic vector bundle V over X. If (ω, h) is a solution of such a
system, then ω is a (conformal) balanced metric, h is a hermitian-Yang-Mills
metric with respect to ω, and together they satisfy a third equation (which is
called the anomaly equation).

When the complex dimension of the manifold n ≥ 3, as in the Kähler case,
one can look for a canonical metric in each balanced class such that with respect
to this metric, the norm of a non-vanishing holomorphic n-form is constant. In
view of this point, one can derive an equation on real (n−2, n−2)-forms, which
is called the form-type Calabi-Yau equation in [21].

In this article, we will survey some of results concerning the existence of
balanced metrics on some non-Kähler manifolds and also the existence of solu-
tions to the Strominger system. We mainly describe a joint result with Jun Li
and Shing-Tung Yau [19] on the existence of balanced metrics on the connected
sum of k copies of S3 ×S3 for k ≥ 2, and also describe another joint work with
Yau [22] on the existence of solutions to the Strominger system on a class of
non-Kähler Calabi-Yau threefolds.

2. The Balanced Metrics

2.1. The definition and examples.

Definition 1. Let X be an n-dimensional complex manifold with a hermitian
metric g. Let ω be its hermitian form.

(1) If dω = 0, then g (or ω) is called a Kähler metric;

(2) If d(ωn−1) = 0, then g (or ω) is called a balanced metric.

A complex manifold with a Kähler metric (resp. a balanced metric) is called a
Kähler manifold (resp. a balanced manifold).
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A. Gray and L. M. Hervella observed that on a compact complex manifold,
if d(ωk) = 0 for some k with 2 ≤ k ≤ n− 2, then dω = 0. So it is reasonable to
consider the balanced metric on non-Kähler complex manifolds.

There exists an obstruction to the existence of balanced metrics on a com-
pact complex manifold [29]: In a compact complex manifold with a balanced
metric, any compact complex hypersurface is not homologous to zero. For ex-
ample, consider the Calabi-Eckmann complex structures on S2p+1×S2q+1 [12].
These have the property that the product of the Hopf mappings:

π : S2p+1 × S2q+1 → Pp × Pq

is holomorphic. Hence π−1(Pp−1×Pq) is a codimension 1 complex submanifold
in S2p+1 × S2q+1. This is of course homologous to 0 since the homology of
S2p+1 × S2q+1 is 0 in real dimension 2(p + q). Therefore these manifolds are
not balanced.

Now let us describe some examples and constructions of compact non-Kähler
complex manifolds with balanced metrics.

The Calabi construction [11]. E. Calabi constructed his three dimensional
complex manifolds as a complex tori bundle over a Riemann surface. He then
proved that such manifolds cannot be Kähler. On the other hand, the natural
metric (i.e. the product metric) is a balanced metric.

The twistor spaces over the self-dual Riemannian 4-manifolds. The natural
metrics on these manifolds are balanced (c.f. [15]). However, N. J. Hitchin
[24] showed that the only compact twistor spaces which are Kähler are those
associated to S4 and P2.

The torus bundle over a K3 surface or over a complex torus. Let S be a K3
surface or a complex torus. Let ω1

2π ,
ω2

2π ∈ H2(S,Z)∩H1,1(S,C). Using these two
forms one can construct a three dimensional complex manifold X such that X
is the T 2-bundle over S. This construction can be viewed as the generalization
of the above Calabi-Eckmann manifolds.

E. Goldstein and S. Prokushkin [23] proved that X is non-Kähler. They
also observed that if ω1 and ω2 are anti-self-dual (1,1)-forms with respect to
a Calabi-Yau metric ωCY on S, then the natural metric on X is a balanced
metric. Explicitly the natural metric is

ω0 = ωCY +
√
−1 θ ∧ θ̄. (1)

Here θ is the connection form on the torus bundle (as the principal bundle)
such that dθ = ω1 +

√
−1 ω2. Then, since ωi ∧ ωCY = 0 for i = 1, 2, it follows

that d(ω2
0) = 0.

2.2. Some existence results of balanced metrics. M. L. Michel-
sohn found an intrinsic characterization of compact manifolds with balanced
metrics by means of positive currents:
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Theorem 2. [29] A compact complex manifold X admits a balanced metric if
and only if its every positive current of degree (1,1) which is the component of
a boundary is zero.

Using this characterization, L. Alessandrini and G. Bassanelli proved that
the existence of balanced metrics is preserved under birational transformations:

Theorem 3. [2, 3] Let X and X ′ be compact complex manifolds, and f :
X → X ′ a modification. Then X has a balanced metric if and only if X ′ has a
balanced metric.

This theorem implies that compact complex manifolds bimeromorphic to
Kähler manifolds are balanced. Note that the Kähler condition of a compact
complex manifold is not preserved by modification. So the balanced metric
condition is natural and important in complex geometry.

On the other hand, the balanced condition is not preserved under small
deformation. The Iwasawa manifold gives such a counterexample [1]. Recall
that the Kähler condition is preserved under small deformation. However, in
case the complex manifold satisfies the ∂∂̄-lemma, the balanced condition is
preserved under small deformation [33].

In 2004, Alessandrini and Bassanelli [4] proved that for a compact complex
manifold X of dimension three, if X is Kähler outside a smooth (complex)
curve, then X carries a balanced metric.

2.3. The construction of balanced metrics on #k(S
3
×S

3).
We begin with the Clemens-Friedman construction.

Let Y be a smooth Kähler Calabi-Yau threefold that contains a collection of
mutually disjoint (−1,−1)-curves E1, . . . , El ⊂ Y ; these are smooth, isomorphic
to P1 and have normal bundles isomorphic to the direct sum of two copies of
degree −1 line bundles over them. By contracting all Ei, we obtain a singular
Calabi-Yau threefold X0 with l ordinary double points p1, . . . , pl:

ψ : Y \ ∪l
i=1Ei

∼= X0 \ {p1, · · · , pl}.

Friedman [17, 18] proved that there is an infinitesimal smoothing ofX0 if and
only if the fundamental classes [Ei] in H

2,2(Y ;Q) satisfy a relation Σini[Ei] = 0
such that ni 6= 0 for every i. Tian [32] and Kawamata [25] then used the different
methods to proved that the infinitesimal smoothing can always be realized by
a real smoothing, i.e., X0 can be smoothed to a family of smooth complex
manifolds Xt.

Friedman also proved that the canonical line bundle of Xt is trivial. But
in general, Xt is not Kähler. Explicitly, Friedman observed that #k(S

3 × S3)
for any k ≥ 2 can be given a complex structure in this way [18, 28]. Since the
hodge number h1,1 of these manifolds are zero, they can not be Kähler.
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We can now state the main result jointly with J. Li and S.-T. Yau on the
existence of balanced metrics on these non-Kähler manifolds:

Theorem 4. [19] Let Y be a smooth Kähler Calabi-Yau threefold and let Y →
X0 be a contraction of mutually disjoint (−1,−1)-curves. Suppose X0 can be
smoothed to a family of smooth complex manifolds Xt. Then for sufficiently
small t, Xt admits a smooth balanced metric.

Corollary 5. [19] For any k ≥ 2, #k(S
3 × S3) admits a balanced metric.

We outline the proof of our existence theorem here. Our first step is to
modify a Kähler metric on Y near the (−1,−1)-curves Ei to get a balance
metric ω0 on the contraction X0 that is smooth and balanced away from the
singularities of X0; near its singularities, ω0 coincides with the Ricci-flat metric
of Candelas-de la Ossa’s (see [13]).

The second step is to deform ω0 to a family of smooth balanced metrics
on Xt. Since the Candelas-de la Ossa’s metric on the cone singularity can be
deformed to a family of smooth Ricci-flat metrics on the smoothing of the cone
singularity, we can deform ω0 to a family of smooth hermitian metrics ωt that
are Kähler near the singular points of X0 and are almost balanced on Xt for
small t. To get balanced metrics, we first perturb ω2

t by

Ωt = ω2
t + θt + θ̄t, dΩt = 0,

with θt = i∂µt for µt a (1, 2)-form on Xt that solves the system

∂t∂̄tµt = ∂̄tω
2
t and µt ⊥ωt

ker ∂t∂̄t.

We then solve Ωt = (ω̃t)
2. For this to be possible, we need to prove that Ωt is

positive. We only need to prove that the C0-norm ‖ θt ‖ωt
approaches zero as

t approaches zero.
To this end, we choose γt to be the solution to the Kodaira-Spencer

equation Et(γt) = ∂̄ω2
t subject to γt ⊥ωt

kerEt. It then follows directly that
the solution γt automatically satisfies ∂tγt = 0 and µt = −i∂̄∗t ∂∗t γt. Applying
the elliptic estimates, the L2-estimates and the vanishing of L2-cohomology
groups, we prove that limt→0 t

κ ‖ θt ‖2C0(ωt)
= 0 for κ > − 4

3 .

From the Clemens-Friedman construction and our main result, there exists
a large class of non-Kähler Calabi-Yau threefolds admitting balanced metrics.
Now the question is how to construct the canonical metrics on such manifolds.
At first we consider the case of three dimensional since in this case we have the
Strominger system.

3. The Strominger System

In heterotic string theory, the internal space X is a compact complex
three-dimensional manifold with trivial canonical line bundle, i.e., with a
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non-vanishing holomorphic three-form Ω. It also involves a holomorphic vec-
tor bundle V over X. Let ω be a hermitian metric on X and h a hermitian
metric on V . In 1986, Strominger [31] proposed a system for (ω, h):

d(‖ Ω ‖ω ω2) = 0;

F 2,0
h = F 0,2

h = 0, Fh ∧ ω2 = 0;

√
−1∂∂̄ ω =

α′

4

(

tr
(

Rω ∧Rω

)

− tr
(

Fh ∧ Fh

))

.

The first equation says that the metric ω is a conformal balanced metric. The
second one is the hermitian-Yang-Mills equation. The existence of its solution
is, by the Li-Yau theorem [26] which is the non-Kähler version of the Donaldson-
Uhlenbeck-Yau theorem, equivalent to that V is stable with respective to the
conformal balanced metric ω. The third equation is called the anomaly equation.
Following Strominger, we take the curvature R in third equation to be defined
by the hermitian connection. Thus the term tr(R ∧R) is always a (2, 2)-form.

When V is the holomorphic tangent bundle T ′X and ω is Kähler, (ω, h) is a
solution to the Strominger system if and only if ω = h is the Calabi-Yau metric.
So this system should be viewed as a generalization of the Calabi conjecture
for the case of non-Kähler Calabi-Yau threefolds with balanced metrics.

The existence of smooth solutions of the Strominger system has been stud-
ied since 2004. Using the perturbation method, J. Li and S.-T. Yau constructed
irreducible smooth solutions to a class of Kähler Calabi-Yau threefolds on some
U(4) and U(5) principle bundles. Shortly after, with Yau, we constructed so-
lutions to this system on a class of non-Kähler Calabi-Yau threefolds. Our
solutions were orbifolded by M. Becker, L.-S. Tseng and Yau to give many
more solutions. With Tseng and Yau, we also presented explicit solutions on
T 2-bundles over the Eguchi-Hanson space. We note further that nilmanifold
solutions with different connections have been discussed recently in [16].

3.1. Non-Kähler solutions on some Kähler Calabi-Yau
threefolds. We assume that X is a Kähler Calabi-Yau threefold and ω
is a Calabi-Yau metric on it. Take V = C⊕r

X ⊕ T ′X and h = h1 ⊕ ω. Here h1
is a standard constant metric on C⊕r

X . Then (X,ω, V, h) is a solution to the
Strominger system, which is called a reducible solution. For any small defor-
mations D′′

s of the holomorphic structure D′′
0 of C⊕r

X ⊕ T ′X, J. Li and S.-T.
Yau derived a sufficient condition for the Strominger system to be solvable for
(X,D′′

s ): it is that the Kodaira-Spencer class of the family D′′
s at s = 0 satisfies

certain non-degeneracy condition. By showing this sufficient condition to hold
on some projective Calabi-Yau threefolds, they provided the first example of
regular irreducible solution to the Strominger system with gauge group SU(4)
and SU(5).

Theorem 6. [27] Let X ⊂ P4 be a smooth quintic threefold and V = CX⊕T ′X
or X ⊂ P3×P3 be a smooth Calabi-Yau threefold cut out by three homogeneous
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polynomials of bi-degree (3, 0), (0, 3) and (1, 1) and V = C⊕2
X ⊕ T ′X. Let ω

be a Calabi-Yau form (metric) on X. Then, there is a smooth deformation
D′′

s of (V,D′′
0 ) so that for large c > 0 and small s, there are irreducible regular

solutions (hs, ωs) to the Strominger system on the vector bundle (V,D′′
s ) so that

lims→0 ωs = cω and lims→0hs is a regular hermitian-Yang-Mills connection on
V .

3.2. Solutions on some non-Kähler Calabi-Yau threefolds.
With Yau [22], we gave the first existence result of solutions to Strominger sys-
tem for a non-Kähler Calabi-Yau threefolds. Actually we constructed solutions
on a class of torus bundles X over K3-surfaces twisted by two anti-self-dual
(1, 1)-forms ω1 and ω2, which have been mentioned in subsection 2.1. Based on
physical arguments of superstring dualities, the existence of such solutions was
suggested in [14, 6].

On such manifolds, we have showed that the natural metric ω0 (see (1)) is
the balanced metric. There also exists a non-vanishing holomorphic three form

Ω = ΩK3 ∧ θ,

where ΩK3 is a non-vanishing holomorphic two form on S.

Moreover, one can define a hermitian metric on X:

ωu = euωK3 +
√
−1 θ ∧ θ̄.

Here u is any function of theK3 surface. This metric is not the balanced metric.
The key point is that for any function u, the metric ωu still satisfies the first
equation of the Strominger system [23] (see also [22]).

Then let us consider the second equation. Take a stable vector bundle E over
the K3 surface with respect to the metric ωCY . By the Donaldson-Uhlenbeck-
Yau theorem, there exists a hermitian-Yang-Mills metric h on E, i.e. its hermi-
tian curvature Fh satisfies

Fh ∧ ωCY = 0.

So π∗Fh∧ω2
u is also zero. This means that π∗h is also the hermitian-Yang-Mills

metric on V = π∗E → X with respect to any conformal balanced metric ωu.
So given a stable vector bundle E over the K3 surface, the second equation for
the vector bundle V = π∗E can always be solved for any metric ωu.

Therefore we only need to consider the third equation. Certainly the term
trFh ∧ Fh is a (2, 2)-form defined on the K3 surface. For the metric ωu, by
explicit calculation, we found that the terms tr(Rωu

∧Rωu
) and

√
−1∂∂̄ωu are

also defined on the surface. Thus we reduced the third equation to the following
Monge-Ampere equation defined on the K3 surface:

4
(

eu − α′

2
fe−u

)

+ 4α′
detuij̄
det gij̄

+ µ = 0,
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where f and µ are two functions on the K3 surface satisfying f ≥ 0 and
∫

S
µω2

K3 = 0. The last compatibility condition is equivalent to the condition

α′(24− c2(E)) +Q(ω1/2π) +Q(ω2/2π) = 0. (2)

Here 24 stands for the second Chern number of the K3 surface and Q(ωi/2π),
for i = 1, 2, denotes the intersection number of ωi/2π. We used the continuity
method to solve the above equation. The estimate of the volume form is very
complicated. Our main result is

Theorem 7. [22] Let S be a K3 surface with a Calabi-Yau metric ωCY . Let ω1

and ω2 be anti-self-dual (1, 1)-forms on S such that ω1/2π, ω2/2π ∈ H2(S,Z).
Let X be the T 2-bundle over S twisted by ω1 and ω2. Let E be a stable bundle
over S with the gauge group SU(r). Suppose ω1, ω2 and c2(E) satisfy the topo-
logical constraint (2). Then there exist a smooth function u on the K3 surface
and a hermitian-Yang-Mills metric h on E such that (ωu, h) is a solution of
the Strominger system.

3.3. Analysis and generalizations of the torus bundle over
K3 solutions. The solution on the torus bundle over K3 was further gen-
eralized in [5]. With M. Becker, K. Becker, L.-S. Tseng, and Yau, we relaxed
the conditions of Theorem 7 by allowing ω1+ iω2 to contain a (2,0) component.
A description of the allowable holomorphic vector bundles was also presented
which led to a classification of all solutions in terms of the Chern classes of the
torus and vector bundle.

M. Becker, L.-S. Tseng, and S.-T. Yau have analyzed further the non-Kähler
torus bundle solutions. The linearized local moduli space of the solution within
the Strominger system was given in [7]. They also found that when the solutions
are analyzed within the context of string theory, both the Kähler (K3 × T 2)
and non-Kähler solutions of the Strominger system can be connected inside
the string theory moduli space [8]. Furthermore, many more solutions of the
Strominger system can also be constructed by modding out the non-Kähler
torus bundle solution by elements of its automorphism group. This was worked
out explicitly in [9].

3.4. The explicit solution on the torus bundle over the
Eguchi-Hanson space. With Tseng and Yau [20], we solved the Stro-
minger system on this space. Actually, we can change the base space K3 surface
in subsection 3.2 to be an ALE space. Simplest is the Eguchi-Hanson space:
blow up of C2/Z2 at the origin of the Z2 action σ(z1, z2) = (−z1,−z2). On
this space, there is a Ricci-flat metric ωEH . There is also a single anti-self dual
(1,1)-form with respect to ωEH . We can use this to twist the torus and as the
curvature of a U(1) vector bundle. Now the anomaly equation is reduced to
an ODE on the Eguchi-Hanson space due to the dependence being only on
the radial coordinate for all quantities on C2/Z2. By solving the ODE, we get



On non-Kähler Calabi-Yau Threefolds with Balanced Metrics 713

the explicit solution of the Strominger system on the torus bundle over the
Eguchi-Hanson space.

3.5. The main problem. Now we return to the connected sum of
k copies of S3 × S3. By Corollary 6, there exist balanced metrics on such
manifolds. So the first equation of the Strominger system is solvable. As to the
second equation, since there are no non-trivial line bundles on #k(S

3 × S3),
its holomorphic tangent bundle is stable with respect to any Gauduchon
metric [10]. Then by the Li-Yau theorem, there exists on the tangent bundle
a hermitian-Yang-Mills metric with respect to the balanced metric. So the
second equation is also solvable. Therefore we only need to consider the
third equation. In view of the importance of #k(S

3 × S3) in the study of
the moduli space of Calabi-Yau threefolds and in superstring theory, we can ask

Question. Does there exist any solution to the Strominger system on #k(S
3×

S3)?

4. Form-type Calabi-Yau Equations

In this section, we assume Xn (n ≥ 3) is an n-dimensional Calabi-Yau manifold
with balanced metrics. Let ω0 be a balanced metric and Ω a non-vanishing
holomorphic n-form. We want to look for a balanced metric ω such that

ωn−1 = ωn−1
0 +

√
−1

2
∂∂̄ϕ,

for some real (n− 2, n− 2)-form ϕ, and such that

‖Ω‖ω = constant.

So we are looking for solutions in the balanced class of ω0, which is the subset
of the Bott-Chern cohomology class [ωn−1

0 ] ∈ Hn−1,n−1
BC (X).

The relation between Ricci forms of the hermitian connection and the spin
connection (i.e. the Bismut connection) with the metric ω is given by

Rics = Rich + dd∗ω.

So ω is the balanced metric and ‖ Ω ‖ω= const. if and only if Rich = Rics = 0.
As in the Kähler case, ‖ Ω ‖ω= const. is equivalent to the equation

det[ωn−1
0 + (

√
−1/2)∂∂̄ϕ]

detωn−1
0

= e(n−1)f

(

∫

X
ωn

∫

X
ωn
0

)n−1

,

for some function f . We call the above equation the form-type Calabi-Yau

equation.
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It seems very difficult to solve such form-type equations. To begin with, we
consider the form-type Calabi–Yau equation on the complex n-torus Tn. Let
ω0 be a balanced metric on Tn. We can assume, without loss of generality, that
ω0 is a constant metric on Tn. With Z.-Z. Wang and D.-M. Wu, we have

Theorem 8. [21] Let Ω be a non-vanishing holomorphic n-form on Tn, and
ω0 is a constant metric on Tn such that ‖Ω‖ω0

= 1. We denote by C0 a positive
constant.

1. If C0 ≤ 1, then for any metric ω on Tn such that [ωn−1] = [ωn−1
0 ] ∈

Hn−1,n−1
BC (Tn) and that ‖Ω‖ω = C0, we must have C0 = 1 and

ω = ω0.

2. For each C0 > 1, there exists a non-Kähler balanced metric ω on Tn such
that [ωn−1] = [ωn−1

0 ] and that

‖Ω‖ω = C0.

We also further generalized the uniqueness part of above theorem to an
arbitrary Kähler Calabi-Yau manifold.
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Motivated by Felix Klein’s notion that geometry is governed by its group of
symmetry transformations, Charles Ehresmann initiated the study of geometric
structures on topological spaces locally modeled on a homogeneous space of
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local Euclidean geometry: there is no metrically accurate Euclidean atlas of the
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from the topological symmetries of Σ.

We survey several examples of the classification of locally homogeneous ge-
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1. Historical Background

While geometry involves quantitative measurements and rigid metric relations,
topology deals with the loose quantitative organization of points. Felix Klein
proposed in his 1872 Erlangen Program that the classical geometries be consid-
ered as the properties of a space invariant under a transitive Lie group action.
Therefore one may ask which topologies support a system of local coordinates
modeled on a fixed homogeneous space X = G/H such that on overlapping
coordinate patches, the coordinate changes are locally restrictions of transfor-
mations from G.

In this generality this question was first asked by Charles Ehresmann [55] at
the conference “Quelques questions de Geométrie et de Topologie,” in Geneva
in 1935. Forty years later, the subject of such locally homogeneous geometric
structures experienced a resurgence whenW. Thurston placed his 3-dimensional
geometrization program [158] in the context of locally homogeneous (Rieman-
nian) structures. The rich diversity of geometries on homogeneous spaces brings
in a wide range of techniques, and the field has thrived through their interac-
tion.

Before Ehresmann, the subject may be traced to several independent threads
in the 19th century:

• The theory of monodromy of Schwarzian differential equations on Rie-
mann surfaces, which arose from the integration of algebraic functions;

• Symmetries of crystals led to the enumeration (1891) by Fedorov,
Schöenflies and Barlow of the 230 three-dimensional crystallographic
space groups (the 17 two-dimensional wallpaper groups had been known
much earlier). The general qualitative classification of crystallographic
groups is due to Bieberbach.

• The theory of connections, curvature and parallel transport in Rieman-
nian geometry, which arose from the classical theory of surfaces in R

3.

The uniformization of Riemann surfaces linked complex analysis to Euclidean
and non-Euclidean geometry. Klein, Poincaré and others saw that the moduli of
Riemann surfaces, first conceived by Riemann, related (via uniformization) to
the deformation theory of geometric structures. This in turn related to deform-
ing discrete groups (or more accurately, representations of fundamental groups
in Lie groups), the viewpoint of the text of Fricke-Klein [62].

2. The Classification Question

Here is the fundamental general problem: Suppose we are given a manifold Σ
(a topology) and a homogeneous space (G,X = G/H) (a geometry). Identify
a space whose points correspond to equivalence classes of (G,X)-structures on
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Σ. This space should inherit an action of the group of topological symmetries
(the mapping class group Mod(Σ)) of Σ. That is, how many inequivalent ways
can one weave the geometry of X into the topology of Σ? Identify the natural
Mod(Σ)-invariant geometries on this deformation space.

3. Ehresmann Structures and Development

For n > 1, the sphere Sn admits no Euclidean structure. This is just the famil-
iar fact there is no metrically accurate atlas of the world. Thus the deformation
space of Euclidean structures on Sn is empty. On the other hand, the torus
admits a rich class of Euclidean structures, and (after some simple normaliza-
tions) the space of Euclidean structures on T 2 identifies with the quotient of
the upper half-plane H2 by the modular group PGL(2,Z).

Globalizing the coordinate charts in terms of the developing map is use-
ful here. Replace the coordinate atlas by a universal covering space M̃ −→ M
with covering group π1(M). Replace the coordinate charts by a local diffeomor-

phism, the developing map M̃
dev
−−→ X, as follows. dev is equivariant with respect

to the actions of π1(M) by deck transformations on M̃ and by a representation

π1(M)
h
−→ G, respectively. The coordinate changes are replaced by the holon-

omy homomorphism h. The resulting developing pair (dev, h) is unique up to
composition/conjugation by elements in G. This determines the structure.

Here is the precise correspondence. Suppose that

{(Uα, ψα) | Uα ∈ U}

is a (G,X)-coordinate atlas: U is an open covering by coordinate patches Uα,

with coordinate charts Uα
ψα

−−→ X for Uα ∈ U . For every nonempty connected
open subset U ⊂ Uα ∩ Uβ , there is a (necessarily unique)

g(U ;Uα, Uβ) ∈ G

such that
ψα|U = g(U) ◦ ψβ |U .

(Since a homogeneous space X carries a natural real-analytic structure
invariant under G, every (G,X)-manifold carries an underlying real-analytic
structure. For convenience, therefore, we fix a smooth structure on Σ, and
work in the differentiable category, where tools such as transversality are avail-
able. Since we concentrate here in low dimensions (like 2), restricting to smooth
manifolds and mappings sacrifices no generality. Therefore, when we speak of
“a topological space Σ” we really mean a smooth manifold Σ rather than just
a topological space.)

The coordinate changes {g(U ;Uα, Uβ)} define a flat (G,X)-bundle as fol-
lows. Start with the trivial (G,X)-bundle over the disjoint union

∐

Uα∈U
Uα,
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having components

Eα := Uα ×X
Πα−−→ Uα.

Now identify, for

(u, uα, uβ) ∈ U × Uα × Uβ ,

the two local total spaces U ×X ⊂ Eα with U ×X ⊂ Eβ by

(

u, x
)

α
←→

(

u, g(U ;Uα, Uβ)x
)

β
. (1)

The fibrations Πα over Uα piece together to form a fibration E(M)
Π
−→ M

over M with fiber X, and structure group G, whose total space E = E(M)
is the quotient space of the Eα by the identifications (1). The foliations Fα of
Eα defined locally by the projections Uα ×X −→ X piece together to define a
foliation F(M) of E(M) transverse to the fibration. In this atlas, the coordinate
changes are locally constant maps Uα ∩ Uβ −→ G. This reduces the structure
group from G with its manifold topology to G with the discrete topology. We
call the fiber bundle

(

E(M),F(M)
)

the flat (G,X)-bundle tangent to M .

Such a bundle pulls back to a trivial bundle over the universal covering
M̃ −→ M . Thus it may be reconstructed from the trivial bundle M̃ ×X −→
M̃ as the quotient of a π1(M)-action on M̃ × X covering the action on M̃
by deck transformations. Such an action is determined by a homomorphism

π1(M)
h
−→ G, the holonomy representation. Isomorphism classes of flat bundles

with structure group G correspond to G-orbits on Hom
(

π1(M), G
)

by left-
composition with inner automorphisms of G.

The coordinate charts Uα
ψα

−−→ X globalize to a section of the flat (G,X)-
bundle E −→ M as follows. The graph graph(ψα) is a section transverse both
to the fibration and the foliation Fα. Furthermore the identifications (1) imply
that the restrictions of graph(ψα) and graph(ψβ) to U ⊂ Uα ∩ Uβ identify.
Therefore all the ψα are the restrictions of a globally defined F-transverse

section M
Dev
−−→ E. We call this section the developing section since it exactly

corresponds to a developing map.

Conversely, suppose that (E,F) is a flat (G,X)-bundle overM andM
s
−→ E

is a section transverse to F . For each m ∈ M , choose an open neighborhood
U such that the foliation F on the local total space Π−1(U) is defined by a

submersion Π−1(U)
ΨU−−→ X. Then the compositions ΨU ◦ s define coordinate

charts for a (G,X)-structure on M .

In terms of the universal covering space M̃ −→ M and holonomy repre-
sentation h, a section M

s
−→ E corresponds to a π1(M)-equivariant mapping

M̃
s̃
−→ X, where π1(M) acts on X via h. The section s is transverse to F if and

only if the corresponding equivariant map s̃ is a local diffeomorphism.
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4. Elementary Consequences

As the universal covering M̃ immerses in X, no (G,X)-structure exists whenM
is closed with finite fundamental group and X is noncompact. Furthermore if X
is compact and simply connected, then every closed (G,X)-manifold with finite
fundamental group would be a quotient of X. Thus by extremely elementary
considerations, no counterexample to the Poincaré conjecture could be modeled
on S3.

When G acts properly on X (that is, when the isotropy group is compact),
then G preserves a Riemannian metric on X which passes down to a metric on
M . This metric lifts to a Riemannian metric on the the universal covering M̃ ,
for which dev is a local isometry. Suppose that M is closed. The Riemannian
metric onM makesM into a metric space, which is necessarily complete. By the
Hopf-Rinow theorem, M is geodesically complete, and (after possibly replacing
X with its universal covering space X̃, and G by an appropriate group G̃ of
lifts), the local isometry dev is a covering space, and maps M̃ bijectively to X̃.
In particular such structures correspond to discrete cocompact subgroups of G̃.
In this way the subject of Ehresmann geometric structures extends the subject
of discrete subgroups of Lie groups.

In general, even for closed manifolds, the developing map may fail to be
surjective (for example, Hopf manifolds), and even may not be a covering space
onto its image (Hejhal [103], Smillie [152], Sullivan-Thurston [155]).

5. The Hierarchy of Geometries

Often one geometry “contains” another geometry as follows. Suppose that G

and G′ act transitively on X and X ′ respectively, and X
f
−→ X ′ is a local diffeo-

morphism equivariant respecting a homomorphismG
F
−→ G′. Then (by composi-

tion with f and F ) every (G,X)-structure determines a (G′, X ′)-structure. For
example, when f is the identity, then G may be the subgroup of G′ preserving
some extra structure on X = X ′. In this way, various flat pseudo-Riemannian
geometries are refinements of affine geometry. The three constant curvature
Riemannian geometries (Euclidean, spherical, and hyperbolic) have both real-
izations in conformal geometry of Sn (the Poincaré model) and in projective
geometry (the Beltrami-Klein model) in RPn. In more classical differential-
geometric terms, this is just the fact that the constant curvature Riemannian
geometries are conformally flat (respectively projectively flat). Identifying con-
formal classes of conformally flat Riemannian metrics as Ehresmann structures
follows from Liouville’s theorem on the classification of conformal maps of do-
mains in R

n for n ≥ 3.

An interesting and nontrivial example is the classification of closed simi-
larity manifolds by Fried [63]. Here X = R

n and G is its group of similarity
transformations. Fried showed that every closed (G,X)-manifold M is either
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a Euclidean manifold (so G reduces to the group of isometries) or a Hopf
manifold, a quotient of Rn \ {0} by a cyclic group of linear expansions. In the
latter caseM carries a

(

R
+ ·O(n),Rn \{0}

)

-structure. Such manifolds are finite
quotients of Sn−1 × S1.

6. Deforming Ehresmann Structures

One would like a space whose points are equivalence classes of (G,X)-structures
on a fixed topology Σ. The prototype of such a deformation space is the Te-
ichmüller space T(Σ) of biholomorphism classes of complex structures on a fixed
surface Σ. That is, we consider a Riemann surface M with a diffeomorphism
Σ −→ M , which is commonly called a marking. Although complex structures
are not Ehresmann structures, there is still a formal similarity. (This formal
similarity can be made into an equivalence of categories via the uniformization
theorem, but this is considerably deeper than the present discussion.) For ex-
ample, every Riemann surface diffeomorphic to T 2 arises as C/Λ, where Λ ⊂ C

is a lattice. Two such lattices Λ,Λ′ determine isomorphic Riemann surfaces if
∃ζ ∈ C

∗ such that Λ′ = ζΛ. The space of such equivalence classes identifies
with the quotient H2/PSL(2,Z). The quotient H2/PSL(2,Z) has the natural
structure of an orbifold,) and is not naturally a manifold.

In general deformation spaces will have very bad separation properties.
(For example the space of complete affine structures on T 2 naturally identi-
fies with the quotient of R2 by the usual linear action of SL(2,Z) (Baues, see
[8].) This quotient admits no nonconstant continuous mappings into any Haus-
dorff space!) To deal with such pathologies, we form a larger space with a group
action, whose orbit space parametrizes isomorphism classes of (G,X)-manifolds
diffeomorphic to Σ. In general, passing to the orbit space alone loses too much
information, and may result in an unwieldy topological space. For this reason,
considering the deformation groupoid, consisting of structures (rather than
equivalence classes) and isomorphisms between them, is a more meaningful
and useful object to parametrize geometric structures.

Therefore we fix a smooth manifold Σ and define a marked (G,X)-structure

on Σ as a pair (M,f) where M is a (G,X)-manifold and Σ
f
−→M a diffeomor-

phism. Suppose that Σ is compact (possibly ∂Σ 6= ∅). Fix a fiber bundle E

over Σ with fiber X and structure group G. Give the set Def(G,X)(Σ) of such
marked (G,X)-structures on Σ the C1-topology on pairs (F ,Dev) of foliations
F and smooth sections Dev. Clearly the diffeomorphism group Diff(Σ) acts on

Def(G,X)(Σ) by left-composition. Define marked (G,X)-structures (M,f) and
(M ′, f ′) to be isotopic if they are related by an diffeomorphism of Σ isotopic
to the identity.

Define the deformation space of isotopy classes of marked (G,X)-structures
on Σ as the quotient space

Def(G,X)(Σ) := Def(G,X)(Σ)/Diff0(Σ).
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Clearly the diffeotopy group π0
(

Diff(Σ)
)

(which for compact surfaces Σ is the
mapping class group Mod(Σ)) acts on the deformation space.

7. Representations of the Fundamental Group

The set of isomorphism classes of flat G-bundles over Σ identifies with the
set Hom

(

π1(Σ), G
)

/G of equivalence classes of representations π1(Σ) −→ G,
where two representations ρ, ρ′ are equivalent if and only if ∃g ∈ G such that
ρ′ = Inn(g)◦ρ, where Inn(g) : x 7−→ gxg−1 is the inner automorphism associated
to g ∈ G. Since π1(Σ) is finitely generated, Hom

(

π1(Σ), G
)

has the structure of a
real-analytic subset in a Cartesian power GN , and this structure is independent
of the choice of generators. Give Hom

(

π1(Σ), G
)

the classical topology and

note that it is stratified into smooth submanifolds. Give Hom
(

π1(Σ), G
)

/G the
quotient topology.

The space Hom
(

π1(Σ), G
)

/G may enjoy several pathologies:

• The analytic variety Hom
(

π1(Σ), G
)

may have singularities, and not be a
manifold;

• G may not act freely, even on the smooth points, so the quotient map
may be nontrivially branched, and Hom

(

π1(Σ), G
)

/G may have orbifold
singularities;

• G may not act properly, and the quotient space Hom
(

π1(Σ), G
)

/G may
not be Hausdorff.

All three pathologies may occur.
The automorphism group Aut

(

π1(Σ)
)

acts on Hom
(

π1(Σ), G
)

by right-

composition. The action of its subgroup Inn
(

π1(Σ)
)

is absorbed in the Inn(G)-
action, and therefore the quotient group

Out
(

π1(Σ)
)

:= Aut
(

π1(Σ)
)

/Inn
(

π1(Σ)
)

acts on the quotient
Hom

(

π1(Σ), G
)

/G.

Associating to a marked (G,X)-structure the equivalence class of its holon-
omy representation defines a continuous map

Def(G,X)(Σ)
hol
−−→ Hom

(

π1(Σ), G
)

/G (2)

which is evidently π0
(

Diff(Σ)
)

-equivariant, with respect to the homomorphism

π0
(

Diff(Σ)
)

−→ Out
(

π1(Σ)
)

.

Theorem (Thurston). With respect to the above topologies, the holonomy map
hol in (2) is a local homeomorphism.
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For hyperbolic structures on closed surfaces, which are special cases of
(G,G)-structures (or discrete embeddings in Lie groups as above), this re-
sult is due to Weil [168, 169, 170]; see the very readable paper by Bergeron-
Gelander [19]. This result is due to Hejhal [103] for CP1-surfaces. The general
theorem was first stated explicitly by Thurston [158], and perhaps the first care-
ful proof may be found in Lok [125] and Canary-Epstein-Green [31]. Bergeron
and Gelander refer to this result as the “Ehresmann-Thurston theorem” since
many of the ideas are implicit in Ehresmann’s viewpoint [56].

The following proof was worked out in [74] with Hirsch, and was also known
to Haefliger. By the covering homotopy theorem and the local contractibility
of Hom

(

π1(Σ), G
)

, the isomorphism type of E as a G-bundle is constant. Thus
one may assume that E is a fixed G-bundle, although the flat structure (given
by the transverse foliation F) varies, as the representation varies. However it
varies continuously in the C1 topology. Thus a given F-transverse section Dev

remains transverse as F varies, and defines a geometric structure. This proves
local surjectivity of hol.

Conversely, if Dev′ is a transverse section sufficiently close to Dev in the
C1-topology, then it stays within a neighborhood of Dev(Σ). For a sufficiently
small neighborhood W of Dev(Σ), the foliation F|W identifies with a product
foliation of W ≈ Dev(Σ)×X defined by the projection to X. For each m ∈ Σ,
the leaf of F|W through Dev(m) meets Dev′(Σ) in a unique point Dev′(m′) for
m′ ∈ Σ. The correspondence m 7−→ m′ is the required isotopy, from which
follows hol is locally injective.

8. Thurston’s Geometrization of 3-manifolds

In 1976, Thurston proposed that every closed 3-manifold admits a canonical
decomposition into pieces, by cutting along surfaces of nonnegative Euler char-
acteristic. Each of these pieces has one of eight geometries, modeled on eight
3-dimensional Riemannian homogeneous spaces:

• Elliptic geometry: Here X = S3 and G = O(3) its group of isometries.
Manifolds with these geometries are the Riemannian 3-manifolds of con-
stant positive curvature, that is, spherical space forms, and include lens
spaces.

• S2 ×R: The only closed 3-manifolds with this geometry are S2 × S1 and
a few quotients.

• Euclidean geometry: HereX = R
3 and G its group of isometries. These

are the Riemannian manifolds of zero curvature, and are quotients by
torsionfree Euclidean crystallographic groups. In 1912, Bieberbach proved
every closed Euclidean manifold is a quotient of a flat torus by a finite
group of isometries. Furthermore he proved there are only finitely many
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topological types of these manifolds, and that any homotopy-equivalence
is homotopic to an affine isomorphism.

• Nilgeometry: Here again X = R
3, regarded as the Heisenberg group

with a left-invariant metric and G its group of isometries. Manifolds with
these geometry are covered by nontrivial oriented S1-bundles over 2-tori.

• Solvgeometry: Once again X = R
3, regarded as a 3-dimensional expo-

nential solvable unimodular non-nilpotent Lie group and G the group of
isometries of a left-invariant metric. Hyperbolic torus bundles (suspen-
sions of Anosov diffeomorphisms of tori) have these structures.

• H2 × R: Products of hyperbolic surfaces with S1 have this geometry.

• Unit tangent bundle of H2: An equivalent model is PSL(2,R) with
a left-invariant metric. Nontrivial oriented S1-bundles of hyperbolic sur-
faces (such as the unit tangent bundle) admit such structures.

• Hyperbolic geometry: Here X = H3 and G its group of isometries.

For a description of the eight homogeneous Riemannian geometries and their
relationship to 3-manifolds, see the excellent surveys by Scott [147] and Bona-
hon [21].

9. Complete Affine 3-manifolds

Manifolds modeled on Euclidean geometry are exactly the flat Riemannian man-
ifolds. Compact Euclidean manifolds Mn are precisely the quotients R

n/Γ,
where Γ is a lattice of Euclidean isometries. By the work of Bieberbach (1912),
such a Γ is a finite extension of a lattice Λ of translations. Thus M is finitely
covered by the torus Rn/Λ. Since all lattices Λ ⊂ R

n are affinely the homotopy
type of M determines its affine equivalence class. When M is noncompact, but
geodesically complete, then M is isometric to a flat orthogonal vector bundle
over a compact Euclidean manifold.

These theorems give at least a qualitative classification of manifolds with
Euclidean structures. The generalization to manifolds with affine structures is
much more mysterious and difficult. We begin by restricting to ones which are
geodesically complete. In that case the manifolds are quotients R

n/Γ but Γ is
only assumed to consist of affine transformations. However, unlike Euclidean
manifolds considered above, discreteness of Γ ⊂ Aff(Rn) does not generally
imply the properness of the action, and the quotient may not be Hausdorff.
Characterizing which affine representations define proper actions is a funda-
mental and challenging problem.

In the early 1960’s, L. Auslander announced that every compact complete
affine manifold has virtually polycyclic fundamental group, but his proof was
flawed. In this case, the manifold is finitely covered by an affine solvmanifold
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Γ\G where G is a (necessarily solvable) Lie group with a left-invariant complete
affine structure and Γ ⊂ G is a lattice. Despite many partial results, ([64, 2, 3,
164, 87]) the Auslander Conjecture remains open.

Milnor [134] asked whether the virtual polycyclicity of Γ might hold even if
the quotient Rn/Γ is noncompact. Using the Tits Alternative [162], he reduced
this question to whether a rank two free group could act properly by affine
transformations on R

n. Margulis [128] showed, surprisingly, that such actions
do exist when n = 3.

For n = 3, Fried and Goldman [64] showed that either Γ is virtually poly-
cyclic (in which case all the structures are easily classified), or the linear holon-

omy homomorphism Γ
L
−→ GL(3,R) maps Γ isomorphically onto a discrete sub-

group of a conjugate of O(2, 1) ⊂ GL(3,R). Since L−1O(2, 1) preserves a flat
Lorentz metric on R

3, the geometric structure on M refines to a flat Lorentz
structure, modeled on E

3
1, which is R

3 with the corresponding flat Lorentz
metric. In particular M3 = E

3
1/Γ is a complete flat Lorentz 3-manifold and

Σ := H2/L(Γ) is a complete hyperbolic surface. This establishes the Auslander
Conjecture in dimension 3: the cohomological dimension of Γ ∼= π1(M

3) equals
3 since M is aspherical, but the cohomological dimension Γ ∼= π1(Σ) is at most
2. In 1990, Mess [131] proved that the surface Σ is noncompact, and therefore Γ
must be a free group. (Compare also Goldman-Margulis [90] and Labourie [119]
for other proofs.)

Drumm [51, 52] (see also [39] ) gave a geometric construction of these quo-
tient manifolds using polyhedra in Minkowski space R

3
1 now called crooked

planes. Using crooked planes, he showed that every noncompact complete hy-
perbolic surface Σ arises from a complete flat Lorentz 3-manifold; that is, he
showed that every non-cocompact Fuchsian group L(Γ) ⊂ O(2, 1) admits a
proper affine deformation Γ.

The conjectural picture of these manifolds is as follows.

The space of equivalence classes of affine deformations of Γ is the vector
space H1(Γ,R3

1), and the proper affine deformations define an open convex
cone in this vector space. Goldman-Labourie-Margulis [89] have proved this
when Γ is finitely generated and contains no parabolic elements. Furthermore a
finite-index subgroup of Γ should have a fundamental domain which is bounded
by crooked planes, and M3 should be homeomorphic to a solid handlebody.
Charette-Drumm-Goldman [37] have proved this when Σ is homeomorphic to
a 3-holed sphere.

Translational conjugacy classes of affine deformations of a Fuchsian group
Γ0 ⊂ O(2, 1) comprise the cohomology groupH1(Γ0;R

3
1). As the O(2, 1)-module

R
3
1 identifies with the Lie algebra of O(2, 1) with the adjoint representation, this

cohomology group identifies with the space of infinitesimal deformations of the
hyperbolic surface Σ = H2/Γ0. (Compare Goldman-Margulis [90] and [80].)

When Σ has no cusps, [89] provides a criterion for properness of an affine
deformation corresponding to a deformation σ of the hyperbolic surface Σ.
The affine deformation Γσ acts properly on E

3
1 if and only if every probability
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measure on UΣ invariant under the geodesic flow infinitesimally lengthens (re-
spectively infinitesimally shortens under σ. (We conjecture a similar statement
in general.) Using ideas based on Thurston [161], one can reduce this to proba-
bility measures arising from measured geodesic laminations. When Σ is a three-
holed sphere, [37] implies the proper affine deformations are precisely the ones
for which the three components of ∂Σ either all infinitesimally lengthen or all
infinitesimally shorten.

Other examples of conformally flat Lorentzian manifolds have recently been
studied by Frances [61], Zeghib [176], and Bonsante-Schlenker [22], also closely
relating to hyperbolic geometry.

10. Affine Structures on Closed Manifolds

The question of which closed manifolds admit affine structures seems quite
difficult. Even for complete structures, the pattern is mysterious. Milnor [134]
asked whether every virtually polycyclic group arises as the fundamental group
of a compact complete affine manifold. Benoist [9, 10] found 11-dimensional
nilpotent counterexamples. However by replacing R

n by a simply connected
nilpotent Lie group, one obtains more general structures. Dekimpe [48] showed
that every virtually polycyclic group arises as the fundamental group of such a
NIL-affine manifold.

For incomplete structures, the picture is even more unclear. The Markus
conjecture, first stated by L. Markus as a homework exercise in unpublished
lecture notes at the University of Minnesota in 1960 asserts that, for closed
affine manifolds, geodesic completeness is equivalent to parallel volume (linear
holonomy in SL(n,R). That this conjecture remains open testifies to our current
ignorance.

An important partial result is Carrière’s result [32] that a closed flat
Lorentzian manifold is geodesically complete. This has been generalized in a
different direction by Klingler [112] to all closed Lorentzian manifolds with
constant curvature.

Using parallel volume forms, Smillie [153] showed that the holonomy of a
compact affine manifold cannot factor through a free product of finite groups;
his methods were extended by Goldman-Hirsch [85, 86] to prove nonexistence
results for affine structures on closed manifolds with certain conditions on the
holonomy. Using these results, Carrière, Dal’bo and Meigniez [33] showed that
certain Seifert 3-manifolds with hyperbolic base admit no affine structures.

Perhaps the most famous conjecture about affine structures on closed mani-
folds is Chern’s conjecture that a closed affine manifold must have Euler charac-
teristic zero. For flat pseudo-Riemannian manifolds or complex affine manifolds,
this follows from Chern-Gauss-Bonnet. Using an elegant argument, Kostant and
Sullivan [114] proved this conjecture for complete affine manifolds. (This would
follow immediately from the Auslander Conjecture.)
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In a different direction, Smillie [151] found simple examples of closed man-
ifolds with flat tangent bundles (these would have affine connections with zero
curvature, but possibly nonzero torsion). Recent results in this direction have
been obtained by Bucher-Gelander [26].

11. Hyperbolic Geometry on 2-manifolds

The prototype of geometric structures, and historically one of the basic ex-
amples, are hyperbolic structures on surfaces Σ with χ(Σ) < 0. Here X is the
hyperbolic plane and G ∼= PGL(2,R). Fricke and Klein [62] studied the deforma-
tion space of hyperbolic structures on Σ as well as on 2-dimensional orbifolds.
The deformation space F(Σ) of marked hyperbolic structures on Σ (sometimes
called Fricke Space ([20]) can also be described as the space of equivalence
classes of discrete embeddings π1(Σ) −→ G. The Poincaré-Klein-Koebe Uni-
formization Theorem relates hyperbolic structures and complex structures, so
the Fricke space identifies with the Teichmüller space of Σ, which parametrizes
Riemann surfaces homeomorphic to Σ. For this reason, although Teichmüller
himself never studied hyperbolic geometry, the deformation theory of hyper-
bolic structures on surfaces is often referred to as Teichmüller theory.

Representations of surface groups in G = PSL(2,R) closely relate to ge-

ometric structures. A representation π1(Σ)
ρ
−→ G determines an oriented flat

H2-bundle over Σ. Oriented flat H2-bundles are classified by their Euler class ,
which lives in H2(Σ;Z) ∼= Z when Σ is closed and oriented. The Euler number
of a flat oriented H2-bundle satisfies

|Euler(ρ)| ≤ −χ(Σ) (3)

as proved by Wood[175], following earlier work of Milnor[134].

Theorem 1. Equality holds in (3) if and only if ρ is a discrete embedding.

This theorem was first proved in [69], using Ehresmann’s viewpoint. Namely,
the condition that Euler(ρ) = ±χ(Σ) means that the associated flat H2-bundle
Eρ with holonomy homomorphism ρ is isomorphic (up to changing orientation)
to the tangent bundle of Σ (as a topological disc bundle, or equivalently a
microbundle over Σ). If ρ is the holonomy of a hyperbolic surface M ≈ Σ, then
E(M) = Eρ ≈ TΣ. Theorem 1 is a converse: if the flat bundle “is isomorphic
to the tangent bundle (as a (G,X)-bundle)”, then the flat (G,X)-bundle arises
from a (G,X)-structure on Σ.

In the case the representation ρ has discrete torsionfree cocompact image,
Theorem 1 reduces to a classical result of Kneser [113]. In 1930 Kneser proved

that if Σ
f
−→ Σ′ is a continuous map of degree d, then

d|χ(Σ′)| ≤ |χ(Σ)|
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with equality ⇐⇒ f is homotopic to a covering space. (In this case Σ′ is the
hyperbolic surface obtained as the quotient by the image of ρ, and Euler(ρ) =
dχ(Σ′). Kneser’s theorem is thus a discrete version of Theorem 1.

By now Theorem 1 has many proofs and extensions. One proof, using har-
monic maps, begins by choosing a Riemann surface M ≈ Σ. Then, by Cor-
lette [47] and Donaldson [50], either the image of ρ is solvable (in which case
Euler(ρ) = 0) or the image is reductive, and there exists a ρ-equivariant har-

monic map M̃
h
−→ X. By an adaptation of Eels-Wood [54], Euler(ρ) can be

computed as the sum of local indices of the critical points of h. In particular,
the assumption of maximality: Euler(ρ) = ±χ(M) implies that h must be holo-
morphic (or anti-holomorphic), and using the arguments of Schoen-Yau [142],
h must be a diffeomorphism. In particular ρ must be a discrete embedding.

Shortly after [69], another proof was given by Matsumoto [129] (compare
also Mess [131]), related to ideas of bounded cohomology. This led to the work of
Ghys [67], who proved that the Euler class of an orientation-preserving action of
π1(Σ) on S

1 is a bounded class, and its class in bounded cohomology determines
the action up to topological semi-conjugacy. In particular maximality in the
Milnor-Wood inequality (3) implies the topological action is conjugate to the
projective action arising from (any) discrete embedding in PSL(2,R).

The Euler number classifies components of Hom
(

π1(Σ),PSL(2,R)). That is,
if Σ is closed, oriented, of genus g > 1, the 4g − 3 connected components are
the inverse images Euler−1(j) where

j = 2− 2g, 3− 2g, . . . , 2g − 2

(Goldman [76]). Independently, Hitchin [104] gave a much different proof, using
Higgs bundles. Moreover he identified the Euler class 2−2g+k component with
a vector bundle over the k-th symmetric power of Σ (compare the expository
article [84])

When G is a semisimple compact or complex Lie group, components of the
representation space bijectively correspond to π1(G). In particular in these basic
cases, the number of components is independent of the genus. (See Li [124] and
Rapinchuk–Benyash-Krivetz–Chernousov[141].) Recently Florentino and Law-
ton [58] have determined the homotopy type of Hom(Γ, G)//G when Γ is free
and G is a complex reductive group.

This simple picture becomes much more intricate and fascinating for higher
dimensional noncompact real Lie groups; the most effective technique so far
has been the interpretation in terms of Higgs bundles and the use of infinite-
dimensional Morse theory; see Bradlow-Garcia-Prada-Gothen [23] for a survey
of some recent results on the components when G is a simple real Lie group.

Theorem 1 leads to rigidity theorems for surface group representations as
well. When G is the automorphism group of a Hermitian symmetric space X,
integrating a G-invariant Kähler form on X over a smooth section of a flat
(G,X)-bundle induces a characteristic class τ(ρ) first defined by Turaev [165]
and Toledo [163]. This characteristic class satisfies an inequality similar to (3).
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The maximal representations, (when equality is attained) have very special

properties. When X is complex hyperbolic space, a representation π1(Σ)
ρ
−→

PU(n, 1) is maximal if and only if it stabilizes a totally geodesic holomorphic
curve, and its restriction is Fuchsian (Toledo [163]).

In higher rank the situation is much more interesting and complicated.
Burger-Iozzi-Wienhard [28] showed that maximal representations are discrete
embeddings, with reductive Zariski closures. With Labourie, they proved [27]
in the case of Sp(2n,R), that these representations quasi-isometrically embed
π1(Σ) in G. Many of these properties follow from the fact that maximal rep-
resentations are Anosov representations in the sense of Labourie [120]. Using
Higgs bundle theory, Bradlow-Garcia-Prada-Gothen [23] have counted compo-
nents of maximal representations. Guichard-Wienhard [101] have found com-
ponents of maximal representations in Sp(2n,R), all of whose elements have
Zariski dense image (in contrast to PU(n, 1) discussed above). For a good sur-
vey of these results, see Burger-Iozzi-Wienhard [29].

12. Complex Projective 1-manifolds, Flat

Conformal Structures and Spherical CR

Structures

When X is enlarged to CP1 and G to PSL(2,C), the resulting deformation
theory of CP1-structures is quite rich. A manifold modeled on this geometry
is naturally a Riemann surface, and thus the deformation space fibers over the
Teichmüller space of marked Riemann surfaces:

Def(G,X)(Σ) −→ T(Σ). (4)

The classical theory of the Schwarzian derivative identifies this fibration with a
holomorphic affine bundle, where the fiber over a point in T(Σ) corresponding

to a marked Riemann surface Σ
≈
−→M is an affine space with underlying vector

space H0(M ;κ2M ) consisting of holomorphic quadratic differentials on M .

In the late 1970’s, Thurston (unpublished) showed that Def(G,X)(Σ) admits
an alternate description as F(Σ)×ML(Σ) whereML(Σ) is the space of equiv-
alence classes of measured geodesic laminations on Σ. (Compare Kamishima-
Tan [108].) [73] gives the topological classification of CP1-structures whose
holonomy representation is a quasi-Fuchsian embedding. Gallo-Kapovich-
Marden [65] showed that the image of the holonomy map hol consists of repre-
sentations into PSL(2,C) which lift to an irreducible and unbounded represen-
tation into SL(2,C).

For an excellent survey of this subject, see Dumas [53].
These structures generalize to higher dimensions in several ways. For exam-

ple PSL(2,C) is the group of orientation-preserving conformal automorphisms of
CP1 ≈ S2. A flat conformal structure is a geometric structure locally modeled
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on Sn with its group of conformal automorphisms. This structure is equiva-
lent to a conformal class of Riemannian metrics, which are locally conformally
equivalent to Euclidean metrics. (Compare Matsumoto [130].) In the 1970’s it
seemed tempting to try to prove the Poincaré conjecture by showing that ev-
ery closed 3-manifold admits such a structure. This was supported by the fact
that these structures are closed under connected sums (Kulkarni [117]). This
approach was further promoted by the fact that such structures arise as critical
points of the Chern-Simons functional [42], and one could try to reach critical
points by following the gradient flow of the Chern-Simons functional. However,
closed 3-manifolds with nilgeometry or solvgeometry admit no flat conformal
structures whatsoever [71]).

As Hn−1 × R embeds in Sn as the complement of a codimension-two sub-
sphere, the conformal geometry of Sn contains Hn−1 × R-geometry. Thus
products of closed surfaces with S1 do admit flat conformal structures, and
Kapovich [109] and Gromov-Lawson-Thurston [97] showed that even some non-
trivial S1-bundles over closed surfaces admit flat conformal structures, although
T1(H

2)-geometry admits no conformal model in S3.
Kulkarni-Pinkall [118] have extended Thurston’s correspondence

Def(G,X)(Σ)←→ F(Σ)×ML(Σ)

to associate to a flat conformal structure on a manifold (satisfying a generic con-
dition of “hyperbolic type”) a hyperbolic metric with some extrinsic (bending)
data. b

A similar class of structures are the spherical CR-structures, modeled on
S2n−1 as the boundary of complex hyperbolic n-space, in the same way that
Sn−1 with its conformal structure bounds real hyperbolic n-space. Some of the
first examples were given by Burns-Shnider [30]. 3-manifolds with nilgeometry
naturally admits such structures, but by [71], closed 3-manifolds with Euclidean
and solvgeometry do not admit such structures. Twisted S1-bundles admit
many such structures (see for example [88]), but recently Ananin, Grossi and
Gusevskii [4, 5] have constructed surprising examples of spherical CR-structures
on products of closed hyperbolic surfaces with S1. Other interesting examples of
spherical CR-structures on 3-manifolds have been constructed by Schwartz [144,
145, 146], Falbel [57], Gusevskii, Parker [137], Parker-Platis [138].

When X = RPn and G = PGL(n + 1,R), then a (G,X)-structure is a flat
projective connection.

In dimension 3, the only closed manifold known not to admit an RP3-
structure is the connected sum RP3#RP3 (Cooper-Goldman [46]). Many di-
verse examples of RP3-structures on twisted S1-bundles over closed hyperbolic
surfaces arise from maximal representations of surface groups into Sp(4,R) by
Guichard-Wienhard [101]. All eight of the Thurston geometries have models in
RP3 [136].

The 2-dimensional theory is relatively mature. The most important exam-
ples are the convex structures, namely those which arise as quotients Ω/Γ where
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Ω is a convex domain in RP2 and Γ is a group of collineations preserving Ω.
Kuiper [115] showed that all convex structures on 2-tori are affine structures,
and classified them. They are all quotients of the plane, a half-plane or a quad-
rant. In higher genus, he showed [116] that either ∂Ω is a conic (in which case
the projective structure is a hyperbolic structure) or it fails to be C2. Benze-
cri [18] showed that in the latter case, it is C1 and is strictly convex. Using
the analog of Fenchel-Nielsen coordinates, Goldman [77] showed that the de-
formation space C(Σ) is a cell of dimension −8χ(Σ). (Kim [111] showed these
coordinates are global Darboux coordinates for the symplectic structure, ex-
tending a result of Wolpert [174] for F(Σ).) In his doctoral thesis, Choi showed
that every structure on a closed surface canonically decomposes into convex
structures with geodesic boundary, glued together along boundary components.
Combining these two results, one identifies the deformation space precisely as
a countable disjoint union of open −8χ(Σ)-cells [44].

Using analytic techniques, Labourie [122] and Loftin [126], independently,
described C(Σ) as a cell in a quite different way. Associated to a convex RP2-
structure M is a natural Riemannian metric arising from representing M as a
convex surface in R

3, which is a hyperbolic affine sphere. The underlying con-
formal structure defines a point in T(Σ) associated to the convex RP2-manifold
M . Its extrinsic geometry is described by a holomorphic cubic differential on
the corresponding Riemann surface. In this way C(Σ) identifies with the bundle
over T(Σ) whose fiber over a marked Riemann surface is the vector space of
holomorphic cubic differentials on that Riemann surface. Loftin [127] relates
the geometry of these structures to the asymptotics of this deformation space.

These results generalize in several directions. In a series of beautiful pa-
pers, Benoist [11, 12, 13, 14, 15, 16] studied convex projective structures Ω/Γ
on compact manifolds. The natural Hilbert metric on Ω determines a (Finsler)
metric on M , and if Ω is strictly convex, then this natural metric has nega-
tive curvature and Γ is a hyperbolic group. The corresponding geodesic flow
is an Anosov flow, which if M admits a hyperbolic structure, is topologically
conjugate to the geodesic flow of the hyperbolic metric. Furthermore, as in
[43], the corresponding representations Γ −→ PGL(n + 1,R) form a connected
component of the space of representations. For compact quotients Ω/Gamma,
Benoist showed that the hyperbolicity of the group Γ is equivalent to the strict
convexity of ∂Ω. He constructed 3-dimensional examples of convex structures
on 3-manifolds with incompressible tori and hyperbolic components, where ∂Ω
is the closure of a disjoint countable union of triangles. In a different direc-
tion, Kapovich [110] constructed convex projective structures with ∂Ω strictly
convex but Ω/Γ has no locally symmetric structure.

When G is a split real form of a complex semisimple Lie group, Hitchin [105]
showed that Hom

(

π1(Σ), G
)

/G contains components homeomorphic to open
cells. Specifically, these are the components containing Fuchsian representations
into SL(2,R) composed with the Kostant principal representation SL(2,R) −→
G. When G = SL(3,R), then hol maps C(Σ) diffeomorphically to Hitchin’s com-
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ponent (Choi-Goldman [43]). Guichard and Wienhard [100] have found inter-
pretations of Hitchin components in SL(4,R) in terms of geometric structures.
Recently [102] they have also shown that a very wide class of Anosov repre-
sentations as defined by Labourie [120], correspond to geometric structures on
closed manifolds. (A much different class of Anosov representations of surface
groups has recently been studied by Barbot [6, 7].

The properness of the action of Mod(Σ) on F(Σ) is generally attributed
to Fricke. Many cases are known of components of deformation spaces when
Mod(Σ) acts properly [94, 171, 27]. In many of these cases, these components
consist of holonomy representations of uniformizable Ehresmann structures.

13. Surface Groups: Symplectic Geometry and

Mapping Class Group

Clearly the classification of geometric structures in low dimensions closely in-
teracts with the space of surface group representations. Many examples have
already been discussed here. By the Ehresmann-Weil-Thurston holonomy the-
orem, the local geometry of Hom

(

π1(Σ), G
)

/G is the same local geometry of

Def(G,X)(Σ). When Σ is a compact surface, this space itself admits rich geo-
metric structures.

Associated to an orientation on Σ and an Ad(G)-invariant nondegenerate
symmetric bilinear form B on the Lie algebra of G is a natural symplectic
structure on the deformation space. (When ∂Σ 6= ∅, one obtains a Poisson
structure whose symplectic leaves correspond to fixing the conjugacy classes
of the holonomy along boundary components.) This extends the cup-product
symplectic structure on H1(Σ,R) (when G = R), the Kähler form on the
Jacobian of a Riemann surface M ≈ Σ, (when G = U(1)), and the Weil-
Petersson Kähler form on T(Σ) (when G = PSL(2,R)). Compare [72].

The symplectic geometry extends over the singularities of the deformation
space as well. In joint work with Millson [93, 132], inspired by a letter of
Deligne [49], it is shown that the germ at a reductive representation ρ, the
analytic variety Hom(π1(Σ), G)/G is locally equivalent to a cone defined by a
system of homogeneous quadratic equations. Explicitly, this quadratic cone is
defined by the cup-product

Z1(Σ, gAdρ)× Z1(Σ, gAdρ)
[,]∗∪
−−−→ H2Σ, gAdρ)

using Weil’s identification of the Zariski tangent space of Hom(π1(Σ), G)/G
at ρ with Z1(Σ, gAdρ). This quadratic singularity theorem extends to higher-
dimensional Kähler manifolds [149] and relates to the stratified symplectic
spaces considered by Sjamaar-Lerman [150].

The symplectic/Poisson geometry of the deformation spaces

Hom
(

π1(Σ), G
)

/G and Def(G,X)(Σ) associate vector fields to functions in the
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following way (see [75]). A natural class of functions fα on Hom
(

π1(Σ), G
)

/G

arise from Inn(G)-invariant functions G
f
−→ R and elements α ∈ π(Σ) by

composition:

[ρ]
fα
−→ f

(

ρ(α)
)

.

For example, when ` is the geodesic length function on PSL(2,R), this construc-
tion yields the geodesic length functions `α on T(Σ).

When α arises from a simple closed curve on Σ then the Hamiltonian flow
associated to the vector field Ham(fα) admits a simple description as a gener-
alized twist flow. Such a flow is “supported on α” in the sense that pulled back
to the complement Σ \ α the flow is a trivial deformation. This extends the
results of Wolpert [172, 173] for the Weil-Petersson symplectic form on T(Σ),
Fenchel-Nielsen twist flow (or earthquake) along α is Ham(`α). For the case of
G = SU(2), Jeffrey and Weitsman [106] used these flows to define an “almost
toric” structure on Hom

(

π1(Σ), G
)

/G from which they deduced the Verlinde
formulas.

The Poisson brackets of the functions fα may be computed in terms of ori-
ented intersections on Σ. For G = GL(n), and f = tr, one obtains a topologically
defined Lie algebra based on homotopy classes of curves on Σ with a represen-
tation in the Poisson algebra of functions on Hom

(

π1(Σ), G
)

/G. Turaev[167]
showed this Lie algebra extends to a Lie bialgebra and found several quanti-
zations. Recently Moira Chas [40] has discovered algebraic properties of this
Lie algebra; in particular she proved that the `1 norm of a bracket [α, β] of
two unoriented simple closed curves equals the geometric intersection number
i(α, β).

These algebraic structures extend in higher dimensions to the string topology
of Chas-Sullivan [41].

The symplectic geometry is Mod(Σ)-invariant and in particular defines an
invariant measure on the deformation space. Unlike the many cases in which
Mod(Σ) acts properly discussed above, when G is compact, this measure-
preserving action is ergodic on each connected component (Goldman [78],
Pickrell-Xia [139], Goldman-Xia [96]). When G is noncompact, invariant open
subsets of the deformation space exist where the action is proper (such as the
subset of Anosov representations), but in general Mod(Σ) can act properly
on open subsets containing non-discrete representations, even for PSL(2,R)
([81, 91, 156]).

Similar questions for the action of the outer automorphism group Out(Fn) of
a free group Fn on Hom(Fn, G)/G have recently been studied [83]. In particular
Gelander has proved that the action of Out(Fn) is ergodic whenever G is a
compact connected Lie group. For G = SL(2,C), Minsky [135] has recently
found open subsets of Hom(Fn, G)/G strictly containing the subset of Schottky
embeddings for which the action is proper.
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[10] , Une nilvariété non affine, J. Diff. Geo. 41 (1995), no. 1, 21–52.
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École Norm. Sup. (4) 24 (6) (1991), 635–704.

[168] Weil, A. , On discrete subgroups of Lie groups I, Ann. Math. 72 (1960), 369–384.

[169] , On discrete subgroups of Lie groups II, 75 (1962), 578–602.

[170] , Remarks on the cohomology of groups, Ann. Math. (2) 80 (1964), 149–
157.

[171] Wienhard, A., The action of the mapping class group on maximal representa-
tions, Geom. Ded. 120 (2006), 179–191.



744 William M. Goldman

[172] Wolpert, S. , The Fenchel-Nielsen deformation, Ann. Math. (2) 115 (3) (1982),
501–528.

[173] , The symplectic geometry of deformations of a hyperbolic surface, Ann.
Math. 117 (1983), 207–234

[174] , On the Weil Petersson geometry of the moduli space of curves, Amer.
J. Math. 107 (4) (1985), 969–997.

[175] Wood, J., Bundles with totally disconnected structure group, Comm. Math. Helv.
51 (1971), 183–199.

[176] Zeghib, A., On closed anti-de Sitter spacetimes, Math. Ann. 310 (4) (1998),
695–716.



Proceedings of the International Congress of Mathematicians

Hyderabad, India, 2010

Metaphors in Systolic Geometry

Larry Guth∗

Abstract

We discuss the systolic inequality for n-dimensional tori, explaining different
metaphors that help to organize the proof. The metaphors connect systolic
geometry with minimal surface theory, topological dimension theory, and scalar
curvature.
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1. Introduction

This essay is an introduction to systolic geometry. Rather than surveying a lot
of results, I’m going to focus on one central result, and I want to survey a lot
of ways of thinking about it.

Systolic inequality for tori. (Gromov, 1983 [10]) If (Tn, g) is an n-
dimensional torus with a Riemannian metric, then there is a non-contractible
curve γ ⊂ Tn whose length obeys the inequality

length(γ) ≤ CnVol(Tn, g)1/n.

This inequality is very general. It holds in every dimension n, and it holds for
every metric g on Tn. (For example, there is no restriction on the curvature of
g.) This result is difficult and significant because it applies to so many metrics.

In the early 80’s, Gromov formulated several remarkable metaphors con-
necting the systolic inequality to important ideas in other areas of geometry,
and these metaphors have guided most of the research in the subject. They
connect the systolic problem with ideas about minimal surfaces, topological
dimension, and scalar curvature. The main goal of this essay is to explain Gro-
mov’s metaphors.
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The systole of (Tn, g) is defined to be the length of the shortest non-
contractible curve in (Tn, g). We will denote it by Sys(Tn, g). The systole of
(Tn, g) and the volume of (Tn, g) are both ways of describing the size of (Tn, g).
Size may sound like a basic issue in Riemannian geometry, but mathematicians
have not spent much time exploring it. The proofs of the systolic inequality
lead to some interesting perspectives about size in Riemannian geometry. At
the end of the essay, I will discuss the issue of size and point out some open
problems.

Acknowledgements. I would like to thank Hugo Parlier for the figure in
Section 2, and Alex Nabutovsky for helpful comments on a draft of the essay.

2. Examples

To get a feeling for the systolic inequality, let’s consider some examples.
First, suppose that (Tn, g) is a product of circles with lengths L1, . . . , Ln.

The length of the shortest non-contractible curve in this metric is minn
i=1 Li,

and the volume of the metric is
∏n

i=1 Li. Hence we see that for product metrics,

there is a non-contractible curve of length at most Vol1/n.
Next let’s consider some examples of two dimensional tori that we can visu-

alize. The systolic inequality for two-dimensional tori was proven by Loewner
in 1949 with a sharp constant.

Loewner’s systolic inequality. (1949) If (T 2, g) is a 2-dimensional torus
with a Riemannian metric, then there is a non-contractible curve γ ⊂ (T 2, g)
whose length obeys the inequality

length(γ) ≤ CArea(T 2, g)1/2,

where C = 21/23−1/4 ∼ 1.1.

The diagram below shows four different tori.
The first picture is supposed to show a torus of revolution, where we take
the circle of radius 1 around the point (2, 0) in the x-z plane and revolve it
around the z-axis. It has systole 2π and area around 60, and so it obeys the
systolic inequality. According to Loewner’s theorem, there is nothing we can
do to dramatically increase the systole while keeping the area the same. The
second picture shows a long skinny torus. When we make the torus skinnier
and longer, the systole goes down and the area stays about the same. The third
picture shows a torus with a long thin spike coming out of it. When we add a
long thin spike to the torus, the systole doesn’t change and the spike adds to
the area. The fourth picture shows a ridged torus with some thick parts and
some thin parts. When we put ridges in the surface of the torus, the systole
only depends on the thinnest part and the thick parts contribute heavily to the
area.
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Figure 1. Pictures of tori

(Friendly challenge to the reader: can you think of a torus with geometry
radically different from the pictures above?)

These pictures start to give a feel for the systolic inequality in two dimen-
sions. In three dimensions it gets much harder to draw pictures. In fact, in three
dimensions, there are examples of metrics much stranger than these. We touch
on them more in the next section.

3. Why Is the Systolic Inequality Hard?

The systolic inequality has the same flavor as the isoperimetric inequality. To
get a sense of the difficulty of the systolic inequality, let’s recall the classical
isoperimetric inequality and then compare them.

Isoperimetric inequality. Suppose that U ⊂ Rn is a bounded open set. Then
the volume of the boundary ∂U and the volume of U are related by the formula

Voln(U) ≤ CnVoln−1(∂U)
n

n−1 .

From the Riemannian point of view, this domain U is a compact manifold
with boundary equipped with a flat Riemannian metric (the Euclidean met-
ric). The isoperimetric inequality can be considered as a theorem about flat
Riemannian metrics. By contrast, the systolic inequality is a theorem about
all Riemannian metrics on Tn. (To make the comparison tighter, the classical
isoperimetric inequality holds for every flat metric on the n-ball. The systolic
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inequality does not make sense on a ball, but we will meet below a covering
inequality that holds for every metric on the n-ball.) Now the set of flat metrics
is only a tiny sliver in the set of all metrics. Moreover, the flat metrics are prob-
ably the easiest metrics to understand. So we see that the systolic inequality is
far more general than the classical isoperimetric inequality.

Loewner proved the systolic inequality for two-dimensional tori in 1949, but
the three-dimensional case was open for more than thirty years after Loewner’s
proof. Why is three dimensions so much harder than two? The space of Rie-
mannian metrics has many strange examples, disproving naive conjectures, and
this is especially true in dimensions three and higher. For example, let us con-
sider the following problem, raised by Berger and Gromov. Suppose that g is a
metric on Sn × Sn with volume 1. Can we find a non-trivial copy of Sn with
controlled n-dimensional volume? When n = 1, this is the systolic inequality
for T 2. By analogy, it seems plausible that it should hold for all n, but it turns
out that there are counterexamples for n ≥ 2.

Gromov-Katz examples. ([28]) For each n ≥ 2, and every number B, there
is a metric on Sn × Sn with (2n-dimensional) volume 1, so that every non-
contractible n-sphere in Sn × Sn has (n-dimensional) volume at least B.

As we go from domains in Euclidean space to metrics on T 2 to metrics on
T 3, the possible geometries become more complicated. To get a perspective on
this, let me describe a naive conjecture about the sizes of level sets and trace
how it plays out in the different settings.

Naive conjecture 1. If U ⊂ Rn is a bounded open set, then there is a function
f : U → R so that the volume of every level set is controlled by the volume of
U :

For every y ∈ R, Voln−1[f−1(y)] ≤ CnVoln(U)
n−1
n .

Naive conjecture 1 is true. I proved it in [18].

Naive conjecture 2. If g is a metric on T 2, then there is a function f : T 2 →
R so that the length of every level set is controlled by the area of g:

For every y ∈ R, Length[f−1(y)] ≤ CArea(T 2, g)1/2.

Naive conjecture 2 is also true. This result is more surprising than the first
one. The problem was open for a long time. It was proven by Balacheff and
Sabourau in [5].

Naive conjecture 3. If g is a metric on T 3, then there is a function f : T 3 →
R so that the area of every level set is controlled by the volume of (T 3, g):

For every y ∈ R, Area[f−1(y)] ≤ CVol(T 3, g)2/3.

Naive conjecture 3 is wrong. (There are many counterexamples. I think that
historically the first examples came from work of Brooks.)
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This story is typical for naive conjectures in metric geometry. The space of
all the metrics on T 3 is huge. There is a substantial zoo of strange examples, and
there are probably many other strange metrics yet to be discovered. Universal
statements about all metrics on T 3 are rare and significant.

4. The Role of Metaphors in Systolic Geometry

Reminiscing about his work in systolic geometry, Gromov wrote, “Since the
setting was so plain and transparent, I expected rather straightforward proofs.”
(See the end of Chapter 4 in [11] for Gromov’s recollections of working on the
systolic problem.) But in spite of the plain and transparent setting, the result is
difficult, and in particular, it’s hard to see how to get started. In the early 1980’s,
he formulated several remarkable metaphors connecting the systolic inequality
to important ideas in other areas of geometry. Guided by these metaphors,
he proved the systolic inequality. We now have three independent proofs of
the systolic inequality for the n-dimensional torus, each based on a different
metaphor.

The goal of this essay is to explain Gromov’s metaphors. In doing that, I
hope to describe the flavor of this branch of geometry and put it into a broad
context. The metaphors connect the systolic inequality to the following areas:

1. Minimal surface theory.

2. Topological dimension theory.

3. Scalar curvature.

Each metaphor gives a valuable perspective about the systolic problem and
suggests an outline of the proof. It still takes substantial work to fill in the
details of the proofs. Up to the present, every proof of the systolic inequality is
based on one of these metaphors.

5. Minimal Surface Theory

In the early 1970’s, Bombieri and Simon [6] proved the following sharp inequal-
ity about the geometry of minimal surfaces in Euclidean space.

Bombieri-Simon radius inequality. Suppose that Zn is a closed submanifold
of RN , and that Y n+1 is a minimal surface with ∂Y = Z. Suppose that Z has
the same volume as a round n-sphere of radius R. Then for each point y ∈ Y ,
the distance from y to Z is at most R.

This inequality is sharp when Z is a round sphere of radius R and Y is the
corresponding ball of radius R.
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Using this inequality, Bombieri and Simon proved the Gehring link conjec-
ture. If Zn and WN−n−1 are disjoint closed surfaces in RN , then the linking
number of Z with W is defined as follows. Let Y n+1 be a surface with ∂Y = Z.
Put Y in general position, and consider Y ∩W , which will be a finite set of
points. If we count these points with multiplicity we get the linking number
of Z with W . This linking number doesn’t depend on the choice of Y . If the
number is non-zero, we say that Z and W are linked.

Gehring link conjecture. Suppose that Zn and WN−n−1 are linked subman-
ifolds of RN . If Z has the same volume as a round n-sphere of radius R, then
the distance from Z to W is at most R. In other words, there are points z ∈ Z
and w ∈W with |z − w| ≤ R.

Proof. By the solution of the Plateau problem, there is a minimal surface Y
with ∂Y = Z. Since Z and W are linked, Y must intersect W in some point
y ∈W . But by the radius inequality, the distance from y to Z is at most R.

Gromov built an analogy between the Gehring link conjecture and the sys-
tolic problem. On the one hand, such an analogy sounds promising because
both inequalities bound a 1-dimensional length (or distance) in terms of an
n-dimensional volume.

Dist(Zn,WN−n−1) ≤ CnVol(Z)1/n. (Gehring link inequality)

Sys(Tn, g) ≤ CnVol(Tn, g)1/n. (Systolic inequality)

On the other hand, the analogy sounds far-fetched because the systolic prob-
lem is about an abstract Riemannian manifold, and the Gehring link conjecture
is about a submanifold of Euclidean space RN .

Every closed Riemannian manifold admits a canonical embedding into a
Banach space.

Kuratowski embedding. Define the map K : (Mn, g) → L∞(M) by letting
K(p) be the distance function distp. The map K is an isometry in the strong
sense that

dist(M,g)(p, q) = ‖K(p)−K(q)‖L∞ .

The Kuratowski embedding is canonical and respects the geometry of (M, g).
The target space L∞(M) is infinite-dimensional, but we can approximate this
embedding using a finite-dimensional Banach space. For each (M, g) there is a
finite dimension N and an embedding K0 : (M, g)→ (RN , l∞) which is nearly
isometric in the sense that

99

100
‖K0(p)−K0(q)‖l∞ ≤ dist(M,g)(p, q) ≤

100

99
‖K0(p)−K0(q)‖l∞ .

The following striking observation relates the systole problem and the link-
ing problem.
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Linking observation. ([10]) Let (Tn, g) be any Riemannian metric on Tn.
Let Zn be the image K0(Tn) ⊂ (RN , l∞). Then Z is linked with a surface
WN−n−1 with dist(Z,W ) ≥ (1/8)Sys(Tn, g).

We know that Z is linked with a faraway surface W , and we wish to conclude
that Z has a large volume. This is a version of the Gehring link problem in
(RN , l∞).

Metaphor 1. The systolic inequality is like the Gehring link problem in the
Banach space (RN , l∞).

The method of Bombieri-Simon does not work in Banach spaces. In effect,
their method uses the symmetry of Euclidean space. To get estimates for linked
surfaces in (RN , l∞), Gromov proved the following inequality.

Filling radius inequality. ([10]) If Zn ⊂ (RN , l∞) is a closed surface, then
there exists a surface Y n+1 with ∂Y = Z such that for each y ∈ Y ,

dist(y, Z) ≤ CnVoln(Z)1/n.

The filling radius inequality implies a linking inequality in (RN , l∞): if Zn and
WN−n−1 are linked in (RN , l∞), then dist(Z,W ) ≤ CnVol(Z)1/n. To prove the
systolic inequality, we let Z = K0(Tn, g) and we let W be the surface mentioned
in the linking observation above. Then we observe that

(1/8)Sys(Tn, g) ≤ dist(Z,W ) ≤ CnVol(Z)1/n ∼ CnVol(Tn, g)1/n.

There is an important story about the constant Cn in Gromov’s filling
radius inequality. It’s comparatively easy to prove an inequality of the form
dist(y, Z) ≤ CNVoln(Z)1/n with a constant CN depending on the ambient di-
mension N . This inequality does not imply the systolic inequality. We can find
a nearly isometric embedding from (Tn, g) into some (RN , l∞), but the dimen-
sion N depends on the metric g. Roughly speaking, if g is complicated, then
N will be large. To prove the systolic inequality for all g, we need a filling
radius estimate for all N with a uniform constant. We discuss this issue more
in Section 8 below.

(A note on vocabulary: I’ve been using the word surface a little bit loosely.
For readers with background in geometric measure theory, surface means Lip-
schitz chain and closed surface means Lipschitz cycle. For readers with less
background, surfaces (or Lipschitz chains) include smooth submanifolds and
they are a little bit more general. A surface is a submanifold with mild singu-
larities. For example, suppose that Z is a submanifold diffeomorphic to CP2. By
the cobordism theory, CP2 is not the boundary of any 5-dimensional manifold.
In this case, Y may be homeomorphic to a cone over CP2, which is a manifold
except for one singularity at the cone point.)
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6. Topological Dimension Theory

In the 1870’s, Cantor discovered that Rq and Rn have the same cardinality
even if q < n. This discovery surprised and disturbed him. He and Dedekind
formulated the question whether Rq and Rn are homeomorphic for q < n. This
question turned out to be quite difficult. It was settled by Brouwer in 1909.

Topological Invariance of Dimension. (Brouwer 1909) If q < n, then there
is no homeomorphism from Rn to Rq.

Cantor and Dedekind certainly knew that Rq and Rn were not linearly
isomorphic. Linear algebra gives us two stronger statements:

Linear algebra lemma 1. If q < n, then there is no surjective linear map
from Rq to Rn.

Linear algebra lemma 2. If q < n, then there is no injective linear map from
Rn to Rq.

It seems reasonable to try to prove topological invariance of dimension by
generalizing these lemmas. A priori, it’s not clear which lemma is more promis-
ing. Cantor spent a long time trying to generalize Lemma 1 to continuous maps.
(At one point, Cantor even believed he had succeeded [27].) In fact, Lemma 1
does not generalize to continuous maps.

Space-filling curve. (Peano, 1890) For any q < n, there is a surjective con-
tinuous map from Rq to Rn.

In his important paper on topological invariance of dimension, Brouwer
proved that Lemma 2 does generalize to continuous maps.

Brouwer non-embedding theorem. If n > q, then there is no injective
continuous map from Rn to Rq.

So it turns out that Lemma 2 is more robust than Lemma 1. A smaller-
dimensional space may be stretched to cover a higher-dimensional space. But a
higher-dimensional space may not be squeezed to fit into a lower-dimensional
space. This fact is not obvious a priori - it is an important piece of acquired
wisdom in topology. In this section, we’re going to talk about the geometric
consequences/cousins of this fundamental discovery of topology.

Shortly after Brouwer, Lebesgue introduced a nice approach to Brouwer’s
non-embedding theorem in terms of coverings. If Ui is an open cover of some
set X ⊂ Rn, we say that the multiplicity of the cover is at most µ if each point
x ∈ X is contained in at most µ open sets Ui. We say the diameter of a cover is
at most D if each open set Ui has diameter at most D. For any ε > 0, Lebesgue
constructed an open cover of Rn with multiplicity ≤ n + 1 and diameter at
most ε. He then proposed the following lemma.



Metaphors in Systolic Geometry 753

Lebesgue covering lemma. If Ui are open sets that cover the unit n-cube,
and each Ui has diameter less than 1, then some point of the n-cube lies in at
least n+ 1 different Ui.

(Brouwer gave the first proof of the Lebesgue covering lemma in 1913. See
the interesting essay “The emergence of topological dimension theory” [27] for
more information on the history.)

To see how the Lebesgue covering lemma implies the non-embedding the-
orem, suppose that we have a continuous map f from the unit n-cube to Rq

for some q < n. Lebesgue constructed an open cover Ui of Rq with multiplicity
q + 1 and diameter < ε. The preimages f−1(Ui) form an open cover of the
unit n-cube with multiplicity q+ 1. Since q+ 1 < n+ 1, the Lebesgue covering
lemma implies that some set f−1(Ui) must have diameter at least 1. On the
other hand, the diameters of the sets Ui are as small as we like. By taking a
limit as ε → 0, we can find a point y ∈ Rq such that the fiber f−1(y) has
diameter at least 1. So the Lebesgue covering lemma implies the following large
fiber lemma:

Large fiber lemma. Suppose q < n. If f is a continuous map from the unit
n-cube to Rq, then one of the fibers of f has diameter at least 1. In other words,
there exist points p, q in the unit n-cube with |p− q| ≥ 1 and f(p) = f(q).

The large fiber lemma is a precise quantitative theorem saying that an n-
dimensional cube cannot be squeezed into a lower-dimensional space.

What is it about the unit n-cube which makes it hard to cover with mul-
tiplicity n? Roughly speaking, the key point is that the unit n-cube is “fairly
big in all directions”. If every non-contractible curve in (Tn, g) has length at
least 1, then in some sense, (Tn, g) is fairly big in all directions too. Gromov
was able to make this precise and proved the following generalization of the
Lebesgue covering lemma.

Generalized Lebesgue covering lemma. ([10]) Suppose that g is a Rie-
mannian metric on the n-dimensional torus Tn with systole at least 1. In other
words, every non-contractible loop in (Mn, g) has length at least 1.

If Ui is an open cover of (Mn, g) with diameter at most 1/10, then some
point of M lies in at least n+1 different sets Ui.

Topologists following Lebesgue used the covering lemma as a basis for defin-
ing the dimension of metric spaces [26]. They said that the Lebesgue covering
dimension of a metric space X is at most n if X admits open covers with
multiplicity at most n+ 1 and arbitrarily small diameters. Different notions of
dimension were intensively studied in the first half of the twentieth century. The
most well-known is the Hausdorff dimension of a metric space. The Hausdorff
dimension and the Lebesgue covering dimension may be different. For example,
the Cantor set has Lebesgue dimension zero and Hausdorff dimension strictly
greater than zero. In 1937, Szpilrajn proved that LebDim(X) ≤ HausDim(X)
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for any compact metric space X. To do so, he constructed coverings of metric
spaces with small diameters and bounded multiplicities.

Szpilrajn covering construction. (1937) If X is a (compact) metric space
with n-dimensional Hausdorff measure 0, and ε > 0 is any number, then there
is a covering of X with multiplicity at most n and diameter at most ε. Hence
X has Lebesgue dimension ≤ n− 1.

Gromov asked whether Szpilrajn’s theorem is stable in the following sense:
If X has very small n-dimensional Hausdorff measure, is there a covering of X
with multiplicity at most n and small diameter? In 2008, I constructed such
coverings for Riemannian manifolds.

Covering construction for Riemannian manifolds. (Guth 2008, [19]) If
(Mn, g) is an n-dimensional Riemannian manifold with volume V , then there
is an open cover of (Mn, g) with multiplicity n and diameter at most CnV

1/n.

Combining this covering construction with the generalized Lebesgue cover-
ing lemma, we get a second proof of the systolic inequality. The second proof
is summarized in the following metaphor.

Metaphor 2. The systolic inequality is like topological dimension theory. In
particular, it follows from robust versions of the Lebesgue covering lemma and
the Szpilrajn covering construction.

The inequality in my covering construction above and Gromov’s filling ra-
dius inequality are actually quite similar to each other. The covering inequality
implies the filling radius inequality, but the results are equally useful in prac-
tice. The methods of proof are quite different though. The proof of the covering
construction uses ideas from topological dimension theory: we begin by choos-
ing an open cover of (M, g) and mapping to the nerve of the cover. The main
difficulty is that we need quantitative estimates that don’t appear in topological
dimension theory. We need to estimate the multiplicity the cover, the sizes of
the open sets and their overlaps, etc. Taking classical ideas from topology and
modifying them to get quantitative estimates is a developing area of research
connecting geometry and topology. See Gromov’s essay ‘Quantitative topology’
[15] for an introduction.

7. Scalar Curvature

The Geroch conjecture was one of the guiding problems in the history of scalar
curvature.

Geroch conjecture. The n-torus does not admit a metric of positive scalar
curvature.
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In the late 1970’s, there were two breakthroughs in the field of scalar cur-
vature. Schoen and Yau invented the minimal hypersurface method, and used
it to prove the Geroch conjecture for n ≤ 7 (see [33] and [34]). We will discuss
the minimal hypersurface method more below. Shortly afterwards, Gromov and
Lawson used the Dirac operator method to prove the Geroch conjecture for all
n.

Gromov’s third metaphor connects the Geroch conjecture to the systolic
inequality. The metaphor is based on the description of scalar curvature in
terms of the volumes of small balls.

Scalar curvature and volumes of balls. If (Mn, g) is a Riemannian man-
ifold and p is a point in M , then the volumes of small balls in M obey the
following asymptotic:

VolB(p, r) = ωnr
n − cnSc(p)rn+2 +O(rn+3). (∗)

In this equation, ωn is the volume of the unit n-ball in Euclidean space, and
cn > 0 is a dimensional constant. So we see that if Sc(p) > 0, then the volumes
of tiny balls B(p, r) are a bit less than Euclidean, and if Sc(p) < 0 then the
volumes of tiny balls are a bit more than Euclidean.

The scalar curvature measures the asymptotic behavior of volumes of tiny
balls as the radius goes to zero. We will consider something analogous to scalar
curvature but based on the volumes of balls with finite radius - we call it the
“macroscopic scalar curvature at scale r”. We define the macroscopic scalar
curvature as follows. Let p be a point in (Mn, g). We let V (p, r) be the volume
of the ball of radius r around p. Then we let Ṽ (p, r) be the volume of the ball
of radius r around p in the universal cover of M . (We’ll come back in a minute
to discuss why it makes sense to use the universal cover here.) Now we compare
the volume Ṽ (p, r) with the volumes of balls of radius r in spaces of constant
curvature. We let ṼS(r) denote the volume of the ball of radius r in a simply
connected space with constant curvature and scalar curvature S. If we fix r,
then ṼS(r) is a decreasing function of S; as S → +∞, ṼS(r) goes to zero, and as
S → −∞, ṼS(r) goes to infinity. We define the “macroscopic scalar curvature
at scale r at p” to be the number S so that Ṽ (p, r) = ṼS(r).

We denote the macroscopic scalar curvature at scale r at p by Scr(p). In
particular, if Ṽ (p, r) is more than ωnr

n, then Scr(p) < 0, and if Ṽ (p, r) < ωnr
n,

then Scr(p) > 0.
By formula (∗), it’s straightforward to check that limr→0 Scr(p) = Sc(p).
Let’s work out a simple example. Suppose that g is a flat metric on the

n-dimensional torus Tn. In this case, the universal cover of (Tn, g) is Euclidean
space. Therefore, we have Ṽ (p, r) = ωnr

n for each p ∈ Tn and each r > 0.
Hence Scr(p) = 0 for every r and p. If we had used volumes of balls in (Tn, g)
instead of in the universal cover, then we would have Scr(p) > 0 for all r bigger
than the diameter of (Tn, g). By using the universal cover, we arrange that flat
metrics have Scr = 0 at every scale r.
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Metaphor 3. The macroscopic scalar curvature is like the scalar curvature.

This metaphor leads to some deep, elementary, and wide open conjectures
in Riemannian geometry.

Generalized Geroch conjecture. (Gromov 1985) Fix r > 0. The n-
dimensional torus does not admit a metric with Scr > 0. Equivalently, if g
is any metric on Tn, then the universal cover (Tn, g) contains a ball of radius
r and volume at least ωnr

n.

The generalized Geroch conjecture is very powerful (if it’s true). Since the
scalar curvature is the limit of Scr as r → 0, the generalized Geroch conjecture
implies the original Geroch conjecture. The generalized Geroch conjecture also
implies the systolic inequality, which we can see as follows. Suppose that (Tn, g)
has systole at least 1. The generalized Geroch conjecture implies that the uni-
versal cover of (Tn, g) contains a ball of radius (1/2) and volume ≥ ωn(1/2)n.
Since the systole of (Tn, g) is at least 1, the covering projection T̃n → Tn is
injective on this ball. Therefore, (Tn, g) contains a ball of radius (1/2) and
volume at least ωn(1/2)n. In particular, the total volume of (Tn, g) must be at
least ωn(1/2)n.

The generalized Geroch conjecture really appeals to me because it’s so
strong and so elementary to state, but I don’t see any plausible tool for ap-
proaching the problem.

Now we return to the Schoen-Yau proof of the Geroch conjecture, and we
discuss how to adapt it to systolic geometry. The key idea in the Schoen-Yau
proof is an inequality for stable minimal hypersurfaces in a manifold of positive
scalar curvature.

Stability inequality for scalar curvature. If (Mn, g) is a Riemannian man-
ifold with Sc > 0, and Σn−1 ⊂M is a stable minimal hypersurface, then Σ has -
on average - positive scalar curvature also.

To see how to apply this observation, suppose that (M3, g) has positive
scalar curvature. Then a stable minimal hypersurface Σ ⊂M3 is 2-dimensional,
and it has (on average) positive scalar curvature. In two dimensions, the scalar
curvature is much better understood, and it’s not so hard to get topological
and geometric information about Σ. Now we know topological and geometric
information about every minimal surface Σ in M , and we can use this to learn
topological and geometric information about M itself. With this tool, Schoen
and Yau proved the Geroch conjecture.

I proved an analogue of the Schoen-Yau stability inequality using volumes
of balls instead of scalar curvature. Informally, the lemma says that if a Rie-
mannian manifold has balls of small volume then an absolutely minimizing
hypersurface also has balls of small volume.

Stability inequality for volumes of balls. (Guth, 2009, [20]) Suppose that
(Mn, g) is a Riemannian manifold where every ball of radius 1 has volume at
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most α, and suppose that (M, g) has systole at least 2. If Σn−1 ⊂ M is an
embedded surface which is absolutely minimizing in its homology class, then
every ball in Σ of radius 1/2 has (n-1)-volume at most 2α.

Using this lemma, I proved a weak version of the generalized Geroch con-
jecture with a non-sharp constant.

Non-sharp generalized Geroch. (Guth, 2009, [20]) For any metric g on
Tn, the universal cover of Tn contains a ball of radius 1 and volume at least
c(n) > 0. Therefore, if (Tn, g) has systole at least 2, then it contains a ball of
radius 1 with volume at least c(n) > 0.

It’s unknown whether there is any systolic analogue of the Dirac operator
method for positive scalar curvature.

The results of Schoen-Yau and Gromov-Lawson remain today the main
theorems about scalar curvature. Now we turn to an open question in the field
of scalar curvature, and we consider it from the viewpoint of systolic geometry.

Schoen conjecture. Suppose that (Mn, hyp) is a closed hyperbolic mani-
fold. Suppose that g is any metric on M obeying the scalar curvature estimate
Sc(g) ≥ Sc(hyp). Then Vol(M, g) ≥ Vol(M,hyp).

This elegant conjecture appears in connection with the Yamabe problem
in conformal geometry [32], and it is also beautiful in its own right. In two
dimensions, the conjecture follows from the Gauss-Bonnet formula. In three
dimensions, it was proven by Perelman as a byproduct of the Ricci flow proof of
geometrization. In four dimensions, the conjecture is open, but LeBrun proved
a cousin of this conjecture for complex hyperbolic manifolds [31]. LeBrun’s
proof uses Seiberg-Witten theory. In dimensions n ≥ 5, the problem is wide
open. According to a deep theorem of Besson, Courtois, and Gallot, if Ric(g) ≥
Ric(hyp), then Vol(M, g) ≥ Vol(M,hyp) [4]. This theorem of Besson, Courtois,
and Gallot is much weaker than the Schoen conjecture, but it is still a landmark
result in comparison geometry. In dimensions n ≥ 5 we don’t have any lower
bound at all for Vol(Mn, g) with Scal(g) ≥ Scal(hyp).

The Schoen conjecture can be generalized to the macroscopic scalar curva-
ture, producing an even more general and daunting conjecture.

Generalized Schoen conjecture. Let r > 0 be any number. Suppose that
(Mn, hyp) is a closed hyperbolic manifold. Suppose that g is any metric on M
obeying the estimate Scr(g) ≥ Scr(hyp). Then Vol(M, g) ≥ Vol(M,hyp).

Needless to say, this conjecture is far out of reach. But using methods from
systolic geometry, I proved a weak version of this conjecture with a non-sharp
constant.

Non-sharp generalized Schoen conjecture. (Guth, [22]) Suppose that
(Mn, hyp) is a hyperbolic manifold. Suppose that g is any metric on M obeying
the estimate Sc1(g) ≥ Sc1(hyp). In other words, every unit ball in the universal
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cover of (Mn, g) has volume at most the volume of a hyperbolic unit ball. Then
Vol(M, g) ≥ c(n)Vol(M,hyp).

The generalized Schoen conjecture implies the original Schoen conjecture
by taking the limit as r → 0, but my inequality is not sharp enough to give any
information about scalar curvature.

The minimal hypersurface approach to scalar curvature is not enough to
resolve the Schoen conjecture. Similarly, the minimal hypersurface approach to
systolic geometry is not enough to prove the volume estimate above. The proof
of this volume estimate uses the techniques coming from topological dimension
theory.

8. The Federer-Fleming Averaging Argument

The three metaphors we have been discussing provide large-scale perspective
on the systolic problem. They provide guidance about how the outline of the
proof should go, but they usually don’t provide guidance about how the details
of the proof should go. One crucial idea that makes the details work is the
Federer-Fleming averaging argument. It is the one ingredient which appears in
some form in all three proofs of the systolic inequality.

Here is the first example of the Federer-Fleming averaging argument, coming
from their paper [9] on the Plateau problem.

Deformation lemma. Suppose that z is a k-dimensional surface in the unit
N-ball BN , and that z has a boundary ∂z lying in ∂BN . If k < N , then there
is a map Φ : z → ∂BN which fixes ∂z and obeys the volume estimate

Volk[Φ(z)] ≤ C(k,N)Volk[z].

Informally, the proposition says that we can push z into the boundary of
the ball without stretching it too much.

The simplest way one could think to map z into ∂BN is to project z radially
outward to the boundary. Let Φ0 denote the radial projection outward from
zero. In polar coordinates, Φ0(r, θ) = (1, θ). This map Φ0 is undefined at the
point 0, but we can first put z into general position so that it avoids 0, and this
operation has a negligible effect on the volume of z. But the radial projection
Φ0 may not obey the volume estimate. If a large fraction of z is concentrated
near to 0, then the radial projection may badly stretch this portion of z leading
to an image with a huge volume. Instead of projecting from 0, one can instead
project outward from any point p ∈ BN . We let Φp : BN \ {p} → ∂BN denote
the radial projection outward from the point p. Federer and Fleming discovered
that for any fixed surface z, most projections Φp obey the volume estimate. To do
that, they estimated the average volume of a projection, proving the inequality

1

VolBN

∫
BN

Volk[Φpz]dp ≤ C(k,N)Volkz.
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This inequality follows in a couple lines using Fubini’s theorem.
This simple averaging method tells us something fundamental about surface

areas. By using the averaging method many times, one can prove a surprising
range of geometric estimates about surface areas. This approach to geometry
problems originates with Federer and Fleming in 1959, but Gromov’s proof of
the systolic inequality really showed how powerful it is, starting a stream of
results proven by using the averaging trick many times. Let’s trace the history
of this method.

1. (Isoperimetric inequalities) The method begins with Federer and Flem-
ing who used the deformation lemma to prove a general isoperimetric
inequality [9].

Federer-Fleming isoperimetric inequality. If Z is a k-dimensional
closed surface in RN , then there is a (k+1)-dimensional surface Y with
∂Y = Z obeying the volume estimate

Volk+1(Y ) ≤ C(k,N)Volk(Z)
k+1
k .

Their proof also gives a filling radius estimate.

Federer-Fleming filling radius inequality. If Z is a k-dimensional
closed surface in RN , then there is a (k+1)-dimensional surface Y with
∂Y = Z so that every point y ∈ Y obeys the distance estimate

dist(y, Z) ≤ C(k,N)Volk(Z)
1
k .

2. (Isoperimetric inequalities in high dimensions) The constants in the
Federer-Fleming estimates above are not sharp. They are particularly bad
in large ambient dimensions N . As N → ∞, the constant c(k,N) → ∞.
The sharp constants were found using geometric measure theory, and
they occur when Z is a round sphere. (The sharp radius estimate is due
to Bombieri-Simon [6] and the sharp isoperimetric inequality is due to
Almgren [1].) In particular, the sharp constants do not depend on the
ambient dimension N .

Let us contrast the Federer-Fleming approach with the minimal surface
approach. In the minimal surface approach to the filling radius inequal-
ity, one takes Y to be an absolutely minimizing chain with boundary Z.
The existence of such a minimizer is a deep theorem (the solution of the
Plateau problem). The variational method really doesn’t tell us how to
construct Y or even how to approximate Y . Next one proves that Y is
smooth at most points. Finally, minimal surfaces enjoy special geometric
properties such as the monotonicity formula, which then imply estimates
about the radius or volume of Y . By contrast, Federer and Fleming con-
struct the filling Y “by hand”, using the deformation lemma repeatedly.
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This construction is crude compared to the minimal surface filling, and
hence it does not give sharp constants.

In the early 80’s, one might have guessed that a direct construction of
Y would be too crude to prove good isoperimetric estimates when the
ambient dimension N →∞. Surprisingly, Gromov was able to adapt the
Federer-Fleming method to prove isoperimetric and filling radius esti-
mates with constants independent of the ambient dimension [11]. More-
over, the method was flexible enough to work in Banach spaces such as
(RN , l∞), where minimal surface techniques do not work. The main new
idea in Gromov’s proof was to use induction on k. The proof was further
simplified and generalized by Wenger in [35]. His proof is only a couple
pages long.

Isoperimetric inequality in Banach spaces. Let B be a Banach
space. Suppose that Z is a k-dimensional closed surface in B. Then there
is a (k+1)-dimensional surface Y with ∂Y = Z obeying the volume in-
equaliy

Volk+1(Y ) ≤ C(k)Volk(Z)
k+1
k .

3. (Sweep out inequalities) In an appendix to [11], Gromov used the Federer-
Fleming method to approach the Almgren sweepout inequality.

Sweep out inequality. (Almgren, 1962 [2]) Suppose that Φ : Sk ×
Sn−k → Sn is a map of non-zero degree. Equip the target Sn with the
standard unit sphere metric. Then there exists some θ ∈ Sn−k so that
Φ(Sk × {θ}) has k-volume at least the volume of the unit k-sphere.

This is a deep result based on the variational theory of minimal surfaces.
For a reader without a strong background in geometric measure theory,
the proof is hundreds of pages long. Gromov proved a slightly weaker re-
sult by using the Federer-Fleming averaging lemma repeatedly. The lower
bound on volume in Gromov’s result is a non-sharp constant c(k, n) > 0,
but the proof is only a few pages long.

4. (Isoperimetric inequalities on Lie groups) Gromov adapted the Federer-
Fleming method to Lie groups such as the Heisenberg group. In [16] he
proved an analogue of the filling radius inequality for surfaces in the
Heisenberg group.

Building on Gromov’s work, Young proved an isoperimetric inequality in
the Heisenberg group as follows.

Isoperimetric inequality in the Heisenberg group. (Young, 2008,
[36]) Let (H2n+1, g) be a left-invariant metric on the Heisenberg group
H2n+1. If Z is a k-dimensional closed surface in H2n+1 and k < n, then
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there is a (k+1)-dimensional surface Y with ∂Y = Z obeying the volume
estimate

Volk+1(Y ) ≤ C(k, n, g)Volk(Z)
k+1
k .

Young’s main new idea was to use the averaging lemma at many scales.

5. (Area-expanding embeddings) I applied the Federer-Fleming method to
the problem of area-expanding embeddings. If U, V ⊂ Rn are open sets,
an embedding Ψ : U → V is called k-expanding if it increases the k-
dimensional area of each k-dimensional surface. I studied when there is a
k-expanding embedding from one n-dimensional rectangle into another,
and I answered the question up to a constant factor [23]. This problem
turns out to be fairly “rigid” in the sense that the optimal strategy for
embedding one rectangle in another is simple. The difficult part of the
problem is to prove that there are no k-expanding embeddings between
certain rectangles.

Area-expanding embeddings of rectangles. If R is an n-dimensional
rectangle with side lengths R1 ≤ ... ≤ Rn, and R′ is an n-dimensional
rectangle with side lengths R′1 ≤ ... ≤ R′n, and if there is a k-expanding
embedding from R into R′, then the following inequalities hold

R1...Rj(Rj+1...Rl)
k−j
l−j ≤ C(n)R′1...R

′
j(R
′
j+1...R

′
l)

k−j
l−j ,

for each 1 ≤ j ≤ k and k ≤ l ≤ n.

Up to a constant factor, this list of inequalities is necessary and sufficient
to find a k-expanding from R into R′.

6. (Point selection theorem in combinatorics) Gromov applied the Federer-
Fleming method to give a new proof of the point selection theorem in
combinatorics.

Point selection. (Barany [3]) If p1, ..., pN are points in Rn, consider
the

(
N

n+1

)
n-dimensional simplices with vertices among these points. Then

there is a point y ∈ Rn which lies in at least c(n)
(

N
n+1

)
of the

(
N

n+1

)
n-

simplices, for a universal constant c(n) ≥ (n+ 1)−(n+1).

Gromov reproved this theorem and generalized it. Given N points in Rn,
we get a linear map L from the (N-1)-simplex ∆N−1 to Rn, given by
mapping the N vertices of the simplex to p1, ..., pN . The point selection
theorem says that y lies in the image of at least c(n)

(
N

n+1

)
of the n-faces

of ∆N−1. It turns out that this holds for all continuous maps, not only
for linear maps.

Topological simplex inequality. (Gromov, 2009, [14]) Suppose that
F is a continuous map from ∆N−1 to Rn. Then there is a point y ∈ Rn

which lies in the image of at least c(n)
(

N
n+1

)
n-faces of ∆N−1.
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Gromov’s proof of this combinatorial theorem is closely based on his proof
of the sweepout inequality, using a combinatorial analogue of the Federer-
Fleming averaging argument.

In each of these theorems, using the Federer-Fleming averaging trick over
and over is essentially the entire proof.

I want to end this section with a philosophical discussion of the Federer-
Fleming averaging method.

The fundamental idea is that the average value of some function may be
easier to understand than the function itself. This idea is certainly older than
Federer and Fleming. As a dramatic example, Erdos used a similar averaging
trick to prove that there are colorings of a graph with no cliques. Given appro-
priate bounds on the size of the graph and the size of the cliques, he proved
that the average number of cliques in a coloring is less than 1. Hence colorings
with no cliques exist, even though it is difficult to produce an explicit exam-
ple. Federer and Fleming borrowed this idea and used it to prove inequalities
in geometry. (It would be interesting to know more about the history of this
averaging trick.)

The wonderful thing about the averaging trick is that it’s so flexible. As
we have seen, some of the results in the above list can also be approached by
minimal surface theory, and the minimal surface techniques lead to the sharp
constants. Using the averaging lemma repeatedly is not as precise but it’s more
flexible. It can be adapted to Banach spaces. It can be adapted to the Heisen-
berg group. It can be adapted to the geometry of surfaces inside a rectangle -
measuring how the dimensions of the rectangle influence the isoperimetric in-
equalities. It can be adapted to the combinatorics of an N-dimensional simplex
with N →∞.

In the small field of metric geometry, the Federer-Fleming averaging trick
is the most common tool. When the averaging trick doesn’t work, we often get
stuck. Intuitively, we can only use the averaging trick to find a geometric object
if the objects we are looking for are pretty common. Are there any geometric
theorems about the existence of rare objects? What tools could we use to find
those objects?

I think these issues may be related to the open problems at the end of this
essay. Those problems have to do with notions of size in Riemannian geometry,
and I need to lay a little groundwork before we get to them.

9. Notions of Size in Riemannian Geometry

Many of the arguments in systolic geometry have to do with various ways of
measuring the ‘size’ of a Riemannian manifold.

Size invariants. Let M be a smooth manifold. A size invariant for metrics on
M is a function S which assigns a positive number to each metric on M , and
which obeys the following axioms.



Metaphors in Systolic Geometry 763

1. If g and g′ are isometric, then S(g) = S(g′).

2. If g ≤ g′, then S(g) ≤ S(g′).

(We say that g ≤ g′ if for each point x and each tangent vector v in TxM ,
g(v, v) ≤ g′(v, v).)

The volume and diameter are two fundamental size invariants. Many Rie-
mannian invariants are not size invariants. For example, anything related to
the curvature is not a size invariant. The injectivity radius is not a size invari-
ant, and neither are the eigenvalues of the Laplacian or the lengths of closed
geodesics. But the systole is a size invariant.

The most interesting size invariants I know came out of the proofs of the
systolic inequality. We met these invariants implicitly in the discussion above,
and now we turn our attention to them.

Filling radius. If (Mn, g) is a closed Riemannian manifold, then we define
its filling radius to be the smallest radius R so that the Kuratowski embedding
of (M, g) into L∞ bounds a chain inside its R-neighborhood.

Uryson width. If X is any metric space, such as a Riemannian manifold,
and q ≥ 0 is an integer, then we say that X has q-dimensional Uryson width
at most W if there is an open cover of X with diameter ≤ W and multiplicity
≤ q + 1. We denote the q-dimensional Uryson width of X by UWq(X).

Among the size invariants that I know, the Uryson width seems like the
most useful one, so I will try to give a little intuition about it. In some sense,
the definition goes back to topologists working on dimension theory, including
Uryson. Gromov returned to the the definition and applied it to Riemannian
geometry. He gives a long discussion of it in [17]. Recall that Rn has open covers
of multiplicity n+ 1 with arbitrarily small diameters, so UWn(Rn, geuclid) = 0.
More generally, the Uryson n-width of any n-dimensional simplicial complex
is equal to zero. Roughly speaking, X has a small Uryson q-width if it “looks
q-dimensional”. If X has an open cover with multiplicity q + 1, then the nerve
of the cover is a simplicial complex of dimension q. There is a continuous map
Φ from X to the nerve so that each fiber of the map is contained in one of the
open sets. Thus a metric space X with small q-dimensional Uryson width may
be mapped into a q-dimensional complex and each fiber of the map will have
small diameter. If the Uryson q-width of X is < ε, then we can informally say,
“when we look at X from far away and cannot distinguish points of distance
< ε, X appears to be q-dimensional”.

So far in this essay, we have seen three universal inequalities about size
functions.

1. The systolic inequality: Sys(g) ≤ C(n)Vol(g)1/n for all metrics on Tn.

2. The filling radius inequality: FillRad(g) ≤ C(n)Vol(g)1/n for all metrics
on closed n-manifolds.
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3. The Uryson width inequality: UWn−1(g) ≤ C(n)Vol(g)1/n for all metrics
on n-manifolds.

These inequalities are closely related. The Uryson width inequality implies
the filling radius inequality which implies the systolic inequality, but they all
come from the same circle of ideas. Twenty-five years ago, Gromov proved 1
and 2 and conjectured 3. Since then, we have not found any really new universal
inequality about sizes of Riemannian metrics. The inequalities we have proven
since are either much easier than the filling radius inequality or else they are
closely related to the filling radius inequality.

Are there other interesting universal inequalities about the sizes of Rieman-
nian manifolds?

There may well be, but let me try to describe why it hasn’t been easy to
find any. It is easy to define size invariants of Riemannian manifolds. I know
ten or twenty different kinds of size invariants for Riemannian manifolds. But
it’s often hard to evaluate these invariants, even roughly. For example, here is
a simple size invariant for metrics on S3.

Covering radius. The covering radius of (S3, g) is the smallest radius R so
that we can find a degree 1 contracting map from the 3-sphere of radius R to
(S3, g).

(A contracting map is a map that decreases distances.) The manifold S3 is
diffeomorphic to the Lie group SU(2). The left-invariant metrics on SU(2) are
some of the simplest metrics on S3. Gromov raised the problem of estimating
the covering radius of left-invariant metrics on SU(2). There is a huge gap
between the best known upper and lower bounds, and the problem has been
open for more than twenty five years.

There are lots of size invariants, and they are often hard to evaluate. I don’t
know any good perspective to organize the information. As we’ve seen, the
space of Riemannian metrics is huge, so there are counterexamples for many
naive conjectures about size invariants. And after defining ten or twenty size
invariants it gets hard to see what’s significant.

I want to end by putting forward two questions about sizes of Riemannian
manifolds. I think that whether the answers are yes or no, some interesting new
geometry will be involved.

The first question is about the geometry of high-genus surfaces. My main
point is that we really don’t have a good understanding of the geometry of
high-genus Riemannian surfaces.

Question 1. (Buser) If (Σ2, g) is a closed Riemannian surface of arbitrary
genus, is there a continuous map F from Σ to a graph Γ obeying the following
inequality:

for every y in Γ, Length[F−1(y)] ≤ CArea(Σ, g)1/2?
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(This question is a small variation on Buser’s question about the sharp value
of the Bers constant — see [7].)

This question connects to topics we’ve seen above in a couple ways. First
of all, the Uryson width inequality tells us that we can find a map F from
(Σ, g) to a graph so that each fiber has diameter at most CArea(Σ, g)1/2.
This estimate does not imply the length estimate at all, because a fiber may
be a very long curve which wiggles a lot and therefore has a small diameter.
The most interesting examples of high genus Riemannian surfaces are probably
the arithmetic hyperbolic surfaces studied by Buser and Sarnak in [8]. These
surfaces have genus G, area around G, and diameter around logG. Since the
entire surface has diameter around logG, any curve in it has diameter at most
around logG. When G is large, the diameters are much smaller than the square
root of the area. So any map from an arithmetic hyperbolic surface to a graph
has fibers of diameter at most Area1/2, but it’s not at all clear how small we
can make the lengths of the fibers.

This question also fits in with the naive conjectures in Section 3 of this
essay. In particular, if Σ is a small genus surface, then Balacheff and Sabourau
proved that the answer to the question is yes. In a bit more generality, here is
their result.

Balacheff-Sabourau inequality. ([5]) If (Σ2, g) is a closed surface of genus
G, then there is a function f : Σ2 → R so that for every y ∈ R, the length of
the level set f−1(y) obeys the inequality

Length[f−1(y)] ≤ C
√
G+ 1Area(Σ2, g)1/2.

For large genus, the right-hand side grows like
√
G, and this behavior is

sharp. But if we allow maps to a 1-dimensional complex Γ instead of maps to
R, we may get a better estimate for lengths. If the answer to Question 1 is
yes, then we can look for similar inequalities in higher dimensions. Can every
3-manifold of volume 1 be mapped to a 2-dimensional complex with fibers of
length ≤ C? Can every 3-manifold of volume 1 be mapped to R2 with fibers of
length ≤ C?? Can every 3-manifold of volume 1 be mapped to a 1-dimensional
complex with fibers of area ≤ C?

The second problem is about Uryson widths. Recall the Uryson width in-
equality, UWn−1(Mn, g) ≤ C(n)Vol(Mn, g)1/n, which says that an n-manifold
of tiny n-dimensional volume looks (n-1)-dimensional. What conditions on g
would force (Mn, g) to look (n-2)-dimensional?

This is an open-ended question that could go in many directions. For in-
stance, Gromov has a conjecture that if the scalar curvature of g is at least 1,
then UWn−2(Mn, g) ≤ C(n).

Here is another direction suggested by the geometry of area-contracting
maps. Suppose that Mn is just the standard unit n-ball, and we have the
metric gij written in coordinates. What do we need to know pointwise about
gij to control UWn−2(Bn, g)?
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Question 2. Let Bn denote the standard (unit) n-ball in Rn, and let g0 denote
the standard Euclidean metric. Suppose that g is another metric obeying Λkg ≤
Λkg0. This means that for every k-dimensional surface Σk ⊂ Bn, the g-volume
of Σ is at most the Euclidean volume of Σ. Suppose that n/k ≥ d. Is it true
that UWn−d(Bn, g) ≤ C(n)?

To get a sense of this question, let us first imagine that the metric gij(x)
is constant in x. In this case, (Bn, gij) is isometric to a Euclidean ellipsoid.
If g is a constant metric and Λkg ≤ Λkg0, then linear algebra implies that
UWk−1(Bn, g) ≤ 1. At this point, one might naively conjecture that all metrics
g with Λkg ≤ Λkg0 obey UWk−1(Bn, g) ≤ C(n). Moreover, the Uryson width
inequality implies that if Λng ≤ Λng0, then UWn−1(Bn, g) ≤ C(n). So the
naive conjecture is true when k = n. But the naive conjecture is false for other
values of k because of a counterexample coming from work of Zel’dovitch in
astrophysics and Gehring in conformal geometry. Zel’dovitch’s work has to do
with the internal geometry of a neutron star. I think that this counterexample
is the worst case, and the question asks whether this is true. See my paper [24]
on area-contracting maps and topology for more context.

10. Reading Guide

For the reader who would like to learn more about this area of geometry, here
are some resources.

Gromov wrote about systolic geometry in several places. The key research
paper is “Filling Riemannian manifolds” [10]. His expository writing about
systoles includes Chapter 4 of Metric Structures [11], and the essay “Systoles
and isosystolic inqualities” [13].

Katz’s expository work on systoles includes the book Systolic Geometry
and Topology [29] and his website on systoles [30]. The website contains a lot
of interesting stuff, including a list of open problems in the field.

I wrote a set of notes on the systolic inequality [21] which explains the
original proof in detail in 14 pages. This talk is based on my essay [25], which
includes several topics we didn’t have time to discuss here: hyperbolic geometry,
symmetry, calibrations, and Nabutovsky’s work on the complexity of the space
of metrics.
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The main subject of this lecture is a connection between Gromov’s filling vol-
umes and a boundary rigidity problem of determining a Riemannian metric in
a compact domain by its boundary distance function. A fruitful approach is to
represent Riemannian metrics by minimal surfaces in a Banach space and to
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1. Introduction

1.1. A toy question. One of the goals of this lecture is to advertise a con-
jecture about filling volumes. It can be stated without preliminaries (although
in an obscured way) as follows.

Question 1.1. Let Nn+1 be a complete Riemannian manifold and Mn ⊂ N a
compact hypersurface with boundary. Suppose thatM is convex in the following
strong sense: for every two points x, y ∈ M , there is a unique shortest geodesic
segment connecting x and y in N , and this segment lies in M . (In particular,
M is totally geodesic.)

Is it true that every such M is an area minimizer? That is, does it have
the least n-dimensional area among all compact (orientable) hypersurfaces in
N with the same boundary?
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The wording of this question is deliberately chosen so as to make an affir-
mative answer sound more plausible. Actually the answer is not known, and an
affirmative one would have strong implications.

The convexity assumptions in Question 1.1 imply that M is diffeomorphic
to the n-disc, its boundary is convex, and all its geodesic are shortest paths. The
latter is a crucial property while the former two could be relaxed: for example,
non-convex regions in M are area minimizers if so is M .

Since the surface in question is totally geodesic, it is minimal in the varia-
tional sense: the mean curvature, and hence the first variation of area, is zero.
Cutting off a neighborhood of the boundary yields a surface where geodesics
have no conjugate points, and it is easy to see that in this case it is a sta-
ble minimal surface and hence minimizes the area locally (among all nearby
surfaces). However the global area-minimality in Question 1.1 is a completely
different issue.

1.2. Boundary rigidity. I postpone further discussion of Question 1.1
until subsection 1.3. This subsection is a brief introduction to boundary distance
rigidity.

For a Riemannian manifold M , possibly with boundary, let dM denote the
induced length metric on M . This is a function on M ×M measuring geodesic
distances between points. The boundary distance function of M , denoted by
bdM , is the restriction of dM to ∂M × ∂M . It is natural to ask whether the
metric in the interior can be determined if one knows the boundary distance
function.

Inverse boundary problems of this type were originally motivated by geo-
physics: the inner structure of the Earth can be studied by measuring travel
times of seismic waves between points at the surface. Assuming that the Earth
is filled by isotropic media with variable speed of sound, the travel times rep-
resent the boundary distance function of a conformal metric on D3, and the
problem is to determine the conformal factor by these data. Under the assump-
tion that the Earth is spherically symmetric, this inverse kinematic problem
was solved by Herglotz [24] and Wiechert [39]. For a general simple conformal
metric, the uniqueness of a solution was proved by Mukhometov and Romanov
[33], see also [6], [32], [17].

If the metric is not supposed to be conformal, determining metric coefficients
as functions of coordinates does not make sense: any Riemannian isometry that
fixes the boundary obviously preserves the boundary distances. Two metrics
related by such an isometry must be regarded as the same metric, hence the
following definition.

Definition 1.2. A compact Riemannian manifold M with boundary is said to
be boundary rigid if it is determined by its boundary distance function uniquely
up to an isometry fixing the boundary.
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In a more formal language this means the following: every compact Rieman-
nian manifold M ′ such that ∂M ′ = ∂M and bdM ′ = bdM is isometric to M via
an isometry f : M → M ′ such that f |∂M = id∂M .

It is easy to construct metrics that are not boundary rigid. For example,
begin with an arbitrary metric and enlarge it near a point p so that no short-
est path between boundary points goes through p. Then a perturbation of the
metric near p does not affect the boundary distance function. Another exam-
ple is the standard hemisphere: since the boundary distances are realized by
boundary arcs, enlarging the metric in the interior does not change them.

Such examples should be excluded if one seeks boundary rigidity. A natural
set of restrictions is contained in the following definition.

Definition 1.3. A compact Riemannian manifold M is said to be simple if

(1) The boundary ∂M is strictly convex, i.e. has positive definite second
fundamental form.

(2) Every geodesic segment inM is minimal, i.e. realizes the distance between
its endpoints.

(3) The geodesics in M have no conjugate points. (Or, equivalently, there
is a larger manifold M+ containing M in its interior and such that all
geodesics in M+ are minimal.)

For example, the standard hemisphere is not simple but cutting off an ar-
bitrarily small neighborhood of the boundary makes it simple.

The first requirement of Definition 1.3 implies that all distances in M are
realized by geodesics. Then one easily sees that the exponential map at every
point is a diffeomorphism, and it follows that a simple manifold is diffeomorphic
to a disc. Thus one may as well speak about simple metrics on Dn.

Note that simplicity of the metric can be observed via the boundary distance
function. That is, if two metrics have the same boundary distance function,
then either they are both simple or both are not. Indeed, the convexity of ∂M
is equivalent to a sort of strict triangle inequality for bdM , and the fact that
geodesics are minimal and have no conjugate points is equivalent to smoothness
of bdM away from the diagonal.

Conjecture 1.4 (R. Michel [31]). Every simple Riemannian manifold is bound-

ary rigid.

Pestov and Uhlmann [34] proved this conjecture in dimension 2. In higher
dimensions the following types of spaces are known to be boundary rigid:

• regions in R
n and moreover all n-dimensional flat manifolds that admit

an isometric immersion to R
n (Besikovitch [4]; Gromov [22]);

• regions in the standard open hemisphere Sn
+ (Michel [31]);
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• regions is symmetric spaces of negative curvature (this follows from a
volume entropy inequality proved by Besson, Courtois and Gallot [5]);

• regions in metric products of the form M0 × R where M0 is a complete
simply connected Riemannian manifold without conjugate points (Croke
and Kleiner [21]);

• metrics sufficiently close in C2 to the Euclidean metric of a region in R
n

(Burago and Ivanov [12]);

• metrics sufficiently close in C3 to the hyperbolic metric of a region in H
n

(Burago and Ivanov [13]).

Proofs of the last two results are discussed in section 3.

Remark. More is known about the local variant of the conjecture, that is,
when the metrics of M and M ′ in Definition 1.2 are assumed a priori close to
each other. Local boundary rigidity is proved for a generic set of simple metrics
including all analytic ones [37] and for all metrics with “not too much” positive
curvature [19].

1.3. Filling volumes and minimal fillings. To simplify matters,
all manifolds and surfaces in the sequel are assumed orientable. And for the
most part one may assume that all Riemannian manifolds in question are just
metrics on the disc Dn.

Definition 1.5. Let N be a closed (n − 1)-dimensional manifold and
f : N × N → R a nonnegative function. The filling volume of f , denoted
by FillVol(N, f), is defined by

FillVol(N, f) = inf{Vol(M) : ∂M = N, bdM ≥ f} (1.1)

where the infimum is taken over all (orientable) compact n-dimensional Rie-
mannian manifolds M such that ∂M = N and bdM ≥ f . Such manifolds M are
referred to as fillings of (N, f).

A compact Riemannian manifold M is said to be a minimal filling if it
realizes the infimum in (1.1) for S = ∂M and some function f (and hence for
f = bdM ). In other words,M is a minimal filling if Vol(M) = FillVol(∂M, bdM ).

The notion of filling volume was introduced by Gromov [22], originally in
the special case where f is a metric on N . The above definition assumes that
there are no topological obstructions for N to be a boundary, cf. [22] for the
general case.

Substituting intermediate definitions yields the following: M is a minimal
filling if and only if, for every compact Riemannian manifold M ′ such that
∂M ′ = ∂M and

dM ′(x, y) ≥ dM (x, y) for all x, y ∈ ∂M, (1.2)
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one has

Vol(M ′) ≥ Vol(M). (1.3)

The following conjecture is the main topic of this lecture.

Conjecture 1.6. Every simple manifold is a minimal filling.

Note that a (C0) limit of minimal fillings is also a minimal filling, and
a limit of simple metrics can have a non-strictly convex boundary and non-
strictly minimal geodesics. Thus the simplicity assumption in Conjecture 1.6
can be relaxed to allow for such cases. In particular, if the conjecture is true,
then the standard hemisphere is a minimal filling.

Convexity of the boundary is a convenience assumption and it can be re-
moved in some cases (see e.g. [29]). Observe that any subregion of a minimal
filling is a minimal filling as well.

If a simple manifold M is found to be a minimal filling, one can try to
analyze the equality case in (1.3) and hope that it is attained only if M ′ is
isometric to M (via an isometry fixing the boundary). This hope is expressed
in the following stronger variant of Conjecture 1.6.

Conjecture 1.6+. Every simple manifold is a unique minimal filling of its

boundary distance function, up to an isometry fixing the boundary.

It is easy to see that Conjecture 1.6+ implies Michel’s boundary rigidity
conjecture 1.4. Almost all boundary rigid metrics listed above are also known
to be minimal fillings (the exceptions are subsets of the hemisphere and prod-
uct metrics). In dimension 2, all simple manifolds are minimal fillings within
the class of manifolds homeomorphic to the disc [27], but the general filling
minimality is not known even for the hemisphere.

Conjecture 1.6 is equivalent to the affirmative answer to Question 1.1. In-
deed, let M ⊂ N be as in Question 1.1 and suppose that there is a surface
M ′ ⊂ N with the same boundary but smaller area. Then M and M ′, regarded
as Riemannian n-manifolds, satisfy (1.2) and hence provide a counterexample
to Conjecture 1.6. Conversely, if manifolds M and M ′ satisfy (1.2) but do not
satisfy (1.3), one can glue them together along the boundary and embed the
resulting space into a suitable manifold Nn+1 in order to produce a counterex-
ample to Question 1.1. (One may need to change the metric of M ′ near the
boundary to make a smooth gluing; this and other technical details are easy to
handle.)

2. Some Implications

In this section I discuss some implications of the minimal filling conjectures.
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2.1. Boundary rigidity. As I already mentioned, Conjecture 1.6+ im-
plies Conjecture 1.4. Moreover, this implication works for every individual man-
ifold:

Proposition 2.1. If a simple Riemannian manifold M is a unique minimal

filling of its boundary distance function, then M is boundary rigid.

The key to the proof is Santaló’s integral geometric formula for the volume of
a simple Riemannian manifold in terms of its boundary distance function and its
first order derivatives (cf. [36], [22], [17]). This formula implies that two simple
manifolds with the same boundary distance function have the same volume.
Recall that if M is simple and M ′ has the same boundary distance function,
then M ′ is simple as well, hence Vol(M ′) = Vol(M) by Santaló’s formula. Then
the uniqueness assumption implies that M and M ′ are isometric.

This argument actually works not only for simple manifolds but for a large
class of strong geodesic minimizing (SGM) manifolds, cf. [17].

2.2. Gromov’s circle filling conjecture. What is the filling volume
of the intrinsic metric of the circle? This was the first question asked by Gromov
after the definition of filling volume in [22]. It is conjectured that this filling
volume equals 2π, the value realised by the standard round hemisphere. In
other words, the question is: is the hemisphere a minimal filling? Since the
hemisphere is a limit of simple manifolds, Conjecture 1.6 would immediately
imply the affirmative answer.

With definitions substituted, the circle filling conjecture boils down to the
following. Let M be a compact orientable two-dimensional surface with a Rie-
mannian metric such that ∂M is a circle of length 2π, and for every pair x, y of
opposite points of this circle one has dM (x, y) = π. Then (the conjecture asserts
that) area(M) ≥ 2π.

This inequality is well-known if M is homeomorphic to D2. In other words,
the hemisphere is a minimal filling within the class of surfaces homeomorphic

to the disc. Indeed, one can identify opposite points of the boundary circle
and obtain a closed surface M1 ' RP

2 such that the length of a shortest non-
contractible loop in M1 equals π. Then Pu’s isosystolic inequality [35] implies
that area(M) = area(M1) ≥ 2π.

Pu’s original proof uses uniformization and integral geometry, another proof
can be found in [27]. The uniformization approach can be pushed further to
cover the case when M has genus 1, cf. [2]. The case of a higher genus remains
open.

The general case of the circle filling conjecture can be similarly reformulated
in terms of a systolic inequality, and it has applications in higher-dimensional
systolic geometry, see e.g. [30, §8.3].

2.3. E. Hopf’s theorem. If M is an n-torus with a Riemannian metric
without conjugate points, then M is flat (that is, locally isometric to R

n). This
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fact was proved for n = 2 by E. Hopf [26] and for all n by Burago and Ivanov [8].
Both proofs involve dynamical arguments. Croke and Kleiner [20] proposed a
more geometric approach where E. Hopf’s theorem is derived from asymptotic
volume inequalities. Their approach led to a new proof of the theorem in the
two-dimensional case. The following modification of their argument shows how
the theorem (in all dimensions) follows from Conjecture 1.6 (with a relaxed
boundary convexity assumption).

Let M̃ denote the universal cover of M with the metric lifted from M . The
asymptotic volume of M is defined by

AsVol(M) = lim inf
R→∞

Vol(BR)

Rn

where BR is the metric ball in M̃ centered at a fixed point x0 ∈ M̃ . Let ωn

denote the Euclidean volume of a unit ball in R
n. It can be shown that

AsVol(M) ≥ ωn, (2.1)

with equality if and only if M is flat. This is proved in [18] for any closed
Riemannian n-manifold without conjugate points and in [9] for a Riemannian
n-torus (with or without conjugate points).

Actually the inequality (2.1) can be improved by inserting a factor depend-
ing on the affine type of the stable norm ‖·‖ of M , see [9] and [23, pp. 259–260].
Namely

AsVol(M) ≥
Vol(B)

Vol(E)
· ωn (2.2)

where B is the unit ball of ‖ · ‖ and E is the ellipsoid of maximal volume
contained in B. The equality in (2.2) is attained if and only if the metric is flat.

The universal cover M̃ can be identified with R
n equipped with a Z

n-
periodic Riemannian metric. Then the distances in M̃ differ from the distances
in the normed space (Rn, ‖ · ‖) by a bounded function, cf. [7]. Let dE denote
the distance in the Euclidean metric associated with E, then

dE(x, y) ≥ d
M̃
(x, y)− const (2.3)

for all x, y ∈ M̃ . If M̃ has no conjugate points, Conjecture 1.6 (without the

boundary convexity assumption) would imply that the ball BR ⊂ M̃ is a
minimal filling. Apply the minimal filling inequality (1.3) to M = BR and
M ′ = (BR, dE), where dE is modified near the boundary to get rid of the con-
stant in (2.3). This yields the inequality opposite to (2.2), hence the metric of

M̃ is flat.

3. Minimality in a Banach Space

In this section I discuss one of the approaches to filling minimality and boundary
rigidity and outline the proofs of the following two theorems.
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Theorem 3.1 ([12]). Let D ⊂ R
n be a compact region with a smooth boundary

and g0 the standard Euclidean metric on D. Then there is a neighborhood U of

g0 in the space of Riemannian metrics on D such that for every metric g ∈ U
the space (D, g) is a minimal filling and boundary rigid.

Theorem 3.2 ([13]). Let D ⊂ H
n be a compact region with a smooth boundary

and g0 the standard hyperbolic metric on D. Then there is a neighborhood U of

g0 in the space of Riemannian metrics on D such that for every metric g ∈ U
the space (D, g) is a minimal filling and boundary rigid.

As explained above, it suffices to prove that the metric g in question is a
unique minimal filling of its boundary distance function. The space of Rieman-
nian metrics in these theorems is regarded with C∞ topology. (In fact, one can
lower it down to C2 in Theorem 3.1 and to C3 in Theorem 3.2.)

3.1. Isometric representations. It is well known that every metric
space X can be isometrically embedded into an L∞ type Banach space. A
classic Kuratowski map embeds a bounded metric space X into C0(X) by
sending every point x ∈ X to the distance function dX(x, ·) ∈ C0(X). For
simple Riemannian metrics there are other natural constructions.

Let M be a simple Riemannian manifold and S = ∂M . The boundary dis-

tance representation is a map Φ : M → C0(S) ⊂ L∞(S) defined by

Φ(x) = dM (x, ·)|S .

It is easy to see that this map is distance-preserving. Furthermore, it features
additional nice properties: it is smooth away from the boundary and the gra-
dients of its “coordinate functions” dM (·, s), s ∈ S, at every point x ∈ M \ ∂M
define a diffeomorphism between S and the unit tangent bundle at x. This
technical property plays an important role.

There is a similar construction for a complete simply connected manifold M

of nonpositive curvature (or a compact region in such a manifold). Fix a point
o ∈ M and let S = UToM be the unit tangent sphere at o. The Busemann

representation Φ : M → L∞(S) is defined by

Φ(x)(v) = Bγv
(x), x ∈ M, v ∈ S, (3.1)

where γv is the geodesic ray from o defined by the initial data γ̇v(0) = v, and
Bγv

is its Busemann function. In the case M = R
n this map is linear:

Φ(x) = 〈x, ·〉|Sn−1 , x ∈ R
n,

where Sn−1 is the standard unit sphere in R
n. It is easy to see that the Buse-

mann representation of a nonpositively curved metric is distance-preserving.
If the metric has constant curvature outside a compact set, then the Buse-
mann representation is smooth (in general, it may fail to be smooth even in the
co-compact case).
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The proofs of the above theorems are based on the following fact:

Theorem 3.3 ([28]). Let M be a compact Riemannian manifold with boundary,

S a σ-finite measure space and Φ : M → L∞(S) a distance-preserving map.

Then M is a minimal filling if and only if Φ(M) is an area minimizer, that

is, it has the least area among all Lipschitz surfaces in L∞(S) with the same

boundary.

Furthermore, if Φ(M) is a unique area minimizer spanning its boundary,

then M is a unique minimal filling of its boundary distance function and hence

is boundary rigid.

Here the surface area in L∞(S) is defined as the Loewner area, see below.

The proof of Theorem 3.3 is similar to the argument in section 1.3 showing
that Conjecture 1.6 is equivalent to Question 1.1. The “if” implication and the
uniqueness assertion easily follow from the fact that any filling M ′ of (∂M, bdM )
admits a 1-Lipschitz map Φ′ : M ′ → L∞(S) such that Φ′|∂M = Φ|∂M . This
part of the proof works for any definition of surface area satisfying the natural
requirement that 1-Lipschitz maps do not increase areas.

The “only if” implication is not used in theorems 3.1 and 3.2 but it is im-
portant for motivation. This implication requires a careful choice of the surface
area definition, see the next subsection.

Remark. Theorem 3.3 is a partial case of the following fact. Let N be a closed
(n− 1)-manifold, d : N ×N → R is a metric on N and Ψ a distance-preserving
map from (N, d) to L∞(S). Then FillVol(N, d) equals the filling area of Ψ(N)
in L∞(S), i.e. the infimum of the (Loewner) areas of Lipschitz n-surfaces in
L∞(S) whose boundaries are parametrized by Ψ.

In his founding paper [22] Gromov used the fact that filling volumes and
filling areas in L∞ are equal up to a factor bounded by a constant depending
on n. This factor could not be removed because Gromov used another definition
of area (namely Benson’s area, cf. [38] and [3], denoted by mass∗ in [22]). If one
is interested in filling volumes up to a bounded factor, any definition of area
works fine, and mass∗ is technically easier than other definitions. However it
is not suitable for finding precise filling volumes.

3.2. Defining the surface area in L
∞. There are two issues to

sort out. First, we have to deal with surfaces of only Lipschitz regularity. For
Lipschitz surfaces in R

n one uses Rademacher’s theorem asserting that every
Lipschitz map is differentiable almost everywhere. This gives one a Jacobian
defined a.e. and then the surface area is defined by integration. This scheme
does not work for surfaces in L∞ due to the lack of Rademacher’s theorem. This
can be worked around by using weak derivatives (i.e., derivatives with respect
to a weak topology on the target space). For a Lipschitz map from a smooth
manifold M to L∞, weak derivatives exist and have natural metric properties
almost everywhere on M , cf. [1] or [28]. (This Rademacher-type theorem is the
main reason why we prefer L∞ over C0 for the target space of our embeddings.)
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Then, in order to define the surface area in L∞, one uses weak derivatives in
the same way as ordinary derivatives in R

n.

The second issue is how to define the area integrand. Since the norm in L∞

is not Euclidean, the induced metric of a surface (even of a smooth one) is not
Riemannian in general. In fact, it can be an arbitrary Finsler metric. Contrary
to the Riemannian case, there are many non-equivalent definitions of area and
volume for Finsler metrics, see e.g. [38]. The most commonly used definitions
are Busemann’s [14] (the Hausdorff measure) and Holmes–Thompson’s [25] (the
projection of the Liouville measure from the unit tangent bundle).

In order to define an n-dimensional Finsler volume, one chooses a volume
normalization factor in every (affine type of) n-dimensional Banach space. For
example, Busemann’s definition normalizes the volume of the norm’s unit ball
to be the same constant ωn for all n-dimensional Banach spaces. The Loewner

volume mentioned in Theorem 3.3 is defined as follows. Let (V, ‖ · ‖) be an
n-dimensional Banach space, B its unit ball and E the John–Loewner ellipsoid
of B (i.e., the ellipsoid of maximal volume contained in B). Then the Loewner
volume in (V, ‖·‖) is normalized so that the volume of E equals ωn. For a Finsler
manifold M = (M,ϕ), the Loewner volume equals the infimum of volumes of
Riemannian metrics g on M satisfying g(v, v) ≥ ϕ2(v) for all v ∈ TM . This
definition extends to Lipschitz surfaces in L∞ as explained above.

Remark. Theorem 3.3 is valid in a more general context of Finslerian minimal
fillings. To define the notion of a Finslerian minimal filling, modify Definition 1.5
of filling volume so that the infimum in (1.1) is taken over Finsler manifolds M
rather than Riemannian ones. Naturally one has to choose a definition of Finsler
volume in (1.1), and the same definition should be used for the surface area
in Theorem 3.3. Choosing Loewner’s volume definition yields the Riemannian
version of the theorem as a special case of the Finslerian one, cf. [28].

3.3. Sketch-proof of theorems 3.1 and 3.2. First I explain how
the proof works in the (well-known) case when g = g0, that is, M is a compact
region D ⊂ R

n equipped with the Euclidean metric.

Let S = Sn−1 and Φ0 : Rn → L∞(S) be the Busemann representation of
the standard Euclidean metric. That is, Φ0 is a linear map defined by

Φ0(x) = 〈x, ·〉|S , x ∈ R
n, (3.2)

where S is identified with the unit sphere in R
n. Denote W = Φ0(R

n) and
B = Φ0(D). By Theorem 3.3 it suffices to prove that B is a unique Loewner
area minimizer in L∞(S) among the Lipschitz surfaces with the same boundary.
In fact, we can restrict ourselves to surfaces contained in a sufficiently large ball.

Equip L∞(S) with a scalar product 〈·, ·〉e defined by by

〈u, v〉e = n

∫

S

uv dµ (3.3)
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where µ is the Haar probability measure on S. This defines a Euclidean norm
on L∞(S) that we denote by ‖ · ‖e. One easily sees that ‖ · ‖e is Lipschitz
w.r.t. the L∞ norm and the two norms coincide on W . An easy application
of Cauchy–Schwartz inequality shows that the Euclidean n-volume defined by
the above scalar product is no greater than the Loewner n-volume defined by
the L∞ norm. Hence the Euclidean n-area of any Lipschitz surface in L∞(S) is
no greater that the Loewner n-area, and these areas are equal if the surface is
contained in W . Thus it suffices to prove that Φ0(D) minimize the Euclidean
area among the surfaces with the same boundary. And this is trivial because
the orthogonal projection onto W (with respect to our scalar product) does not
increase areas.

Furthermore, one can compose the projection with a suitable shrinking in
W to obtain a smooth retraction P : L∞(S) ⊂ L2(S) → W such that

JnP (u) ≤ 1− c · ‖u− P (u)‖2e (3.4)

for some c > 0 and all u from a large ball in L2(S). Here Jn denotes the n-
dimensional Jacobian with respect to ‖ · ‖e. This proves uniqueness and a sort
of stability estimate.

Now consider the general case of Theorem 3.1 when the metric g of M =
(D, g) is close to Euclidean in Cr topology for a suitable r (in fact, r = 3 is
sufficient for the argument presented here and a more delicate argument in [12]
works for r = 2). The proof of Theorem 3.1 consists of three steps.

Step 1. Construct a smooth distance-preserving map Φ : M → L∞(S) close to
the above linear map Φ0 (in a suitable topology). In order to do this, one can
use a formula similar to (3.1) with Riemannian distances to hyperplanes rather
than Busemann functions. By Theorem 3.3, it suffices to prove that Φ(M) is a
unique Loewner area minimizer among the surfaces with the same boundary.

Step 2. Prove that the surface Φ(M) is minimal in a variational sense. This part
of the proof is the most encouraging: it does not depend on the fact that the
metric is close to Euclidean and works for any boundary distance representation
of a simple metric, any smooth Busemann representation and, in fact, for any
isometric embedding with a similar behavior of coordinate functions.

What is meant by being a minimal surface needs clarification. Unfortunately,
the first variation of the Loewner area does not make sense since the Loewner
area integrand is not differentiable (even in a finite-dimensional Banach space
with a smooth norm). To work around this, we differentiate a smooth lower
bound for the Loewner area. This lower bound is the n-area defined by a Rie-
mannian metric G on L∞(S) extending the metric of Φ(M).

The metric G is a smooth family of scalar products 〈·, ·〉ϕ, ϕ ∈ L∞(S), on
L∞(S). Every scalar product 〈·, ·〉ϕ is given by a formula similar to (3.3) where
µ is replaced by a probability measure µϕ depending on ϕ. The normalization
of the measures µϕ implies that the n-area defined by G is no greater than
the Loewner n-area. In order to make G compatible with the metric of Φ(M),
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one defines µϕ explicitly for every ϕ ∈ Φ(M). Namely if ϕ = Φ(x) where
x ∈ M , then the measure µϕ is obtained from the normalized Haar measure on
the unit sphere UTxM ⊂ TxM via a natural diffeomorphism between UTxM

and S. (This diffeomorphism turns the derivative dxΦ : TxM → L∞(S) into
the standard linear map given by (3.2)).

The variational minimality of Φ(M) means that the first variation of the
Riemannian n-area defined by G is zero for every (Lipschitz) variation, or,
equivalently, the mean curvature w.r.t. any normal vector is zero. The proof
is a direct computation of the mean curvature. It works for any Riemannian
structure G defined as above, however the next step assumes that G is a small
perturbation of the flat Riemannian structure defined by (3.3).

Step 3. Prove that Φ(M) is a unique area minimizer with respect to G provided
that G is sufficiently close (in a suitable topology) to the constant scalar product
(3.3). Since the n-area defined by G is a lower bound for the Loewner n-area
and the two areas coincide on Φ(M), it follows that Φ(M) is a unique minimizer
of the Loewner area and hence M is a minimal filling and boundary rigid.

The proof essentially establishes the fact that stable minimality that we
had in the case g = g0 is stable under small perturbations of the data. More
precisely, one can construct a retraction from L∞(S) to a (minimal) surface
containing Φ(M) by perturbing the area-decreasing map P used in the flat
case. The perturbation should preserve the property that pre-images of points
are orthogonal to the surface. Since the surface is minimal, this implies that the
n-dimensional Jacobian (with respect to G) of the retraction has zero derivatives
at the surface. And if its second derivatives are close to the original ones, the
inequality (3.4) persists, implying the desired result.

Proof of Theorem 3.2. The proof goes along the same lines: first we prove the
desired properties for the standard hyperbolic metric and then verify that they
are stable under perturbations.

The only essential difference is the choice of an area non-increasing
map in place of the linear orthogonal projection. We define a “projection”
P : L∞(S) → H

n as follows: for every ϕ ∈ L∞(Sn−1), P (ϕ) is a (unique) point
where the function Fϕ : Hn → R defined by

Fϕ(x) =

∫

S

e−nϕ(s)eBγs
(x) ds

attains its minimum. Here S = ToH
n where o ∈ H

n is a fixed origin, Bγs

denotes the Busemann function of a geodesic ray starting from the origin in the
direction s, and ds denotes the standard measure on S.

One can verify that P does not increase n-dimensional Loewner areas and
that Φ0 ◦ P is a retraction of L∞(S) onto Φ0(H

n) where Φ0 is the Busemann
representation of Hn. This proves filling minimality and boundary rigidity for
regions in H

n. Then the proof of Theorem 3.2 is similar to that of Theorem 3.1.
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4. Finslerian Case

As shown by Theorem 3.3, reducing filling minimality to area minimality is a
natural approach (at least there is no loss of generality at this step). But some
other tricks in the above proofs are too limited; it would be nice to replace them
by a better technique. In particular, replacing the Loewner area by the area
defined by an auxiliary Riemannian metric G is suspicious: this may not work
for other minimal fillings, and there is no natural way to choose this auxiliary
metric.

It would be more natural to utilize the Finslerian nature of surfaces in
L∞ and work with their natural Finsler areas, e.g. Busemann or Holmes–
Thompson areas. Unfortunately very little is known about these surface areas
in co-dimensions higher than 1. For example, the following basic question is not
yet answered.

Question 4.1 (Busemann [15]). Let V be a finite-dimensional Banach space,
D an n-disc in an n-dimensional affine subspace W ⊂ V and F is an orientable
surface in V such that ∂F = ∂D. Is it always true that area(F ) ≥ area(D)?

In other words, is the n-dimensional area integrand in a Banach space semi-
elliptic (over Z)? Actually this is a different question for every definition of area.
In the cited paper [15] the question is asked for the Holmes–Thompson area,
defined there in terms of the projection function of a convex body. For both
Busemann and Holmes–Thompson areas, the answer is known to be affirmative
in the case dimV = n+1 but the question is open in higher co-dimensions (even
in the special case when the restriction of the Banach norm to the subspace W
is Euclidean). Contrary to this, Benson area and Loewner area are known to
be semi-elliptic in all dimensions and co-dimensions, cf. [22] and [28].

An affirmative answer to Question 4.1 would have nice applications includ-
ing a Finslerian generalization of the asymptotic volume estimate (2.1), cf. [10].
It would also imply that every region in an n-dimensional Banach space is a
Finslerian minimal filling. This is especially interesting in the case of the Buse-
mann volume because it is equal to the Hausdorff measure naturally defined for
all metric spaces, not just Finslerian. Here is how one can formulate a filling
question without referencing anything from differential geometry.

Question 4.2. Let d be a (continuous) metric on the standard unit ball
Dn ⊂ R

n such that
d(x, y) ≥ dE(x, y) := |x− y|

for all x, y ∈ ∂Dn = Sn−1. Is it true that for all such metrics d one has

Hn(Dn, d) ≥ Hn(Dn, dE)

where Hn denotes the n-dimensional Hausdorff measure?

An affirmative answer to Question 4.1 would answer Question 4.2 for a Lip-
schitz metric d. I do not know whether the case of a general metric is different.
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One may also seek a Finslerian generalization of the minimal filling conjec-
ture 1.6. Although there is no boundary rigidity in the Finslerian case, simple
Finsler metrics sharing the same boundary distance function have the same
Holmes–Thompson volume. This leaves a possibility that the Finslerian gen-
eralization of Conjecture 1.6 might be true if the volume of a Finsler metric
is defined as the Holmes–Thompson volume. This generalization is “almost
proved” in dimension 2: every simple Finsler metric on D2 is a minimal filling
among the Finsler fillings homeomorphic to D2, cf. [27] and [29].

This implies a partial answer to Question 4.1 for n = 2: an affine 2-disc in a
Banach space minimizes the Holmes–Thompson area among the surfaces span-
ning the same boundary and homeomorphic to D2. On the other hand, one can
construct a Banach norm in R

4 such that the resulting two-dimensional Holmes–
Thompson area integrand is not convex (that is, it does not admit a convex
extension to the exterior product Λ2

R
4), cf. [16], [10]. And this implies that

there is an affine 2-disc which does not minimize the Holmes–Thompson area
among the Lipschitz (or polyhedral) chains with rational coefficients, cf. [11].
What is not known is whether an affine 2-disc minimizes area among the chains
with integer coefficients, or, equivalently, among the orientable surfaces of ar-
bitrary genus.
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Abstract

We explain various results on the asymptotic expansion of the Bergman ker-
nel on Kähler manifolds and also on symplectic manifolds. We also review the
“quantization commutes with reduction” phenomenon for a compact Lie group
action, and its relation to the Bergman kernel.
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0. Introduction

In the theory of quantization, one attempts to associate to a symplectic man-
ifold (X,ω) a Hilbert space H and a mapping from the space of functions on
X into the space of operators on H, and this in a canonical way. The mapping
should give some reasonable relationship between the Poisson bracket on the
function side and the commutator on the operator side. It is generally acknowl-
edged that there is no canonical way to construct a quantization of X without
making use of certain additional structures.

In the theory of the geometric quantization of Kostant and Souriau, (X,ω)
is assumed to be prequantizable, that is, there exists a prequantum line bundle
(L, hL,∇L) on X (i.e., ω is the first Chern form of L associated with the
Hermitian connection ∇L). Given a compatible almost complex structure J
and a Riemannian metric gTX , we can define canonically a Dirac operator DL

acting on Ω0,•(X,L), the smooth (0, •)-forms on X with coefficients in L.
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Assume that X is compact. Following an observation by Bott, we take, as
a quantization of X, Ind(DL

+) = Ker(DL
+) − Coker(DL

+) of DL
+ := DL|Ω0,even ,

which is a formal difference of finite dimensional Hilbert spaces. The virtual
dimension of Ind(DL

+), which can be computed by the Atiyah-Singer index
theorem, does not depend on the choice of the connection and of the metric
on L.

For p � 1, Ind(DLp

+ ) = Ker(DLp

+ ) is an ordinary finite dimensional Hilbert
space. The Bergman kernel is defined as the integral kernel Pp(x, x

′) associated
with the orthogonal projection Pp from Ω0,•(X,Lp) onto Ker(DLp

). We will
show that when p → +∞, the Bergman kernel Pp(x, x

′) has an asymptotic
expansion whose coefficients contain interesting geometric informations about
X and L. The kind of expansion obtained for the kernel Pp(x, x

′) also char-
acterizes the Berezin-Toeplitz operators. Their semi-classical limit provides a
precise way to relate the classical and quantum observables.

Assume that a compact connected Lie group G acts on X, and that the
action lifts to (L, hL,∇L). Then the quantization of X is a G-virtual represen-
tation, and it is interesting to determine the multiplicity of the irreducible rep-
resentations of G. The Guillemin-Sternberg conjecture “quantization commutes
with reduction” gives a precise geometric answer to this problem by using the
associated moment map. Here we explain the behavior of the G-invariant part
of Pp(x, x

′) as p → +∞, and we relate this behavior to the Guillemin-Sternberg
conjecture.

New difficulties appear when the manifold X is no longer supposed to be
compact, since in this case Ind(DL

+) is not well defined. In her ICM 2006 plenary
lecture, Michèle Vergne proposed to replace Ind(DL

+) by a certain transversal
index introduced by Atiyah, under the natural hypothesis that the moment
map is proper, and that the zero-set of the vector field induced by the moment
map is compact. She conjectured that “quantization commutes with reduction”
still holds in this case.

If (X,ω, J) is a compact Kähler manifold and if L is holomorphic, then for
p � 1, Ker(DLp

) is the space of holomorphic sections H0(X,Lp) of Lp on X.
This leads to many applications of the asymptotic expansion of the Bergman
kernel in Kähler geometry.

We refer the reader to our book with Marinescu [41] for a comprehensive
study of the Bergman kernel and applications, and to the survey by Michèle
Vergne [68] on the Guillemin-Sternberg conjecture. One can find more com-
ments, references and motivations in [41] and [68].

This paper is organized as follows. The first two sections are based on our
work with Dai, Liu and Marinescu, the last two sections are based on our
work with Zhang. In Section 1, we review the definition of Bergman kernel and
Berezin-Toeplitz quantization.

In Section 2, we discuss the asymptotic expansion of the Bergman kernel,
and also Toeplitz operators.
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In Section 3, we examine the corresponding results when a compact Lie
group G acts on X and the action lifts to L.

In Section 4, we outline Ma-Zhang’s solution of the Vergne conjecture.

1. Quantization on Symplectic Manifolds

In Section 1.1, we review the basic definitions, and the spectral gap property
of the Dirac operator. Then we explain the model example C

n in Section 1.2.

1.1. Dirac operators and quantization. Let (X,ω) be a compact
symplectic manifold of real dimension 2n with compatible almost complex struc-
ture J , i.e., ω(·, J ·) > 0, ω(J ·, J ·) = ω(·, ·). We endow X with a Riemannian
metric gTX compatible with J , i.e., gTX(J ·, J ·) = gTX(·, ·). Let (E, hE) be a
Hermitian vector bundle on X with Hermitian connection ∇E and curvature
RE = (∇E)2.

The almost complex structure J induces a splitting of the complexification of
the tangent bundle, TX ⊗RC = T (1,0)X ⊕T (0,1)X, where T (1,0)X and T (0,1)X
are the eigenbundles of J corresponding to the eigenvalues

√
−1 and −

√
−1

respectively. Let T ∗ (0,1)X be the dual space of T (0,1)X. For any v ∈ T (1,0)X,
let v∗ ∈ T ∗ (0,1)X be the metric dual of v, then

c(v) =
√
2 v∗∧, c(v) = −

√
2 iv, (1.1)

define the Clifford actions of v, v on Λ0,• := Λ•(T ∗ (0,1)X), where ∧ and i denote
the exterior and interior multiplications respectively.

Consider the Levi–Civita connection ∇TX of (TX, gTX) with associated

curvature RTX . Let ∇T (1,0)X be the connection on T (1,0)X induced by project-

ing ∇TX ; ∇T (1,0)X induces the connection ∇det on det(T (1,0)X). The Clifford
connection ∇Cl on Λ0,• is induced canonically by ∇TX and ∇det (cf. [41, §1.3]).
Finally, let ∇Λ0,•⊗E be the connection on Λ0,• ⊗ E induced by ∇Cl and ∇E .

Let dvX be the Riemannian volume form of (TX, gTX) and Ω0,•(X,E) be
the space of smooth sections of Λ0,• ⊗ E endowed with the L2-norm ‖·‖L2

induced by hE , gTX . Let {ej}2nj=1 be an orthonormal frame of (TX, gTX).

Definition 1.1. The spinc Dirac operator DE is defined by

DE :=
∑

j

c(ej)∇Λ0,•⊗E
ej : Ω0,•(X,E) −→ Ω0,•(X,E) , DE

± := DE |
Ω0, even

odd
.

(1.2)

The operator DE is a formally self–adjoint, first order elliptic differential oper-
ator on Ω0,•(X,E), which interchanges Ω0,even(X,E) and Ω0,odd(X,E) (cf. [41,
§1.3]).
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Thus Ker
(
DE

+

)
, Ker

(
DE

−
)
are finite dimensional Hilbert spaces and the

quantization space of E is defined as their formal difference

Q(E) := Ind(DE
+) := Ker

(
DE

+

)
−Ker

(
DE

−
)
. (1.3)

The Atiyah-Singer index theorem [3, §4.1], [41, Th. 1.3.9] allows us to compute
the virtual dimension of Q(E) by using characteristic numbers:

dimQ(E) =

∫

X

Td(T (1,0)X) ch(E), (1.4)

where ch(·), Td(·) are the Chern character and the Todd class of the corre-
sponding complex vector bundles. In particular, the virtual dimension of Q(E)
does not depend on the choice of J , gTX or the metric and connection on E. If
Ker(DE

−) = 0, then the quantization space Q(E) is an ordinary vector space.
We explain now the idea of the geometric quantization introduced by

Kostant [33] and Souriau [62]. Let (L, hL) be a Hermitian line bundle over
X endowed with a Hermitian connection ∇L with curvature RL = (∇L)2. We
assume that (L, hL,∇L) satisfies the prequantization condition, that is

ω =
√
−1
2π RL . (1.5)

For p ∈ N, we denote by DLp⊗E the Dirac operator associated to Lp ⊗E with
Lp := L⊗p, and set

Ep := Λ0,• ⊗ Lp ⊗ E, Dp := DLp⊗E , D±,p := Dp|Ω0, even
odd

. (1.6)

Let L2(X,Ep) be the L2-completion of (Ω0,•(X,Lp ⊗ E), ‖·‖L2).
The following result is the starting point of the asymptotic expansion results

for the Bergman kernel which we describe in the sequel. The proof is based on
a direct application of the Lichnerowicz formula for D2

p.

Theorem 1.2 (Ma-Marinescu [37, Th. 1.1, 2.5], [41, Th. 1.5.5]). There exists
C > 0 such that for any p ∈ N, the spectrum of D2

p satisfies

Spec(D2
p) ⊂ {0} ∪ [2pν0 − C,+∞[ , (1.7a)

Ker(D−,p) = 0 for p � 1 , (1.7b)

where ν0 = inf{RL
x (u, u) : u ∈ T

(1,0)
x X, |u|2 = 1, x ∈ X} > 0.

Thus for p � 1, Q(Lp ⊗ E) = Ker(D2
p) is an ordinary vector space and its

dimension is a polynomial in p of degree n given by (1.4). The analogue of The-
orem 1.2 in the holomorphic setting was first obtained by Bismut and Vasserot
[8, Th. 1.1] by using Demailly’s version of the Bochner-Kodaira-Nakano formula
(cf. [41, Th. 1.4.12]). Formula (1.7b) was first established by Borthwick-Uribe
[10, Th. 2.3] and Braverman [14, Th. 2.6] by using Melin’s inequality. Mathai-
Zhang [46, Th. 1.3] obtained a version of (1.7b) for the proper cocompact group
action case by applying the method in [37].
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Definition 1.3. The orthogonal projection Pp : L2(X,Ep) −→ Ker(Dp) is
called the Bergman projection. The Bergman kernel of Dp is the smooth kernel
Pp(x, x

′) ∈ Ep,x⊗E∗
p,x′ , (x, x′ ∈ X), of Pp with respect to dvX(x′), i.e., for any

s ∈ L2(X,Ep), we have

(Pp s)(x) =

∫

X

Pp(x, x
′)s(x′) dvX(x′) . (1.8)

For f ∈ C∞(X,End(E)), set

Tf, p : L2(X,Ep) −→ L2(X,Ep) , Tf, p = Pp f Pp . (1.9)

Here the action of f is the pointwise multiplication by f . The map which
associates to f ∈ C∞(X,End(E)) the family of bounded operators {Tf, p}p on
L2(X,Ep) is called the Berezin-Toeplitz quantization.

Definition 1.4. A Toeplitz operator is a sequence {Tp}p∈N of linear operators
Tp : L2(X,Ep) −→ L2(X,Ep) satisfying Tp = Pp Tp Pp, such that there exists a
sequence gl ∈ C∞(X,End(E)) such that for all k > 0, there exists Ck > 0 with

∥∥∥∥∥Tp −
k∑

l=0

Tgl,p p
−l

∥∥∥∥∥ 6 Ck p−k−1 for any p ∈ N
∗, (1.10)

where ‖·‖ denotes the operator norm on the space of bounded operators. The
section g0 is called the principal symbol of {Tp}.
We express (1.10) symbolically by

Tp =

k∑

l=0

Tgl,p p
−l +O(p−k−1). (1.11)

If (1.10) holds for any k ∈ N, then we write (1.11) with k = +∞.
The Poisson bracket { · , · } on (X,ω) is defined as follows. For f, g ∈

C∞(X), let ξf ∈ C∞(X,TX) be defined by 2πiξfω = df . Then {f, g} :=
ξf (dg).

In the spirit of the geometric quantization, (X,ω) represents the classical
phase space and the Poisson algebra (C∞(X), {·}) represents the classical ob-
servables, while Ker(Dp) is the quantum space and the linear operators on
Ker(Dp) are the quantum observables. The process p → +∞ is called the semi-
classical limit, which is a way to relate the classical and quantum observables.

1.2. Bergman kernel on C
n. Let us consider the canonical real coor-

dinates (Z1, . . . , Z2n) on R
2n and the complex coordinates (z1, . . . , zn) on C

n.
The two sets of coordinates are linked by the relation zj = Z2j−1 +

√
−1Z2j ,

j = 1, . . . , n. We consider the L2-norm ‖ · ‖L2 =
( ∫

R2n | · |2 dZ
)1/2

on the ob-
vious L2-space on R

2n, with dZ = dZ1 · · · dZ2n the Lebesgue measure. For
α = (α1, . . . , αn) ∈ N

n, z ∈ C
n, put zα = zα1

1 · · · zαn
n .
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Let L = C be the trivial holomorphic line bundle on C
n with the canonical

section 1 : Cn → L, z 7→ (z, 1). Let hL be the metric on L defined by

|1|hL(z) := e−
1
4

∑n
j=1 aj |zj |2 = ρ(Z) for z ∈ C

n, (1.12)

with aj > 0 for j ∈ {1, . . . , n}. The space of L2-integrable holomorphic sections
of L with respect to hL and dZ is the classical Segal-Bargmann space of L2-
integrable holomorphic functions with respect to the volume form ρ dZ. It is
well-known that {zβ : β ∈ N

n} forms an orthogonal basis of this space.
To introduce the model operator L we set:

bi = −2
∂

∂zi
+

1

2
aizi , b+i = 2

∂

∂zi
+

1

2
aizi , L =

∑

i

bi b
+
i . (1.13)

We can interpret the operator L in terms of complex geometry. Let ∂
L∗

be the

adjoint of the Dolbeault operator ∂
L
on (L, hL) over (Cn,

√
−1
2

∑
j dzj ∧ dzj).

We have the isometry Ω0,•(Cn,C) → Ω0,•(Cn, L) given by α 7→ ρ−1α. If �L =

∂
L∗

∂
L
+ ∂

L
∂
L∗

denotes the Kodaira Laplacian acting on Ω0,•(Cn, L), then
ρ�Lρ−1 : Ω0,•(Cn, C) → Ω0,•(Cn,C) is given by 1

2L +
∑

j ajdz
j ∧ i ∂

∂zj

, and

its restriction on functions is 1
2L .

The operator L is the complex analogue of the harmonic oscillator, the
operators b, b+ are creation and annihilation operators respectively. Each
eigenspace of L has infinite dimension, but we can still give an explicit de-
scription.

Theorem 1.5 (Ma-Marinescu [38, Th. 1.15], [41, Th. 4.1.20]). The spectrum of
L on L2(R2n) is given by

Spec(L ) =

{
2

n∑

i=1

αiai : α = (α1, · · · , αn) ∈ N
n

}
(1.14)

and an orthogonal basis of the eigenspace of λ ∈ Spec(L ) is given by

Bλ =
{
bα
(
zβ exp

(
− 1

4

∑
i ai|zi|2

))
: 2
∑

i αiai = λ, with α, β ∈ N
n
}

(1.15)

where bα := bα1
1 · · · bαn

n . Moreover, ∪λ{Bλ : λ ∈ Spec(L )} forms a complete
orthogonal basis of L2(R2n).

Let P(Z,Z ′) be the smooth kernel of P, which is the orthogonal projection
from (L2(R2n), ‖ · ‖L2) onto Ker(L ), with respect to dZ ′. Then P(Z,Z ′) is
the classical Bergman kernel on C

n given by

P(Z,Z ′) =
n∏

i=1

ai
2π

exp

(
−1

4

∑

i

ai
(
|zi|2 + |z′i|2 − 2ziz

′
i

)
)
. (1.16)
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2. Asymptotic Expansion of Toeplitz Operators

The starting point for our work on the asymptotic expansion of the Bergman
kernel has been the heat equation proof by Bismut [6] of Demailly’s holomorphic
Morse inequalities [21]. For a unified treatment of these two questions, we refer
to the book [41]. Here, we give various results on expansions of Bergman kernels,
and also on Toeplitz operators.

This Section is organized as follows. In Section 2.1, we give the asymptotic
expansion of the Bergman kernel.

In Section 2.2, we describe a characterization of the Toeplitz operators in
terms of their asymptotic expansion.

In Section 2.3, we specify the results to the Kähler case.
We will use the notation and assumptions of Section 1.1.

2.1. Asymptotic expansion of Bergman kernel. Let dX(x, x′)
be the Riemannian distance between x, x′ ∈ X. Let aX be the injectivity radius
of (X, gTX). We denote by BX(x, ε) and BTxX(0, ε) the open balls in X and
TxX with centers x and 0 and radius ε, respectively. Then the exponential
map TxX 3 Z → expXx (Z) ∈ X is a diffeomorphism from BTxX(0, ε) onto
BX(x, ε) for ε 6 aX . From now on, we identify BTxX(0, ε) with BX(x, ε) via
the exponential map for ε 6 aX . When a function is calculated using normal
coordinates based at x, we will add a subscript x.

We fix x0 ∈ X. For Z ∈ BTx0
X(0, ε), we identify Ep,Z with Ep,x0

by parallel

transport with respect to the connection ∇Ep := ∇Λ0,•⊗Lp⊗E along the curve
γZ : [0, 1] 3 u → uZ.

Let dvTX be the Riemannian volume form on (Tx0
X, gTx0

X). There exists
a smooth positive function κx0

on BTx0
X(0, ε) defined by

dvX(Z) = κx0
(Z)dvTX(Z), κx0

(0) = 1. (2.1)

We will identify the 2-form RL with the Hermitian matrix ṘL ∈
End(T (1,0)X) such that for W,Y ∈ T (1,0)X, RL(W,Y ) = 〈ṘLW,Y 〉. We choose

an orthonormal basis {wi}ni=1 of T
(1,0)
x0 X such that

ṘL(x0) = diag(a1(x0), · · · , an(x0)) ∈ End(T (1,0)
x0

X) with aj(x0) > 0 . (2.2)

Then e2j−1 = 1√
2
(wj + wj) and e2j =

√
−1√
2
(wj − wj) , j = 1, . . . , n , form an

orthonormal basis of Tx0
X. We use the identification (Z1, . . . , Z2n) ∈ R

2n −→∑
i Ziei ∈ Tx0

X. In what follows, we also use the corresponding complex coor-
dinates z = (z1, . . . , zn) on C

n ' R
2n.

Let π : TX ×X TX → X be the obvious projection. Let {Θp}p∈N be a
sequence of linear operators Θp : L2(X,Ep) −→ L2(X,Ep) with smooth kernels
Θp(x, y) with respect to dvX(y). In terms of our trivialization, Θp(x, y) induce
smooth sections Θp, x0

(Z,Z ′) of π∗(End(Λ0,• ⊗ E)) over TX ×X TX, with
Z,Z ′ ∈ Tx0

X. Recall that Px0
= P was defined in (1.16).
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Notation 2.1. Let {Qr, x0
}06r6k,x0∈X be a family Qr, x0

∈ End(Λ0,• ⊗
E)x0

[Z,Z ′] of polynomials in Z,Z ′, smooth with respect to the parameter
x0 ∈ X. We will write

p−nΘp,x0
(Z,Z ′) ∼=

k∑

r=0

(Qr, x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) , (2.3)

if there exist ε′ ∈ ]0, aX [, C0 > 0 with the following property: for any l ∈ N, there
exist Ck, l > 0, M > 0 such that for any x0 ∈ X, Z,Z ′ ∈ Tx0

X, |Z|, |Z ′| < ε′

and p ∈ N
∗, the following estimate holds:

∣∣∣∣∣p
−nΘp, x0

(Z,Z ′)κ
1
2
x0(Z)κ

1
2
x0(Z

′)−
k∑

r=0

(Qr,x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2

∣∣∣∣∣
C l(X)

6Ck, l p
− k+1

2 (1 +
√
p |Z|+√

p |Z ′|)M exp(−
√

C0p |Z − Z ′|) + O(p−∞) .

(2.4)

Here | · |C l(X) is the C l norm with respect to the parameter x0 ∈ X.

If K ⊂ X × X is compact, we will write that as p → +∞, Pp(x, x
′) =

O(p−∞) for x, x′ ∈ K if for any k, l ∈ N, the C l norm of Pp(x, x
′) for x, x′ ∈ K

with respect to the connections ∇L,∇E and the metrics hL, hE , gTX is domi-
nated by Cp−k.

We denote by IC⊗E the projection from Λ0,•⊗E onto C⊗E relative to the
decomposition Λ0,• = C⊕ Λ0,>0.

We have the following full asymptotic expansion of the Bergman kernel.

Theorem 2.2 (Dai-Liu-Ma [20, Prop. 4.1 and Th. 4.18′], [41, Th. 8.1.4]). For
any x0 ∈ X and r ∈ N, there exist polynomials Jr, x0

(Z,Z ′) ∈ End(Λ0,• ⊗E)x0

in Z,Z ′ with the same parity as r and with deg Jr, x0
6 3r, whose coefficients

are functions of the curvatures and their derivatives, such that for any k ∈ N,
in the sense of Notation 2.1,

p−nPp, x0
(Z,Z ′) ∼=

k∑

r=0

(Jr, x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) , (2.5)

with J0,x0
= IC⊗E. Moreover, for any ε > 0, we have

Pp(x, x
′) = O(p−∞) if dX(x, x′) > ε. (2.6)

Idea of the proof. Using the spectral gap property in Theorem 1.2, and finite
propagation speed of solutions of hyperbolic equations, we get (2.6). Also we
can localize the asymptotics of Pp(x0, x

′) in the neighborhood of x0. The second
step consists in working on R

2n. To conclude the proof, we combine the spectral
gap property, the rescaling of the coordinates and functional analytic techniques
inspired by Bismut-Lebeau [7, §11].
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By taking br(x0) = (J2r, x0
Px0

)(0, 0), we get from (2.5) that for any k, l ∈ N,
there exists Ck,l > 0 such that for any p ∈ N

∗,

∣∣∣∣∣Pp(x, x)−
k∑

r=0

br(x)p
n−r

∣∣∣∣∣
C l(X)

6 Ck,lp
n−k−1. (2.7)

We will give an algorithm to compute the coefficients Jr,x0
in the expansion,

by using a formal power series trick.
For s ∈ C∞(R2n, (Λ0,• ⊗ E)x0

), Z ∈ R
2n, |Z| 6 ε, and for t = 1√

p , set

(Sts)(Z) := s(Z/t), Lt := S−1
t κ1/2 t2D2

pκ
−1/2St. (2.8)

By [20, Th. 4.6] (cf. [41, Th. 4.1.7]), there exist second order differential oper-
ators Or such that for any m ∈ N, we have an asymptotic expansion when
t → 0,

Lt = L0 +

m∑

r=1

trOr + O(tm+1), with L0 = L + 2
∑

j

ajw
j ∧ iwj

. (2.9)

Then PN = IC⊗EP is the orthogonal projection of (L2(R2n, (Λ0,• ⊗ E)x0
), ‖ ·

‖L2) onto N = Ker(L0). Set PN⊥

= Id−PN . We define by recursion fr(λ) ∈
End(L2(R2n, (Λ0,• ⊗ E)x0

)) by

f0(λ) = (λ− L0)
−1, fr(λ) = (λ− L0)

−1
r∑

j=1

Ojfr−j(λ). (2.10)

Let δ be the counterclockwise oriented circle in C of center 0 and radius ν0/2.
We denote by Fr,x0

the operator with smooth kernel

Fr,x0
(Z,Z ′) = Jr,x0

(Z,Z ′)P(Z,Z ′) (2.11)

with respect to dZ ′. Then by [38, (1.110)] (cf. also [41, (4.1.91)])

Fr,x0
=

1

2π
√
−1

∫

δ

fr(λ)dλ. (2.12)

By Theorem 1.5, (2.10), (2.12) and by the residue formula, we can express

Fr,x0
in terms of L

−1
0 , PN , PN⊥

, Ok (with k 6 r). This gives a direct method
to compute Fr,x0

. In [39, §2], we find an explicit computation for F2,x0
when

ω(·, ·) = gTX(J ·, ·) (i.e., ṘL = 2π Id). We have in particular:

Theorem 2.3 (Ma-Marinescu [39, Th. 2.1]). If ω(·, ·) = gTX(J ·, ·), we have

Tr |Λ(T∗(0,1)X)[b1(x)] =
1

8π


rX +

1

4
|∇XJ |2 + 4

∑

j

RE(wj , wj)


 . (2.13)



794 Xiaonan Ma

Here ∇XJ is the covariant derivative of J with respect to ∇TX , and rX is
the scalar curvature of (X, gTX). In Donaldson [22], the term rX + 1

4 |∇XJ |2
in (2.13) is called the Hermitian scalar curvature. It is a natural substitute
for the Riemannian scalar curvature in the almost-Kähler case. It was used
by Donaldson to define the moment map on the space of compatible almost-
complex structures.

Ma-Zhang [44] obtained a family version of Theorem 2.2.

2.2. Asymptotic expansion of Toeplitz operators. Here is a
useful characterization of the Toeplitz operators in terms of their kernel.

Theorem 2.4. (Ma-Marinescu [40, Th. 4.9, Rem. 4.10], [41, Lem-
mas 7.2.2, 7.2.4, Th.7.3.1]) Let {Tp : L2(X,Ep) −→ L2(X,Ep)} be a family of
bounded linear operators. Then {Tp} is a Toeplitz operator if and only if it
satisfies the following three conditions:

(i) For any p ∈ N, Pp Tp Pp = Tp .

(ii) For any ε0 > 0, Tp(x, x
′) = O(p−∞) if dX(x, x′) > ε0.

(iii) There exists a family of polynomials {Qr, x0
∈ End(Λ0,• ⊗

E)x0
[Z,Z ′]}x0∈X which has the same parity as r, such that for any k ∈ N,

we have in the sense of (2.3) and (2.4),

p−nTp, x0
(Z,Z ′) ∼=

k∑

r=0

(Qr, x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ). (2.14)

In this case, its principal symbol is g0(x0) = Q0, x0
(0, 0)|C⊗E ∈ End(Ex0

) .

Remark 2.5. For f ∈ C∞(X,End(E)), conditions (i), (ii), (iii) of Theorem
2.4 for {Tf,p} are consequences of Theorem 2.2 and of the Taylor expansion of
f at x0. The coefficients Qr, x0

in (2.14) corresponding to the Toeplitz operator
{Tf,p} are denoted by Qr, x0

(f), and Q0, x0
(f) = f(x0)IC⊗E .

By taking br,f (x0) = (Q2r, x0
(f)Px0

)(0, 0), we get from (2.14) that for any
k, l ∈ N, there exists Ck,l > 0 such that for any p ∈ N

∗, we have

∣∣∣∣∣Tf,p(x, x)−
k∑

r=0

br,f (x)p
n−r

∣∣∣∣∣
C l(X)

6 Ck,lp
n−k−1. (2.15)

In [40, (4.15)] (cf. also [41, (7.2.16)]), we find a precise formula for Qr, x0
(f)

by using the Taylor expansion of f at x0, Jj,x0
(j 6 r) and Px0

in (2.5), from
which the computation br,f (x0) can be derived.

Theorem 2.6 (Ma-Marinescu [40, Th. 1.1], [41, Th. 7.4.1]). The product of the
Toeplitz operators Tf, p and Tg, p, with f, g ∈ C∞(X,End(E)), is a Toeplitz
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operator, i.e., it admits the asymptotic expansion in the sense of (1.11):

Tf, p Tg, p =

∞∑

r=0

p−rTCr(f,g), p +O(p−∞), (2.16)

where Cr are bidifferential operators, C0(f, g) = fg and Cr(f, g) ∈
C∞(X,End(E)).
If f, g ∈ (C∞(X), {·, ·}) with the Poisson bracket defined in Section 1.1, we
have

[Tf, p , Tg, p] =

√
−1

p
T{f,g}, p +O(p−2). (2.17)

Theorem 2.6 implies that the set of Toeplitz operators is closed under the
composition of operators, and so it forms an associative algebra.

For E = C, Theorem 2.6 shows that we can associate to f, g ∈ C∞(X) a
formal power series

∑∞
l=0 ~

lCl(f, g) ∈ C∞(X)[[~]], where Cl are bidifferential
operators. Therefore, we have constructed in a canonical way an associative
star-product f ∗ g =

∑∞
l=0 ~

lCl(f, g), called the Berezin-Toeplitz star-product .
Note that the existence of formal star product on symplectic manifolds was
established by De Wilde and Lecomte in 1983. We refer to Fedosov’s book [24]
for more information on the theory of deformation quantization. In Theorem
2.6, we gave a geometric realization of the associative star-product.

2.3. The Kähler case. In this subsection, we assume that (X,ω, J) is a
compact Kähler manifold, (L, hL) is a holomorphic Hermitian line bundle with
Chern connection ∇L verifying (1.5), and (E, hE) is a holomorphic Hermitian

vector bundle with Chern connection ∇E . We assume also that ω =
√
−1
2π RL

is the Kähler form of (X, gTX). Let ∂
Lp⊗E,∗

be the adjoint of the Dolbeault

operator ∂
Lp⊗E

on Ω0,•(X,Lp ⊗ E). In this case, Dp in (1.6) is given by

Dp =
√
2(∂

Lp⊗E
+ ∂

Lp⊗E,∗
). (2.18)

Thus D2
p preserves the Z-grading on Ω0,•(X,Lp⊗E). By Hodge theory and the

Kodaira vanishing theorem, we have

Ker(Dp) = H0(X,Lp ⊗ E) for p � 1. (2.19)

The Bergman projection Pp reduces to a projection from C∞(X,Lp ⊗E) onto
H0(X,Lp ⊗ E), a Toeplitz operator {Tp} is now a sequence of linear opera-
tors acting on C∞(X,Lp ⊗ E). Thus we don’t need to introduce differential
forms, and we can work on C∞(X,Lp ⊗ E). In this situation, Jr,x0

, br(x0),
Qr,x0

(f), br,f (x0) introduced in (2.5), (2.7), Remark 2.5 and (2.15) take values
in End(E)x0

.
Let P(H0(X,Lp)∗) be the projective space associated to the dual of

H0(X,Lp), and let ωFS be the Fubini–Study (1, 1)-form. The Kodaira map
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φp : X −→ P(H0(X,Lp)∗) is defined by φp(x) = {H0(X,Lp) 3 s → s(x) ∈ Lp
x}

for x ∈ X. The Kodaira embedding theorem asserts that for p � 1, φp is a

holomorphic embedding and φ∗
pO(1) = Lp. Let hφ∗

pO(1) be the metric on φ∗
pO(1)

induced by the metric hO(1) on O(1). Then for E = C, we have (cf. [41, Th.
5.1.3])

hφ∗
pO(1)(x) = Pp(x, x)

−1hLp

(x). (2.20)

The question of the convergence as p → +∞ of 1
pφ

∗
p(ωFS) was raised by Yau

[71, §6.1]. By (2.7) for E = C, and (2.20), as p → +∞, 1
pφ

∗
p(ωFS) converges to

ω in the C∞ topology : for any l > 0, there exists Cl > 0 such that

∣∣∣∣
1

p
φ∗
p(ωFS)− ω

∣∣∣∣
C l(X)

6 Cl/p
2. (2.21)

When l = 2, the estimate of the type (2.21) was obtained by Tian [64] with
p2 replaced by

√
p, by using the Bergman kernel on the diagonal, Pp(x, x).

Ruan [59] obtained (2.21) with p instead of p2. Bouche [11] proved that
limp→+∞ p−nPp(x, x) = 1 in the C 0 topology. The expansion (2.7) was first
established by Catlin [17] and Zelditch [72].

Lu [36] calculated more coefficients br via RTX . Let Ric = Ricg(J ·, ·) be the
(1, 1)-form associated to the Ricci curvature Ricg of gTX . Let ∆ be the posi-
tive Laplacian acting on functions on X; set |RTX |2 =

∑
ijkl |〈RTX(wi, wj)wk,

wj〉|2.

Theorem 2.7 (Lu [36, Th. 1.1]). When E = C, we have

b1 =
rX

8π
, π2

b2 = −∆rX

48
+

1

96
|RTX |2 − 1

24
|Ric |2 + 1

128
(rX)2. (2.22)

Wang [70] also computed b1 in (2.7) for general E. When E = C, the
existence of an asymptotic expansion similar to (2.5) for |Z|, |Z ′| 6 C/

√
p was

also obtained in [61, Th. 1]. For other versions of the asymptotic expansion see
[17], [31], [18], [4]. The main tool in [17], [72], [18], [31], and [61] is the Boutet
de Monvel-Sjöstrand parametrix for the Szegö kernel [13], [25]. The coefficients
were computed in [64], [36], [70] by constructing appropriate peak sections,
using Hörmander’s L2 ∂-method.

If E = C, the existence of the expansion (2.16) was first established by
Bordemann, Meinrenken and Schlichenmaier [9], Schlichenmaier [60], [31]. They
used the theory of Toeplitz structures of Boutet de Monvel and Guillemin [12].

Lu’s computation for b1 plays an important role in Donaldson’s work [23] on
Kähler metrics with constant scalar curvature. We refer to [5], [41] for further
information. In [42], we computed the coefficients b1,f , b2,f , C1(f, g), C2(f, g)
from (2.15), (2.16). These computations are also relevant in Kähler geometry
(cf. [26], [27], [35]).
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Theorem 2.8 (Ma-Marinescu [42]). If E = C, for any f ∈ C∞(X), we have:

b0,f = f, b1,f =
rX

8π
f − 1

4π
∆f,

b2,f = b2f +
1

32π2
∆2f − 1

32π2
rX∆f −

√
−1

8π2

〈
Ric, ∂∂f

〉
.

(2.23)

3. Quantization and Symplectic Reduction

We explain briefly the Guillemin-Sternberg conjecture in Section 3.1, then we
review the asymptotic expansion of the G-invariant part of the Bergman kernel
in Section 3.2, and we specialize the results in the Kähler case in Section 3.3. In
particular, we show how to obtain the scalar curvature on the reduction from
the G-invariant Bergman kernel on the total space, and we compare the metrics
on the two sides of the “quantization commutes with reduction”.

We use the same notation and assumptions as in Section 1.1.

3.1. Quantization commutes with reduction. Recall that
(X,ω, J) is a compact symplectic manifold of real dimension 2n with compat-
ible almost complex structure J , and (L, hL,∇L) is a prequantum line bundle
on X (cf. (1.5)).

Let G be a compact connected Lie group of dimension n0 with Lie algebra
g. We assume that G acts on the left on X and that this action lifts to L.
Moreover, we assume that G preserves gTX , J , hL and ∇L.

The G-action commutes with the Dirac operator DL, and Ker
(
DL

±
)
are

finite dimensional G-representations. The quantization space Q(L) of L (cf.
(1.3)) is an element in the representation ring R(G) of G.

For K ∈ g, let KX be the vector field on X generated by K, and let LK be
the corresponding Lie derivative. Let Λ∗

+ ⊂ g∗ be the set of dominant weights,
and let V G

γ be the irreducible representation of G with highest weight γ ∈ Λ∗
+.

Let Q(L)γ ∈ Z be the multiplicity of V G
γ in Q(L). Then we have

Q(L) =
⊕

γ∈Λ∗
+

Q(L)γ · V G
γ ∈ R(G), (3.1)

and there are only finitely many γ ∈ Λ∗
+ such that Q(L)γ 6= 0.

It is not easy to read off Q(L)γ directly from the Atiyah-Bott-Segal-Singer
equivariant index theorem for its character. Guillemin and Sternberg [29] sug-
gested a geometric way to compute Q(L)γ , by using the associated moment
map.

Definition 3.1. The moment map µ : X → g∗ is defined by the Kostant
formula [33],

2
√
−1πµ(K) = ∇L

KX − LK , for K ∈ g. (3.2)

Then µ is G-equivariant and one has iKXω = dµ(K).
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For a regular value ν ∈ g∗ of µ, the Marsden-Weinstein symplectic reduction
Xν := µ−1(G · ν)/G is a compact symplectic orbifold with the symplectic form
ων induced by ω. Moreover, L (resp. J) induces a prequantum line bundle Lν

(resp. an almost complex structure Jν) over (Xν , ων). One can then construct
the associated spinc Dirac operator (twisted by Lν), D

Lν

+ on Xν , of which the
index Q (Lν) ∈ Z (identified as the virtual dimension of Q (Lν) in (1.3)).

If γ ∈ Λ∗
+ is not a regular value of µ, then by [49] (cf. [54, §7.4], [43, §3.5] for a

standard perturbation definition), Q(Lγ) is still well defined. Now we can state:

Guillemin-Sternberg conjecture: For any γ ∈ Λ∗
+,

Q(L)γ = Q (Lγ) . (3.3)

By the classical shifting trick (i.e., by working on X ×Oγ , where Oγ = G · γ is
the orbit of the co-adjoint action of G on g∗), we only need to prove (3.3) for
γ = 0.

This conjecture was proved by Meinrenken [47] and Vergne [67] when G
is abelian; by Meinrenken [48], Meinrenken-Sjamaar[49] for non-abelian groups
G, by using the technique of symplectic cut of Lerman [34].

Tian and Zhang [65] gave an analytic proof of the Guillemin-Sternberg con-
jecture, using a deformation of the Dirac operator, which is associated with the
function |µ|2. Their approach works for a general vector bundle E satisfying
certain positivity conditions [65, (4.2)] (used afterwards by Paradan [54, p. 445]
and Teleman [63, p. 6]), and also for manifolds with boundary [66]. Paradan
[54] developed later a K-theoretic approach by making use of the theory of
transversally elliptic operators. See [68] for a survey and complete references
on this subject.

3.2. Berezin-Toeplitz quantization and reduction. We use the
same notation and assumptions as in Sections 1.1 and 3.1. We assume also that
the G-action lifts on E and preserves hE and ∇E .

Then G-action commutes with the Dirac operatorDp in (1.6). Let Ker(Dp)
G

be the G-trivial component of Ker(Dp). Let PG
p be the orthogonal projection

from C∞(X,Ep) onto Ker(Dp)
G. The G-invariant Bergman kernel is the C∞

kernel PG
p (x, x′), (x, x′ ∈ X) of PG

p associated to dvX(x′).

Assume for simplicity that G acts freely on µ−1(0), and gTX(·, ·) = ω(·, J ·).
We will denote by XG = µ−1(0)/G, and we add a subscript G to denote the
objects on XG induced by the corresponding objects on X.

By a result of Tian and Zhang [65, Th. 0.2], and (1.7b), we have

dimKer(Dp)
G = dimKer(DG,p) for p � 1. (3.4)

We will describe how PG
p (x, x′) “concentrates” on the Bergman kernel

PG,p(x0, x
′
0) on XG, when p → +∞.
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Theorem 3.2 (Ma-Zhang [43, Th. 0.1]). For any open G-neighborhood U of
µ−1(0) and any ε0 > 0, we have

PG
p (x, x′) = O(p−∞) if (x, x′) /∈ U × U or if dX(Gx, x′) > ε0. (3.5)

Let U be an open G-neighborhood of µ−1(0) such that G acts freely on U .
For any G-equivariant vector bundle with connection (F,∇F ) on U , we denote
by (FB ,∇FB ) the bundle on B := U/G induced by G-invariant sections of F
on U .

For x ∈ U denote by vol(Gx) the volume of the orbit Gx equipped with the
metric induced by gTX . Following [65, (3.10)], let h(x) be the function on U
defined by

h(x) = (vol(Gx))1/2. (3.6)

Then h descends to a function on B.
Let pr1 and pr2 be the projections from X × X onto the first and the

second factor X respectively. Then we can view PG
p (x, x′) (x, x′ ∈ U) as a

smooth section of pr∗1(Ep)B ⊗ pr∗2(E
∗
p)B on B ×B.

We introduce the following coordinates: for any x0 ∈ XG, Z ∈ Tx0
B, we

write Z = Z0 + Z⊥, with Z0 ∈ Tx0
XG, Z

⊥ ∈ NG,x0
, where NG is the normal

bundle of XG in B. For ε0 > 0 small enough, we identify Z ∈ Tx0
B, |Z| < ε0

with expB
exp

XG
x0

(Z0)
(Z⊥) ∈ B, here we still denote by Z⊥ ∈ N

G,exp
XG
x0

(Z0)
, the

parallel transport of Z⊥ along the curve u → expXG
x0

(uZ0) with respect to the
connection on NG induced by projecting the Levi-Civita connection on TB.

We identify (Ep)B,Z with (Ep)B,x0
by using parallel transport with respect

to ∇(Ep)B (cf. §2.1) along the curve [0, 1] 3 u → uZ.
Let dvB , dvXG

, dvNG
be the Riemannian volume forms on TB, TXG, NG

induced by gTX . Let % ∈ C∞(TB|XG
,R), with % = 1 on XG, be defined by

dvB(x0, Z) = %(x0, Z)dvXG
(x0)dvNG,x0

for Z ∈ Tx0
B, x0 ∈ XG. (3.7)

For x0 ∈ XG, Z = (Z0, Z⊥), Z ′ = (Z ′0, Z ′⊥) ∈ Tx0
XG ⊕NG,x0

= Tx0
B, set

P(Z,Z ′) = 2
n0
2 exp

(
−π

2

∑

i

(
|z0i |2 + |z′0i |2 − 2z0i z

′0
i

)
)

× exp
(
− π|Z⊥|2 − π|Z ′⊥|2

)
, (3.8)

with n0 = dimG. As in (1.16) and (2.9), P is the Bergman kernel of a limit
operator, which itself is sum of two terms: one is defined on Tx0

XG, and is equal
L (cf. (1.13)); the other is defined on NG,x0

, it is equal to a harmonic oscilla-
tor. This explains why we expect the G-invariant Bergman kernel PG

p (x, x′) to
exhibit the same sort of behavior, see (3.11).

Let {ΘG
p }p∈N be a sequence of linear operators ΘG

p : L2(X,Ep) −→
L2(X,Ep) with smooth kernel ΘG

p (x, y) with respect to dvX(y). We assume
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that ΘG
p (x, y) is G×G-invariant. Let πB : TB ×XG

TB → XG be the obvious

projection. Relative to our trivialization, ΘG
p (x, y) induces a smooth section

ΘG
p, x0

(Z,Z ′) of π∗
B(End(Λ

0,• ⊗E)B) over TB ×XG
TB with Z,Z ′ ∈ Tx0

B. We
introduce the following notation in analogy to Notation 2.1.

Notation 3.3. We write

p−n+
n0
2 ΘG

p,x0
(Z,Z ′)

h≈
k∑

r=0

(QG
r, x0

Px0
)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) , (3.9)

if there exists a family {QG
r, x0

}06r6k, x0∈XG
with QG

r, x0
∈ End(Λ0,• ⊗

E)B,x0
[Z,Z ′] smooth with respect to the parameter x0 ∈ XG, and there exist

ε′ ∈ ]0, aX [ and C0 > 0 with the following property: for any l,m ∈ N, there
exist C > 0, M > 0 such that for any x0 ∈ XG, Z,Z

′ ∈ Tx0
B, |Z|, |Z ′| < ε′

and p ∈ N
∗, the following estimate holds:

(1 +
√
p|Z⊥|+√

p|Z ′⊥|)m
∣∣∣p−n+

n0
2 ΘG

p, x0
(Z,Z ′)(h%

1
2 )(Z)(h%

1
2 )(Z ′)

−
k∑

r=0

(QG
r,x0

Px0
)(
√
pZ,

√
pZ ′)p−

r
2

∣∣∣
C l(XG)

6 C p−
k+1
2 (1 +

√
p |Z0|+√

p |Z ′0|)M exp(−
√
C0p |Z − Z ′|) + O(p−∞) .

(3.10)

Theorem 3.4 (Ma-Zhang [43, Th. 0.2]). There exists a family of polynomials
{Qr, x0

}r∈N, x0∈XG
∈ End(Λ0,• ⊗E)B,x0

[Z,Z ′] on Z,Z ′ with the same parity as
r, such that Q0,x0

= IC⊗E,G, and for any k ∈ N the following expansion holds
in the sense of Notation 3.3,

p−n+
n0
2 PG

p,x0
(Z,Z ′)

h≈
k∑

r=0

(Qr,x0
Px0

)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ). (3.11)

To read off the scalar curvature on the reduction from PG
p , we define

Ip(x0) ∈ End(Λ0,• ⊗ E)G,x0
for x0 ∈ XG by :

Ip(x0) =

∫
|Z|6ε0,

Z∈NG

(%h2)(x0, Z)PG
p ((x0, Z), (x0, Z))dvNG

(Z). (3.12)

By (3.4), (3.5), Ip(x0) does not depend on ε0 modulo O(p−∞), and

dimKer(DG,p) =

∫

XG

Tr[Ip(x0)]dvXG
(x0) + O(p−∞). (3.13)

From Theorem 3.4, we infer the existence of Φr ∈ C∞(XG,End(Λ
0,• ⊗ E)G),

and Φ0 = IC⊗E,G, with the property that for all k,m ∈ N, there exists Ck,m > 0
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such that for all p ∈ N
∗,

∣∣∣∣∣p
−n+n0Ip(x0)−

k∑

r=0

Φr(x0)p
−r

∣∣∣∣∣
Cm(XG)

6 Ck,mp−k−1. (3.14)

Using Theorems 3.2, 3.4, and the same argument as in Remark 2.5, we see
that the analogue of Theorems 3.2, 3.4 still holds for the kernel TG

f,p(x, x
′) of

the operator TG
f,p := PG

p fPG
p , for f ∈ C∞(X,End(E)).

Theorem 3.5 (Ma-Zhang [43, p. 86-88]). Let f ∈ C∞(X,End(E)). For any
open G-neighborhood U of µ−1(0), ε0 > 0, we have

TG
f,p(x, x

′) = O(p−∞) if (x, x′) /∈ U × U or if dX(Gx, x′) > ε0. (3.15)

Moreover, there exists a family {QG
r, x0

(f)}r∈N, x0∈XG
∈ End(Λ0,• ⊗

E)B,x0
[Z,Z ′] of polynomials in Z,Z ′ with the same parity as r such that for

any k ∈ N, we have in the sense of Notation 3.3,

p−n+
n0
2 TG

f, p, x0
(Z,Z ′)

h≈
k∑

r=0

(QG
r, x0

(f)Px0
)(
√
pZ,

√
pZ ′)p−

r
2 +O(p−

k+1
2 ) .

(3.16)
Moreover, QG

0,x0
(f) = fG(x0)IC⊗E,G, where fG is the G-invariant component

of f .

Since Tr
[
TG
f,p

]
=
∫
X
Tr
[
TG
f,p(x, x)

]
dvX(x), we deduce from Theorem 3.5 that

there exists a sequence Br,f with B0,f =
∫
XG

Tr
[
fG(x0)

]
dvXG

(x0) and for any
k ∈ N,

p−n+n0 Tr
[
TG
f,p

]
=

k∑

r=0

Br,fp
−r + O(p−k−1). (3.17)

Note that in [43, §4.1, §4.5] the case where 0 is a regular value of µ (so that
XG is an orbifold) is treated in detail. In [43, §4.2], it is shown by a shifting trick
that Theorems 3.2 and 3.4 imply the expansion of the kernel of the orthogonal

projection P
V G
γ

p from Ω0,•(X,Lp ⊗ E) onto the V G
γ -component of Ker(Dp) for

any γ ∈ Λ∗
+.

3.3. The Kähler case. In this subsection, as in Section 2.3, we assume
that (X,ω, J) is a compact Kähler manifold carrying a holomorphic Hermitian
line bundle (L, hL) and a holomorphic Hermitian vector bundle (E, hE) and

moreover ω =
√
−1
2π RL is the Kähler form of (X, gTX). We assume also that the

G-action on X, L, E is holomorphic, and preserves the metrics.
By (2.19), we see as in Section 2.3 that the G-invariant Bergman projection

PG
p reduces to a projection from C∞(X,Lp ⊗ E) onto H0(X,Lp ⊗ E)G, and
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the Toeplitz operator {TG
f,p} reduces to a sequence of linear operators acting on

C∞(X,Lp⊗E). In particular, Qr,x0
, Ip(x0), Φr(x0), QG

r,x0
(f) in (3.11), (3.14)

and (3.16) take values in End(EG)x0
.

Let h̃ be the restriction of h on XG. Let rXG be the scalar curvature on
(XG, ωG, JG), and ∆XG

be the positive Laplacian on XG. Let {w0
j} be an

orthonormal frame of T (1,0)XG. The following result generalizes formula (2.13)
for the coefficient b1 of the expansion (2.7).

Theorem 3.6 (Ma-Zhang [43, Th. 0.6]). The coefficients Φ0 and Φ1 from (3.14)
are given by,

Φ0 = IdEG
, Φ1(x0) =

1

8π
rXG
x0

+
3

4π
∆XG

log h̃+
1

2π

∑

j

REG
x0

(w0
j , w

0
j ). (3.18)

We discuss now the metric aspect of quantization. Let i : µ−1(0) ↪→ X be
the natural injection. Let πG : C∞(µ−1(0), Lp ⊗E)G → C∞(XG, L

p
G ⊗EG) be

the natural identification. By a result of Zhang [73, Th. 1.1 and Prop. 1.2], for
p � 1, the map πG ◦ i∗ : C∞(X,Lp ⊗ E)G → C∞(XG, L

p
G ⊗ EG) induces a

natural isomorphism

σp = πG ◦ i∗ : H0(X,Lp ⊗ E)G → H0(XG, L
p
G ⊗ EG). (3.19)

(When E = C, this result was first proved in [29, Th. 3.8] for p > 1). We denote
by 〈·, ·〉 the L2-Hermitian products on these spaces. A corollary of Theorem 3.5
is as follows.

Theorem 3.7 (Ma-Zhang [43, Th. 4.8]). Set σG
p = σp ◦ PG

p and let σG∗
p

be the adjoint of σG
p . Then Tf,p = p−

n0
2 σG

p fσ
G∗
p ∈ End(H0(XG, L

p
G ⊗

EG)) is a Toeplitz operator with principal symbol 2
n0
2 fG/h̃2, for any f ∈

C∞(X,End(E)).

The natural Hermitian product 〈·, ·〉h̃ on C∞(XG, L
p
G ⊗ EG) is given by

〈s1, s2〉h̃ =

∫

XG

〈s1, s2〉(x0) h̃
2(x0) dvXG

(x0). (3.20)

Theorem 3.8 (Ma-Zhang [43, Th. 0.10]). The isomorphism (2p)−
n0
4 σp is

an asymptotic isometry from (H0(X,Lp ⊗ E)G, 〈·, ·〉) onto (H0(XG, L
p
G ⊗

EG), 〈·, ·〉h̃), i.e., if {s
p
i }

dp

i=1 is an orthonormal basis of (H0(X,Lp ⊗E)G, 〈·, ·〉),
then

(2p)−
n0
2

〈
σps

p
i , σps

p
j

〉
h̃
= δij + O

(
p−1
)
. (3.21)

In [43, Remark 0.11], we find a natural symplectic extension of Theorem
3.8.
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When E = C and G is a torus, Charles [19] first showed that Tf,p in Theorem
3.7 is a Toeplitz operator, and obtained (3.21).

Assume that E = C. Then PG
p (x0, x0) becomes a positive function. By

setting Z = Z ′ = 0 in (3.11), we get the following expansion on XG for any k,

p−n+
n0
2 h2(x0)P

G
p (x0, x0) =

k∑

r=0

cr(x0)p
−r + O(p−k−1) , c0(x0) = 2n0/2 .

(3.22)

Paoletti [50, Th. 1], [51, Th. 1] had obtained the expansion (3.22), but he claimed
that c0(x0) = 1. After our preprint [43] was posted, Hall-Kirwin [30], Paoletti
[52], [53] and Burns-Guillemin-Wang [16] have established related results.

4. Noncompact Case: Vergne’s Conjecture

In this section, we use the same notation and assumptions as in Sections 1,
3.1, except that we assume now that X is noncompact. One asks naturally the
following question: what is the quantization formula in this situation?

When (X, gTX) is a complete Riemannian manifold, it is shown in [38, §3.5],
[40, §5], [41, §6.1, §7.5], [43, §4.6] that under natural (positivity) conditions on
RL, RE , the asymptotic expansion of the Bergman kernel holds. However, in
this section, we do not assume (X, gTX) to be complete.

In Section 4.1, the quantization formula is explained for the model example
C

n. In Section 4.2, we review briefly our solution with Zhang of Vergne’s con-
jecture: “quantization commutes with reduction” in the noncompact setting.

4.1. Quantization formula on C
n. We continue the discussion of

Section 1.2. Let’s assume now that aj = 2π for j = 1, · · · , n. Then (L, hL,∇L)

is a prequantum line bundle on (Cn, ω =
√
−1
2

∑
j dzj ∧ dzj).

Let Tn be the n-dimensional torus with Lie algebra tn. We define a holomor-
phic action of Tn on C

n by eiθ ·z = (eiθ1z1, · · · , eiθnzn), with θ = (θ1, · · · , θn) ∈
R

n and eiθ = (eiθ1 , · · · , eiθn) ∈ Tn. For λ = (λ1, · · · , λn) ∈ Z
n, we define a

holomorphic Tn-action on L by eiθ · 1 = eiθ·λ1 with θ · λ =
∑

j θjλj . Then the
associated moment map µ : Cn → R

n∗ (cf. (3.2)) is given by

µ(z) =
1

2
(|z1|2, · · · , |zn|2) + λ. (4.1)

Given {ui}ni=1 ⊂ Z
m, the Delzant polytope ∆ ⊂ R

m∗ [2, §VII. 1.c., 2.a.] is
defined by

∆ = {x ∈ R
m∗ : (ui, x) > λi for 1 6 i 6 n} , (4.2)

if the vertices have integer coordinates and each vertex q has exactly m-edges,
and the ui such that (ui, q) = λi form a basis of Zm.
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Let  : Rn → R
m be the linear map defined by (ei) = ui with {ei} the

canonical basis of Rn. Let N = Ker()/(Ker() ∩ (2πZ)n) ⊂ R
n/(2πZ)n ' Tn,

so that N is a (n−m)-dimensional torus with Lie algebra n
ı
↪→ R

n ' tn. Thus

we have the exact sequence: 0 → R
m∗ ∗−→ R

n∗ ı∗−→ n∗ → 0.
Now N acts naturally on C

n and L, the associated moment map is Φ =
ı∗ ◦ µ : Cn → n∗. Its symplectic reduction X∆ = Φ−1(0)/N is a m-dimensional
compact Kähler manifold, and L descends naturally to a positive holomorphic
line bundle L∆ on X∆. Then X∆ is the toric variety associated to the Delzant
polytope ∆.

Observe that if N acts trivially on a holomorphic section zα1 of L for some
α ∈ N

n, then zα1 descends to a holomorphic section of L∆ on X∆.
For eiθ ∈ Tn, we have eiθ · zα1 = eiθ·(α+λ)zα1. Thus N acts trivially on the

holomorphic section zα1 if and only if ı∗(α + λ) = 0, and this is equivalent to
the existence of a ν ∈ R

m∗ such that αi + λi = (ν, ui), i.e., ν ∈ ∆ ∩ Z
m and

αi + λi = (ν, ui).
For ν ∈ ∆ ∩ Z

m, we denote by sν the holomorphic section of L∆ on X∆

induced by zα1, where αi = (ν, ui)− λi.

Theorem 4.1 ([28, §3.5]). The cohomology of L∆ on X∆ is given by

H0(X∆, L∆) =
⊕

ν∈∆∩Zm

C sν , Hj(X∆, L∆) = 0 if j > 0. (4.3)

By Theorem 1.5, we see that the kernel of DL on the noncompact space Cn

is an infinite dimensional vector space. Moreover, by the discussion after (1.13)
we deduce that all higher L2 cohomology groups of Cn with values in L vanish.
Theorem 4.1 implies that “quantization commutes with reduction” still holds.
Note that the moment map Φ = ı∗ ◦ µ is proper here.

Example 4.2. Setm = n−1, ui = ei for i 6 m, un = −(1, · · · , 1) = −∑m
i=1 ei,

λ = (0, · · · , 0,−1). Then Ker() = R(1, · · · , 1), Φ(z) = 1
2

∑n
i=1 |zi|2 − 1. In

this case, (X∆, L∆) ' (CPn−1,O(1)) with O(1) the hyperplane line bundle on
CP

n−1.

4.2. Vergne’s conjecture. Recall that (X,ω, J) is a noncompact
symplectic manifold with the prequantum line bundle (L, hL,∇L), and
gTX is a J-invariant Riemannian metric on X. Let τ : TX → X
be the natural projection. Following [1, p. 7] (cf. [54, §3]), set TGX ={
(x, v) ∈ TxX :

〈
v,KX(x)

〉
= 0 for all K ∈ g

}
.

Then the quantization space Q(L) = Ind(DL) of L is not well defined,
since usually DL is not a Fredholm operator, and we need to make precise the
self-adjoint extension of DL|Ω0,•

0 (X,L), where Ω0,•
0 (X,L) denotes the space of

sections with compact support.
We suppose that the moment map µ : X → g∗ is proper. Then the right

hand side of (3.3) is well defined.
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We identify g with g∗ by using an AdG-invariant metric on g. Let µX(x) :=
(µ(x))X(x) (x ∈ X)1 be the vector field induced by µ : X → g.

We suppose for the moment that {x ∈ X : µX(x) = 0} is compact.

Recall that c(·) is the Clifford action defined in (1.1). For x ∈ X, ξ ∈ TxX,
set2

σX
L,µ(x, ξ) = τ∗

(√
−1c(ξ + µX)⊗ IdL

)∣∣
(x,ξ)

: τ∗(Λeven(T ∗(0,1)X)⊗ L) → τ∗(Λodd(T ∗(0,1)X)⊗ L). (4.4)

Then σX
L,µ is a transversally elliptic symbol on TGX in the sense of Atiyah

[1, §1, §3] and Paradan [54, §3], [55, §3], which determines a transversal index
Ind

(
σX
L,µ

)
in the formal representation ring R[G] of G,

Ind
(
σX
L,µ

)
=
⊕

γ∈Λ∗
+

Indγ
(
σX
L,µ

)
· V G

γ ∈ R[G]. (4.5)

The index Ind
(
σX
L,µ

)
does not depend on gTX , hL,∇L, and it depends only

on the homotopy classes of J , µX . The set {γ ∈ Λ∗
+ : Indγ

(
σX
L,µ

)
6= 0} can be

infinite. Michèle Vergne suggested to use Indγ
(
σX
L,µ

)
to replace the left hand

side of (3.3).

Vergne’s conjecture (ICM 2006 plenary lecture [69, §4.3]) : If µ : X → g∗ is
proper and if {x ∈ X : µX(x) = 0} is compact, then for any γ ∈ Λ∗

+,

Indγ
(
σX
L,µ

)
= Q (Lγ) . (4.6)

Special cases of this conjecture, related to the discrete series of semi-simple
Lie groups, have been proved by Paradan [55], [57].

For a > 0, set Xa = {x ∈ X : |µ|2(x) 6 a}. If a is a regular value of |µ|2,
then Xa is a compact manifold with boundary ∂Xa, and µX is nowhere zero
on ∂Xa. Thus σ

Xa

L,µ is a transversally elliptic symbol on Xa.

Theorem 4.3 (Quantization commutes with reduction, Ma-Zhang [45,
Th. 0.2, 0.3]). Suppose that µ : X → g∗ is proper. For any γ ∈ Λ∗

+, there

exists aγ > 0 such that the function a 7→ Indγ
(
σXa

L,µ

)
is constant on {a >

aγ : a is regular value of |µ|2}. Denote by Q(L)γ this constant. Then for any
γ ∈ Λ∗

+, we have

Q(L)γ = Q(Lγ). (4.7)

1The vector field µ
X is also called Kirwan vector field in view of [32].

2The symbol σX
L,µ is the (semi-classical) symbol of Tian-Zhang’s [65] deformed Dirac op-

erator (4.8) in their approach to the Guillemin-Sternberg geometric quantization conjecture.
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If {x ∈ X : µX(x) = 0} is compact, then Q(L)γ = Indγ
(
σX
L,µ

)
. Therefore

Theorem 4.3 implies Vergne’s conjecture. Note that Paradan [58] gives a new
proof of Theorem 4.3 by using symplectic cuts and the wonderful compactifi-
cations of [56].

Idea of the proof. 1) Assume that {x ∈ X : µX(x) = 0} is compact. For T > 0,
let DL

T be the deformed Dirac operator introduced by Tian-Zhang [65, (1.20)]:

DL
T = DL +

√
−1Tc

(
µX
)
: Ω0,• (X,L) → Ω0,• (X,L) . (4.8)

A first step is to interpret the transversal index as the Atiyah-Patodi-Singer
index of DL

T for a manifold with boundary defined as in [66]. The proof uses
Braverman’s L2-interpretation of the transversal index [15, §5]. The proof of
(4.7) for γ = 0 is then easy.

2) A second key result is as follows. Let (N,ωN , JN ) be a compact sym-
plectic manifold with a prequantum line bundle (F, hF ,∇F ) (see Section
1.1). We suppose that G acts on N and the action lifts to F as above
with the associated moment map η : N → g∗, etc. For γ ∈ Λ∗

+, set

Q (F )
−γ

= dimHomG((V
G
γ )∗, Q(F )), where HomG is the linear space of G-

homomorphisms. Let L⊗F be the obvious prequantum line bundle over X×N .
Then we have

Q (L⊗F )
γ=0

=
∑

γ∈Λ∗
+

Q(L)γ ·Q (F )
−γ

. (4.9)

The proof of Theorem 4.3 is obtained in [45] by combining these two arguments.
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Bourbaki, Vol. 2000/2001. Astérisque No. 282 (2002), Exp. No. 888, viii, 249–278.

[69] M. Vergne, Applications of equivariant cohomology, International Congress of
Mathematicians. Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 635–664.
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Abstract

In this note we will review recent results concerning two geometric problems
associated to the scalar curvature. In the first part we will review the solution
to Schoen’s conjecture about the compactness of the set of solutions to the
Yamabe problem. It has been discovered, in a series of three papers, that the
conjecture is true if and only if the dimension is less than or equal to 24. In the
second part we will discuss the connectedness of the moduli space of metrics
with positive scalar curvature in dimension three. In two dimensions this was
proved by Weyl in 1916. This is a geometric application of the Ricci flow with
surgery and Perelman’s work on Hamilton’s Ricci flow.
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1. The Compactness Conjecture

The celebrated Riemann’s Uniformization Theorem states that any compact
Riemannian surface can be conformally deformed to a surface of constant Gauss
curvature. We will begin by describing the Yamabe Problem, which is a way of
generalizing uniformization to higher-dimensional manifolds.

1.1. The Yamabe problem. Let (Mn, g) be a smooth compact Rie-
mannian manifold of dimension n ≥ 3. The conformal class of g is the set

[g] = {g̃ = φ2g : φ ∈ C∞(M), φ > 0}.

The Yamabe Problem consists of finding a metric g̃ ∈ [g] of constant scalar
curvature.
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If we write g̃ = u
4

n−2 g, u > 0, the transformation law for the scalar curvature
is

Rg̃ = −
4(n− 1)

n− 2
u−

n+2
n−2

(

∆gu−
n− 2

4(n− 1)
Rgu

)

.

Here Rg and Rg̃ denote the scalar curvatures of g and g̃, respectively, and
∆g is the Laplace-Beltrami operator associated with g. The linear operator
Lg = ∆g −

n−2
4(n−1)Rg is usually called the conformal Laplacian of g.

Therefore the Yamabe Problem is equivalent to finding a positive solution
u to the partial differential equation

Lg(u) + c(n)Ku
n+2
n−2 = 0 (1)

for some constant K, where c(n) = n−2
4(n−1) .

It turns out that the constant scalar curvature metrics g̃ ∈ [g] are the critical
points of the functional

Q(g̃) =

∫

M
Rg̃ dvg̃

(

∫

M
dvg̃

)

n−2
n

,

known as the normalized total scalar curvature functional, when restricted to
the conformal class [g]. This variational structure played a prominent role in the
solution of the Yamabe Problem. In fact, after the initial paper of Yamabe [66],
which contained a gap, the combined works of Trudinger [63], Aubin [2], and
Schoen [52] established the existence of a minimizing solution in the conformal
class [g] of any given (M, g).

It is natural to ask if such solution is unique. In that respect, the conformal
classes of compact Riemannian manifolds should be classified in three types,
according to the sign of the Yamabe quotient:

Q(M, g) = inf
g̃∈[g]

Q(g̃).

If the Yamabe quotient is negative, it follows from the Maximum Principle,
applied to equation (1), that the solution (of negative constant scalar curvature)
is unique. If the Yamabe quotient is zero, the solution (of zero scalar curvature)
is unique up to a constant factor. The structure of the set of solutions in the
positive Yamabe quotient case can be very rich though.

1.2. The set of solutions and some conjectures. It is conve-
nient, in the positive Yamabe quotient case, to normalize the scalar curvature
of the solutions to be n(n− 1), for example. Hence let

Mg = {g̃ ∈ [g] : Rg̃ = n(n− 1)}

be the space of solutions with such normalization.
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The simplest and most important example is given by the standard sphere
(Sn, g0). Here g0 denotes the metric induced by the Euclidean metric on the
unit sphere Sn ⊂ R

n+1. This case is special because the standard sphere is the
only compact manifold, up to conformal equivalence, which admits a noncom-
pact group of conformal transformations Conf(Sn). By looking at the transfor-
mation law for the Einstein tensor (traceless Ricci) under conformal changes,
Obata (see [44]) proved that

Mg0 = {ψ∗(g0) : ψ ∈ Conf(Sn)}.

Since these metrics are all isometric to each other, every solution is minimizing
in this particular example. Notice that Mg0 is noncompact.

The example of S1(L) × Sn−1 with the product metric (L denotes the
length of the circle factor) was analyzed by R. Schoen in [54] . The set of
solutions in this case can be described as a finite union of one-parameter fami-
lies, parametrized by circles, and depending on L. If L is big, there exists a large
number of high energy solutions with high Morse index. In fact, a theorem of
Pollack ([49]) shows that every compact Riemannian manifold of positive scalar
curvature can be perturbed, in the C0 topology, to have as many solutions as
desired. These solutions generally have high energy and index.

In order to obtain more refined information about Mg, through the Morse
theory of Palais and Smale (see [45]), one needs to prove a priori estimates (or
compactness) for the set of solutions. The difficulty of that has its origin in the
fact that these estimates fail in the case of the standard sphere (Sn, g0).

In a topics course at Stanford in 1988 (see also [55] and [56]), motivated by
the study of the locally conformally flat case, R. Schoen proposed the following
conjecture, together with an outline of a strategy to prove it:

Compactness Conjecture

The set Mg of solutions to the Yamabe Problem, in the positive Yamabe quo-
tient case, is compact (in any Ck topology) unless the manifold is conformally
equivalent to the standard sphere.

The cases which were covered in the Stanford notes are the locally confor-
mally flat case, published in [55], and the three dimensional case, the argument
for which is in the paper of Schoen and Zhang [61] (used there to establish a
single simple point of blow-up for the prescribed scalar curvature problem on
S3). In dimensions 4 and 5, the conjecture was proved by O. Druet (see [19]).

It follows from basic arguments in blow-up analysis that non-converging
sequences of solutions to the Yamabe Problem have to concentrate and form
bubbles (spheres) at some points of the manifold, referred to as blow-up points.
This phenomenon can be explicitly illustrated in the case of the standard sphere
(Sn, g0). If π : Sn−{p} → R

n denotes the stereographic projection, the metrics
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g̃ε = π∗(4u
4

n−2
ε δ), where

uε(x) =
( ε

ε2 + |x|2

)

n−2
2

,

lie in Mg0 . Notice that uε blows-up at the origin as ε→ 0.
The main step in Schoen’s program to establish compactness in dimensions

greater than or equal to 6 consisted in proving a related statement, known as
the Weyl Vanishing Conjecture, concerning the location of possible blow-up
points:

If x ∈ M is a blow-up point of a sequence of solutions g̃ν = u
4

n−2
ν g to the

Yamabe Problem, then the Weyl tensor of the metric g should satisfy

∇kWg(x) = 0

for all 0 ≤ k ≤ [n−6
2 ].

Over the past several years many people have worked on these problems. It
follows from the works of the author ([37]) and Y. Y. Li and L. Zhang ([33])
that compactness holds for n ≤ 7 in general, and for arbitrary n under the
assumption that the Weyl tensor vanishes nowhere to second order. In [34], Li
and Zhang proved compactness for n ≤ 11.

We should also point out that non-smooth blow-up examples were obtained
by A. Ambrosetti and A. Malchiodi in [1], and by M. Berti and Malchiodi in
[4]. In [20] O. Druet and E. Hebey have also obtained blow-up examples for
Yamabe-type equations.

In the past few years the Compactness Conjecture was completely solved in
a series of three articles ([11], [12], and [28]). The results of [11], [12], and [28]
put together give the following answer to the Compactness Conjecture:

The Compactness Conjecture is true if and only if n ≤ 24.

In the next sections we will give an overview of the results in these papers
and of their proofs. We refer the reader to [9] and [38] for related accounts (see
also [8]).

1.3. A compactness theorem. Throughout this section (Mn, g) will
be a smooth compact Riemannian manifold of dimension n ≥ 3 and of positive
Yamabe quotient.

For any p ∈ [1, n+2
n−2 ] we define

Φp = {u > 0, u ∈ C∞(M) : Lgu+Kup = 0 on M}.

Although the geometric problem corresponds to the exponent p = n+2
n−2 , critical

with respect to the Sobolev embeddings, the consideration of the subcritical



Scalar Curvature, Conformal Geometry, and the Ricci Flow 815

solutions is useful for the purposes of applying Morse theory and computing
the total Leray-Schauder degree of the problem.

In [28], M. Khuri, R. Schoen, and the author proved the following theorem:

Theorem 1.1. Suppose 3 ≤ n ≤ 24. If (Mn, g) is not conformally diffeomor-
phic to (Sn, g0), then for any ε > 0 there exists a constant C > 0 depending
only on g and ε such that

C−1 ≤ u ≤ C and ‖ u ‖C2,α≤ C,

for all u ∈ ∪1+ε≤p≤ n+2
n−2

Φp, where 0 < α < 1.

The following compactness result is a corollary of the previous theorem and
standard elliptic regularity theory:

Corollary. Suppose 3 ≤ n ≤ 24. If (Mn, g) is not conformally diffeomorphic
to (Sn, g0), then the set Mg is compact in any Ck topology.

The proof of Theorem 1.1 is by contradiction and follows the strategy out-
lined in the notes of R. Schoen ([53]). In order to illustrate the ideas let us
for simplicity restrict ourselves to the critical exponent p = n+2

n−2 . Suppose then
that there exists a sequence uν ∈ Φ n+2

n−2
such that maxM uν = uν(xν) → ∞ as

ν → ∞. Suppose x = limxν .
The first step is to obtain sharp approximations of the blowing-up sequence

of solutions in a neighborhood of the blow-up point. This is achieved by es-
tablishing optimal pointwise estimates which generalize the ones obtained by
the author in [37]. These estimates assume the blow-up point is isolated simple
(one bubble only). After the strategy is carried out with success for that par-
ticular case, the results can be used to handle the more general case of multiple
blow-up by scaling arguments.

The important point of the estimates of [28] is that in high dimensions
it is necessary to have an expansion of uν that goes beyond the rotationally
symmetric first approximation (standard bubble). The approximate solutions
used are the same ones introduced by S. Brendle in [10] to generalize the test
function estimates of Aubin ([2]) and of Hebey and Vaugon ([26]), and prove
convergence of the Yamabe flow in any dimension.

The basic idea then is to use the Pohozaev Identity as an obstruction tool
in order to rule out the formation of bubbles at blow-up points. The following
is a general version of it in geometric form:

Proposition 1.2 (Pohozaev Identity, [60]). Let (Ωn, g) be a Riemannian do-
main, n ≥ 3. If X is a vector field on Ω, then

n− 2

2n

∫

Ω

X(Rg) dvg +

∫

Ω

〈DgX,Tg〉 dvg =

∫

∂Ω

Tg(X, ηg) dσg.

Here Tg = Ricg − Rg

n g is the traceless Ricci tensor, (DgX)ij = Xi;j + Xj;i −
2
ndivgX gij is the conformal Killing operator, and ηg is the outward unit normal
to ∂Ω.
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Since the scalar curvature of gν = u
4

n−2
ν g is constant, the Pohozaev identity

applied to the geodesic ball Bδ(xν) = {p ∈ M : r = dg(xν , p) ≤ δ}, endowed
with the Riemannian metric gν and the radial vector field X = r ∂

∂r , r =
dg(xν , ·), yields

∫

Bδ

〈DgνX,Tgν 〉 dvgν =

∫

∂Bδ

Tgν (X, ηgν ) dσgν . (2)

The idea then is to expand both integrals in powers of εν = uν(xν)
− 2

n−2 and
compare.

It turns out that the boundary integrals in the identity (2), when appropri-
ately normalized, converge to a quantity which can be bounded above by −m,
where m is the ADM mass of the asymptotically flat and scalar flat metric

ĝ = G
4

n−2

L g. Here GL denotes the Green’s function of the conformal Laplacian
with pole at x. The vanishing of the Weyl tensor to order [n−6

2 ] at x is necessary
in order for the mass of ĝ to be well-defined.

In order to analyze the interior integrals in (2), we let (x1, . . . , xn) be normal
coordinates centered at xν . We write the components of the metric g in the form

gij(x) = exp(hij(x)),

and look at the Taylor expansion of hij around the origin:

hij(x) = Hij(x) +O(|x|d+1),

where d = [n−2
2 ]. It is convenient to work in conformal normal coordinates (see

[32]) to simplify the computations. In that case Hij is a matrix whose entries
are polynomials of degree less than or equal to d, and such that

1. Hij(x) = Hji(x),

2.
∑

kHkk(x) = 0,

3.
∑

k xkHik(x) = 0,

for all 1 ≤ i, j ≤ n and x ∈ R
n. Let us denote the vector space of such matrices

by Vn.
The optimal pointwise estimates established in [28] lead to an expansion of

the interior integral of (2) in powers of εν , much like in the work of Aubin [2]. It
turns out that the relevant terms in this expansion are encoded in a canonical
quadratic form Pn defined on Vn. If n is odd, for instance, and

∑

i,j ∂i∂jHij = 0,
the quadratic form is given by

Pn(H,H) =
∑

i,j,l

d
∑

s,t=2

cs+t

∫

Sn−1
1 (0)

(

−
1

2
∂jH

(s)
ij ∂lH

(t)
il +

1

4
∂lH

(s)
ij ∂lH

(t)
ij

)

.
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Here H(s) denotes the homegeneous component of H of degree s, and

ck =

∫ ∞

0

(s2 − 1)sk+n−3

(1 + s2)n−1
ds

for k < n − 2. We refer the reader to the appendix of [28] for a complete
definition of Pn.

The proof of Theorem 1.1 relies on an eigenvalue analysis done in [28]:

Proposition 1.3. The quadratic form Pn, defined on Vn, is positive definite
if n ≤ 24. Moreover, it has negative eigenvalues if n ≥ 25.

Suppose n ≤ 24. The vanishing of Hij at x, which is equivalent to the
vanishing of the Weyl tensor to order [n−6

2 ], follows from the positivity of Pn

and estimates of the boundary term of (2). Hence the mass of ĝ is well-defined.
Since (Mn, g) is not conformally equivalent to the standard sphere, the metric
ĝ is not flat, and therefore m > 0 by the Positive Mass Theorem. It can be seen
that this is in contradiction with the positivity of Pn by letting ν → ∞ in (2).
Therefore we conclude that blowup cannot occur if n ≤ 24.

Remark: The Positive Mass Theorem of General Relativity has been estab-
lished by Schoen and Yau [57] in general for dimensions n ≤ 7. In [65] E. Witten
established it in any dimension for spin manifolds, while the locally conformally
flat case was handled by a special argument in [59]. See [36] for work towards
the general higher dimensional version.

As one of the consequences of compactness, we obtain the following state-
ment about generic metrics (assuming n ≤ 24):

Corollary. Suppose that (Mn, g) satisfies the assumptions of Theorem 1.1, and
assume that all critical points in [g] are nondegenerate. Then there are a finite
number of critical points g1, . . . , gk and we have

1 =

k
∑

j=1

(−1)I(gj),

where I(gj) denotes the Morse index of the variational problem with volume
constraint.

1.4. Noncompactness results. One way to understand the noncom-
pactness results is to look closely at the model case of the standard sphere
(Sn, g0). As was pointed out before, the set of solutions of scalar curvature
n(n − 1) coincides in this particular case with the set of metrics coming from
the action of the conformal group on g0, and therefore it is noncompact. We
might then be tempted to ask the following question:

Is there a way of perturbing the conformal structure of the standard sphere so
that the noncompactness persists?
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It follows from Theorem 1.1 that this is impossible if n ≤ 24, but it turns
out that the answer to this question is yes for all n ≥ 25.

In a surprising paper ([11]), Simon Brendle constructed in 2008 the first ex-
amples of C∞ metrics for which the compactness statement fails. These metrics
were small perturbations of the standard sphere in dimensions greater than or
equal to 52. In a subsequent article ([12]) Brendle and the author were able to
extend these examples to the dimensions 25 ≤ n ≤ 51.

The main theorems of [11] and [12] put together give:

Theorem 1.4. Suppose n ≥ 25. Given any ε > 0, there exists a smooth Rie-
mannian metric g on Sn and a sequence of positive functions vν ∈ C∞(Sn)
(ν ∈ N) with the following properties:

(i) ‖g − g0‖C[1/ε](Sn) < ε,

(ii) g is not conformally flat,

(iii) vν is a solution of the Yamabe equation (1) for all ν ∈ N,

(iv) Q(v
4

n−2
ν g) ↗ Q(Sn, g0) as ν → ∞,

(v) supSn vν → ∞ as ν → ∞.

The first step of the proof consists in reducing the construction to solving
a finite dimensional variational problem. This follows from a procedure known
as the Lyapunov-Schmidt reduction which we now briefly describe.

Since the standard sphere minus a point is conformally equivalent to the
Euclidean space (Rn, δ) through the stereographic projection, we can translate
the problem to the Euclidean setting. In this setting the solutions of the Yamabe
equation

∆u+ n(n− 2)u
n+2
n−2 = 0 (3)

on R
n are the functions

u(ξ,ε)(x) =
( ε

ε2 + |x− ξ|2

)

n−2
2

,

where (ξ, ε) ∈ R
n × (0,∞). The solutions of the equation (3) can be also seen

as the critical points (at the same energy level) of the functional

Fδ(u) =

∫

Rn

(

|∇u|2 − (n− 2)2 |u|
2n

n−2

)

dx

restricted to the space

E =

{

w ∈ L
2n

n−2 (Rn) ∩W 1,2
loc (R

n) :

∫

Rn

|∇w|2 dx <∞

}

.



Scalar Curvature, Conformal Geometry, and the Ricci Flow 819

We consider Riemannian metrics g which are perturbations of the Euclidean
metric with compact support. We write g(x) = exp(h(x)), where h(x) is a trace-
free symmetric two-tensor on R

n satisfying h(x) = 0 for |x| ≥ 1, and

|h(x)|+ |∂h(x)|+ |∂2h(x)| ≤ α

for some small α > 0 and all x ∈ R
n.

Although the linearization of the equation (3) has a kernel, it is possible to
apply the Implicit Function Theorem if we restrict ourselves to the orthogonal
subspace

E(ξ,ε) =

{

w ∈ E :

∫

Rn

ϕ(ξ,ε,k) w dx = 0 for k = 0, 1, . . . , n

}

,

where

ϕ(ξ,ε,0)(x) =
( ε

ε2 + |x− ξ|2

)

n+2
2 ε2 − |x− ξ|2

ε2 + |x− ξ|2

and

ϕ(ξ,ε,k)(x) =
( ε

ε2 + |x− ξ|2

)

n+2
2 2ε (xk − ξk)

ε2 + |x− ξ|2

for k = 1, . . . , n.
As a consequence we can find an (n+1)-dimensional family of approximate

solutions:

Proposition 1.5. Let α > 0 be sufficiently small, depending only on the di-
mension. Given (ξ, ε) ∈ R

n× (0,∞), there exists a function v(ξ,ε) ∈ E such that
v(ξ,ε) − u(ξ,ε) ∈ E(ξ,ε) and

∫

Rn

(

〈∇v(ξ,ε),∇ψ〉g +
n− 2

4(n− 1)
Rg v(ξ,ε) ψ − n(n− 2) |v(ξ,ε)|

4
n−2 v(ξ,ε) ψ

)

= 0

for all test functions ψ ∈ E(ξ,ε).

The problem reduces to finding critical points of the finite-dimensional func-
tional Fg : Rn × (0,∞) → R, given by

Fg(ξ, ε) =

∫

Rn

(

|∇v(ξ,ε)|
2
g +

n− 2

4(n− 1)
Rg v

2
(ξ,ε) − (n− 2)2 |v(ξ,ε)|

2n
n−2

)

dx.

We have that (ξ, ε) ∈ R
n × (0,∞) is a critical point of Fg if and only if v(ξ,ε)

is a nonnegative weak solution (therefore smooth by a result of Trudinger [63])
of the Yamabe equation

∆gv(ξ,ε) −
n− 2

4(n− 1)
Rgv(ξ,ε) + n(n− 2)v

n+2
n−2

(ξ,ε) = 0.

The positivity of v(ξ,ε) then follows from the Maximum Principle and the fact
that v(ξ,ε) and u(ξ,ε) are close to each other in the norm ‖w‖E =

∫

Rn |dw|2dx.
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The construction of the counterexample relies on a gluing procedure based
on some local model metrics. The model metrics g(x) = exp(h(x)) are such
that

hik(x) = µλ2m f(λ−2 |x|2)
∑

p,q

Wipkqxpxq

for |x| ≤ ρ, where µ, λ, ρ are positive constants satisfying µ ≤ 1 and λ ≤ ρ ≤ 1,
f is a polynomial, and W : Rn×R

n×R
n×R

n → R is a nontrivial multi-linear
form which satisfies all the algebraic properties of the Weyl tensor. It is also
necessary that

2 deg(f) + 2 <
n− 2

2
.

These choices make it possible to approximate the energy function Fg(ξ, ε)
at appropriate scales by an auxiliary function F (ξ, ε), ξ ∈ R

n, ε ∈ (0,∞), and
we are left with the algebraic problem of finding a polynomial f such that
F (ξ, ε) has a strict local minimum at (0, 1).

Notice that

µλ2m f(λ−2 |x|2)
∑

p,q

Wipkqxpxq

belongs to Vn (as defined in the previous section), and it turns out that the
algebraic problem of finding f can be solved when the quadratic form Pn has
negative eigenvalues. It is proven in [11] that f can be chosen of degree 1 for
all n ≥ 52, and in [12] that it can be chosen of degree 3 for all 25 ≤ n ≤ 51.

The counterexamples g(x) = exp(h(x)) are obtained by gluing infinite copies
of the local models supported in small disjoint balls placed along the x1-axis.
The N -th ball has radius 1/(2N2) and is centered at yN = ( 1

N , 0, . . . , 0) ∈ R
n,

N ∈ N. If η : R → R is a smooth cutoff function such that η(s) = 1 for s ≤ 1
and η(s) = 0 for s ≥ 2, the two-tensor h(x) is given by

hik(x) =

∞
∑

N=N0

η(4N2 |x− yN |) 2−(m+ 1
8 )N f(2N |x− yN |2)Hik(x− yN ),

where yN = ( 1
N , 0, . . . , 0) ∈ R

n, m = deg(f), Hik(x) =
∑

p,qWipkqxpxq, and
N0 is sufficiently large.

Since the metric g is in local model form in each of the infinitely many
balls B1/(2N2)(yN ), we can apply the Lyapunov-Schmidt reduction infinitely
many times to obtain a sequence vν of solutions to the Yamabe equation as in
Theorem 1.4.

We should notice that even though the Weyl tensor of these counterexamples
vanishes to all orders at the blow-up point (0 ∈ R

n), recent work of the author
([39]) shows that they can be perturbed to provide counterexamples to the Weyl
Vanishing Conjecture as well.
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2. The Connectedness Problem

In this section we will discuss a connectedness result for the space of positive
scalar curvature metrics on an orientable compact 3-manifold. We refer the
reader to [50] for a nice survey on related questions.

In 1916 H. Weyl proved the following connectedness result:

Theorem 2.1 ([64]). Let g be a metric of positive scalar curvature on the two-
sphere S2. There exists a continuous path of metrics µ ∈ [0, 1] → gµ on S2, of
positive scalar curvature, such that g0 = g and g1 has constant curvature.

Weyl’s proof is a nice application of the uniformization theorem. It is based
on the existence of a constant curvature metric g in the conformal class of g.
We can choose g so that Rg = 2. If g = e2fg, we define gµ = e2µfg. The
transformation law for the scalar curvature in two dimensions gives

Rgµ = e−2µf
(

Rg − 2µ∆gf
)

= (1− µ)Rge
−2µf + 2µe2(1−µ)f .

It is clear that Rgµ > 0 for all µ ∈ [0, 1], if Rg > 0. The space of metrics of
positive scalar curvature on S2 is in fact contractible (see [51]).

There are several positive curvature conditions that are satisfied by the stan-
dard sphere in higher dimensions (positive scalar curvature, Ricci curvature,
sectional curvature, etc). Each one of them leads to a different connectedness
problem. Since there is no general uniformization theorem, other tools have to
be developed.

In his famous 1982 paper R. Hamilton ([23]) introduced the equation

∂g

∂t
= −2Ricg,

known as the Ricci flow, and proved the existence of short time solutions
with arbitrary compact Riemannian manifolds as initial data. In [23], Hamilton
proved that the Ricci flow preserves positive scalar curvature in any dimension,
and that positive Ricci curvature (Ric > 0) and positive sectional curvature
(sec > 0) are both preserved in dimension three. He also proved a convergence
result: if g(t) denotes a solution to the Ricci flow on a compact 3-manifold M
such that g(0) has positive Ricci curvature, then the flow becomes extinct at
finite time T > 0, and the volume one rescalings g̃(t) of g(t) converge to a con-
stant curvature metric as t→ T . From that he could conclude that any compact
3-manifold of positive Ricci curvature is diffeomorphic to a spherical quotient
S3/Γ. It also follows from the method that Weyl’s connectedness result extends
to three dimensions under the conditions Ric > 0 or sec > 0.

We want to address the connectedness question in dimension three under
the weaker condition of positive scalar curvature R > 0. In order to state the
main result, let us introduce some notation. IfM is a compact manifold, we will
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denote by R+(M) the set of Riemannian metrics g on M with positive scalar
curvature Rg. The associated moduli space is the quotient R+(M)/Diff(M) of
R+(M) under the standard action of the group of diffeomorphisms Diff(M).
Unless otherwise specified, the space of metrics on a given manifold will be
endowed with the C∞ topology.

In [40], we prove the following connectedness theorem:

Theorem 2.2. Suppose that M3 is a compact orientable 3-manifold such that
R+(M) 6= ∅. Then the moduli space R+(M)/Diff(M) is path-connected.

As a corollary we obtain:

Corollary. Let g be a metric of positive scalar curvature on the three-sphere
S3. There exists a continuous path of metrics µ ∈ [0, 1] → gµ on S3, of positive
scalar curvature, such that g0 = g and g1 has constant sectional curvature.

Remark: Since the set Diff+(S
3) of orientation-preserving diffeomorphisms of

the 3-sphere is path-connected (J. Cerf, [15]), we have that the total space
R+(S

3) is path-connected.
We should point out that the results for scalar curvature in higher dimen-

sions are quite different. This was first noticed by N. Hitchin ([27]) in 1974. He
considered some index-theoretic invariants associated to the Dirac operator of
spin geometry, and proved that the spaces R+(S

8k) and R+(S
8k+1) are discon-

nected for each k ≥ 1. In 1988 R. Carr ([14]) proved that the space R+(S
4k−1)

has infinitely many connected components for each k ≥ 2, extending the 7-
dimensional case (k = 2) established earlier by Gromov and Lawson in 1983 (see
Theorem 4.47 of [22]). This result was improved by M. Kreck and S. Stolz ([31])
in 1993, where they show that even the moduli space R+(S

4k−1)/Diff(S4k−1)
has infinitely many connected components for k ≥ 2. This means that on those
spheres there are infinitely many nonequivalent metrics of positive scalar curva-
ture which are exotic in the sense that they do not come from deformations of
the standard metric. The same statement holds true for any nontrivial spherical
quotient of dimension greater than or equal to five, as proved by B. Botvinnik
and P. Gilkey in [7]. The surgery arguments used in these proofs break down
in the three-dimensional case.

The evolution equation for the scalar curvature under the Ricci flow is

∂Rg

∂t
= ∆Rg + 2|Ricg|

2.

It follows from the parabolic maximum principle that if Rg(0) ≥ R0 > 0, then

min
M

Rg(t) ≥
1

1
R0

− 2
n t
,

and the flow must end in finite time.
In two dimensions Hamilton ([24]) proved a convergence result: if g has

positive scalar curvature (or Gauss curvature) on S2, then the solution to the
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normalized Ricci flow with initial condition (S2, g) converges to a constant
curvature metric. (See [17] for an extension to arbitrary g). It is interesting to
note that his arguments were made independent of uniformization by Chen, Lu
and Tian in [16]. This gives a Ricci flow proof of Weyl’s theorem.

The great difficulty in studying the scalar curvature connectedness problem
in dimensions greater than two is that the condition of Rg > 0 is too weak to im-
ply convergence results. For instance, the condition of positive scalar curvature
is stable under connected sums if n ≥ 3. There is a construction of Gromov and
Lawson ([21]) that starts with two compact Riemannian manifolds (Mn

1 , g1)
and (Mn

2 , g2), with positive scalar curvature, and replaces the union of two
small balls Bδ(p1) ⊂ M1 and Bδ(p2) ⊂ M2 with a small neck-like region N .
The result is a metric g1#g2 of positive scalar curvature on the connected sum
M1#M2 that coincides with the original metrics g1 and g2 outside N . There-
fore, unlike in the case of positive Ricci curvature, neck-pinching singularities
can occur under the Ricci flow.

In order to deal with this kind of situation Hamilton introduced in [25], in
the context of four-manifolds with positive isotropic curvature, a discontinuous
evolution process known as Ricci flow with surgery. The Ricci flow with surgery,
with (M, g0) as initial condition, can be thought of as a sequence of standard
Ricci flows (Mi, gi(t)), each defined for t ∈ [ti, ti+1) and becoming singular at
t = ti+1, where 0 = t0 < t1 < · · · < ti < ti+1 < · · · < ∞ is a discrete set,
M0 = M , and g0(0) = g0. The initial condition (Mi, gi(ti)) for each of these
Ricci flows is a compact Riemannian manifold obtained from the preceding
Ricci flow (Mi−1, gi−1(t))t∈[ti−1,ti) by a specific process called surgery, which
depends on some choice of parameters. Entire components with uniformly large
curvature are discarded at each ti. The flow becomes extinct in finite time T > 0
if T = tj+1 for some j ≥ 0 and Mj+1 = ∅.

In three dimensions the existence of a Ricci flow with surgery and the study
of its properties were accomplished by G. Perelman in a series of three papers
[46], [47], [48]. It follows from Perelman’s breakthroughs that the surgeries
needed are of the simplest type, restricted to almost cylindrical regions. He is
able to prove, through a backwards induction argument, that if the Ricci flow
with surgery of an orientable compact Riemannian 3-manifold becomes extinct
in finite time, then the manifold is diffeomorphic to a connected sum of spherical
space forms and finitely many copies of S2 × S1. Since this is the case if the
fundamental group is trivial, a proof of the Poincaré Conjecture is obtained
as an application. There is a different argument for the finite extinction time
result that uses minimal surfaces, due to T. Colding and B. Minicozzi (see [18]).

Another application is the topological classification by Perelman of the ori-
entable compact 3-manifolds which admit metrics of positive scalar curvature
(see [58] and [22] for earlier results with different methods). Since the surgeries
only increase scalar curvature, the associated Ricci flows with surgery have
to become extinct in finite time. Therefore the assumption of Theorem 2.2 is
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equivalent to asking that M is diffeomorphic to a connected sum of spherical
space forms and finitely many copies of S2 × S1.

In order to explain the strategy to prove Theorem 2.2 let us introduce the
concept of a canonical metric. Let h be the metric on the unit sphere S3 induced
by the standard inclusion S3 ⊂ R

4. A canonical metric is any metric obtained
from the 3-sphere (S3, h) by attaching to it finitely many constant curvature
spherical quotients (through the Gromov-Lawson procedure), and adding to it
finitely many handles (Gromov-Lawson connected sums of S3 to itself). The
resulting manifold M is diffeomorphic to

S3#(S3/Γ1)# . . .#(S3/Γk)#(S2 × S1)# . . .#(S2 × S1),

where Γ1, . . . ,Γk are finite subgroups of SO(4) acting freely on S3. The re-
sulting metric ĝ is locally conformally flat and has positive scalar curvature.
Two canonical metrics on M are in the same path-connected component of the
moduli space R+(M)/Diff(M).

Given a metric g0 in R+(M), the strategy is to use the Ricci flow with
surgery (M3

i , gi(t))t∈[ti,ti+1) with initial condition g0(0) = g0 to construct a
continuous path in R+(M) that starts at g0 and ends at a canonical metric.
As in the proof of the Poincaré Conjecture we use backwards induction on
the set of singular times ti. We need a combination of the heat flow technique
(Hamilton’s convergence result [23]) and the conformal method (as in Weyl’s
proof) to deform the entire components that are discarded along the flow,
including those at the extinction time. These components have known topology:
S3, RP 3, RP 3#RP 3, or S2×S1. We also use the connected sum construction of
Gromov and Lawson to undo the surgeries, making sure the final deformation
is continuous despite the fact that the Ricci flow with surgery is a discontinuous
process in its nature. A key observation for the induction is that a Gromov-
Lawson connected sum of finitely many canonical metrics is in the same path-
connected component (in the space of positive scalar curvature metrics) of a
single canonical component. This follows from the conformal method.

The work of Perelman on the description of singularities (the existence of
canonical neighborhoods, for example) under Hamilton’s Ricci flow is funda-
mental ([46], [47], and [48]). We refer the reader to [13], [30], and [41] for some
detailed presentations of the arguments due to Perelman. See also [5], [6] and
[42].

2.1. Some applications to General Relativity. It turns out that
we can use the previous results to study the topology of certain spaces of metrics
which are relevant in General Relativity. In this section the spaces are always
endowed with the topology associated to some natural weighted Hölder norm
Ck,α

β (see [40] for more details).
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We say that (g, h) is an asymptotically flat initial data set on R
3 if g is a

Riemannian metric and h is a symmetric (0, 2)-tensor on R
3 such that

|gij − δij |(x) + |x||∂ gij |(x) + |x|2|∂2gij |(x) = O(1/|x|),

|hij |(x) = O(1/|x|2),

as x→ ∞.
The full set of solutions to the vacuum Einstein constraint equations is the

set M of all asymptotically flat initial data sets (g, h) defined on R
3 such that

a) Rg + (trg h)
2 − |h|2 = 0,

b) ∇ih
i
j −∇j(trg h) = 0.

It goes back to the work of Choquet-Bruhat that the equations above are the
precise conditions one needs in order to solve the Cauchy problem for Einstein
equations: find a spacetime V (4-dimensional Lorentzian manifold) satisfying
the vacuum Einstein equations RicV = 0 (zero Ricci curvature) and an em-
bedded hypersurface M3 ⊂ V such that the induced metric on M is g and the
second fundamental form of M is h. We refer the reader to [3] for a nice survey
on the constraint equations.

Question: Is the space M path-connected?

These metrics no longer have nonnegative scalar curvature, so it would be
interesting to find methods to study their deformations.

There is an important special case in which Rg ≥ 0. Let M′ be the set of
all asymptotically flat initial data sets (g, h) on R

3 such that

a) trg h = 0,

b) Rg = |h|2,

c) (divg h)j := ∇ih
i
j = 0.

In [40] we prove

Theorem 2.3. The set M′ is path-connected.

The idea is to first connect an initial data (g0, h0) ∈ M′ into data of the form
(ĝ, 0) with ĝ scalar-flat, through the conformal method (Lichnerowicz equation).
We can then assume, by a perturbation argument, that ĝ can be conformally
compactified, i.e., ĝ is a blow-up G4

x g of a positive scalar curvature metric g on
S3. Here Gx denotes the Green’s function associated to the conformal Laplacian
Lg = ∆g−

1
8Rg of g, with pole at x ∈ S3. By deforming g, the connectedness of

R+(S
3) can be used to construct a continuous path of asymptotically flat and

scalar-flat metrics on R
3 connecting G4

x g to the flat metric. Along the way we
also prove that the space of asymptotically flat metrics on R

3 of nonnegative
scalar curvature is path-connected. This space was studied previously by B.
Smith and G. Weinstein in [62], where they established connectedness of the
subspace of metrics that admit a quasi-convex global foliation.



826 Fernando Codá Marques
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Abstract

This is a survey on the global theory of constant mean curvature surfaces in
Riemannian homogeneous 3-manifolds. These ambient 3-manifolds include the
eight canonical Thurston 3-dimensional geometries, i.e. R3, H3, S3, H2 × R,
S2 × R, the Heisenberg space Nil3, the universal cover of PSL2(R) and the Lie
group Sol3. We will focus on the problems of classifying compact CMC surfaces
and entire CMC graphs in these spaces. A collection of important open problems
of the theory is also presented.
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1. Introduction

Constant mean curvature (CMC) surfaces appear as critical points of a nat-
ural geometric variational problem: to minimize surface area with or without
a volume constraint (the unconstrained case corresponds to zero mean cur-
vature, i.e. to minimal surfaces). A fundamental problem of this discipline is
the geometric study and classification of CMC surfaces under global hypotheses
like compactness, completeness, properness or embeddedness. The study of this
problem for CMC surfaces in the model spaces R3, S3 and H3 has produced
a very rich theory, in which geometric arguments interact with complex anal-
ysis, harmonic maps, integrable systems, maximum principles, elliptic PDEs,
geometric measure theory and so on.
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One of the most remarkable achievements of this field in the last decade has
been the extension of this classical theory to the case of CMC surfaces in simply
connected homogeneous 3-dimensional ambient spaces. Apart from R3, S3 and
H3, these spaces are the remaining five Thurston 3-dimensional geometries (i.e.
H2 × R, S2 × R, the Heisenberg group Nil3, the universal covering of PSL2(R)
and the Lie group Sol3), together with 3-dimensional Berger spheres and some
other Lie groups with left-invariant metrics (see Section 2).

It must be said here that there is an important number of contributions
regarding CMC surfaces in general Riemannian 3-manifolds (not even homo-
geneous), many of which deal for instance with isoperimetric questions or with
geometric consequences derived from the stability operator associated to the
second variation of the surface. The achievement in the case of homogeneous
ambient 3-spaces has been the construction of a very rich global theory of
CMC surfaces, analogous to the case of R3, S3 and H3, with an emphasis on
the geometric classification (up to ambient isometries) of properly immersed or
properly embedded CMC surfaces. The fact that the ambient space is homo-
geneous, i.e. it has the same local geometry at all points, makes this problem
extremely natural.

Our aim here is to present a survey on some fundamental aspects of the
global theory of CMC surfaces in homogeneous 3-manifolds. We do not plan,
however, to give a systematic account of all important results of this already
broad theory, but to discuss some specific problems at the core of it. Hence, there
will be many important results omitted, and we apologize in advance for that.

In order to explain the problems we shall be dealing with, let us distinguish
between compact and non-compact CMC surfaces in these spaces.

In the case of compact CMC surfaces, three fundamental problems are the
Alexandrov problem (i.e. to classify compact embedded CMC surfaces), the
Hopf problem (i.e. to classify CMC spheres), and the isoperimetric problem
(recall that isoperimetric regions on a Riemannian 3-manifold are bounded by
compact embedded CMC surfaces, but the converse is not always true). By
classical results, round spheres constitute the solution to each of these three
problems in the case of CMC surfaces in R3. One of our main objectives will
be to explain what is known (and what is not known) for these problems in the
broader context of CMC surfaces in homogeneous 3-manifolds.

In the case of non-compact CMC surfaces, one of the basic problems is
to study the properly embedded CMC surfaces of finite topology. A classical
result in that direction is given by Bernstein’s theorem: planes are the only
entire minimal graphs in R3. As in all Thurston 3-dimensional geometries there
is a natural notion of entire graph, it is an important problem of the discipline
to solve the Bernstein problem for CMC graphs, i.e. to classify all entire CMC
graphs in these 3-dimensional ambient spaces. This will be our other main
objective.

The theory of CMC surfaces in Thurston 3-dimensional geometries started
to develop as a consistent unified theory after some pioneer works by Harold
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Rosenberg, jointly with William H. Meeks [MeRo1, MeRo2, Ros] for the
case of minimal surfaces in product spaces, and jointly with Uwe Abresch
[AbRo1, AbRo2] for the case of CMC surfaces in homogeneous spaces with
a 4-dimensional isometry group.

On one hand, Meeks and Rosenberg established many results on complete
minimal surfaces in M2 × R, what has guided a large number of subsequent
works in the field. A recent major contribution in this sense is the Collin-
Rosenberg theorem [CoRo] on the existence of harmonic diffeomorphims from
C onto the hyperbolic plane H2, obtained by constructing an entire minimal
graph of parabolic conformal type in H2 × R.

On the other hand, Abresch and Rosenberg discovered a holomorphic
quadratic differential for CMC surfaces in these homogeneous spaces with 4-
dimensional isometry group (the E3(κ, τ) spaces), and solved the Hopf problem
for them. The general integrability theory of CMC surfaces in the homoge-
neous E3(κ, τ) spaces was then established by B. Daniel [Dan1]. The discovery
by the authors of a harmonic Gauss map into H2 for H = 1/2 surfaces in
H2 × R turned into a series of papers by Daniel, Fernández, Hauswirth, Mira,
Rosenberg, Spruck [FeMi1, Dan2, FeMi2, HRS, DaHa] in which the Bernstein
problem for CMC graphs of critical mean curvature (including minimal graphs
in Heisenberg space Nil3, see Section 6) was solved. Very recently, the Hopf and
Alexandrov problems for CMC surfaces have been solved by Daniel-Mira and
Meeks [DaMi, Mee] in the remaining Thurston 3-dimensional geometry: the Lie
group Sol3, whose isometry group is only 3-dimensional.

We have organized this exposition as follows. In Section 2 we will introduce
the 3-dimensional homogeneous ambient spaces. In Section 3 we will present the
basic integrability equations by Daniel for CMC surfaces in the homogeneous
spaces E3(κ, τ), together with the holomorphic Abresch-Rosenberg differential,
and with some basic definitions on stability of CMC surfaces. In Section 4
we will discuss the Hopf, Alexandrov and isoperimetric problems in the ho-
mogeneous spaces E3(κ, τ). Section 5 will be devoted to solving the Hopf and
Alexandrov problems in the eighth Thurston geometry, i.e. the Lie group Sol3.
In Section 6 we will present the solution to the Bernstein problem for entire
graphs of critical CMC in the homogeneous E3(κ, τ) spaces. Finally, in Section
7 we shall expose the Collin-Rosenberg theorem on parabolic entire minimal
graphs in H2 ×R, together with some developments on the theory of complete
minimal surfaces of finite total curvature in H2×R. Most sections finish with a
selection of important open problems. See [Mee, DHM] for more open problems
in the theory.

A more detailed introduction to the global theory of CMC surfaces in ho-
mogeneous 3-spaces can be found in the Lecture Notes by Daniel, Hauswirth
and Mira [DHM].

The authors are grateful to H. Rosenberg, B. Daniel and J.A. Gálvez for
useful observations about this manuscript.
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2. Homogeneous 3-spaces and Thurston
Geometries

Homogeneous spaces are the natural generalization of space forms. By defini-
tion, a manifold is said to be homogeneous if the isometry group acts transi-
tively on the manifold. Roughly speaking, the manifold looks the same at all
the points, even though, standing at one point, the manifold can look different
in different directions. In the simply connected case, the classification of the
3-dimensional homogeneous spaces is well-known. It turns out that any simply
connected homogeneous 3-space must have isometry group of dimension 6, 4 or
3. The complete list of these spaces is the following (see subsections below for
more details):

• The spaces with 6-dimensional isometry group are the space forms: the
Euclidean space R3, the hyperbolic space H3(κ), and the standard sphere
S3(κ). For simplicity we will assume that κ = ±1 and write H3 = H3(−1)
and S3 = S3(1).

• The spaces with 4-dimensional isometry group are fibrations over the 2-
dimensional space forms. They are the product spaces H2×R and S2×R,
the Berger spheres, the Heisenberg space Nil3 and the universal covering
of the Lie group PSL(2,R).

• The spaces with 3-dimensional isometry group are a certain class of Lie
groups; among them we specially quote the space Sol3.

These spaces are closely related with Thurston’s Geometrization Conjecture.
This recently proved conjecture states that any compact orientable 3-manifold
can be cut by disjoint embedded 2-spheres or tori into pieces, each one of
them, after gluing 2-balls or solid tori along its boundary components, admits
a geometric structure. A 3-manifold without boundary is said to admit a ge-
ometric structure if it can be endowed with a complete locally homogeneous
metric. In this case, by considering its universal covering we obtain a complete
simply-connected locally homogeneous space and hence, by a result of Singer,
homogeneous. Thus, a 3-manifold admitting a geometric structure can be re-
alized as the quotient of a homogeneous simply connected 3-space under the
action of a subgroup of a Lie group acting transitively by isometries. The list
of the maximal geometric structures that give compact quotients consists of
eight of the previously described spaces: the three space forms, the two product
spaces, Nil3, the universal covering of PSL(2,R) and Sol3 (Berger spheres must
be excluded from this list because they are not maximal, their isometry group
are contained in the one of the standard sphere S3). We refer to [Sco, Bon] for
more details.

2.1. Homogeneous spaces with 4-dimensional isometry
group. Denote by M2(κ) the 2-dimensional space form of constant curvature
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κ (for example, M2(κ) = R2,H2, S2 for κ = 0,−1, 1 respectively). As com-
mented above, any simply connected homogeneous 3-space with 4-dimensional
isometry group admits a fibration over M2(κ), for some κ ∈ R. Moreover, these
spaces can be parameterized in terms of the base curvature κ and the bundle
curvature τ , that satisfy κ − 4τ2 6= 0. We will use the notation E3(κ, τ) for
these homogeneous spaces.

1. When τ = 0, we have the product spaces M2(κ) × R, i.e. up to scaling,
the spaces S2 × R when κ > 0, and H2 × R when κ < 0.

2. When τ 6= 0 and κ > 0, the corresponding spaces are the Berger spheres,
a family of 2-parameter (1-parameter after a homothetical change of co-
ordinates) metrics on the sphere, obtained by deforming the standard
metric in such a way that the Hopf fibration is still a Riemannian fi-
bration. They can also be seen as the Lie group SU(2) endowed with a
1-parameter family of left-invariant metrics.

3. When τ 6= 0 and κ = 0, E3(κ, τ) is the Heisenberg group Nil3, the nilpo-
tent Lie group 






1 a b
0 1 c
0 0 1


 ; a, b, c ∈ R



 ,

endowed with a 1-parameter family of left-invariant metrics, all of them
isometrically equivalent after a homothetical change of coordinates.

4. When τ 6= 0 and κ < 0, we obtain the universal covering of the Lie
group PSL(2,R), endowed with a 2-parameter (again 1-parameter after
homotheties) family of left-invariant metrics.

There exists a common setting for all these spaces. Indeed, label D(ρ) =
{(x1, x2) ∈ R2 ; x21 + x22 < ρ2}. Then, if κ = 0 (resp. κ < 0), the space E3(κ, τ)
can be viewed as R3 (resp. D

(
2/
√−κ

)
× R) endowed with the metric

ds2 = λ2(dx21+dx
2
2)+

(
τλ(x2dx1−x1dx2)+dx3

)2
, λ =

1

1 + κ
4
(x21 + x22)

. (1)

Also, for κ > 0, (R3, ds2) corresponds to the universal cover of E3(κ, τ) minus
one fiber. In all cases, up to a homothetical change of coordinates we can
suppose without loss of generality that κ− 4τ2 = ±1.

The corresponding Riemannian fibration π : E3(κ, τ) → M2(κ) is given
here by the projection on the first two coordinates. The unitary vector field

ξ =
∂

∂x3

is a Killing field tangent to the fibers of π, and will be referred to as the vertical
field of the space E3(κ, τ). It satisfies the equation

∇̂Xξ = τX × ξ
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for all vector fields X in E3(κ, τ). Here ∇̂ is the Levi-Civita connection, × the
cross product and τ the bundle curvature (this is basically the definition of τ).

A remarkable difference between the spaces E3(κ, τ) is that their isometry
group has four connected components in the case τ = 0, and only two when τ 6=
0. This follows from the fact that any isometry in the product spaces can either
preserve or reverse the orientation of the base and the fibers independently,
while in the case τ 6= 0 it can only either preserve or reverse both orientations.
In particular, reflections only exist in product spaces.

Also, when τ 6= 0 the spaces E3(κ, τ) are Lie groups, and if we set σ := κ
2τ
,

an orthonormal frame of left-invariant vector fields (called the canonical frame)
is given by

E1 = λ−1

(
cos(σx3)

∂

∂x1
+ sin(σx3)

∂

∂x2

)
+ τ(x1 sin(σx3)− x2 cos(σx3))

∂

∂x3
,

E2 = λ−1

(
− sin(σx3)

∂

∂x1
+ cos(σx3)

∂

∂x2

)
+ τ(x1 cos(σx3) + x2 sin(σx3))

∂

∂x3
,

E3 = ξ =
∂

∂x3
.

2.2. Homogeneous spaces with 3-dimensional isometry
group. Of all homogeneous spaces with 3-dimensional isometry group, Sol3
is specially important, since it is the only Thurston geometry among them. We
will now describe some aspects of this space.

A useful representation of Sol3 is the space R3 with the metric

ds2 = e2x3dx21 + e−2x3dx22 + dx23,

that is left-invariant for the structure of Lie group given by

(x1, x2, x3) · (y1, y2, y3) = (x1 + e−x3y1, x2 + ex3y2, x3 + y3).

The following vector fields form an orthonormal left-invariant frame

E1 = e−x3
∂

∂x1
, E2 = ex3

∂

∂x2
, E3 =

∂

∂x3
.

The isometries in Sol3 are generated by the three 1-parameter groups of trans-
lations

(x1, x2, x3) 7→ (x1 + c, x2, x3), (x1, x2, x3) 7→ (x1, x2 + c, x3),

(x1, x2, x3) 7→ (e−cx1, e
cx2, x3 + c),

and by the orientation reversing isometries fixing the origin

(x1, x2, x3) 7→ (−x1, x2, x3), (x1, x2, x3) 7→ (x2,−x1,−x3).
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A remarkable fact is the existence of two canonical foliations, namely

F1 = {x1 = constant}, F2 = {x2 = constant},
whose leaves are totally geodesic surfaces isometric to the hyperbolic plane H2.
Reflections across any of these leaves are orientation reversing isometries of
Sol3.

3. CMC Surfaces: Basic Equations

In this section we present three important tools for our study. One is the set of
integrability equations of CMC surfaces in E3(κ, τ) by Daniel [Dan1]. Another
one the Abresch-Rosenberg differential, a holomorphic quadratic differential ge-
ometrically defined on any CMC surface in E3(κ, τ). The third one is a local
isometric correspondence for CMC surfaces in E3(κ, τ) via which one can pass
from one homogeneous space into another when studying CMC surfaces [Dan1].
Some notions about the stability operator of CMC surfaces are also given.

3.1. Integrability equations in E3(κ, τ ). It is well known that the
Gauss-Codazzi equations are the integrability conditions of surface theory in
R3, S3 and H3. In other homogeneous spaces, the situation is more complicated.

Let ψ : Σ → E3(κ, τ) be an isometric immersion with unit normal map η,
and consider on Σ the conformal structure given by its induced metric via ψ.
Associated to a conformal parameter z = s+ it on Σ, we will consider the usual
operators ∂z = (∂s− i∂t)/2 and ∂z̄ = (∂s+ i∂t)/2. Also denote by ξ the vertical
Killing field of E3(κ, τ).

Definition 3.1. We call the fundamental data of ψ the 5-tuple (λ|dz|2, u,H,
p dz2, A dz) where H is the mean curvature and

λ = 2〈ψz, ψz̄〉, u = 〈N, ξ〉, p = −〈ψz, Nz〉, A = 〈ξ, ψz〉.
The function u is commonly called the angle function of the surface.
Once here, a set of necessary and sufficient conditions for the integrability

of CMC surfaces in E3(κ, τ) can be written in terms of these fundamental data.
This is a result by B. Daniel [Dan1], although the formulation that we expose
here (i.e. in terms of a conformal parameter on the surface) comes from [FeMi2].

Theorem 3.2 ([Dan1, FeMi2]). The fundamental data of an immersed surface
ψ : Σ → E3(κ, τ) satisfy the following integrability conditions:





(C.1) pz̄ =
λ

2
(Hz + uA(κ− 4τ2)).

(C.2) Az̄ =
uλ

2
(H + iτ).

(C.3) uz = −(H − iτ)A− 2p

λ
Ā.

(C.4)
4|A|2
λ

= 1− u2.

(2)
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Conversely, if Σ is simply connected, these equations are also sufficient
for the existence of a surface ψ : Σ → E3(κ, τ) with fundamental data
(λ|dz|2, u,H, p dz2, A dz). This surface is unique up to ambient isometries pre-
serving the orientations of base and fiber of E3(κ, τ).

We see then that, in the spaces E3(κ, τ), more equations apart from the
Gauss-Codazzi ones are needed, due to the loss of symmetries. As a matter of
fact, (C.1) is the Codazzi equation, while the Gauss equation does not appear
(it is deduced from the rest). These new equations evidence the special character
of the vertical direction in the E3(κ, τ) spaces.

Definition 3.3. The Abresch-Rosenberg differential of the immersion is de-
fined as the quadratic differential on Σ given by

Qdz2 =
(
2(H + iτ)p− (κ− 4τ2)A2

)
dz2.

It is then easy to see by means of (C.2) that the Codazzi equation (C.1)
can be rephrased in terms of Q as

Qz̄ = λHz + (κ− 4τ2)
Hz̄A

2

(H + iτ)2
. (3)

Consequently, one has the following theorem, which generalized the classical
fact that the Hopf differential is holomorphic for CMC surfaces in R3, S3 and
H3.

Theorem 3.4 ([AbRo1, AbRo2]). Qdz2 is a holomorphic quadratic differential
on any CMC surface in E3(κ, τ).

This is a crucial result of the theory, since it allows the use of holomorphic
functions in the geometric classification of CMC surfaces in E3(κ, τ) (see Section
4 and Section 6, for instance).

An important tool in the description of CMC surfaces in R3, S3 and H3

is the classical Lawson correspondence. It establishes an isometric one-to-one
local correspondence between CMC surfaces in different space forms that allows
to pass, for instance, from minimal surfaces in R3 to H = 1 surfaces in H3.

The Lawson correspondence was generalized by B. Daniel to the context
of homogeneous spaces. Indeed, Daniel discovered in [Dan1] an isometric local
correspondence for CMC surfaces in all the homogeneous spaces E3(κ, τ), which
can be described as follows in terms of the fundamental data defined above.

Theorem 3.5 (Sister correspondence, [Dan1]). Let (λ|dz|2, u,H1, p1 dz
2,

A1 dz) be the fundamental data of a simply connected H1-CMC surface in
E(κ1, τ1), and consider κ2, τ2, H2 ∈ R so that

κ2 − 4τ22 = κ1 − 4τ21 , H2
2 + τ22 = H2

1 + τ21 .
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Then if we set θ ∈ R given by H2 − iτ2 = eiθ(H1 − iτ1), the fundamental data
given by

(λ|dz|2, u,H2, p2 dz
2 = e−iθp1 dz

2, A2 dz = e−iθA1 dz) (4)

give rise to a (simply connected) H2-CMC surface in E3(κ2, τ2), which is locally
isometric to the original one.

Two surfaces related by the above correspondence are called sister surfaces
with phase θ. In particular, the corresponding Abresch-Rosenberg differentials
of sister surfaces are related by Q2 = e−2iθQ1. As special cases of this corre-
spondence we obtain the associate family of minimal surfaces in M2(κ) × R,
and a correspondence between minimal surfaces in Nil3 and CMC 1

2
surfaces in

H2 × R. Generically, and up to ambient isometries and dilations, the family of
sister surfaces for a given choice of (H,κ, τ) is a continuous 1-parameter family.

There is a natural notion of graph in these spaces. Since E3(κ, τ) has a
canonical fibration over M2(κ) (see Section 2), we will say that an immersed
surface Σ in E3(κ, τ) is a (local) graph if the projection to the base is a (local)
diffeomorphism. The CMC-equation for the graph of a function u = u(x, y) is
the PDE (see [Lee])

2H

δ2
=

∂

∂x

(α
ω

)
+

∂

∂y

(
β

ω

)
, (5)

where
δ = 1 +

κ

4
(x2 + y2), ω =

√
1 + δ2(x2 + y2),

α = ux + τ
y

δ
, β = uy − τ

x

δ
.

For instance, a graph u = u(x, y) in Nil3 ≡ E3(0, τ) is minimal if and only if it
satisfies the elliptic PDE

(1 + β2)uxx − 2αβ uxy + (1 + α2)uyy = 0, (6)

where α := ux + y/2 and β := uy − x/2.

3.2. Stability and index of CMC surfaces. As it is well known,
CMC surfaces in Riemannian 3-manifolds appear as the critical points for the
area functional associated to variations of the surface with compact support and
constant enclosed volume. Equivalently, an immersed surface S has constant
mean curvature H if and only if it is a critical point for the functional Area−
2H Vol. The second variation formula for this functional is given by

Q(f, f) = −
∫

S

fL(f),

where L is the Jacobi operator (or stability operator) of the surface:

L = ∆+ ||B||2 +Ric(η).
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Here ∆ is the Laplacian for the induced metric on the surface, B is the second
fundamental form, η is the unit normal vector field, and Ric is the Ricci cur-
vature in the ambient manifold. As a particular case, the Jacobi operator for
CMC surfaces in the spaces E3(κ, τ) can be rewritten (see [Dan1]) as

L = ∆− 2K + 4H2 + 4τ2 + (κ− 4τ2)(1 + u2),

being K the Gaussian curvature of the surface and u the angle function (see
Definition 3.1). A Jacobi function is a function f for which L(f) = 0.

A CMC surface S is said to be stable (resp. weakly stable) if

Q(f, f) = −
∫

S

fL(f) ≥ 0

holds for any smooth function f on S with compact support (resp. with compact
support and

∫
S
f = 0). For instance, CMC graphs in E3(κ, τ) are stable, and

compact CMC surfaces bounding isoperimetric regions are weakly stable (but
not necessarily stable, as round spheres in R3 show).

An important concept related to stability is the index of a CMC surface.
The index of a compact CMC surface is defined as the number of negative
eigenvalues of its Jacobi operator. Thus, stable CMC surfaces (in particular
CMC graphs) have index zero. Round spheres in R3 have index one.

We refer to [MPR] for more details about stability of CMC surfaces.

4. Compact CMC Surfaces in E3(κ, τ )

In this section we explain the most important results that are known regarding
the existence and uniqueness of compact CMC surfaces in the homogeneous
3-spaces E3(κ, τ). The fundamental examples are the rotational CMC spheres,
and we shall be interested in their uniqueness among compact embedded CMC
surfaces, and among immersed CMC surfaces. These problems are called, re-
spectively, the Alexandrov and Hopf problems.

4.1. Rotational compact CMC surfaces. Although round spheres
in the model spaces R3, S3,H3 are CMC spheres, this does not hold for the rest
of homogeneous spaces. However, in all the spaces E3(κ, τ) there exist rotations
with respect to the vertical axis, and so there is a natural notion of rotational
surface. It is hence natural to seek CMC spheres (and CMC tori) in E3(κ, τ)
among the class of rotational surfaces. This can be done by ODE analysis, and
the result of this can be summarized as follows:

Theorem 4.1. (Structure of rotational CMC spheres in E3(κ, τ)).

1. If κ−4τ2 > 0, then for every H ∈ R there exists a unique rotational CMC
H sphere (up to isometries) in E3(κ, τ). These spheres are embedded if
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τ = 0, i.e. in S2 × R, and also for most Berger spheres. However, for
some Berger spheres with small bundle curvature τ (with respect to a fixed
κ) there is a certain region of variation of the parameters (H, τ) where
the spheres are non-embedded. This region can be explicitly described, see
[Tor].

2. If κ− 4τ2 < 0, then

• if H2 6 −κ
4
, then there exists no rotational CMC H sphere in

E3(κ, τ),

• if H2 > −κ
4
, then there exists a unique rotational CMC H sphere

(up to isometries) in E3(κ, τ). All these spheres are embedded.

Let us remark that all these CMC spheres can be constructed explicitly. We
shall call them canonical rotational CMC spheres. For example, the rotational
CMC H spheres in S2 × R ⊂ R4 are given by the formula

ψ(u, v) = (− cos k(u), sin k(u) cos v, sin k(u) sin v, h(u)),

where −1 ≤ u ≤ 1, H ∈ R and

k(u) := 2 arctan

(

2H√
1− u2

)

, h(u) :=
4H√

4H2 + 1
arcsinh

(

u√
1− u2 + 4H2

)

.

Besides these rotational CMC spheres, there also exist rotational CMC tori in
E3(κ, τ) when (and only when) κ − 4τ2 > 0 (excluding minimal surfaces in
S2 × R). For S2 × R, they are all embedded (see Pedrosa [Ped]). For Berger
spheres the situation is explained by Torralbo and Urbano in [Tor, ToUr]; one
has for every H rotational embedded CMC tori given by the Hopf lift of a
circle in S2, but there also exist some other non-flat rotational CMC tori. The
embeddedness problem for such tori is open in general, but for the minimal
case there are embedded rotational tori other than Clifford tori. This contrasts
with the case of embedded minimal tori in S3.

A general study of CMC surfaces in H2 × R and S2 × R invariant by a
continuous 1-parameter subgroup of ambient isometries can be found in [SaE,
SaTo].

4.2. The Alexandrov problem in E3(κ, τ ). One of the fundamen-
tal theorems of CMC surface theory is the so-called Alexandrov theorem.

Theorem 4.2 (Alexandrov). Any compact embedded CMC surface in R3, H3

or a hemisphere of S3 is a round sphere.

Proof. The proof relies on the so-called Alexandrov reflection principle, which
we sketch for R3 although it works with great generality. Consider a plane P
disjoint from the compact embedded CMC surface Σ, and start translating it in
a parallel way towards Σ. After it first touches Σ, we start reflecting the piece
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of Σ that has been left behind across this new translated plane. In this way
we will eventually reach a first contact point with the unreflected part of Σ.
By the maximum principle for elliptic PDEs, this means that Σ is symmetric
with respect to such a plane. As the starting plane was arbitrary, the compact
surface must be a round sphere.

It must be emphasized that there exist embedded CMC tori in S3, such as
the product tori S1(r)× S1(

√
1− r2) ⊂ S3. Thus, the hemisphere hypothesis is

necessary in the case of S3.
Motivated by this result, the problem of classifying all compact embedded

CMC surfaces in a Riemannian 3-manifold M̄3 will be called the Alexandrov
problem in M̄3.

In the case of CMC surfaces in the product spaces H2 × R and S2 × R,
the Alexandrov technique can be applied for horizontal directions, and so the
following result holds.

Theorem 4.3 (Hsiang-Hsiang). Any compact embedded CMC surface in H2×R
or S2+ × R is a standard rotational CMC sphere.

Again, the hemisphere hypothesis is necessary, since we know that there are
embedded CMC tori in S2 × R.

As regards the homogeneous spaces E3(κ, τ) with τ 6= 0, i.e. Heisenberg
space, Berger spheres and the universal covering of SL2(R), the Alexandrov
problem is open. The main difficulty there is that these spaces do not admit
reflections, and hence the reflection principle does not hold.

4.3. The Hopf problem in E3(κ, τ ). Another fundamental result of
CMC surface theory is the Hopf theorem:

Theorem 4.4 (Hopf). Any immersed CMC sphere in R3, S3 or H3 is a round
sphere.

Proof. The Hopf differential (see Section 3) of any CMC surface in R3, S3

or H3 is holomorphic, and vanishes at the umbilical points of the surface. As
any holomorphic quadratic differential must vanish on the Riemann sphere, we
conclude that immersed CMC spheres are totally umbilical, and hence round
spheres.

The Hopf problem in a Riemannian 3-manifold M̄3 will refer to the problem
of classifying all immersed CMC spheres in M̄3.

As was proved in Theorem 3.4, CMC surfaces in the homogeneous spaces
E3(κ, τ) have an associated holomorphic quadratic differential: the Abresch-
Rosenberg differential QAR. This allows to solve the Hopf problem in E3(κ, τ),
along the lines suggested by Hopf’s classical theorem. We present here an al-
ternative proof to the original one by Abresch and Rosenberg [AbRo1, AbRo2],
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based on Daniel’s integrability equations, and on some ideas in [FeMi2, GMM]
(see [dCF, EsRo, DHM]).

Theorem 4.5 (Abresch-Rosenberg). Any immersed CMC sphere in E3(κ, τ)
is a standard rotational sphere.

Proof. As the Abresch-Rosenberg QAR is holomorphic, it must vanish on any
immersed CMC sphere. So, we need to prove that spheres with QAR = 0 are
rotational.

First, one can observe that on any CMC surface in E3(κ, τ), the equation
QAR = 0 together with the integrability conditions in Theorem 3.2 imply that
the function w := arctanh(u) is a harmonic function on the surface (here u
is the angle function of the surface). So, once we rule out the case u = const.
which does not produce CMC spheres (except for slices in S2×R), we can define
ζ to be a local conformal parameter on the surface with Re ζ = w. Again from
the integrability equations (C.1) to (C.4) we see that all fundamental data of
the surface depend only on w (and not on Im ζ). This implies that the surface
is a local piece of some CMC surface invariant by a continuous 1-parameter
subgroup of ambient isometries of E3(κ, τ).

If the surface is compact, this isometry subgroup must be the group of rota-
tions around the vertical axis, with the possible exception of Berger 3-spheres
(the only space in which there are non-rotational compact continuous isome-
try subgroups). However, it is clear that any element of such a non-rotational
isometry subgroup has no fixed points. Hence, by the invariance property, there
is a globally defined non-zero vector field on the surface (that is tangent to the
orbits). But this is impossible on a sphere. Hence, the isometry subgroup is al-
ways the group of rotations around the vertical axis, and thus the CMC sphere
is rotational, as wished.

4.4. The isoperimetric problem in E3(κ, τ ). The Alexandrov
problem is very relevant to the isoperimetric problem in a Riemannian 3-
manifold M̄3; indeed, any solution to the isoperimetric problem in M̄3 is a
region bounded by a compact embedded CMC surface. So, for instance, the only
candidates to solve the isoperimetric problem for a given volume in H2 ×R are
rotational CMC spheres. Another geometric property satisfied by isoperimetric
solutions is that they are weakly stable, see Section 2.

The class of isoperimetric solutions in R3, S3 and H3 is the class of round
spheres. The isoperimetric problem in S2×R and H2×R has been also explicitly
solved, as follows:

1. The isoperimetric regions in H2 × R are exactly the regions bounded by
the canonical rotational CMC spheres. (Hsiang-Hsiang).

2. There is a valueH1 ≈ 0.33 such that the isoperimetric regions in S2×R are
exactly the regions bounded by the canonical rotational CMC H spheres
with H ≥ H1. (Pedrosa).
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So, regading complete simply connected Riemannian 3-manifolds, the isoperi-
metric problem is fully solved in R3, S3, H3, S2 ×R and H2 ×R. A remarkable
advance in this direction has been obtained very recently by F. Torralbo and
F. Urbano [ToUr], who have added to this list a certain subfamily of Berger
spheres:

Theorem 4.6 (Torralbo-Urbano). The solutions to the isoperimetric problem

in the Berger spheres E3(κ, τ) with 1

3
≤ 4τ2

κ
< 1 are the canonical rotational

CMC spheres.

The proof of this result relies on embedding the Berger spheres E3(κ, τ) into
the 4-dimensional complex space CP 2, and using a Willmore inequality in this
space due to Montiel and Urbano [MoUr].

For the rest of the spaces, the isoperimetric problem is open. In any case,
the general theory of the isoperimetric problem together with the Abresch-
Rosenberg uniqueness theorem imply that, for small volumes, the isoperimetric
solutions are canonical rotational CMC spheres with large H.

4.5. Open problems. One of the major unsolved problems in the the-
ory is the Alexandrov problem when τ 6= 0, i.e. in Nil3, the universal cover of
PSL(2,R) and Berger hemispheres. It is conjectured that canonical rotational
spheres are the only compact embedded CMC surfaces in these spaces. A re-
lated open problem is the isoperimetric problem in Nil3, the universal cover of
PSL(2,R) and the Berger spheres not covered by Theorem 4.6. In the first two
cases, it is conjectured that the isoperimetric solutions are exactly the canonical
rotational spheres.

Besides, it is conjectured by Nelli and Rosenberg [NeRo2] that compact
weakly stable CMC surfaces in H2 × R are rotational CMC spheres.

Another important problem of the theory is the construction of higher genus
compact (immersed) CMC surfaces, (e.g. CMC tori) in E3(κ, τ) with κ ≤ 0.

5. CMC Spheres in Sol3

In this section we will expose the recent solution to the Alexandrov problem (i.e.
the classification of compact embedded CMC surfaces) and the Hopf problem
(i.e. the classification of immersed CMC spheres) in the remaining Thurston
3-geometry: the homogeneous space Sol3.

The first step in this direction is that we can solve the Alexandrov problem
from a topological point of view.

Theorem 5.1 (Rosenberg). Any compact embedded CMC surface in Sol3 is,
topologically, a sphere.

Proof. By Alexandrov reflection principle using the two canonical foliations of
Sol3 (recall that reflections across their leafs are orientation-reversing isometries
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of Sol3), it turns out that any compact embedded CMC surface in Sol3 is a bi-
graph with respect to two linearly independent directions in R3. Thus, the
surface is, topologically, a sphere.

This result leaves us with the problem of classifying (embedded) CMC
spheres. A substantial difficulty for this task is that Sol3 has no rotations.
Hence, there are no rotational CMC spheres to use in order to gain insight of
the theory, and even the existence of CMC spheres for a given value of H needs
to be settled.

The next theorem is the main result of the section, and solves the Hopf and
Alexandrov problems in Sol3.

Theorem 5.2 (Daniel-Mira, Meeks). For every H > 0 there exists an embedded
CMC H sphere SH in Sol3. This sphere is unique in the following sense:

1. Hopf uniqueness: every immersed CMC H sphere in Sol3 is a left-
translation of SH .

2. Alexandrov uniqueness: every compact embedded CMC H surface in Sol3
is a left-translation of SH .

Moreover, each sphere SH has index one, it inherits all possible symmetries of
the ambient space (its group of ambient isometries is the dihedral group D4),
its Lie group Gauss map is a diffeomorphism, and the family {SH : H > 0} is
real analytic (up to left translations).

Remark 5.3. Theorem 5.2 was obtained by Daniel and Mira [DaMi] for H >
1/
√
3. For the remaining values H ∈ (0, 1/

√
3], Daniel and Mira also proved the

uniqueness in the Hopf and Alexandrov sense for all values of H for which there
exists an index one CMC H sphere. Finally, Meeks [Mee] obtained the existence
of index one CMC H spheres for every H > 0 (and not just for H > 1/

√
3).

This concluded the proof of Theorem 5.2.

We shall split the sketch of the proof of Theorem 5.2 into two parts.

5.1. Proof of Theorem 5.2: uniqueness. The results of this part
are contained in [DaMi]. The Lie group Gauss map g : Σ → C of a CMC
surface X : Σ → Sol3 satisfies the following elliptic PDE (here z is a conformal
parameter on the surface):

gzz̄ = A(g)gzgz̄ +B(g)gz ḡz̄, (7)

where, by definition,

A(q) =
Rq

R
=

2H(1 + |q|2)q̄ + 2q

R(q)
, B(q) =

Rq̄

R
− R̄q̄

R̄
= −4H(1 + |q|2)(q̄ + q3)

|R(q)|2 ,

(8)
R(q) = H(1 + |q|2)2 + q2 − q̄2.
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Moreover, the surface X is uniquely determined by the Gauss map g, and it can
actually be recovered from g by means of an integral representation formula.

Once here, the first idea in order to prove a Hopf-type theorem is to look for a
holomorphic quadratic differential for CMC surfaces in Sol3. However, it seems
that such a holomorphic object is not available in the theory; this constitutes
another key difference from the theory of CMC surfaces in the other Thurston
3-geometries exposed in the previous section, where the Abresch-Rosenberg (or
the Hopf differential) is holomorphic.

Still, it is not strictly necessary to obtain a holomorphic differential in order
to prove a Hopf-uniqueness theorem: it suffices to find a geometrically defined
quadratic differential with isolated zeros of negative index, so that it vanishes
identically on spheres. This is done as follows.

Theorem 5.4 (Daniel-Mira). Let H > 0, and assume that there exists an
index one CMC H sphere SH in Sol3. Then there exists a quadratic differential
QH , geometrically defined on any CMC H surface in Sol3, with the following
properties:

1. It has only isolated zeros of negative index (thus, it vanishes on spheres).

2. QH = 0 holds for a surface X : Σ → Sol3 if and only if X is a left-
translation of some piece of the sphere SH .

Moreover, the sphere SH is embedded, and it is therefore unique in Sol3 (up to
left-translations) in the Hopf sense and in the Alexandrov sense.

The quadratic differentialQH is constructed as follows. LetG : SH ≡ C → C
denote the Gauss map of SH . Then G is a diffeomorphism (otherwise one can
construct a Jacobi function u on SH with u(p) = ∇u(p) = 0 at some p ∈ SH ,
which contradicts the index one condition by Courant’s nodal domain theorem).

Once here, the differential QH is defined for any CMC H surface X : Σ →
Sol3 with Gauss map g : Σ → C by

QH = (L(g)g2z +M(g)gz ḡz) dz
2, (9)

where by definition

M(q) =
1

R(q)
=

1

H(1 + |q|2)2 + q2 − q̄2
(10)

and L : C → C is implicitly given in terms of the Gauss map G of SH by

L(G(z)) = −M(G(z))Ḡz(z)

Gz(z)
. (11)

It must also be emphasized that, by this uniqueness theorem, any index one
CMC sphere SH in Sol3 is as symmetric as the ambient space allows: there is
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a point p ∈ Sol3 such that SH is invariant with respect to all the isometries of
Sol3 that leave p fixed.

5.2. Proof of Theorem 5.2: existence. Let us define

I := {H > 0 : exists an index one CMC H sphere SH in Sol3}.

We prove next the theorem by Meeks [Mee] that I = (0,∞). (The fact that
(1/

√
3,∞) ⊂ I had been previously obtained in [DaMi]).

That I 6= ∅ follows from the existence of isoperimetric spheres, which in
Sol3 must have index one. That I is open was proved in [DaMi], and follows
from the implicit function theorem and from the continuity of the eigenvalues
and eigenspaces in the deformation.

The proof that I is closed is the critical step. The key point is to prevent
that the diameters of a sequence of CMC Hn spheres (SHn

) with Hn → H0 > 0
tend to ∞. This was proved first by Daniel-Mira, but only for H0 > 1/

√
3.

The final proof for every H0 > 0 was recently given by Meeks [Mee], using
the following height estimate: there exists a constant K(H0) such that for any
CMC H0 graph (possibly non-compact) with respect to one of the two canonical
foliations of Sol3, and with boundary on a leaf, the maximum height attained
by the graph with respect to this leaf is ≤ K(H0).

Once this height estimate is ensured, Meeks concludes the proof by some
elliptic theory and stability arguments.

5.3. Open problems. Are CMC spheres in Sol3 weakly stable? Do they
all bound isoperimetric regions in Sol3? A positive answer is conjectured in
[DaMi]. What happens in other homogeneous 3-spaces with 3-dimensional isom-
etry group?

It seems very interesting to develop a global theory of minimal surfaces in
Sol3. Some natural problems would be proving half-space theorems, classifying
entire minimal graphs, or finding properly embedded minimal surfaces of non-
trivial topology.

6. Surfaces of Critical CMC

As we saw in Section 3, CMC H spheres in the homogeneous space E3(κ, τ)
exist exactly for the values H2 > −κ/4. Besides, one can easily see that there
exist entire rotational CMC H graphs in E3(κ, τ), κ ≤ 0, whenever H2 ≤ −κ/4.
From these results and the maximum principle, we obtain

Theorem 6.1. Any compact CMC H surface in E3(κ, τ) satisfies H2 > −κ/4.
Also, any entire CMC graph in E3(κ, τ), κ ≤ 0, satisfies H2 ≤ −κ/4.
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There are several other properties that make the theory of CMC surfaces
with H2 > −κ/4 quite different from the theory of CMC surfaces with H2 ≤
−κ/4. For instance:

1. A properly embedded CMC surface in H2 × R with H > 1/2 and fi-
nite topology cannot have exactly one end (Espinar, Gálvez, Rosenberg,
[EGR]).

2. There exist horizontal and vertical height estimates for CMC surfaces
with H > 1/2 in H2 × R [NeRo2, AEG1, EGR].

3. There are no complete stable CMC surfaces inH2×R withH > 1/
√
3, and

the result is expected for H > 1/2. (Nelli-Rosenberg, [NeRo2]). Besides,
there are no complete stable CMC surfaces with H > 1/2 in H2 × R of
parabolic conformal structure (Manzano-Pérez-Rodŕıguez, [MaPR]).

It is hence natural to introduce the following definition.

Definition 6.2. We say that a CMC surface in E3(κ, τ) with κ ≤ 0 has critical
CMC if its mean curvature H satisfies H2 = −κ/4.

The critical mean curvature is the largest value of |H| for which compact
CMC surfaces do not exist. Therefore we have H = 1/2 surfaces in H2 × R,
minimal surfaces in Nil3, and H =

√−κ/2 surfaces in the universal covering of
PSL(2,R). A remarkable property is that the sister correspondence preserves
the property of having critical CMC, and that every simply connected surface
of critical CMC is the sister surface of some minimal surface in Nil3.

In this section we will study the global geometry of surfaces with critical
CMC, focusing on the existence of harmonic Gauss maps and the classification
of entire graphs.

6.1. Harmonic Gauss maps. A smooth map G : M → N between
Riemannian manifolds is harmonic if it is a critical point for the total energy
functional. When M is a surface, harmonicity is a conformal invariant, and it
implies that the quadratic differential

Q0dz
2 = 〈Gz, Gz〉dz2,

is holomorphic, where z is a conformal parameter on Σ, and 〈, 〉 denotes the
metric in N (see [FoWo]). We call Q0dz

2 the Hopf differential associated to G.
The Gauss map of CMC surfaces in R3 is harmonic into S2, and its Hopf

differential agrees (up to a constant) with the Hopf differential of the surface.
Moreover, the CMC surface can be recovered from the Gauss map by a represen-
tation formula. This Gauss map opens the door to the use of strong techniques
from harmonic maps in the description of CMC surfaces.

The same holds for spacelike CMC surfaces in Minkowski 3-space L3, but
this time the harmonic Gauss map takes values into H2. Let us briefly comment
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this case, since it will play an important role in the development of the section.
Let f : Σ → L3 be a connected spacelike CMC surface, oriented so that its
Gauss map G takes values in H2. Here L3 is R3 with the metric dx2+dy2−dz2
and H2 is realized in L3 in the usual way. It turns out that G is harmonic into
H2 and its associated Hopf differential agrees (up to a multiplicative constant)
with the Hopf differential of the immersion f . Moreover, the metric of the CMC
surface, 〈df, df〉 = τ0|dz|2, is related with G by

2〈Gz, Gz̄〉 =
τ0
4

+
4|Q0|2
τ0

.

Definition 6.3. We will say that a harmonic map G into H2 admits Weier-
strass data {Q0, τ0} if the pullback metric induced by G can be written as

〈dG, dG〉 = Q0dz
2 + µ|dz|2 + Q̄0dz̄

2, µ =
τ0
4

+
4|Q0|2
τ0

,

τ0 being a positive smooth function.

6.1.1. H = 1/2 surfaces in H2 ×R. We will regard H2 ×R = E3(−1, 0) in
its Minkowski model, i.e.

H2 × R = {(x0, x1, x2, x3) : x0 > 0,−x20 + x21 + x22 = −1} ⊂ L3 × R = L4.

Using this model, the unit normal vector η of an immersed surface ψ = (N,h) :
Σ → H2×R takes values in the de Sitter 3-space, and {η,N} is an orthonormal
frame for the Lorentzian normal bundle of ψ in L4. Moreover, if u is the angle
function of the surface (that is, the last coordinate of η) and we assume that u 6=
0 (that is, that ψ is nowhere vertical, or equivalently, that it is a multigraph),
then we can write

1

u
(η +N) = (G, 1), (12)

for a certain map G : Σ → H2.

Definition 6.4 ([FeMi1]). The map G given by (12) will be called the hyper-
bolic Gauss map of an immersed (nowhere vertical) surface in H2 × R.

The main property of the hyperbolic Gauss map is the following [FeMi1]:

Theorem 6.5 (Fernández-Mira). The hyperbolic Gauss map of a CMC sur-
face with H = 1/2 in H2 × R is a harmonic map into H2, and admits Weier-
strass data {−Q,λu2}, where Qdz2, λ|dz|2 and u are, respectively, the Abresch-
Rosenberg differential, the metric, and the angle function of the surface.

Conversely, if Σ is simply connected, any harmonic map G : Σ → H2 ad-
mitting Weierstrass data is the hyperbolic Gauss map of some H = 1/2 surface
in H2 × R.

Moreover, the space of H = 1/2 surfaces in H2×R with the same hyperbolic
Gauss map G is generically two-dimensional, and it can be recovered from G
by a representation formula.
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The proof of the direct part of the above result follows from equations (2)
and the very definition of G. The converse part is an integrability argument.
This result is of great importance for the rest of this section, since it allows the
use of harmonic maps in the description of surfaces of critical CMC.

6.1.2. Minimal surfaces in Nil3. The existence of this harmonic Gauss
map for H = 1/2 surfaces in H2 × R was extended by B. Daniel [Dan2] to the
case of minimal surfaces in Nil3 = E3(0, 1

2
).

This time, the harmonic Gauss map is given by the Lie group Gauss map
of the surface. Indeed, if we identify the Lie algebra of Nil3 with the tangent
space at a point by left multiplication, we can stereographically project the
unit normal vector field to obtain a map taking values in the extended complex
plane. More specifically, we will consider the model of Nil3 given in Section 2
and its canonical frame of left-invariant fields {E1, E2, E3}. If N =

∑
NiEi is

the unit normal of X : Σ → Nil3, then the Gauss map of X is given by

g =
N1 + iN2

1 +N3

: Σ → C.

Now, if the surface is nowhere vertical we can orient it so that u = 〈N,E3〉
is positive, and so g takes values in the unit disc D. By identifying H2 with
(D, ds2P ), where ds

2
P is the Poincaré metric, Daniel obtained in [Dan2]:

Theorem 6.6 (Daniel). The Gauss map of a nowhere vertical minimal surface
is harmonic into H2.

Conversely, let g : Σ → H2 be a harmonic map defined on a simply connected
oriented Riemann surface into H2, and assume that g is nowhere antiholomor-
phic (i.e., gz does not vanish at any point). Take z0 ∈ Σ and X0 ∈ Nil3.

Then there exists a unique conformal nowhere vertical minimal immersion
X : Σ → Nil3 with X(z0) = X0 having g as its Gauss map. Moreover, X can
be uniquely recovered from g through an adequate representation formula.

Furthermore, it can be checked that the Weierstrass data of g as above are
{−Q,λu2}, where Qdz2, λ|dz|2 and u are, respectively, the Abresch-Rosenberg
differential, the metric, and the angle function of the surface defined in Sec-
tion 2.

As we saw in Section 3, minimal surfaces in Nil3 and H = 1/2 surfaces in
H2 × R are related by the sister correspondence, and sister surfaces have the
same metric and angle function (in particular, the condition of being nowhere
vertical is preserved). As in this case the sister surfaces have opposite Abresch-
Rosenberg differentials, it turns out that their respective harmonic Gauss maps
are conjugate to each other.

The relation between minimal surfaces in Nil3 and H = 1/2 surfaces in
H2 × R can be made more explicit by means of the theory of spacelike CMC
surfaces in L3, as follows.
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Theorem 6.7 ([FeMi3]). Let X = (F, t) : Σ → Nil3 be a simply connected
nowhere vertical minimal surface with metric λ|dz|2 and angle function u, and
ψ = (N,h) : Σ → H2 × R its sister surface.

Then f := (F, h) : Σ → L3 is a spacelike H = 1/2 surface in the Minkowski
3-space with metric λu2|dz|2 and Hopf differential −Qdz2, where Qdz2 is the
Abresch-Rosenberg differential of X.

6.1.3. CMC
√
−κ/2 surfaces in ˜PSL(2,R). In a forthcoming paper

[DFM], the authors and B. Daniel will prove that there exists also a harmonic
Gauss map for critical CMC surfaces in the remaining case, i.e. the universal
covering of the group PSL(2,R), and will derive a representation formula for
them.

6.2. Half-space theorems. One of the most important results in the
global study of minimal surfaces in R3 is the classical half-space theorem by
Hoffman and Meeks [HoMe]. This theorem says that any properly immersed
minimal surface in R3 lying in a half-space must be a plane parallel to the one
determining the half-space. The main tools used here are the maximum prin-
ciple and the existence of catenoids, a 1-parameter family of minimal surfaces
converging to a doubly-covered punctured plane P , and intersecting the planes
parallel to P in compact curves.

The analogous version for CMC one half surfaces in H2 × R was proved in
[HRS]. In this setting, horocylinders play the role of the planes in R3.

Theorem 6.8 (Hauswirth-Rosenberg-Spruck). The only properly immersed
CMC one half surfaces in H2 × R that are contained in the mean convex side
of a horocylinder C are the horocylinders parallel to C.

Also, the only properly embedded CMC one half surfaces in H2×R containing
a horocylinder in its mean convex side are the horocylinders.

Proof. The main point here is to construct a family of CMC one half surfaces
in H2×R to be used in the same way as catenoids in the proof of the half-space
theorem in R3. This is achieved by means of compact annuli with boundaries,
contained between two horocylinders.

For the case of Nil3, we must distinguish between horizontal and vertical
half-spaces. The equivalent to the half-space theorem for surfaces lying in a
horizontal half-space is proved by using the family of rotational annuli [AbRo2].
The corresponding vertical version has been obtained in [DaHa], by constructing
first a family of horizontal catenoids, i.e. properly embedded minimal annuli
(non-rotational) with a geometric behaviour good enough to apply the Hoffman-
Meeks technique.

Theorem 6.9 (Daniel-Hauswirth). The only properly immersed minimal sur-
faces in Nil3 that are contained in a vertical half space are the vertical planes
parallel to the one determining the half-space.
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Proof. Using the representation formula for minimal surfaces in Nil3 (see Theo-
rem 6.6), it is possible to construct horizontal catenoids in Nil3. These surfaces
are a 1-parameter family of properly embedded minimal annuli, intersecting
vertical planes {x2 = c} in a non-empty closed convex curve. Moreover, the
family converges to a double covering of {x2 = 0} minus a point. They are ob-
tained by integrating a family of harmonic maps that belong to a more general
family used in the construction of Riemann type minimal surfaces in H2 × R
[Ha]. Once we have these catenoids, we finish by using the maximum principle
similarly to the Euclidean case.

6.3. The classification of entire graphs. In this section we will
describe the space of entire graphs of critical CMC in E3(κ, τ). Such a descrip-
tion follows from the works of Fernández-Mira [FeMi1, FeMi3], Hauswirth-
Rosenberg-Spruck [HRS] and Daniel-Hauswirth [DaHa], and is contained in
Theorems 6.10 and 6.11. We expose here a unified perspective to this subject.
First, we have

Theorem 6.10 ([DaHa, FeMi3, HRS]). The following conditions are equivalent
for a surface of critical CMC in E3(κ, τ):

(1) It is an entire graph.

(2) It is a complete multigraph.

(3) u2 ds2 is a complete Riemannian metric (where u is the angle function
and ds2 the metric of the surface).

In particular, the sister correspondence preserves entire graphs of critical CMC.

Let us make some comments on this theorem. First, Hauswirth, Rosenberg
and Spruck proved (2) ⇒ (1) for H = 1/2 surfaces in H2 × R. Second, the
authors proved in [FeMi3] that (3) ⇒ (1) (for any surface in E3(κ, τ), not nec-
essarily CMC), and that (1) ⇒ (3) holds for minimal surfaces in Nil3. Finally,
Daniel and Hauswirth showed that (2) ⇒ (1) holds for minimal surfaces in Nil3.
The rest of the cases can be easily obtained from these results and the sister
correspondence (this was first observed in [DHM]).

Proof. It is immediate that (1) ⇒ (2). Also, by an eigenvalue estimate, the
authors proved in [FeMi3] that for arbitrary surfaces in E3(κ, τ) it holds
u2 ds2 ≤ gF , where F = π ◦ ψ is the projection onto M2(κ) of ψ. Thus, if
u2 ds2 is complete, F is a local diffeomorphism with complete pullback metric,
and by standard topological arguments, F is a diffeomorphism, i.e. (3) ⇒ (1)
holds.

That (1) ⇒ (3) holds for minimal surfaces in Nil3 was also proved in [FeMi3]:
let X = (F, t) : Σ → Nil3 be an entire minimal graph. By Theorem 6.7, there
is an entire spacelike CMC graph f = (F, h) : Σ → L3, whose induced metric
is ds2f = u2 ds2. Now we can apply a theorem by Cheng and Yau [ChYa] which
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says that spacelike entire CMC graphs in L3 have complete induced metric.
Hence u2 ds2 is complete, as wished.

We will now prove that (2) ⇒ (1) holds for minimal surfaces in Nil3. Let
us observe that once this is done, we can also prove the theorem for surfaces of
critical CMC in all the spaces E3(κ, τ). Indeed, as any simply connected surface
of critical CMC is the sister surface of some minimal surface in Nil3, and as
the correspondence preserves the metric and the angle function (therefore it
preserves conditions (2) and (3) by passing to the universal covering), we can
easily translate the theorem for the case of minimal surfaces in Nil3 to the rest
of the spaces. It is important here that we proved (3) ⇒ (1) in all spaces.

So, we only need to prove (2) ⇒ (1) for minimal surfaces in Nil3. This was
done by Daniel and Hauswirth [DaHa]. For that, they used their half-space
theorem in Nil3 (Theorem 6.9) and an adaptation to Nil3 of the previous proof
of (2) ⇒ (1) for the case of H = 1/2 surfaces in H2 × R given by Hauswirth-
Rosenberg-Spruck [HRS].

In order to prove (2) ⇒ (1) for minimal surfaces in Nil3, we argue by
contradiction. Assume that there exists a complete multigraph Σ that is not
entire. Then there exists an open set Σ0 ⊂ Σ that is a graph over a disc D ( R2

of a function f , and a point q ∈ ∂D such that f does not extend to q.

Step 1: For any sequence of points {qn} in D converging to q, the sequence of
normal vectors at the points pn = (qn, f(qn)) ∈ Σ0 converges to the horizontal
vector orthogonal to ∂D at q.

Indeed, as the surface is a multigraph, its angle function u = 〈N,E3〉, where
N denotes the unit normal vector, is a Jacobi function that does not vanish. As
a result of this, Σ is (strongly) stable, and has bounded geometry. This means
that locally around any pn we can write the surface as the graph (in exponential
coordinates) over a disc of radius δ of its tangent plane, where δ is a universal
constant depending only on Σ. This neighborhood of pn will be denoted by
G(pn). The limit of the normal vectors {N(pn)} must be a horizontal vector
since otherwise, the piece G(pn) of bounded geometry could be extended as a
graph beyond q, which is impossible. Moreover, the limit vector must be normal
to ∂D at q since Σ0 is a graph over D.

Step 2: The function f defining the graph Σ0 diverges at q. Moreover, as we
approach q, and after translating the surface to the origin, the surfaces converge
to a piece of the (translated) vertical plane P passing through q and tangent to
∂D.

That f diverges at q is a consequence of the completeness of Σ, and the last
part can be proved by following the ideas of Collin and Rosenberg in [CoRo].
We will assume that P is the plane {x1 = c}.

Step 3: Σ contains a graph G over a domain of the form Uε = (c − ε, c) ×
R ⊂ R2. Moreover, this graph is disjoint from P and asymptotic to it as one
approaches q.
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The graph G is obtained by analytical continuation of the surfaces G(pn)
used in the first step, and after a careful study of the behavior of the intersection
curves of these graphs and the planes parallel to P .

Finally, the contradiction follows from the half-space theorem (Theorem
6.9). Recall that, although G has boundary and the theorem is formulated for
surfaces without boundary, its proof applies to this case, and so we are done.

Once here, we investigate the Bernstein problem for entire graphs of critical
CMC in E3(κ, τ), i.e. the classification of such entire graphs (recall here that
CMC graphs in E3(κ, τ) satisfy the elliptic PDE (5)). The terminology comes
from the classical Bernstein theorem: entire minimal graphs in R3 are planes.
Equivalently, any solution to the minimal graph equation

(1 + f2y )fxx − 2fxfyfxy + (1 + f2x)fyy = 0 (13)

defined on the whole plane is linear.

It is interesting to compare this result with the Bernstein problem in Nil3,
i.e. the classification of entire minimal graphs in Nil3. This corresponds to
classifying all global solutions to the PDE (6). Observe that taking τ = 0 in
(6) we obtain the classical equation (13), i.e. the classical case considered by
Bernstein appears as a limit of the Heisenberg case.

There exists, however, a great difference between both situations. The
following result classifies the entire graphs of critical CMC in E3(κ, τ), by
parametrizing the moduli space of such entire graphs in terms of holomorphic
quadratic differentials. It was obtained first for minimal graphs in Nil3 by the
authors [FeMi3], and shortly thereafter by Daniel and Hauswirth [DaHa] for
H = 1/2 graphs in H2×R. The general case follows easily from the Heisenberg
case and Theorem 6.10, using the sister correspondence (this was observed first
in [DHM]).

Theorem 6.11 (Fernández-Mira, Daniel-Hauswirth). Let Qdz2 denote a holo-
morphic quadratic differential on Σ ≡ C or D, such that Q 6≡ 0 if Σ ≡ C, and
let H2 = −κ/4.

There exists a 2-parameter family of entire CMC H graphs in E3(κ, τ) whose
Abresch-Rosenberg differential agrees with Qdz2. These graphs are generically
non-congruent.

And conversely, these are all the entire graphs of critical CMC in E3(κ, τ).

At this point, the proof for the case of minimal surfaces in Nil3 is a
consequence of Theorem 6.7 and the following result by Wan and Wan-Au
[Wan, WaAu] on spacelike entire CMC graphs in L3: for any holomorphic
quadratic differential as above, there exists a unique (up to isometries) space-
like entire CMC 1/2 graph in L3 with Hopf differential Qdz2. The 2-parameter
family of non-congruent graphs in E3(κ, τ) comes from the loss of ambient
isometries (from 6 dimensions to 4 dimensions) when passing from L3 to Nil3.
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The remaining cases of critical CMC graphs follow since by Theorem 6.10
the sister correspondence preserves entire graphs.

6.4. Open Problems. As explained in Section 3, entire graphs are stable.
It is conjectured that entire graphs and vertical cylinders are the only stable
critical CMC surfaces (this has been proved for parabolic conformal type in
[MaPR]). Related to this is the question of non-existence of complete stable
H > 1/2 surfaces inH2×R (proved forH > 1/

√
3 by Nelli-Rosenberg, [NeRo2]).

Also, not much is known about properly embedded surfaces of critical CMC
and non-trivial topology. Can one obtain them by conjugate Plateau construc-
tions, or by integrable systems techniques? Another remarkable problem is to
establish the strong half-space theorem in Nil3: are two disjoint properly em-
bedded minimal surfaces in Nil3 necessarily two parallel vertical planes, or two
parallel entire minimal graphs?

7. Minimal Surfaces in H2 × R and S2 × R

Minimal surfaces in product spaces admit a special treatment, due to several
reasons. One of them is the following: if ψ = (N,h) : Σ →M2×R is a minimal
surface immersed in the product space M2×R, where (M2, g) is a Riemannian
surface, then the horizontal projection N : Σ →M2 is a harmonic map and the
height function h : Σ → R is a harmonic function. This implies, for instance,
that compact minimal surfaces in M2 × R only exist if M2 is compact (in
particular, if M2 = S2), and the only ones are the slices M2 × {t0}.

Another important fact about minimal surfaces in M2 × R is that there
is a natural notion of minimal graph over a domain Ω ⊂ M2, and that this
graph satisfies a simple elliptic PDE in divergence form. This fact together with
general existence results for solutions to the Plateau problem in Riemannian
3-manifolds allows a good control on the geometry of the surface. Some of the
most interesting results of the theory of minimal surfaces in product spaces
come from the interplay between the information provided by harmonic maps
and by Plateau constructions and the minimal graph equation.

Starting with the pioneer work of H. Rosenberg [Ros], and W.H Meeks and
H. Rosenberg [MeRo1, MeRo2], the theory of minimal surfaces in M2 × R has
developed substantially in the last decade. We will only talk here about a few
results of special relevance to the theory, and not mention many other important
results.

7.1. The Collin-Rosenberg theorem. The classical Bernstein the-
orem in R3 states that planes are the only entire minimal graphs in R3. This
theorem can be extended to the case of product spaces: any entire minimal
graph in M2 × R, where (M2, g) is a complete surface of non-negative curva-
ture, is totally geodesic.
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In contrast, in the product space H2×R there is a wide variety of entire min-
imal graphs. For instance, in [NeRo1] Nelli and Rosenberg solved the Dirichlet
problem at infinity for the minimal graph equation in H2 × R. They proved
that any Jordan curve at the ideal boundary S1 × R ≡ ∂∞H2 × R of H2 × R
which is a graph over S1 ≡ ∂∞H2 is the asymptotic boundary of a unique entire
minimal graph in H2 × R (see [GaRo] for a proof of this in the more general
case of entire minimal graphs in M2 × R, where (M2, g) is complete, simply
connected and with KM ≤ c < 0).

All these entire minimal graphs are hyperbolic, that is, they have the con-
formal type of the unit disk. The problem of existence of entire minimal graphs
of parabolic type (i.e. with the conformal type of C) is much harder, and was
solved recently by Collin and Rosenberg [CoRo].

Theorem 7.1 (Collin-Rosenberg). There exist entire minimal graphs in H2×R
of parabolic conformal type.

As the projection onto H2 of a minimal graph is a harmonic diffeomorphism,
the above theorem has the following consequence, which solves a major problem
in the theory of harmonic maps and disproves a conjecture by R. Schoen and
S.T. Yau.

Corollary 7.2 (Collin-Rosenberg). There exist harmonic diffeomorphisms
from C onto H2.

The proof by Collin and Rosenberg is a good example of the interaction
between the harmonicity properties of the minimal immersion and the use of
Plateau constructions and the minimal graph equation.

The main idea in the proof is to construct first (non-entire) minimal graphs
in H2×R of Scherk type over ideal geodesic polygons, having alternating asymp-
totic values +∞ and −∞ on the sides of the polygon. This generalizes a classical
construction by Jenkins and Serrin in the case of minimal graphs over bounded
domains in R3. This construction is done as follows:

Let Γ be an ideal polygon of H2, so that all the vertices of Γ are at the ideal
boundary of H2 and Γ has an even number of sides A1, B1, A2, B2..., Ak, Bk,
ordered clockwise. At each vertex ai, we consider a small enough horocycle Hi

with Hi ∩Hj = ∅. Each Ai (resp. Bi) meets exactly two horocycles. Denote by

Ãi (resp. B̃i), the compact arc of Ai(resp Bi) which is the part of Ai outside

the two horodisks. We denote by |Ai| the length of |Ãi|. Define B̃i and |Bi| in
the same way.

Now we can consider a(Γ) =
∑k

i=1
|Ai| and b(Γ) =

∑k

i=1
|Bi|. We observe

that a(Γ)− b(Γ) does not depend on the choice of the horocycle Hi at ai, since
horocycles with the same point at infinity are equidistant. Keeping in mind
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these data, we can state the following theorem by Collin-Rosenberg [CoRo]
(see also Nelli-Rosenberg [NeRo1]):

Theorem 7.3. ([NeRo1], [CoRo]) There is a (unique up to additive constants)
solution to the minimal surface equation in the polygonal domain P , equal to
+∞ on Ai and −∞ on Bi, if and only if the following conditions are satisfied:

1. a(Γ) = b(Γ),

2. For each inscribed polygon P in Γ, P 6= Γ, and for some choice of horo-
cycles at the vertices, one has

2a(P) < |P| and 2b(P) < |P|.

All these examples have the conformal type of C. Once there, Collin and
Rosenberg designed a way of enlarging a given Scherk-type graph over the
interior of some Γ ⊂ H2 into another one with more sides, and so that: (1)
the extended surface is C2-close to the original one over an arbitrary compact
set in the interior of Γ, and (2) there is a control on the conformal radius on
adequate compact annuli on the surface.

By passing to the limit in this sequence of minimal graphs over larger and
larger domains, they obtained an entire minimal graph in H2×R which, by the
control on the conformal radii of these annuli, has the conformal type of C.

Remark 7.4. The Collin-Rosenberg theorem has been extended by J.A. Gálvez
and H. Rosenberg [GaRo] to more general product spaces M2 × R: there exist
entire minimal graphs of parabolic conformal type on M2 × R, where (M2, g)
is any complete simply connected Riemannian surface with Gaussian curvature
KM ≤ c < 0 (KM not constant).

7.2. Minimal surfaces of finite total curvature in H2 × R.
One of the most studied families among minimal surfaces in R3 are the complete
minimal surfaces of finite total curvature (FTC for short). A minimal surface
Σ is said to have FTC if its Gaussian curvature K satisfies

∣∣∣∣
∫

Σ

K dA

∣∣∣∣ <∞.

By classical theorems of Huber and Osserman, complete FTC minimal sur-
faces in R3 are conformally equivalent to a compact Riemann surface minus a
finite number of points. Moreover, the Gauss map extends meromorphically to
the punctures, and the total curvature of the surface is a multiple of −4π. A
key point here is that the Gauss map of a minimal surface in R3 is conformal.

In H2 ×R there is no conformal Gauss map for minimal surfaces. Nonethe-
less, using the global theory of harmonic maps into H2, L. Hauswirth and H.
Rosenberg [HaRo] were able to prove that a similar situation holds in H2 × R.
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Theorem 7.5 (Hauswirth-Rosenberg). Let X be a complete minimal immer-
sion of Σ in H2 × R with finite total curvature. Then

1. Σ is conformally equivalent to a Riemann surface punctured at a finite
number of points, Σ ≡Mg − {p1...., pk}.

2. Qdz2 := h2z dz
2 is holomorphic on M and extends meromorphically to

each puncture. If we parameterize each puncture pi by the exterior of a
disk of radius r, and if Q(z)dz2 = z2mi(dz)2 at pi, then mi > −1.

3. The third coordinate u of the unit normal tends to zero uniformly at each
puncture.

4. The total curvature is a multiple of 2π:

∫

Σ

KdA = 2π

(
2− 2g − 2k −

k∑

i=1

mi

)
.

As a consequence, every end of a finite total curvature surface is uniformly
asymptotic to a Scherk type graph described in Theorem 7.3.

Proof. The first step is to prove that locally around an end, Qdz2 only has
at most a finite number of zeroes. Then a Huber theorem and an argument
of Osserman give that the ends are conformally a punctured disk, and Qdz2

extends meromorphically to the puncture. The final part of the behavior of
Qdz2 follows from the fact that Qdz2 = h2zdz

2, where h is the height function
of the surface.

To prove that u goes to 0 at the ends, take an annular neighborhood of
an end where Qdz2 does not vanish. Then reparameterize this annulus by
w =

∫ √
Qdz. The metric conformal factor in these coordinates satisfies a sinh-

Gordon equation, and the Gaussian curvature monotonically decreases to zero.
Then, estimates on the growth of solutions of the sinh-Gordon equation allows
one to conclude that, at a finite total curvature end, the tangent plane becomes
vertical and the metric becomes flat.

Finally, the expression for the total curvature follows from Gauss-Bonnet
formula and the estimates for the sinh-Gordon equation obtained before.

In [HaRo], the following question was also raised: are there complete non
simply connected minimal surfaces with FTC in H2×R? Notice that rotational
catenoids have infinite total curvature. Actually, at that time, the only known
complete FTC minimal surfaces were the Scherk type graphs.

This question was positively answered by J. Pyo [Pyo] and also, indepen-
dently, by Rodŕıguez and Morabito [RoMo]. Pyo constructed a 1-parameter
family of genus zero properly embedded minimal surfaces in H2 × R with k
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ends for k ≥ 2, similar to the k-noids in R3 (although the first ones are embed-
ded and the k-noids in R3 are not). They have total curvature 4π(1 − k), and
are asymptotic to vertical planes at infinity. These surfaces are obtained as the
conjugate surfaces of minimal graphs over infinite geodesic triangles in H2 that
are asymptotic to vertical planes at infinity.

Very shortly thereafter, M. Rodŕıguez and F. Morabito discovered inde-
pendently a larger family of FTC minimal surfaces, containing the previous
ones. It is a (2k−2)-parameter of properly embedded FTC minimal surfaces of
genus zero with k ends, obtained as the limits of simply periodic minimal sur-
faces called saddle towers, that are invariant by a vertical translation of vector
(0, 0, 2l). Taking limits when l → ∞, they obtain genus zero minimal surfaces
with k ends and total curvature 4π(1− k) that are symmetric with respect to
the reflection over the slice H2 × {0}. The surfaces found by Pyo appear when
the ends are placed in symmetric positions.

7.3. Open problems. In [Ha], L. Hauswirth constructed a family of Rie-
mann type minimal surfaces in H2×R and S2×R, characterized by the property
of being foliated by curves of constant curvature. It is a conjecture by W. Meeks
and H. Rosenberg that in S2 × R they are the only properly embedded min-
imal annuli. An approach for solving this conjecture using integrable systems
techniques has been recently developed by L. Hauswirth and M. Schmidt. An-
other natural problem is to obtain classification results for properly embedded
minimal surfaces of finite total curvature and a given simple topology in R3.

Schoen and Yau proved there is no harmonic diffeomorphism from the disk
to a complete surface of non-negative curvature. Can there be such a harmonic
diffeomorphism onto a complete parabolic surface? This is a question by J.A.
Gálvez.

References

[AbRo1] U. Abresch, H. Rosenberg, A Hopf differential for constant mean curvature
surfaces in S2 × R and H2 × R, Acta Math. 193 (2004), 141–174.

[AbRo2] U. Abresch, H. Rosenberg, Generalized Hopf differentials, Mat. Contemp.
28 (2005), 1–28.

[AEG1] J.A. Aledo, J.M.Espinar, J.A. Gálvez, Height estimates for surfaces with
positive mean curvature in M × R. Illinois Journal of Math., 52 (2008),
203–211.

[Bon] F. Bonahon, Geometric structures on 3-manifolds. In Handbook of Geomet-
ric Topology, pages 93–164. North-Holland, Amsterdam, 2002.

[ChYa] S.Y. Cheng, S.T. Yau, Maximal spacelike hypersurfaces in the Lorentz-
Minkowski spaces, Ann. of Math. 104 (1976), 407–419.

[CoRo] P. Collin, H. Rosenberg, Construction of harmonic diffeomorphisms and min-
imal graphs, Ann. of Math., to appear (2007).



CMC Surfaces in Thurston Geometries 859

[Dan1] B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds,
Comment. Math. Helv. 82 (2007), 87–131.

[Dan2] B. Daniel, The Gauss map of minimal surfaces in the Heisenberg group,
preprint, 2006, arXiv:math/0606299.

[DFM] B. Daniel, I. Fernández, P. Mira, Surfaces of critical constant mean curva-
ture. Work in progress.

[DaHa] B. Daniel, L. Hauswirth, Half-space theorem, embedded minimal annuli and
minimal graphs in the Heisenberg group. Proc. Lond. Math. Soc. (3), 98 no.2
(2009), 445–470.

[DHM] B. Daniel, L. Hauswirth, P. Mira, Constant mean curvature surfaces in ho-
mogeneous manifolds, preprint, 2009. Published preliminarly by the Korea
Institute for Advanced Study.

[DaMi] B. Daniel, P. Mira, Existence and uniqueness of constant mean curvature
spheres in Sol3. Preprint, 2008, arXiv:0812.3059

[dCF] M.P. do Carmo, I. Fernández, Rotationally invariant CMC disks in product
space, Forum Math. 21 (2009), 951–963.

[EGR] J.M. Espinar, J.A. Gálvez, H. Rosenberg, Complete surfaces with positive
extrinsic curvature in product spaces, Comment. Math. Helv., 84 (2009),
351–386.

[EsRo] J.M. Espinar, H. Rosenberg, Complete constant mean curvature surfaces in
homogeneous spaces, Comment. Math. Helv., to appear (2009).

[FeMi1] I. Fernández, P. Mira, Harmonic maps and constant mean curvature surfaces
in H2 × R, Amer. J. Math. 129 (2007), 1145–1181.

[FeMi2] I. Fernández, P. Mira, A characterization of constant mean curvature sur-
faces in homogeneous 3-manifolds, Diff. Geom. Appl., 25 (2007), 281–289.

[FeMi3] I. Fernández, P. Mira, Holomorphic quadratic differentials and the Bernstein
problem in Heisenberg space. Trans. Amer. Math. Soc., 361, no 11, (2009),
5737–5752.

[FoWo] A.P. Fordy, J.C. Wood. Harmonic maps and integrable systems. Aspects of
Mathematics, vol. E23, by Vieweg, Braunschweig/Wiesbaden, 1994.

[GMM] J.A. Gálvez, A. Mart́ınez, P. Mira, The Bonnet problem for surfaces in
homogeneous 3-manifolds, Comm. Anal. Geom. 16 (2008), 907–935.

[GaRo] J.A. Gálvez, H. Rosenberg, Minimal surfaces and harmonic diffeomor-
phisms from the complex plane onto a Hadamard surface. Preprint, 2008,
arXiv:0807.0997.

[Ha] L. Hauswirth, Minimal surfaces of Riemann type in three dimensional prod-
uct manifolds. Pacific J. Math., 224, no.1 (2006), 91–117.

[HaRo] L. Hauswrith, H. Rosenberg. Minimal surfaces of finite total curvature in
H× R. Mat. Contemp. 31 (2006), 65–80.

[HRS] L. Hauswirth, H. Rosenberg, J. Spruck. On complete mean curvature 1

2

surfaces in H2 × R. Comm. Anal. Geom., 16, no.5 (2008), 989–1005.

[HoMe] D. Hoffman, W. H. Meeks III. The strong halfspace theorem for minimal
surfaces. Invent. Math. 101, no.2 (1990), 373–377.



860 Isabel Fernández and Pablo Mira

[HsHs] W.Y. Hsiang, W.T. Hsiang, On the uniqueness of isoperimetric solutions and
imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math.
98 (1989), 39–58.

[Lee] H. Lee. Extension of the duality between minimal surfaces and maximal
surfaces. Preprint, 2009.
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The subject of this talk is Morse landscapes of natural functionals on infinite-
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First, we explain how recursion theory can be used to demonstrate that for
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Here the main conclusion (obtained jointly with Regina Rotman) is that these
Morse landscapes can be much more complicated than what follows from topo-
logical considerations only if the length functional has “many” “deep” local
minima, and the values of the length at these local minima are not “very large”.

Mathematics Subject Classification (2010). Primary 53C23, 58E11, 53C20; Sec-

ondary 03D80, 68Q30, 53C40, 58E05.

Keywords. Non-computability, geometric calculus of variations, best Riemannian

metrics, algorithmic unsolvability, quantitative topology, Riemannian functionals, the

length functional, thick knots, curvature-pinching, loop spaces.

1. Introduction

In this talk we will discuss Morse landscapes of functionals on infinite-
dimensional moduli spaces naturally arising in Differential Geometry.

Our first message is that in many cases these Morse landscapes are much
more complicated than what would follow just from the Morse theory. The
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examples include some Riemannian functionals (i.e. functionals on the space of
isometry classes of Riemannian metrics), functionals on spaces of submanifolds,
and so on. Our approach initiated in [N1], [N2], [N3] and further developed in
collaboration with Shmuel Weinberger ([NW1], [NW2], [NW3]) is based on re-
cursion theory. In many cases we are able to prove disconnectedness of sublevel
sets of a functional of interest, and, moreover, the exponential growth of the
number of connected components that merge only inside a much larger sub-
level set. Sometimes this technique implies the existence of an infinite set of
distinct local minima of a functional of interest, where only the existence of the
global minimum was previously known. In other cases this recursion-theoretic
approach is the only known method that can be used to establish the existence
of critical points of a functional of interest.

In particular, methods using ideas from mathematical logic led to only
known general results on the following problem posed by R. Thom “What is the
best (or the nicest) metric on a given smooth manifold?” for compact manifolds
of dimension ≥ 5 (joint work with Shmuel Weinberger). They also constitute the
only known tool to demonstrate that the theory of (high-dimensional) “thick”
knots is drastically different from the “usual” knot theory.

In a different direction I will discuss Morse landscapes of the length func-
tional on loop spaces ΩpM

n and spaces ΩpqM
n of paths between points p, q on

a closed simply-connected Riemannian manifold Mn. In [N5] I proved that if
the length functional has a “very deep” non-trivial local minimum on ΩpM

n,
then it has “many” “deep” local minima. 0 The proof used the idea of “effective
universal coverings”. A stronger form of this result can be proven using direct
geometric methods recently invented by Regina Rotman. These methods also
can be used to demonstrate that if the length functional has a critical point of
a positive index of a “large” but finite depth, then it must have “many” “deep”
local minima ([NR]).

2. “Thick” Knots

Knots are sometimes defined as submanifolds of R3 (or S3) diffeomorphic to
S1. More generally, one can consider higher-dimensional knots that are sub-
manifolds of Rn+k (or Sn+k) diffeomorphic to Sn, where k is usually equal to
two. Two knots have the same knot type, if they are isotopic. It makes sense
to consider also “physical” or “thick” knots on a rope of small but non-zero
thickness; two thick knots have the same type if they can be connected by an
isotopy that preserves the thickness of the rope and does not increase its length.
In the multidimensional case the isotopy should not increase the volume. Note

0The depth of a local minimum µ of a functional f can be defined as infγ supt f(γ(t)) −
f(µ), where the infimum is taken over the set of all paths γ starting at µ and ending at a
point γ(1) such that f(γ(1)) < f(µ). If µ is a global minimum, then, by definition, it has
infinite depth.
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that the thickness of the rope cannot exceed the injectivity radius of the normal
exponential map. Therefore, the study of “thick” knot types is equivalent to the
study of connected components of sublevel sets of the crumpledness functional

κv = vol
1

n

r
, where vol denotes the volume, and r denotes the injectivity radius

of the normal exponential map. (In other words, r is equal to the supremum of
x such that every two normals to the knot of length ≤ x starting at its differ-
ent points do not intersect. Informally speaking, r(Σ) is the largest radius of a
nonself-intersecting tube arounf Σ.)

The paper [N1] was one of the first papers on “thick” knots. 1 The most
basic question (in every dimension and codimension) is whether or not there
exist “thick” knots that are trivial as usual knots but not trivial as “thick”
knots. This question still remains open for the “classical” dimension one and
codimension two, despite the fact that it is easy to sketch plausible candidates.
The question becomes especially interesting for n = 2 and codimension one,
where I cannot even guess what answer to expect. In [N1] I answered this
question in affirmative for the dimension n ≥ 5 and codimension one. Observe,
that Smale’s h-cobordism theorem implies that every embedded n-sphere of
codimension one in Rn+1, (n > 3), is isotopic to the standard sphere. In other
words, there exists only the trivial knot type. Yet in [N1] (see also [N2]) I proved
that:

Theorem 2.1. For every n ≥ 5 and for each sufficiently large x the set of
n-dimensional hypersurfaces Σn ⊂ Rn+1 diffeomorphic to Sn and such that
κv(Σ

n) ≤ x is not connected.

For every knot Σn ⊂ Rn+1 denote the infimum of y such that there exists an
isotopy that passes through knots with κv(Σ

n) ≤ y and connects Σn with the
round sphere of radius one by C(Σn). An easy compactness argument implies
that for every positive x there exists the supremum of C(Σn) over the set of
all knots Σn such that κv(Σ

n) ≤ x. Denote this supremum by Cn(x). Note
that the previous theorem follows from the assertion that for every n ≥ 5 for
all sufficiently large x Cn(x) > x. We deduced this assertion (and, thus, the
previous theorem) from the following much stronger assertion: 2

1I am sure that the very natural idea to study knots of non-zero thickness occured in-
dependently to many other mathematicians, yet I found only one paper on “thick” knots
preceding [N1], namely, [KV]. Although [N1] dealt mainly with high-dimensional “thick”
knots of codimension one, some of its results, such as a C1,1-compactness theorem remain
valid for an arbitrary dimension/codimension. It also contained several basic problems about
1-dimensional “thick” knots in R3 (Section 4, B,C,D in [N1]) that still remain unsolved. In
recent years “thick” 1-dimensional knots in R3 became the subject of a constantly growing
number of publications -cf. [LSDR], [Dur] or [CFKSW].

2To be more precise in [N1] we proved that this inequality holds only for an infinite
unbounded sequence of values of x. To prove that it holds for all sufficiently large values
of x one needs either to apply a trick from [N2] involving the busy beaver function or to
use time-bounded Kolmogorov complexity as in [N3] and subsequent papers [NW1], [NW2],
[NW3].
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Theorem 2.2. Let φ be any computable 3 function. Then for every n ≥ 5 and
for all sufficiently large x Cn(x) > φ(bxc)).

We will explain the proof of this theorem in the next section. The preceding
discussion does not depend on a particular choice of the smoothness of consid-
ered knots as long as the considered knots are at least C1,1-smooth, which is the
minimal smoothness required for r to be defined and positive. Now consider the
space of all C1,1-smooth n-dimensional knots in Rn+1 with C1 topology. Con-
sider the following equivalence relation on this space: two knots are equivalent
if they can be transformed one into the other by a similarity transformation of
the ambient Euclidean space. Clearly each equivalence class is connected, and
the crumpledness functional is constant on every equivalence class. Denote the
space of the equivalence classes by Knotsn,1. In [N1] we proved that sublevel
sets of κv are compact subsets of Knotsn,1. Therefore κv attains its local min-
imum on every connected component of each of its sublevel sets. These local
minima will be automatically local minima of κv on the whole space Knotsn,1.
The disconnectedness of κ−1

v ((0, x]) for arbitrarily large values of x implies that
the set of local minima of κv is unbounded, and the set of values of κv at its
local minima is infinite. Combining this observation with the previous theorem
we see that there exists an infinite set of local minima of κv, where the depth
is much higher than the value of κv.

Theorem 2.3. For every n ≥ 5 and every computable function φ : N −→ N
there exists an infinite sequence Σn

i of local minima of κv on Knotsn,1 such
that the set of values of κv at these local minima is unbounded, and the depth
of each of these local minima Σn

i is greater than φ(bκv(Σ
n
i )c).

This theorem holds for other versions of the crumpledness functional , e.g.
κd = diam

r
as well as for many other functionals (see [N1]). The theorem can be

also generalized to spaces of trivial knots of arbitrary codimension (of dimension
n > 4), as well as for the spaces of trivial knots of dimension 3 or 4 and
codimension 2. (The last fact follows from the results of [NW0].) The theorem
and its generalizations for other crumpledness functionals obviously hold for
the space of trivial C1,1-smooth n-dimensional knots in Rn+k, where one does
not take the quotient with respect to the action of the group of similarities
of the ambient Euclidean space. In this form the theorem can be generalized
for the cases, when 1) The submanifold can be diffeomorphic to an arbitrary
closed manifold Mn , (n > 4), instead of Sn; and 2) The ambient manifold can
be not Rn but an arbitrary closed Riemannian manifold, as well as a complete
non-compact Riemannian manifold from a wide class. (Of course, the considered

3Formally speaking, here “computable” means “Turing computable” or, equivalently, “re-
cursive”. Equivalently, a reader can take any computer programming language, strip it of all
restrictions on the size of data (if there are any), and strip it of all data types but the integer
numbers. A function is computable if and only if it can be described by a computer program
in this language.
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space of submanifolds needs to be non-empty; if it is not connected, the theorem
holds for each of its connected components.)

3. Methods I: Algorithmic Unsolvability of

the Diffeomorphism Problem and its

Applications

The following theorem was first proven by Sergei Novikov (see its proof in the
Appendix of [N4]):

Theorem 3.1. For every n ≥ 5 there is no algorithm deciding whether or not
a given manifold Mn is diffeomorphic to the n-sphere.

To make this theorem precise one needs to explain how Mn is presented in a
finite form. In [N4] we observed that this theorem is true even in the case when
Mn is a non-singular real algebraic hypersurface {x ∈ Rn+1|p(x) = 0}, where
p is a polynomial with rational coefficients. In this case Mn can be presented
by the vector of coefficients of p. The other ways to present Mn in a finite form
include: 1) C∞-semialgebraic atlases (also known as Nash atlases; see [BHP]);
2) Smooth triangulations; 3) Smooth real algebraic subvarieties of Euclidean
spaces of a higher codimension defined over the field of algebraic numbers.

Here is a very brief sketch of the proof of this theorem. According to the
classical theorem independently proven by S. Adyan and M. Rabin there exists
an infinite sequence of finite presentations of groups Gi, i = 1, 2, . . . such that
there is no algorithm deciding for every given i whether or not Gi is isomorphic
to the trivial group. (In other words, the set I of all i such that Gi is trivial
is non-recursive.) The standard proof of this theorem (cf. [Mil]) produces Gi

that are perfect, that is H1(Gi) = Gi/[Gi, Gi] is trivial. S. Novikov observed
that one can alter finite presentations of these groups in a certain explicit
way to obtain a new sequence of finite presentations of superperfect groups Ḡi

so that Ḡi is trivial if and only if Gi is trivial. (Thus, there is no algorithm
deciding for a given value of i whether or not Ḡi is trivial. Superperfectness of
a group means the vanishing of the first two homology groups of a group. Also,
note that groups Ḡi are universal central extensions of groups Gi.) According
to [Ke] the superperfectness of a finitely presented group G is the necessary
and sufficient condition of the realizibility of G as the fundamental group of
a smooth homology n-sphere, that is a smooth closed manifold with the same
homology groups as Sn, for every n ≥ 5. Thus, we can effectively realize groups
Ḡi as fundamental groups of homology spheres Σn

i . Moreover, the proof of the
quoted result from [Ke] implies that this construction can be carried in Rn+1

so that Σn
i will be a smooth hypersurface in Rn+1. Smale’s h-cobrdism theorem

implies that a homology sphere Σn
i embedded as a hypersurface in Rn+1 is

diffeomorphic to Sn if and only if it is simply-connected, and, therefore, if and
only if Ḡi is trivial. This completes the proof of the theorem.
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This theorem (or rather its proof outlined above) has the following imme-
diate corollary:

Corollary 3.2. For every closed smooth manifold Mn
0 of dimension n > 4

there is no algorithm that decides whether or not a given manifold Mn is dif-
feomorphic to Mn

0 .

Indeed, we can just construct a sequence Mn
i by forming connected sums of

a copy of Mn
0 with smooth homology spheres Σn

i from the outline of a proof of
the previous theorem. The manifold Mn

i is diffeomorphic to Mn
0 if and only if

the fundamental group of Σn
i is trivial.

Note that it is not known whether or not this theorem remains true in
dimension four. However, A. Markov proved that this theorem is true for mani-
foldsM4

0 diffeomorphic to the connected sum of a sufficient number N0 of copies
of S2 × S2 with an arbitrary closed 4-manifoldi (cf. [BHP], [Sh]). Here one can
take N0 = 14([Sh]). This theorem enables us to extend some of our techniques
that we are going to describe below to such four-dimensional manifolds.

Now the general idea behind the proof of Theorem 2.2 as well as of some
results stated in the next sections can be described as follows. Consider a class
C of diffeomorphism types of compact smooth n-dimensional manifold, where
n > 4. The class C can be the class of all n-manifolds, or, for example, the
class of all manifolds embeddable in Rn+1. We require that the class C is large
enough to ensure that S. Novikov’s theorem will be true in this class: For every
manifold Mn from C there is no algorithm deciding whether or not a given
manifold from C is diffeomorphic to Mn.

We consider situations, when for every manifold in Mn ∈ C there is a
natural “moduli space” Moduli(Mn). associated with this manifold. (In the
situation of Theorem 2.2 Moduli(Mn) = Knotsn,1. To prove theorems stated
in section 5 below we will be choosing Moduli(Mn) as certain subsets of the
space of Riemannian structures on Mn.) Let φ be a non-negative functional
on a moduli space Modulin defined as the disjoint union of connected spaces
Moduli(Mn) associated with all manifolds Mn ∈ C. We are assuming that
Modulin is endowed with a metric, ρ. First, we are going to make the following
assumptions about φ, ρ and the class C:

0) There exists a countable dense set D ∈ Modulin. Elements of D are
representable in a finite form. For any Mn ∈ C there is no algorithm deciding
whether or not a given element µ ∈ D is in Moduli(Mn) (that is, represents
Mn).

1) There exists an algorithm computing the distance ρ between every pair
of elements of D within to any prescribed (rational) accuracy.

2) The function φ can be effectively majorized: There exists an algorithm
that for a given element µ ∈ D computes an upper bound for φ(µ).

3) For every x the sublevel set φ−1([0, x]) ⊂ Modulin is precompact. More-
over, there exists an algorithm that for every given positive rational x
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and ε constructs a finite ε-net in φ−1([0, x]). All elements of this ε-net are
in the countable set D.

4) There exists a computable decreasing positive function δn(x) such that
every two δn(x)-close points from φ−1([0, x]) are points fromModuli(Mn)
for the same manifold Mn.

Now we are going to demonstrate that for every Mn ∈ C there exists an
unbounded increasing sequence of values of x such that sublevel sets Sx =
φ−1([0, x])

⋂
Moduli(Mn) are disconnected. Moreover, for these values of x Sx

is a union of two non-empty subsets S1x, S2x such that the distance between
each pair of points µ1 ∈ S1x, µ2 ∈ S2x is at least δn(x).

Indeed, assume the opposite. Then we will construct an algorithm decid-
ing whether or not a given manifold Nn ∈ C is diffeomorphic to Mn, thus
obtaining a contradiction with our assumptions. We start from calculating
an upper bound y for the value of φ at the given manifold (which is pre-
sented as an element from D). We can always make it large enough to ensure
that φ−1([0, y])

⋂
Moduli(Mn) is connected. Then we construct δn(y)/10-net

in φ−1([0, y]) ⊂ Modulin. The next step is to construct a graph such that the
points of the constructed net will be its vertices, and two vertices are connected
by an edge, if the corresponding points are approximately δn(y)/2-close. Here
we allow ourselves an error in these calculations that does not exceed δn(y)/4.
Now our connectedness assumption implies that exactly one component of the
constructed graph contains elements of Moduli(Mn). We can assume that our
algorithm knows one vertex v0 from this connected component. (This vertex
will be in this connected component for all sufficiently large values of y). Now
our algorithm needs to determine a vertex w of the net which is δn(y)/10-close
to the given element of Modulin, and to determine whether or not w and v0
are in the same component of the constructed graph. The given element of
Modulin represents a manifold diffeomorphic to Mn if and only if w and v0 are
in the same component.

The obtained contradiction demonstrates that the sets Sx must be discon-
nected for some arbitrarily large values of x. An argument from [N2] (that
involves Rado’s busy beaver function) can be used to prove this assertion for
all sufficiently large values of x. Yet there is another method using the notion
of Kolmogorov complexity that can be used to prove not only the disconnected-
ness of sets Sx but lower bounds for the number of their connected components.
This idea will be described in more details in the next section.

If sublevel sets of φ are not only precompact, but compact, then we can find
distinct local minima of φ at the bottom of different connected components
of its sublevel sets. In some applications of this method sublevel sets of φ are
compact, when the manifold belongs to a class C ′ ⊂ C but not necessarily in
the general case. Then we establish the compactness of some of the connected
components of sublevel sets of φ by using the fact that there is no algorithm
that distinguishes a manifold Mn ∈ C of interest for us from manifolds known
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to be in the subclass C ′. (Of course, this fact should be true for this idea to
work.)

To prove the theorems stated in the previous section one uses this idea in
the situation when Modulin is the space of equivalence classes of codimension
one closed submanifolds of Rn+1. (Two submanifolds are equivalent if they can
be transformed one into the other by a similarity of Rn+1.) Further, C is the
class of closed n-manifolds embeddable into Rn+1, Mn = Sn, and φ = κv

or κd.

However, note that in most of the situations, when we would like to apply
this method, the assumptions 3) or 4) either do not hold, or are difficult to
establish. Nevertheless, the method sometimes can be salvaged using new ideas
some of which will be explained in sections 6 and 7.

4. Methods II: Kolmogorov Complexity and

Time-bounded Kolmogorov Complexity

In this section we will explain how to modify the method sketched in the
previous section so as to obtain not merely disconnectedness of sublevel sets
φ−1([0, x]) of a functional of interest on Moduli(Mn), but a lower bound for
the number of connected components of these sets.

A decision problem consists of a countable set A and its subset B. Elements
of A are presentable in a finite form, and there is a computable complexity
function A −→ Z+. For each L there exist only finitely many elements of A of
complexity ≤ L. One is interested in existence/non-existence of an algorithm
deciding whether or not a given element of A is an element of B. Assume
that there is no such algorithm. Then one can ask for such an algorithm that
uses arbitrary oracle information. The amount of oracle information is allowed
to grow with the complexity of instances of the problem. We are assuming
that the information is presented as a sequence of 0s and 1s. The “amount of
information” is just the length of this sequence. Of course, one can ask for the
list of all answers for all instances of the problem of complexity ≤ L. Yet one is
interested in the minimal amount of oracle information sufficient to solve the
problem. The minimal number of bits of oracle information sufficient to solve
the problem for all instances of complexity ≤ L is called Kolmogorov complexity
of the decision problem. Of course, one can “hide” a constant number of bits of
oracle information in the algorithm, so the Kolmogorov complexity is a function
of L defined only up to adding a constant summand. For example, let G be a
finitely presented group with unsolvable word problem, A the set of all words
in the considered finite presentation, B the set of all words representing trivial
elements, and assume that we define the complexity of words as their length.
The resulting decision problem is the word problem for G; it can be solved
in a computable time using the following oracle information: For each L we
request (the binary representation of) the number w(L) of all trivial words
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with ≤ L letters. To use this information we start generating trivial words of
length ≤ L using longer and longer products of conjugates of relations, and
stop when the length of the list reaches w(L). One can be sure that all the
remaining words correspond to non-trivial elements of G. So, the Kolmogorov
complexity of the word problem for words of length ≤ L grows not faster than
a linear function of L. However, it is not difficult to note that the time of work
of this “algorithm” grows faster than any computable function. Assume that
we impose an additional constraint: the time of work of the algorithm that
uses the oracle information should not exceed a given computable function λ.
The resulting notion is called time-bounded Kolomogorov complexity of the
considered decision problem (cf. [LV] for an introduction to its properties). A
theorem of Barzdin ([B]) can be used to show that, in general, one cannot now
do much better than to ask for the list of all answers for the word problem:
There exists a finitely presented group G such that for every computable λ
the time-bounded Kolmogorov complexity of the word problem is not less than
ConstL

c(λ) − const for some Const > 1, c(λ) > 0. In [N3] we prove that for every

closed smooth manifold Mn
0 of dimension n > 4 and computable time λ the

time-bounded Kolomogorov complexity of the decision problem “Is a given

smooth manifold diffeomorphic to Mn
0 ?” is also not less than Const(n)L

c(λ) − const

for some universal Const(n) > 1. Here the complexity L can be, for example,
the number of simplices in a smooth triangulation of the given manifold. To
relate this result to geometry of sublevel sets of φ note that the mentioned
diffeomorphism problem can be solved using a set of representatives from every
connected component of φ−1([0, x])

⋂
Moduli(Mn

0 ) as the oracle information
(see the previous section for the notations). Indeed, the diffeomorphism problem
can be restated as the decision problem of recognizing whether or not a given
element µ ∈ Modulin is in Moduli(Mn

0 ); the oracle information enables one
to solve the diffeomorphism problem for all µ ∈ Modulin such that φ(µ) ≤ x.
For this purpose one just needs to check whether or not an approximation to
µ can be connected with one of the elements provided by the oracle by a finite
sequence of sufficiently short “jumps” in Modulin. Now our lower bound for the
time-bounded Kolmogorov complexity can be used to produce a lower bound
for the number of the connected components of φ−1([0, x])

⋂
Moduli(Mn). In

many interesting cases this lower bound is at least exponential in x.

5. Disconnectedness of Sublevel Sets of

Riemannian Functionals

In this section Mn denotes a closed Riemannian manifold of dimension n ≥ 5.
Consider the space of Riemannian structures Riem(Mn) (=isometry classes of
Riemannain metrics) on Mn endowed with the Gromov-Hausdorff metric. In
this section we will consider geometry of sublevel sets of various Riemannian
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functionals on this space. Our goals are to prove that their sublevel sets are
disconnected with a growing number of connected components, and, when pos-
sible, to prove the existence of infinitely many locally minimal values.

The first result of this kind was proven in [N2]: Let IMn(ε) denote the space
of Riemannian structures on Mn of volume equal to one and injectivity radius
≥ ε.

Theorem 5.1. If n ≥ 5, then for all sufficiently small ε IMn(ε) is not con-
nected. Moreover, there exist two non-empty subsets of IMn(ε) such that the
Gromov-Hausdroff distance between each point of one of these sets and each
point of the other is at least ε/9.

In fact, one can use the notion of time-bounded Kolmogorov complexity
as described in the previous section to show that there exist ∼ 1

εn
non-empty

subsets of IMn(ε) such that the distance between each pair of points in different
subsets is at least ε/9. Moreover, assume that one would like to connect a point
in one of these subsets to a point in the other by a path in IMn(δ) for some
positive δ < ε. It is not difficult to prove using a precompactness argument that
some such δ = δMn(ε) must exist. Yet 1

δMn (ε) grows faster than any computable

function of b 1
ε
c.

Studies of variational problems for Riemannian functionals are motivated
by the following problem posed by R. Thom (cf. [Be] , p. 499): “What is the
best Riemannian structure on a given compact manifold?”. (This question also
appears in a well-known list of unsolved problems in Differential Geometry
composed by S.T. Yau ([Y]).) A possible idea here is to choose a natural Rie-
mannian functional and to look for its minima (or local minima) on the set
of Riemannian structures on a given closed manifold Mn. However, for n ≥ 5
(and probably n = 4) there is no really good notion of the “best” Riemannian
structures on all n-dimensional manifolds ([N4]): Assume that for every Mn

there exists a non-empty subset Best(Mn) ⊂ Riem(Mn). Also assume that
there exists an algorithm recognizing when a given Riemannian metric is very
close to one of the best Riemannian metrics. (This assumption is required to
eliminate the following “solution” of the problem: Use the axiom of choice to
choose one Riemannian structure on every Mn.) Then for every Mn Best(Mn)
is an infinite set.

Indeed, assume the opposite. Then there exists the following algorithm de-
ciding whether or not a given n-dimensional manifold is diffeomorphic to Mn

yielding a contradiction with S.P. Novikov theorem: Start from any Rieman-
nian metric on a given manifold. Do a trial and error search until we find a
Riemannian metric close to one of the best Riemannian metrics on the con-
sidered manifold. As we assumed that the set of the best Riemannian metrics
on Mn is finite, we can assume that the algorithm “knows” them all (or, more
precisely, it knows a sufficiently close approximation to each of them). Now
we can check if the found approximation to a best metric is sufficiently close
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to one of the known best Riemannian metrics on Mn. The given manifold is
diffeomorphic to Mn if and only if the answer is positive.

This argument strongly suggests that if a Riemannian functional φ has local
minima on Riem(Mn) for every Mn, and the set of its local minima is locally
compact, then for every Mn the set of local minima of φ must have an infinite
set of connected components. Thus, the following result obtained by the author
and Shmuel Weinberger seems to provide a reasonably good solution of the
problem posed by R. Thom. The naive idea is that one can try to define the best
Riemannian metrics by fixing a scale (i.e. the diameter or volume) and looking
for (local) minima of a curvature functional, for example, sup |K|, where K
denotes the sectional curvatuture. Equivalently, one can consider Riemannian
metrics with sup |K| ≤ 1 and to look for local minima of the diameter. More
formally, let Al(Mn) denote the Gromov-Hausdorff closure of the subset of
Riem(Mn) formed by all Riemannian structures satisfying sup |K| ≤ 1 in the
space of all metric spaces homeomorphic to Mn. The elements of this space
are Alexandrov structures on Mn with curvature bounded above and below.
They have virtually the same nice analytic and geometric properties as smooth
Riemannian manifolds with sectional curvature between −1 and 1 (see [BN]).
In particular, they are C1,α-smooth Riemannian manifolds for each α < 1.
For each element of Al(Mn) its sectional curvature is defined at almost all
points, and the absolute value of the sectional curvature does not exceed 1. It
is well-known that sublevel sets of the diameter d regarded as a functional on⋃

Mn Al(Mn) are precompact. However, there exist manifolds Mn such that
Al(Mn) is complete, and, therefore, sublevel sets of d on Al(Mn) are compact,
as well as manifoldsMn such that sublevel sets of d on Al(Mn) are not compact.
For example, tori Tn admit flat metrics with arbitrarily small diameter, so that
infAl(Tn) d = 0 for every n. Therefore, even the existence part in the following
theorem proven by the author and Shmuel Weinberger is non-obvious:

Theorem 5.2. ([NW1]) For every closed manifold Mn of dimension n > 4 the
set of locally minimal values of d on Al(Mn) is an unbounded set.

In particular, this theorem implies that the set of locally minimal values
of d on Al(Mn) is infinite. However, it is not difficult to see that the set of
its locally minimal values is countable. We also proved many additional results
about distribution of local minima of d on Al(Mn) and geometry of connected
components of sublevel sets d−1((0, x]) of d : Al(Mn) −→ (0,∞). For example,
we proved that the assertion of Theorem 5.2 will remain true for the values of d
at its “very deep” local minima. Here one can define “very deep” local minima
by first choosing a (preferably rapidly growing) strictly increasing computable
function φ : N −→ N and postulating that a local minimum µ of d is “very
deep” if there is no path γ : [0, 1] −→ Al(Mn) starting at µ such that d(γ(1)) <
d(γ(0)) = d(µ), and d(γ(t)) ≤ φ(bd(µ)c) for each t ∈ [0, 1]. Moreover, the result
remains true if one considers only those “very deep” local minima of d, where the
value of the volume is not less than 1 (or any other fixed value). Furthermore, we
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proved that the number of these “very deep” local minima of d on Al(Mn), such
that the value of d does exceed x, grows at least exponentially with xn. Later
Shmuel Weinberger observed that this distribution function for the number of
very deep local minima has even a doubly exponential lower bound ([We]). (To
explain the last observation note that the volume of manifolds with |K| ≤ 1
and diam ≤ x can be as large as exp(c(n)x). Thus, one can “fit” an exponential
number of nonintersecting metric balls of radius ∼ 1 and volume ∼ 1 inside
such a manifold. Therefore, one can reduce the halting problem for a universal
Turing machine with inputs of lengths up to exp(const(n)x) to a certain version
of the diffeomorphism problem relevant here and explaned in the next section.
This version of diffeomorphism problem involves only Riemannian manifolds
with |K| ≤ 1 and diam ≤ x. The time-bounded Kolmogorov complexity of
the halting problem grows exponentially with the length of the inputs, and the
number of the local minima grows at least as the time-bounded Kolmogorov
complexity, as it was explained in the previous section.)

We refer the reader to our paper [NW2] for further results about depths
of the local minima of d on Al(Mn) and the distribution of local minima of
different depths.

6. Methods III: Simplicial Norm, Homology

Surgery, Arithmetic Groups

Our proof of Theorem 5.2 follows the scheme outlined in section 3 but contains
several new ideas. We start from recalling a classical result of Gromov ([G1],
[Gr]) that if a closed Riemannian manifold has a positive simplicial volume,
then a lower bound for the Ricci curvature implies a positive lower bound for
the volume. More precisely, if Ric ≥ −(n − 1), then vol(Mn) ≥ c(n)‖Mn‖,
where ‖Mn‖ denotes the simplicial volume, and c(n) is an explicit constant
depending only on the dimension. Simplicial volume is a homotopy invariant
of manifolds (see [G1] for its definition and basic properties.) It depends only
on the fundamental group of the manifold Mn and the image φ∗([M

n]) of the
fundamental homology class of Mn under the homomorphism induced by the
classifying map φ : Mn −→ K(π1(M

n), 1). As the isomorphism problem for
groups is algorithmically unsolvable, the following theorem proven in [NW1] is
not especially surprising:

Theorem 6.1. Let Mn be a closed manifold of dimension n > 4. There is no
algorithm that decides whether or not a given manifold Nn is diffeomorphic to
Mn even if it is a priori known that, if Nn is not diffeomorphic to Mn, then
it has a simplicial volume greater than 1.

Here one can replace 1 by any constant, if desired. Thus, having a large
simplicial volume is not helpful, when one tries to distinguish between man-
ifolds by means of an algorithm. This theorem immediately follows from its
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particular case, when Mn = Sn. To prove this theorem we need a large stock of
n-dimensional smooth homology spheres of non-zero simplicial volume. (Homol-
ogy groups are computable, and there exists an easy algorithm that is able to
distinguish between Sn and a manifold which is not a homology n-sphere.) Fur-
ther, it turned out that given one homology n-sphere with a non-zero simplicial
volume, one is able to construct a collection of different homology spheres with
simplicial volume > 1 which is sufficiently rich to prove Theorem 6.1. Thus,
proving the following theorem turned out to be by far the most difficult part
of the proof of Theorem 6.1:

Theorem 6.2. ([NW1]) For every n ≥ 5 there exists an n-dimensional smooth
homology sphere of a non-zero simplicial volume.

Prior to our work such homology spheres were known only for n = 3. Very
informally speaking, such manifolds enjoy simultaneously certain hyperbolicity
properties (namely, non-zero simplicial volume) as well as ellipticity properties
(homology of a sphere). Their construction starts from an application of work of
J.P. Hausmann and P. Vogel ([H], [V]) based on the theory of homology surgery
by S. Cappell and J. Shaneson ([CS]). This work enables us to reduce the
topological problem to an algebraic problem of constructing finitely presented
groups with certain homological properties. The resulting algebraic problem
can be essentially resolved by using certain discrete cocompact subgroups of
SU(2n − 1, 1) investigated by L. Clozel ([Cl]), who proved that these groups
have very few non-trivial real homology classes below dimension n. We obtain
the desired groups from the groups investigated by Clozel by taking certain
amalgamated free products and passing to the universal central extension to
kill the remaining real homology classes below dimension n.

Once Theorem 6.1 was established, we followed a line of reasoning similar
to the outline described in section 3. In particular, we needed to design an
algorithm that constructed sufficiently dense nets in the spaces of Riemannian
structures on all closed n-dimensional manifolds satisfying |K| ≤ 1, vol ≥
const > 0 and diam ≤ x for a variable x. For this purpose we used the Ricci flow
to smooth out the Riemannian metric and to obtain a control over derivatives
of the curvature tensor, and a subsequent algebraic approximation to reduce
the infinite-dimensional situation to a finite dimensional one.

7. Disconnectedness of Sublevel Sets of

Riemannian Functionals: Current Work and

Some Open Questions

The smoothing out of Riemannian metrics by means of the Ricci flow is not
available if one replaces the two-sided bound for the sectional curvature by the
lower bound (or by the two-sided bound for the Ricci curvature). Therefore,
we do not know how to prove the existence of an algorithm constructing a
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sufficiently dense net in the space of Riemannian structures on all n-dimensional
manifolds satisfying K ≥ −1 (or |Ric| ≤ 1) and diam ≤ x despite the fact that
these spaces are well-known to be precompact. The difficulty can be captured
in the following problem:

Problem: Does there exist an algorithm that given a positive ε and a finite
metric space X decides whether or not X is ε-close (in the Gromov-Hausdorff
metric) to an n-dimensional Riemannian manifold with K ≥ −1? We allow
here a certain room for an error: a positive answer must imply only the 1.01ε-
closeness, whenever a negative answer needs to imply only that X is not 0.99ε-
close to any such manifold. (Here we assume that ε and all distances between
points of X are algebraic numbers.)

The problem remains open if one would consider the class of n-dimensional
Alexandrov spaces with K ≥ −1 instead of Riemannian manifolds with K ≥
−1. (It is also open, if one would replace the condition K ≥ −1 by Ric ≥
−(n− 1) or |Ric| ≤ n− 1.)

The main purpose of our paper [NW3] is to bypass this difficulty, and to
prove the analogues of Theorem 5.2 and all results about geometry of sublevel
sets of diameter on Al(Mn) mentioned in section 5 in the situation, when the
two-sided bound for the sectional curvature is replaced by the lower bound.
In other words, we replace Al(Mn) by a (larger) space al(Mn) of Alexandrov
structures with curvature ≥ −1 on Mn. More formally, al(Mn) is the Gromov-
Hausdorff closure of the set of all Riemannian structures on Mn satisfying
K ≥ −1 in the space of isometry classes of metric spaces homeomorphic to Mn.

Our basic idea is to “approximate” the space of Riemannian structures of
sectional curvature bounded below on closed n-manifolds by a space of isom-
etry classes of simplicial length spaces that share some important metric and
topological properties with manifolds with curvature bounded from below. One
chooses these properties so that they can be verified by means of an algorithm
(in order to be able to construct the desired nets). For example, one needs to
have a lower bound for the volume in terms of the simplicial volume for these
length spaces. To ensure this property one can use Theorem 5.38 in [Gr]. This
theorem yelds a desired generalization of the mentioned result from [G 1] pro-
viding a lower bound for the volume in terms of the simplicial volume in the
case, when the Ricci curvature is bounded from below. According to Theorem
5.38 in [Gr] an analogous lower bound will be valid for a length space if a pack-
ing function for its universal covering admits an upper bound which is similar
to Bishop-Gromov upper bounds for manifolds with Ricci curvature bounded
below. However, note that universal coverings cannot be constructed by means
of an algorithm (as, for example, there is no algorithm deciding whether or not
the fundamental group is trivial). Nevertheless, one can modify this constraint
so that it becomes verifiable by means of an algorithm: It is sifficient to require
the desired upper bound for the packing function for an effective universal cov-
ering (that will be explained below in section 9) instead of the usual universal
covering.
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We believe that this approach can also be used to generalize Theorem 5.2
to the situation, when the bound |K| ≤ 1 is replaced by |Ric| ≤ n − 1 (or by
Ric ≥ −(n− 1)).

Furthermore, we conjecture that an analogue of Theorem 5.2 will hold in
the situation, when one replaces diam by vol. In particular, we would like to es-
tablish disconnectedness of sublevel sets of vol on Al(Mn) (and al(Mn)). This
problem is interesting, because sets vol−1([v, V ]) ⊂ Al(Mn) are not precom-
pact, yet the failure of the precompactness is not too “severe”.

Finally note, that it is possible that the technique used to prove Theorem
5.2 is applicable to the Einstein-Hilbert action, and can even lead to a proof of
the existence of infinitely many isometry classes of singular Einstein metrics of
scalar curvature equal to −1 on every compact manifold of dimension > 4.

8. Higher-dimensional Cycles in Sublevel Sets

In the previous sections we discussed deep local minima (or, more generally,
deep basins on graphs) of some functionals. In principle, one can regard a non-
trivial deep local minimum of a functional F on a simply-connected space X
as a homologically non-trivial 0-dimensional cycle in a sublevel set of F that
becomes trivial in an ambient sublevel set that corresponds to a much higher
value of F . (This 0-cycle is the linear combination of the deep non-trivial local
minimum and the global minimum taken with opposite signs.)

One can provide the following intuitive explanation of the appearance of the
non-trivial deep basins in situations that we have considered: As the manifold of
interest is algorithmically indistinguishable from other manifolds of the same
dimension but with different fundamental groups, there will be deep basins
where the manifold “looks” like it has a certain fundamental group which is
different from what it actually is.

Similar phenomena for higher-dimensional cycles were explored in [NW2].
We found various sources of higher-dimensional cycles in sublevel sets of Rie-
mannian functionals, say diam on Al(Mn), that become null-homologous only
in a much larger sublevel set corresponding to a much higher value of the func-
tional.

To explain this phenomenon note that Al(Mn) is weakly homotopy equiva-
lent to the space Riem(Mn) of Riemannian structures on Mn. This last space
is the quotient of the contractible space of Riemannian metrics on Mn by
the pullback action of the diffeomorphism group. Therefore, the topology of
Riem(Mn) (and Al(Mn)) is closely related to the topology of BDiff(Mn).
(For example, if all compact groups non-trivially acting on Mn are finite, then
Riem(Mn) is rationally homotopy equivalent to BDiff(Mn).) On the other
hand, BDiff(Mn) has a very rich topology - especially in the case, when Mn

has a non-trivial fundamental group. For example, in many interesting cases
one can identify a subgroup of a homology group of BDiff(Mn) isomorphic
to a lattice in a homology group of the fundamental group of Mn with real
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coefficients. (For this purpose one can use Hρ-invariant introduced by Shmuel
Weinberger in [We0].) Now we can use the logical method, and to argue that
as Mn is algorithmically undistinguishable from manifolds Nn with arbitrary
large fundamental groups, the homology classes of π1(N

n) corresponding to
non-trivial homology classes of BDiff(Nn) and Al(Nn) will correspond to
“virtual” homology classes of Al(Mn), that is, to cycles in sublevel sets of
diam on Al(Mn) that will become null-homologous only in much large sub-
level sets. This approach works under some restrictions on topology of Mn,
and produces “virtual” k-cycles for k << n. Another approach to constructing
“virtual” k-cycles in Al(Mn) is based on connections between Diff(Nn) and
Out(π1(N

n)) and works for all closed manifolds Mn of dimension > 4 and all
k. For example, one can always choose Nn (algorithmically undistinguishable
from Mn), so that Diff(Nn) admits a split surjection on Zm for arbitrarily
large values of m. As the result, for every k one obtains “virtual” k-cycles in
Al(Mn).

On the other hand, Shmuel Weinberger noticed that if Mn admits a non-
trivial smooth compact group action, then one can similarly exploit a part of
topology of Riem(Mn) based on singularities that does not come from the
topology of BDiff(Mn). In particular, in [NW2] we used the non-existence of
an algorithm deciding whether or not the fixed point set of an S1-action on
Sn is diffeomorphic to Sn−2 to prove the existence of 5-dimensional (or, more
generally, (4i+1)-dimensional) “virtual” rational cycles in Al(Sn) that are close
to the round metric in the path metric on Al(Sn) (see Theorem 17.1 in [NW2]
and Theorem 5 in section 4.1 of [We] for precise statements).

9. Morse Landscapes of the Length Functional

Assume that Mn is a simply-connected Riemannian manifold, p ∈ Mn. Con-
sider the length functional l on the space ΩpM

n of loops on Mn based at p.
Note that, in principle, l can have no local minima other than the trivial loop.
If there exists another local minimum α, we can define its depth as the minimal
possible difference between the length of the longest loop in a path homotopy
connecting α with a loop of a smaller length and the length of α. One can
generalize this definition for the situation, when the length is regarded as a
functional on the space Ωp,qM

n of paths connecting a pair of points p, q ∈ Mn.
(Of course, Ωp,pM

n = ΩpM
n.)

It is clear that one can give a similar definition of depth in the case, when
α is a critical point of the length functional of a higher index i. (One needs
to look at the minimal x ≥ l(α) such that an appropriately defined i-cycle in
l−1([0, l(α)]) that “hangs” at α becomes a boundary in l−1([0, x]); the depth
is then defined as x− l(α). If no such x exists, then we say that α has infinite
depth.)

In [N5] we proved a theorem with the following informal meaning (see The-
orem 2.1 in [N5] for an exact statement):
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Theorem 9.1. Let Mn be a simply-connected Riemannian manifold. Assume
that the length functional has a “very deep” non-trivial local minimum on
ΩpM

n. Then it has “many” “deep” local minima.

In other words, this theorem asserts that if there exists a loop γ based at p
that cannot be contracted to a point via loops of length ≤ L+ length(γ), then
there exist at least k(L) geodesic loops providing “deep” local minima for the
length functional on ΩpM

n, where k(L) −→ ∞, as L −→ ∞.

Note that a counterexample to Theorem 9.1 must “look” like a Riemannian
manifold with a “small” finite fundamental group. Otherwise we will be able to
construct “many” deep local minima of the length functional by taking powers
and products of powers of the already constructed geodesic loops based at p
and shortening them to geodesic loops providing new local minima. Therefore,
informally speaking, Theorem 9.1 implies that a closed simply-connected Rie-
mannian manifold cannot “look” like it has a finite fundamental group. (Of
course, we saw in the previous sections that a closed simply-connected Rieman-
nain manifold can “look” like it has an infinite fundamental group, and this fact
was one of the cornerstones of all applications of recursion theory to geometry
discussed in this paper.)

The proof of this theorem given in [N5] is based on the idea of the “effective
univeral covering”. (Recall that this concept can also be used for proving ana-
logues of Theorem 5.2 for weaker curvature constraints - see section 7 above.)
This idea can be explained as follows: 4

The universal covering space of a topological space X is usually constructed
as the quotient of the space of paths on X starting at a base point x ∈ X by
the following equivalence relation: Two paths are equivalent if they end at the
same point, and together form a contractible loop (based at x). Let X = Mn

be a closed Riemannian manifold. One can try to make the following natu-
ral modification of this construction: Assume that one takes into consideration
the length of paths, and allows only a controlled increase of length during a
homotopy contracting the loop formed by two paths. More specifically, one
can choose parameters U and V > 2U , consider the set P (U) of all paths of
length ≤ U based at x, and then try to introduce the equivalence relation ∼V

on this set by identifying paths forming loops contractible via loops of length
≤ V . However, in general, this relation will not be an equivalence relation.
Nevertheless, we observed that there exists a “large” set of values of V such
that ∼V is an equivalence relation. In particular, one can choose a “control-
lably” large V = V (U,Mn), and to obtain an effectively constructible connected
space P (U, V ) of ∼V -equivalence classes of elements of P (U) so that the map
P (U, V ) −→ Mn sending each equivalence class of paths into their common
endpoint is a covering “away from the boundary” in the sense of Definition 1.1

4Note similarities between this idea and the notion of fundamental pseudogroups intro-
duced by Gromov in [G2].
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in [N5]. One can regard sets P (U, V ) as constructive analogs of metric balls of
radius U in the universal covering of Mn.

Now one can demonstrate Theorem 9.1 by contradiction. Assume that there
exists a counterexample. It must “look” like a manifold with a finite funda-
mental group formed by “few” “deep” local minima of the length functional
on ΩpM

n. Observe that when one constructs the usual universal covering of a
closed Riemannian manifold with a finite fundamental group, one does not need
to consider arbitrarily long paths. Paths of length ≤ 2d|π1M

n| are sufficient.
(Longer paths are equivalent to some of the shorter paths.) A similar phe-
nomenon occurs, when we construct the “effective universal covering” P (U, V )
of Mn for approprately chosen U and V using p as the base point: Longer
paths become equivalent to shorter paths, P (U, V ) becomes a closed manifold
and the covering “away from the boundary” becomes the covering of Mn in the
usual sense. Our assumption about the existence of at least one “very deep”
non-trivial local minimum of the length functional implies that the cardinality
of the fiber of this covering is at least two, and so it cannot be a homeomor-
phism. However, all coverings of Mn are trivial, as Mn was assumed to be
simply-connected, and we obtain a desired contradiction.

Note that this proof implies that if the depth of a non-trivial local minimum
is λd, then there exist at least k(λ) ∼

√
λ local minima. Moreover, according to

Theorem 2.1 in [N5] the lengths of the geodesic loops γi providing these local
minima do not exceed 4id, i = 1, . . . , k.

Both these estimates were recently improved in [NR] using a different ap-
proach that was based on geometric constructions invented largely by Regina
Rotman. In particular, we demonstrated that if the the length functional on
ΩpM

n has a non-trivial local minimum of depth > λd+S, for some S ≥ 2d and
λ, then there exist k ≥ [λ6 + 1

2 ] non-trivial local minima of depth > S. In addi-
tion, one can ensure that the length of γi is in the interval (2(i−1)d, 2id]. (This
is a direct corollary of Theorem 7.3 in [NR] for m = 1.) The same technique also
implies that the existence of a “very deep” critical point of any index m ≥ 0 of
a finite depth of the length functional on ΩpM

n also implies the existence of
“many” “deep” local minima of the length functional; explicit bounds for the
number, lengths and depths of these minima are available. For example, if the
depth of a critical point of index m is finite but greater than λd+ (2m− 1)S,
for some S ≥ 2d and λ, then one is guaranteed k ≥ [ λ

4m+2 − 2m−5
4m+2 ] local minima

of depth > S with lengths in the intervals (2(i − 1)d, 2id], i = 1, . . . , k. Fur-
thermore, Theorems 7.3, 7.4 in [NR] immediately imply similar results for the
length functional on spaces Ωp,q(M

n). Thus, in particular, the results of [NR]
imply that:

Theorem 9.2. (Imprecise version) If the length functional l on Ωp,q(M
n) has

a critical point of an arbitrary index of a “large” finite depth, then l has “many”
“deep” local minima.

For the lack of time I will not attempt to give a more detailed presentation
of these and related results and methods, and most notably applications of
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these methods to quantitative geometric calculus of variations. Instead I refer
the readers to [NR], [NR0], [R1], [R2], [R3] for some of the highlights of this
emerging theory that has its origins in some of Gromov’s ideas from [G3].
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Abstract

Extremal Kähler metrics were introduced by E. Calabi as best representatives
of a given Kähler class of a complex compact manifold, these metrics are critical
points of the L2 norm of the scalar curvature function. In this paper, we report
some joint works with C. Arezzo and M. Singer concerning the construction of
extremal Kähler metrics on blow ups at finitely many points of Kähler manifolds
which already carry an extremal Kähler metric. In particular, we give sufficient
conditions on the number and locations of the blown up manifold points for the
blow up to carry an extremal Kähler metric.
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1. Introduction

In [6], [7] E. Calabi proposed, as best representatives of a given Kähler class
[ω] of a complex compact manifold (M,J), a special type of metric baptized
extremal. If ω is a positive Kähler form on M and if s(ω) denotes the scalar
curvature of (the riemannian metric associated to) ω, E. Calabi proposed the
study of the functional

ω̃ ∈ [ω]+ 7−→

∫

M

s(ω̃)2dvolω̃ ,

where [ω]+ denotes the set of positive Kähler forms in the Kähler class [ω]. The
corresponding Euler-Lagrange equation reduces to the fact that the vector field

Ξs := Xs − i J Xs , with Xs := J ∇s ,

is a holomorphic vector field on M . Obviously, if s(ω) is constant, then Ξs ≡ 0
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and so the set of extremal metrics contains the set of constant scalar curvature
Kähler ones (and in particular the set of Kähler-Einstein metrics). Conversely,
if (M,J) admits no non-trivial holomorphic vector field, then every extremal
Kähler metric has constant scalar curvature. However, E. Calabi also proved
that some extremal metrics with non constant scalar curvature do exist [6].

C. LeBrun and S. Simanca [20] have proved that the set of Kähler classes
having an extremal representative is an open subset of H1,1(M,C)∩H2(M,R).
In the presence of holomorphic vector fields, if a Kähler class [ω] contains a
metric of constant scalar curvature, then every nearby Kähler class will contain
an extremal metric but these will not in general have constant scalar curvature.
Another illustration of this phenomenon will be given in Proposition 4 below.
Finally, recall that X.X. Chen and G. Tian [9] have proved the uniqueness of
extremal metrics in a given Kähler class up to the action of automorphisms.

E. Calabi’s intuition for looking at extremal metrics as canonical representa-
tives of a given Kähler class has found a number of important confirmations and
also (unfortunately) nontrivial constraints [22], [11]. E. Calabi himself proved
that an extremal Kähler metric must have the maximal possible symmetry
allowed by the complex manifold M , and, as observed by C. LeBrun and S.
Simanca [19], this symmetry group can be fixed in advance. More precisely,
the identity component of the isometry group of any extremal metric g must
be a maximal compact subgroup of Aut0(M,J), the identity component of
Aut(M,J), the group of biholomorphic maps of M to itself. This group thus
contains the complexification of the isometry group, but may be strictly larger
(the blow-up of P2 at a point is the simplest example of such a situation).

Also, the important relationship between the existence of extremal metrics
and various stability notions of the corresponding polarized manifolds (algebraic
if the class is rational, analytic otherwise) has been deeply investigated for
example by S. Donaldson [11], [14], T. Mabuchi [25], G. Tian [33], [34] and
G. Szekelyhidi [31]. Yet, a complete understanding of the existence theory for
extremal metrics is still missing. Given this last fact, one interesting problem
is to give sufficient conditions for the existence of an extremal Kähler metric
on the blow up at finitely many points of a manifold which already carries an
extremal Kähler metric. Also, we would like to characterize the Kähler classes
on the blown up manifold for which we are able to find such an extremal metric.
The aim of the present paper is to present various results which were obtained
along these lines in [1], [2], [3] and [4].

The author would like to thank C. Arezzo and M. Singer for valuable com-
ments and help during the writing of this survey.

2. Statement of the Result

Let (M,J, g, ω) be a Kähler manifold with complex structure J and Kähler
form ω and let g denote the Riemannian metric associated to the Kähler form
ω, so that

ω(X,Y ) = g(J X, Y ) .



884 Frank Pacard

Further assume that g is an extremal Kähler metric. Since the automorphism
group of any blow up of M can be identified with a subgroup of Aut(M,J),
and in light of the above mentioned result of Calabi-LeBrun-Simanca about the
isometry group of any extremal Kähler metric, our strategy is to fix a priori
a compact subgroup K of Isom(M, g) and work K-equivariantly. The identity
component of K will be denoted by K0.

Such a K will then be contained in the isometry group of the extremal
Kähler metric we are seeking on the blow up of M at any set of points
p1, . . . , pn ∈ M in Fix (K0), the fixed locus of K0. We also require that
{p1, . . . , pn} is globally invariant under the action of K. We will denote by
k the Lie algebra associated to K0. Observe that elements of k vanish at the
points p1, . . . , pn to be blown up and hence these vector fields can be lifted to
the blown up manifold.

In order to produce extremal Kähler metrics on the blown up manifold, we
have to identify, among all smooth functions on the blown up manifold, those
who generate real-holomorphic vector fields, since these can arise as scalar cur-
vatures of extremal Kähler metrics. To this aim, we define h to be the vec-
tor space of K-invariant hamiltonian real-holomorphic vector fields on M or
equivalently, the Lie algebra of the group H of holomorphic exact symplecto-
morphisms commuting with K. The correspondence between real-holomorphic
vector fields and the scalar functions on M can be encoded in a compact way
in a moment map for the action of H

ξω : M −→ h∗ ,

uniquely determined by requiring the Hamiltonian functions to have mean-value
zero. More explicitly, the function f := 〈ξω, X〉 associated to the vector field
X ∈ h is defined to be the unique solution of

−df = ω(X, ·) ,

whose mean value over M is 0.
In general, K is not necessarily connected and h is not necessarily included

in k. There is a natural orthogonal decomposition

h = h′ ⊕ h′′ ,

where
h′ := h ∩ k ,

is the subspace of K-invariant real-holomorphic vector fields in k and where the
scalar product is taken to be

(X, X̃)h :=

∫

M

〈ξω, X〉 〈ξω, X̃〉 dvolω .

Under the above assumptions, in the following general result, we give sufficient
conditions for the existence of an extremal Kähler metric on the blow up of M
at finitely many points:
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Theorem 1. [4] Assume that k contains the vector field Xs and assume that
we are given p1, . . . , pn ∈ Fix (K0) such that {p1, . . . , pn} is invariant under the
action of K and:

(i) The projections of ξω(p1), . . . , ξω(pn) onto h′′ ∗ span h′′ ∗.

(ii) There exist a1, . . . , an > 0 satisfying

n
∑

j=1

am−1
j ξω(pj) ∈ h′ ∗ ,

and aj1 = aj2 if pj1 and pj2 belong to the same K-orbit.

(iii) There is no nontrivial element of h′′ which vanishes at p1, . . . , pn.

Then, there exists ε0 > 0 and, for all ε ∈ (0, ε0), there exists a K-invariant ex-
tremal Kähler metric gε on M̃ , the blow up ofM at p1, . . . , pn, whose associated
Kähler form ωε lies in the class

π∗[ω]− ε2 (a1 PD[E1] + . . .+ an PD [En]) ,

where π : M̃ −→ M is the standard projection map, the PD[Ej ] are the
Poincaré duals of the (2m − 2)-homology classes of the exceptional divisors
of the blow up at pj.

Finally, the sequence of metrics (gε)ε converges to g (in the smooth topology)
on compacts, away from the exceptional divisors.

It is important to stress that our analytical construction does not give one
extremal metric but a family converging to the starting metric on the base
manifold. Observe that we assume that Xs ∈ k and hence Xs ∈ h′ := k ∩ h.
Since p1, . . . , pn are fixed byK0, we conclude that the vectorXs vanishes at each
p1, . . . , pn. In particular, it can be lifted to M̃ . This is an important property
since our result is perturbative away from the exceptional divisors of M̃ and
hence it is natural to be able to lift Xs to M̃ to guarantee that our construction
will be successful.

Conditions (i) and (ii) which appear in the statement of Theorem 1 are
known to be related to T. Mabuchi’s T -stability [25] and to G. Szekelyhidi’s
relative K-stability [31] in the same way the analogous conditions for constant
scalar curvature metrics are related to the asymptotic Chow semi-stability along
the line of ideas described by R. Thomas in [32] (pages 27 and 28) [30], [10].

Remark 1. When h′ = {0}, and in particular g is a constant scalar curvature
metric (since Xs ∈ h′), then Theorem 1 yields constant scalar curvature metrics
[2].

Condition (iii) can be removed at the expense of leaving some freedom on
the weights of the exceptional divisor on the blown up manifold. More pre-
cisely, Theorem 1 still holds without assuming (iii) but in this case, the only
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information we have about [ωε] reads

[ωε] = π∗[ω]− ε2 (ã1 PD[E1] + . . .+ ãn PD [En]) ,

where ã1, . . . , ãn > 0 depend on ε and satisfy

|ãj − aj | ≤ c εκ ,

for some constant κ > 0 only depending on m. In other words, by removing
(iii), we slightly lose control on the Kähler classes.

There are special important situations to which Theorem 1 applies. Let us
describe some of them.

2.1. The non-obstructed case. Assume that g is a constant scalar
curvature Kähler metric and that there exists K a discrete subgroup of
Isom (M, g) such that h = {0}. Then, conditions (i), (ii) and (iii) become vac-
uous and the result applies to any finite of points p1, . . . , pn ∈ M which are
globally invariant under the action of K to produce constant scalar curvature
Kähler metrics on the blow up of M at these points [1], [2].

If the scalar curvature of g is not zero then the scalar curvatures of gε and
of g have the same signs. Also, if the scalar curvature of g is zero and the first
Chern class of M is non zero, then one can arrange so that the scalar curvature
of gε is also equal to 0. This last result complements in any dimension previous
constructions which have been obtained in complex dimension m = 2 and for
zero scalar curvature metrics by J. Kim, C. LeBrun and M. Pontecorvo [17], C.
LeBrun and M. Singer [21] and Y. Rollin and M. Singer [28].

As an application, let us consider (M,J, g, ω) to be the projective space Pm

endowed with the Kähler form ωFS associated to a Fubini-Study metric, we
let (z1, . . . , zm+1) be complex coordinates in C

m+1 and we agree that ωFS is
normalized so that [ωFS ] = PD[Pm−1], where P

m−1 ⊂ P
m is a linear subspace.

We consider the group K generated by

[z1 : . . . : zm+1] 7−→ [±z1 : . . . : ±zm+1] ,

and
[z1 : . . . : zm+1] 7−→ [zσ(1) : . . . : zσ(m+1)] ,

where σ ∈ Sm+1 is any permutation of {1, . . . ,m + 1}. We consider the set of
fixed points of K

p1 := [1 : 0 : . . . : 0], . . . , pm+1 := [0 : . . . : 0 : 1] .

In this case, the space h = {0} and, as a consequence of the result of Theorem 1,
we obtain constant scalar curvature Kähler metrics on the blow up of Pm at
the points p1, . . . , pn, for any n = 1, . . . ,m + 1 whose associated Kähler form
ωε lies in the class

π∗[ωFS ]− ε2 (PD[E1] + . . .+ PD[En]) .
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2.2. The obstructed case. Another important application of The-
orem 1 is when g is a constant scalar curvature Kähler metric and when
K = {Id}. In this case h′ = {0} and h′′ = h. The following results show
that there is a large set of possible applications of Theorem 1.

Lemma 2. [2] Assume that n ≥ dim h then, the set of points p1, . . . , pn ∈ M

(all distinct) such that condition (i) is fulfilled is an open and dense subset
of Mn.

When n ≥ dim h, it is well known that, for a choice of blow up points
p1, . . . , pn in some open and dense subset of Mn, the group of automorphisms
of M blown up at p1, . . . , pn is trivial (observe that dim h is also equal to the
dimension of Aut0(M)). In view of all these results, one is tempted to conjecture
that condition (i) is equivalent to the fact that the group of automorphisms of
M blown up at p1, . . . , pn is trivial. However, this is not the case since these
two conditions turn out to be of a different nature. For example, let us assume
that h = Span {X} for X 6= 0. If we denote by f := 〈ξω, X〉, it is enough to
choose p1, . . . , pn not all in the zero set of f for condition (i) to hold, while the
group of automorphisms of M blown up at p1, . . . , pn is trivial if and only if
one of the pj is chosen away from the zero set of X, which corresponds to the
set of critical points of function f .

Condition (ii) is more subtle and more of a nonlinear nature. It can be
proven that this condition is always fulfilled for some careful choice of the points,
provided their number is chosen to be larger than some value ng ≥ dim h+ 1.

Lemma 3. [2] Assume that n ≥ dim h+1, then the set of points p1, . . . , pn ∈M ,
all distinct, for which (i) and (ii) hold is an open (possibly empty) subset ofMn.
Moreover, there exists ng ≥ dim h+1 such that, for all n ≥ ng the set of points
p1, . . . , pn ∈ M (all distinct) for which (i) and (ii) hold is a nonempty open
subset of Mn.

In contrast with condition (ii), it is easy to convince oneself that condition
(i) does not hold for generic choice of the points. For example, assume that
h = Span {X} for X 6= 0, we denote by f := 〈ξω, X〉 and we choose n ≥ 2.
Then (ii) holds provided f(p1), . . . , f(pn) are not all equal to 0 and (i) holds
provided f(p1), . . . , f(pn) do not all have the same sign. Clearly, the set of such
points is a nonempty open subset of Mn.

As an application, let us again consider the projective space P
m endowed

with the Kähler form ωFS associated to a Fubini-Study metric. In this case
dim h = m2 + 2m and it is proven in [2] that the set of points p1, . . . , pn ∈ P

m

(all distinct) for which (i) and (ii) hold is a nonempty open subset of (Pm)n

provided n ≥ 2m (m+1) (Let us point out that this last result is certainly not
sharp).

2.3. Extremal versus constant scalar curvature metrics.
The proof of Theorem 1 is based on a perturbation argument and, if the initial
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manifold has an extremal metric with non-constant scalar curvature, the ex-
tremal metrics we construct on the blown up manifold still have non-constant
scalar curvature. In the case where the manifolds we start with have constant
scalar curvature metrics, it might well be that the extremal metrics we obtain
have in fact constant scalar curvature. There is a simple criterion involving the
points p1, . . . , pn and the parameters a1, . . . , an, which ensures that this is not
the case.

Proposition 4. Under the assumptions of Theorem 1, further assume that the
metric g has constant scalar curvature. If the points and weights are chosen so
that

n
∑

j=1

am−1
j ξω(pj) 6= 0 ,

then the metrics gε we obtain on M̃ are extremal with non-constant scalar
curvature.

2.4. The case of projective spaces. We now emphasize the conse-
quences of the above results for projective spaces.

As above, we consider the projective space P
m endowed with the Kähler

form ωFS associated to a Fubini-Study metric and we let let (z1, . . . , zm+1) be
complex coordinates in C

m+1. We now consider the group K = S1 × . . .× S1,
to be the maximal compact subgroup of PGL(m+1), whose action is given by

K × P
m −→ P

m

((α1, . . . , αm+1), [z1 : . . . : zm+1]) 7−→ [α1z1 : . . . : αm+1zm+1] ,

and we consider the set of fixed points of K

p1 := [1 : 0 : . . . : 0], . . . , pm+1 := [0 : . . . : 0 : 1] .

In this case, the space h is spanned by vector fields of the form

< (za ∂za − zb ∂zb) ,

for a, b ∈ {1, . . . ,m+1} and we have k = h = h′ and h′′ = {0}. As a consequence
of the result of Theorem 1, we obtain extremal Kähler metrics on the blow up
of Pm at the points p1, . . . , pn, for any n = 1, . . . ,m+ 1.

It is worth emphasizing that the special structure of the points which can
be blown up on P

m has its origin in the fact that we are starting from a specific
choice of a Fubini-Study metric and hence, away from the blow up points the
extremal Kähler metric ωε is close to ωFS . This example shows the Riemannian
nature of our results. Now, if q1, . . . , qn ∈ P

m are linearly independent one can
find extremal metrics on the blow up of P

m at q1, . . . , qn but this time the
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metric will be close to ψ∗ωFS away from the blow up points, where ψ is an
automorphism of the projective space such that

ψ(pj) = qj .

Since [ψ∗ωFS ] is independent of ψ and of the choice of the Fubini-Study metric,
we have obtained the following:

Corollary 1. [2], [4] Fix 1 ≤ n ≤ m + 1. Given q1, . . . , qn ∈ P
m linearly

independent points and a1, . . . , an > 0, there exists ε0 > 0 and for all ε ∈ (0, ε0)
there exists an extremal Kähler metric gε on the blow up of Pm at q1, . . . , qn
whose associated Kähler form ωε lies in the class

π∗[ωFS ]− ε2 (a1 PD[E1] + . . .+ an PD[En]) .

In addition, the Kähler metrics gε do not have constant scalar curvature unless
n = m+ 1 and a1 = . . . = am+1.

The case corresponding to n = 1 in Corollary 1 was already obtained by E.
Calabi in more generality (i.e. for all Kähler classes) [6] and the case where Pm is
blown up atm+1 linearly independent points q1, . . . , qm+1 and a1 = . . . = am+1

was already mentioned in Section 2.1 where constant scalar curvature metrics
were obtained [2].

In the case where P
m is blown up at more than m + 1 points in general

position the resulting manifolds do not have nonzero holomorphic vector fields,
hence extremal metrics are forced to have constant scalar curvature and the
existence of some constant scalar curvature Kähler metrics follows from [2] and
[28].

The conditions n = m+1 and a1 = . . . = am+1 being necessary and sufficient
to get constant scalar curvature metrics among our family of extremal ones fits
exactly into the more familiar picture of the Futaki invariants. E. Calabi has in
fact proved that an extremal metric has constant scalar curvature if and only if
its Futaki invariant vanishes [7], and, using T. Mabuchi’s result [24] relating the
Futaki invariant to the coordinates of the barycenter of the convex polytope of
a toric variety, one can show that the above conditions are indeed equivalent
to the vanishing of the Futaki invariants for blow ups of Pm.

2.5. The blow up of P2 at two points. Applying Theorem 1 to P
2,

P
1 × P

1 and BlpP
2 as base manifolds leads interesting examples of extremal

metrics. To begin with, we can apply Theorem 1 to the blow up of P2, endowed
with a Fubini-Study metric, at two points. This shows that:

Corollary 2. On Blp1,p2
P
2, the Kähler classes

π∗[ωFS ]− ε (a1 PD[E1] + a2 PD[E2]) ,

have extremal representatives provided a1, a2 > 0 are fixed and ε ∈ (0, ε0), where
ε0 > 0 is small enough.
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Next, Theorem 1 can be applied to the blow up of BlpP
2, endowed with E.

Calabi’s extremal metric, at one point. This shows that:

Corollary 3. On Blp1,p2
P
2, the Kähler classes

π∗[ωFS ]− (a1 PD[E1] + ε PD[E2]) ,

have extremal representatives provided a1 ∈ (0, 1) is fixed and ε ∈ (0, ε0), where
ε0 > 0 is small enough.

Finally, recall that, for p1 6= p2 ∈ P
2, Blp1,p2

P
2 contains three (−1)-curves,

the two exceptional divisors E1, E2 and the proper transform L of the line in
P
2 passing though p1 and p2. Contracting (blowing down) L we get a manifold

biholomorphic to P
1 × P

1 where the rulings correspond to the pencils of lines
through p1 and p2. So Blp1,p2

P
2 is biholomorphic to Blq(P

1 × P
1) for some

choice of q ∈ P
1 × P

1. We set

A1 = [P1 × {pt}], A2 = [{pt} × P
1] ,

and we denote by E the exceptional divisor in Blq(P
1 ×P

1). It is easy to check
the correspondence between the class a1 PD[A1] + a2 PD[A2] − ε PD[E] and
the class (a1 + a2 − ε)π∗[ωFS ]− (a1 − ε)PD[E1]− (a2 − ε)PD[E2]. Applying
Theorem 1 to the blow up of P1 ×P

1, endowed with a product of Fubini-Study
metric, at one point, we show that:

Corollary 4. On Blp1,p2
P
2, the Kähler classes

π∗[ωFS ]−
(

a1−ε
a1+a2−ε

PD[E1] +
a2−ε

a1+a2−ε
PD[E2]

)

,

have extremal representatives provided a1, a2 > 0 are fixed and ε ∈ (0, ε0), where
ε0 > 0 is small enough.

Corollary 1 has been used by X.X. Chen, C. LeBrun and M. Weber [8]
and W. He [16] to prove that all Kähler classes on M := Blp1,p2

(P2) of the
form π∗[ωFS ] − a(PD[E1] + PD[E2]) have an extremal representative. This
last result implies the existence of Einstein (non-Kählerian) metrics of positive
scalar curvature on M [8].

2.6. The case of toric varieties. The previous Corollary can be un-
derstood as a special case of the existence of extremal metrics on the blow up of
toric varieties. If (M,J, g, ω) is a m-dimensional toric variety whose associated
metric is extremal, one can take K to be the maximal torus T giving the torus
action. In this case, h = k and hence h′′ = {0}. One can then apply Theorem 1
to get:

Corollary 5. Assume that (M,J, g, ω) is a toric variety whose associated met-
ric is extremal, and let K be the maximal torus T giving the torus action.
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Given p1, . . . , pn ∈ Fix (K) and a1, . . . , an > 0, there exists ε0 > 0 and for all
ε ∈ (0, ε0) there exists an extremal Kähler metric gε on the blow up of M at
p1, . . . , pn whose associated Kähler form ωε lies in the class

π∗[ω]− ε2 (a1 PD[E1] + . . .+ an PD[En]) .

In other words, one can blow up any set of points contained in the fixed-point
set of the torus-action and the weights aj > 0 can be chosen arbitrarily.

Since blowing up a toric variety at such points preserves the toric structure,
one can apply inductively the last Corollary. Therefore, we obtain extremal
metrics on any such iterated blow up. This last Corollary can be applied to the
one parameter family of extremal metrics found by E. Calabi on the blow up
of Pm at one point, producing then a wealth of open subsets of classes in the
Kähler cone which have extremal representatives.

Remark 2. A general existence result for constant scalar curvature metrics
on toric surfaces follows from S.K. Donaldson’s work on Abreu’s equation [12],
[14] and [13].

3. Overview of the construction

Recall that the Riemannian metric g, Kähler form ω and complex structure
J are related by the relation ω(X,Y ) = g(J X, Y ). A vector field X is said
to be a hamiltonian vector field if there exists a smooth real valued function f
satisfying

X = J ∇f .

In this case we will write X = Xf . Using the above relation between ω and g,
we see that this equation is always equivalent to

−df = ω (Xf , ·) ,

or also
−∂̄f = 1

2 ω(Ξf , ·) .

Let us now define the second order operator

Pω : C∞(M) −→ Λ0,1(M,T 1,0)

f 7−→ 1
2 ∂̄ Ξf ,

where
Ξf := Xf − iJXf ∈ T 1,0 . (1)

Observe that the operator Pω depends on the Kähler metric g. Also, with this
definition, a metric ω is extremal if and only if Pω(s(ω)) = 0.
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Clearly, any smooth, complex valued function f , solution of

P ∗

ω Pω f = 0 ,

onM , gives rise to a holomorphic vector field Ξf defined by (1) since integration
overM of this equation multiplid by f̄ implies that ‖∂̄ Ξf‖L2(M) = 0. We recall
the following important result which shows that the converse is also true:

Proposition 5. [7], [19] A vector field Ξ ∈ T 1,0 is a holomorphic vector field
with zeros if and only if there exists a complex valued function f solution of
P ∗

ω Pω f = 0 such that −∂̄f = 1
2 ω(Ξ, ·).

In addition, we have the following result which follows from a theorem of
A. Lichnerowicz (see A. Besse [5], Corollary 2.125 and [19]):

Proposition 6. [5], [19] A vector field X is a Killing vector field with zeros if
and only if there exists a real valued function f solution of P ∗

ω Pω f = 0 such
that ω(X, ·) = −df .

In other words, if Ξ is a holomorphic vector field, the function f given in
Proposition 5 can be chosen to be real valued when X = <Ξ is a Killing
vector field and if X is a Killing vector field with zeros, then Ξ = X − iJX is a
holomorphic vector field. Finally, recall that a vector fieldX is real-holomorphic
if and only if X − iJX is a holomorphic section of T 1,0M . In particular, any
Killing vector field is automatically real-holomorphic.

3.1. Perturbation of extremal metrics. It is proven in [19] and [5]
that the linearization of the mapping

f 7−→ s(ω + i∂∂̄f) ,

is given by the formula

Lω := − 1
2 (∆

2
g + 2Ricg · ∇

2
g) ,

where Ricg stands for the Ricci tensor of the metric g associated to ω. On the
other hand,

P ∗

ω Pω = ∆2
g + 2Ricg · ∇

2
g − J Xs + iXs ,

where Xs is the hamiltonian vector field associated to the scalar curvature s(ω).
Observe that, in general, this is a complex valued operator.

With these formulas, we can write:

Lω = − 1
2P

∗

ω Pω − 1
2 J Xs +

i
2 Xs .

We can see from this equality that, working equivariantly with respect to a
compact groupK whose Lie algebra contains Xs has an important consequence.
Indeed, under such an assumption Xs f = 0 for all f which are K-invariant
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and the last term in (3.1) disappears. Therefore, when acting on K-invariant
functions Lω is a real-valued operator. From the analytical point of view, this
is the reason why we have asked that Xs belongs to the Lie algebra of K.

We consider the nonlinear map

F : h× C∞(M)K −→ C∞(M)K ,

(X, f) 7−→ s(ω + i∂∂̄f)− 〈ξω+i ∂∂̄f , X〉 .

Here the superscripts K denote the K-invariant part of the function spaces
considered.

The following is due to E. Calabi [6] and C. LeBrun and S. Simanca [19].

Proposition 7. [6], [19] Assume that ω is extremal and Xs ∈ h′, then
DfF |(Xs,0), the linearization of F with respect to f at (Xs, 0) is equal to

− 1
2 P

∗

ω Pω.

Since this is one of the key points of our construction, let us briefly explain
the proof of this result. We already know the linearization of the scalar curvature
map, so we only need to know the linearization of

f 7−→ ξω+i∂∂̄f ,

with respect to f . Take any X ∈ h′. Since f is K-invariant, X is also a Killing
vector field (with zeros) for the Kähler form ω + i∂∂̄f . Hence, we can write

1
2 (ω + i∂∂̄f)(Ξ, ·) = −∂̄〈ξω+i∂∂̄f , X〉 ,

where Ξ := X − i J X, and we see immediately that ξ̇, the first variation of
f 7−→ ξω+i∂∂̄f with respect to f computed at f = 0, satisfies

i
2 ∂∂̄ f(Ξ, ·) = −∂̄ 〈ξ̇, X〉 .

Working in local coordinates and using the fact that the vector field Ξ is holo-
morphic we find

∂̄ ( i
2 (Ξ f) + 〈ξ̇, X〉) = 0 .

Since, by definition, the function 〈ξ̇, X〉+ i
2 (Ξ f) is real valued and has mean

0, we conclude that
〈ξ̇, X〉 = − i

2 Ξ f .

Now, we apply this analysis when ω is extremal, with extremal vector field
Xs ∈ h′. We obtain for any smooth function f

DfF |(Xs,0)(f) = Lωf + i
2 Ξs f with Ξs := Xs − i J Xs .

Hence

DfF |(Xs,0)(f) = − 1
2 P

∗

ω Pωf−
1
2 J Xs f+

i
2 Xs f+

i
2 Ξs f = − 1

2 P
∗

ω Pω f+iXs f .
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Remembering that when f is K-invariant and Xs ∈ h′, we have

Xsf = 0 ,

and we conclude that DfF |(Xs,0)(f) = − 1
2 P

∗

ω Pω f . This completes the proof
of the Proposition.

3.2. The origin of the constraints. We are now in a position to
explain where the constraints in the statement of Theorem 1 come from.

We denote by Ξs the holomorphic vector field associated to Xs. We also
assume that we have chosen some compact subgroup of isometries K ⊂
Isom(M, g) and some finite set of points p1, . . . , pn ∈ Fix(K0). Since we want to
work equivariantly with respect to K, we assume that {p1, . . . , pn} is invariant
under the action of K. We note that a holomorphic vector field Ξ lifts to M̃ ,
the blow up of M at p1, . . . , pn, if and only if Ξ vanishes at each of the points
pj . As already mentioned, our construction of the extremal Kähler metric on
the blow up being based on a perturbation argument, it is natural to require
that Ξs vanishes at all points p1, . . . , pn and hence will lift to M̃ .

Now, if ω̃ is a putative extremal Kähler metric on M̃ its scalar curvature
must be a sum of K-invariant potentials corresponding to vector fields which
vanish at the pj , are K-invariant and are associated to isometries of the new
metric, hence they have to correspond to the lift of vector fields which are both
in h and k. Thus we introduce the lie algebra h′ ⊂ h defined by

h′ := h ∩ k .

In particular, elements of h′ vanish at all points p1, . . . , pn.
We denote by h′′ the orthogonal complement of h′ in h with respect to the

scalar product

(X, X̃)h :=

∫

M

〈ξω, X〉 〈ξω, X̃〉 dvolω .

Informally, the potentials of the form 〈ξω, X〉, for X ∈ h′, will correspond to
the good potentials which are associated to vector fields lifting to M̃ (since they
vanish at all points p1, . . . , pn). In particular, these can be used to deform the
scalar curvature of the Kähler form. In contrast, the potentials of the form
〈ξω, X〉, when X ∈ h′′, will correspond to the bad potentials corresponding to
vector fields which do not lift to M̃ . Hence, these are the potentials which
cannot be used in the deformation of the scalar curvature of the Kähler form.

To apply a perturbation argument, we need to solve two linear problems.
First, we will need to find a function Γ, a constant λ and a vector field Y ∈ h′

solutions of

1
2 P

∗

ω PωΓ + 〈ξω, Y 〉+ λ = −cm

n
∑

j=1

am−1
j δpj

, (2)

where the masses aj are positive and cm > 0 is a positive constant only de-
pending on the dimension m. The solvability of this problem is equivalent to



CSC and Extremal Kähler Metrics on Blow ups 895

the relative moment condition:

n
∑

j=1

am−1
j ξω(pj) ∈ h′ ∗ . (3)

This is precisely (ii) in the statement of Theorem 1. Observe that the parameters
aj and aj′ corresponding to points pj and pj′ in the same orbit with respect to
the action of K should be equal to preserve the K-invariance of the metric we
will construct.

Using this, we consider a first perturbation of ω, away from the points to
be blown up. This perturbed Kähler form we consider is given explicitly by

ω̂ε := ω + i ∂ ∂̄(ε2m−2 Γ) ,

where ε > 0 is a small parameter. This Kähler form is well defined away from
balls of radius c ε centered at the points pj (provided c is fixed large enough
and ε is chosen small enough) and one can check that the associated Kähler
metric has scalar curvature given by

s(ω̂ε) = s(ω) + ε2m−2 (〈ξω, Y 〉+ λ) +O(ε4m−2) .

The final task will be to perturb this Kähler metric into an extremal metric.
To this aim, given any (smooth) function f , we need to be able to find a function
φ, a constant ν, a vector field Z ∈ h′ and parameters bj ∈ R solutions of

1
2 P

∗

ω Pω φ+ ν + 〈ξω, Z〉+ cm

n
∑

j=1

bj δpj
= f . (4)

The solvability of this problem is precisely equivalent to the genericity condi-
tion:

The projections of ξω(p1), . . . , ξω(pn) on h′′ ∗ spans h′′ ∗ . (5)

This is precisely (i) in the statement of Theorem 1.
The idea is now to proceed to connected sums of M with n copies of C̃m,

the blow up at the origin of Cm, endowed with a rescaled copy of a scalar flat
Kähler metric g0 which we describe now. The metric g0 is U(m) invariant and
was found by D. Burns [18], when m = 2, and S. Simanca [29], when m ≥ 3,
following a method introduced in [6]. Away from the exceptional divisor, the
Kähler form η associated to this metric is given by

η = i ∂ ∂̄Φm(v) ,

where v = (v1, . . . , vm) are complex coordinates in C
m \ {0} and where the

function Φm is explicitly given, in dimension m = 2, by

Φ2(v) :=
1
2 |v|

2 + log |v|2 ,
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while in dimension m ≥ 3, even though there is no explicit formula for Em we
have the following expansion

Φm(v) = 1
2 |v|

2 − |v|4−2m +O(|v|2−2m) ,

as |v| tends to ∞. Details can be obtained either in [6], [29] or in [1] for a proof
of this expansion. The scalar flat metric g0 which is used for the connected sum
at the point pj has to be multiplied aj ε

2 so that the asymptotics of the metrics
aj ε

2 η and ωε do match. Indeed, in dimension m ≥ 3, the Kähler form ω̂ε can
be expanded near pj as

ω̂ε = i ∂ ∂̄
(

1
2 |z|

2 − ε2m−2 aj |z|
4−2m + . . .

)

,

while the Kähler form a ε2 η can be expanded as

a ε2 η̃ = i ε2 a ∂ ∂̄
(

1
2 |v|

2 − |v|4−2m + . . .
)

= i ∂ ∂̄
(

1
2 |z|

2 − ε2m−2 a |z|4−2m + . . .
)

,

after the change of variables z = ε a v. And hence, the asymptotics do match
provided we choose a = aj .

The rest of the proof of Theorem 1 is to show that these conditions and the
construction outlined above are indeed sufficient to guarantee that a pertur-
bation argument implies the existence of extremal metrics in the appropriate
classes. This part of the proof is rather technical and uses in a crucial way the
analysis in weighted function spaces of elliptic operators on some class of com-
plete non-compact manifolds introduced by R.B. Lockhart and R.C McOwen
[23], R. Melrose [27] and R. Mazzeo [26].
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Abstract

In this article, we consider the problem of reconstructing collapsed manifolds
in a moduli space by means of geometric or analytic data of the limit spaces.
The moduli space of our main interest is that consisting of closed Riemannian
manifolds of fixed dimension with a lower sectional curvature and an upper di-
ameter bound. In this moduli space, we can reconstruct the topology of three-
dimensional or four-dimensional collapsed manifolds in terms of the singularities
of the limit Alexandrov spaces. In the general dimension, we define a new cov-
ering invariant and prove the uniform boundedness of it with an application
to Gromov’s Betti number theorem. Finally we discuss the reconstruction and
stability problems of collapsed manifolds by using analytic spectral data, where
we assume an additional upper sectional curvature bound.
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1. Introduction

The study of Gromov-Hausdorff convergence of Riemannian manifolds has been
a significant subject in differential geometry. In this theory one usually considers
a moduli space of closed Riemannian manifolds satisfying certain curvature
bounds, and try to reconstruct geometry and topology of Riemannian manifolds
in the moduli space from the information on the limit spaces.

When the absolute value of sectional curvature sec is uniformly bounded,
say | sec | ≤ 1, Cheeger, Fukaya and Gromov [CFG] developed a general theory
of collapsing, where the collapsing phenomena were described in terms of the
generalized group actions by nilpotent groups, called N -structures. It should be
noted that these actions are not permitted to have fixed points. Now if we turn
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attention to the case when the sectional curvature has only a uniform lower
bound, sec ≥ −1, we recognize several kinds of essentially different collapsing
phenomena in this situation. For example, any effective action on a compact
manifold by a compact connected Lie group of positive dimension causes a
collapsing of the manifold under sec ≥ −1 ([Y1]) . Thus the study of collapsing
of Riemannian manifolds with sec ≥ −1 will enable us to understand a wider
class of collapsing phenomena than the case of | sec | ≤ 1.

A main concern of this article is the study of collapsed Riemannian manifolds
with sec ≥ −1, and we will survey some aspects of the development in this
direction.

In lower dimensions, dimension three or four, the structure of collapsed
manifolds with a lower curvature bound has become clear by Shioya-Yamaguchi
[SY1], [SY2] and Yamaguchi [Y3]. In the solution of the geometrization conjec-
ture of three-manifolds due to Perelman [P4], [P5], a related result on collaps-
ing three-manifolds with local lower sectional curvature bounds was essentially
used. Namely Perelman proved that under the Ricci flow with (well controlled)
surgery on every closed three-manifold, after the passage of a long time, the
three-manifold is decomposed into the two parts along incompressible tori: the
non-collapsing hyperbolic parts and the collapsing parts under local lower cur-
vature bounds. Then one can determine the topology of the latter part applying
the structure result for collapsed three-manifolds.

Unfortunately, in the general dimension, it is still open to get general picture
of collapsing. In stead, we will define a new geometric covering invariant of
Riemannian manifolds, and show the uniform boundedness of this invariant
from the view point of the Gromov-Hausdorff convergence ([Y5]). This provides
a clearer view for the proof of Gromov’s Betti number theorem.

Finally, we will discuss the inverse spectral problem for collapsed manifolds.
This is the problem to reconstruct collapsed manifolds from certain spectral
data concerning the Laplace-Beltrami operator. At this stage, we need both
lower and upper sectional curvature bounds for this problem to ensure a certain
regularity of the limit spaces in order to carry out some analysis.

2. Gromov-Hausdorff Convergence

For compact subsets A and B of a metric space Z, the classical Hausdorff
distance dZH(A,B) between A and B is defined by the infimum of those ε > 0
such that the ε-neighborhood of A contains B and the ε-neighborhood of B
contains A. Let C denote the set of all isometry classes of compact metric
spaces. For X,Y ∈ C, the Gromov-Hausdorff distance dGH(X,Y ) between X
and Y is defined as

dGH(X,Y ) = inf
Z,f,g

dZH(f(X), g(Y )),
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where the infimum is taken over all possible isometric embeddings f : X → Z,
g : Y → Z together with all possible metric spaces Z.

Given a positive integer n and D > 0, let us consider the set M(n,D)
of isometry classes of n-dimensional closed Riemannian manifolds M whose
sectional curvature and diameter satisfy

sec(M) ≥ −1, diam(M) ≤ D.

The lower curvature bound sec(M) ≥ −1 implies that the geometry of M , or
the rate of expanding of M , is bounded by that of hyperbolic space Hn(−1)
of constant curvature −1 in the sense of geodesic deviation. This yields the
following precompactness theorem due to Gromov [GLP]:

Theorem 2.1 ([GLP]). M(n,D) is relatively compact with respect to the

Gromov-Hausdorff distance.

Thus it is quite natural to consider a sequence Mi, i = 1, 2, . . ., in M(n,D)
which converges to a compact metric space X in the closure M(n,D) with
respect to the Gromov-Hausdorff distance. The boundedness of the geometry of
the manifolds in M(n,D) yields that X is an Alexandrov space with curvature

≥ −1 having dimension ≤ n. In such an Alexandrov space, every geodesic
triangle is thicker than a comparison triangle in the hyperbolic plane H2(−1)
having the same side-lengths.

Problem 2.2. Let a sequence Mi in M(n,D) converge to an Alexandrov space
X. Then find topological, geometrical or analytical relations between Mi and
X for sufficiently large i.

In other words, this is a problem to reconstruct manifolds Mi using geomet-
ric data containing the singularities of X or analytic data of X.

3. Basic Results

Some answers to Problem 2.2 are known in several cases as stated in the fol-
lowing. Fibration Theorem 3.1 was established by Yamaguchi [Y1], Fukaya-
Yamaguchi [FY], and Stability Theorem 3.2 was established by Perelman [P1]
(see also Kapovitch [Kp]). Both play fundamental roles in the study of the
Gromov-Hausdorff convergence in M(n,D).

Theorem 3.1 ([Y1], [FY]). If X has no ’singular points’, then there exists a

fibration Fi ↪→ Mi → X, where the fiber Fi satisfies

(1) the first Betti number b1(Fi) is not greater than the dimension dimFi;

(2) the fundamental group π1(Fi) contains a nilpotent subgroup of finite index.

Theorem 3.2 ([P1], cf. [Kp]). If dimX = n, then Mi is homeomorphic to X.
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Now we shortly recall the geometry of Alexandrov spaces with curvature
bounded below that was mainly established by Burago, Gromov and Perelman
([BGP]).

Let X be a finite-dimensional Alexandrov space with curvature bounded
below. For every point p ∈ X, the notion of the space of directions at p, denoted
by Σp, is defined. The Euclidean cone Kp over Σp is called the tangent cone at

p and coincides with the blow-up limit:

Kp = lim
ε→0

1

ε
(X, p).

Let k := dimX. Since Σp becomes a (k − 1)-dimensional compact Alexandrov
space with curvature ≥ 1, it is a smaller than or equal to the unit sphere Sk−1(1)
as metric spaces. If Σp = Sk−1(1), p is called a regular point. Otherwise it is
called a singular point. Let S(X) denote the set of all singular points of X.
The Hausdorff dimension of S(X) ∩ ∂X is at most k − 2 (see also Otsu and
Shioya [OS]), where the boundary ∂X of X is defined inductively in terms of
the spaces of directions.

One of the difficulties of the study of Alexandrov spaces is that S(X) could
be dense in X. If one considers the set of ‘almost regular’ points, denoted by
R0(X), then it is an open subset of full measure, and each point of R0 has a
neighborhood almost isometric to an open subset of Rk.

The following result is related with Stability Theorem 3.2.

Theorem 3.3 ([P1],[P2], cf. [Kp]). The local structure of X is described as

follows:

(1) A small metric ball around every point p ∈ X is homeomorphic to Kp;

(2) X has a topological stratification, namely a sequence of closed subsets,

X = S0(X) ⊃ S1(X) ⊃ · · · ⊃ S`(X) = φ,

such that each Sj(X) \ Sj+1(X) is a topological manifolds.

Finally we define a few notions concerning singular points of X. A point
p ∈ X is called an extremal point if the diameter diam(Σp) is at most π/2, and
p is called an essential singular point if the radius rad(Σp) defined by

rad(Σp) := min
ξ∈Σp

(
max
η∈Σp

d(ξ, η)

)
,

is at most π/2. Note that extremal points are essential singular points and
isolated.

Theorem 3.4 ( [P3]). If X has no ‘bad singularities’ called extremal subsets,

then there is an isomorphism πk(Mi, Fi) ' πk(X) for homotopy groups, where

Fi is a general fiber and i is large enough compared with k.
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4. Reconstruction of Low-dimensional

Collapsed Manifolds

In this paragraph, we discuss topological reconstruction of three-dimensional
or four-dimensional collapsed manifolds. In view of Fibration Theorem 3.1, we
only have to focus the case when the limit space X has singular points. If X is
one-dimensional, this is the case when X is an arc.

We denote by Dk, Sk, T 2, P 2, K2 and I, a disk and a sphere of dimension
k, a torus, a projective plane, a Klein bottle and a closed interval respectively.

The topology of collapsed three-manifolds in M(3, D) can be reconstructed
by the following result due to Shioya-Yamaguchi [SY1]:

Theorem 4.1 ([SY1]). Suppose that a sequence of closed orientable three-

manifolds Mi in M(3, D) collapses to a space X with dimX ∈ {1, 2}.

(1) Assume dimX = 2. If X has no boundary, then Mi is homeomorphic to

a Seifert fibered space over X. If X has nonempty boundary, then Mi is

a gluing of a Seifert fibered space over X and ∂X ×D2 glued along their

boundaries.

(2) Assume that X is one-dimensional and an arc. Then Mi is homeomorphic

to a gluing of D3, P 2×̃I, or a gluing of S1 × D2, K2×̃I, along their

boundaries (spheres or tori), where ×̃ denotes the twisted product.

A closed three-manifold is called a graph manifold if it is a finite gluing
of Seifert fibered spaces along their boundary tori. If one drops the diameter
bound, the topology of collapsed three-manifold under a lower curvature bound
can be reconstructed as follows:

Theorem 4.2 ([SY2]). There exist small positive numbers ε0 and δ0 such that

if an orientable three-manifold M has a complete Riemannian metric whose

sectional curvature and volume satisfy sec(M) ≥ −1 and vol(M) < ε0, then

one of the following holds:

(1) M is homeomorphic to a graph manifold;

(2) diam(M) < δ0 and M has finite fundamental group.

In [P4],[P5], Perelman states that the conclusion of Theorem 4.2 holds under
a weaker assumption of collapse with local lower curvature bounds (see [SY2],
and also recent works [MT], [CaGe]).

Next we turn to the reconstruction problem of collapsed four-manifolds in
M(4, D):

Theorem 4.3 ([Y3]). Suppose that a sequence of closed orientable four-

manifolds Mi in M(4, D) collapses to a space X with 1 ≤ dimX ≤ 3.
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Then Mi has a singular fiber structure over X in a generalized sense. More

precisely,

(1) If dimX = 3, then there exists a locally smooth, local S1-action on Mi

such that the orbit space Mi/S
1 is homeomorphic to X;

(2) Suppose dimX = 2. If X has no boundary, then Mi is homeomorphic to

either an S2-bundle, or a Seifert T 2-bundle over X. If X has non-empty

boundary, then we have a singular fibration fi : Mi → X such that fi has
the same fiber structure over intX = X \∂X as above and the fibers over

∂X are ones of {point, S1, S2, S3, P 2,K2};.

(3) Suppose X is one-dimensional and an arc. Then Mi is the result of a

gluing of at least two and at most four disk-bundles.

Remark 4.4. In Theorem 4.3, the fiber type does not change along each stratum
of a stratification of X, but may change when the stratum changes. The sin-
gularity of a singular fiber over a point p ∈ X can be sharply estimated by the
singularity at p. In particular, in the case of dimX = 3, the singular locus in X
of the local S1-action consists of ∂X extremal points and quasigeodesics con-
sisting of essential singular points in intX. Quasigeodesics are generalization of
geodesics. See Perelman and Petrunin [PP], Petrunin [P] for the construction
and basic properties of quasigeodesics. In any case, Mi is a fiber bundle over
X if X has no essential singular points.

As a very special example, let us suppose the case when X is homeomorphic
to D3 and there exists a unique essential singular point p in the interior of X
which is an extremal point. Then Mi is one of the following:

S4 = D3 × S1 ∪ S2 ×D2, CP 2 = D4 ∪S3 S2×̃D2.

As a conclusion of Theorem 4.3 together with Stability Theorem 3.2, we have
a description of the homeomorphism classes in M(4, D) as follows:

Corollary 4.5 ([Y3]). For a given D > 0, there exist finitely many elements

N1, . . . , Nk of M(4, D), where k = k(D), such that for any element M of

M(4, D) one of the following holds:

(1) M is homeomorphic to one of {N1, . . . , Nk};

(2) M is homeomorphic to a closed 4-manifold as described in Theorem 4.3.

Remark 4.6. Theorem 4.3 is stated in terms of homeomorphism classes since we
essentially use Stability Theorem 3.2 in the proof. In dimension four, there are
big differences between homeomorphism classes and diffeomorphism classes. If
one could have the Lipschitz version of Stability Theorem 3.2, then Theorem
4.3 would be stated in terms of bi-Lipschitz homeomorphism classes, at least.
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The above results support the following conjecture in the general dimension.

Conjecture 4.7. Suppose a sequence Mi in M(n,D) collapses to X. Then
there is a singular fibration fi : Mi → X in some generalized sense.

5. Essential Coverings

There are some relations between a covering and the topology of a manifold.
In particular, if one considers coverings by contractible metric balls of a closed
Riemannian manifold, the minimal number of such balls seems to represent a
topological complexity of the manifold. Actually it was an underlying essential
idea in the proofs of finiteness theorems of Riemannian manifolds.

For given n, D, v > 0, let M(n,D, v) denote the family of n-dimensional
closed Riemannian manifolds M satisfying

sec(M) ≥ −1, diam(M) ≤ D, vol(M) ≥ v.

After the pioneering works due to Cheeger [C] and Weinstein [W], Grove, Pe-
terson and Wu [GPW] and finally Perelman [P1] proved the following finiteness
theorem, which is a direct consequence of Precompactness Theorem 2.1 and
Stability Theorem 3.2

Theorem 5.1. The set of homeomorphism classes of the manifolds in

M(n,D, v) is finite.

The basic idea behind the proof of Theorem 5.1 is to find a uniform bound for
the minimal number of contractible metric balls needed to cover the manifolds
in the family. This becomes possible because we work with the non-collapsing
family M(n,D, v).

If one considers the collapsing family M(n,D), where we have no lower
volume bound, obviously it is impossible to find such a uniform bound. In
stead, we define a system of metric balls to cover a collapsed manifold in an
efficient way in place of just one covering by contractible balls. This will lead
us to the notion of a contractible essential covering.

To illustrate the notion of contractible essential covering, let us take the
flat torus T 2

ε = S1(1) × S1(ε) for a small ε > 0. The torus T 2
ε can be covered

by two thin metric balls Bα, α ∈ {1, 2}. Each ball Bα is isotopic to a much

smaller concentric metric ball B̂α of radius, say 2ε. If one tries to cover Bα by
contractible metric balls, we need too many, about [1/ε]-pieces of such balls. In

stead, we take a covering of B̂α. It is possible to cover B̂α by two contractible
metric balls {Bαβ}β∈{1,2}. Thus we have a collection of four contractible metric
balls {Bαβ}αβ∈{1,2}, which will be called a contractible essential covering of
T 2
ε . Although it is not a usual covering of T 2

ε , deforming and enlarging Bαβ

by isotopies, we obtain a covering {B̃αβ}αβ∈{1,2} of T 2
ε by contractible open
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subsets. In that sense, the contractible essential covering seems to contain an
essential feature of T 2

ε .
Now we describe the general definition of a contractible essential covering.

Definition 5.2. Let M be a closed n-dimensional Riemannian manifold. We
first begin with a covering of M by metric balls {Bα1

}Nα1=1 that are not neces-
sary contractible. For each non-contractible ball Bα1

, we try to find a smaller

concentric ball B̂α1
isotopic to Bα1

, and consider a covering of B̂α1
in stead

of Bα1
by much smaller metric balls {Bα1α2

}α2
. We repeat this procedure for

these small metric balls Bα1α2
. After finitely many repeats, we will get to con-

tractible balls. Suppose that in this way we get a finite collection of metric
balls,

B = {Bα1···αk
},

consisting of balls Bα1···αk
of M , such that

(1) Bα1
⊃ Bα1α2

⊃ · · · ⊃ Bα1···αk
⊃ · · · ;

(2) Bα1···αk
is isotopic to a smaller concentric ball B̂α1···αk

;

(3) {Bα1···αkαk+1
}αk+1

covers B̂α1···αk
;

(4) At every terminal of a sequence α1 → α1α2 → · · · → α1α2 · · ·αk → · · ·
satisfying the above (1), (2) and (3), we have a contractible ball.

Note that the size of the balls becomes smaller and smaller. The collection B̂
of those contractible balls appearing at the ends of the sequences in the above
(4) is called a contractible essential covering of the manifold M .

From construction, there is a tree T associated with the system B. The
maximal number of edges in the simple paths from the top vertex of T (corre-
sponding to the manifoldM) to the bottom terminal points of T (corresponding
to the contractible balls which appear in the above (4)) is called the depth of

the contractible essential covering B̂.
We denote by τm(M) the minimal number of contractible balls in all the

essential coverings of M of depth at most m. This provides a new geometric
invariant of M .

Theorem 5.3 ( [Y5]). For given n and D, there is a positive constant Cn(D)
such that τn(M) ≤ Cn(D) for all M in M(n,D).

Corollary 5.4 ([Y5]). For given n, there is a positive constant Cn such that if

M has nonnegative sectional curvature, then τn(M) ≤ Cn.

For instance, let us take the n-dimensional flat torus

Tn(ε) = S1(1)× S1(ε)× S1(ε2)× · · · × S1(εn−1).
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In a way similar to the previous example of n = 2, we easily have τn(T
n(ε)) ≤

2n and τn−1(T
n(ε)) → ∞ as ε → 0. There are examples of n-dimensional

nilmanifolds (N, gε) with almost flat metrics ([G1]) having similar estimates:
τn(N, gε) ≤ 2n and τn−1(N, gε) → ∞ as ε → 0.

Conjecture 5.5. If M has nonnegative sectional curvature, then τn(M) ≤ 2n.

In general, collapsed manifolds are expected to have singular fiber structure
over the limit spaces in a generalized sense (Conjecture 4.7). The fiber may
shrink to a point with different order in different independent directions like
Tn(ε) or (N, gε). This explains an essential reason why we need the depth n
for the uniform bound.

Together with Gromov’s topological lemma in [G2], Theorem 5.3 yields
the following uniform bound on the total Betti numbers, which was originally
proved by Gromov ([G2]).

Corollary 5.6. For given n and D, there is a positive integer C(n,D) such

that if M is in M(n,D), then

n∑

i=0

rank Hi(M ;F ) ≤ C(n,D),

where F is any field.

In the original work [G2], Gromov developed the critical point theory ([GS])
for distance functions to obtain an explicit bound on the total Betti numbers.
Unfortunately our bound is not explicit. However our approach provides a con-
ceptually clearer view showing what the essence of Corollary 5.6 is like.

Concerning the total Betti numbers of nonnegatively curved manifolds, the
following conjecture is known: If an n-dimensional closed Riemannian manifold
M has nonnegative sectional curvature, then

n∑

i=0

rank Hi(M ;F ) ≤ 2n.

Probably there will be some relation between this conjecture and Conjec-
ture 5.5.

6. Reconstruction by Spectral Data

In this paragraph, we discuss the reconstruction problem of collapsed manifolds
by spectral data. This is recent joint works [KLY1], [KLY2] with Y. Kurylev
and M. Lassas.

Let ∆ be the Laplace-Beltrami operator on a compact Riemannian manifold
M , and

0 ≤ λ1 ≤ λ2 ≤ λ3 ≤ · · · ,
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be the set of eigenvalues of ∆ counted multiplicities with for instance the
Neumann problem if M has nonempty boundary. Let {φk} be corresponding
eigenfunctions forming a complete orthonormal system of L2(M,µM ), where
µM = dV/ vol(M) is the normalized Riemannian measure.

We are concerned with the inverse spectral problem which asks the influence
of spectral data of ∆ on the the geometry of M . Our interest is to reconstruct
the manifold from certain spectral data. It is well known that the spectrum
{λk} is not sufficient for this purpose. There are several formulations for the
setting of spectral data to settle the problem. A typical one is the boundary
spectral data consisting of the spectrum {λk} and the eigenfunctions {φk|∂M}
restricted to the boundary ∂M if it is not empty (see the monograph [KKL]
for details). In this direction, Anderson, Katsuda, Kurylev, Lassas and Taylor
[AKKLT] discussed the stability of the inverse boundary spectral problem in
a certain moduli space of Riemannian manifolds with boundary such that no
collapse occurs there.

We consider the following moduli space of n-dimensional closed Riemannian
manifolds with bounded sectional curvature and diameter. Let Nm(n,D) be the
set of (M,µM ), where M is an n-dimensional closed Riemannian manifold with
the normalized Riemannian measure µM which satisfies

| sec(M)| ≤ 1, diam(M) ≤ D.

We equip Nm(n,D) with the measured Gromov-Hausdorff topology introduced
by Fukaya [F2]. Let a sequence (Mi, µMi

) in Nm(n,D) converge to a metric
measure space (X,µ) with respect to the measured Gromov-Hausdorff topology.
This means that there exists a measurable map ϕi : Mi → X such that for some
εi → 0

(1) |d(ϕi(x), ϕi(y))− d(x, y)| < εi for all x, y ∈ Mi;

(2) the εi-neighborhood of ϕi(Mi) coincides with X;

(3) the puchforward measure (ϕi)∗(µMi
) converges to µ for the weak∗-

topology.

Theorem 6.1 ([F2]). Under the above situation, there exists a self-adjoint

operator ∆(X,µ) on L2(X,µ) with discrete spectrum λ1(∆X,µ) ≤ λ2(∆X,µ) ≤
· · · such that

(1) λk(∆Mi
) converges to λk(∆X,µ) as i → ∞ for each k = 0, 1, 2, . . . ;

(2) a normalized eigenfunction of ∆Mi
is close to an eigenfunction of ∆(X,µ)

in some L2-sense.

The limit measure µ on X has the expression µ = ρdX, where dX denotes
the Hausdorff measure and ρ is the density function on X. It was proved in [F1]
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that the regular part Xreg of X is a smooth manifold with C1,α-metric tensor.
Kasue ([Ks]) proved that ρ is of class C1,α on Xreg. One can express the limit
operator as

∆(X,µ)u =
1

ρ(x)
√

G(x)

∂

∂xj

(
ρ(x)

√
G(x)gjk(x)

∂

∂xk

u

)
,

on Xreg, where G(x) = det(gij(x)).
Now we discuss the inverse problem in the closure Nm(n,D) of Nm(n,D)

with respect to the measured Gromov-Hausdorff topology. We consider the heat
data on a region of the space as spectral data. First to treat the uniqueness,
we concentrate on a space (X,µ) in the boundary ∂Nm(n,D) = Nm(n,D) \
Nm(n,D).

Let λ1 ≤ λ2 ≤ · · · and {φk}
∞
k=1 be the eigenvalues of ∆(X,µ) and a com-

plete orthonormal system of L2(X,µ) consisting of corresponding eigenfunc-
tions. Consider the heat kernel of (X,µ):

h(X,µ)(x, y, t) =
∞∑

i=1

e−λitφi(x)φi(y).

Let Ω be an open domain of X, where we are going to measure point heat data.
In view of the actual application to stability discussed later, we take countable
dense subsets

Ω0 = {zj}
∞
j=1, I0 = {t`}

∞
`=1

of Ω and the interval I = [1, 2] respectively. On these countable sets, we measure
the point heat data defined as :

(PHD)(Ω0) := h(X,µ)|Ω0×Ω0×I0 = {h(X,µ)(zj , zk, t`)}j,k,`∈Z+
.

We ask if one can determine the metric measure space (X,µ) from the point
heat data (PHD)(Ω0).

For (X,µ), (Y, µ′) ∈ ∂Nm(n,D) and for open domains Ω ⊂ X, Ω′ ⊂ Y , let
Ω0 and Ω′

0 be countable dense subsets of Ω and Ω′ respectively.

Definition 6.2. We say that (X,µ) and (Y, µ′) have the same PHD on Ω and
Ω′ respectively, and write

PHD(Ω0) = PHD(Ω′
0)

if there is a bijection Ω = {zj}
∞
j=1 → Ω′ = {z′j}

∞
j=1 sending zj to z′j such that

h(X,µ)(zj , zk, t`) = h(Y,µ′)(z
′
j , z

′
k, t`)

for all (j, k, `) ∈ Z+ × Z+ × Z+.

In the above definition, we do not require the continuity of zj → z′j in
advance.
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Theorem 6.3 ([KLY1],[KLY2]). Under the above situation if PHD(Ω0) =
PHD(Ω′

0), then there exists an isometry Φ : X → Y satisfying Φ∗(µ) = µ′.

Remark 6.4. (1) In Theorem 6.3, we not only have the uniqueness but also
can construct the isometry class of (X,µ) as a metric measure space from
PHD(Ω0).

(2) When X is an orbifold (this happens for instance if dimX = n − 1), we
can also reconstruct the algebraic isomorphism class of X as an orbifold
([KLY1]). In [KLY1], we set up a certain sub-moduli space SNm(n,D)
of Nm(n,D) consisting of M satisfying a volume growth condition, and
show that any collapsing limit in SNm(n,D) becomes an orbifold.

We denote by Nm,p(n,D) the set of all pointed measure space (X,µ, x0)
with (X,µ) ∈ Nm(n,D) and x0 ∈ X. To discuss the stability of the inverse
problem in Nm,p(n,D), we need to measure point heat data on some balls of
a fixed radius r0, the observation radius.

Definition 6.5. We say that (X,µ, x0) and (Y, µ′, y0) in Nm,p(n,D) have δ-
close PHD with scale r0 if and only if there are δ-dense subsets {zj}

N
j=1 ⊂

B(x0, r0), {z
′
j}

N
j=1 ⊂ B(y0, r0) and {t`}

T
`=1 ⊂ I such that

|h(X,µ)(zj , zk, t`)− h(Y,µ′)(z
′
j , z

′
k, t`)| < δ

for all 1 ≤ j, k ≤ N and 1 ≤ ` ≤ T .

Theorem 6.6 ([KLY1], [KLY2]). For given n, D, r0 and ε > 0, there exists

a positive number δ such that if (X,µ, x0) and (Y, µ′, y0) in Nm,p(n,D) have

δ-close PHD with scale r0, then dGH(X,Y ) < ε.

Corollary 6.7 ( [KLY2]). For given (X,µ, x0) ∈ ∂Nm,p(n,D) and r0, there
exists a positive number δ such that if (X,µ, x0) and (M,µ, p) ∈ Nm,p(n,D)
have δ-close PHD with scale r0, then there exists a singular fibration π : M → X
in the sense of Fukaya [F1].

For any δ > 0, consider the direct map

PHD : Nm,p(n,D) → R
Nδ×Nδ×Tδ

defined by

PHD(X,µ, x0) := {h(x,µ)(zj , zk, t`)},

where {zj}
Nδ

j=1 ⊂ B(x0, r0) and {t`}
Tδ

`=1 ⊂ I are δ-dense subsets. We can prove
Stability Theorem 6.6 by using Uniqueness Theorem 6.3 and the continuity
of the direct map with respect to the pointed measured Gromov-Hausdorff
topology.
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In [KMS], Kuwae, Machigashira and Shioya discussed the Laplacian on
Alexandrov spaces with curvature bounded below.

Problem 6.8. Extend the results in this paragraph to the moduli space
M(n,D) equipped with the pointed measured Gromov-Hausdorff topology.
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Abstract

We outline an interpretation of Heegaard-Floer homology of 3-manifolds (closed
or with boundary) in terms of the symplectic topology of symmetric products of
Riemann surfaces, as suggested by recent work of Tim Perutz and Yankı Lekili.
In particular we discuss the connection between the Fukaya category of the sym-
metric product and the bordered algebra introduced by Robert Lipshitz, Peter
Ozsváth and Dylan Thurston, and recast bordered Heegaard-Floer homology in
this language.
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1. Introduction

In its simplest incarnation, Heegaard-Floer homology associates to a closed 3-
manifold Y a graded abelian group ĤF (Y ). This invariant is constructed by
considering a Heegaard splitting Y = Y1 ∪Σ Y2 of Y into two genus g han-
dlebodies, each of which determines a product torus in the g-fold symmetric
product of the Heegaard surface Σ = ∂Y1 = −∂Y2. Deleting a marked point z
from Σ to obtain an open surface, ĤF (Y ) is then defined as the Lagrangian
Floer homology of the two tori T1, T2 in Symg(Σ \ {z}), see [9].

It is natural to ask how more general decompositions of 3-manifolds fit into
this picture, and whether Heegaard-Floer theory can be viewed as a TQFT (at
least in some partial sense). From the point of view of symplectic geometry,
a natural answer is suggested by the work of Tim Perutz and Yankı Lekili.
Namely, an elementary cobordism between two connected Riemann surfaces
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Σ1,Σ2 given by attaching a single handle determines a Lagrangian correspon-
dence between appropriate symmetric products of Σ1 and Σ2 [10]. By compos-
ing these correspondences, one can associate to a 3-manifold with connected
boundary Σ of genus g a generalized Lagrangian submanifold (cf. [16]) of the
symmetric product Symg(Σ \ {z}). Recent work of Lekili and Perutz [4] shows
that, given a decomposition Y = Y1 ∪Σ Y2 of a closed 3-manifold, the (quilted)
Floer homology of the generalized Lagrangian submanifolds of Symg(Σ \ {z})

determined by Y1 and Y2 recovers ĤF (Y ).
From a more combinatorial perspective, the bordered Heegaard-Floer ho-

mology of Robert Lipshitz, Peter Ozsváth and Dylan Thurston [6] associates to
a parameterized Riemann surface F with connected boundary a finite dimen-
sional differential algebra A(F ) over Z2, and to a 3-manifold Y with boundary

∂Y = F∪D2 a right A∞-module ĈFA(Y ) overA(F ), as well as a left dg-module

ĈFD(Y ) over A(−F ). The main result of [6] shows that, given a decomposition

of a closed 3-manifold Y = Y1 ∪ Y2 with ∂Y1 = −∂Y2 = F ∪ D2, ĤF (Y ) can
be computed in terms of the A∞-tensor product of the modules associated to
Y1 and Y2, namely

ĤF (Y ) ' H∗(ĈFA(Y1)⊗A(F ) ĈFD(Y2)).

In order to connect these two approaches, we consider a partially wrapped
version of Floer theory for product Lagrangians in symmetric products of open
Riemann surfaces. Concretely, given a Riemann surface with boundary F , a
finite collection Z of marked points on ∂F , and an integer k ≥ 0, we consider a
partially wrapped Fukaya category F(Symk(F ), Z), which differs from the usual
(compactly supported) Fukaya category by the inclusion of additional objects,
namely products of disjoint properly embedded arcs in F with boundary in
∂F \ Z. A nice feature of these categories is that they admit explicit sets of
generating objects:

Theorem 1. Let F be a compact Riemann surface with non-empty boundary,
Z a finite subset of ∂F , and α = {α1, . . . , αn} a collection of disjoint properly
embedded arcs in F with boundary in ∂F \ Z. Assume that F \ (α1 ∪ · · · ∪ αn)
is a union of discs, each of which contains at most one point of Z. Then for
0 ≤ k ≤ n, the partially wrapped Fukaya category F(Symk(F ), Z) is generated
by the

(
n
k

)
Lagrangian submanifolds Ds =

∏
i∈s αi, where s ranges over all

k-element subsets of {1, . . . , n}.

To a decorated surface F = (F,Z, α = {αi}) we can associate an A∞-algebra

A(F, k) =
⊕
s,t

homF(Symk(F ),Z)(Ds, Dt). (1)

The following special case is of particular interest:

Theorem 2. Assume that F has a single boundary component, |Z| = 1, and
the arcs α1, . . . , αn (n = 2g(F )) decompose F into a single disc. Then A(F, k)
coincides with Lipshitz-Ozsváth-Thurston’s bordered algebra [6].
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(The result remains true in greater generality, the only key requirement being
that every component of F \ (α1 ∪ · · · ∪ αn) should contain at least one point
of Z.)

Now, consider a sutured 3-manifold Y , i.e. a 3-manifold Y with non-empty
boundary, equipped with a decomposition ∂Y = (−F−) ∪ F+, where F± are
oriented surfaces with boundary. Assume moreover that ∂Y and F± are con-
nected, and denote by g± the genus of F±. Given two integers k± such that
k+ − k− = g+ − g− and a suitable Morse function on Y , Perutz’s construction
associates to Y a generalized Lagrangian correspondence (i.e. a formal com-
position of Lagrangian correspondences) TY from Symk−(F−) to Symk+(F+).
By the main result of [4] this correspondence is essentially independent of the
chosen Morse function.

Picking a finite set of marked points Z ⊂ ∂F− = ∂F+, and two collections
of disjoint arcs α− and α+ on F− and F+, we have two decorated surfaces
F± = (F±, Z, α±), and collections of product Lagrangian submanifolds D±,s

(s ∈ S±) in Symk±(F±) (namely, all products of k± of the arcs in α±). By
a Yoneda-style construction, the correspondence TY then determines an A∞-
bimodule

Y(TY ) =
⊕

(s,t)∈S−×S+

hom(D−,s,TY , D+,t) ∈ A(F−, k−)-mod-A(F+, k+), (2)

where hom(D−,s,TY , D+,t) is defined in terms of quilted Floer complexes
[8, 16, 17] after suitably perturbing D−,s and D+,t by partial wrapping along
the boundary. A slightly different but equivalent definition is as follows. With
quite a bit of extra work, via the Ma’u-Wehrheim-Woodward machinery the
correspondence TY defines an A∞-functor ΦY from F(Symk−(F−), Z) to a
suitable enlargement of F(Symk+(F+), Z); with this understood, Y(TY ) '⊕

(s,t) hom(ΦY (D−,s), D+,t).

The A∞-bimodules Y(TY ) are expected to obey the following gluing prop-
erty:

Conjecture 3. Let F, F ′, F ′′ be connected Riemann surfaces and Z a finite
subset of ∂F ' ∂F ′ ' ∂F ′′. Let Y1, Y2 be two sutured manifolds with ∂Y1 =
(−F ) ∪ F ′ and ∂Y2 = (−F ′) ∪ F ′′, and let Y = Y1 ∪F ′ Y2 be the sutured
manifold obtained by gluing Y1 and Y2 along F ′. Equip F, F ′, F ′′ with collections
of disjoint properly embedded arcs α, α′, α′′, and assume that α′ decomposes F ′

into a union of discs each containing at most one point of Z. Then

Y(TY ) ' Y(TY1
)⊗A(F′,k′) Y(TY2

). (3)

In its most general form this statement relies on results in Floer theory
for generalized Lagrangian correspondences which are not yet fully established,
hence we state it as a conjecture; however, we believe that a proof should be
within reach of standard techniques.
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As a special case, let F be a genus g surface with connected boundary,
decorated with a single point z ∈ ∂F and a collection of 2g arcs cutting F
into a disc. Then to a 3-manifold Y1 with boundary ∂Y1 = F ∪ D2 we can
associate a generalized Lagrangian submanifold TY1

of Symg(F ), and an A∞-
module Y(TY1

) =
⊕

s hom(TY1
, Ds) ∈ mod-A(F, g). Viewing TY1

as a general-
ized correspondence from Symg(−F ) to Sym0(D2) = {pt} instead, we obtain
a left A∞-module over A(−F, g). However, A(−F, g) = A(F, g)op, and the two
constructions yield the same module. If now we have another 3-manifold Y2

with ∂Y2 = −F ∪ D2, we can associate to it a generalized Lagrangian sub-
manifold TY2

in Symg(−F ) or, after orientation reversal, T−Y2
in Symg(F ).

This yields A∞-modules Y(TY2
) ∈ mod-A(−F, g) ' A(F, g)-mod, and

Y(T−Y2
) ∈ mod-A(F, g).

Theorem 4. With this understood, and denoting by Y the closed 3-manifold ob-
tained by gluing Y1 and Y2 along their boundaries, we have quasi-isomorphisms

ĈF (Y ) ' homF#(Symg(F ))(TY1
,T−Y2

) ' hommod-A(F,g)(Y(T−Y2
),Y(TY1

))

' Y(TY1
)⊗A(F,g) Y(TY2

). (4)

In fact, Y(TYi
) is quasi-isomorphic to the bordered A∞-module ĈFA(Yi). In

light of this, it is instructive to compare Theorem 4 with the pairing theorem

obtained by Lipshitz, Ozsváth and Thurston [6]: even though ĈFA(Yi) and

ĈFD(Yi) seem very different at first glance (and even at second glance), our
result suggests that they can in fact be used interchangeably.

The rest of this paper is structured as follows: first, in section 2 we explain
how Heegaard-Floer homology can be understood in terms of Lagrangian cor-
respondences, following the work of Perutz and Lekili [10, 4]. Then in section 3
we introduce partially wrapped Fukaya categories of symmetric products, and
sketch the proofs of Theorems 1 and 2. In section 4 we briefly discuss Yoneda
embedding as well as Conjecture 3 and Theorem 4. Finally, in section 5 we
discuss the relation with bordered Heegaard-Floer homology.

The reader will not find detailed proofs for any of the statements here, nor a
general discussion of partially wrapped Fukaya categories. Some of the material
is treated in greater depth in the preprint [2], the rest will appear in a future
paper.
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2. Heegaard-Floer Homology from Lagrangian

Correspondences

2.1. Lagrangian correspondences. A Lagrangian correspondence
between two symplectic manifolds (M1, ω1) and (M2, ω2) is, by definition, a
Lagrangian submanifold of the product M1 × M2 equipped with the product
symplectic form (−ω1)⊕ω2. Lagrangian correspondences can be thought of as a
far-reaching generalization of symplectomorphisms (whose graphs are examples
of correspondences); in particular, under suitable transversality assumptions
we can consider the composition of two correspondences L01 ⊂ M0 × M1 and
L12 ⊂ M1 ×M2,

L01 ◦ L12 = {(x, z) ∈ M0 ×M2 | ∃ y ∈ M1 s.t. (x, y) ∈ L01 and (y, z) ∈ L12}.

The image of a Lagrangian submanifold L1 ⊂ M1 by a Lagrangian correspon-
dence L12 ⊂ M1 × M2 is defined similarly, viewing L1 as a correspondence
from {pt} to M1. Unfortunately, in general the geometric composition is not
a smooth embedded Lagrangian. Nonetheless, we can enlarge symplectic ge-
ometry by considering generalized Lagrangian correspondences, i.e. sequences
of Lagrangian correspondences (interpreted as formal compositions), and gen-
eralized Lagrangian submanifolds, i.e. generalized Lagrangian correspondences
from {pt} to a given symplectic manifold.

The work of Ma’u, Wehrheim and Woodward (see e.g. [16, 17, 8]) shows
that Lagrangian Floer theory behaves well with respect to (generalized)
correspondences. Given a sequence of Lagrangian correspondences Li−1,i ⊂
Mi−1 × Mi (i = 1, . . . , n), with M0 = Mn = {pt}, the quilted Floer com-
plex CF (L0,1, . . . , Ln−1,n) is generated by generalized intersections, i.e. tuples
(x1, . . . , xn−1) ∈ M1 × · · · × Mn−1 such that (xi−1, xi) ∈ Li−1,i for all i,
and carries a differential which counts “quilted pseudoholomorphic strips” in
M1 × · · · × Mn−1. Under suitable technical assumptions (e.g., monotonicity),
Lagrangian Floer theory carries over to this setting.

Thus, Ma’u, Wehrheim and Woodward associate to a monotone symplectic
manifold (M,ω) its extended Fukaya category F#(M), whose objects are mono-
tone generalized Lagrangian submanifolds and in which morphisms are given
by quilted Floer complexes. Composition of morphisms is defined by counting
quilted pseudoholomorphic discs, and as in usual Floer theory, it is only as-
sociative up to homotopy, so F#(M) is an A∞-category. The key property of
these extended Fukaya categories is that a monotone (generalized) Lagrangian
correspondence L12 from M1 to M2 induces an A∞-functor from F#(M1) to
F#(M2), which on the level of objects is simply concatenation with L12. More-
over, composition of Lagrangian correspondences matches with composition of
A∞-functors [8].

Remark. By construction, the usual Fukaya category F(M) admits a fully faith-
ful embedding as a subcategory of F#(M). In fact, F#(M) embeds into the
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category of A∞-modules over the usual Fukaya category, so although gener-
alized Lagrangian correspondences play an important conceptual role in our
discussion, they only enlarge the Fukaya category in a fairly mild manner.

2.2. Symmetric products. As mentioned in the introduction, work in
progress of Lekili and Perutz [4] shows that Heegaard-Floer homology can be
understood in terms of quilted Floer homology for Lagrangian correspondences
between symmetric products. The relevant correspondences were introduced by
Perutz in his thesis [10].

Let Σ be an open Riemann surface (with infinite cylindrical ends, i.e., the
complement of a finite set in a compact Riemann surface), equipped with an
area form σ. We consider the symmetric product Symk(Σ), equipped with
the product complex structure J , and a Kähler form ω which coincides with
the product Kähler form on Σk away from the diagonal strata. Following Pe-
rutz we choose ω so that its cohomology class is negatively proportional to
c1(TSym

k(Σ)).

Let γ be a non-separating simple closed curve on Σ, and Σγ the surface
obtained from Σ by deleting a tubular neighborhood of γ and gluing in two
discs. Equip Σγ with a complex structure which agrees with that of Σ away

from γ, and equip Symk(Σ) and Symk−1(Σγ) with Kähler forms ω and ωγ

chosen as above.

Theorem 5 (Perutz [10]). The simple closed curve γ determines a Lagrangian
correspondence Tγ in the product (Symk−1(Σγ)× Symk(Σ),−ωγ ⊕ ω), canoni-
cally up to Hamiltonian isotopy.

Given r disjoint simple closed curves γ1, . . . , γr, linearly independent in
H1(Σ), we can consider the sequence of correspondences that arise from suc-
cessive surgeries along γ1, . . . , γr. The main properties of these correspondences
(see Theorem A in [10]) imply immediately that their composition defines an
embedded Lagrangian correspondence Tγ1,...,γr

in Symk−r(Σγ1,...,γr
)×Symk(Σ).

When r = k = g(Σ), this construction yields a Lagrangian torus in Symk(Σ),
which by [10, Lemma 3.20] is smoothly isotopic to the product torus γ1×· · ·×γk;
Lekili and Perutz show that these two tori are in fact Hamiltonian isotopic [4].

Remark. We are not quite in the setting considered by Ma’u, Wehrheim and
Woodward, but Floer theory remains well behaved thanks to two key properties
of the Lagrangian submanifolds under consideration: their relative π2 is trivial
(which prevents bubbling), and they are balanced. (A Lagrangian submanifold
in a monotone symplectic manifold is said to be balanced if the holonomy of a
fixed connection 1-form with curvature equal to the symplectic form vanishes
on it; this is a natural analogue of the notion of exact Lagrangian submani-
fold in an exact symplectic manifold). The balancing condition is closely re-
lated to admissibility of Heegaard diagrams, and ensures that the symplectic
area of a pseudo-holomorphic strip connecting two given intersection points is
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determined a priori by its Maslov index (cf. [17, Lemma 4.1.5]). This property
is what allows us to work over Z2 rather than over a Novikov field.

2.3. Heegaard-Floer homology. Consider a closed 3-manifold Y , and
a Morse function f : Y → R (with only one minimum and one maximum, and
with distinct critical values). Then the complement Y ′ of a ball in Y (ob-
tained by deleting a neighborhood of a Morse trajectory from the maximum
to the minimum) can be decomposed into a succession of elementary cobor-
disms Y ′

i (i = 1, . . . , r) between connected Riemann surfaces with boundary
Σ0,Σ1, . . . ,Σr (where Σ0 = Σr = D2, and the genus increases or decreases by 1
at each step). By Theorem 5, each Y ′

i determines a Lagrangian correspondence
Li ⊂ Symgi−1(Σi−1) × Symgi(Σi) between the relevant symmetric products
(here gi is the genus of Σi, and we implicitly complete Σi by attaching to it
an infinite cylindrical end). By the work of Lekili and Perutz [4], the quilted
Floer homology of the sequence (L1, . . . , Lr) is independent of the choice of the

Morse function f and isomorphic to ĤF (Y ).
More generally, consider a sutured 3-manifold Y , i.e. a 3-manifold whose

boundary is decomposed into a union (−F−) ∪Γ F+, where F± are connected
oriented surfaces of genus g± with boundary ∂F− ' ∂F+ ' Γ. Shrinking F±

slightly within ∂Y , it is advantageous to think of the boundary of Y as con-
sisting actually of three pieces, ∂Y = (−F−)∪ (Γ× [0, 1]) ∪ F+. By considering
a Morse function f : Y → [0, 1] with index 1 and 2 critical points only, with
f−1(1) = F− and f−1(0) = F+, we can view Y as a succession of elemen-
tary cobordisms between connected Riemann surfaces with boundary, starting
with F− and ending with F+. As above, Perutz’s construction associates a
Lagrangian correspondence to each of these elementary cobordisms. Thus we
can associate to Y a generalized Lagrangian correspondence TY = TY,k±

from

Symk−(F−) to Symk+(F+) whenever k+−k− = g+−g−. The generalized corre-
spondence TY can be viewed either as an object of the extended Fukaya category
F#(Symk−(−F−) × Symk+(F+)), or as an A∞-functor from F#(Symk−(F−))
to F#(Symk+(F+)).

Theorem 6 (Lekili-Perutz [4]). Up to quasi-isomorphism the object TY is in-
dependent of the choice of Morse function on Y .

Given two sutured manifolds Y1 and Y2 (∂Yi = (−Fi,−) ∪ Fi,+) and a dif-
feomorphism φ : F1,+ → F2,−, gluing Y1 and Y2 by identifying the positive
boundary of Y1 with the negative boundary of Y2 via φ yields a new sutured
manifold Y ′. As a cobordism from F1,− to F2,+, Y

′ is simply the concatenation
of the cobordisms Y1 and Y2. Hence, the generalized Lagrangian correspondence
TY ′ associated to Y ′ is just the (formal) composition of TY1

and TY2
.

The case where Y1 is a cobordism from the disc D2 to a genus g surface F
(with a single boundary component) and Y2 is a cobordism from F to D2 (so
∂Y1 ' −∂Y2 ' F ∪S1 D2) is of particular interest. In that case, we associate
to Y1 a generalized correspondence from Sym0(D2) = {pt} to Symg(F ), i.e. an
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object TY1
of F#(Symg(F )), and to Y2 a generalized correspondence TY2

from
Symg(F ) to Sym0(D2) = {pt}, i.e. a generalized Lagrangian submanifold of
Symg(−F ). Reversing the orientation of Y2, i.e. viewing −Y2 as the opposite
cobordism from D2 to F , we get a generalized Lagrangian submanifold T−Y2

in
Symg(F ), which differs from TY2

simply by orientation reversal. Denoting by
Y (= Y ′ ∪B3) the closed 3-manifold obtained by gluing Y1 and Y2 along their
entire boundary, the result of [4] now says that

ĈF (Y ) ' CF (TY1
,TY2

) ' homF#(Symg(F ))(TY1
,T−Y2

). (5)

3. Partially Wrapped Fukaya Categories of

Symmetric Products

3.1. Positive perturbations and partial wrapping. Let F be a
connected Riemann surface with non-empty boundary, and Z a finite subset of
∂F . Assume for now that every connected component of ∂F contains at least
one point of Z. Then the components of ∂F \ Z are open intervals, and carry
a natural orientation induced by that of F .

Definition 7. Let λ = (λ1, . . . , λk), λ
′ = (λ′

1, . . . , λ
′
k) be two k-tuples of disjoint

properly embedded arcs in F , with boundary in ∂F \ Z. We say that the pair
(λ, λ′) is positive, and write λ > λ′, if along each component of ∂F \ Z the
points of ∂(

⋃
i λ

′
i) all lie before those of ∂(

⋃
i λi).

Similarly, given tuples λj = (λj
1, . . . , λ

j
k) (j = 0, . . . , `), we say that the sequence

(λ0, . . . , λ`) is positive if each pair (λj , λj+1) is positive, i.e. λ0 > · · · > λ`.
Given two tuples λ = (λ1, . . . , λk) and λ′ = (λ′

1, . . . , λ
′
k), we can perturb

each arc λi (resp. λ
′
i) by an isotopy that pushes it in the positive (resp. negative)

direction along ∂F , without crossing Z, to obtain new tuples λ̃ = (λ̃1, . . . , λ̃k)
and λ̃′ = (λ̃′

1, . . . , λ̃
′
k) with the property that λ̃ > λ̃′. Similarly, any sequence

(λ0, . . . , λ`) can be made into a positive sequence by means of suitable isotopies
supported near ∂F (again, the isotopies are not allowed to cross Z).

Example. Let α = (α1, . . . , α2g) be the tuple of arcs represented on Figure 1 left:

then the perturbed tuples α̃j = (α̃j
1, . . . , α̃

j
2g) (Figure 1 right) satisfy α̃0 > α̃1,

i.e. the pair (α̃0, α̃1) is a positive perturbation of (α, α).

Next, consider a sequence (L0, . . . , L`) of Lagrangian submanifolds in the
symmetric product Symk(F ), each of which is either a closed submanifold con-
tained in the interior of Symk(F ) or a product of disjoint properly embedded
arcs Lj = λj

1×· · ·×λj
k. Then we say that the sequence (L0, . . . , L`) is positive if,

whenever Li and Lj are products of disjointly embedded arcs for i < j, the cor-
responding k-tuples of arcs satisfy λi > λj . (There is no condition on the closed
Lagrangians). Modifying the arcs λj

1, . . . , λ
j
k by suitable isotopies supported

near ∂F (without crossing Z) as above, given any sequence (L0, . . . , L`) we can
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z

α1

α2g

z

α̃0
2g · · · α̃0

1 α̃1
1 · · · α̃

1
2g

Figure 1. The arcs αi and α̃
j

i on (F, {z})

construct Lagrangian submanifolds L̃0, . . . , L̃` such that: (1) L̃i is Hamiltonian
isotopic to Li, and either contained in the interior of Symk(F ) or a product of
disjoint properly embedded arcs; and (2) the sequence (L̃0, . . . , L̃`) is positive.
We call (L̃0, . . . , L̃`) a positive perturbation of the sequence (L0, . . . , L`).

With this understood, we can now give an informal (and imprecise) def-
inition of the partially wrapped Fukaya category of the symmetric product
Symk(F ) relative to the set Z; we are still assuming that every component of
∂F contains at least one point of Z. The reader is referred to [2] for a more
precise construction.

Definition 8. The partially wrapped Fukaya category F = F(Symk(F ), Z) is
an A∞-category with objects of two types:

1. closed balanced Lagrangian submanifolds lying in the interior of Symk(F );

2. properly embedded Lagrangian submanifolds of the form λ1 × · · · × λk,
where λi are disjoint properly embedded arcs with boundary contained in
∂F \ Z.

Morphism spaces and compositions are defined by perturbing objects of the sec-
ond type in a suitable manner near the boundary so that they form positive
sequences. Namely, we set homF (L0, L1) = CF (L̃0, L̃1) (i.e., the Z2-vector
space generated by points of L̃0 ∩ L̃1, with a differential counting rigid holo-
morphic discs), where (L̃0, L̃1) is a suitably chosen positive perturbation of
the pair (L0, L1). The composition m2 : homF (L0, L1) ⊗ homF (L1, L2) →
homF (L0, L2) and higher products m` : homF (L0, L1)⊗· · ·⊗homF (L`−1, L`) →
homF (L0, L`) are similarly defined by perturbing (L0, . . . , L`) to a positive se-
quence (L̃0, . . . , L̃`) and counting rigid holomorphic discs with boundary on the
perturbed Lagrangians.

The extended category F# = F#(Symk(F ), Z) is defined similarly, but
also includes closed balanced generalized Lagrangian submanifolds of Symk(F )
(i.e., formal images of Lagrangians under sequences of balanced Lagrangian
correspondences) of the sort introduced in §2.

To be more precise, the construction of the partially wrapped Fukaya cat-
egory involves the completion F̂ = F ∪ (∂F × [1,∞)), and its symmetric
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product Symk(F̂ ). Arcs in F can be completed to properly embedded arcs
in F̂ , translation-invariant in the cylindrical ends, and hence the objects of
F(Symk(F ), Z) can be completed to properly embedded Lagrangian subman-
ifolds of Symk(F̂ ) which are cylindrical at infinity. The Riemann surface F̂
carries a Hamiltonian vector field supported away from the interior of F and
whose positive (resp. negative) time flow rotates the cylindrical ends of F̂ in the
positive (resp. negative) direction and accumulates towards the rays Z× [1,∞).
(In the cylindrical ends ∂F × [1,∞), the generating Hamiltonian function h is
of the form h(x, r) = ρ(x)r where ρ : ∂F → [0, 1] satisfies ρ−1(0) = Z). This
flow on F̂ can be used to construct a Hamiltonian flow on Symk(F̂ ) which pre-
serves the product structure away from the diagonal (namely, the generating
Hamiltonian is given by H({z1, . . . , zk}) =

∑
i h(zi) away from the diagonal).

The A∞-category F(Symk(F ), Z) is then constructed in essentially the same
manner as the wrapped Fukaya category defined by Abouzaid and Seidel [1]:
namely, morphism spaces are limits of the Floer complexes upon long-time per-
turbation by the Hamiltonian flow. (In general various technical issues could
arise with this construction, but product Lagrangians in Symk(F̂ ) are fairly
well-behaved, see [2]).

When a component of ∂F does not contain any point of Z, the Hamiltonian
flow that we consider rotates the corresponding cylindrical end of F̂ by arbi-
trarily large amounts. Hence the perturbation causes properly embedded arcs
in F̂ to wrap around the cylindrical end infinitely many times, which typically
makes the complex homF (L0, L1) infinitely generated when L0 and L1 are non-
compact objects of F(Symk(F ), Z). For instance, when Z = ∅ the category we
consider is simply the wrapped Fukaya category of Symk(F̂ ) as defined in [1].

3.2. The algebra of a decorated surface

Definition 9. A decorated surface is a triple F = (F,Z, α) where F is a
connected compact Riemann surface with non-empty boundary, Z is a finite
subset of ∂F , and α = {α1, . . . , αn} is a collection of disjoint properly embedded
arcs in F with boundary in ∂F \ Z.

Given a decorated surface F = (F,Z, α), an integer k ≤ n, and a k-
element subset s ⊆ {1, . . . , n}, the product Ds =

∏
i∈s αi is an object of

F = F(Symk(F ), Z). The endomorphism algebra of the direct sum of these
objects is an A∞-algebra naturally associated to F.

Definition 10. For k ≤ n, denote by Sn
k the set of all k-element subsets of

{1, . . . , n}. Then to a decorated surface F = (F, Z, α = {α1, . . . , αn}) and an
integer k ≤ n we associate the A∞-algebra

A(F, k) =
⊕

s,t∈Sn
k

homF (Ds, Dt), where Ds =
∏
i∈s

αi,

with differential and products defined by those of F = F(Symk(F ), Z).
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}
α̃0

}
α̃1

}
α̃2

Figure 2. Positive perturbations of α near ∂F

In the rest of this section, we focus on a special case where A(F, k) can
be expressed in purely combinatorial terms, and is in fact isomorphic to (the
obvious generalization of) the bordered algebra introduced by Lipshitz, Ozsváth
and Thurston [6]. The following proposition implies Theorem 2 as a special
case:

Proposition 11. Let F = (F,Z, α) be a decorated surface, and assume that
every connected component of F \ (α1 ∪ · · · ∪ αn) contains at least one point
of Z. For i, j ∈ {1, . . . , n}, denote by χj

i the set of chords from ∂αi to ∂αj in
∂F \ Z, i.e. homotopy classes of immersed arcs γ : [0, 1] → ∂F \ Z such that
γ(0) ∈ ∂αi, γ(1) ∈ ∂αj, and the tangent vector γ′(t) is always oriented in the
positive direction along ∂F . Moreover, denote χ̄i

i the set obtained by adjoining

to χi
i an extra element 1i, and let χ̄j

i = χj
i for i 6= j. Then the following

properties hold:

• Given s, t ∈ Sn
k , let s = {i1, . . . , ik}, and denote by Φ(s, t) the set of bijec-

tive maps from s to t. Then the Z2-vector space homF(Symk(F ),Z)(Ds, Dt)
admits a basis indexed by the elements of

χ̄t
s :=

⊔

f∈Φ(s,t)

(
χ̄
f(i1)
i1

× · · · × χ̄
f(ik)
ik

)
.

• The differential and product in A(F, k) are determined by explicit combi-
natorial formulas as in [6].

• The higher products {m`}`≥3 vanish identically, i.e. the A∞-algebra
A(F, k) is in fact a differential algebra.

Sketch of proof (see also [2]). For ` ≥ 1, we construct perturbations α̃0, . . . , α̃`

of α, with α̃0 > · · · > α̃`, in such a way that the diagram formed by the
`+ 1 collections of n arcs α̃j

i on F enjoys properties similar to those of “nice”
diagrams in Heegaard-Floer theory (cf. [13]). Namely, we ask that for each i
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the arcs α̃0
i , . . . , α̃

`
i remain close to αi in the interior of F , where any two of

them intersect transversely exactly once; the total number of intersections in
the diagram is minimal; and all intersections between the arcs of α̃j and those

of α̃j′ are transverse and occur with the same oriented angle (j − j′)θ (for a
fixed small θ > 0) between the two arcs at the intersection point. Hence the
local picture near any interval component of ∂F \Z is as shown in Figure 2. (At
a component of ∂F which does not carry a point of Z, we need to consider arcs
which wrap infinitely many times around the cylindrical end of the completed
surface F̂ , but the situation is otherwise unchanged).

For j < j′ and i, i′ ∈ {1, . . . , n} we have a natural bijection between the

points of α̃j
i ∩ α̃j′

i′ and the elements of χ̄i′

i . Hence, passing to the symmetric

product, the intersections of D̃j
s =

∏
i∈s α̃

j
i and D̃j′

t =
∏

i′∈t α̃
j′

i′ are transverse
and in bijection with the elements of χ̄t

s. The first claim follows.
The rest of the proposition follows from a calculation of the Maslov index

of a holomorphic disc in Symk(F ) with boundary on `+1 product Lagrangians
D̃0

s0
, . . . , D̃`

s`
. Namely, let φ be the homotopy class of such a holomorphic disc

contributing to the order ` product in A(F, k). Projecting from the symmetric
product to F , we can think of φ as a 2-chain in F with boundary on the arcs
of the diagram, staying within the bounded regions of the diagram (i.e., those
which do not intersect ∂F ). Then the Maslov index µ(φ) and the intersection
number i(φ) of φ with the diagonal divisor in Symk(F ) are related to each other
by the following formula due to Sarkar [12]:

µ(φ) = i(φ) + 2e(φ)− (`− 1)k/2, (6)

where e(φ) is the Euler measure of the 2-chain φ, characterized by additivity
and by the property that the Euler measure of an embedded m-gon with convex
corners is 1− m

4 . On the other hand, since every component of F \ (α1 ∪ · · · ∪
αn) contains a point of Z, the regions of the diagram corresponding to those
components remain unbounded after perturbation. In particular, the regions
marked by dots in Figure 2 are all unbounded, and hence not part of the
support of φ.

This implies that the support of φ is contained in a union of regions which
are either planar (as in Figure 2) or cylindrical (in the case of a component of
∂F which does not carry any point of Z), and within which the Euler measure
of a convex polygonal region can be computed by summing contributions from
its vertices, namely 1

4 −
ϑ
2π for a vertex with angle ϑ. Considering the respective

contributions of the (` + 1)k corners of the chain φ (and observing that the
contributions from any other vertices traversed by the boundary of φ cancel
out), we conclude that e(φ) = (`− 1)k/4, and µ(φ) = i(φ) ≥ 0.

On the other hand,m` counts rigid holomorphic discs, for which µ(φ) = 2−`.
This immediately implies that m` = 0 for ` ≥ 3. For ` = 1, the diagram we
consider is “nice”, i.e. all the bounded regions are quadrilaterals; as observed
by Sarkar and Wang, this implies that the Floer differential on CF (D̃0

s , D̃
1
t )

counts empty embedded rectangles [13, Theorems 3.3 and 3.4]. Finally, for
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` = 2, the Maslov index formula shows that the product counts discs which
are disjoint from the diagonal strata in Symk(F ). By an argument similar to
that in [5] (see also [2, Proposition 3.5]), this implies that m2 counts k-tuples
of immersed holomorphic triangles in F which either are disjoint or overlap
head-to-tail (cf. [5, Lemma 2.6]).

Finally, these combinatorial descriptions of m1 and m2 in terms of diagrams
on F can be recast in terms of Lipshitz, Ozsváth and Thurston’s definition of
differentials and products in the bordered algebra [6]. Namely, the dictionary
between points of D̃0

s ∩ D̃1
t proceeds by matching intersections of α̃0

i with α̃1
j

near ∂F with chords from αi to αj (pictured as upwards strands in the notation
of [6]), and the intersection of α̃0

i with α̃1
i in the interior of F with a pair of

horizontal dotted lines in the graphical notation of [6]. See [2, section 3] for
details.

3.3. Generating the partially wrapped Fukaya category. In
this section, we outline the proof of Theorem 1. The main ingredients are Lef-
schetz fibrations on the symmetric product, their Fukaya categories as defined
and studied by Seidel [14, 15], and acceleration A∞-functors between partially
wrapped Fukaya categories.

3.3.1. Lefschetz fibrations on the symmetric product. Let F̂ be an
open Riemann surface (with infinite cylindrical ends), and let π : F̂ → C

be a branched covering map. Assume that the critical points q1, . . . , qn of π
are non-degenerate (i.e., the covering π is simple), and that the critical values
p1, . . . , pn ∈ C are distinct, lie in the unit disc, and satisfy Im (p1) < · · · <
Im (pn).

Each critical point qj of π determines a properly embedded arc α̂j ⊂ F̂ ,
namely the union of the two lifts of the half-line R≥0+pj which pass through qj .

We consider the k-fold symmetric product Symk(F̂ ) (1 ≤ k ≤ n),
equipped with the product complex structure J , and the holomorphic map
fn,k : Symk(F̂ ) → C defined by fn,k({z1, . . . , zk}) = π(z1) + · · ·+ π(zk).

Proposition 12. fn,k : Symk(F̂ ) → C is a holomorphic map with isolated
non-degenerate critical points (i.e., a Lefschetz fibration); its

(
n
k

)
critical points

are the tuples consisting of k distinct points in {q1, . . . , qn}.

Proof. Given z ∈ Symk(F̂ ), denote by z1, . . . , zr the distinct elements in the k-
tuple z, and by k1, . . . , kr the multiplicities with which they appear. The tangent
space TzSym

k(F̂ ) decomposes into the direct sum of the T{zi,...,zi}Sym
ki(F̂ ),

and dfn,k(z) splits into the direct sum of the differentials dfn,ki
({zi, . . . , zi}).

Thus z is a critical point of fn,k if and only if {zi, . . . , zi} is a critical point of
fn,ki

for each i ∈ {1, . . . , r}.
By considering the restriction of fn,ki

to the diagonal stratum, we see that
{zi, . . . , zi} cannot be a critical point of fn,ki

unless zi is a critical point of
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π. Assume now that zi is a critical point of π, and pick a local complex co-
ordinate w on F̂ near zi, in which π(w) = w2 + constant. Then a neighbor-
hood of {zi, . . . , zi} in Symki(F̂ ) identifies with a neighborhood of the origin
in Symki(C), with coordinates given by the elementary symmetric functions
σ1, . . . , σki

. The local model for fn,ki
is then

fn,ki
({w1, . . . , wki

}) = w2
1 + · · ·+ w2

ki
+ constant = σ2

1 − 2σ2 + constant.

Thus, for ki ≥ 2 the point {zi, . . . , zi} is never a critical point of fn,ki
. We

conclude that the only critical points of fn,k are tuples of distinct critical points
of π; moreover these critical points are clearly non-degenerate.

For s ∈ Sn
k , we denote by Qs = {qi, i ∈ s} the corresponding critical point

of fn,k, and by Ps =
∑

i∈s pi the associated critical value.

As in §2, equip Symk(F̂ ) with a Kähler form ω which is of product type
away from the diagonal strata, and the associated Kähler metric. This allows
us to associate to each critical point Qs a properly embedded Lagrangian disc
D̂s in Symk(F̂ ) (called Lefschetz thimble), namely the set of those points in
f−1
n,k(R≥0 + Ps) for which the gradient flow of Re fn,k converges to the critical

point Qs. A straightforward calculation shows that D̂s =
∏

i∈s α̂i.
More generally, one can associate a Lefschetz thimble to any properly em-

bedded arc γ connecting Ps to infinity: namely, the set of points in f−1
n,k(γ)

for which symplectic parallel transport converges to the critical point Qs. We
will only consider the case where γ is a straight half-line. Given θ ∈ (−π

2 ,
π
2 ),

the thimble associated to the half-line eiθR≥0 + Ps is again a product D̂s(θ) =∏
i∈s α̂i(θ), where α̂i(θ) is the union of the two lifts of the half-line eiθR≥0+ pj

through qj .

3.3.2. A special case of Theorem 1. In the same setting as above, con-
sider the Riemann surface with boundary F = π−1(D2), i.e. the preim-
age of the unit disc, and let Z = π−1(−1) ⊂ ∂F . Let αi = α̂i ∩ F , and
Ds = D̂s ∩Symk(F ) =

∏
i∈s αi. Then we can reinterpret the partially wrapped

Fukaya category F(Symk(F ), Z) and the algebra A(F, k) associated to the arcs
α1, . . . , αn in different terms.

Seidel associates to the Lefschetz fibration fn,k a Fukaya category F(fn,k),

whose objects are compact Lagrangian submanifolds of Symk(F̂ ) on one hand,
and Lefschetz thimbles associated to admissible arcs connecting a critical value
of fn,k to infinity on the other hand [15]. Here we say that an arc is admissible
with slope θ ∈ (−π

2 ,
π
2 ) if outside of a compact set it is a half-line of slope θ.

(Seidel considers the case of an exact symplectic form, and defines things some-
what differently; however our setting does not pose any significant additional
difficulties).

Morphisms between thimbles in F(fn,k) (and compositions thereof) are
defined by means of suitable perturbations. Namely, given two admissible
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arcs γ0, γ1 and the corresponding thimbles D0, D1 ⊂ Symk(F̂ ), one sets
homF(fn,k)(D0, D1) = CF (D̃0, D̃1), where D̃0, D̃1 are thimbles obtained by
suitably perturbing (γ0, γ1) to a positive pair (γ̃0, γ̃1), i.e. one for which the
slopes satisfy θ′0 > θ′1.

Restricting ourselves to the special case of straight half-lines, and observing
that for sufficiently small θ0 > · · · > θ` the collections of arcs αi(θj) = α̂i(θj)∩F
form a positive sequence in the sense of §3.1, it is not hard to see that we have
an isomorphism of A∞-algebras

⊕
s,t∈Sn

k

homF(Symk(F ),Z)(Ds, Dt) '
⊕

s,t∈Sn
k

homF(fn,k)(D̂s, D̂t).

A key result due to Seidel is the following:

Theorem 13 (Seidel [15], Theorem 18.24). The A∞-category F(fn,k) is gen-

erated by the exceptional collection of thimbles D̂s, s ∈ Sn
k .

In other terms, every object of F(fn,k) is quasi-isomorphic to a twisted complex

built out of the objects D̂s, s ∈ Sn
k .

This implies Theorem 1 in the special case where F is a simple branched
cover of the disc with n critical points, Z is the preimage of −1, and the arcs
α1, . . . , αn are lifts of half-lines connecting connecting the critical values to the
boundary of the disc along the real positive direction. (More precisely, in view
of the relation between F(fn,k) and F(Symk(F ), Z), Seidel’s result directly

implies that the compact objects of F(Symk(F ), Z) are generated by the Ds.
On the other hand, arbitrary products of properly embedded arcs cannot be
viewed as objects of F(fn,k), but by performing sequences of arc slides we can
express them explicitly as iterated mapping cones involving the generators Ds,
see below.)

3.3.3. Acceleration functors. Consider a fixed surface F , and two subsets
Z ⊆ Z ′ ⊂ ∂F . Then there exists a natural A∞-functor from F(Symk(F ), Z ′)
to F(Symk(F ), Z), called “acceleration functor”. This functor is identity on
objects, and in the present case it is simply given by an inclusion of morphism
spaces. In general, it is given by the Floer-theoretic continuation maps that
arise when comparing the Hamiltonian perturbations used to define morphisms
and compositions in F(Symk(F ), Z ′) and F(Symk(F ), Z).

Consider two products ∆ = δ1 × · · · × δk and L = λ1 × · · · × λk of disjoint
properly embedded arcs in F with boundary in ∂F \ Z ′. Perturbing the arcs
δ1, . . . , δk and λ1, . . . , λk near ∂F if needed (without crossing Z ′), we can assume
that the pair (∆, L) is positive with respect to Z ′. On the other hand, achieving
positivity with respect to the smaller subset Z may require a further perturba-
tion of the arcs δi (resp. λi) in the positive (resp. negative) direction along ∂F ,
to obtain product Lagrangians ∆̃ = δ̃1 × · · · × δ̃k and L̃ = λ̃1 × · · · × λ̃k. This
perturbation can be performed in such a way as to only create new intersection
points. The local picture is as shown on Figure 3. The key observation is that
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z ∈ Z′ \ Z

δi

λj

→
δ̃i

λ̃j

I

II

Figure 3. Perturbation and the acceleration functor

none of the intersection points created in the isotopy can be the outgoing end of
a holomorphic strip in Symk(F ) with boundary on ∆̃ ∪ L̃ and whose incoming
end is a previously existing intersection point (i.e., one that arises by deforming
a point of ∆ ∩ L). Indeed, considering Figure 3 right, locally the projection of
this holomorphic strip to F would cover one of the two regions labelled I and
II; but then by the maximum principle it would need to hit ∂F , which is not
allowed. This implies that CF (∆, L) is naturally a subcomplex of CF (∆̃, L̃).
The same argument also holds for products and higher compositions, ensuring
that the acceleration functor is well-defined.

In particular, given a collection α = (α1, . . . , αn) of disjoint properly em-
bedded arcs in F , and setting F = (F,Z, α) and F′ = (F,Z ′, α′), we obtain that
A(F′, k) is naturally an A∞-subalgebra of A(F, k) for all k.

Finally, one easily checks that the acceleration functor is unital (at least on
cohomology), and surjective on (isomorphism classes of) objects. Hence, if the(
n
k

)
objects Ds =

∏
i∈s αi (s ∈ Sn

k ) generate F(Symk(F ), Z ′), then they also

generate F(Symk(F ), Z). (Indeed, the assumption means that any object L of
F(Symk(F ), Z ′) is quasi-isomorphic to a twisted complex built out of the Ds;
since A∞-functors are exact, this implies that L is also quasi-isomorphic to the
corresponding twisted complex in F(Symk(F ), Z)).

3.3.4. Eliminating generators by arc slides. We now consider a general
decorated surface F = (F,Z, α). The arcs α1, . . . , αn on F might not be a full
set of Lefschetz thimbles for any simple branched covering map, but they are
always a subset of the thimbles of a more complicated covering (with m critical
points, m ≥ n). Namely, after a suitable deformation (which does not affect
the symplectic topology of the completed symmetric product Symk(F̂ )), we can
always assume that F projects to the disc by a simple branched covering map π
with critical values p1, . . . , pm, in such a way that the arcs α1, . . . , αn are lifts of
n of the half-lines R≥0+pj , while each point of Z projects to −1. Hence, taking
the remaining critical values of π and elements of π−1(−1) into account, there
exists a subset Z ′ ⊇ Z of ∂F , and a collection α′ of m ≥ n disjoint properly
embedded arcs (including the αi), such that F′ = (F,Z ′, α′) is as in §3.3.2.
Then, as seen above, the partially wrapped Fukaya category F(Symk(F ), Z ′)
is generated by the

(
m
k

)
product objects D′

s =
∏

i∈s α
′
i (s ∈ Sm

k ).
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λ′′

1 λ′

1

λ1 λ̃1

λ̃2

λ2

x2

x′

1

p

λ2

λ1

λ′

1

λ′′

1

Figure 4. Sliding λ1 along λ′

1, and the auxiliary covering p

Moreover, by considering the acceleration functor as in §3.3.3, we conclude
that F(Symk(F ), Z) is also generated by the objects D′

s, s ∈ Sm
k . Thus, Theo-

rem 1 follows if, assuming that each component of F \ (α1 ∪ · · · ∪ αn) is a disc
containing at most one point of Z, we can show that the

(
m
k

)
−

(
n
k

)
additional

objects we have introduced can be expressed in terms of the others. This is
done by eliminating the additional arcs α′

i one at a time.
Consider k + 1 disjoint properly embedded arcs λ1, . . . , λk, λ

′
1 in F , with

boundary in ∂F \ Z, and such that an end point of λ′
1 lies immediately after

an end point of λ1 along a component of ∂F \Z. Let λ′′
1 be the arc obtained by

sliding λ1 along λ
′
1. Finally, denote by λ̃1, . . . , λ̃k a collection of arcs obtained by

slightly perturbing λ1, . . . , λk in the positive direction, with each λ̃i intersecting
λi in a single point xi ∈ U , and λ̃1 intersecting λ′

1 in a single point x′
1 which lies

near the boundary; see Figure 4. Let L = λ1×· · ·×λk, L
′ = λ′

1×λ2×· · ·×λk,
and L′′ = λ′′

1 ×λ2×· · ·×λk. Then the point (x′
1, x2, . . . , xk) ∈ (λ̃1×· · ·× λ̃k)∩

(λ′
1×λ2× · · ·×λk) determines (via the appropriate continuation map between

Floer complexes, to account for the need to further perturb L) an element of
hom(L,L′), which we call u. The following result is essentially Lemma 5.2 of [2].

Lemma 14 ([2]). In the A∞-category of twisted complexes TwF(Symk(F ), Z),
L′′ is quasi-isomorphic to the mapping cone of u.

The main idea is to consider an auxiliary simple branched covering p : F̂ →
C for which the arcs λ1, λ

′
1, . . . , λk are Lefschetz thimbles (i.e., lifts of half-

lines), with the critical value for λ′
1 lying immediately next to that for λ1 and

so that the monodromies at the corresponding critical values are transpositions
with one common index (see Figure 4 right). The objects L,L′, L′′ can be
viewed as Lefschetz thimbles for the Lefschetz fibration induced by p on the
symmetric product; in the corresponding Fukaya category, the statement that
L′′ ' Cone(u) follows from a general result of Seidel [15, Proposition 18.23].
The lemma then follows from exactness of the relevant acceleration functor. See
§5 of [2] for details.

The other useful fact is that sliding one factor of L over another factor of L
only affects L by a Hamiltonian isotopy. For instance, in the above situation,
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λ1 × λ′
1 × λ3 × · · · × λk and λ′′

1 × λ′
1 × λ3 × · · · × λk are Hamiltonian isotopic.

(This is an easy consequence of the main result in [11]).

Returning to the collection of arcs α′ on the surface F , assume that α′
m can

be erased without losing the property that every component of the complement
is a disc carrying at most one point of Z. Then one of the connected components
of F \ (α′

1 ∪ · · · ∪ α′
m) is a disc ∆ which contains no point of Z, and whose

boundary consists of portions of ∂F and the arcs α′
m, α′

i1
, . . . , α′

ir
(with i1, . . . , ir

distinct from m, but not necessarily pairwise distinct) in that order. Then the
arc obtained by sliding α′

i1
successively over α′

i2
, . . . , α′

ir
is isotopic to α′

m.
Hence, by Lemma 14, for m ∈ s the object D′

s can be expressed as a twisted
complex built from the objects D′

sj
, where sj = (s ∪ {ij}) \ {m}, for j ∈

{1, . . . , r} such that ij 6∈ s.

4. Yoneda Embedding and Invariants of

Bordered 3-manifolds

Let F = (F,Z, α) be a decorated surface, and assume that every component of
F \(

⋃
αi) is a disc carrying at most one point of Z. By Theorem 1 the partially

wrapped Fukaya category F(Symk(F ), Z) is generated by the product objects
Ds, s ∈ Sn

k . In fact Theorem 1 continues to hold if we consider the extended

category F#(Symk(F ), Z) instead of F(Symk(F ), Z); see Proposition 6.3 of
[2]. (The key point is that the only generalized Lagrangians we consider are
compactly supported in the interior of Symk(F ), and Seidel’s argument for
generation of compact objects by Lefschetz thimbles still applies to them.)

To each object T of F#(Symk(F ), Z) we can associate a right A∞-module
over the algebra A = A(F, k),

Y(T) = Yr(T) =
⊕

s∈Sn
k

hom(T, Ds) ∈ mod-A,

where the module maps m` : Y(T) ⊗ A⊗(`−1) → Y(T) are defined by prod-
ucts and higher compositions in F#(Symk(F ), Z). Moreover, given two objects
T0,T1, compositions in the partially wrapped Fukaya category yield a natu-
ral map from hom(T0,T1) to hommod-A(Y(T1),Y(T0)), as well as higher order
maps. Thus, we obtain a contravariant A∞-functor Y : F#(Symk(F ), Z) →
mod-A(F, k): the right Yoneda embedding.

Proposition 15. Under the assumptions of Theorem 1, Y is a cohomologically
full and faithful (contravariant) embedding.

Indeed, the general Yoneda embedding into mod-F#(Symk(F ), Z) is coho-
mologically full and faithful (see e.g. [15, Corollary 2.13]), while Theorem 1 (or
rather its analogue for the extended Fukaya category) implies that the natu-
ral functor from mod-F#(Symk(F ), Z)) to mod-A(F, k) given by restricting an
arbitrary A∞-module to the subset of objects {Ds, s ∈ Sn

k } is an equivalence.
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We can similarly consider the left Yoneda embedding to left A∞-modules
over A(F, k), namely the (covariant) A∞-functor Y` : F#(Symk(F ), Z) →
A(F, k)-mod which sends the object T to Y`(T) =

⊕
s∈Sn

k
hom(Ds,T).

Lemma 16. Denote by −F = (−F,Z, α) the decorated surface obtained by
orientation reversal. Then A(−F, k) is isomorphic to the opposite A∞-algebra
A(F, k)op.

Proof. Given s0, . . . , s` ∈ Sn
k , and any positive perturbation (D̃s0 , . . . , D̃s`) of

the sequence (Ds0 , . . . , Ds`) in Symk(F ) relatively to Z, the reversed sequence
(D̃s` , . . . , D̃s0) is a positive perturbation of (Ds` , . . . , Ds0) in Symk(−F ). Thus,
the holomorphic discs in Symk(−F ) which contribute to the product operation
m` : hom(Ds` , Ds`−1

)⊗ · · · ⊗ hom(Ds1 , Ds0) → hom(Ds` , Ds0) in A(−F, k) are

exactly the complex conjugates of the holomorphic discs in Symk(F ) which
contribute to m` : hom(Ds0 , Ds1)⊗ · · · ⊗ hom(Ds`−1

, Ds`) → hom(Ds0 , Ds`) in
A(F, k).

Hence, left A∞-modules over A = A(F, k) can be interchangeably viewed as
right A∞-modules over Aop = A(−F, k); more specifically, given a generalized
Lagrangian T in Symk(F ) and its conjugate −T in Symk(−F ), the left Yoneda
module Y`(T) ∈ A-mod is the same as the right Yoneda module Yr(−T) ∈
mod-Aop.

Moreover, the left and right Yoneda embeddings are dual to each other:

Lemma 17. For any object T, the modules Y`(T) ∈ A-mod and Yr(T) ∈
mod-A satisfy Yr(T) ' homA-mod(Y

`(T),A) and Y`(T) ' hommod-A(Y
r(T),A)

(where A is viewed as an A∞-bimodule over itself).

Proof. By definition, Yr(T) = hom(T,
⊕

s Ds) (working in an additive en-

largement of F#(Symk(F ), Z)), with the right A∞-module structure coming
from right composition (and higher products) with endomorphisms of

⊕
s Ds.

However, the left Yoneda embedding functor is full and faithful, and maps
T to Y`(T) and

⊕
s Ds to A. Hence, as chain complexes hom(T,

⊕
s Ds) '

homA-mod(Y
`(T),A). Moreover this quasi-isomorphism is compatible with the

right module structures (by functoriality of the left Yoneda embedding). The
other statement is proved similarly, by applying the right Yoneda functor
(contravariant, full and faithful) to prove that Y`(T) = hom(

⊕
s Ds,T) '

hommod-A(Y
r(T),A).

All the ingredients are now in place for the proof of Theorem 4 (and other
similar pairing results). Consider as in the introduction a closed 3-manifold Y
obtained by gluing two 3-manifolds Y1, Y2 with ∂Y1 = −∂Y2 = F ∪ D2 along
their common boundary, and equip the surface F with boundary marked points
Z and a collection α of disjoint properly embedded arcs such that the decorated
surface F = (F,Z, α) satisfies the assumption of Theorem 1.
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z1

z2

α1

α2g

α2g+1

Figure 5. Decorating F with two marked points and 2g + 1 arcs

Remark. The natural choice in view of Lipshitz-Ozsváth-Thurston’s work on
bordered Heegaard-Floer homology [6] is to equip F with a single marked point
and a collection of 2g arcs that decompose it into a single disc, e.g. as in Figure
1. However, one could also equip F with two boundary marked points and
2g+1 arcs, by viewing F as a double cover of the unit disc with 2g+1 branch
points and proceeding as in §3.3.2; see Figure 5. While this yields a larger
generating set, with

(
2g+1
k

)
objects instead of

(
2g
k

)
, the resulting algebra remains

combinatorial in nature (by Proposition 11) and it is more familiar from the
perspective of symplectic geometry, since we are now dealing with the Fukaya
category of a Lefschetz fibration on the symmetric product. Among other nice
features, the generators are exceptional objects, and the algebra is directed.

Let us now return to our main argument. As explained in §2.3, the work
of Lekili and Perutz [4] associates to the 3-manifolds Y1 and −Y2 (viewed as
sutured cobordisms from D2 to F ) two generalized Lagrangian submanifolds

TY1
and T−Y2

of Symg(F ), with the property that ĈF (Y ) is quasi-isomorphic
to homF#(Symg(F ))(TY1

,T−Y2
). However, by Proposition 15 we have

homF#(Symg(F ))(TY1
,T−Y2

) ' hommod-A(F,g)(Y(T−Y2
),Y(TY1

))

where Y = Yr denotes the right Yoneda embedding functor. Moreover, using
Lemma 17, and setting A = A(F, g), we have:

Yr(TY1
)⊗A Y`(T−Y2

) ' Yr(TY1
)⊗A hommod-A(Y

r(T−Y2
),A)

' hommod-A(Y
r(T−Y2

),Yr(TY1
)⊗A A)

' hommod-A(Y
r(T−Y2

),Yr(TY1
)).

Finally, by the discussion after Lemma 16, we can identify the left A(F, g)-
module Y`(T−Y2

) with the right module Yr(TY2
) ∈ mod-A(−F, g). This com-

pletes the proof of Theorem 4.

Turning to the case of more general cobordisms, recall that the construction
of Lekili and Perutz associates to a sutured manifold Y with ∂Y = (−F−)∪F+

a generalized Lagrangian correspondence TY from Symk−(F−) to Symk+(F+)
(where k+ − k− = g(F+) − g(F−)), i.e. an object of F#(Symk−(−F−) ×
Symk+(F+)).
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Equip the surfaces F+ and F− with sets of boundary marked points Z±

and two collections α± of properly embedded arcs such that the decorated
surfaces F± = (F±, Z±, α±) satisfy the assumption of Theorem 1. Consid-
ering products of k± of the arcs in α±, we have two collections of prod-

uct Lagrangian submanifolds D±,s (s ∈ S±) in Symk±(F±). By a straight-
forward generalization of Theorem 1, the partially wrapped Fukaya category
F#(Symk−(−F−)× Symk+(F+), Z− tZ+) is generated by the product objects
(−D−,s) × D+,t for (s, t) ∈ S− × S+. Indeed, Sym

k−(−F−) × Symk+(F+) is

a connected component of Symk−+k+((−F−) t F+), and the proof of The-
orem 1 applies without modification to the disconnected decorated surface
(−F−) t F+ = ((−F−) t F+, Z− t Z+, α− t α+). Hence, as before, the Yoneda
construction

Y(TY ) =
⊕

(s,t)∈S−×S+

hom(TY , (−D−,s)×D+,t)

defines a cohomologically full and faithful embedding into the category of right
A∞-bimodules over A(−F−, k−) and A(F+, k+), or equivalently, the category
of A∞-bimodules A(F−, k−)-mod-A(F+, k+). This property is the key ingre-
dient that makes it possible to relate compositions of generalized Lagrangian
correspondences (i.e., gluing of sutured cobordisms) to algebraic operations on
A∞-bimodules, as in Conjecture 3 for instance.

5. Relation to Bordered Heegaard-Floer

Homology

Consider a sutured 3-manifold Y , with ∂Y = (−F−)∪(Γ× [0, 1])∪F+, and pick
decorations F± = (F±, Z±, α±) of F±. Assume for simplicity that Z+ = Z−.
Denote by g± the genus of F±, and by n± the number of arcs in α±. Choose
a Morse function f : Y → [0, 1] with index 1 and 2 critical points only, such
that f−1(1) = F− and f−1(0) = F+. Assume that all the index 1 critical points
lie in f−1((0, 1

2 )) and all the index 2 critical points lie in f−1(( 12 , 1)). Also
pick a gradient-like vector field for f , tangent to the boundary along Γ× [0, 1],
and equip the level sets of f with complex structures such that the gradient
flow induces biholomorphisms away from the critical locus. The above data
determines a bordered Heegaard diagram on the surface Σ = f−1( 12 ) of genus
ḡ = g(Σ), consisting of:

• ḡ − g+ simple closed curves αc
1, . . . , α

c
ḡ−g+

, where αc
i is the set of points

of Σ from which the downwards gradient flow converges to the i-th index
1 critical point;

• n+ properly embedded arcs αa
1 , . . . , α

a
n+

, where αa
i is the set of points of

Σ from which the downwards gradient flow ends at a point of α+,i ⊂ F+;
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• ḡ − g− simple closed curves βc
1, . . . , β

c
ḡ−g−

, where βc
i is the set of points

of Σ from which the upwards gradient flow converges to the i-th index 2
critical point;

• n− properly embedded arcs βa
1 , . . . , β

a
n−

, where βa
i is the set of points of

Σ from which the upwards gradient flow ends at a point of α−,i ⊂ F−;

• a finite set Z of boundary marked points (which match with Z± under
the gradient flow).

Given integers k̄, k+, k− satisfying k̄− ḡ = k+ − g+ = k− − g−, we can view
the generalized Lagrangian correspondence TY associated to Y as the com-

position of the correspondence Tβ ⊂ Symk−(−F−) × Symk̄(Σ) determined by

f−1([ 12 , 1]) and the correspondence Tα ⊂ Symk̄(−Σ)× Symk+(F+) determined
by f−1([0, 1

2 ]).

The A∞-bimodule Y(TY ) ∈ A(F−, k−)-mod-A(F+, k+) associated to Y

can then be understood entirely in terms of the symmetric product Symk̄(Σ).

Namely, denote by F̄# = F̄#(Symk̄(Σ), Z) a partially wrapped Fukaya cate-
gory defined similarly to the construction in §3, except we also allow objects
which are products of mutually disjoint simple closed curves and properly em-
bedded arcs in Σ.

The Lagrangian correspondences −Tα and Tβ induce A∞-functors Φα

and Φβ from F#(Symk±(F±), Z±) to F̄
#. Considering the product Lagrangians

D−,s for s ∈ S− = S
n−

k−
, the description of the geometry of the correspondence

Tβ away from the diagonal [10] (or the result of [4]) implies that Φβ(D−,s), i.e.,
the composition of D−,s with the correspondence Tβ , is Hamiltonian isotopic
to

∆β,s =
∏
i∈s

βa
i ×

ḡ−g−∏
j=1

βc
j ⊂ Symk̄(Σ).

Similarly, for t ∈ S+ = S
n+

k+
the image of D+,t under the correspondence (−Tα)

is Hamiltonian isotopic to the product

∆α,t =
∏
i∈t

αa
i ×

ḡ−g+∏
j=1

αc
j ⊂ Symk̄(Σ).

This implies the following result:

Proposition 18. The A∞-bimodule Y(TY ) ∈ A(F−, k−)-mod-A(F+, k+) is
quasi-isomorphic to

⊕
s,t homF̄#(∆β,s,∆α,t).

To clarify this statement, observe that Φα induces an A∞-homomorphism
from A(F+, k+) =

⊕
s,t hom(D+,s, D+,t) to Aα =

⊕
s,t homF̄#(∆α,s,∆α,t).

In fact, suitable choices in the construction ensure that Aα ' A(F+, k+) ⊗
H∗(T ḡ−g+ ,Z2) and the map from A(F+, k+) to Aα is simply given by x 7→
x ⊗ 1. In any case, via Φα we can view any right A∞-module over Aα as a



Fukaya Categories and Bordered Heegaard-Floer Homology 939

right A∞-module over A(F+, k+). Similarly, Φβ induces an A∞-homomorphism
from A(F−, k−) to Aβ =

⊕
s,t homF̄#(∆β,s,∆β,t), through which any left A∞-

module over Aβ can be viewed as a left A∞-module over A(F−, k−).
With this understood, Proposition 18 essentially follows from the fact that

the A∞-functors induced by the correspondences Tα and (−Tα) on one hand,
and Tβ and (−Tβ) on the other hand, are adjoint to each other; see Proposition
6.6 in [2] for the case of A∞-modules.

The case where one of k± vanishes, say k− = 0, is of particular interest; then
the β-arcs play no role whatsoever, and we only need to consider the product

torus Tβ = βc
1 × · · · × βc

ḡ−g−
⊂ Symk̄(Σ). This happens for instance when F−

is a disc, i.e. when Y is a 3-manifold with boundary ∂Y = F+ ∪ D2 viewed
as a sutured cobordism from D2 to F+. (This corresponds to the situation
considered in [6]; in this case we have k̄ = ḡ and k+ = g+).

In this situation, the statement of Proposition 18 becomes that
the right A∞-module Y(TY ) ∈ mod-A(F+, k+) is quasi-isomorphic to⊕

t∈S+
homF̄#(Tβ ,∆α,t). Then we have the following result (Proposition 6.5

of [2]):

Proposition 19. The right A∞-modules over A(F+, k+) constructed by Yoneda
embedding, Y(TY ) '

⊕
t∈S+

homF̄#(Tβ ,∆α,t), and by bordered Heegaard-Floer

homology, ĈFA(Y ), are quasi-isomorphic.

The fact that
⊕

t homF̄#(Tβ ,∆α,t) and ĈFA(Y ) are quasi-isomorphic (in
fact isomorphic) as chain complexes is a straightforward consequence of the def-
initions. Comparing the module structures requires a comparison of the moduli
spaces of holomorphic curves which determine the module maps; this can be
done via a neck-stretching argument, see [2, Proposition 6.5].

Remark. Another special case worth mentioning is when k+ = k− = 0, which
requires the sutured manifold Y to be balanced in the sense of [3]. Then we can
discard all the arcs from the Heegaard diagram, and Y(TY ) ' homF̄#(Tβ , Tα)
is simply the chain complex which defines the sutured Floer homology of [3].
In this sense, bordered Heegaard-Floer homology and our constructions can be
viewed as natural generalizations of Juhász’s sutured Floer homology. (An even
greater level of generality is considered in [18].)

In light of the relation between Y(TY ) and ĈFA(Y ), it is interesting to
compare Theorem 4 with the pairing theorem obtained by Lipshitz, Ozsváth
and Thurston for bordered Heegaard-Floer homology [6]. In particular, a side-

by-side comparison suggests that the modules ĈFA(Y ) and ĈFD(Y ) might be
quasi-isomorphic.

Another surprising aspect, about which we can only offer speculation, is
the seemingly different manners in which bimodules arise in the two stories.
In our case, bimodules arise from sutured 3-manifolds viewed as cobordisms
between decorated surfaces, i.e. from bordered Heegaard diagrams where both
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α- and β-arcs are simultaneously present; and pairing results arise from “top-
to-bottom” stacking of cobordisms. On the other hand, the work of Lipshitz,
Ozsváth and Thurston [6, 7] provides a different construction of bimodules
associated to cobordisms between decorated surfaces, involving diagrams in
which there are no β-arcs; and pairing results arise from “side-by-side” gluing
of bordered Heegaard diagrams.

As a possible way to understand “side-by-side” gluing in our framework,
observe that given two decorated surfaces Fi = (Fi, Zi, αi) for i = 1, 2, and
given two points z1 ∈ Z1 and z2 ∈ Z2, we can form the boundary connected
sum F = F1 ∪∂ F2 of F1 and F2 by attaching a 1-handle (i.e., a band) to small
intervals of ∂F1 and ∂F2 containing z1 and z2 respectively. The surface F can be
equipped with the set of marked points Z = (Z1 \{z1})∪ (Z2 \{z2})∪{z−, z+},
where z− and z+ lie on either side of the connecting handle, and the collection
of properly embedded arcs α = α1 ∪ α2. Assume moreover that F1 and F2

satisfy the conditions of Proposition 11, so that the associated algebras are
honest differential algebras. Denoting by F the decorated surface (F,Z, α), it is
then easy to check that A(F, k) '

⊕
k1+k2=k

A(F1, k1)⊗A(F2, k2).

Now, given two 3-manifolds Y1, Y2 with boundary ∂Yi ' Fi ∪ D2, we can
form their boundary connected sum Y = Y1 ∪∂ Y2 by attaching a 1-handle
at the points z1, z2; then ∂Y = F ∪ D2, and the bordered Heegaard diagram
representing Y is simply the boundary connected sum of the bordered Heegaard
diagrams representing Y1 and Y2. Accordingly, the right A∞-module associated
to Y is the tensor product (over the ground field Z2!) of the right A∞-modules
associated to Y1 and Y2. In the case where F1 ' −F2, we can glue a standard
handlebody to Y in order to obtain a closed 3-manifold Ȳ , namely the result of
gluing Y1 and Y2 along their entire boundaries rather than just at small discs
near the points z1, z2. However, because the decorated surface F never satisfies
the assumption of Theorem 1 (the two new marked points z± lie in the same
component), the Yoneda functor to A∞-modules over A(F, g) is not guaranteed
to be full and faithful, so our gluing result does not apply.
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[7] R. Lipshitz, P. Ozsváth, D. Thurston, Bimodules in bordered Heegaard Floer

homology, arXiv:1003.0598.

[8] S. Ma’u, K. Wehrheim, C. Woodward, A∞-functors for Lagrangian correspon-

dences, preprint.
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1. Introduction

This paper will describe an application of my work on the foundations of quan-
tum field theory (much of it joint with Owen Gwilliam) to topology. I will show
how consideration of certain two-dimensional quantum field theories – called
holomorphic Chern-Simons theories – leads to a geometric construction of the
Witten genus.

Usually the Witten genus is defined by its q-expansion. In the construction
presented here, however, we find directly a function on the moduli space of
(suitable decorated) elliptic curves. It is only after careful calculation that we
can compute the q-expansion of this function and identify it with the Witten
class.

Hopefully, this construction will give some hints about the mysterious geo-
metric origins of elliptic cohomology.
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2. Hochschild Homology and the Todd Class

Before turning to elliptic cohomology and the Witten class, I will describe the
analog of my construction for the Todd class.

The most familiar way in which the Todd class occurs is, of course, in the
Grothendieck-Riemann-Roch theorem. Let me recall the statement. Let X be a
smooth projective variety, and let E be an algebraic vector bundle on X. Then,
the Grothendieck-Riemann-Roch theorem states that

∑
(−1)i dimHi(X,E) =

∫

X

Td(TX) ch(E).

Another (and closely related) way in which the Todd class appears is in
the study of deformation quantization. There is a rich literature on algebraic
and non-commutative analogs of the index theorem: see [Fed96, BNT02]. Much
of this literature concerns index-type statements on quantizations of general
Poisson manifolds. For the purposes of this paper, we are only interested in
the relatively simple case when we are quantizing the cotangent bundle of a
complex manifold X.

Let DiffX denote the algebra of differential operators onX. Let Diff~

X denote
the sheaf of algebras on X over the ring C[~] obtained by forming the Rees
algebra of the filtered algebra DiffX . Explicitly,

Diff~

X ⊂ DiffX ⊗C[~]

is the subalgebra consisting of those finite sums

∑
~
iDi

where Di is a differential operator of order at most i. Thus, Diff~

X is a C[~]
algebra whose specialization to ~ = 0 is the commutative algebra OT∗X of
functions on the cotangent bundle of X. When specialized to a non-zero value
of ~, Diff~

X is just DiffX .

2.1. The theorem we are interested in states that the Todd class of X appears
when one computes the Hochschild homology of the algebra Diff~

X . The index
theorem concerns, ultimately, traces of differential operators. Since HH(Diff~

X)
is the universal recipient of a trace on the algebra Diff~

X , it is perhaps not so
surprising that the Todd class should appear in this context.

2.2. Recall that the Hochschild-Kostant-Rosenberg theorem gives a quasi-
isomorphism

IHKR : HH(OX) ∼= Ω−∗(X).

HereHH(OX) refers to the sheaf of Hochschild chains of OX , and Ω−∗(X) refers
to the algebra of forms of X, with reversed grading. Applied to the cotangent
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bundle of X, the Hochschild-Kostant-Rosenberg theorem gives an isomorphism

IHKR : HH(OT∗X) ∼= Ω−∗(T ∗X).

The algebra Diff~

X is a deformation quantization of OT∗X . We will see that the
Todd genus appears when we study how HH(OT∗X) changes when we replace
OT∗X by Diff~

X .

2.3. Before we state the theorem, we need some notation. Let π ∈
Γ(T ∗X,∧2T (T ∗X)) denote the canonical Poisson tensor on T ∗X. Let

Lπ : Ωi(T ∗X) → Ωi−1(T ∗X)

denote the operator of Lie derivative with respect to π. Thus, if iπ is contraction
by π,

Lπ = [iπ, ddR].

Note that Lπ makes Ω−∗(T ∗X) into a cochain complex; the cohomology of this
complex is called Poisson homology.

Let
Td(X) ∈ H0(X,Ω−∗(X)) = ⊕Hi(X,Ωi)

be the Todd class of X. Note that the reversal of grading in the de Rham
complex means that Td(X) is an element of cohomological degree 0.

The first statement of the theorem is as follows.

Theorem 2.3.1 (Fedosov [Fed96], Bressler-Nest-Tsyan [BNT02]). There is a
natural quasi-isomorphism of cochain complexes

HH(Diff~

X) '
(
Ω−∗(T ∗X)[~], ~Lπ

)

sending 1 ∈ HH(Diff~

X) to

Td(X) ∈ RΓ(X,Ω−∗(X)).

2.4. This is a rather weak formulation of the theorem, because both sides in
the quasi-isomorphism are simply cochain complexes. There is a refined version
which identifies a certain algebraic structure present on both sides. It will take
a certain amount of preparation to state this refined version.

The operator Lπ is an order two differential operator with respect to the
natural product on Ω−∗(T ∗X). We will let {−,−}π denote the Poisson bracket
on Ω−∗(T ∗X) of cohomological degree 1 defined by the standard formula

{a, b}π = Lπ(ab)− (Lπa)b− (−1)|a|aLπb.

The bracket {−,−}π is of cohomological degree 1, and satisfies the standard
Leibniz rule. Further, Lπ is a derivation for the bracket {−,−}π.
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Theorem 2.4.2. There is a quasi-isomorphism of cochain complexes

HH(Diff~

X) '
(
Ω−∗(T ∗X)[~], ~Lπ + ~{log Td(X),−}

)
.

The isomorphism in this theorem is related to that of the previous formu-
lation by conjugating by Td(X).

2.5. The isomorphism appearing in this second formulation is the one that is
compatible with an additional algebraic structure. The structure is that of an
algebra over a certain operad, introduced by Beilinson and Drinfeld [BD04].

Definition 2.5.3. A Beilinson-Drinfeld algebra A is a flat graded C[~] module
endowed with the following structures.

1. A commutative unital product.

2. A Poisson bracket {−,−} of cohomological degree 1.

3. A differential D : A → A of cohomological degree 1, satisfying D2 = 0
and D1 = 0, such that

D(ab) = (Da)b+ (−1)|a|a(Db) + ~{a, b}.

The complex HH(Diff~

X) is endowed with the structure of Beilinson-
Drinfeld (or BD) algebra in a natural way.

The complex Ω−∗(T ∗X)[~]) also has the structure of BD algebra, with prod-
uct the ordinary wedge product of forms. The bracket is {−,−}π, and the
differential ~Lπ + ~{log Td(X),−}.

Proposition 2.5.4. The quasi-isomorphisms

HH(Diff~

X) '
(
Ω−∗(T ∗X)[~], ~Lπ + ~{log Td(X),−}

)
.

is a quasi-isomorphism of BD algebras.

In this lecture I will state a generalization of this result, in which the Witten
class appears in place of the Todd class.

3. Factorization Algebras

Hochschild homology, K-theory and the Todd genus are all intimately con-
cerned with the concept of associative algebra. In order to understand the
Witten genus, one needs to consider a richer algebraic structure called a factor-
ization algebra (or more precisely, a translation-invariant factorization algebra
on the complex plane C).

Factorization algebras can be defined on any smooth manifold: they can
be viewed as a “multiplicative” analog of a cosheaf. In the algebro-geometric
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context, factorization algebras were first considered by Beilinson and Drinfeld
[BD04].

In this section, I will give the formal definition of a factorization algebra,
and state a theorem (from [CG10]) which allows one to construct factoriza-
tion algebras using the machinery of perturbative renormalization developed in
[Cos10b].

The approach to constructing factorization algebras developed in [CG10] is
a quantum field theoretic analog of the deformation quantization approach to
quantum mechanics. Thus, a classical field theory yields a commutative factor-
ization algebra (I will define what this means shortly). Quantizing a classical
field theory amounts to replacing this commutative factorization algebra by a
plain factorization algebra. Just like the Todd genus of a complex manifold
X appears when one considers the deformation quantization of the cotangent
bundle T ∗X, we will see that the Witten genus arises when we consider the
quantization of a commutative factorization algebra associated to a classical
field theory whose fields are maps from a Riemann surface to T ∗X.

3.1. The definition of a factorization algebra is rather straightforward to give.

Definition 3.1.5. Let M be a manifold. A factorization algebra F on M con-
sists of the following data.

1. For every open set U ⊂ M , a cochain complex of topological vector spaces,
F(U).

2. If U1, . . . , Uk are disjoint open sets in M , all contained in a larger open
set V , a continuous linear map

F(U1)⊗ · · · ⊗ F(Uk) → F(V )

(where we use the completed projective tensor product).

3. These maps must satisfy an evident compability condition, which says that
different ways of composing these maps yield the same answer.

4. Finally, we need a locality axiom, saying that every element of F(V ) can
be built from elements of F(U) for arbitrarily small open subsets U of V .

Let V ⊂ M , and let V = {Vi | i ∈ I} be an open cover of V . Then, we
require that

F(V ) = hocolimU1,...,Un
F (U1)⊗ · · · ⊗ F (Un)

where U1, . . . , Un are disjoint subsets of V , each of which is contained in
some Vj.

If U1, U2 are disjoint subsets, then a particular case of this axiom says
that

F(U1 q U2) = F(U1)⊗ F(U2).
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This definition is reminiscent of that of an En algebra. In fact, Jacob Lurie
has shown the following [Lur09].

Proposition 3.1.6. There is an equivalence of (∞, 1)-categories between the
category of En algebras, and the category of factorization algebras F on R

n with
the additional property that if B ⊂ B′ are balls, the map

F(B) → F(B′)

is a quasi-isomorphism.

In another direction, what we call a factorization algebra is the C∞ analog of
a definition introduced by Beilinson and Drinfeld [BD04]. Beilinson and Drinfeld
introduced the notion of chiral algebra in order to give a geometric formulation
of the axioms of a vertex algebra. In particular, every vertex algebra yields a
chiral algebra on the complex line C, and one can turn this into a factorization
algebra on C (considered as a Riemann surface).

3.2. As our first example of a factorization algebra, let us see how a differential
graded associative algebra A gives rise to a translation-invariant factorization
algebra FA on R.

We will define the value of FA on the open intervals of R; the value of FA

on more complicated open subsets is formally determined by this data.

Let −∞ ≤ a < b ≤ ∞, and let (a, b) be the corresponding (possibly infinite)
open interval in R. We set

FA((a, b)) = A.

If (a, b) ⊂ (c, d), then the map

FA((a, b)) → FA((c, d))

is the identity map on A.

If −∞ ≤ a1 < b1 < a2 < b2 < · · · < an < bn ≤ ∞, then the intervals (ai, bi)
are disjoint. Part of the data of a factorization algebra is thus a map

FA((a1, b1))⊗ · · · ⊗ FA((an, bn)) → FA((a1, bn)).

Once we identify each FA((ai, bi)) with A, this map is the n-fold product map

A⊗n → A

α1 ⊗ · · · ⊗ αn 7→ α1 · α2 · · · · · αn.

The value of FA on any other open subset of R is determined from this data
by the axioms of a factorization algebra.
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4. Descent and Factorization Homology

In this paper, we are only interested in translation-invariant factorization alge-
bras on C. In this section, we will see that associated to such a factorization
algebra F, and to an elliptic curve E, equipped with a never-vanishing volume
element ω, one can define the factorization homology

FH(E,F).

Factorization homology is the analog, in the world of factorization algebras, of
Hochschild homology.

As motiviation, I will first explain how the Hochschild homology groups of
an associative algebra A can be viewed as the factorization homology of the
translation-invariant factorization algebra FA on R associated to A.

4.1. Factorization algebras satisfy a gluing axiom. Suppose that our manifold
M is written as a union M = U ∪V of two open subsets. If F is a factorization
algebra on an open subset U ⊂ M , and if G is a factorization algebra on V , and
if

φ : F |U∩V → G |U∩V

is an isomorphism of factorization algebras on U ∩ V , then we can construct a
factorization algebra H on M , whose restriction to U is F and whose restriction
to V is G.

Similarly, factorization algebras satisfy descent. Suppose that a discrete
group G acts properly discontinuously on a manifold M , and suppose that F̃ is
a G-equivariant factorization algebra on M . Then, F̃ descends to a factorization
algebra F on the quotient M/G.

4.2. Since we will be using the descent property extensively, it is worth ex-
plaining how one constructs the descended factorization algebra F. Let us
choose an open cover of M/G by connected and simply connected open subsets

{Ui}. Let us choose open subsets Ũi ⊂ M which map homeomorphically onto
Ui.

Then, if V ⊂ M/G is an open subset which lies in some Ui, we set

F(V ) = F̃(Ṽ )

where Ṽ ⊂ Ũi is the lift of V .
If V ⊂ Ui ∩ Uj , then the fact that the factorization algebra F̃ on M is

G-equivariant implies that F(V ) is independent of the lift we choose.
If V ⊂ M/G is an arbitrary open subset of M/G, then we set

F(V ) = hocolimV1,...,Vn
F̃(Ṽ1)⊗ · · · F̃(Ṽn)

where the homotopy colimit is over open subsets V1, . . . , Vn ⊂ M/G each of
which lies inside one of the subsets Uj .
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4.3. This descent property implies that any translation-invariant factorization
algebra F on R descends to a factorization algebra FS1

on S1 = R/Z. We will
let

FH(S1,F) = FS1

(S1)

denote the complex of global sections of the factorization algebra FS1

on S1.
We will refer to the complex FH(S1,F) as the factorization homology complex
of S1 with coefficients in F.

Lemma 4.3.7. Let FA denote the factorization algebra on R associated to
a differential graded associated algebra A. Then, there is a natural quasi-
isomorphism

FH(S1,FA) ' HH(A)

between the factorization homology complex of S1 with coefficients in FA, and
the Hochschild complex of A.

Proof. If one analyzes the descent prescription described above, one sees that

FH(S1,FA) = hocolimI1,...,In A⊗n

where the homotopy colimit is over disjoint unordered intervals in S1. The maps
in this homotopy colimit just arise form multiplication in A. One sees that a
complex which looks like the ordinary cyclic bar complex emerges from this
procedure. In [Lur09] it is proven that the result of this homotopy colimit is
indeed homotopy equivalent to the cyclic bar complex.

4.4. If λ ∈ R>0, let S1
λ be the quotient of R by the lattice λZ. If F is a

translation-invariant factorization algebra on R, then we can descend F to a
factorization algebra on S1

λ, and thus define factorization homology FH(S1
λ,F).

When λ = 1, this coincides with the definition given above. In principle, there
is no reason that FH(S1

λ,F) should be independent of λ.
If we use the factorization algebra FA arising from an associative algebra

A, then all the factorization homology complexes FH(S1
λ,FA) are canonically

isomorphic. This is because the factorization algebra FA on R is not only trans-
lation invariant but also dilation invariant.

4.5. As I mentioned earlier, the factorization algebras relevant to the Witten
genus are translation-invariant factorization algebras on C. Let F be such a
factorization algebra. Let E be an elliptic curve equipped with a volume element
ω. We will write E as a quotient C/Λ of C by a lattice Λ, in such a way that
form ω on E pulls back to the volume form dz on C.

Since F is translation-invariant, it is in particular invariant under Λ. Thus,
F descends to a factorization algebra FE on E. We define the factorization
homology complex of E with coefficients in F by

FH(E,F) = FE(E).

Thus, FH(E,F) is the global sections of FE on E.
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Thus, there is an analog of the Hochschild homology groups for every elliptic
curve E with volume element ω.

5. Main Theorem

The main theorem states that the Witten class of a complex manifold X arises
when one considers the factorization homology of a certain sheaf (on X) of
translation-invariant factorization algebras on C. Before I state this theorem, I
need to recall the definition of the Witten class.

5.1. Let E be an elliptic curve, and let ω be a translation-invariant volume
element on E. The Witten class

Wit(X,E, ω) ∈ RΓ(X,Ω−∗(X)) = ⊕Hi(X,Ωi(X))

is a cohomology class, defined as follows.

Let

E2k(E,ω) =
∑

λ∈Λ

λ−2k

be the Eisenstein series of the marked elliptic curve (E,ω). Here, as before,
we are writing E as the quotient of C by a lattice Λ, in such a way that ω
corresponds to dz.

The Witten class of X is defined by

Wit(X,E, ω) = exp




∑

k≥2

(2k − 1)!

(2πi)2k
E2k(E,ω)ch2k(TX)



 .

If τ is in the upper half-plane, let (Eτ , ωτ ) denote the elliptic curve associ-
ated to the lattice generated by (1, τ), with volume form ωτ corresponding to
dz. Then, the Witten class has the property that

lim
τ→i∞

Wit(X,Eτ , ωτ ) = e−c1(TX)/2 Td(TX).

This follows from the identities

lim
τ→i∞

E2k(Eτ , ωτ ) = 2ζ(2k)

∑

k≥1

2ζ(2k)
x2k

2k(2πi)2k
= log

(
x

1− e−x

)
−

x

2

where ζ is the Riemann zeta function.
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5.2. Now we can state the theorem.

Theorem 5.2.8. Let X be a complex manifold, equipped with a trivializa-
tion of the second Chern character ch2(TX). Then, there is a sheaf D~

X,ch

of translation-invariant factorization algebras on C, over the algebra C[~], such
that, for every elliptic curve E with volume element ω, there is a natural iso-
morphism of BD algebras

FH(E,D~

X,ch) '
(
Ω−∗(T ∗X)[~], ~Lπ + ~{logWit(X,E, ω),−}

)
.

Alternatively, there is an isomorphism of cochain complexes

FH(E,D~

X,ch) '
(
Ω−∗(T ∗X)[~], ~Lπ

)
.

sending

1 → Wit(X,E, ω).

The factorization algebra appearing in this theorem is an analytic avatar
of the chiral differential operators constructed by Gorbounov, Mailkov and
Schechtman [GMS00]. Note that in their work, the q-expansion of the Witten
genus appears as the character of the algebra of chiral differential operators.
The way the Witten genus appears in this paper is somewhat different, and
has the advantage that we see the Witten genus directly as a function on the
moduli space of elliptic curves, and not just as a q-expansion.

6. Factorization Algebras from Quantum Field

Theory

A factorization algebra is the algebraic structure satisfied by the observables of
a quantum field theory. In [CG10] we prove a theorem allowing one to construct
factorization algebras using the techniques of perturbative renormalization. The
factorization algebra D~

X,ch encoding the Witten genus will be constructed by
quantizing a certain two-dimensional quantum field theory, called holomorphic
Chern-Simons theory.

Before I discuss this particular quantum field theory, let me explain, heuris-
tically, why one would expect the observables of a quantum field theory to form
a factorization algebra. Suppose we have a quantum field theory (whatever that
is) on a manifold M . Then, for every open subset U ⊂ M , we would expect the
set of observables on U – that is, the set of measurements that can be made by
an observer in the open subset U – to form a vector space, which we call F(U).

If U ⊂ V , then an observable on U will, in particular, be an observable on
V , so that we get a map F(U) → F(V ).

If U1 and U2 are disjoint, we would expect that all obervables on U1qU2 are
obtained by taking the product of an observable on U1 with one on U2. Thus,
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we would expect that

F(U1 q U2) = F(U1)⊗ F(U2).

Together, these maps give F the structure of a factorization algebra.

6.1. The idea that the observables of a quantum field theory form a factor-
ization algebra is compatible with two familiar examples.

Quantum mechanics is a quantum field theory on the real line R. The obser-
ables for quantum mechanics form an associative algebra. Associative algebras
are a particular class of factorization algebras on R. In [CG10], we show that the
factorization algebra associated to the free field theory on R is, in fact, an E1

algebra; specifically, it is the familiar Weyl algebra of observables of quantum
mechanics.

A second well-understood example is conformal field theory. The observables
of conformal field theory on C form a vertex algebra; and, as we have seen,
vertex algebras are a special class of factorization algebra C.

6.2. Let me now briefly state the results of [CG10] and [Cos10b], allowing one
to construct factorization algebras.

In [Cos10b], I gave a definition of a quantum field theory on a manifold M ,
using a synthesis between Wilson’s concept of a low-energy effective field theory
and the Batalin-Vilkovisky formalism for quantizing gauge theories. Further, I
developed techniques (based on the machinery of perturbative renormalization)
allowing one to construct such quantum field theories from Lagrangians.

Many quantum field theories of physical and mathematical interest, such as
Chern-Simons theory and Yang-Mills theory, can be put in this framework.

The most succinct way to state the main construction of [CG10] is as follows.

Theorem 6.2.9. Any quantum field theory in the sense of [Cos10b], on a
manifold M , yields a factorization algebra on M .

We have seen that factorization algebras satisfy a descent property: if a
discrete group G acts properly discontinuously on a manifold M , then a G-
equivariant factorization algebra F̃ on M descends to the quotient M/G. Quan-
tum field theories in the sense of [Cos10b] satisfy a similar descent property,
and the construction of a factorization algebra from a quantum field theory is
compatible with descent.

7. Deformation Quantization in Quantum Field

Theory

In this section, I will explain a little about how one associates a factorization
algebra to a classical or quantum field theory. We will see that the procedure
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of quantizing a classical field theory can be interpreted in algebraic terms as a
kind of deformation quantization in the world of factorization algebras.

The observables of a classical mechanical system form a commutative al-
gebra, whereas the observables of a quantum mechanical system are only an
associative algebra. We should view this commutativity as being an extra struc-
ture present on the observables of a classical system.

There is a similar story in field theory: the observables of a classical field
theory on a manifold M have an extra structure, that of a commutative factor-
ization algebra.

Factorization algebras form a symmetric monoidal category: if F,G are fac-
torization algebras, then we can define a factorization algebra F ⊗ G by the
formula

(F ⊗ G) (U) = F(U)⊗ G(U)

for an open subset U ⊂ M .

Definition 7.0.10. A commutative factorization algebra is a commutative al-
gebra in the category of factorization algebras.

Thus, a commutative factorization algebra assigns to every U ⊂ X a com-
mutative algebra F(U), and to inclusion maps U ↪→ V , a map of commutative
algebras.

7.1. The main object of interest in a classical field theory is the space of
solutions to the Euler-Lagrange equation. If U ⊂ M is an open set, let EL(U)
be this space. Sending U 7→ EL(U) defines a sheaf of formal spaces on M .

This sheaf of solutions to the Euler-Lagrange equations can be encoded in
the structure of a commutative factorization algebra. If U ⊂ M is an open
subset, we will let O(EL(U)) denote the space of functions on EL(U).

Sending U 7→ O(EL(U)) defines a commutative factorization algebra: if
U1, . . . , Un are disjoint open subsets of Un+1, there is a restriction map

EL(Un+1) → EL(U1)× · · · × EL(Un).

Replacing the map of spaces by the corresponding map of algebras of functions
yields the desired structure of commutative factorization algebra.

7.2. In the familiar deformation quantization story, the algebra of observables
of a classical mechanical system is a commutative algebra endowed with an extra
structure, namely a Poisson bracket. This extra structure is what tells us that
the commutative algebra “wants” to deform into an associative algebra.

There is a similar picture in the world of factorization algebras: the commu-
tative factorization algebra associated to a classical field theory is endowed with
an extra structure, which makes it “want” to deform into a plain factorization
algebra.
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Ordinary Poisson algebras interpolate between commutative algebras and
associative (or E1) algebras. For us, the object describing the observables of a
quantum field theory is not an E1 algebra in a symmetric monoidal category;
instead, it is an E0 algebra. An E0 algebra in vector spaces is simply a vector
space with an element. An E0 algebra in any symmetric monoidal category is an
object of this category with a map from the unit object. An E0 algebra in the
symmetric monoidal category of factorization algebras is simply a factorization
algebra, as every factorization algebra is equipped with a unit.

Thus, the analog of the Poisson operad we are searching for is an operad
that interpolates between the commutative operad and the E0 operad. Such an
operad was constructed by Beilinson and Drinfeld [BD04]; we will call it the
BD operad 1.

Definition 7.2.11. Let P0 be the graded operad over C generated by a commu-
tative and associatve product, ∗, and a Poisson bracket {−,−} of cohomological
degree +1.

Let BD denote the differential graded operad over the ring C[~] which, as a
graded operad, is simply P0 ⊗ C[~], but which is equipped with differential

d∗ = ~{−,−}.

If we specialize to ~ = 0, we find the BD operad becomes the operad P0. If
we specialize to ~ = 1, however, the BD operad becomes the E0 operad. Thus,
we find that the operad P0 bears the same relationship to the operad E0 as the
usual Poisson operad bears to the associative operad E1.

Definition 7.2.12. A Poisson factorization algebra on M is a P0 algebra in
the category of factorization algebras on M . A quantization of a Poisson factor-
ization algebra Fcl is a BD algebra Fq in the category of factorization algebras
on M , together with an isomorphism

Fq ⊗C[~] C
∼= Fcl

of Poisson factorization algebras.

7.3. Now we can restate the main results of [CG10].

Theorem 7.3.13. Every classical field theory on M gives rise to a Poisson
factorization algebra on M . A quantization of this classical field theory (in the
sense of [Cos10b]) gives rise to a quantization of this Poisson factorization
algebra.

1Beilinson and Drinfeld called this operad the Batalin-Vilkovisky operad. However, in

the literature, the Batalin-Vilkovisky operad has, unfortunately, come to refer to a different

object.
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What I mean by a classical field theory on M is detailed in [Cos10b], but
it is something rather familiar. There is a space of fields, which is taken to
be the space E of sections of some vector bundle E on M , or more generally
some space of maps M → N to some other manifold N . In addition, there is
an action functional S : E → R (or to C), which is taken to be the integral
of some Lagrangian density. When dealing with theories with gauge symmetry,
this basic picture needs to be modified by the introduction of fields which
possess a cohomological degree. This more sophisticated picture is known as
the Batalin-Vilkovisky formalism.

In [Cos10b, CG10] we always work in the Batalin-Vilkovisky formalism.
Thus, our space of classical fields is equipped with a symplectic form of coho-
mological degree −1. The fact that the factorization algebra of observables of a
classical field theory is equipped with a Poisson bracket of degree +1 is simply
a version of the familiar statement that the algebra of functions on a symplectic
manifold has a natural Poisson bracket.

8. Holomorphic Chern-Simons Theory

As we have seen, when we work in the BV formalism, the space of classical
fields is a (typically infinite dimensional) differential graded manifold equipped
with a symplectic form of cohomological degree −1. The action functional is
a secondary object in this approach. The differential on the space of fields
preserves the symplectic form, and thus, at least locally, is given by Poisson
bracket with some Hamiltonian function S, of cohomological degree zero. This
function is the classical action.

In the paper [AKSZ97], Alexandrov, Kontsevich, Schwartz and Zabronovsky
introduced a beautiful and general method for constructing classical field the-
ories in the BV formalism. Many quantum field theories studied in mathe-
matics arise from the AKSZ construction. For example, Chern-Simons theory,
Rozansky-Witten theory and the Poisson σ model all fit very naturally into
this framework.

For us, the relevance of the AKSZ construction is that the classical field
theory related to the Witten genus arises most naturally from the AKSZ con-
struction.

Before I introduce the AKSZ construction, we need some notation.

Definition 8.0.14. A differential graded manifold is a smooth manifold X
equipped with a sheaf OX of differential graded commutative algebras over
C, with the property that OX is locally isomorphic as a graded algebra to
C∞

X [[x1, . . . , xn]], where xi are formal variables of cohomological degree di ∈ Z.

In this definition, C∞
X refers to the sheaf of complex-valued smooth functions

on X. One can talk about geometric structures – such as Poisson or symplectic
structures – on a differential graded manifold.
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If X is a smooth manifold, we will let XdR denote the dg manifold whose
underlying smooth manifold is X, and whose sheaf of functions is the complex-
ified de Rham complex Ω∗

X of X. If X is a complex manifold, we will let X∂

denote the dg manifold whose underlying smooth manifold is X, and whose
sheaf of functions is the Dolbeault complex Ω0,∗

X .

8.1. Now we can explain the AKSZ construction. Suppose we have a compact
differential graded manifoldM , equipped with volume element of cohomological
degree k. Let N be a differential graded manifold with a symplectic form of
cohomological degree l. Then, the infinite-dimensional differential graded man-
ifold Maps(M,N) acquires a symplectic form of cohomological degree l − k.

If f : M → N is a map, then the tangent space to Maps(M,N) at f is

Tf Maps(M,N) = Γ(M,f∗TN).

We define a pairing on Tf Maps(M,N) by the formula

〈α, β〉 =

∫

M

〈α, β〉N .

Since the integration map
∫
M

: C∞(M) → R is of cohomological degree −k,
and the symplectic pairing on TN is of cohomological degree m, the pairing on
Tf Maps(M,N) is of cohomological degree m − k. The case of interest in the
Batalin-Vilkovisky formalism is when m− k = −1.

There is a variation of this construction which applies when the source
manifold M is non-compact. In this situation, the space Maps(M,N) has a
natural integrable distribution given by the subspace

Γc(M,f∗TN) ⊂ T c
f Maps(M,N) ⊂ Tf Maps(M,N)

consisting of compactly supported tangent vector fields. In this situation, in-
stead of having a symplectic pairing on Tf Maps(M,N), we only have one on the
distribution T c

f Maps(M,N). The action functional, instead of being a closed
one-form on Maps(M,N), is a closed one-form on the leaves of the foliation.

8.2. There are two broad classes of AKSZ theories which are commonly con-
sidered. These are the theories of Chern-Simons type, and the theories of holo-
morphic Chern-Simons type.

The two classes of theories are distinguished by the nature of the source dg
manifold M . In theories of Chern-Simons type, the source differential graded
ringed space is XdR, where X is an oriented manifold. The orientation on X
gives rise to a volume element on XdR of cohomological degree dim(X).

The target manifolds for Chern-Simons theories of dimension k are dg sym-
plectic manifolds of dimension k − 1. For example, perturbative Chern-Simons
theory arises when we take the target to be the dg manifold whose underly-
ing manifold is a point, and whose algebra of functions is the algebra C∗(g)
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of cochains on a semi-simple Lie algebra g. The Killing form endows this dg
manifold with a symplectic form of cohomological degree 2. This theory is per-
turbative, because maps MdR → C∗(g) are the same as connections on the
trivial principal G bundle which are infinitesimally close to the trivial connec-
tion.

Non-perturbative Chern-Simons theory arises from a genearlized form of the
AKSZ construction whcih takes the stack BG as the target manifold. Vector
bundles on BG are the same as G-modules; the tangent bundle of BG is the
adjoint module g[1]. The Killing form on g is G-equivariant, and so gives rise
to a symplectic form on BG of cohomological degree 2.

Rozansky-Witten theory also arises from this framework. Let X∂ be a holo-
morphic symplectic manifold. Let us work over the base ring C[q, q−1] where q
is a parameter of degree −2. Then the symplectic form q−1ω on X∂ is of coho-
mological degree 2, and so we can define a 3-dimensional Chern-Simons type
theory. The fields of this theory are maps MdR → X∂ , where M is a 3-manifold,
and everything takes place over the base ring C[q, q−1].

Another example is the Poisson σ-model of [Kon03, CF00]. Here, the source
is ΣdR where Σ is a smooth surface. The target is the differential graded man-
ifold T ∗[1]N , whose underlying smooth manifold is N , and whose algebra of
functions is Γ(N,∧∗TN). The Schouten-Nijenhuis bracket {−,−} endows this
dg manifold with a symplectic form of cohomological degree 1. The differential
on Γ(N,∧∗TN) is given by bracketing with the Poisson tensor π.

8.3. Let us now discuss holomorphic Chern-Simons theory, which is the only
quantum field theory we will be concerned with in this paper. In holomorphic
Chern-Simons theory, the source dg manifold is X∂ , where X is a complex man-
ifold equipped with a never-vanishing holomorphic volume element ω (thus, X
is a Calabi-Yau manifold). This volume form can be thought of as a volume ele-
ment on X∂ of cohomological degree dimC(X). Integration against this volume
element is simply the map

Ω0,dimC(X)(X) → C

α 7→

∫

X

ω ∧ α.

Theories of holomorphic Chern-Simons type on Calabi-Yau manifolds of
complex dimension k can thus be constructed from dg symplectic manifolds
with a symplectic form of cohomological degree k − 1.

In this paper, we are only interested in one-dimensional holomorphic Chern-
Simons theories. In these theories, the source dg manifold is Σ∂ , where Σ is a
Riemann surface equipped with a never-vanishing holomorphic volume form.
The target is Y∂ , where Y is a holomorphic symplectic manifold. (The holo-
morphic symplectic form can be thought of as a dg symplectic form on Y∂).
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8.4. We can now give a more precise statement of the theorem relating elliptic
cohomology and the Witten genus.

Theorem 8.4.15. Let X be a complex manifold. Then,

1. The obstruction to quantizing the holomorphic Chern-Simons theory
whose fields are maps C∂ → (T ∗X)∂ is

ch2(TX) ∈ H2(X,Ω2
cl(X))

where Ω2
cl(X) is the sheaf of closed holomorphic 2-forms on X.

2. If this obstruction vanishes (or, more precisely, is trivialized), then we
can quantize holomorphic Chern-Simons theory to yield a factorization
algebra on C with values in quasi-coherent sheaves on XdR × SpecC[~].
We will call this factorization D~

X,ch.

3. If E is an elliptic curve, then there is a quasi-isomorphism of BD algebras
in quasi-coherent sheaves on XdR × C[~]

FH(E,D~

X,ch) '
(
Ω−∗(T ∗X)[~], ~Lπ + ~{logWit(X,E)−}

)
.

8.5. Recall that the factorization homology complex FH(E,D~

X,ch) is defined

by first constructing a factorization algebra DE,~
X,ch on E, using the descent

property of factorization algebras; and then taking global sections.
Quantum field theories in the sense of [Cos10b] have a descent property

similar to that satisfied by factorization algebras, and the construction of a
factorization algebra from a quantum field theory is compatible with descent.
The quantum field theory on an elliptic curve E which arises by descent from
holomorphic Chern-Simons theory on C is simply holomorphic Chern-Simons
theory on E.

Thus, one can interpret the factorization homology group FH(E,D~

X,ch) in
terms of holomorphic Chern-Simons theory on the elliptic curve E. From this
point of view, FH(E,D~

X,ch) is the cochain complex of global observables for
the holomorphic Chern-Simons theory of maps E → T ∗X.

This theorem is proved using the Wilsonian approach to quantum field the-
ory developed in [Cos10b]. The result is then translated into the language of
factorization algebras. The proof appears in [Cos10a].
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Abstract

The first decade of the 2000’s has seen remarkable progress in the theory of
hyperbolic 3-manifolds. We report on some of these developments.
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1. Introduction

Hyperbolic geometry and 3-manifold topology have long and rich histories. (See
[Miln] for highlights of hyperbolic geometry from the 19th century through
the 1970’s and and [Gor] for highlights of 3-manifold theory from the end of
the 19th century to 1960.) In the 1970’s both fields were revolutionized by
Thurston’s work on hyperbolization and more generally geometrization. These
fields were also deeply affected by Marden’s earlier pioneering work introduc-
ing modern 3-manifold topology into Kleinian group theory. Many of the prob-
lems and conjectures that drove contemporary research in these fields were
formulated during the 1970’s. For many years, despite intense effort and in-
cremental progress these problems seemed intractable. However, this decade
has seen unusual progress with the resolution of Marden’s tameness conjec-
ture, Thurston’s ending lamination conjecture, the Bers - Sullivan - Thurston
density conjecture, the Smale conjecture for hyperbolic 3-manifolds, the iden-
tification of the minimal volume hyperbolic 3-orbifold and 3-manifold, and
Perelman’s spectacular proof of Thurston’s geometrization conjecture. This pa-
per will survey these and other developments including recent work on the
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topology of ending lamination space. We will also highlight some interesting
open questions.

Unless otherwise stated all manifolds in this paper will be orientable.

2. Hyperbolization Theorem

Theorem 2.1. (Perelman) Let N be a closed, connected irreducible 3-manifold
such that |π1(N)| = ∞ and Z⊕Z is not a subgroup of π1(N), then N admits a
hyperbolic structure, i.e. it supports a metric of constant -1 sectional curvature.

Remark 2.2. More generally Perelman proved Thurston’s geometrization con-
jecture including the Poincare conjecture. See [P1], [P2], [KL], [MT1], [MT2],
[BBBMP], for expositions and elaborations of Perelman’s work.

Theorem 2.1 was proven for closed Haken manifolds by Thurston in 1978.
A Haken 3-manifold is a compact irreducible 3-manifold containing an em-
bedded π1-injective embedded surface which is not the 2-sphere. In the 1970’s
Thurston also showed that the interior of a compact irreducible 3-manifold N
with boundary a non empty union of tori supports a complete finite volume
hyperbolic structure if and only if every Z⊕Z subgroup of π1(N) is peripheral
(i.e. is conjugate to a subgroup of π1 of a boundary component) and π1(N) is
not virtually abelian.

3. Generalized Smale Conjecture for Hyperbolic
3-manifolds and the Log(3)/2 Theorem

The Mostow Rigidity theorem [Most], [Ma], [Pra] asserts that a complete fi-
nite volume hyperbolic 3-manifold N has a unique hyperbolic structure, up to
isometry homotopic to the identity. Being homotopic, rather than isotopic to
the identity leaves open the possibility that the space of hyperbolic metrics is
not path connected, hence the possibility that there exists a loop γ ⊂ N and
hyperbolic metrics ρ0, ρ1 such that for i = 0, 1 with respect to metric ρi, γ is
homotopic to the geodesic γi but γ0 is not isotopic to γ1. In [GMT] completing a
program begun in [G1] and [G2], Robert Meyerhoff, Nathaniel Thurston and the
author showed that the space of hyperbolic metrics is indeed path connected.
Subsequently, using those papers I proved the generalized Smale conjecture for
hyperbolic 3-manifolds.

Theorem 3.1. ([G3]) If N is a closed hyperbolic 3-manifold, then the inclusion
of the isometry group Isom(N) into the diffeomorphism group Diff(N) is a
homotopy equivalence. Consequently, the space of hyperbolic metrics on N is
contractible and the space of diffeomorphisms of N homotopic to the identity is
contractible.
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Remark 3.2. The corresponding result was proven for Haken manifolds and
hence non compact complete finite volume manifolds in 1976 modulo the Smale
conjecture, by Hatcher [Ha1] and Ivanov [Iv1], [Iv2]. Hatcher proved the Smale
conjecture in 1983 [Ha2]. See Problem 3.47 [Ki] for a precise statement of the
generalized Smale conjecture, including the following

Problem 3.3. Prove the generalized Smale conjecture for orbifolds and spher-
ical 3-manifolds.

The proof of Theorem 3.1 relied on the following Log(3)/2 theorem of
[GMT].

Theorem 3.4. ([GMT]) Let δ be a shortest geodesic in the closed hyperbolic 3-
manifold N . Then either δ is the core of an embedded tube of radius log(3)/2 =
.549306... or N is finitely covered by a manifold lying in one of seven exceptional
families of manifolds. Furthermore, if tuberadius(δ) < log(3)/2, then either
N =Vol3 or 0.5295 < tuberadius(δ) < .5476 and 1.059 < length(δ) < 1.213.

Remark 3.5. Here Vol3 is the third smallest closed 3-manifold in the Snap-
pea census and was shown [GMT] to be the unique manifold in one of those
families. Subsequently Champanerkar, Lewis, Lipyanskiy and Meltzer [CLLM],
showed that each exceptional family contains a unique manifold. They fur-
ther showed that the fundamental group of each these manifolds has two gen-
erators and two relators, where the relators were the quasi-relators given in
[GMT]. Denoting these manifolds by N0, · · · , N6, then N0 =Vol3 and they ex-
plicitly identified five of the other six manifolds. The last one was described
in [Ly]. In particular they identified N2 as s778(-3,1) in the Snappea cen-
sus [We]. In the appendix of [CLLM] Reid showed that N5 and N6 are iso-
metric and that N1 and N5 nontrivally cover no manifold. Earlier Jones and
Reid showed that N0 =Vol3 covers no manifold. It was also shown in [CLLM]
that no exceptional manifold covers a non orientable manifold since for all
i, |H1(Ni)| < ∞.

Problem 3.6. Find all the manifolds finitely covered by N2, N3 and N4. Give
a complete list of all closed orientable hyperbolic 3-manifolds with a shortest
geodesic that does not have a log(3)/2 tube.

Remark 3.7. In [GMT] we conjectured that no manifold is nontrivally covered
by an exceptional manifold. However, very recently, while working with the
Snappea computer program [We], Maria Trnkova and the author, observed
that N2 two fold covers m010(-2,3).

Theorem 3.4 plays a crucial role in obtaining lower bounds on volumes of
hyperbolic 3-manifolds. It would be extremely useful to have such a theorem for
non orientable 3-manifolds and for cusped manifolds. The following is a variant
of Problem 10.7 from [GMM3] for non orientable 3-manifolds.
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Question 3.8. If δ is a shortest geodesic in a closed non orientable 3-manifold
N , then is tuberadius(δ) > log(3)/2 or is N one of a reasonably small number
of explicitly described exceptional manifolds?

4. Marden’s Tameness Conjecture, Bers -
Sullivan - Thurston Density Conjecture and
Thurston’s Ending Lamination Conjecture

Ian Agol [Ag1] and Danny Calegari and the author [CG] independently proved
the Marden Tameness Conjecture. In fact we both proved the following.

Theorem 4.1. If N is a complete hyperbolic 3-manifold with finitely generated
fundamental group, then N is geometrically and topologically tame.

Remark 4.2. Topologically tame means that N is homeomorphic to the in-
terior of a compact manifold. Marden’s tameness conjecture [Ma] asserts the
topological tameness conclusion of Theorem 4.1.

Remark 4.3. We [CG] proved Theorem 4.1 by first showing that N is geo-
metrically tame. In 1990 Canary [Ca1] proved that topological tameness implies
geometric tameness.

Theorem 4.1 has many applications to the theory of hyperbolic 3-manifolds.

Theorem 4.4. (Ahlfors’ measure conjecture [A]) If Γ is a finitely generated
Kleinian group, then the limit set LΓ is either S2

∞
or has Lebesgue measure

zero. If LΓ = S2
∞
, then Γ acts ergodically on S2

∞
.

Remark 4.5. Thurston reduced the Ahlfors’ Conjecture to showing that N =
H3/Γ is geometrically tame. His proof was clarified in the work of Bonahon and
Canary. See Corollary 8.12.4 [T1], [Bo] and [Ca1].

Theorem 4.1 completed the proof of the following monumental Theorem
4.6. The last part of Theorem 4.6 requires the ending lamination theorem of
Minsky [Mi] and Brock - Canary - Minsky [BCM] which was proven modulo
Theorem 4.1. Various other chunks (some enormous) are due to Ahlfors, Bers,
Kra, Marden, Maskit, Mostow, Prasad, Sullivan, Thurston, Masur - Minsky,
Ohshika, Kleineidam - Souto, Lecuire, Kim - Lecuire - Ohshika, Hossein - Souto
and Rees.

Theorem 4.6. (Classification theorem) If N is a complete hyperbolic 3-
manifold with finitely generated fundamental group, then N is determined up
to isometry, by its topological type, the conformal boundary of its geometrically
finite ends and the ending laminations of its geometrically infinite ends.
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The following is the main special case of the celebrated ending lamination
theorem. The first part of the conclusion was conjectured by Thurston and is
what is needed for Theorem 4.6.

Theorem 4.7. [Mi], [BCM] Let N = H3/Γ be a complete hyperbolic 3-manifold
homeomorphic to S×R, where S is a closed surface of genus ≥ 2. Suppose that
the limit set of Γ is the whole 2-sphere. Then N is determined up to isometry
by the ending laminations of its geometrically infinite ends. Furthermore, N is
bi-Lipshitz homeomorphic to a model 3-manifold that is determined from the
ending laminations.

Remark 4.8. Theorem 4.1 is one of many important ingredients to the positive
resolution of the following Bers - Sullivan - Thurston density conjecture, due
to Ahlfors, Bers, Kra, Marden, Maskit, Mostow, Prasad, Sullivan, Thurston,
Masur - Minsky, Ohshika, Kleineidam - Souto, Lecuire, Kim - Lecuire - Ohshika,
Hossein - Souto, Rees, Bromberg and Brock - Bromberg.

Theorem 4.9. (Density Theorem) If N = H3/Γ is a complete hyperbolic 3-
manifold with finitely generated fundamental group, then Γ is the algebraic limit
of geometrically finite Kleinian groups.

Remark 4.10. Theorem 4.1 is also one of many results needed to prove the
following interesting and recent theorems.

Theorem 4.11. (Culler - Shalen [CS]) If M is a closed hyperbolic 3-manifold
with Vol(M) ≤ 3.44, then rankZ2

H1(M,Z2) ≤ 7.

Theorem 4.12. (Long - Reid [LR]) If M is a closed hyperbolic 3-manifold,
then π1(M) is Grothendieck rigid. I.e. there does not exist a proper finitely
generated subgroup H ⊂ π1(M) such that û : Ĥ → π̂1(M) is an isomorphism,
where u : H → π1(M) is inclusion and “hat” denotes the profinite topology.

In [Ca2] Canary establishes the following result by showing that it is a
consequence of Theorem 4.9, [ACM] and [CaMc].

Theorem 4.13. (Canary [Ca2]) If M is a compact 3-manifold whose interior
supports a hyperbolic structure such that π1(M) is freely indecomposible, then
AH(M) has infinitely many components if and only if M has double trouble.

Remark 4.14. Here AH(M) is the space of marked hyperbolic structures
homotopy equivalent to M and double trouble means that there exists a simple
closed curve γ lying in a torus component T of ∂M which is homotopic to two
non isotopic (in ∂M) simple closed curves lying in ∂M \ T .

5. Volumes of Hyperbolic 3-manifolds

Background By Mostow rigidity [Most], [Ma], [Pra], the volume of a complete
hyperbolic 3-manifold is a topological invariant. Thurston, building on work of
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Gromov and Jorgenson, showed [T1], [T2] that the set of volumes of a complete
finite volume hyperbolic 3-manifold is a well ordered closed subset of R of order
type ωω and that there are only finitely many manifolds with a given volume.

This decade has seen much progress on understanding volumes of hyperbolic
3-manifolds. Among cusped manifolds, Cao and Meyerhoff [CM] showed that
the figure-8 knot complement and its sister are exactly the 1-cusp manifolds
of least volume. (Almost 15 years earlier Adams [Ad] showed that the non
orientable Gieseking manifold is the non compact manifold, non orientable or
not, of least volume. It is double covered by the figure-8 knot complement.)
Subsequently, Robert Meyerhoff, Peter Milley and the author [GMM2], [Mill2]
found the set of 1-cusped manifolds with volume below volume 2.848. These are
the first 10 1-cusped manifolds in the Snappea census [We]. Agol [Ag2] showed
that the Whitehead link and its sister are exactly the 2-cusp manifolds of least
volume.

Here are three of the many interesting open problems in this area.

Problem 5.1. Determine the set of lowest volume n-cupsed hyperbolic 3-
manifolds.

Problem 5.2. (First open stem problem) Find all the 1-cusped hyperbolic 3-
manifolds with volume at most that of the Whitehead link.

Remark 5.3. By Thurston’s Dehn surgery theorem [T1],[T2], the set of such
manifolds is infinite. However, by Thurston’s proof of the ωω theorem and Agol’s
smallest 2-cusped manifold theorem there are only finitely many 1-cusped man-
ifolds with volume at most that of the Whitehead link that are not obtained
by filling either the Whitehead link or its sister.

In analogy to Theorem 3.4 we have the following problem whose solution
would be useful for understanding low volume manifolds as well as other prob-
lems such as ones involving Dehn surgery. E.g. see [LM].

Problem 5.4. (Small cusp problem) [GMM3] Find all the cusped hyperbolic
3-manifolds having a maximal cusp of volume at most 2.5. In particular find
all 1-cusped manifolds with cusp area at most 5.0

Remark 5.5. Given a cusp C of a complete finite volume hyperbolic 3-
manifold, there is a maximal region M(C), called the maximal cusp of C,
whose interior is foliated by horotori that cut off that cusp. The second part
of Problem 5.4 is the restriction of the first to 1-cusped manifolds, since
area(∂M(C)) = 2 volume(M(C)) and by cusp area we mean the area of the
boundary of the maximal cusp.

It is known that there are infinitely many solutions to Problem 5.4. A good
solution to the 1-cusped problem would be to exhibit a finite list of 1, 2, and
3-cusped manifolds with a maximal cusp of volume at most 2.5 such that any
1-cusped manifold with cusp area at most 5.0 is either one of the listed 1-cusped
manifolds or is obtained by filling one of the listed 2 or 3-cusped manifolds.
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In 1943 C. L. Siegel posed the problem (in modern language) of finding
the smallest volume hyperbolic n-dimensional orbifold. The three dimensional
version was solved a few years ago in a tour de force, by Gehring, Marshall and
Martin.

Theorem 5.6. [GM],[MM] If Γ is a discrete Kleinian group, then
volume(H/Γ) ≥ 0.03905 and the minimum is uniquely achieved by the
orientation-preserving subgroup of the Z2 extension of the tetrahedral reflection
group with Coxeter diagram 3-5-3. The latter group gives the minimal volume
nonorientable orbifold.

Recently, Robert Meyerhoff, Peter Milley and the author solved the long
standing problem of finding the smallest volume closed manifold. This result
was the culmination of many contributions made over the previous 30 years.
See [GMM3] for a detailed history of the problem.

Theorem 5.7. [GMM1], [GMM2], [Mill2] The Matveev - Fomenko - Weeks
manifold is the unique smallest volume closed hyperbolic 3-manifold. It has
volume 0.9427 · · · .

Problem 5.8. Find the smallest closed non orientable hyperbolic 3-
manifold(s).

Remark 5.9. In Snappea notation [We], the manifold m131(3,1) is the small-
est known closed non orientable hyperbolic 3-manifold. According to Snappea,
it has volume 2.02988 · · · . Nathan Dunfield [D2] observed that this manifold
fibers over S1 with fiber the surface of genus-2 and with orientation reversing
monodromy.

See [Mill1] for partial results towards this problem.

Our proof of Theorem 5.7 introduced the idea of Mom technology. The
Mom number of a 3-manifold is a measure of the minimal complexity of certain
types of handle structures that can describe M . More precisely, if M can be
built by starting with a torus×I, then attaching n 1-handles, then n valence-
3 2-handles (i.e. the 2-handles run exactly three times over 1-handles) all to
the torus×1 side, then attaching solid tori and cusps, and n is the minimal
such number, then we say M has Mom number n. Meyerhoff, Milley and the
author conjecture that all low volume hyperbolic 3-manifolds can be obtained
by filling Mom-n manifolds with small n. See [GMM3]. Part of the challenge
is to quantify low and small. We believe that this gives a viable approach to
the following open ended conjecture from the early 1980’s, where topological
complexity is measured by the Mom number.

Hyperbolic Complexity Conjecture (Thurston, Hodgson - Weeks,
Matveev - Fomenko) The complete low-volume hyperbolic 3-manifolds can be
obtained by filling cusped hyperbolic 3-manifolds of small topological complexity.
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See the expository paper [GMM3] for an introduction to Mom technology
and an outline of the proof of Theorem 5.7. This paper also contains many open
problems (e.g. Problem 5.2, 5.3, 5.8) on volumes of hyperbolic 3-manifolds, in-
cluding several involving number theoretic issues contributed by Walter Neu-
mann and Alan Reid. See also Problem 3.60 [Ki] for other volumes problems
including the well known Problems 5.1 and 5.8.

6. Ending Lamination Space

Let S be a finite type hyperbolic surface. The ending lamination space EL(S)
is the space of minimal fillling geodesic laminations on S. Here minimal means
every leaf is dense and filling means that complementary regions are either
open discs or once punctured open discs. Any ending lamination supports a
measure of full support, thus EL(S) can be topologized as the quotient space
of the subspace FPML(S) ⊂ PML(S) of filling measured laminations, where
forgetting the measure induces the map φ : FPML(S) → EL(S). An equivalent
topology on EL(S) is the coarse Hausdorff topology [Ha]. A sequence of ending
laminations L1,L2, · · · converges to L ∈ EL(S) with respect to the coarse
Hausdorff topology if with respect to the Hausdorff topology on closed subsets
of S, it converges to a diagonal extension of L.

When endowed with the coarse Hausdorff topology, EL(S) is a fascinating
and important space. To start with, Masur and Minsky [MaMi] showed that the
curve complex C(S) is δ-hyperbolic and Klarreich [Kl] showed that the Gromov
boundary of C(S) is homeomorphic to EL(S). (See Hammenstadt [Ha] for a
more direct proof.) Ending lamination space is also central to hyperbolic 3-
manifold theory because of the following result (and similar type results) which
depends on the ending lamination Theorem 4.7.

Theorem 6.1. (Leininger - Schleimer [LS]) The map E : DD(S, ∂S) →
(EL(S)× EL(S)) \∆ is a homeomorphism.

Remark 6.2. Here DD(S, ∂S) is the space of doubly degenerate Kleinian
surface groups and ∆ denotes the diagonal. These are the Kleinian groups Γ
whose associated manifolds H3/Γ satisfy the hypothesis of Theorem 4.7.

Theorem 6.3. [G4] If S is a finite type orientable surface of negative Euler
characteristic which is not the 3-holed sphere, 4-holed sphere or 1-holed torus,
then EL(S) is path connected, locally path connected, cyclic and has no cut
points.

Remark 6.4. The ending lamination spaces of the 3-holed sphere, 4-holed
sphere and 1-holed torus are respectively, ∅,R \Q and R \Q. Theorem 6.3 gave
a positive solution to a conjecture of Peter Storm (circa. 2000) that if S is not
one of the three exceptional manifolds, then EL(S) is connected.

Interestingly, with respect to the Hausdorff topology on compact subsets of
S, Thurston (Theorem 10.2 [T3]) proved that EL(S) has Hausdorff dimension
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zero. In fact, Zhu - Bonahon [ZB] show that with respect to the Hausdorff
topology, the larger space of geodesic laminations L(S) has Hausdorff dimension
zero.

Theorem 6.3 and the recent characterization of Nobeling manifolds, inde-
pendently by Levin and Nagorko [Le], [Na], play central roles in the very recent
proof of the remarkable

Theorem 6.5. (Hensel - Przytycki [HP]) The ending lamination space of the
five-punctured sphere and the twice-punctured torus is the Nobeling curve.

Remark 6.6. The n-dimensional Nobeling manifold is the subspace of R2n+1

consisting of all points with at most n rational coordinates. The Nobeling curve
is the 1-dimensional Nobeling manifold.

Hensel and Przytycki made the following bold conjecture.

Conjecture 6.7. [HP] EL(S) is homeomorphic to the n-dimensional Nobeling
manifold, where n = 3g+ p− 4, g=genus(S) and p is the number of punctures.

If true, this would give a positive answer to an earlier question of ours. We
asked [G4] whether EL(S) was n-connected for sufficiently complicated surfaces.
We suspect that the Hensel - Przytycki conjecture needs to be altered slightly.

Conjecture 6.8. Let S be a hyperbolic surface of genus g with p ≥ 0 punctures.
Then EL(S) is homeomorphic to R2n+1

n+k where n = 3g + p− 4, where

i) k = 0, if g = 0

ii) k = genus(S)− 1, if p > 0 and g > 0 and

iii) k = genus(S)− 2, if p = 0.

Here Rp
q denotes the subspace of Rp consisting of all points with at most q

rational coordinates.

Remark 6.9. Note that 2n + 1 = dim(PML(S)). Unlike the case of R2n+1
n ,

the author is not aware of any characterization of the spaces Rp
q , hence this

conjecture should be viewed as very speculative. The value of k arises from
Conjecture 6.12 stated below. Here are three concrete conjectures that are im-
plied by Conjecture 6.8.

Conjecture 6.10. Let S be a hyperbolic surface of genus g with p ≥ 0 punc-
tures. Then dim(EL(S)) = 3g + p− 4 + k where k is as in Conjecture 6.8.

Conjecture 6.11. Let S be a hyperbolic surface of genus g with p ≥ 0 punc-
tures. Then πm(EL(S)) is infinitely generated and EL(S) is (m− 1)-connected
and locally (m− 1)-connected where m = 3g+ p− 4 + k and k is as in Conjec-
ture 6.8.

Conjecture 6.12. The curve complex C(S) and EL(S) are dual in the follow-
ing sense. If p (resp. q) is the minimal value such that πp(EL(S)) 6= 1 (resp.
πq(C(S)) 6= 1) then dim(PML(S)) = p+ q + 1.
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Remark 6.13. A stronger form of this conjecture asserts that in an appropriate
sense, elements of πq(C(S)) non trivially link elements of “φ−1(πp(EL(S))”
inside of PML(S). Here we are identifying C(S) with its image under the
natural injective immersion of C(S) into PML(S).
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Abstract

We survey some recent advances in the homotopy theory of classifying spaces,
and homotopical group theory. We focus on the classification of p–compact
groups in terms of root data over the p–adic integers, and discuss some of its
consequences e.g., for finite loop spaces and polynomial cohomology rings.
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Groups are ubiquitous in real life, as symmetries of geometric objects. For
many purposes in mathematics, for instance in bundle theory, it is however
not the group itself but rather its classifying space, which takes center stage.
The classifying space encodes the group multiplication directly in a topological
space, to be studied and manipulated using the toolbox of homotopy theory.
This leads to the idea of homotopical group theory, that one should try to do
group theory in terms of classifying spaces.

The idea that there should be a homotopical version of group theory is an
old one. The seeds were sown already in the 40s and 50s with the work of Hopf
and Serre on finite H–spaces and loop spaces, and these objects were intensely
studied in the 60s using the techniques of Hopf algebras, Steenrod operations,
etc., in the hands of Browder, Thomas, and others. A bibliography containing
347 items was collected by James in 1970 [59]; see also [62] for a continuation.

In the same year, Sullivan, in his widely circulated MIT notes [95, 94],
laid out a theory of p–completions of topological spaces, which had a profound
influence on the subject. On the one hand it provided an infusion of new exotic
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examples, laying old hopes and conjectures to rest. On the other hand his theory
of p–completions seemed to indicate that the dream of doing group theory on
the level of classifying spaces could still be valid, if one is willing to replace real
life, at least temporarily, by a p–adic existence. However, the tools for seriously
digging into the world of p–complete spaces were at the time insufficient, a
stumbling block being the so-called Sullivan conjecture [95, p. 179] relating
fixed-points to homotopy fixed-points, at a prime p.

The impasse ended with the solution of the Sullivan conjecture by Miller
[69], and the work of Carlsson [25], reported on at this congress in 1986 [70, 26],
followed by the development of “Lannes theory” [63, 64] giving effective tools for
calculating homotopy fixed-points and maps between classifying spaces. This
led to a spate of progress. Dwyer and Wilkerson [42] defined the notion of a
p–compact group, a p–complete version of a finite loop space, and showed that
these objects posses much of the structure of compact Lie groups: maximal
tori, Weyl groups, etc. In parallel to this, Jackowski, McClure, and Oliver [55]
combined Lannes theory with space-level decomposition techniques and sophis-
ticated homological algebra calculations to get precise information about maps
between classifying spaces of compact Lie groups, that used to be out of reach.
These developments were described at this congress in 1998 [36, 82].

The aim here is to report on some recent progress, building on the above
mentioned achievements. In particular, a complete classification of p–compact
groups has recently been obtained in collaborations involving the author [9, 8].
It states that connected p–compact groups are classified by their root data over
the p–adic integers Zp (once defined!), completely analogously to the classifica-
tion of compact connected Lie groups by root data over Z. It has in turn allowed
for the solution of a number of problems and conjectures dating from the 60s
and 70s, such as the Steenrod problem of realizing polynomial cohomology rings
and the so-called maximal torus conjecture giving a completely homotopical de-
scription of compact Lie groups. By local-to-global principles the classification
of p–compact groups furthermore provides a quite complete understanding of
what finite loop spaces look like, integrally as well as rationally.

Homotopical group theory has branched out considerably over the last
decade. There is now an expanding theory of homotopical versions of finite
groups, the so-called p–local finite groups, showing signs of strong connections
to deep questions in finite group theory, such as the classification of finite sim-
ple groups. There has been progress on homotopical group actions, providing
in some sense a homotopical version of the “geometric representation theory”
of tom Dieck [97]. And there is even evidence that certain aspects of the theory
might extend to Kac–Moody groups and other classes of groups. We shall only
be able to provide very small appetizers to some of these last developments,
but we hope that they collectively serve as an inspiration to the reader to try
to take a more homotopical approach to his or her favorite class of groups.

This paper is structured as follows: Section 1 is an algebraic prelude, dis-
cussing the theory of Zp–root data—the impatient reader can skip it at first,
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referring back to it as needed. Section 2 gives the definition and basic properties
of p–compact groups, states the classification theorem, and outlines its proof. It
also presents various structural consequences for p–compact groups. Section 3
discusses applications to finite loop spaces such as an algebraic parametriza-
tion of finite loop spaces and the solution of the maximal torus conjecture.
Section 4 presents the solution of the Steenrod problem of realizing polynomial
cohomology rings, and finally Section 5 provides brief samples of other topics
in homotopical group theory.

Notation: Throughout this paper, the word “space” will mean “topological
space of the homotopy type of a CW–complex”.

Acknowledgments: I would like to thank Kasper Andersen, Bill Dwyer, Haynes
Miller, and Bob Oliver for providing helpful comments on a preliminary version
of this paper. I take the opportunity to thank my coauthors on the various work
reported on here, and in particular express my gratitude to Kasper Andersen
for our mathematical collaboration and sparring through the years.

1. Root Data over the p–adic Integers

In standard Lie theory, root data classify compact connected Lie groups as well
as reductive algebraic groups over algebraically closed fields. A root datum is
usually packaged as a quadruple (M,Φ,M∨,Φ∨) of roots Φ and coroots Φ∨ in
a Z–lattice M and its dual M∨, satisfying some conditions [33]. For p–compact
groups the lattices that come up are lattices over the p–adic integers Zp, rather
than Z, so the concept of a root datum needs to be tweaked to make sense also
in this setting, and one must carry out a corresponding classification. In this
section we produce a short summary of this theory, based on [79, 45, 6, 8]. In
what follows R denotes a principal ideal domain of characteristic zero.

The starting point is the theory of reflection groups, surveyed e.g., in [47].
A finite R–reflection group is a pair (W,L) such that L is a finitely generated
free R–module and W ⊆ AutR(L) is a finite subgroup generated by reflections,
i.e., non-trivial elements σ that fix an R–submodule of corank one.

Reflection groups have been classified for several choices of R, the most well-
known cases being the classification of finite real and rational reflection groups
in terms of certain Coxeter diagrams [53]. Finite complex reflection groups were
classified by Shephard–Todd [89] in 1954. The main (irreducible) examples in
the complex case are the groups G(m, s, n) of n × n monomial matrices with
non-zero entries being mth roots of unity and determinant an (m/s)th root
of unity, where s|m; in addition to this there are 34 exceptional cases usually
named G4 to G37. From the classification over C one can obtain a classification
over Qp as the sublist whose character field Q(χ) is embeddable in Qp. This
was examined by Clark–Ewing [31], and we list their result in Table 1, using
the original notation.
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W Order Degrees Q(χ) Primes

Σn+1 (family 1) (n + 1)! 2, 3, . . . , n + 1 Q all p

G(m, s, n) (family 2a)
n!mn−1 m

s
m, 2m, . . . , (n − 1)m,nm

s
Q(ζm)

p ≡ 1 (m);
m ≥ 2, n ≥ 2,m 6= s if n = 2 all p for m = 2

D2m = G(m,m, 2) (family 2b)
2m 2,m Q(ζm + ζ−1

m )
p ≡ ±1 (m);

m ≥ 3 all p for m = 3, 4, 6

Cm = G(m, 1, 1) (family 3)
m m Q(ζm)

p ≡ 1 (m);
m ≥ 2 all p for m = 2

G4 24 4, 6 Q(ζ3) p ≡ 1 (3)

G5 72 6, 12 Q(ζ3) p ≡ 1 (3)
G6 48 4, 12 Q(ζ12) p ≡ 1 (12)
G7 144 12, 12 Q(ζ12) p ≡ 1 (12)
G8 96 8, 12 Q(ζ4) p ≡ 1 (4)
G9 192 8, 24 Q(ζ8) p ≡ 1 (8)

G10 288 12, 24 Q(ζ12) p ≡ 1 (12)
G11 576 24, 24 Q(ζ24) p ≡ 1 (24)
G12 48 6, 8 Q(

√
−2) p ≡ 1, 3 (8)

G13 96 8, 12 Q(ζ8) p ≡ 1 (8)

G14 144 6, 24 Q(ζ3,
√
−2) p ≡ 1, 19 (24)

G15 288 12, 24 Q(ζ24) p ≡ 1 (24)
G16 600 20, 30 Q(ζ5) p ≡ 1 (5)
G17 1200 20, 60 Q(ζ20) p ≡ 1 (20)
G18 1800 30, 60 Q(ζ15) p ≡ 1 (15)

G19 3600 60, 60 Q(ζ60) p ≡ 1 (60)

G20 360 12, 30 Q(ζ3,
√
5) p ≡ 1, 4 (15)

G21 720 12, 60 Q(ζ12,
√
5) p ≡ 1, 49 (60)

G22 240 12, 20 Q(ζ4,
√
5) p ≡ 1, 9 (20)

G23 120 2, 6, 10 Q(
√
5) p ≡ 1, 4 (5)

G24 336 4, 6, 14 Q(
√
−7) p ≡ 1, 2, 4 (7)

G25 648 6, 9, 12 Q(ζ3) p ≡ 1 (3)
G26 1296 6, 12, 18 Q(ζ3) p ≡ 1 (3)

G27 2160 6, 12, 30 Q(ζ3,
√
5) p ≡ 1, 4 (15)

G28 1152 2, 6, 8, 12 Q all p

G29 7680 4, 8, 12, 20 Q(ζ4) p ≡ 1 (4)

G30 14400 2, 12, 20, 30 Q(
√
5) p ≡ 1, 4 (5)

G31 64 · 6! 8, 12, 20, 24 Q(ζ4) p ≡ 1 (4)
G32 216 · 6! 12, 18, 24, 30 Q(ζ3) p ≡ 1 (3)
G33 72 · 6! 4, 6, 10, 12, 18 Q(ζ3) p ≡ 1 (3)
G34 108 · 9! 6, 12, 18, 24, 30, 42 Q(ζ3) p ≡ 1 (3)

G35 72 · 6! 2, 5, 6, 8, 9, 12 Q all p

G36 8 · 9! 2, 6, 8, 10, 12, 14, 18 Q all p

G37 192 · 10! 2, 8, 12, 14, 18, 20, 24, 30 Q all p

Table 1. The irreducible Qp-reflection groups
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The ring Qp[L]W ofW–invariant polynomial functions on L is polynomial if
and only if W is a reflection group, by the Shephard–Todd–Chevalley theorem
[11, Thm. 7.2.1]; the column degrees in Table 1 lists the degrees of the genera-
tors, and the number of degrees equals the rank of (W,L). For manyW , none of
the primes listed in the last column divide |W |; in fact this can only happen in
the infinite families, and in the sporadic examples 12, 24, 28, 29, 31, and 34–37.
It is a good exercise to look for the Weyl groups of the various simple compact
Lie groups in the table, where they have character field Q. One may observe
that for p = 2 and 3 there is only one exotic reflection group (i.e., irreducible
with Q(χ) 6= Q), namely G24 and G12 respectively, whereas for p ≥ 5 there are
always infinitely many.

The classification overQp can be lifted to a classification over Zp, but instead
of stating this now, we proceed directly to root data.

Definition 1.1 (R–root datum). An R–root datum D is a triple (W,L, {Rbσ}),
where (W,L) is a finite R–reflection group, and {Rbσ} is a collection of rank
one submodules of L, indexed by the set of reflections σ in W , and satisfying
that im(1−σ) ⊆ Rbσ (coroot condition) and w(Rbσ) = Rbwσw−1 for all w ∈W
(conjugation invariance).

An isomorphism of R–root data ϕ : D → D′ is defined to be an isomorphism
ϕ : L → L′ such that ϕWϕ−1 = W ′ as subgroups of Aut(L′) and ϕ(Rbσ) =
Rb′ϕσϕ−1 for every reflection σ ∈ W . The element bσ ∈ L, determined up to a
unit in R, is called the coroot corresponding to σ. The coroot condition ensures
that given (σ, bσ) we can define a root βσ : L→ R via the formula

σ(x) = x− βσ(x)bσ (1.1)

The classification of R–root data of course depends heavily on R. For R = Z
root data correspond bijectively to classically defined root data (M,Φ,M∨,Φ∨)
via the association (W,L, {Zbσ})  (L∗, {±βσ}, L, {±bσ}). One easily checks
that Rbσ ⊆ ker(N), where N = 1 + σ + . . . + σ|σ|−1 is the norm element, so
giving an R–root datum with underlying reflection group (W,L) corresponds
to choosing a cyclic R–submodule of H1(〈σ〉;L) for each conjugacy class of
reflections σ. It is hence in practice not hard to parametrize all possible R–
root data supported by a given finite R–reflection group. For R = Zp, p odd,
reflections have order dividing p − 1, hence prime to p, so here Zp–root data
coincides with finite Zp–reflection groups. For R = Z or Z2 the difference be-
tween the two notions only occur for the root data of Sp(n) and SO(2n + 1),
but due to the ubiquity of SU(2) and SO(3) this distinction turns out to be an
important one. Note that since a root and a coroot (βσ, bσ) determine the re-
flection σ by (1.1), one could indeed have defined a root datum as a set of pairs
(βσ, bσ), each determined up to a unit and subject to certain conditions; see
also [76].
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The relationship between Zp–root data and Z–root data is given as follows.

Theorem 1.2 (The classification of Zp–root data, splitting version).
1. Any Zp–root datum D can be written as a product D ∼= (D1⊗Z Zp)×D2,

where D1 is a Z–root datum and D2 is a product of exotic Zp–root data.

2. Exotic Zp–root data are in 1-1 correspondence with exotic Qp–reflection
groups via D = (W,L, {Zpbσ}) (W,L⊗Zp

Qp).

Define the fundamental group as π1(D) = L/L0, where L0 =
∑
σ Zpbσ is

the coroot lattice, and, with the p–discrete torus T̆ = L ⊗ Z/p∞, we define

the p–discrete center as Z̆(D) =
⋂
σ ker(β̆σ : T̆ → Z/p∞); compare e.g., [15].

It turns out that π1(D) = Z̆(D) = 0 for all exotic root data, and this plays
a role in the proof of the above statement. If A is a finite subgroup of Z̆(D),
we can define the quotient root datum D/A by taking T̆D/A = T̆ /A, and hence

LD/A = Hom(Z/p∞, T̆ /A), and defining the roots and coroots of D/A via the
induced maps.

Theorem 1.3 (The classification of Zp–root data, structure version).
1. Any Zp–root datum D = (W,L, {Zpbσ}) can be written as a quotient

D = (D1 × · · · ×Dn × (1, LW , ∅))/A

where π1(Di) = 0 for all i, for a finite central subgroup A.

2. Irreducible Zp–root data D with π1(D) = 0 are in 1-1 or 2-1 correspon-
dence with non-trivial irreducible Qp–reflection groups via D (W,L⊗Zp

Qp), the sole identification being DSp(n) ⊗Z Z2 with DSpin(2n+1) ⊗Z Z2,
n ≥ 3.

A main ingredient used to derive the classification of root data from the
classification of Qp–reflection groups is the case-by-case observation that the
mod p reduction of all the exotic reflection groups remain irreducible, which
ensures that any lift to Zp is uniquely determined by the Qp–representation.

Remark 1.4. It seems that Zp–root data ought to parametrize some purely
algebraic objects, just as Z–root data parametrize both compact connected Lie
groups and reductive algebraic groups. Similar structures come up in Lusztig’s
approach to the representation theory of finite groups of Lie type, as examined
by Bessis, Broué, Malle, Michel, Rouquier, and others [23], involving mythical
objects from the Greek island of Spetses [68].

2. p–compact Groups and their Classification

In this section we give a brief introduction to p–compact groups, followed by
the statement of the classification theorem, an outline of its proof, and some
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of its consequences. Additional background information on p–compact groups
can be found in the surveys [36, 65, 72, 78].

The first ingredient we need is the theory of p–completions. The p–
completion construction of Sullivan [95] produces for each space X a map
X → X p̂, which, when X is simply connected and of finite type, has the
property that πi(X p̂) ∼= πi(X) ⊗ Zp for all i. A space is called p–complete
if this map is a homotopy equivalence. In fact, when X is simply connected and
H∗(X;Fp) is of finite type, then X is p–complete if and only if the homotopy
groups of X are finitely generated Zp–modules. We remark that Bousfield–Kan
[16] produced a variant on Sullivan’s p–completion functor, and for the spaces
that occur in this paper these two constructions agree up to homotopy, so the
words p–complete and p–completion can be taken in either sense.

A finite loop space is a triple (X,BX, e), where BX is a pointed connected
space,X is a finite CW–complex, and e : X → ΩBX is a homotopy equivalence,
where Ω denotes based loops. We will return to finite loop spaces in Section 3,
but now move straight to their p–complete analogs.

Definition 2.1 (p–compact group [42]). A p–compact group is a triple
(X,BX, e), where BX is a pointed, connected, p–complete space, H∗(X;Fp)
is finite, and e : X

'
−→ ΩBX is a homotopy equivalence.

The loop multiplication on ΩBX is here the homotopical analog of a group
structure; while standard loop multiplication does not define a group, it is
equivalent in a strong sense (as an A∞–space) to a topological group, whose
classifying space is homotopy equivalent to BX. We therefore baptise BX the
classifying space, and note that, since all structure can be derived from BX,
one could equivalently have defined a p–compact group to be a space BX,
subject to the above conditions. The finiteness of H∗(X;Fp) is to be thought
of as a homotopical version of compactness, and replaces the condition that
the underlying loop space be homotopy equivalent to a finite complex. We
will usually refer to a p–compact group just by X or BX when there is little
possibility for confusion.

Examples of p–compact groups include of course the p–completed classifying
space BGp̂ of a compact Lie group G with π0(G) a p–group. However, non-
isomorphic compact Lie groups may give rise to equivalent p–compact groups
if they have the same p–local structure, perhaps the most interesting example
being BSO(2n+1)p̂ ' BSp(n)p̂ for p odd [46]. Exotic examples (i.e., examples
with exotic root data) are discussed in Section 2.1.

A morphism between p–compact groups is a pointed map BX → BY ; it
is called a monomorphism if the homotopy fiber, denoted Y/X, has finite Fp–
homology. Two morphisms are called conjugate if they are freely homotopic,
and two p–compact groups are called isomorphic if their classifying spaces are
homotopy equivalent. A p–compact group is called connected if X is connected.
By a standard argument H∗(BX;Zp) ⊗ Q is seen to be a polynomial algebra
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over Qp, and we define the rank r = rank(X) to be number of generators. The
following is the main structural result of Dwyer–Wilkerson [42].

Theorem 2.2 (Maximal tori and Weyl groups of p–compact groups [42]).
1. Any p–compact group X has a maximal torus: a monomorphism i : BT =

(BS1
p̂)
r → BX with r the rank of X. Any other monomorphism

i′ : BT ′ = (BS1
p̂)
s → BX factors as i′ ' i ◦ ϕ for some ϕ : BT ′ → BT .

In particular i is unique up to conjugacy.

2. The Weyl space WX(T ), defined as the topological monoid of self-
equivalences BT → BT over i (with i made into a fibration), has con-
tractible components.

3. If X is connected, the natural action of the Weyl group WX(T ) =
π0(WX(T )) on LX = π2(BT ) gives a faithful representation of WX as
a finite Zp–reflection group.

A short outline of the proof can be found in [65]. The maximal torus
normalizer is defined as the homotopy orbit space, or Borel construction,
BNX(T ) = BThWX(T ) and hence sits in a fibration sequence

BT → BNX(T ) → BWX(T ).

The normalizer is said to be split if the above fibration has a section. It is worth
mentioning that one sees that (WX , LX) is a Zp–reflection group indirectly, by
proving that

H∗(BX;Zp)⊗Q ∼= (H∗(BT ;Zp)⊗Q)WX

and applying the Shephard–Todd–Chevalley theorem.
To define the Zp–root datum, one therefore needs to proceed in a non-

standard way [45, 6, 8]. For p odd, the Zp–root datum DX can be defined from

the Zp–reflection group (WX , LX), by setting Zpbσ = im(LX
1−σ
−−−→ LX). The

definition for p = 2 is more complicated, and in order to give meaning to the
words we first need a few extra definitions for p–compact groups. The centralizer
of a morphism ν : BA → BX is defined as BCX(ν) = map(BA,BX)ν , where
the subscript denotes the component corresponding to ν. While this may look
odd at first sight, it does in fact generalize the Lie group notion [35]. For a con-
nected p–compact group X, define the derived p–compact group DX to be the
covering space of X corresponding to the torsion subgroup of π1(X). Consider

the p–discrete singular torus T̆
〈σ〉
0 for σ, i.e., the largest divisible subgroup of

the fixed-points T̆ 〈σ〉, with T̆ = LX ⊗Z/p∞, and set Xσ = D(CX(T̆
〈σ〉
0 )). Then

Xσ is a connected p–compact group of rank one with p–discrete maximal torus
(1−σ)T̆ ; denote the corresponding maximal torus normalizer by Nσ, called the
root subgroup of σ. Define the coroots in DX via the formula

Zpbσ =

{
im(LX

1−σ
−−−→ LX) if Nσ is split,

ker(LX
1+σ
−−−→ LX) if Nσ is not split.
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For p odd, only the first case occurs, and for p = 2 the split case corresponds
to BXσ ' BSO(3)2̂ and the non-split corresponds to BXσ ' BSU(2)2̂. For
comparison we note that when X = Gp̂, for a reductive complex algebraic
group G, BXσ ' B〈Uα, U−α〉p̂, where Uα is what is ordinarily called the root
subgroup of the root α = βσ, and the above formula can be read off from e.g.,
[90, Pf. of Lem. 7.3.5]. We can now state the classification theorem.

Theorem 2.3 (Classification of p–compact groups [9, 8]). The assignment
which to a connected p–compact group X associates its Zp–root datum DX

gives a one-to-one correspondence between connected p–compact groups, up to
isomorphism, and Zp–root data, up to isomorphism.

Furthermore the map Φ: Out(BX) → Out(DX), given by lifting a self-
homotopy equivalence of BX to BT , is an isomorphism.

Here Out(BX) denotes the group of free homotopy classes of self-homotopy
equivalences BX → BX, and Out(DX) = Aut(DX)/WX . A stronger space-
level statement about self-maps is in fact true, namely

BAut(BX)
'
−→ ((B2Z̆(DX))p̂)hOut(DX) (2.1)

where Aut(BX) is the space of self-homotopy equivalences, Z̆(DX) the p–
discrete center of DX as introduced in Section 1, and the action of Out(DX)
on (B2Z̆(DX))p̂ is the canonical one. Having control of the whole space of
self-equivalences turns out to be important in the proof.

Theorem 2.3 implies, by Theorem 1.2, that any connected p–compact group
splits as a product of the p–completion of a compact connected Lie group and
a product of known exotic p–compact groups. For p = 2 it shows that there is
only one exotic 2–compact group, the one corresponding to the Q2–reflection
group G24, and this 2–compact group was constructed in [41]. We will return
to the construction of the exotic p–compact groups in the next subsection.

Since we understand the whole space of self–equivalences, one can derive a
classification also of non-connected p–compact groups. The set of isomorphism
classes of non-connected p–compact groups with root datum of the identity
component D and group of components π, is parametrized by the components
of the moduli space

map(Bπ, ((B2Z̆(D))p̂)hOut(D))hAut(Bπ) (2.2)

As with the classification of compact Lie groups, the classification state-
ment can naturally be broken up into two parts, existence and uniqueness of
p–compact groups. The uniqueness statement can be formulated as an isomor-
phism theorem saying that there is a 1-1–correspondence between conjugacy
classes of isomorphisms of connected p–compact groups BX → BX ′ and iso-
morphisms of root data DX → DX′ , up to WX′–conjugation. This last state-
ment can in fact be strengthened to an isogeny theorem classifying maps that
are rational isomorphisms [5].
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While the existence and uniqueness are separate statements, they are cur-
rently most succinctly proved simultaneously by an induction on the size of D,
since the proof of existence requires knowledge of certain facts about self-maps,
and the proof of uniqueness at the last step is aided by specific facts about
concrete models. We will discuss the proof of existence in Section 2.1 and of
uniqueness in Section 2.2, along with some information about the history.

2.1. Construction of p–compact groups. Compact connected Lie
groups can be constructed in different ways. They can be exhibited as symme-
tries of geometric objects, or can be systematically constructed via generators-
and-relations type constructions that involve first constructing a finite dimen-
sional Lie algebra from the root system, and then passing to the group [61, 90].

An adaptation of the above tools to p–compact groups is still largely missing,
so one currently has to proceed by more ad hoc means, with the limited aim
of constructing only the exotic p–compact groups. These were in fact already
constructed some years ago, but we take the opportunity here to retell the tale,
and outline the closest we currently get to a streamlined construction.

The first exotic p–compact groups were constructed by Sullivan [95] as the
homotopy orbit space of the action of the would-be Weyl group on the would-
be torus. The most basic case he observed is the following: If Cm is a cyclic
group of order m, and p an odd prime such that m|p− 1, then Cm ≤ Z×

p , and
hence Cm acts on the Eilenberg–MacLane space K(Zp, 2). The Serre spectral
sequence for the fibration

K(Zp, 2) → K(Zp, 2)hCm
→ BCm

reveals that the Fp–cohomology of K(Zp, 2)hCm
is a polynomial algebra on a

class in degree 2m, using that m is prime to p. Therefore the cohomology of its
loop space is an exterior algebra in degree 2m − 1 and BX = (K(Zp, 2)hCm

)p̂
is a p–compact group, with ΩBX ' (S2m−1)p̂. We have just realized all exotic
groups in family 3 of Table 1!

Exactly the same argument carries over to the general case of a root datum
D where p - |W |, just replacing Cn by W and Zp by L, since Fp[L⊗ Fp]W is a
polynomial algebra exactly when W is a reflection group, when p - |W |, by the
Shephard–Todd–Chevalley theorem used earlier. This observation was made by
Clark–Ewing [31], and realizes a large number of groups in Table 1. However,
the method as it stands cannot be pushed further, since the assumption that
p - |W | is crucial for the collapse of the Serre spectral sequence.

Additional exotic p–compact groups were constructed in the 1970s by other
methods. Quillen realized G(m, 1, n) at all possible primes by constructing an
approximation via classifying spaces of discrete groups [84, §10], and Zabrodsky
[102, 4.3] realized G12 and G31 at p = 3 and 5 respectively, by taking homotopy
fixed-points of a p′–group acting on the classifying space of a compact Lie group.

To build the remaining exotic p–compact groups one needs a far-reaching
generalization of Sullivan’s technique, obtained by replacing the homotopy or-
bit space with a more sophisticated homotopy colimit, that ensures that we



Homotopical Group Theory 983

still get a collapsing spectral sequence even when p divides the order of W .
The technique was introduced by Jackowski–McClure [54], as a decomposition
technique in terms of centralizers of elementary abelian subgroups, and was
subsequently used by Aguadé [2] (G12, G29, G31, G34), Dwyer–Wilkerson [41]
(G24), and Notbohm–Oliver [80] (G(m, s, n)) to finish the construction of the
exotic p–compact groups.

The following is an extension of Aguadé’s argument, and can be used in-
ductively to realize all exotic p–compact groups for p odd—that this works in
all cases relies on the stroke of luck, checked case-by-case, that all exotic finite
Zp–reflection groups for p odd have Zp[L]W a polynomial algebra; cf. also [81].

Theorem 2.4 (Inductive construction of p–compact groups, p odd [9]). Con-
sider a finite Zp–reflection group (W,L), p odd, with Zp[L]W a polynomial al-
gebra.

Then (WV , L) is a again a Zp–reflection group and Zp[L]WV a polynomial
algebra, for WV the pointwise stabilizer in W of V ≤ L⊗ Fp.

Assume that, for all non-trivial V , (WV , L) is realized by a connected
p–compact group YV satisfying the isomorphism part of Theorem 2.3 and
H∗(YV ;Zp) ∼= Zp[L]WV (with L in degree 2). Then V 7→ YV extends to a
functor Y : Aop → Spaces, where A has objects non-trivial V ≤ L ⊗ Fp and
morphisms given by conjugation in W , and

BX = (hocolimAop Y )p̂

is a p–compact group with Weyl group (W,L) and H∗(BX;Zp) ∼= Zp[L]W .

Idea of proof. The statement that Zp[L]WV is a polynomial algebra is an exten-
sion of Steinberg’s fixed-point theorem in the version of Nakajima [75, Lem. 1.4].
The proof uses Lannes’ T–functor, together with case-by-case considerations.

The inductive construction is straightforward, given current technology, and
uses only general arguments: Since we assume we know YV and its automor-
phisms for all V 6= 1, one easily sets up a functor Aop → Ho(Spaces), the
homotopy category of spaces, and the task is to rigidify this to a functor in the
category of spaces. The diagram can be show to be “centric”, so one can use the
obstruction theory developed by Dwyer–Kan in [37]. The relevant obstruction
groups identify with the higher limits of a functor obtained by taking fixed-
points, and in particular this is a Mackey functor whose higher limits vanish
by a theorem of Jackowski–McClure [54]. We can therefore rigidify the diagram
to a diagram in spaces, and the resulting homotopy colimit is easily shown to
have the desired cohomology.

We now turn to the prime 2. Here the sole exotic Z2–reflection group is G24,
and the corresponding 2–compact group was realized by Dwyer–Wilkerson [41]
and dubbed DI(4), due to the fact that, for E = (Z/2)4,

H∗(BDI(4);F2) ∼= F2[E]GL(E)
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the rank four Dickson invariants. At first glance this might look like the setup
of Theorem 2.4, but note that G24 is a rank three Z2–reflection group, not
four, so E is not just the elements of order 2 in the maximal torus. However
by taking A to be the category with objects the non-trivial subgroups of E,
and morphisms induced by conjugation in GL(E), and correctly guessing the
centralizers of elementary abelian subgroups, the argument can still be pushed
through; the starting point is declaring the centralizer of any element of order
two to be Spin(7)2̂.

We again stress the apparent luck in being able to guess the rather un-
complicated structure of A and the centralizers. If one hypothetically had to
construct an exotic p–compact group with a seriously complicated cohomol-
ogy ring, say one would try to construct E8 at the prime 2 by these methods,
it would not be clear how to start. As a first step one would need a way to
describe the p–fusion in the group, just from the root datum D. This relates
to old questions in Lie theory, which have occupied Borel, Serre, and many
others [88]. . .

2.2. Uniqueness of p–compact groups. In this subsection, we out-
line the proof of the uniqueness part of the classification theorem for p–compact
groups, Theorem 2.3, following [8] by Andersen and the author; it extends [9]
also with Møller and Viruel. We mention that the quest for uniqueness was ini-
tiated by Dwyer–Miller–Wilkerson [38] in the 80s and in particular Notbohm
[77] obtained strong partial results; a different approach for p = 2 using com-
puter algebra was independently given by Møller [73, 74]. See [9, 8] for more
details on the history of the proof.

From now on we consider two connected p–compact groups X and X ′ with
the same root datumD, and want to build a homotopy equivalence BX → BX ′.
The proof goes by an induction on the size of (W,L).

Step 1: (The maximal torus normalizer and its automorphisms, [45, 6]). A first
step is to show that X and X ′ have isomorphic maximal torus normalizers.
Working with the maximal torus normalizer has a number of technical advan-
tages over the maximal torus, related to the fact that the fiber of the map
BN → BX has Euler characteristic prime to p (one, actually).

One shows that the maximal torus normalizers are isomorphic, by giving
a construction from the root datum. For p odd the construction is simple,
since the maximal torus normalizer turns out always to be split, and hence
isomorphic to (B2L)hW with the canonical action. This was established in [3],
by showing that the relevant extension group is zero except in one case, which
can be handled by other means; cf. also [9, Rem. 2.5]. For p = 2, the problem is
more difficult. The corresponding problem for compact Lie groups, or reductive
algebraic groups, was solved by Tits [96] many years ago. A thorough reading of
Tits’ paper, with a cohomological rephrasing of some of his key constructions,
allows his construction to be pushed through also for p–compact groups [45].
One thus algebraically constructs a maximal torus normalizer ND and show it
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to be isomorphic to the topologically defined one. A problem is however that
N in general has too large automorphism group. To correct this, it was shown
in [6] that the root subgroups Nσ, introduced before Theorem 2.3, can also be
built algebraically, and adding this extra data give the correct automorphism
group. Concretely, one has a canonical factorization

Φ: Out(BX) → Out(BN , {BNσ})
∼=
−→ Out(DX)

and one can furthermore build a candidate model for the whole space
BAut(BX), by a slight modification of BAut(BN , {BNσ}), the space of self-
homotopy equivalences of BN preserving the root subgroups.

Step 2: (Reduction to simple, center-free groups, [8, §2]). This next step involves
relating the p–compact group and its factors and center-free quotient via certain
fibration sequences, and studying automorphisms via these fibrations. Several
of the necessary tools, such as the understanding of the center of a p–compact
group [43], the product splitting theorem [44], etc., were already available in
the 90s. But, in particular for p = 2, one needs to incorporate the machinery
of root data and root subgroups; we refer the reader to [8, §2] for the details.

Step 3: (Defining a map on centralizers of elements of order p, [8, §4]). We now
assume that X and X ′ are simple, center-free p–compact groups. The next tool
needed is a homology decomposition theorem, more precisely the centralizer
decomposition, of Jackowski–McClure [54] and Dwyer–Wilkerson [40], already
mentioned in the previous subsection. Let A(X) be the Quillen category of X
with objects monomorphisms ν : BE → BX, where E = (Z/p)s is a non-trivial
elementary abelian p–group, and morphisms (ν : BE → BX) → (ν′ : BE′ →
BX) are group monomorphisms ϕ : E → E′ such that ν′ ◦ Bϕ is conjugate
to ν. The centralizer decomposition theorem now says that for any p–compact
group X, the evaluation map

hocolimν∈A(X)op BCX(ν) → BX

is an isomorphism on Fp–cohomology.
This opens the possibility for a proof by induction, since the centralizers

will be smaller p–compact groups if X is center-free. As explained above we
can assume that X and X ′ have common maximal torus normalizer and root
subgroups (N , {Nσ}), so that we are in the situation of following diagram

(BN , {BNσ})
j

xxqqqqqqqqqqq
j′

&&NNNNNNNNNN

BX // BX ′

where the dotted arrow is the one we want to construct.
If ν : BZ/p → BX is a monomorphism, then it can be conjugated into T ,

uniquely up to conjugation in N . This gives a well defined way of viewing ν as
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a map ν : BZ/p→ BT → BN . Taking centralizers of this map produces a new
diagram

(BCN (ν), {BCN (ν)σ})

((RRRRRRRRRRRRR

vvlllllllllllll

BCX(ν) // BCX′(ν)

One now argues that the induction hypothesis guarantees that we can con-
struct the dotted arrow. There is the slight twist that the centralizer will be
disconnected in general, so we have to use that we inductively know the whole
space of self-equivalences of the identity component.

Step 4: (Compatibility of maps on all centralizers, [8, §5]). The next step is
to define the map on centralizers of arbitrary elementary abelian p–subgroups
ν : BE → BX. This is done by restricting to a rank one subgroup E′ ≤ E and
considering the composition

BCX(ν) → BCX(ν|E′) → BCX′(ν|E′) → BX ′.

One now has to show that these maps do not depend on the choice of E′, and
that they fit together to define an element in

lim
ν∈A(X)

0 [BCX(ν), BX ′]

By the induction hypothesis it turns out that one can reduce to the case where
E has rank two and CX(ν) is discrete. An inspection of the classification of
Zp–root data shows that this case only occurs for D ∼= DPU(p)p̂ , which can

then be handled by direct arguments, producing the element in lim0.
In fact one can prove something slightly stronger, which will be needed in

the next step: A close inspection of the whole preceeding argument reveals that
all maps can be constructed over B2π1(D), which allows one to produce an
element in

lim
ν∈A(X)

0 [BC̃X(ν), BX̃ ′]

where the tilde denotes covers with respect to the kernel of the map to π1(D).
With this step complete one can see that BX and BX ′ have the same p–

fusion, i.e., that p–subgroups are conjugate in the same way, but we are left
with a rigidification issue.

Step 5: (Rigidifying the map, [8, §6]). One now wants to define a map on the
whole homotopy colimit, which can then easily be checked to have the correct
properties, finishing the proof of the classification. Constructing such a map
directly from an element in lim0 requires knowing that the higher limits of the
functors Fi : A(X) → Zp-mod given by E 7→ πi(ZCX(E)), vanish, where Z
denotes the center. In turn, this calculation requires knowing the structure of
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A(X), and for this we use that X is a known p–compact group, where we can
examine the structure. For the part of the functor corresponding to elementary
abelian subgroups that can be conjugated into T , the higher limits can be show
to vanish via a Mackey functor argument, going back to [54] and [40]. This in
fact equals the whole functor for all exotic groups for p odd, and DI(4) also
works via a variant on this argument, which finish off those cases.

We can hence assume that X is the p–completion of a compact Lie group
G. Here the obstruction groups were computed to identically vanish in [9], for p
odd, relying on detailed information about the elementary abelian p–subgroups
of G, partially tabulated by Griess [48]. This is easy when there is little torsion
in the cohomology, but harder for the small torsion primes, and the exceptional
groups. In [8], however, we use a different argument to cover all primes, inspired
by [99]. Using the above element in lim0 it turns out that one can produce an
element in

lim
G̃/P̃∈Or

p(G̃)op

0 [BP̃ ,BX̃ ′]

where Or
p(G̃) is the subcategory of the orbit category of G̃ with objects the

so-called p–radical subgroups. Here one again wants to show vanishing of the
higher limits, in order to get a map on the homotopy colimit. Calculating higher
limits over this orbit category is in many ways similar to calculating it over the
Quillen category [49]. In this case, however, the relevant higher limits were in
fact shown to identically vanish in earlier work of Jackowski–McClure–Oliver
[55], also building on substantial case-by-case calculations. This again produces

a map BG̃
'
−→ BX̃ ′, and passing to a quotient provides the sought homotopy

equivalence BG
'
−→ BX ′. The statements about self-maps also fall out of this

approach.

2.3. Lie theory for p–compact groups. We have already seen many
Lie-type results for p–compact groups. Quite a few more can be proved by ob-
serving that the classical Lie result only depends on the p–completion of the
compact Lie group, and verifying case-by-case that it holds for the exotic p–
compact groups. We collect some theorems of this type in this section, encour-
aging the reader to look for more conceptual proofs, and include also a brief
discussion of homotopical representation theory. Throughout this section X is
a connected p–compact group with maximal torus T .

The first theorem on the list is the analog of theorems of Bott [14] from
1954.

Theorem 2.5. H∗(X/T ;Zp) and H∗(ΩX;Zp) are both torsion free and con-
centrated in even degrees, and H∗(X/T ;Zp) has rank |WX | as a Zp–module.

The result about ΩX was known as the loop space conjecture, and in fact
proved by Lin and Kane in a series of papers in the more general setting of finite
mod p H–spaces, using complicated calculations with Steenrod operations [67].
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Bott’s proof used Morse theory and the result may be viewed in the con-
text of Schubert cell decompositions [71]. Rationally H∗(X/T ;Zp) ⊗ Q =
Qp[L]⊗Qp[L]WX Qp, so calculating the Betti numbers, given the theorem, is re-
duced to a question about complex reflection groups—an interpretation of these
numbers in terms of length functions on the root system has been obtained for
certain classes of complex reflection groups, cf. [17, 98], but the complete pic-
ture is still not clear. In general the theory of homogeneous and symmetric
spaces for p–compact groups is rather unexplored, and warrants attention.

Theorem 2.5 implies that π3(X) is torsion free, and proving that in a con-
ceptual way might be a good starting point. For Lie groups, Bott in fact stated
the, now classical, fact that π3(G) ∼= Z for G simple. The analogous statement
is not true for most of the exotic p–compact groups; for instance it obviously fail
for the Sullivan spheres other than S3. However, it is true that π3 is non-zero
for finite loop spaces, as a consequence of a celebrated theorem of Clark [30]
from 1963 giving strong restrictions on the degrees of finite loop spaces. These
results helped fuel the speculation that finite loop spaces should look a lot like
compact Lie groups, a point we will return to in the next section.

Most of the general results about torsion in the cohomology of BX and X
due to Borel, Steinberg, and others, also carry through to p–compact groups,
but here again with many results relying on the classification. This fault is
partly inherited from Lie groups; see Borel [13, p. 775] for a summary of the
status there. In particular we mention that X has torsion free Zp–cohomology if
and only if BX has torsion free Zp–cohomology if and only if every elementary
abelian p–subgroup factors through a maximal torus. Likewise π1(X) is torsion
free if and only if every elementary abelian group of rank two factors through
a maximal torus; see [9, 8].

The (complex linear) homotopy representation theory of X is encoded in
the semi-ring

RepC(BX) =

[
BX,

∐

n

BU(n)p̂

]

It is non-trivial since for any connected p–compact group X there exists a
monomorphism BX → BU(n)p̂, for some n; the exotic groups were checked in
[27, 28, 103]—indeed, as already alluded to, several exotic p–compact groups
can conveniently be constructed as homotopy fixed-points inside a p–completed
compact Lie group. The general structure of the semi-ring is however still far
from understood. The classification allows one to focus on p–completed classi-
fying spaces of compact Lie groups, but even in this case the semi-ring appears
very complicated [56]; there are higher limits obstructions, related to interesting
problems in group theory [49].

Weights can be constructed as usual: By the existence of a maximal torus, we
can lift a homotopy representation to a map BTX → BTU(n)p̂ , well defined up to
an action of Σn, and produce a collection of n weights in L∗

X = HomZp
(LX ,Zp),

invariant under the action of the Weyl group WX . When p - |WX |, homotopy
representations just correspond to finite WX–invariant subsets of L∗

X , and any
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homotopy representation decomposes up to conjugation uniquely into inde-
composable representations given by transitive WX–sets. When p | |WX | the
situation is much more complicated.

Let us describe what happens in the basic case of X = SU(2)2̂. Denote by
ρi the irreducible complex representation of SU(2) with highest weight i, and
use the same letter for the induced map BSU(2)2̂ → BU(i+1)2̂. Precomposing
with the self-homotopy equivalence ψk of BSU(2)2̂, k ∈ Z×

2 , corresponding to
multiplication by k on the root datum, gives a new representation k ? ρi of the
same dimension, but with weights multiplied by k.

Theorem 2.6. RepC(BSU(2)2̂) has an additive generating set given by ρ0,
k ? ρ1, k ? ρ2 and ((k+2k′) ? ρ1)⊗ ((k− 2k′) ? ρ1), k ∈ Z×

2 , 0 6= k′ ∈ Z2. These
generators are indecomposable, and two representations agree if they have the
same weights.

The reader may verify that the decomposition into indecomposables is not
unique, e.g., for ρ6. It is at present not clear how to use SU(2)2̂ to describe the
general structure, as one could have hoped—the thing to note is that homo-
topy representations are governed by questions of p–fusion of elements, rather
than more global structure. Already for SU(2)2̂ × SU(2)2̂ there is no upper
bound on the dimension of the indecomposables, and in particular they are
not always a tensor product of indecomposable SU(2)2̂ representations. More
severely, representations need not be uniquely determined by their weights, e.g.,
for Sp(2)2̂ × Sp(2)2̂.

By using case-by-case arguments, there might be hope to establish a version

of Weyl’s theorem R(BX)
∼=
−→ R(BT )WX , where R(BX) = Gr(RepC(BX)) is

the Grothendieck group. The result is not proved even for p–completions of
compact Lie groups, but the integral version is the main result in [58]. The

weaker K–theoretic result K∗(BX;Zp)
∼=
−→ K∗(BT ;Zp)W was established in

[60] (using that H∗(ΩX;Zp) is torsion free). The ring structure of R(BT )W

is also not clear, and in particular it would be interesting to exhibit some
fundamental representations.

3. Finite Loop Spaces

In the 1960s and early 1970s, finite loop spaces, not p–compact groups, were
the primary objects of study, and there were many conjectures about them [91].
The theory of p–compact groups enables the resolution of most of them, either
in the positive or the negative, and gives what is essentially a parametrization
of all connected finite loop spaces.

We already defined finite loop spaces in Section 2; let us now briefly re-
call their history in broad strokes. Hopf proved in 1941 [52] that the rational
cohomology of any connected, finite loop space is a graded exterior algebra
H∗(X;Q) ∼=

∧
Q(x1, ..., xr), where |xi| = 2di−1, and r is called the rank. Serre,
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ten years later [87], showed that the list of degrees d1, . . . , dr uniquely deter-
mines the rational homotopy type of (X,BX, e). In those days, there were not
many examples of finite loop spaces. Indeed, in the early 1960s it was speculated
that perhaps every finite loop space was homotopy equivalent to a compact Lie
group, a would-be variant of Hilbert’s 5th problem. This was soon shown to be
wrong in several different ways: Hilton–Roitberg, in 1968, exhibited a ’crimi-
nal’ [51], a finite loop space (X,BX, e), of the rational homotopy type of Sp(2),
such that the underlying space X is not homotopy equivalent to any Lie group;
and Rector [85] in 1971 observed that there exists uncountable many finite loop
spaces (X,BX, e) such thatX is homotopy equivalent to SU(2). The first exam-
ple may superficially look more benign than the second; indeed in general there
are only finitely many possibilities for the homotopy type of the underlying
space X, given the rational homotopy type of BX [32]. But the exact number
depends on homotopy groups of finite complexes, and does not appear closely
related to Lie theory, so shifting focus from loop space structures (X,BX, e) to
that of homotopy types of X, does not appear desirable.

An apparently better option is, as the reader has probably sensed, to pass to
p–completions, defined in Section 2. Sullivan made precise how one can recover
a (simply connected) space integrally if one knows the space “at all primes and
rationally, as well as how they are glued together”. Along with his p–completion,
he constructed a rationalization functor X → XQ, with analogous properties,
and proved that these functors fit together in the following arithmetic square.

Proposition 3.1 (Sullivan’s arithmetic square [94, 34]). Let Y be a simply
connected space of finite type. Then the following diagram, with obvious maps,
is a homotopy pull-back square.

Y //

��

∏
pY p̂

��

YQ // (
∏
p Y p̂)Q

This parallels the usual fact that the integers Z is a pullback of Ẑ =
∏
p Zp

and Q over the finite adeles Af = Ẑ ⊗ Q. If BX is the classifying space of
a connected finite loop space then, by the classification of p–compact groups,
all spaces in the diagram are now understood: Each BX p̂ is the classifying
space of a p–compact group, and the spaces at the bottom of the diagram
are determined by numerical data, namely the degrees: BXQ ' K(Q, 2d1) ×
· · ·×K(Q, 2dr) and (

∏
pBX p̂)Q ' K(Af , 2d1)×· · ·×K(Af , 2dr), by the result

of Serre quoted earlier. Hence to classify connected finite loop spaces with a
given list of degrees, we first have to enumerate all collections of p–compact
groups with those degrees; there are a finite number of these, and they can be
enumerated given the classification [8, Prop. 8.18]. The question of how many
finite loop spaces with a given set of p–completions is then a question of genus,
determined by an explicit set of double cosets.
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Theorem 3.2 (Classification of finite loop spaces). The assignment which to
a finite loop space Y associates the collection of Zp–root data {DY p̂

}p is a
surjection from connected finite loop spaces to collections of Zp–root data, all
p, with the same degrees d1, . . . , dr. The pre-image of {Dp}p is parametrized by
the set of double cosets

Out(KQ)\Outc(KAf
)/

∏

p

Out(Dp)

where KR = K(R, 2d1)× · · · ×K(R, 2dr), R = Q or Af .

Here Out(KQ) denotes the group of free homotopy classes of self-homotopy
equivalences, and Outc(KAf

) denotes those homotopy classes of homotopy
equivalences that induce Af–linear maps on homotopy groups. Since KR is an
Eilenberg–MacLane space, the set of double cosets can be completely described
algebraically; see [9, §13] for a calculation of Out(Dp).

The set of double cosets will, except for the degenerate case of tori, be
uncountable. Allowing for only a single prime p everywhere above would
parametrize the number of Z(p)–local finite loop spaces corresponding to a
given p–compact group Yp, and also this set is usually uncountable, with a few
more exceptions, such as groups of rank one. A similar result holds when one
inverts some collection of primes P; see [7, Rem. 3.3] for more information.

Sketch of proof of Theorem 3.2. There is a natural inclusion KQ → KAf
in-

duced by the unit map Q → Af , and one easily proves that the pull-back
provides a space Y such that H∗(ΩY ;Z) is finite over Z. That Y is actually ho-
motopy equivalent to a finite complex follows by the vanishing of the finiteness
obstruction, as proved by Notbohm [81] (see [4, Lemma 1.2] for more details).
Twisting the pullback by an element in Outc(KAf

) provides a new finite loop
space, and after passing to double cosets, this assignment is easily seen to be
surjective and injective on homotopy types (see [94] and [101, Thm. 3.8]).

If one assumes that the finite loop space X has a maximal torus, as defined
by Rector [86], i.e., a map (BS1)r → BX with homotopy fiber homotopy
equivalent to a finite complex, for r = rank(X), the above picture changes
completely. The inclusion of an ‘integral’ maximal torus prohibits the twisting
in the earlier theorem, and one obtains a proof of the classical maximal torus
conjecture stated by Wilkerson [100] in 1974, giving a homotopy theoretical
description of compact Lie groups as exactly the finite loop spaces admitting a
maximal torus.

Theorem 3.3 (Maximal torus conjecture [8]). The classifying space functor,

which to a compact Lie group G associates the finite loop space (G,BG, e : G
'
−→

ΩBG) gives a one-to-one correspondence between isomorphism classes of com-
pact Lie groups and finite loop spaces with a maximal torus. Furthermore, for
G connected, Out(BG) ∼= Out(G) ∼= Out(DG).
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The statement about automorphisms, which was not part of the original
conjecture, follows from work of Jackowski–McClure–Oliver [57, Cor. 3.7].

In light of the above structural statement it is natural to further enquire how
exotic finite loop spaces can be. Whether they are all manifolds was recently
settled in the affirmative by Bauer–Kitchloo–Notbohm–Pedersen, answering an
old question of Browder [24].

Theorem 3.4 ([10]). For any finite loop space (Y,BY, e), Y is homotopy equiv-
alent to a closed, smooth, parallelizable manifold.

The result is proved using the theory of p–compact groups, combined with
classical surgery techniques, as set up by Pedersen. It shows the subtle failure of
a näıve homotopical version of Hilbert’s fifth problem: Every finite loop space is,
by classical results, homotopy equivalent to a topological group, and homotopy
equivalent to a compact smooth manifold by the above. But one cannot always
achieve both properties at once. This would otherwise imply that every finite
loop space was homotopy equivalent to a compact Lie group, by the solution to
Hilbert’s fifth problem, contradicting that many exotic finite loop spaces exist.

One can still ask if every finite loop space is rationally equivalent to some
compact Lie group? Indeed this was conjectured in the 70s to be the case, and
was verified up to rank 5. However, the answer to this question turns out to be
negative as well, although counterexamples only start appearing in high rank.

Theorem 3.5 (A ‘rational criminal’ [4]). There exists a connected finite loop
space X of rank 66, dimension 1254, and degrees

{28, 32, 48, 52, 67, 7, 87, 9, 105, 11, 125, 13, 145, 163, 182, 202, 22, 242, 26, 28, 30}

(where nk means that n is repeated k times) such that H∗(X;Q) does not agree
with H∗(G;Q) for any compact Lie group G, as graded vector spaces.

This example is minimal, in the sense that any connected, finite loop space
of rank less than 66 is rationally equivalent to some compact Lie group G.

In [4] there is a list of which p–compact group to choose at each prime. By
the preceeding discussion, the problem of finding such a space is a combinato-
rial problem, and one can show that in high enough rank there will be many
examples.

4. Steenrod’s Problem of Realizing Polynomial

Rings

The 1960 “Steenrod problem” [92, 93], asks, for a given ring R, which graded
polynomial algebras are realized as H∗(Y ;R) of some space Y , i.e., in which
degrees can the generators occur? In this section we give some background on
this classical problem and describe its solution in [7, 8].
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Steenrod, in his original paper [92], addressed the case of polynomial rings
in a single variable: For R = Z the only polynomial rings that occur are
H∗(CP∞;Z) ∼= Z[x2] and H∗(HP∞;Z) ∼= Z[x4], as he showed by a short
argument using his cohomology operations. Similarly, for R = Fp he showed
that the generator has to sit in degree 1,2, or 4 for p = 2 and in degree 2n with
n|p− 1 for p odd, but now as a consequence of Hopf invariant one and its odd
primary version (though it was not known at the time whether the p odd cases
were realized when n 6= 1, 2).

There were attempts to use the above techniques to handle polynomial rings
in several variables, but they gave only very partial results. In the 70s, however,
Sullivan’s method, as generalized by Clark–Ewing, realized many polynomial
rings, as explained in Section 2.1. Conversely, in the 80s Adams–Wilkerson [1]
and others put restrictions on the potential degrees, using categorical properties
of the category of unstable algebras over the Steenrod algebra. This eventually
led to the result of Dwyer–Miller–Wilkerson [39] that for p large enough the
Clark–Ewing examples are exactly the possible polynomial cohomology rings
over Fp.

In order to tackle all primes, it turns out to be useful to have a space-
level theory, and that is what p–compact groups provide. Namely, if Y is a
space such that H∗(Y ;Fp) is a polynomial algebra, then the Eilenberg–Moore
spectral sequence shows that H∗(ΩY ;Fp) is finite, and hence Y p̂ is a p–compact
group.

Theorem 4.1 (Steenrod’s problem, char(R) 6= 2 [7]). Let R be a commutative
Noetherian ring of finite Krull dimension and let P ∗ be a graded polynomial
R–algebra in finitely many variables, all in positive even degrees.

Then there exists a space Y such that P ∗ ∼= H∗(Y ;R) as graded algebras
if and only if for each prime p not a unit in R, the degrees of P ∗ halved is a
multiset union of the degrees lists occurring in Table 1 at that prime p, and
the degree one, with the following exclusions (due to torsion): (G(2, 2, n), p =
2;n ≥ 4), (G(6, 6, 2), p = 2), (G24, p = 2), (G28, p = 2, 3), (G35, p = 2, 3),
(G36, p = 2, 3), and (G37, p = 2, 3, 5).

When char(R) 6= 2, all generators are in even degrees by anti-commutativity,
so the assumptions of the theorem are satisfied. The proof in [7] only relies on
the general theory of p–compact groups, not on the classification. The case
R = Fp, p odd, was solved earlier by Notbohm [81], also using p–compact
group theory. Taking R = Z gives the old conjecture that if H∗(Y ;Z) is
a polynomial ring, then it is isomorphic to a tensor product of copies of
Z[x2], Z[x4, x6, . . . , x2n], and Z[x4, x8, . . . , x4n], the cohomology rings of CP∞,
BSU(n) and BSp(n).

Theorem 4.2 (Steenrod’s problem, char(R) = 2 [8]). Suppose that P ∗ is a
graded polynomial algebra in finitely many variables over a commutative ring
R of characteristic 2. Then P ∗ ∼= H∗(Y ;R) for a space Y if and only if

P ∗ ∼= H∗(BG;R)⊗H∗(BDI(4);R)⊗r ⊗H∗(RP∞;R)⊗s ⊗H∗(CP∞;R)⊗t



994 Jesper Grodal

as a graded algebra, for some r, s, t ≥ 0, where G is a compact connected Lie
group with finite center. In particular, if all generators of P ∗ are in degree ≥ 3
then P ∗ is a tensor product of the cohomology rings of the classifying spaces of
SU(n), Sp(n), Spin(7), Spin(8), Spin(9), G2, F4, and DI(4).

The proof reduces to R = F2, and then uses the classification of 2–compact
groups. It would be interesting to try to list all polynomial rings which occur
as H∗(BG;F2) for G a compact connected Lie group with finite center.

One can also determine to which extent the space is unique. The following
result was proved by Notbohm [81] for p odd and in [8] for p = 2, as the cul-
mination of a long series of partial results, started by Dwyer–Miller–Wilkerson
[38, 39].

Theorem 4.3 (Uniqueness of spaces with polynomial Fp–cohomology). Sup-
pose A∗ is a finitely generated polynomial Fp–algebra over the Steenrod algebra
Ap, with generators in degree ≥ 3. Then there exists, up to p–completion, at
most one homotopy type Y with H∗(Y ;Fp) ∼= A∗, as graded algebras over the
Steenrod algebra.

If P ∗ is a finitely generated polynomial Fp–algebra, then there exists at most
finitely many homotopy types Y , up to p–completion, such that H∗(Y ;Fp) ∼= P ∗

as graded Fp–algebras.

The assumption ≥ 3 above cannot be dropped, as easy examples show, and
integrally uniqueness rarely hold, as discussed in Section 3; see also [7, 8].

5. Homotopical Finite Groups, Group Actions,..

This survey is rapidly coming to an end, but we nevertheless want to briefly
mention some other recent developments in homotopical group theory.

In connection with the determination of the algebraic K-theory of finite
fields, Quillen and Friedlander proved the following: If G is a reductive group
scheme, and q is a prime power, p - q, then

BG(Fq)p̂ ' (BG(C)p̂)h〈ψ
q〉

where the superscript means taking homotopy fixed-points of the self-map ψq

corresponding to multiplication by q on the root datum—it says that, at p,
fixed-points and homotopy fixed-points of the Frobenius map raising to the qth
power agree.

The right-hand side of the equation makes sense with BG(C)p̂ replaced by
a p–compact group. Benson speculated in the mid 90s that the resulting object
should be the classifying space of a “p–local finite group”, and be determined
by a conjugacy or fusion pattern on a finite p–group S, as axiomatized by Puig
[83] (motivated by block theory), together with a certain rigidifying 2–cocycle.
He even gave a candidate fusion pattern corresponding to DI(4), namely a
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fusion pattern constructed by Solomon years earlier in connection with the
classification of finite simple groups, but shown not to exist inside any finite
group [12].

All this turns out to be true and more! A theory of p–local finite groups
was founded and developed by Broto–Levi–Oliver in [20], and has seen rapid
development by both homotopy theorists and group theorists since then. The
Solomon 2–local finite groups Sol(q) were shown to exist in [66], and a study of
Chevalley p–local finite groups, p odd, was initiated in [22]. A number of exotic
p–local finite groups have been found for p odd, but the family Sol(q) remains
the only known examples at p = 2, prompting the speculation that perhaps
they are the only exotic simple 2–local finite groups! Even partial results in
this direction could have implications for the proof of the classification of finite
simple groups. A modest starting point is the result in [18] that any so-called
constrained fusion pattern comes from a (unique constrained) finite group—
the result is purely group theoretic, and, while not terribly difficult, the only
known proof uses techniques of a kind hitherto foreign to the classification of
finite simple groups.

One can ask for a theory more general than p–local finite groups, broad
enough to encompass both p–completions of arbitrary compact Lie groups and
p–compact groups, and one such theory was indeed developed in [21], the so-
called p–local compact groups. One would like to identify connected p–compact
groups inside p–local compact groups in some group theoretic manner. This
relates to the question of describing the relationship between the classical Lie
theoretic structure and the p–fusion structure, mentioned several times before
in this paper; the proof of the classification of p–compact groups may offer some
hints on how to proceed.

In a related direction, one may attempt to relax the condition of compact-
ness in p–compact groups to include more general types of groups; the paper
[29] shows that replacing cohomologically finite by noetherian gives few new
examples. An important class of groups to understand is Kac–Moody groups,
and the paper [19] shows, amongst other things, that homomorphisms from
finite p–groups to Kac–Moody groups still correspond to maps between classi-
fying spaces. This gives hope that some of the homotopical theory of maximal
tori, Weyl groups, etc., may also be brought to work in this setting, but the
correct general definition of a homotopy Kac–Moody group is still elusive, the
Lie theoretic definition being via generators-and-relations rather than intrinsic.
A good understanding of the restricted case of affine Kac–Moody groups and
loop groups would already be very interesting.

Groups were historically born to act, a group action being a homomorphism
from G to the group of homeomorphisms of a space X. In homotopy theory,
one is however often only given X up to an equivariant map which is a ho-
motopy equivalence. Here the appropriate notion of an action is an element
in the mapping space map(BG,BAut(X)), where as before Aut(X) denotes
the space of self-homotopy equivalences of X (itself an interesting group!).
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Homotopical group actions can also be studied one prime at a time, and as-
sembled to global results afterwards. Of particular interest is the case where
X is a sphere. Spheres are non-equivariantly determined by their dimension,
and self-maps by their degree. It turns out that something similar is true for
homotopical group actions of finite groups on p–complete spheres [50]. But, one
has to interpret dimension as meaning dimension function, assigning to each
p–subgroup of G the homological dimension of the corresponding homotopy
fixed-point set, and correspondingly the degree is a degree function, viewed
as an element in a certain p–adic Burnside ring. Furthermore there is hope
to determine exactly which dimension functions are realizable. Understanding
groups is homotopically open-ended. . .
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5, 415–430, 2000. Sém. Bourbaki, 1998/99.

[89] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. Canadian J.
Math., 6:274–304, 1954.

[90] T. A. Springer. Linear algebraic groups. Birkhäuser, second edition, 1998.
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Let S be a closed oriented surface S of genus g ≥ 0 with m ≥ 0 marked points
(punctures) and 3g − 3 + m ≥ 2. This is a survey of recent results on actions
of the mapping class group of S which led to a geometric understanding of this
group.
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1. Introduction

Let S be a closed oriented surface of genus g ≥ 0 with m ≥ 0 marked points
(punctures) and 3g − 3 +m ≥ 2. Such a surface is called non-exceptional. The
mapping class group MCG(S) of S is the group of isotopy classes of orientation
preserving homeomorphisms of S preserving the marked points.

Mapping class groups and their subgroups naturally appear in many
branches of mathematics and have been extensively studied in the past from
the point of view of group theory, topology and geometry. Similarities and dif-
ferences to other families of groups, like irreducible lattices in semi-simple Lie
groups of non-compact type, have been detected. In recent years, investigat-
ing the mapping class group through its action on various spaces related to
the objects which give rise to it, namely the surfaces themselves, turned out
to be particularly fruitful. The goal of this article is to survey some of these
developments.

The perhaps simplest topological object defined on the surface S is a simple
closed curve. Such a curve c is called essential if c is not contractible and not
freely homotopic into a puncture. Mapping classes which are particularly easy
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to understand are Dehn twists about essential simple closed curves. They are
defined as follows.

Let A = S1 × [0, 1] and let T : A → A be the orientation preserving
homeomorphism defined by

T (θ, t) = (θ + 2πt, t).

The map T fixes ∂A pointwise. As a consequence, for every orientation preserv-
ing embedding φ : A→ φ(A) ⊂ S with core curve φ(S1×{ 1

2
}) freely homotopic

to c, the map φ ◦ T ◦ φ−1 can be extended by the identity on S − φ(A) to an
orientation preserving homeomorphism of S. Its isotopy class only depends on
the free homotopy class of c. It is called a Dehn twist about c.

The mapping class group MCG(S) is finitely generated. If S does not have
punctures (i.e. if m = 0) then there is a generating set consisting of Dehn twists
about a suitable collection of 2g + 1 simple closed non-separating curves in S
(see [13] for details and references).

There are other generating sets with fewer generators. Indeed, as was
pointed out by Wajnryb [45], the mapping class group of a closed surface can
be generated by two elements. Korkmaz [32] showed that two torsion elements
or one Dehn twist and one torsion element suffice.

Every finitely generated group G can be equipped with a distance function d
which is invariant under the left action of G. Namely, let G be a finite symmetric
generating set. Here symmetric means that G contains with every element g also
its inverse g−1. The word norm |g| of an element g ∈ G is the smallest length of a
word in G which represents g. Then d(g, h) = |g−1h| defines a distance function
on G, a so-called word metric, which is invariant under the left action of G. Two
such distance functions d, d′ defined by different symmetric generating sets are
quasi-isometric.

Namely, for a number L ≥ 1, an L-quasi-isometric embedding of a metric
space (X, d) into a metric space (Z, d′) is a map F : X → Z such that

d(x, y)/L− L ≤ d′(Fx, Fy) ≤ Ld(x, y) + L

for all x, y ∈ X. If for every z ∈ Z there is some x ∈ X such that d′(Fx, z) ≤ L
then F is called an L-quasi-isometry. If d, d′ are two word metrics on a finitely
generated group G then the identity (G, d) → (G, d′) is a quasi-isometry.

As a consequence, MCG(S) equipped with a word metric can be studied as
a geometric space, uniquely determined up to quasi-isometry. The geometry of
MCG(S) can then be related to its topology (for example its group homology
or cohomology, perhaps with coefficients) and the structure of the spaces on
which MCG(S) acts effectively.
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2. The Action of the Mapping Class Group on
the Curve Graph

Finitely generated groups can be divided into classes according to geometric
types of the metric spaces on which they act in an interesting way as isometries.
Simplicial trees are a class of metric spaces which reveal information about
groups which act on them as simplicial automorphisms (or isometries). A group
Γ is said to have property FA if every action of Γ without inversion on a
simplicial tree has a fixed point [42].

A countable group Γ has property T if every affine isometric action of Γ
on a real Hilbert space has a fixed point. Groups with property T are known
to have property FA as well. Irreducible lattices in semi-simple Lie groups of
non-compact type and higher rank have property T , and the same holds true
for lattices in the rank-one simple Lie groups Sp(n, 1), F−20

4 . However, lattices
Γ in the simple rank-one Lie groups SO(n, 1), SU(n, 1) are known to fulfill a
strong negation of property T . Namely, they admit an isometric action on a
real Hilbert space H which is proper in a metric sense: For every bounded set
A ⊂ H there are only finitely many φ ∈ Γ with φA ∩ A 6= ∅. This property is
called the Haagerup property.

The mapping class group of the space of tori is the group SL(2,Z) which has
the Haagerup property. The mapping class group of the closed surface of genus
2 does not have property T . This can for example be deduced from a result
of Korkmaz [31] who showed that for any n ≥ 1 the mapping class group of a
surface S of genus g ≤ 2 with m ≥ 0 punctures and 3g − 3 +m ≥ 2 contains a
subgroup Γn of finite index which surjects onto the free group Fn of rank n. As
a consequence, Γn admits an isometric action on a tree with unbounded orbits
and hence Γn does not have property T . Then same holds true for MCG(S).

For surfaces of higher genus, J. Andersen announced

Theorem 2.1 (J. Andersen). Mapping class groups do not have property T .

This leads to the following questions.

Question 1: Do mapping class groups act on simplicial trees without fixed
point?

Question 2: Are there subgroups Γ of finite index with non-vanishing first
cohomology group, perhaps with coefficients in some representation with infinite
image?

Question 3: Do mapping class groups have the Haagerup property?

A simplicial tree equipped with any simplicial metric is a hyperbolic geodesic

metric space in the sense of Gromov (see [9]). The class of hyperbolic spaces is
much larger than the class of trees. For example, there are many word hyperbolic

groups, i.e. groups with hyperbolic word metric (or Cayley graphs), which have
property T .
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Mapping class groups admit isometric actions on Gromov hyperbolic spaces
without bounded orbits. The best known example of such an action is an action
on a space which is not locally compact and defined as follows.

The curve complex CC(S) of S is a finite dimensional simplicial complex
whose vertices are the free homotopy classes of essential simple closed curves
on S. A collection c1, . . . , cm of m ≥ 1 vertices spans a simplex if and only if the
curves ci can be realized disjointly. The curve graph C(S) is the one-skeleton of
the curve complex. It carries a canonical simplicial metric. Masur and Minsky
showed [36]

Theorem 2.2 (Masur-Minsky 99). The curve graph is a hyperbolic geodesic

metric space.

The curve complex is not locally finite and hence not locally compact. The
mapping class group admits a natural simplicial action on the curve complex.
Even more is true. The following result is due to Ivanov [23] in most cases
and was completed by Korkmaz [30]. For its formulation, define the extended

mapping class group to be the group of all isotopy classes of homeomorphisms
of S.

Theorem 2.3 (Ivanov 97). If S is not a closed surface of genus 2 or a twice

punctured torus or a six punctured sphere then the automorphism group of the

curve complex CC(S) coincides with the extended mapping class group.

More recently, Bestvina and Feighn [5] constructed proper (i.e. locally com-
pact complete) hyperbolic geodesic metric spaces which admit isometric actions
of MCG(S) with unbounded orbits.

Individual mapping classes act on the curve graph in the following way. A
mapping class is called reducible if it preserves a non-trivial multicurve, i.e. a
collection of essential simple closed curves which span a simplex in CC(S). A
Dehn twist is reducible. The subgroup of MCG(S) generated by a reducible
element acts on the curve graph C(S) with bounded orbits. An element φ ∈
MCG(S) which is neither reducible nor of finite order is called pseudo-Anosov.
A pseudo-Anosov element preserves a geodesic in the curve graph C(S) and
acts on this geodesic as a nontrivial translation [37], [6].

The action of MCG(S) on C(S) can be used to construct non-trivial second
bounded cohomology classes for subgroups of MCG(S) [4], also with nontrivial
coefficients [15]. Since the second bounded cohomology group of an irreducible
lattice in a semi-simple Lie group of non-compact type and higher rank in-
jects into its usual second cohomology group and hence is finite dimensional,
one obtains the following result [4] which was first established with a different
method by Farb and Masur [12] building in an essential way on the work of
Kaimanovich and Masur [26].

Theorem 2.4 (Kaimanovich-Masur, Farb-Masur). Let Γ be an irreducible lat-

tice in a semi-simple Lie group of non-compact type and rank at least 2. Then

the image of every homomorphism ρ : Γ → MCG(S) is finite.
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This result can also be extended to cocycles and to irreducible lattices in
arbitrary groups of higher rank [16]. Here a cocycle for a group Γ acting on a
probability space (X, ν) by measure preserving transformations with values in
a group Λ is a ν-measurable map α : Γ×X → Λ such that

α(gh, x) = α(g, hx)α(h, x)

for all g, h ∈ Γ and almost all x ∈ X. Two cocycles α, β are cohomologous if
there is a measurable map χ : X → Λ such that

α(g, x)χ(x) = χ(gx)β(g, x)

for all g ∈ Γ and almost all x.

Theorem 2.5. Let n ≥ 2, let Γ < G1 × · · · × Gn = G be an irreducible

lattice, let (X, ν) be a mildly mixing Γ-space and let α : Γ ×X → MCG(S) be

any cocycle. Then α is cohomologous to a cocycle α′ with values in a subgroup

H = H0×H1 of MCG(S) where H0 is virtually abelian and where H1 contains

a finite normal subgroup K such that the projection of α′ into H1/K defines a

continuous homomorphism G→ H1/K.

Hyperbolic behavior of subgroups of the mapping class group is closely
related to large-scale properties of their action on the curve graph. To this
end, note that since C(S) is arc connected, there is a constant c > 0 such
that for every vertex γ ∈ C(S) the orbit map φ → φγ (φ ∈ MCG(S)) is c-
Lipschitz. However, this orbit map largely distorts distances. In fact, the orbit
of an infinite cyclic subgroup of MCG(S) generated by a reducible element of
infinite order is bounded.

On the other hand, if φ ∈ MCG(S) is pseudo-Anosov then for any vertex
γ ∈ C(S) the orbit map k ∈ Z → φkγ is a quasi-geodesic. Even more is true.

Namely, let for the moment S be a closed surface. If G < MCG(S) is any
subgroup then there is an exact sequence

0 → π1(S) → H → G→ 0.

The group H is an extension of the surface group π1(S). Vice versa, for every
exact sequence of this form there is a natural homomorphism G → MCG(S).
If G =< φ > is generated by a pseudo-Anosov element φ ∈ MCG(S) then the
extension H is the fundamental group of a closed hyperbolic 3-manifold (this
is the celebrated hyperbolization result for Haken manifolds of Thurston, see
[43] for the foundational cornerstone of Thurston’s work). This three-manifold
is just the mapping torus of φ. In particular, H is a word hyperbolic group.

Farb and Mosher [14] defined a geometric generalization of such subgroups
of MCG(S). The following definition is equivalent to the one given in [14] and
was introduced in [24], [19]. It also makes sense if S has punctures.

Definition 2.6. A finitely generated subgroup G of MCG(S) is convex co-

compact if and only if an orbit map g ∈ G → gγ ∈ C(S) (γ ∈ C(S)) is a
quasi-isometric embedding.
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One direction of the following equivalence is due to Farb and Mosher [14],
the second direction was established in [20].

Proposition 2.7. Let S be a closed surface and let 0 → π1(S) → H → G→ 0
be an exact sequence. Then the following are equivalent.

1. The kernel of the homomorphism G → MCG(S) is finite, and the image

is convex cocompact.

2. H is word hyperbolic.

As indicated above, infinite cyclic groups generated by a single pseudo-
Anosov element are convex cocompact. Other examples can be obtained as
follows.

Two pseudo-Anosov elements φ, ψ ∈ MCG(S) are independent if they are
not contained in a common virtually cyclic subgroup of MCG(S). For such el-
ements, it follows from a standard ping-pong argument for the action on the
space of geodesic laminations that for sufficiently large k, ` > 0 the subgroup of
MCG(S) generated by φk, ψ` is free [38]. Moreover, this group is convex cocom-
pact provided that k, ` are sufficiently large (see [14] for a detailed discussion).
As a consequence, free convex cocompact groups with an arbitrary number of
generators exist.

However, up to now no convex cocompact surface group is known. In other
words, there are no known examples of surface bundles over surfaces with word
hyperbolic fundamental group.

Even more, there are no known examples of finitely generated subgroups
of MCG(S) which only contain pseudo-Anosov elements and are not virtually
free. This leads to the following question.

Question 5: Is a finitely generated purely pseudo-Anosov subgroup ofMCG(S)
convex cocompact and virtually free?

Recent results give some evidence in this direction. In [25], Kent, Leininger
and Schleimer investigate purely pseudo-Anosov subgroups of MCG(S) of a
special form. To formulate their result, let S be a closed surface of genus g ≥ 2
and let S∗ be the surface S with one point deleted. There is an exact sequence

0 → π1(S) → MCG(S∗) → MCG(S) → 0.

Here the homomorphism MCG(S∗) → MCG(S) is defined by the point closing
map which deletes the marked point (puncture), and an element α ∈ π1(S)
defines an element inMCG(S∗) by dragging the puncture along a representative
of α. Kent, Leininger and Schleimer show

Proposition 2.8 (Kent-Leininger-Schleimer). If G < π1(S) is finitely gen-

erated and defines a purely pseudo-Anosov subgroup of MCG(S∗) then G is

convex cocompact.
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The following is an extension by Dahmani and Fujiwara [10] to one-ended
hyperbolic groups of a result of Bowditch [7] for surface groups.

Theorem 2.9 (Bowditch, Dahmani-Fujiwara). There are only finitely many

conjugacy classes of purely pseudo-Anosov one-ended hyperbolic subgroups of

MCG(S).

On the other hand, surface subgroups ofMCG(S) do exist. Indeed, Leininger
and Reid [33] showed

Proposition 2.10 (Leininger-Reid 06). There are surface subgroups of

MCG(S) which contain a single conjugacy class of a maximal abelian subgroup

not consisting of pseudo-Anosov elements.

3. The Action of the Mapping Class Group on
Teichmüller Space

Let T (S) be the Teichmüller space of all isometry classes of complete marked
hyperbolic metrics on S of finite area. Here two hyperbolic metrics g, g′ define
the same point in T (S) if there is a diffeomorphism ψ : S → S which is
isotopic to the identity and such that ψ∗g′ = g. Equivalently, T (S) is the set
of all marked complex or conformal structures on S. Teichmüller space has the
structure of a smooth manifold diffeomorphic to R

6g−6+2m. The mapping class
group MCG(S) naturally acts on T (S) properly discontinuously. However, this
action is neither free nor cocompact.

The Weil-Petersson metric on T (S) is a smooth MCG(S)-invariant Rie-
mannian metric of negative sectional curvature. The metric is incomplete. Its
completion can be described as follows. A surface with nodes is obtained from S
by pinching one or several simple closed curves on S to a point. The Teichmüller
space of a surface with nodes is defined. The completion of the Weil-Petersson
metric is a CAT(0)-space which is the union of the Weil-Petersson spaces for
surfaces with nodes. This completion is not locally compact.

An isometry φ of a CAT(0)-space X is called semi-simple if the dilation
x→ d(x, φ(x)) assumes a minimum on X. A semi-simple isometry is elliptic if
it fixes a point in X. An isometry which is not semi-simple is called parabolic,
and it is neutral parabolic if the infimum of the dilation vanishes.

The following observation can be found in [18] or [8].

Proposition 3.1. The mapping class group acts on the WP-completion of

T (S) by semi-simple isometries.

Each Dehn twist acts as an elliptic element. In particular, the action is not
proper in a metric sense. In fact, Bridson showed [8]

Proposition 3.2 (Bridson 09). If S is a closed surface of genus g ≥ 3 and if

MCG(S) acts isometrically on a CAT(0)-space then each Dehn twist acts as an

elliptic element or a neutral parabolic.
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For a closed surface S of genus g ≥ 2 there is a natural isometric action of
MCG(S) on a proper CAT(0)-space. Namely, an orientation preserving homeo-
morphism of S acts as an automorphism on the first homology group H1(S,Z)
of S preserving the homology intersection form. Since the intersection form is
non-degenerate and since H1(S,Z) = Z

2g, this action defines a representation
of MCG(S) into the integral symplectic group Sp(2g,Z). The representation is
surjective. Its kernel is called the Torelli group (see [13]).

The group Sp(2g,Z) is a lattice in the isometry group Sp(2g,R) of a
symmetric space of non-compact type. As a consequence, MCG(S) admits
an isometric action on a CAT(0)-space which factors through the inclusion
Sp(2g,Z) → Sp(2g,R). However, this action is far from effective. Indeed, the
Torelli group is infinite. More precisely, it is a consequence of a result of Mess
that for g = 2 the Torelli group is an infinitely generated free group. For g ≥ 3
the Torelli group is finitely generated, but it is not known whether it is finitely
presented (see [13]).

Question 6: Does MCG(S) admit a proper isometric action on a CAT(0)-
space?

If S is a closed surface of genus g = 2 then there is a proper isometric action
of MCG(S) by semi-simple isometries on a CAT(0)-space of dimension 18 [8].
By Proposition 3.2, such an action can not exist for g ≥ 3.

4. A Geometric Model for the Mapping Class
Group

A geometric model for the mapping class group is a locally compact geodesic
metric space on which MCG(S) acts properly and cocompactly. In this sec-
tion we present such a geometric model and explain how it is used to gain
information on MCG(S).

A train track on S is an embedded 1-complex τ ⊂ S whose edges (called
branches) are smooth arcs with well-defined tangent vectors at the endpoints.
At any vertex (called a switch) the incident edges are mutually tangent.
Through each switch there is a path of class C1 which is embedded in τ and
contains the switch in its interior. In particular, the branches which are inci-
dent on a fixed switch are divided into “incoming” and “outgoing” branches
according to their inward pointing tangent at the switch. Each closed curve
component of τ has a unique bivalent switch, and all other switches are at least
trivalent. The complementary regions of the train track have negative Euler
characteristic, which means that they are different from discs with 0, 1 or 2
cusps at the boundary and different from annuli and once-punctured discs with
no cusps at the boundary. A train track is called generic if every switch is at
most 3-valent. Train tracks are identified if they are isotopic.
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For a given complete hyperbolic metric of finite volume on the surface S,
a geodesic lamination is a closed subset of S which can be foliated by sim-
ple geodesics. A geodesic lamination is minimal if every half-leaf is dense. A
geodesic lamination is maximal if its complementary components are all ideal
triangles or once punctured monogons. A geodesic lamination is complete if it
is maximal and can be approximated in the Hausdorff topology for compact
subsets of S by simple closed geodesics.

A geodesic lamination λ is carried by a train track τ if there is a map
F : S → S of class C1 which is homotopic to the identity and maps λ into
τ so that the restriction of the differential dF of F to λ vanishes nowhere. A
train track τ is called complete if it is generic and transversely recurrent (see
[40] for details on this technical concept) and if it carries a complete geodesic
lamination. Such a train track is necessarily maximal, i.e. its complementary
components are all trigons and once punctured monogons.

A half-branch b of a generic train track τ is called large if every locally
embedded path α : (−ε, ε) → τ of class C1 which passes through the switch
on which b is incident intersects the interior of b. A half-branch which is not
large is called small. A branch is large if each of its half-branches is large. If τ
is a complete train track and if b is a large branch of τ then τ can be modified
with a single right or left split at b to a maximal train track η as shown in the
figure. If λ is a complete geodesic lamination carried by τ then there is a single

choice of a right or left split at b so that the split track η carries λ and hence
it is complete.

Let T T (S) be the locally finite directed graph whose vertices are the isotopy
classes of complete train tracks on S and where two such train tracks τ, η are
connected by a directed edge of length one if η can be obtained from τ by a
single split. Then [16]

Proposition 4.1. T T (S) is connected and MCG(S) acts on T T (S) properly

and cocompactly.

As a consequence, T T (S) is a geometric model for MCG(S) which can be
used to gain some understanding of MCG(S). For example, it allows to give a
fairly explicit description of efficient paths connecting two points in MCG(S).
To this end, let τ ∈ T T (S) be any vertex and let λ be a complete geodesic
lamination carried by τ . As mentioned above, for every large branch b of τ
there is a unique choice of a right or left split of τ at b so that the split track
carries λ. Let E(τ, λ) be the complete subgraph of T T (S) whose vertices are
the train tracks which can be obtained from τ by a directed edge path (also
called a splitting sequence) and which carry λ. Call E(τ, λ) a cubical euclidean

cone. These cubical euclidean cones can be equipped with their intrinsic path
metric dE .
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Proposition 4.2. There is a number L > 1 such that for every vertex τ ∈
T T (S) and every complete geodesic lamination λ carried by τ the inclusion

(E(τ, λ), dE) → T T (S) is an L-quasi-isometric embedding.

As an example of such a cubical euclidean cone, let P be a pants decom-
position of S and let τ be a complete train track containing every pants curve
c of P as an embedded subgraph consisting of two branches, one small branch
(with two small half-branches) and one large branch. Then there is a train track
which is obtained from τ by a single split at the large branch and which coin-
cides up to isotopy with the image of τ by a positive (or negative) Dehn twist
about c. As a consequence, there is a choice of a positive or negative Dehn twist
about each pants curve of P such that the sub-semigroup A ⊂ MCG(S) which
is generated by these Dehn twists has the following property. There is a finite
complete geodesic lamination λ carried by τ (i.e. λ contains only finitely many
leaves) which contains P as the union of minimal components such that the set
of vertices of E(τ, λ) is precisely A(τ).

Now splitting sequences in a cone E(τ, λ) are geodesics for the intrinsic path
metric dE and hence splitting sequences are uniform quasi-geodesics in T T (S).
These quasi-geodesics can be used to obtain a fairly explicit understanding
of the geometry of MCG(S). It turns out that on the large scale, MCG(S)
resembles a group which acts properly and isometrically on a CAT(0)-space.

To this end, note that groups Γ which admit a proper cocompact isometric
action on a Cat(0)-space X have particularly nice properties. Namely, since in a
Cat(0)-space uniqueness of geodesics holds true, these geodesics coarsely define
a bicombing of Γ. Such a bicombing consists of a collection of discrete paths ρa,b
(i.e. maps ρa,b : [0, k] ∩ N → Γ) connecting any pair of points a, b ∈ Γ. Simply
fix a basepoint x0 ∈ X and choose a geodesic γ connecting ax0 to bx0. Then
there is a uniform quasi-geodesic (ai) ⊂ Γ so that a0 = a, am = b and that
aix0 is contained in a uniformly bounded neighborhood of γ. It is convenient
to extend the combing paths ρa,b to eventually constant paths defined on all
natural numbers.

By the convexity property of CAT(0)-spaces, these paths have the following
fellow traveller property.

Definition 4.3. A bicombing of a group Γ consisting of discrete paths ρa,b
(a, b ∈ Γ) is quasi-geodesic if there exists a constant L ≥ 1 so that each of the
combing lines ρa,b is an L-quasi-geodesic. A bicombing is bounded if there is a
number L ≥ 1 such that

d(ρa,b(t), ρa′,b′(t)) ≤ L(d(a, a′) + d(b, b′)) + L

for all a, a′, b, b′ ∈ Γ (where this estimate is meant to hold for the eventually
constant extensions of the combing paths).

A group Γ is called semi-hyperbolic if it admits a bounded quasi-geodesic
bicombing which is equivariant with respect to the left action of Γ. Examples



1012 Ursula Hamenstädt

of semi-hyperbolic groups are groups which admit proper cocompact isometric
actions on a CAT(0)-space. Word hyperbolic groups are semi-hyperbolic as well.
Semi-hyperbolicity passes on to subgroups of finite index and finite extensions.

The following properties can be found in [9].

Theorem 4.4. Let Γ be a semi-hyperbolic group.

1. Γ is finite presented.

2. Γ has solvable word problem, with quadratic Dehn function.

3. The conjugacy problem in Γ can be solved in exponential time.

4. Every finitely generated abelian subgroup of Γ is quasi-isometrically em-

bedded.

5. Every polycyclic subgroup of Γ is virtually abelian.

An automatic structure for Γ consists of a finite alphabet A, a (not necessar-
ily injective) map π : A → Γ and a regular language L in A with the following
properties.

1. The set π(A) generates Γ as a semi-group.

2. Via concatenation, every word w in the alphabet A is mapped to a word
π(w) in the generators π(A) of Γ. The restriction of the map π to the set
of all words from the language L maps L onto Γ.

3. There is a number κ > 0 with the following property. For all x ∈ A
and each word w ∈ L of length k ≥ 0, the word wx defines a path swx :
[0, k+1] → Γ connecting the unit element to π(wx). Since π(L) = Γ, there
is a word w′ ∈ L of length ` > 0 with π(w′) = π(wx). Let sw′ : [0, `] → Γ
be the corresponding path in Γ. Then d(swx(i), sw′(i)) ≤ κ for every
i ≤ min{k + 1, `}.

A biautomatic structure for the group Γ is an automatic structure (A,L)
with the following additional property. The alphabet A admits an inversion ι
with π(ιa) = π(a)−1 for all a, and

d(π(x)sw(i), sw′(i)) ≤ κ

for all w ∈ L all x ∈ A, for any w′ ∈ L with π(w′) = π(xw) and all i.
Thus a biautomatic structure of a group is a semi-hyperbolic structure

which can be processed with a finite state automaton. Mosher [39] showed
that MCG(S) admits an automatic structure. This was promoted in [17] to the
following result.

Theorem 4.5. MCG(S) admits a biautomatic structure.
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In particular, MCG(S) has the properties described in Theorem 4.4. How-
ever, each of these properties besides the time-bound for solving the conjugacy
problem was known before.

The automaton realizing the biautomatic structure can be computed explic-
itly. In fact, the cardinality and the number of its states is uniformly exponential
in the complexity of S.

5. Geometry and Rigidity of MCG(S)

The strongest possible geometric rigidity statement for a finitely generated
group can be formulated as follows.

Definition 5.1. A finitely generated group Γ is quasi-isometrically rigid if for
any group Γ′ which is quasi-isometric to Γ there is a finite index subgroup Γ′

0 of
Γ′ and a homomorphism ρ : Γ′

0 → Γ with finite kernel and finite index image.

For arbitrary metric spaces, there is another related notion of rigidity.
Namely, a metric space X is called quasi-isometrically rigid if every quasi-
isometry of X is at bounded distance from an isometry.

The following result is due to Eskin and Farb [11] and independently to
Kleiner and Leeb [29].

Theorem 5.2 (Eskin-Farb, Kleiner-Leeb 07). Irreducible symmetric spaces of

non-compact type and of rank at least two are quasi-isometrically rigid.

A cocompact lattice Γ in a semi-simple Lie group G is quasi-isometric to
G. As a consequence, any two such lattices are quasi-isometric. In contrast,
Schwartz [41] showed

Theorem 5.3 (Schwartz 95). Let Γ be a non-uniform lattice in a rank one

simple Lie group which is not locally isomorphic to SL(2,R). If Λ is any group

which is quasi-isometric to Γ then Λ is a finite extension of a non-uniform

lattice Γ′ of G which is commensurable to Γ.

In other words, up to passing to a finite index subgroup, there is a homo-
morphism ρ : Λ → Γ with finite kernel and finite index image.

Most strategies for showing that a finitely generated group Γ (or an arbi-
trary metric space X) is quasi-isometrically rigid evolve about the construction
of asymptotic geometric invariants for such a group. Gromov proposed to con-
struct such invariants with a renormalization (or rescaling) process. The idea
is to fix a basepoint x ∈ Γ and consider the sequence of pointed metric spaces
(Γ, x, d/m) where d is any distance defined by a word metric and where m ∈ N.
In the case that Γ = Z

n is a free abelian group of rank n, it is easily seen that
the pointed metric spaces (Zn, x, d/n) converge in the pointed Gromov Haus-

dorff topology to the space R
n equipped with some norm. However, in general

convergence can not be expected.
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To force convergence, Gromov uses nonprincipal ultrafilters.
A nonprincipal ultrafilter is a finitely additive probability measure ω on the

natural numbers N such that ω(S) = 0 or 1 for every S ⊂ N and ω(S) = 0
for every finite subset S ⊂ N. Given a compact metric space X and a sequence
(ai) ⊂ X (i ∈ N), there is a unique element ω − lim ai ∈ X such that for every
neighborhood U of ω − lim ai we have ω{i | ai ∈ U} = 1. In particular, given
any bounded sequence (ai) ⊂ R, ω − lim ai is a point selected by ω.

Let (X, d) be any metric space and let x0 ∈ X. Write X∞ = {(xi) ∈∏
i∈N

X | d(xi, x0)/i is bounded}. For x = (xi), y = (yi) ∈ X∞ the sequence

d(xi, yi)/i is bounded and hence we can define d̃ω(x, y) = ω − lim d(xi, yi)/i.
Then d̃ω is a pseudodistance onX∞, and the quotient metric spaceXω equipped
with the projection dω of the pseudodistance d̃ω is called the asymptotic cone of
X with respect to the non-principal ultrafilter ω and with basepoint ∗ defined by
x0. The resulting pointed metric space (Xω, ∗) does not depend on the choice
of x0 ∈ X, but it may depend on the choice of ω. The asymptotic cones of
two quasi-isometric spaces are bilipschitz equivalent. If the isometry group of
X acts cocompactly then an asymptotic cone of X admits a transitive group
of isometries whose elements can be represented by sequences in Iso(X). The
asymptotic cone of a CAT(0)-space is a CAT(0)-space.

A choice of a word norm for the mapping class group and of a non-principal
ultrafilter on N determines an asymptotic cone of MCG(S). The homological
dimension of this cone, i.e. the maximal number n ≥ 0 such that there are two
open subsets V ⊂ U with Hn(U,U −V ) 6= 0, is independent of the choices. The
following is a version of a result of Behrstock and Minsky [1], [20].

Theorem 5.4. The homological dimension of an asymptotic cone of MCG(S)
equals 3g − 3 +m.

Each cubical euclidean cone E(τ, λ) ⊂ T T (S) is the one-skeleton of a
Cat(0)-cubical complex, and it is of uniform polynomial growth. It turns out
that the ω-asymptotic cones of these cubical euclidean cones are homeomor-
phic to cones in an euclidean space. Moreover, they embed with a uniform
bilipschitz embedding into the ω-asymptotic cone of T T (S) which is bilipschitz
equivalent to the asymptotic cone of MCG(S). As in the case of a symmetric
space of higher rank, the asymptotic cones of the cubical euclidean cones and
their mutual intersections define a (locally infinite) cell complex contained in
T T (S)ω. Pants decompositions of S define a family of asymptotic subcones of
the asymptotic cone T T (S)ω, one for each tuple of choices of a positive or neg-
ative Dehn twist about the pants curves. As a consequence, this cell complex
contains a topological version of the curve complex as a subcomplex.

Now the main observation is as follows. Any quasi-isometry of T T (S) (which
is viewed as a geometric model for MCG(S)) defines a homeomorphism of
the ω-asymptotic cone, and this homeomorphism induces a homeomorphism
of the above cell complex. As a consequence, this homeomorphism induces an
automorphism of the curve complex and hence coincides with the action of
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an element of MCG(S) by Ivanov’s result (Theorem 2.3). This leads to the
following result which can be found in [20] and [3].

Theorem 5.5. The mapping class group is quasi-isometrically rigid.

A rigidity result in a different direction is due to Kida. Namely, call a count-
able group Γ measure equivalent to a countable group Λ if there are commuting
actions of Λ,Γ on a standard Borel space preserving a locally finite measure
such that both actions have a finite measure fundamental domain. Kida showed
[28]

Theorem 5.6 (Kida 06). If Γ is any group which is measure equivalent to

MCG(S) then there is a finite index subgroup Γ′ of Γ and a homomorphism

ρ : Γ′ → MCG(S) with finite kernel and finite index image.

6. Resemblance with Lattices

In a symmetric space Z of non-compact type without compact or euclidean
factors, the Weyl chambers are totally geodesic euclidean cones of maximal di-
mension. The Furstenberg boundary of Z is the set of equivalence classes of Weyl
chambers in Z where two such Weyl chambers are equivalent if their Hausdorff
distance is finite. Let G be the isometry group of Z. Since the stabilizer in
G of the boundary at infinity of a Weyl chamber in Z is a minimal parabolic
(in particular an amenable) subgroup P of G, the Furstenberg boundary can
G-equivariantly be identified with G/P . The space G/P is compact, and G acts
transitively as a continuous group of transformations on G/P .

A lattice Γ in G acts continuously on X = G/P as a group of homeomor-
phisms. This action is topologically amenable, which means that the following
holds true. Let P(Γ) be the convex space of all Borel probability measures on
Γ; note that P(Γ) can be viewed as a subset of the unit ball in the space `1(Γ)
of summable functions on Γ and therefore it admits a natural norm ‖ ‖. The
group Γ acts on (P(Γ), ‖ ‖) isometrically by left translation. We require that
there is a sequence of weak∗-continuous maps ξn : X → P(Γ) with the property
that ‖gξn(x)−ξn(gx)‖ → 0 (n→ ∞) uniformly on compact subsets of Γ×X. A
countable group Γ is boundary amenable if it admits a topologically amenable
action on a compact space.

By the work of Higson [22], for any countable group Γ which is boundary
amenable and for every separable Γ−C∗-algebra A, the Baum-Connes assembly
map

µ : KKΓ
∗
(EΓ, A) → KK(C, C∗

r (Γ, A))

is split injective. As a consequence, the strong Novikov conjecture holds for Γ
and hence the Novikov higher signature conjecture holds as well.

In the train track complex T T (S), two cubical euclidean cones
E(τ, λ), E(σ, ν) have bounded Hausdorff distance if λ = ν. Thus the space



1016 Ursula Hamenstädt

CL(S) of complete geodesic laminations equipped with the Hausdorff topology
can be viewed as a space of equivalence classes of cubical euclidean cones where
two cones are equivalent only if their Hausdorff distance is finite. However,
there are cubical euclidean cones of finite Hausdorff distance which are defined
by distinct complete geodesic laminations, for example by geodesic laminations
which contain a common sublamination which fills up S. Then CL(S) is a com-
pact MCG(S)-space. As for lattices in semi-simple Lie groups of non-compact
type, for the mapping class group the following is satisfied [16].

Theorem 6.1. The action of MCG(S) on the space CL(S) of complete geodesic

laminations on S is topologically amenable.

As a consequence, the mapping class group is boundary amenable (which
also follows from the work of Kida [27]). Since boundary amenability is passed
on to subgroups one obtains as a corollary

Corollary 6.2. The Novikov higher order signature conjecture holds for any

subgroup of the mapping class group of a non-exceptional surface of finite type.

More recently, Behrstock and Minsky [2] gave another proof of Corollary
6.2 which does not use boundary amenability.

The analogy of CL(S) with the Furstenberg boundary of a symmetric space
goes further. Namely, the following Tits alternative due to McCarthy [38] pro-
vides a complete understanding of amenable subgroups of mapping class groups.

Theorem 6.3 (McCarthy 85). Let Γ be any subgroup of MCG(S). Then either

Γ contains an abelian subgroup of finite index or Γ contains a free group of

rank 2.

As a consequence, amenable sugroups of MCG(S) are virtually abelian (i.e.
they contain an abelian subgroup of finite index). This yields the following

Corollary 6.4. Stabilizers of points in CL(S) are amenable, and every

amenable subgroup of MCG(S) is commensurable to the stabilizer of a point

in CL(S).

Theorem 6.1 implies that the action of the mapping class group on CL(S) is
universally amenable. This means that it is amenable for every invariant Borel
measure class. Such a measure class can be defined as follows.

A measured geodesic lamination is a geodesic lamination equipped with a
tranverse translation invariant measure. The space ML(S) of all measured
geodesic laminations can be equipped with the weak∗-topology. With respect
to this topology, ML(S) is homeomorphic to a cone over a sphere of dimension
6g − 7 + 2m.

A measured geodesic lamination is carried by a complete train track τ if its
support is carried by τ . Each measured geodesic lamination carried by τ defines
a non-negative weight function on the branches of τ which satisfies a system of
linear equations, the so-called switch conditions. Vice versa, a non-negative non
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vanishing solution to the switch conditions defines a measured geodesic lami-
nation carried by τ . The space ML(τ) of nonnegative solutions of the switch
conditions for τ is a convex cone in a linear space and hence it admits a natural
measure in the Lebesgue measure class. If τ ′ is obtained from τ by a single split
then ML(τ ′) ⊂ ML(τ). Moreover, the carrying map transforming solutions of
the switch conditions for τ ′ to solutions of the switch conditions for τ is linear.
In fact, it is contained in the special linear group and hence it preserves the
Lebesgue measure. As a consequence, this Lebesgue measure does not depend
on the train track used to define it. In other words, this construction defines a
locally finite Borel measure (i.e. a Radon measure) on ML(S). Since MCG(S)
acts naturally on both train tracks and measured geodesic laminations, this
measure is MCG(S)-invariant and projects to a MCG(S)-invariant measure
class on the projectivization PML(S) of ML(S).

The following result is due to Masur [35] and Veech [44]. For its formulation,
a measured geodesic lamination λ is called uniquely ergodic if its support admits
a unique transverse measure up to scale. A MCG(S)-invariant Radon measure
µ on ML(S) is called ergodic if µ(A) = 0 or µ(ML(S) − A) = 0 for every
MCG(S)-invariant Borel set A.

Theorem 6.5 (Masur, Veech). The Lebesgue measure λ on ML(S) gives

full mass to the measured geodesic laminations whose support is minimal and

maximal and which are uniquely ergodic. Moreover, the action of MCG(S) on

ML(S) is ergodic.

By Theorem 6.5, there is a MCG(S)-invariant Borel subset A of PML(S)
of full measure (namely, the set of all uniquely ergodic projective measured
geodesic laminations whose support is maximal and which are uniquely ergodic)
which admits an equivariant homeomorphism (the map which associates to
a measured geodesic lamination its support) onto an invariant Borel subset
of CL(S). Via this map, the Lebesgue measure induces an invariant ergodic
measure class on CL(S). By Theorem 6.1, the action of MCG(S) with respect
to this measure class is amenable.

The isometry group PSL(2,R) of the hyperbolic plane H2 acts simply tran-
sitively on the unit tangent bundle of H2. The quotient PSL(2,R)/PSL(2,Z)
can naturally be identified with the unit tangent bundle of the modular surface
H2/PSL(2,Z). The unipotent group of all upper triangular matrices with diag-
onal 1 acts from the left as the horocycle flow. There are two types of invariant
ergodic Borel probability measures for this flow. The first kind is supported
on a periodic orbit. There is also the Lebesgue measure. This is a complete
classification of invariant ergodic probability measures.

The classification problem of invariant measures for the horocycle flow
admits a second description. Namely, such measures correspond to invariant
Radon measures (locally finite Borel measures) for the standard linear action
of the group SL(2,Z) on R

2. There are precisely two types of invariant er-
godic Radon measures. The first type is supported on the orbit of a point
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whose coordinates are rationally dependent. Namely, such an orbit intersects
any compact subset of R2 in a finite set and hence the sum of the Dirac masses
on the orbit points is an invariant Radon measure. There is also the Lebesgue
measure.

The classification problem of SL(2,Z)-invariant Radon measures on R
2 has

an analog for the mapping class group: the classification of MCG(S)-invariant
Radon measures on the space ML(S) of measured geodesic laminations. Such
measures correspond to finite Borel measures on the unit cotangent bundle of
moduli space T (S)/MCG(S) which are invariant under “the stable foliation”.
Besides the Lebesgue measure and rational measures support on the orbit of
a multi-curve, there are some additional types of invariant Radon measures.
Namely, a proper bordered subsurface S0 of S is a union of connected compo-
nents of the space which we obtain from S by cutting S open along a collection
of disjoint simple closed geodesics. Then S0 is a surface with non-empty geodesic
boundary and of negative Euler characteristic. If two boundary components of
S0 correspond to the same closed geodesic γ in S then we require that S − S0

contains a connected component which is an annulus with core curve γ. Let
ML(S0) ⊂ ML(S) be the space of all measured geodesic laminations on S
which are contained in the interior of S0. The space ML(S0) can naturally be
identified with the space of measured geodesic laminations on the surface Ŝ0

of finite type which we obtain from S0 by collapsing each boundary circle to a
puncture. The stabilizer in MCG(S) of the subsurface S0 is the direct product
of the group of all elements which can be represented by diffeomorphisms leav-
ing S0 pointwise fixed and a group which is naturally isomorphic to a subgroup
G of finite index of the mapping class group MCG(Ŝ0) of Ŝ0.

Let c be a weighted geodesic multi-curve on S which is disjoint from the in-
terior of S0. Then for every ζ ∈ ML(S0) the union c∪ ζ is a measured geodesic
lamination on S which we denote by c × ζ. Let µ(S0) be an G < MCG(Ŝ0)-
invariant Radon measure on ML(S0) which is contained in the Lebesgue mea-
sure class. The measure µ(S0) can be viewed as a Radon measure on ML(S)
which gives full measure to the laminations of the form c×ζ (ζ ∈ ML(S0)) and
which is invariant and ergodic under the stabilizer of c ∪ S0 in MCG(S). The
translates of this measure under the action of MCG(S) define an MCG(S)-
invariant ergodic wandering measure on ML(S) which is called a standard

subsurface measure. If the weighted geodesic multi-curve c contains the bound-
ary of S0 then the standard subsurface measure defined by µ(S0) and c is a
Radon measure on ML(S).

The following is shown in [17] and [34].

Theorem 6.6. 1. An invariant ergodic non-wandering Radon measure for

the action of MCG(S) on ML(S) coincides with the Lebesgue measure

up to scale.

2. An invariant ergodic wandering Radon measure for the action of MCG(S)
on ML(S) is either rational or a standard subsurface measure.
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Abstract

Embedded contact homology (ECH) is a kind of Floer homology for contact
three-manifolds. Taubes has shown that ECH is isomorphic to a version of
Seiberg-Witten Floer homology (and both are conjecturally isomorphic to a ver-
sion of Heegaard Floer homology). This isomorphism allows information to be
transferred between topology and contact geometry in three dimensions. In this
article we first give an overview of the definition of embedded contact homology.
We then outline its applications to generalizations of the Weinstein conjecture,
the Arnold chord conjecture, and obstructions to symplectic embeddings in four
dimensions.
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1. Embedded Contact Homology

1.1. Floer homology of 3-manifolds. There are various kinds of
Floer theory that one can associate to a closed oriented 3-manifold with a spin-c
structure. In this article we regard a spin-c structure on a closed oriented 3-
manifold Y as an equivalence class of oriented 2-plane fields on Y (i.e. oriented
rank 2 subbundles of the tangent bundle TY ), where two oriented 2-plane fields
are considered equivalent if they are homotopic on the complement of a ball in
Y . The set of spin-c structures on Y is an affine space over H2(Y ;Z). A spin-c
structure s has a well-defined first Chern class c1(s) ∈ 2H2(Y ;Z). A spin-c
structure s is called torsion if c1(s) is torsion in H2(Y ;Z).
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One version of Floer theory for spin-c 3-manifolds is the Seiberg-Witten
Floer cohomology , or monopole Floer cohomology , as defined by Kronheimer-
Mrowka [26]. There are two basic variants of this theory, which are different
only for torsion spin-c structures; the variant relevant to our story is denoted

by ĤM
∗
(Y, s). Very roughly, this is the homology of a chain complex which is

generated by R-invariant solutions to the Seiberg-Witten equations on R× Y ,
and whose differential counts non-R-invariant solutions to the Seiberg-Witten
equations on R×Y which converge to two different R-invariant solutions as the
R coordinate goes to +∞ or −∞. This cohomology is a relatively Z/d-graded
Z-module, where d denotes the divisibility of c1(s) in H2(Y ;Z)/Torsion.

The Seiberg-Witten Floer cohomology ĤM
∗
(Y, s) is conjecturally isomor-

phic to a second kind of Floer theory, the Heegaard Floer homology HF+
∗ (−Y, s)

defined by Ozsváth-Szabó [35]. The latter, roughly speaking, is defined by tak-
ing a Heegaard splitting of Y , with Heegaard surface Σ of genus g, and setting
up a version of Lagrangian Floer homology in Symg Σ for two Lagrangians de-
termined by the Heegaard splitting. Although the definitions of Seiberg-Witten
Floer theory and Heegaard Floer theory appear very different, there is exten-
sive evidence that they are isomorphic, and a program for proving that they
are isomorphic is outlined in [29].

Seiberg-Witten and Heegaard Floer homology have had a wealth of appli-
cations to three-dimensional topology. The present article is concerned with
a third kind of Floer homology, called “embedded contact homology” (ECH),
which is defined for contact 3-manifolds. Because ECH is defined directly in
terms of contact geometry, it is well suited to certain applications in this area.

1.2. Contact geometry preliminaries. Let Y be a closed oriented
3-manifold. A contact form on Y is a 1-form λ on Y such that λ ∧ dλ > 0
everywhere. The contact form λ determines a 2-plane field ξ = Ker(λ), oriented
by dλ; an oriented 2-plane field obtained in this way is called a contact structure.
The contact form λ also determines a vector field R, called the Reeb vector field ,
characterized by dλ(R, ·) = 0 and λ(R) = 1.

Two basic questions are: First, given a closed oriented 3-manifold Y , what
is the classification of contact structures on Y (say, up to homotopy through
contact structures)? Second, given a contact structure ξ, what can one say about
the dynamics of the Reeb vector field for a contact form λ with Ker(λ) = ξ? The
first question is a subject of active research which we will not say much about
here, except to note that a fundamental theorem of Eliashberg [10] implies
that every closed oriented 3-manifold has a contact structure, in fact a unique
“overtwisted” contact structure in every homotopy class of oriented 2-plane
fields. (A contact structure ξ on a 3-manifold Y is called overtwisted if there
is an embedded disk D ⊂ Y such that TD|∂D = ξ|∂D.) For more on this topic
see e.g. [12].

To discuss the second question, we need to make some definitions. Given a
closed oriented 3-manifold with a contact form, a Reeb orbit is a periodic orbit
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of the Reeb vector field R, i.e. a map γ : R/TZ → Y for some T > 0, such
that γ′(t) = R(γ(t)). Two Reeb orbits are considered equivalent if they differ by
reparametrization. If γ : R/TZ → Y is a Reeb orbit and if k is a positive integer,
the kth iterate of γ is defined to be the pullback of γ to R/kTZ. Every Reeb
orbit is either embedded in Y , or the kth iterate of an embedded Reeb orbit for
some k > 1. Given a contact structure ξ, one can ask: What is the minimum
number of embedded Reeb orbits that a contact form λ with Ker(λ) = ξ can
have? Must there exist Reeb orbits with particular properties? Some questions
of this nature are discussed in §2.1 below.

Continuing with the basic definitions, if γ is a Reeb orbit as above, then the
linearization of the Reeb flow near γ defines the linearized return map Pγ , which
is an automorphism of the two-dimensional symplectic vector space (ξγ(0), dλ).
The Reeb orbit γ is called nondegenerate if Pγ does not have 1 as an eigenvalue.
If γ is nondegenerate, then either Pγ has eigenvalues on the unit circle, in which
case γ is called elliptic; or else Pγ has real eigenvalues, in which case γ is called
hyperbolic. These notions do not depend on the parametrization of γ. We say
that the contact form λ is nondegenerate if all Reeb orbits are nondegenerate.
For a given contact structure ξ, this property holds for “generic” contact forms
λ.

To a nondegenerate Reeb orbit γ and a trivialization τ of γ∗ξ, one can
associate an integer CZτ (γ) called the Conley-Zehnder index . Roughly speaking
this measures the rotation of the linearized Reeb flow around γ with respect
to τ . In particular, if γ is elliptic, then the trivialization τ is homotopic to one
with respect to which the linearized Reeb flow around γ rotates by angle 2πθ
for some θ ∈ R \ Z, and

CZτ (γ) = 2 bθc+ 1,

where b·c denotes the greatest integer function.

1.3. The ECH chain complex. With the above preliminaries out of
the way, we can now define the embedded contact homology of a closed oriented
3-manifold Y with a nondegenerate contact form λ.

To start, define an orbit set to be a finite set of pairs α = {(αi,mi)}, where
the αi’s are distinct embedded Reeb orbits, and the mi’s are positive integers,
which one can regard as “multiplicities”. The orbit set is called admissible if
mi = 1 whenever the Reeb orbit αi is hyperbolic. The homology class of the
orbit set αi is defined by [α] :=

∑
i miαi ∈ H1(Y ). Given Γ ∈ H1(Y ), we

define the ECH chain complex C∗(Y, λ,Γ) to be the free Z-module generated
by admissible orbit sets α with [α] = Γ. As explained in §1.4.3 below, this chain
complex has a relative Z/d-grading, where d denotes the divisibility of c1(ξ) +
2PD(Γ) inH2(Y ;Z)/Torsion. We sometimes write a generator α as above using
the multiplicative notation α =

∏
i α

mi

i , although the chain complex grading
and differential that we will define below are not well behaved with respect to
this sort of “multiplication”.
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To define the differential on the chain complex, choose an almost complex
structure J on R×Y such that J sends ∂s to the Reeb vector field R, where s de-
notes the R coordinate; J is R-invariant; and J sends the contact structure ξ to
itself, rotating positively with respect to dλ. For our purposes a J-holomorphic
curve in R × Y is a map u : Σ → R × Y where (Σ, j) is a punctured compact
(not necessarily connected) Riemann surface, and du ◦ j = J ◦ du. If γ is a
Reeb orbit, a positive end of u at γ is an end of Σ on which u is asymptotic
to R × γ as s → +∞; a negative end is defined analogously with s → −∞. If
α = {(αi,mi)} and β = {(βj , nj)} are two orbit sets with [α] = [β] ∈ H1(Y ),
let MJ (α, β) denote the moduli space of J-holomorphic curves as above with
positive ends at covers of αi with total covering multiplicity mi, negative ends
at covers of βj with total covering multiplicity nj , and no other ends. We de-
clare two such J-holomorphic curves to be equivalent if they represent the same
current in R× Y . For this reason we can identify an element of MJ (α, β) with
the corresponding current in R×Y , which we typically denote by C. Note that
since J is assumed to be R-invariant, it follows that R acts on MJ(α, β) by
translation of the R coordinate on R× Y .

To each J-holomorphic curve C ∈ MJ(α, β) one can associate an integer
I(C), called the “ECH index”, which is explained in §1.4 below. The differential
on the ECH chain complex counts J-holomorphic curves with ECH index 1,
modulo the R action by translation. Curves with ECH index 1 have various
special properties (assuming that J is generic). Among other things, we will
see in Proposition 1.2 below that if I(C) = 1 then C is embedded in R × Y
(except that C may contain multiply covered R-invariant cylinders), hence the
name “embedded” contact homology. In addition, one can use Proposition 1.2
to show that if J is generic, then the subset of MJ (α, β) consisting of J-
holomorphic curves C with I(C) = 1 has finitely many components, each an
orbit of the R action.

Now fix a generic almost complex structure J . One then defines the differ-
ential ∂ on the ECH chain complex C∗(Y, λ,Γ) as follows: If α is an admissible
orbit set with [α] = Γ, then

∂α :=
∑

β

∑

{C∈MJ (α,β)/R|I(C)=1}

ε(C) · β.

Here the first sum is over admissible orbit sets β with [β] = Γ. Also ε(C) ∈ {±1}
is a sign, explained in [22, §9]; the signs depend on some orientation choices, but
the chain complexes for different orientation choices are canonically isomorphic
to each other. It is shown in [21, 22] that ∂2 = 0. The homology of this chain
complex is the embedded contact homology ECH(Y, λ,Γ).

Although the differential ∂ depends on the choice of J , the homology of the
chain complex does not. This is a consequence of the following much stronger
theorem of Taubes [42, 43], which was conjectured in [20], and which relates
ECH to Seiberg-Witten Floer cohomology. To state the theorem, observe that
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the contact structure ξ, being an oriented 2-plane field, determines a spin-c
structure sξ, see §1.1. We then have:

Theorem 1.1 (Taubes). There is an isomorphism of relatively Z/d-graded Z-
modules

ECH∗(Y, λ,Γ) ' ĤM
−∗

(Y, sξ + PD(Γ)). (1.1)

Here d denotes the divisibility of

c1(ξ) + 2PD(Γ) = c1(sξ + PD(Γ))

in H2(Y ;Z)/Torsion. Note that both sides of (1.1) are conjecturally isomorphic
to the Heegaard Floer homology HF+

∗ (−Y, sξ + PD(Γ)).

Remark. Both sides of the isomorphism (1.1) in fact have absolute gradings
by homotopy classes of oriented 2-plane fields [17, 26], and it is reasonable to
conjecture that the isomorphism (1.1) respects these absolute gradings.

Remark. In particular, Theorem 1.1 implies that, except for possible grading
shifts, ECH depends only on the 3-manifold Y and not on the contact structure.
This is in sharp contrast to the symplectic field theory of Eliashberg-Givental-
Hofer [11] which, while also defined in terms of Reeb orbits and holomorphic
curves, is highly sensitive to the contact structure. In particular, the basic
versions of symplectic field theory are trivial for overtwisted contact structures
in three dimensions, see [47, 6]. On the other hand, while ECH itself does not
depend on the contact structure, it contains a canonical element which does
distinguish some contact structures, see §1.6.4.

1.4. The ECH index. To complete the description of the ECH chain
complex, we now outline the definition of the ECH index I; full details may be
found in [16, 17]. This is the subtle part of the definition of ECH, and we will
try to give some idea of its origins. Meanwhile, on a first reading one may wish
to skip ahead to the examples and applications.

1.4.1. Four-dimensional motivation. To motivate the definition of the
ECH index, recall that Taubes’s “SW=Gr” theorem [38] relates the Seiberg-
Witten invariants of a closed symplectic 4-manifold (X,ω), which count solu-
tions to the Seiberg-Witten equations on X, to a “Gromov invariant” which
counts certain J-holomorphic curves in X. Here J is an ω-compatible almost
complex structure on X. The definition of ECH is an analogue of Taubes’s
Gromov invariant for a contact manifold (Y, λ). Thus Theorem 1.1 above is an
analogue of SW=Gr for the noncompact symplectic 4-manifold R× Y .

For guidance on which J-holomorphic curves in R×Y to count, let us recall
which J-holomorphic curves are counted by Taubes’s Gromov invariant of a
closed symplectic 4-manifold (X,ω). Let C be a J-holomorphic curve in (X,ω),
and assume that C is not multiply covered. If J is generic, then the moduli space
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of J-holomorphic curves near C is a manifold, whose dimension is a topological
quantity called the Fredholm index of C, which is given by

ind(C) = −χ(C) + 2c1(C). (1.2)

Here c1(C) denotes 〈c1(TX), [C]〉, where TX is regarded as a rank 2 complex
vector bundle via J . In addition, we have the adjunction formula

c1(C) = χ(C) + C · C − 2δ(C). (1.3)

Here C · C denotes the self-intersection number of the homology class [C] ∈
H2(X). In addition δ(C) is a count of the singularities of C with positive integer
weights, see [32, §7], so that δ(C) ≥ 0 with equality if and only if C is embedded.
Now let us define an integer

I(C) := c1(C) + C · C. (1.4)

Then equations (1.2), (1.3), and (1.4) above imply that

ind(C) ≤ I(C), (1.5)

with equality if and only if C is embedded. Taubes’s Gromov invariant counts
holomorphic currents C with I(C) = 0, which are allowed to be multiply covered
(but which are not allowed to contain multiple covers of spheres of negative self-
intersection). Using (1.5), one can show that if J is generic, then each such C is
a disjoint union of embedded curves of Fredholm index zero, except that torus
components may be multiply covered. (Multiply covered tori are counted in a
subtle manner explained in [39].)

1.4.2. The three-dimensional story. We now consider analogues of the
above formulas (1.2), (1.3), and (1.4) in R × Y , where (Y, λ) is a contact 3-
manifold. These necessarily include “boundary terms” arising from the ends of
the J-holomorphic curves.

Let C ∈ MJ (α, β) be a J-holomorphic curve as in §1.3, and assume that
C is not multiply covered. It follows from the main theorem in [9] that if J is
generic, thenMJ(α, β) is a manifold near C, whose dimension can be expressed,
similarly to (1.2), as

ind(C) = −χ(C) + 2c1(C, τ) + CZ0
τ (C). (1.6)

Here c1(C, τ) denotes the “relative first Chern class” of ξ over C with respect
to a trivialization τ of ξ over the Reeb orbits αi and βj . This is defined by alge-
braically counting the zeroes of a generic section of ξ over C which on each end
is nonvanishing and has winding number zero with respect to the trivialization
τ . The relative first Chern class c1(C, τ) depends only on τ and on the relative
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homology class of C. Also CZ0
τ denotes the sum, over all the positive ends of C,

of the Conley-Zehnder index with respect to τ of the corresponding (possibly
multiply covered) Reeb orbit, minus the analogous sum over the negative ends
of C.

Second, the adjunction formula (1.3) is now replaced by the relative adjunc-
tion formula

c1(C, τ) = χ(C) +Qτ (C) + wτ (C)− 2δ(C). (1.7)

Here Qτ (C) is a “relative intersection pairing” defined in [16, 17], which is
an analogue of the integer C · C in the closed case, and which depends only
on τ and the relative homology class of C. Roughly speaking, it is defined by
algebraically counting interior intersections of two generic surfaces in [−1, 1]×Y
with boundary {1}×α−{−1}×β which both represent the relative homology
class of C and which near the boundary have a special form with respect to
the trivialization τ . As before, δ(C) is a count of the singularities of C with
positive integer weights (which is shown in [37] to be finite in this setting).
Finally, wτ (C) denotes the asymptotic writhe of C; to calculate it, take the
intersection of C with {s} × Y where s >> 0 to obtain a disjoint union of
closed braids around the Reeb orbits αi, use the trivializations τ to draw these
braids in R

3, and count the crossings with appropriate signs; then subtract the
corresponding count for s << 0.

Next we need a new ingredient, which is the following bound on the asymp-
totic writhe:

wτ (C) ≤ CZτ (α)− CZτ (β)− CZ0
τ (C). (1.8)

Here

CZτ (α) :=
∑

i

mi∑

k=1

CZτ (α
k
i ),

where CZτ (γ
k) denotes the Conley-Zehnder index with respect to τ of the kth

iterate of γ. To prove the writhe bound (1.8), one first needs to understand the
structure of the braids that can arise from the ends of a holomorphic curve;
roughly speaking these are iterated nested cablings of torus braids, with certain
bounds on the winding numbers. One then needs some combinatorics to bound
the writhes of these braids in terms of the Conley-Zehnder indices. The writhe
bound was proved in an analytically simpler situation in [16]; the asymptotic
analysis needed to carry over the proof to the present setting was carried out
by Siefring [37], and an updated proof is given in [17].

Finally, by analogy with (1.4), define the ECH index

I(C) := c1(C, τ) +Qτ (C) + CZτ (α)− CZτ (β). (1.9)

One can check that this formula, like the formulas above, does not depend on
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the choice of trivialization τ . It now follows from (1.6), (1.7), (1.8), and (1.9)
that the index inequality

ind(C) ≤ I(C) (1.10)

holds, with equality only if C is embedded.
Recall that we have been assuming in the preceding discussion that C is not

multiply covered. Without this assumption, one still has the following proposi-
tion, which describes the I = 1 curves which the ECH differential counts.

Proposition 1.2. [20, Cor. 11.5] Suppose J is generic, and let C be any J-
holomorphic curve in MJ (α, β), possibly multiply covered. Then:

(a) I(C) ≥ 0, with equality if and only if C is R-invariant (as a current).

(b) If I(C) = 1, then C = C0 tC1, where I(C0) = 0, and C1 is embedded and
has ind(C1) = I(C1) = 1.

It may be illuminating to recall the proof here. As a current, C consists of
distinct, irreducible, non-multiply-covered holomorphic curves C1, . . . , Ck, cov-
ered with positive integer multiplicities d1, . . . , dk. For simplicity let us restrict
attention to the case when none of the curves Ci is an R-invariant cylinder. Let
C ′ be the holomorphic curve consisting of the union, over i = 1, . . . , k, of di
different R-translates of Ci. We then have

k∑

i=1

di ind(Ci) = ind(C ′) ≤ I(C ′) = I(C), (1.11)

with equality only if the holomorphic curves Ci are embedded and disjoint. Here
the equality on the left holds because the Fredholom index is additive under
unions, the inequality in the middle is the index inequality (1.10) applied to
the non-multiply-covered curve C ′, and the equality on the right holds because
the ECH index of a holomorphic curve depends only on its relative homology
class. Now since J is generic, and since we made the simplifying assumption
that Ci is not R-invariant, we have ind(Ci) > 0 for each i. We can then read
off the conclusions of the proposition in this case from the inequality (1.11).

1.4.3. Grading. The ECH index is also used to define the relative grading
on the ECH chain complex, as follows. As noted above, the ECH index I(C)
depends only on the relative homology class of C, and indeed it makes perfect
sense to define I(Z) as in (1.9) where Z is any relative homology class of 2-chain
in Y (not necessarily arising from a J-holomorphic curve) with ∂Z =

∑
i miαi−∑

j njβj . If Z
′ is another such relative homology class, then Z − Z ′ ∈ H2(Y ),

and one has the index ambiguity formula [16, Prop. 1.6(d)]

I(Z)− I(Z ′) = 〈c1(ξ) + 2PD(Γ), Z − Z ′〉.

We now define the grading difference between two generators α and β to be
the class of I(Z) in Z/d, where Z is any relative homology class as above. The
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index ambiguity formula shows that this is well defined, and by definition the
differential decreases the relative grading by 1.

1.4.4. Incoming and outgoing partitions and admissibility. We now
make some technical remarks which will not be needed in the rest of this article,
but which address some frequently asked questions regarding the definition of
ECH.

The first remark is that embeddedness of C is not sufficient for equality
to hold in (1.10), unless all of the multiplicities mi and nj equal 1. A curve
C in MJ (α, β) has positive ends at covers of αi with some multiplicities qi,k
whose sum is

∑
k qi,k = mi. If equality holds in (1.10), then the unordered

list of multiplicities (qi,1, qi,2, . . .) is uniquely determined by αi and mi, and is
called the “outgoing partition” P out

αi
(mi). Likewise the covering multiplicities

associated to the ends of C at covers of βj must comprise a partition called the
“incoming partition” P in

βj
(nj). See e.g. [17, §4] for details. To give the simplest

example, if γ is an embedded elliptic Reeb orbit such that the linearized Reeb
flow around γ with respect to some trivialization rotates by an angle in the
interval (0, π), then P out

γ (2) = (1, 1), while P in
γ (2) = (2).

In general, if γ is an embedded elliptic Reeb orbit and if m > 1, then the
incoming and outgoing partitions P in

γ (m) and P out
γ (m) are always different.

This fact makes the proof that ∂2 = 0 quite nontrivial.
On the other hand, suppose γ is a hyperbolic embedded Reeb orbit. If the

linearized return map has positive eigenvalues then

P in
γ (m) = P out

γ (m) = (1, . . . , 1). (1.12)

If the linearized return map has negative eigenvalues then

P in
γ (m) = P out

γ (m) =

{
(2, . . . , 2), m even,
(2, . . . , 2, 1), m odd.

(1.13)

This is one reason why the generators of the ECH chain complex in §1.3 are
required to be admissible orbit sets: one can show using (1.12) and (1.13) that
if one tries to glue two I = 1 holomorphic curves along an inadmissible orbit
set, then there are an even number of ways to glue, which by [5] count with
cancelling signs. Thus one must disallow inadmissible orbit sets in order to
obtain ∂2 = 0. A similar issue arises in the definition of symplectic field theory
[11], where “bad” Reeb orbits must be discarded.

1.5. Example: the ECH of an ellipsoid. We now illustrate the
above definitions with what is probably the simplest example of ECH. Consider
C

2 = R
4 with coordinates zj = xj + iyj for j = 1, 2. Let a, b be positive real

numbers with a/b irrational, and consider the ellipsoid

E(a, b) :=

{
(z1, z2) ∈ C

2

∣∣∣∣
π|z1|

2

a
+

π|z2|
2

b
≤ 1

}
. (1.14)
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We now compute the embedded contact homology of Y = ∂E(a, b), with the
contact form

λ :=
1

2

2∑

j=1

(xjdyj − yjdxj) (1.15)

(and of course with Γ = 0).
The Reeb vector field on Y is given by

R =
2π

a

∂

∂θ1
+

2π

b

∂

∂θ2

where ∂/∂θj := xj∂yj
− yj∂xj

. Since a/b is irrational, it follows that there are
just two embedded Reeb orbits γ1 and γ2, given by the circles where z2 =
0 and z1 = 0 respectively. These Reeb orbits, as well as their iterates, are
nondegenerate and elliptic. Indeed there is a natural trivialization τ of ξ over
each γi induced by an embedded disk bounded by γi. With respect to this
trivialization, the linearized Reeb flow around γ1 is rotation by angle 2πa/b,
while the linearized Reeb flow around γ2 is rotation by angle 2πb/a.

The generators of the ECH chain complex have the form α = γm1

1 γm2

2 where
m1,m2 are nonnegative integers. We now compute the grading. The relative Z-
grading has a distinguished refinement to an absolute grading in which the
empty set of Reeb orbits (given by m1 = m2 = 0 above) has grading 0. An
arbitrary generator α as above then has grading

I(α) = c1(α, τ) +Qτ (α) + CZτ (α),

where c1(α, τ) denotes the relative first Chern class of ξ over a surface bounded
by α, and Qτ (α) denotes the relative intersection pairing of such a surface.
Computing using the above trivialization τ , one finds, see [23, §4.2], that

c1(α, τ) = m1 +m2,

Qτ (α) = 2m1m2,

CZτ (α) =

m1∑

k=1

(2 bka/bc+ 1) +

m2∑

k=1

(2 bkb/ac+ 1).

Therefore

I(α) = 2

(
m1 +m2 +m1m2 +

m1∑

k=1

bka/bc+

m2∑

k=1

bkb/ac

)
. (1.16)

In particular, all generators have even grading, so the differential vanishes, and
to determine the homology we just have to count the number of generators with
each grading.

Now if the ECH of ∂E(a, b) is to agree with ĤM
−∗

and HF+
∗ of S3, then

we should get

ECH∗(∂E(a, b), λ, 0) '

{
Z, ∗ = 0, 2, 4, . . . ,
0, otherwise.

(1.17)
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It is perhaps not immediately obvious how to deduce this from (1.16). The
trick is to interpret the right hand side of (1.16) as a count of lattice points
as follows. Let T denote the triangle in R

2 bounded by the coordinate axes,
together with the line L through the point (m1,m2) of slope −a/b. Then we
observe that

I(α) = 2
(∣∣T ∩ Z

2
∣∣− 1

)
.

Now if one moves the line L up and to the right, keeping its slope fixed, then one
hits all of the lattice points in the nonnegative quadrant in succession, each time
increasing the number of lattice points in the triangle T by 1. It follows that
the ECH chain complex has one generator in each nonnegative even grading,
so (1.17) holds.

Usually direct calculations of ECH are not so easy because there are more
Reeb orbits, and one has to understand the holomorphic curves. But for certain
simple contact manifolds this is possible; for example the ECH of standard
contact forms on T 3 is computed in [20], and these calculations are generalized
to T 2-bundles over S1 in [28].

Remark. For some mysterious reason, lattice point counts such as the one in
equation (1.16) arise repeatedly in ECH in different contexts. For example one
lattice point count comes up in the combinatorial part of the proof of the writhe
bound (1.8), and in determining the “partition conditions” in §1.4.4, see [17,
§4.6]. Another lattice point count appears in the combinatorial description of
the ECH chain complex for T 3 in [20, §1.3].

1.6. Some additional structures on ECH. ECH has various ad-
ditional structures on it. We now describe those structures that are relevant
elsewhere in this article.

1.6.1. The U map. On the ECH chain complex there is a degree −2 chain
map

U : C∗(Y, λ,Γ) −→ C∗−2(Y, λ,Γ),

see e.g. [23, §2.5]. This is defined similarly to the differential ∂, but instead
of counting I = 1 curves modulo translation, one counts I = 2 curves that
are required to pass through a fixed, generic point z ∈ R × Y . This induces a
well-defined map on homology

U : ECH∗(Y, λ,Γ) −→ ECH∗−2(Y, λ,Γ).

Taubes [44] has shown that this map agrees with an analogous map on ĤM
−∗

,
and it conjecturally agrees with the U map on HF+

∗ . The U map plays a crucial
role in the applications to generalizations of the Weinstein conjecture discussed
in §2.1 below.
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1.6.2. Filtered ECH. If α = {(αi,mi)} is a generator of the ECH chain
complex, define its symplectic action

A(α) :=
∑

i

mi

∫

αi

λ.

It follows from Stokes’s theorem and the conditions on the almost complex
structure J that the differential ∂ decreases the symplectic action, i.e. if
〈∂α, β〉 6= 0 then A(α) > A(β). Given L ∈ R, we then define ECHL(Y, λ,Γ) to
be the homology of the subcomplex of C∗(Y, λ,Γ) spanned by generators with
symplectic action less than L. We call this filtered ECH ; it is shown in [24] that
this does not depend on the choice of almost complex structure J . However,
unlike the usual ECH, filtered ECH is not invariant under deformation of the
contact form; see §2.3 for some examples. Filtered ECH has no obvious direct
counterpart in Seiberg-Witten or Heegaard Floer homology, but it plays an
important role in the applications in §2.2 and §2.3 below.

1.6.3. Cobordism maps. Let (Y+, λ+) and (Y−, λ−) be closed oriented 3-
manifolds with nondegenerate contact forms. An exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−) is a compact symplectic 4-manifold (X,ω) with
boundary ∂X = Y+ − Y−, such that there exists a 1-form λ on X with dλ = ω
on X and λ|Y±

= λ±. It is shown in [24] that an exact symplectic cobordism
as above induces maps on filtered ECH,

ΦL(X,ω) : ECHL(Y+, λ+;Z/2) −→ ECHL(Y−, λ−;Z/2),

satisfying various axioms. Here ECH(Y±, λ±;Z/2) denotes ECH with Z/2 coef-
ficients, summed over all Γ ∈ H1(Y ), and regarded as an ungraded Z/2-module.
One axiom is that if L < L′ then the diagram

ECHL(Y+, λ+;Z/2)
ΦL(X,ω)
−−−−−−→ ECHL(Y−, λ−;Z/2)y

y

ECHL′

(Y+, λ+;Z/2)
ΦL′

(X,ω)
−−−−−−→ ECHL′

(Y−, λ−;Z/2)

commutes, where the vertical arrows are induced by inclusion of chain com-
plexes. Thus the direct limit

Φ(X,ω) := lim
L→∞

ΦL(X,ω) : ECH(Y+, λ+;Z/2) −→ ECH(Y−, λ−;Z/2)

(1.18)
is well-defined. Another axiom is that this direct limit agrees with the map

ĤM
∗
(Y+;Z/2) → ĤM

∗
(Y−;Z/2) on Seiberg-Witten Floer cohomology in-

duced by X, under the isomorphism (1.1). Here we are considering Seiberg-
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Witten Floer cohomology with Z/2 coefficients, summed over all spin-c struc-
tures.

Remark. The cobordism maps ΦL(X,ω) are defined in [24] using Seiberg-
Witten theory and parts of the isomorphism (1.1). It would be natural to try
to give an alternate, more direct definition of the cobordism maps ΦL(X,ω)
by counting I = 0 holomorphic curves in the “completion” of X obtained by
attaching symplectization ends. Note that by Stokes’s theorem and the exact-
ness of the cobordism, such a map would automatically respect the symplectic
action filtrations. Moreover, one of the axioms we did not state is that ΦL(X,ω)
is induced by a (noncanonical) chain map whose components are nonzero only
in the presence of appropriate (possibly broken) holomorphic curves. However
there are technical difficulties with defining cobordism maps by counting holo-
morphic curves, because the compactified I = 0 moduli spaces can include
broken holomorphic curves which contain multiply covered components with
negative ECH index. (There is no analogue in this setting of Proposition 1.2,
whose proof made essential use of the R-invariance of J .) Examples show that
such broken curves must sometimes make contributions to the cobordism map,
but it is not known how to define the contribution in general. Fortunately, the
Seiberg-Witten definition of ΦL(X,ω) is sufficient for the applications consid-
ered here.

1.6.4. The contact invariant. The empty set is a legitimate generator of
the ECH chain complex. By the discussion in §1.6.2 it is a cycle, and we denote
its homology class by

c(ξ) ∈ ECH0(Y, λ, 0).

This depends only on the contact structure, although not just on the 3-manifold
Y . Indeed the cobordism maps in §1.6.3 can be used to show that c(ξ) is nonzero
if there is an exact symplectic cobordism from (Y, ξ) to the empty set, e.g. if
(Y, ξ) is Stein fillable. On the other hand the argument in the appendix to
[47] implies that c(ξ) = 0 if ξ is overtwisted. Some new families of contact 3-
manifolds with vanishing ECH contact invariant are introduced by Wendl [46].
It is shown by Taubes [44] that c(ξ) agrees with an analogous contact invariant
in Seiberg-Witten Floer cohomology, and both conjecturally agree with the
contact invariant in Heegaard Floer homology [36].

1.7. Analogues of ECH in other contexts. One can also define
a version of ECH for sutured 3-manifolds with contact structures adapted to
the sutures, see [7]. This conjecturally agrees with the sutured Floer homology
of Juhász [25] and with the sutured version of Seiberg-Witten Floer homology
defined by Kronheimer-Mrowka [26].

There is also an analogue of ECH, called “periodic Floer homology”, for
mapping tori of area-preserving surface diffeomorphisms, see e.g. [19, 30].

We remark that unlike SFT, which is defined for contact manifolds of any
odd dimension, no analogue of ECH is currently known for contact manifolds



Embedded Contact Homology and Its Applications 1035

of dimension greater than three. In higher dimensions one expects that if J is
generic then all non-multiply-covered J-holomorphic curves are embedded, see
[34]. In addition no good analogue of Seiberg-Witten theory is known in higher
dimensions.

2. Applications

Currently all applications of ECH make use of Taubes’s isomorphism (1.1),
together with known properties of Seiberg-Witten Floer homology, to deduce
certain properties of ECH which then have implications for contact geometry.
It is an interesting open problem to establish the relevant properties of ECH
without using Seiberg-Witten theory.

2.1. Generalizations of the Weinstein conjecture. The Wein-
stein conjecture in three dimensions asserts that for any contact form λ on a
closed oriented 3-manifold Y , there exists a Reeb orbit. Many cases of this were
proved by various authors, see e.g. [13, 2, 8], and the general case was proved
by Taubes [40]. Indeed the three-dimensional Weinstein conjecture follows im-
mediately from the isomorphism (1.1), together with a theorem of Kronheimer-

Mrowka [26, Cor. 35.1.4] asserting that ĤM
∗
is always infinitely generated for

torsion spin-c structures. The reason is that if there were no Reeb orbit, then
the ECH would have just one generator: the empty set of Reeb orbits. However
to prove the Weinstein conjecture one does not need to use the full force of the
isomorphism (1.1); one just needs a way of passing from Seiberg-Witten Floer
generators to ECH generators, which is what [40] establishes.

In [23] we make heavier use of the isomorphism (1.1) to prove some stronger
results. For example:

Theorem 2.1. Let λ be a nondegenerate contact form on a closed oriented
connected 3-manifold Y such that all Reeb orbits are elliptic. Then there are
exactly two embedded Reeb orbits, Y is a sphere or a lens space, and the two
embedded Reeb orbits are the core circles of a genus 1 Heegaard splitting of Y .

The idea of the proof is as follows. Since all Reeb orbits are elliptic, a general
property of the ECH index [16, Prop. 1.6(c)] implies that all ECH generators

have even grading, so the ECH differential vanishes. Since ĤM
∗
is nonvanishing

for only finitely many spin-c structures, it follows that all Reeb orbits represent
torsion homology classes. Estimating the number of ECH generators in a given
index range then shows that there are exactly two embedded Reeb orbits; oth-
erwise there would be either too few or too many generators to be consistent

with the linear growth rate of ĤM
∗
. Indeed, known properties of ĤM

∗
imply

that the U map is an isomorphism when the grading is sufficiently large. This
provides a large supply of I = 2 holomorphic curves in R×Y . By careful use of
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the adjunction formula (1.7) one can show that at least one of these holomor-
phic curves includes a non-R-invariant holomorphic cylinder. By adapting ideas
from [14], one can show that this holomorphic cylinder projects to an embedded
surface in Y which generates a foliation by cylinders of the complement in Y of
the Reeb orbits. This foliation then gives rise to the desired Heegaard splitting.

Theorem 2.1 is used in [23] to extend the Weinstein conjecture to “sta-
ble Hamiltonian structures” (a certain generalization of contact forms) on 3-
manifolds that are not torus bundles over S1.

In addition, a slight refinement of the proof of Theorem 2.1 in [23] estab-
lishes:

Theorem 2.2. Let Y be a closed oriented 3-manifold with a nondegenerate
contact form λ. If Y is not a sphere or a lens space, then there are at least 3
embedded Reeb orbits.

In fact, examples of contact forms with only finitely many embedded Reeb
orbits are hard to come by, and to our knowledge the following question is open:

Question 2.3. Is there any example of a contact form on a closed connected
oriented 3-manifold with only finitely many embedded Reeb orbits, other than
contact forms on S3 and lens spaces with exactly two embedded Reeb orbits?

It is shown in [15] that for a large class of contact forms on S3 there are either
two or infinitely many embedded Reeb orbits. It is shown in [8], using linearized
contact homology, that many contact structures on 3-manifolds (namely those
supported by an open book decomposition with pseudo-Anosov monodromy
satisfying a certain inequality) have the property that for any contact form,
there are infinitely many free homotopy classes of loops that must contain an
embedded Reeb orbit.

2.2. The Arnold chord conjecture. A Legendrian knot in a contact
3-manifold (Y, λ) is a knot K ⊂ Y such that TK ⊂ ξ|K . A Reeb chord of
K is a Reeb trajectory starting and ending on K, i.e. a path γ : [0, T ] → Y
for some T > 0 such that γ′(t) = R(γ(t)) and γ(0), γ(T ) ∈ K. The following
theorem, proved in [24], is a version of the Arnold chord conjecture [3]. (This
was previously known in some cases from [1, 33].)

Theorem 2.4. Let Y0 be a closed oriented 3-manifold with a contact form λ0,
and let K be a Legendrian knot in (Y0, λ0). Then K has a Reeb chord.

The idea of the proof is as follows. Following Weinstein [45], one can perform
a “Legendrian surgery” along K to obtain a new contact manifold (Y1, λ1),
together with an exact symplectic cobordism (X,ω) from (Y1, λ1) to (Y0, λ0).
If K has no Reeb chord, and if λ0 is nondegenerate, then one can carry out the
Legendrian surgery construction so that λ1 is nondegenerate and, up to a given
action, the Reeb orbits of λ1 are the same as those of λ0. Using this observation,
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one can show that if K has no Reeb chord and if λ0 is nondegenerate, then the
cobordism map

Φ(X,ω) : ECH(Y1, λ1;Z/2) −→ ECH(Y0, λ0;Z/2) (2.1)

from §1.6.3 is an isomorphism. Note that this is what one would expect by
analogy with a very special case of the work of Bourgeois-Ekholm-Eliashberg
[4], which studies the behavior of linearized contact homology under Legendrian
surgery, possibly in the presence of Reeb chords.

But the map (2.1) cannot be an isomorphism. The reason is that as shown in
[26, Thm. 42.2.1], the corresponding map on Seiberg-Witten Floer cohomology
fits into an exact triangle

· · · → ĤM
∗
(Y0;Z/2) → ĤM

∗
(Y1;Z/2) → ĤM

∗
(Y2;Z/2) → ĤM

∗
(Y0;Z/2) → · · ·

where Y2 is obtained from Y0 by a different surgery along K. However, as noted

before, Kronheimer-Mrowka showed that ĤM
∗
(Y2;Z/2) is infinitely generated.

This contradiction proves the chord conjecture when λ0 is nondegenerate.
To deal with the case where λ0 is degenerate, one can use filtered ECH

to show that in the nondegenerate case, there exists a Reeb chord with an
upper bound on the length, in terms of a quantitative measure of the failure of
the map (2.1) to be an isomorphism. For example, if λ0 is nondegenerate and
if (2.1) is not surjective, then there exists a Reeb chord of action at most A,
where A is the infimum over L ∈ R such that the image of ECHL(Y0, λ0;Z/2) in
ECH(Y0, λ0;Z/2) is not contained in the image of the map (2.1). One can show
that this upper bound on the length of a Reeb chord is suitably “continuous”
as one changes the contact form. A compactness argument then finds a Reeb
chord in the degenerate case.

2.3. Obstructions to symplectic embeddings. ECH also gives
obstructions to symplectically embedding one compact symplectic 4-manifold
with boundary into another. We now explain how this works in the case of
ellipsoids as in (1.14), with the standard symplectic form ω =

∑2
j=1 dxjdyj on

R
4.
Given positive real numbers a, b, and given a positive integer k, define (a, b)k

to be the kth smallest entry in the array (ma+nb)m,n∈N. Here in the definition
of “kth smallest” we count with repetitions. For example if a = b then

((a, a)1, (a, a)2, . . .) = (0, a, a, 2a, 2a, 2a, 3a, 3a, 3a, 3a, . . .).

We then have:

Theorem 2.5. If there is a symplectic embedding of E(a, b) into E(c, d), then

(a, b)k ≤ (c, d)k (2.2)

for all positive integers k.
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To prove this, one can assume without loss of generality that a/b and c/d are
irrational and that there is a symplectic embedding ϕ : E(a, b) → int(E(c, d)).
Now consider the 4-manifold X = E(c, d) \ int(ϕ(E(a, b))). One can show that
X defines an exact symplectic cobordism from ∂E(c, d) to ∂E(a, b), where the
latter two 3-manifolds are endowed with the contact form (1.15). Since X is dif-
feomorphic to the product [0, 1]×S3, the induced map from the Seiberg-Witten
Floer cohomology of ∂E(c, d) to that of ∂E(a, b) must be an isomorphism. Re-
call from (1.18) that this map is the direct limit of maps on filtered ECH. Since
the ECH differentials vanish, it follows that for each L ∈ R, the number of
ECH generators of ∂E(c, d) with action less than L does not exceed the num-
ber of ECH generators of ∂E(a, b) with action less than L. Since the embedded
Reeb orbits in ∂E(a, b) have action a and b, and the embedded Reeb orbits in
∂E(c, d) have action c and d, it follows that

∣∣{(m,n) ∈ N
2 | cm+ dn < L

}∣∣ ≤
∣∣{(m,n) ∈ N

2 | am+ bn < L
}∣∣ . (2.3)

The statement that the above inequality holds for all L ∈ R is equivalent to
(2.2).

For example, if L is large with respect to a, b, c, d, then the inequality (2.3)
implies that

L2

2cd
≤

L2

2ab
+O(L).

We conclude that ab ≤ cd, which is simply the condition that the volume of
E(a, b) is less than or equal to the volume of E(c, d), which of course is necessary
for the existence of a symplectic embedding. But taking suitable small L often
gives stronger conditions.

The amazing fact is that, at least for the problem of embedding ellipsoids
into balls, the obstruction in Theorem 2.5 is sharp. Namely, for each positive
real number a, define f(a) to be the infimum over all c ∈ R such that E(a, 1)
symplectically embeds into the ball E(c, c). It follows from Theorem 2.5 that

f(a) ≥ sup
k=2,3,...

(a, 1)k
(1, 1)k

. (2.4)

On the other hand, McDuff-Schlenk [31] computed the function f explicitly,
obtaining a complicated answer involving Fibonacci numbers. Using the result
of this calculation, they checked that the opposite inequality in (2.4) holds.

Question 2.6. Is there a direct explanation for this? Does this generalize? For
example, does E(a, b) symplectically embed into E(c+ ε, d+ ε) for all ε > 0 if
(a, b)k ≤ (c, d)k for all positive integers k?

By more involved calculations, one can use ECH to find explicit (but sub-
tle, number-theoretic) obstructions to symplectic embeddings involving other
simple shapes such as four-dimensional polydisks. A systematic treatment of
the symplectic embedding obstructions arising from ECH is given in [18].
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Abstract

Following Perelman’s solution to the Geometrisation Conjecture, a ‘generic’
closed 3-manifold is known to admit a hyperbolic structure. However, our un-
derstanding of closed hyperbolic 3-manifolds is far from complete. In particular,
the notorious Virtually Haken Conjecture remains unresolved. This proposes
that every closed hyperbolic 3-manifold has a finite cover that contains a closed
embedded orientable π1-injective surface with positive genus.

I will give a survey on the progress towards this conjecture and its variants.
Along the way, I will address other interesting questions, including: What are
the main types of finite covering space of a hyperbolic 3-manifold? How many
are there, as a function of the covering degree? What geometric, topological
and algebraic properties do they have? I will show how an understanding of
various geometric and topological invariants (such as the first eigenvalue of the
Laplacian, the rank of mod p homology and the Heegaard genus) can be used
to deduce the existence of π1-injective surfaces, and more.
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1. Introduction

In recent years, there have been several huge leaps forward in 3-manifold the-
ory. Most notably, Perelman [50, 51, 52] has proved Thurston’s Geometrisation
Conjecture [62], and, as a consequence, a ‘generic’ closed orientable 3-manifold
is known to admit a hyperbolic structure. However, our understanding of closed
hyperbolic 3-manifolds is far from complete. In particular, finite covers of hy-
perbolic 3-manifolds remain rather mysterious. Here, the primary goal is the
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search for closed embedded orientable π1-injective surfaces (which are known as
incompressible). The following conjectures remain notoriously unresolved. Does
every closed hyperbolic 3-manifold have a finite cover that

1. is Haken, in other words, contains a closed embedded orientable incom-
pressible surface (other than a 2-sphere)?

2. has positive first Betti number?

3. fibres over the circle?

4. has arbitrarily large first Betti number?

5. has fundamental group with a non-abelian free quotient? (When a group
has a finite-index subgroup with a non-abelian free quotient, it is known
as large.)

The obvious relationships between these problems are shown in Figure 1. This
figure also includes the Surface Subgroup Conjecture, which proposes that a
closed hyperbolic 3-manifold contains a closed orientable π1-injective surface
(other than a 2-sphere), which need not be embedded. While this is not strictly
a question about finite covers, one might hope to lift this surface to an embedded
one in some finite cover of the 3-manifold.

Largeness
Conjecture

Infinite Virtual
b  Conjecture1

Positive Virtual
b  Conjecture1

Virtually Haken
Conjecture

Virtual Fibering
Conjecture

Surface Subgroup
Conjecture

Figure 1.

There are many reasons why these questions are interesting. One source of
motivation is that Haken manifolds are very well-understood, and so one might
hope to use their highly-developed theory to probe general 3-manifolds. But
the main reason for studying these problems is an aesthetic one. Embedded
surfaces, particularly those that are π1-injective, play a central role in low-
dimensional topology and these conjectures assert that they are ubiquitous. In
addition, these problems relate to many other interesting areas of mathematics,
as we will see.

In order to tackle these conjectures, one is immediately led to the following
questions, which are also interesting in their own right. How many finite covers
does a hyperbolic 3-manifold have, as a function of the covering degree? How do
natural geometric, topological and algebraic invariants behave in finite-sheeted
covers, for example:

1. the spectrum of the Laplacian;

2. their Heegaard genus;
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3. the rank of their fundamental group;

4. the order of their first homology, possibly with coefficients modulo a
prime?

In this survey, we will outline some progress on these questions, and will
particularly emphasise how an understanding of the geometric, topological and
algebraic invariants of finite covers can be used to deduce the existence of
incompressible surfaces, and more.

Many of the methods that we will discuss work only in dimension 3. How-
ever, many apply more generally to arbitrary finitely presented groups. We will
also explain some of these group-theoretic applications.

An outline of this paper is as follows. In Section 2, we will give a summary
of the progress to date (March 2010) towards the above conjectures. In Sections
3 and 4, we will explain the two main classes of covering space of a hyperbolic
3-manifold: congruence covers and abelian covers. In Section 5, we will give the
best known lower bounds on the number of covers of a hyperbolic 3-manifold.
In Sections 6 and 7, we will analyse the behaviour of various invariants in finite
covers. In Section 8, we will explain how an understanding of this behaviour may
lead to some approaches to the Virtually Haken Conjecture. In Section 9, we
will examine arithmetic 3-manifolds and hyperbolic 3-orbifolds with non-empty
singular locus, as these appear to be particularly tractable. In Section 10, we
will consider some group-theoretic generalisations. And finally in Section 11, we
will briefly give some other directions in theory of finite covers of 3-manifolds
that have emerged recently.

2. The State of Play

While the techniques developed to study finite covers of 3-manifolds are inter-
esting and important, they have not yet solved the Virtually Haken Conjecture
or its variants. In fact, our understanding of these conjectures is still quite lim-
ited. We focus, in this section, on the known unconditional results, and the
known interconnections between the various conjectures.

The manifolds that are most well understood, but for which our knowledge
is still far from complete, are the arithmetic hyperbolic 3-manifolds. We will
not give their definition here, but instead refer the reader to Maclachlan and
Reid’s excellent book on the subject [48].

We start with the Surface Subgroup Conjecture. Here, we have the following
result, due to the author [33].

Theorem 2.1. Any arithmetic hyperbolic 3-manifold contains a closed ori-
entable immersed π1-injective surface with positive genus.

In fact, a proof of the Surface Subgroup Conjecture for all closed hyperbolic
3-manifolds has recently been announced by Kahn and Markovic [25]. The
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details of this are still being checked. But the proof of Theorem 2.1 is still
relevant because it falls into a general programme of the author for proving the
Virtually Haken Conjecture.

The Virtually Haken Conjecture remains open at present, and is only known
to hold in certain situations. Several authors have examined the case where the
manifold is obtained by Dehn filling a one-cusped finite-volume hyperbolic 3-
manifold. The expectation is that all but finitely many Dehn fillings of this
manifold should be virtually Haken. This is not known at present. However,
the following theorem, which is an amalgamation of results due to Cooper and
Long [16] and Cooper and Walsh [19, 20], goes some way to establishing this.

Theorem 2.2. Let X be a compact orientable 3-manifold with boundary a
single torus, and with interior admitting a finite-volume hyperbolic structure.
Then, infinitely many Dehn fillings of X are virtually Haken.

One might hope to use the existence of a closed orientable immersed π1-
injective surface in a hyperbolic 3-manifold to find a finite cover of the 3-
manifold which is Haken. However, the jump from the Surface Subgroup Conjec-
ture to the Virtually Haken Conjecture is a big one. Currently, the only known
method is the use of the group-theoretic condition called subgroup separability
(see Section 11 for a definition). This is a powerful property, but not many
3-manifold groups are known to have it (see [4] for some notable examples).
Indeed, the condition is so strong that when the fundamental group of a closed
orientable 3-manifold contains the fundamental group of a closed orientable
surface with positive genus that is separable, then this manifold virtually fibres
over the circle or has large fundamental group. Nevertheless, subgroup separa-
bility is a useful and interesting property. For example, an early application of
the condition is the following, due to Long [38].

Theorem 2.3. Any finite-volume hyperbolic 3-manifold that contains a closed
immersed totally geodesic surface has large fundamental group.

The progress towards the Positive Virtual b1 Conjecture is also quite limited.
An experimental analysis [21] by Dunfield and Thurston of the 10986 manifolds
in the Hodgson-Weeks census has found, for each manifold, a finite cover with
positive b1. This is encouraging, but the only known general results apply to
certain classes of arithmetic 3-manifolds. The following is due to Clozel [15].
(We refer the reader to [48] for the definitions of the various terms in this
theorem.)

Theorem 2.4. Let M be an arithmetic hyperbolic 3-manifold, with invariant
trace field k and quaternion algebra B. Assume that for every finite place ν
where B ramifies, the completion kν contains no quadratic extension of Qp,
where p is a rational prime and ν divides p. Then M has a finite cover with
positive b1.

Again, the jump from positive virtual b1 to infinite virtual b1 is not known
in general. However, it is known for arithmetic 3-manifolds, via the following
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result, which was first proved by Cooper, Long and Reid [18], but shortly af-
terwards, alternative proofs were given by Venkataramana [63] and Agol [2].

Theorem 2.5. Suppose that an arithmetic hyperbolic 3-manifold M has b1 > 0.
Then M has finite covers with arbitrarily large b1.

The step from infinite virtual b1 to largeness is known to hold in some
circumstances. The following result is due to the author, Long and Reid [35].

Theorem 2.6. Let M be an arithmetic hyperbolic 3-manifold. Suppose that M
has a finite cover with b1 ≥ 4. Then π1(M) is large.

Thus, combining the above three theorems, many arithmetic hyperbolic 3-
manifolds are known to have large fundamental groups. And by Theorem 2.1,
they all contain closed orientable immersed π1-injective surfaces with positive
genus.

The remaining problem is the Virtual Fibering Conjecture. For a long time,
this seemed to be rather less likely than the others, simply because there were
very few manifolds that were known to be virtually fibred that were not already
fibred. (Examples were discovered by Reid [54], Leininger [37] and Agol-Boyer-
Zhang [3].) However, this situation changed recently, with work of Agol [1],
which gives a useful sufficient condition for a 3-manifold to be virtually fibred.
It has the following striking consequence.

Theorem 2.7. Let M be an arithmetic hyperbolic 3-manifold that contains a
closed immersed totally geodesic surface. Then M is virtually fibred.

These manifolds were already known to have large fundamental group, by
Theorem 2.3. However, virtual fibration was somewhat unexpected here.

Finally, we should mention that the Virtually Haken Conjecture and its
variants are mostly resolved in the case when M is a compact orientable irre-
ducible 3-manifold with non-empty boundary. Indeed it is a fundamental fact
that b1(M) ≥ b1(∂M)/2. Hence, M trivially satisfies the Positive Virtual b1
Conjecture. In fact, much more is true, by the following results of Cooper,
Long and Reid [17].

Theorem 2.8. Let M be a compact orientable irreducible 3-manifold with non-
empty boundary, that is not an I-bundle over a disc, annulus, torus or Klein
bottle. Then π1(M) is large.

Theorem 2.9. Let M be a compact orientable irreducible 3-manifold with non-
empty boundary. Then π1(M) is trivial or free or contains the fundamental
group of a closed orientable surface with positive genus.

The main unsolved problem for 3-manifolds with non-empty boundary
is therefore the Virtual Fibering Conjecture for finite-volume hyperbolic 3-
manifolds.
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3. Congruence Covers

We start with some obvious questions. How can one construct finite covers of
a hyperbolic 3-manifold? Do they come in different ‘flavours’? Of course, any
finite regular cover of a 3-manifold M is associated with a surjective homo-
morphism from π1(M) onto a finite group. But there is no systematic theory
for such homomorphisms in general. There are currently just two classes of
finite covering spaces of general hyperbolic 3-manifolds which are at all well-
understood: congruence covers and abelian covers. We will examine these in
more detail in this section and the one that follows it.

If Γ is the fundamental group of an orientable hyperbolic 3-manifold
M , then the hyperbolic structure determines a faithful homomorphism Γ →
Isom+(H3) ∼= PSL(2,C). When M has finite volume, one may in fact arrange
that the image lies in PSL(2, R), where R is obtained from the ring of integers
of a number field by inverting finitely many prime ideals. This permits the use
of number theory. Specifically, one can take any proper non-zero ideal I in R,
and consider the composite homomorphsim

Γ → PSL(2, R) → PSL(2, R/I)

which is termed the level I congruence homomorphism. We denote it by φI .
The kernel of such a homomorphism is called a principal congruence subgroup,
and any subgroup that contains a principal congruence subgroup is congruence.
We term the corresponding cover of M a congruence cover. Now, R/I is a finite
ring, and in fact if I is prime, then R/I is a finite field. Hence, congruence
covers always have finite degree.

There is an alternative approach to this theory, involving quaternion al-
gebras, which is in many ways superior. It leads to the same definition of a
congruence subgroup, but the congruence homomorphisms are a little differ-
ent. However, we do not follow this approach here because it requires too much
extra terminology.

Congruence subgroups are extremely important. They are used to prove the
following foundational result.

Theorem 3.1. The fundamental group Γ of a finite-volume orientable hyper-
bolic 3-manifold is residually finite. In fact, for all primes p with at most finitely
many exceptions, Γ is virtually residually p-finite.

The residual finiteness of Γ is established as follows. Let γ be any non-trivial
element of Γ, and let γ̂ be an inverse image of γ in SL(2, R). Then neither γ̂−1
nor γ̂ + 1 is the zero matrix, and so each has a non-zero matrix entry. Let x
be the product of these entries. Since x is a non-zero element of R, it lies in
only finitely many ideals I. Therefore γ̂−1 and γ̂+1 both have non-zero image
in SL(2, R/I) for almost all ideals I. For each such I, the images of γ and the
identity in PSL(2, R/I) are distinct, which proves residual finiteness.

To establish virtual residual p-finiteness, for some integral prime p, one
works with the principal ideals (pn) in R, where n ∈ N. Provided p does not
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lie in any of the prime ideals that were inverted in the definition of R, (pn) is
a proper ideal of R. Let Γ(pn) denote the kernel of the level (pn) congruence
homomorphism. Then, by the above argument, for any non-trivial element γ
of Γ, γ does not lie in Γ(pn) for all sufficiently large n. In particular, this is
true of all non-trivial γ in Γ(p). Now, the image of Γ(p) under the level (pn)
congruence homomorphism lies in the subgroup of PSL(2, R/(pn)) consisting
of elements that are congruent to the identity mod (p). This is a finite p-group.
Hence, we have found, for each non-trivial element γ of Γ(p), a homomorphism
onto a finite p-group for which the image of γ is non-trivial, thereby proving
Theorem 3.1.

The conclusions of Theorem 3.1 in fact hold more generally for any finitely
generated group that is linear over a field of characteristic zero, with essentially
the same proof. In fact, when studying congruence homomorphisms, one is led
naturally to the extensive theory of linear groups. Here, the Strong Approxima-
tion Theorem of Nori and Weisfeiler [64] is particularly important. This deals
with the images of the congruence homomorphisms φI : Γ → PSL(2, R/I), as I
ranges over all the proper non-zero ideals of R, simultaneously. We will not give
the precise statement here, because it also requires too much extra terminology.
However, we note the following consequence, which has, in fact, a completely
elementary proof.

Theorem 3.2. There is a finite set S of prime ideals I in R with following
properties.

1. For each prime non-zero ideal I of R that is not in S, Im(φI) is isomor-
phic to PSL(2, qn) or PGL(2, qn), where q is the characteristic of R/I
and n > 0.

2. For any finite set of prime non-zero ideals I1, . . . , Im in R, none of which
lies in S, and for which the characteristics of the fields R/Ii are all dis-
tinct, the product homomorphism

m
∏

i=1

φIi : Γ →
m
∏

i=1

PSL(2, R/Ii)

has image equal to
m
∏

i=1

Im(φIi).

This has the following important consequence for homology modulo a prime
p, due to Lubotzky [41]. Given any prime p and group or space X, let dp(X)
denote the dimension of H1(X;Fp), as a vector space over the field Fp.

Theorem 3.3. Let Γ be the fundamental group of a finite-volume orientable
hyperbolic 3-manifold. Let p be any prime integer, and let m be any natural
number. Then Γ has a congruence subgroup Γ̃ such that dp(Γ̃) ≥ m.
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The proof runs as follows. For almost all integral primes q, there is a prime
ideal I in R such that R/I is a field of characteristic q. Moreover, by Theorem
3.2, we may assume that Im(φI) is isomorphic to PSL(2, qn) or PGL(2, qn),
where n ≥ 1. Inside PSL(2, qn) or PGL(2, qn), there is the subgroup consisting
of diagonal matrices, which is abelian with order (qn−1)/2 or (qn−1). We now
want to restrict to certain primes q, and to do this, we use Dirichlet’s theorem,
which asserts that there are infinitely many primes q such that q ≡ 1 (mod p).
When p = 2, we also require that q ≡ 1 (mod 4). For these q, p divides the order
of the subgroup of diagonal matrices, and so there is a subgroup of order p. We
may find a set of m such primes q1, . . . , qm so that each qi is the characteristic
of R/Ii, where Ii is a prime ideal avoiding the finite set S described above.
Then we have an inclusion of groups

(Z/p)m ≤ Im(φI1)× · · · × Im(φIm).

Now, Γ surjects onto the right-hand group. Let Γ̃ be the inverse image of the
left-hand group. This is a congruence subgroup, and by construction, it surjects
onto (Z/p)m. Hence, dp(Γ̃) ≥ m, thereby proving Theorem 3.3.

Since dp(Γ̃) is positive, the covering space corresponding to Γ̃ has a non-
trivial regular cover with covering group that is an elementary abelian p-group
(in other words is isomorphic to (Z/p)m for some m). Thus, we are led to the
following type of covering space.

4. Abelian Covers

A covering map is abelian (respectively, cyclic) provided it is regular and
the group of covering transformations is abelian (respectively, cyclic). A large
amount of attention has been focused on the homology of abelian covers. In-
deed, one of the earliest topological invariants, the Alexander polynomial, can
be interpreted this way. However, the Alexander polynomial is only defined
when the covering group is free abelian, and so we leave the realm of finite
covering spaces. We therefore will not dwell too long on the Alexander poly-
nomial, but to omit mention of it entirely would be remiss, especially as it has
consequences also for certain finite cyclic covers, via the following result, due
to Silver and Williams [60] (see also [55, 22]).

Theorem 4.1. Let M be a compact orientable 3-manifold, let M̃ be an infinite
cyclic cover and let ∆(t) ∈ Z[t, t−1] be the resulting Alexander polynomial. Its
Mahler measure is defined by

M(∆) = |c|
∏

i

max{1, |αi|},

as αi ranges over all roots of ∆(t), and c is the coefficient of the highest order
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term. Let Mn be the degree n cyclic cover of M that is covered by M̃ . Then

log |H1(Mn)tor|
n

→ logM(∆),

as n → ∞, where H1(Mn)tor denotes the torsion part of H1(Mn).

Thus, provided ∆(t) has at least one root off the unit circle, |H1(Mn)tor|
has exponential growth as a function of n.

There are more sophisticated versions of this result, dealing for example
with the case when M̃ is a regular cover with a free abelian group of covering
transformations [60]. However, the theory only applies when b1(M) is positive,
and so, in the absence of the solution to the Positive Virtual b1 Conjecture,
methods using the Alexander polynomial are not yet universally applicable in
3-manifold theory.

There is another important direction in the theory of abelian covers, which
deals with homology modulo a prime p. Let Γ be the fundamental group of
a compact orientable 3-manifold, and suppose that Γ̃ is a normal subgroup
such that Γ/Γ̃ is an elementary abelian p-group. Then an important result of
Shalen and Wagreich [59] gives a lower bound for the mod p homology of Γ̃.
For simplicity, we will deal only with the case where Γ/Γ̃ is as big as possible,
which is when Γ̃ = [Γ,Γ]Γp.

Theorem 4.2. Let Γ be the fundamental group of a compact orientable 3-
manifold, and let Γ̃ = [Γ,Γ]Γp. Then,

dp(Γ̃) ≥
(

dp(Γ)
2

)

.

This has the consequence that when dp(Γ) ≥ 3, then also dp(Γ̃) ≥ 3. Hence,

we may repeat the argument with Γ̃ in place of Γ. It is therefore natural to
consider the derived p-series of Γ, which is defined by setting Γ0 = Γ, and
Γi+1 = [Γi,Γi](Γi)

p for i ≥ 0. We deduce that when dp(Γ) ≥ 3, then the derived
p-series is always strictly descending. Moreover, when dp(Γ) > 3, then dp(Γi)
tends to infinity. Note that dp(Γi) need not tend to infinity when dp(Γ) = 3, as
the example of the 3-torus demonstrates.

The original proof of Theorem 4.2 by Shalen andWagreich used the following
exact sequence of Stallings:

H2(Γ;Fp) → H2(Γ/Γ̃;Fp) →
Γ̃

[Γ̃,Γ](Γ̃)p
→ H1(Γ;Fp) → H1(Γ/Γ̃;Fp) → 0.

Let d = dp(Γ/Γ̃) = dp(Γ). Then, H2(Γ/Γ̃;Fp) is an elementary abelian p-group
of rank d(d + 1)/2 by the Künneth formula. However, by Poincaré duality,
H2(Γ;Fp) is an elementary abelian p-group of rank at most d. Thus, by exact-

ness of the above sequence, Γ̃/([Γ̃,Γ](Γ̃)p) has rank at least d(d−1)/2. But this



Finite Covering Spaces of 3-manifolds 1051

is a quotient of Γ̃/([Γ̃, Γ̃](Γ̃)p), which equals H1(Γ̃;Fp). Hence, one obtains the

required lower bound on dp(Γ̃).

Although this argument is short, it is not an easy one for a geometric topol-
ogist to digest. In an attempt to try to understand it, the author found an
alternative topological proof, which then led to a considerable strengthening of
the theorem. The proof runs roughly as follows, focusing on the case p = 2 for
simplicity.

Pick a generating set {x1, . . . , xn} for Γ such that the first d elements
x1, . . . , xd form a basis for H1(Γ;F2), and so that each xi is trivial in H1(Γ;F2)
for i > d. Let K be a 2-complex with fundamental group Γ, with a single 0-cell
and with 1-cells corresponding to the above generating set. Let K̃ be the cov-
ering space corresponding to Γ̃. We are trying to find a lower bound on d2(Γ̃),
which is the rank of the cohomology group H1(K̃;F2). Now, H

1(K̃;F2) is equal
to {1-cocycles on K̃}/{1-coboundaries on K̃}. Each 1-cocycle is, by definition,
a 1-cochain that evaluates to zero on the boundary of each 2-cell of K̃. How-
ever, instead of examining all cochains, we only consider special ones, which
are defined as follows. For each integer 1 ≤ j ≤ d, each vertex of K̃ has a
well-defined xj-value, which is an integer mod 2. For 1 ≤ i ≤ j ≤ d, define the
cochain xi ∧ xj to have support equal to the xi-labelled edges which start (and
end) at vertices with xj-value 1. The space spanned by these cochains clearly
has dimension d(d+ 1)/2.

These cochains have the key property that if two closed loops in K̃ differ by
a covering transformation, then their evaluations under one of these cochains
are equal. Hence, when we consider the space spanned by these cochains, and
determine whether any element of this space is a cocycle, we only need to
consider one copy of each defining relation of Γ. It turns out that none of
the cocycles in this space is a coboundary, except the zero cocycle, and so
d2(Γ̃) ≥ d(d + 1)/2 − r, where r is the number of 2-cells of K. In fact, by
modifying these cocycles a little, the number of conditions that we must check
can be reduced from r to b2(Γ;F2). So, we deduce that, if Γ is any finitely
presented group and Γ̃ = [Γ,Γ]Γ2 and d = d2(Γ), then

d2(Γ̃) ≥ d(d+ 1)/2− b2(Γ;F2).

And when Γ is the fundamental group of a compact orientable 3-manifold,
Poincaré duality again gives that b2(Γ;F2) ≤ d, proving Theorem 4.2.

This is not the end of the story, because it turns out that these cochains are
just the first in a whole series of cochains, each with an associated integer, which
is its ‘level’ `. The ones above are those with level ` = 1. An example of a level
2 cochain has support equal to the x1-labelled edges which start at the vertices
for which the x2-value and x3-value are both 1. By considering cochains at
different levels, we can considerably strengthen Theorem 4.2, as follows. Again,
there are more general versions which deal with the general case where Γ/Γ̃ is
an elementary abelian p-group, but we focus on the case where Γ̃ = [Γ,Γ]Γ2.
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Theorem 4.3. Let Γ be the fundamental group of a compact orientable 3-
manifold, and let Γ̃ = [Γ,Γ]Γ2. Then, for each integer ` between 1 and d2(Γ),

d2(Γ̃) ≥ d2(Γ)

(

d2(Γ)
`

)

−
`+1
∑

j=1

(

d2(Γ)
j

)

.

Setting ` = bd2(Γ)/2c and using Stirling’s formula to estimate factorials, we
deduce the following [31].

Theorem 4.4. Let Γ be the fundamental group of a compact orientable 3-
manifold such that d2(Γ) > 3. Let {Γi} be the derived 2-series of Γ. Then, for
each λ <

√

2/π,

d2(Γi+1) ≥ λ2d2(Γi)
√

d2(Γi),

for all sufficiently large i.

This is not far off the fastest possible growth of homology of a finitely
generated group. By comparison, when {Γi} is the derived 2-series of a non-
abelian free group, then

d2(Γi+1) = 2d2(Γi)(d2(Γi)− 1) + 1.

Theorem 4.4 can be used to produce strong lower bounds on the number of
covering spaces of a hyperbolic 3-manifold, as we will see in the following sec-
tion.

5. Counting Finite Covers

How many finite covers does a 3-manifold have? This question lies in the field of
subgroup growth [45], which deals with the behaviour of the following function.
For a finitely generated group Γ and positive integer n, let sn(Γ) be the number
of subgroups of Γ with index at most n.

The fastest possible growth rate of sn(Γ), as a function of n, is clearly
achieved when Γ is a non-abelian free group. In this case, sn(Γ) grows slightly
faster than exponentially: it grows like 2n logn. More generally, any large finitely
generated group has this rate of subgroup growth.

By comparison, the subgroup growth of the fundamental group of a hy-
perbolic 3-manifold group has a lower bound that grows slightly slower than
exponentially, as the following result [31] of the author demonstrates.

Theorem 5.1. Let Γ be the fundamental group of a finite-volume hyperbolic
3-manifold. Then,

sn(Γ) > 2n/(
√

log(n) log logn)

for infinitely many n.
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The proof is a rapid consequence of Theorems 4.4 and 3.3. Theorem 3.3
gives a finite index subgroup Γ̃ of Γ with d2(Γ̃) > 3. Then Theorem 4.4 implies
that the mod 2 homology of the derived 2-series of Γ̃ grows rapidly. And if Γi

is a subgroup of Γ with index n, then clearly

s2n(Γ) ≥ 2d2(Γi).

Thus, in the landscape of finite covers of a hyperbolic 3-manifold, abelian
covers appear to play a major role. Certainly, there are far more of them than
there are congruence covers, by the following result of Lubotzky [43], which
estimates cn(Γ), which is the number of congruence subgroups of Γ with index
at most n.

Theorem 5.2. Let Γ be the fundamental group of an orientable finite-volume
hyperbolic 3-manifold. Then, there are positive constants a and b such that

na logn/ log logn ≤ cn(Γ) ≤ nb logn/ log logn,

for all n.

The lower bound provided by Theorem 5.1 is not sharp in general, because
there are many examples where Γ is large. Indeed, the Largeness Conjecture
asserts that this should always be the case.

There is another important situation when we know that the lower bound
of Theorem 5.1 can be improved upon, due to the following result of the author
[30].

Theorem 5.3. Let Γ be the fundamental group of either an arithmetic hyper-
bolic 3-manifold or a finite-volume hyperbolic 3-orbifold with non-empty singu-
lar locus. Then, there is a real number c > 1 such that sn(Γ) ≥ cn for infinitely
many n.

Like Theorem 5.1, this is proved by finding lower bounds on the rank of the
mod p homology of certain finite covers. We will give more details in Section
9, where the covering spaces of 3-orbifolds and arithmetic 3-manifolds will be
examined more systematically.

6. The Behaviour of Algebraic Invariants in

Finite Covers

As we have seen, it is important to understand how the homology groups can
grow in a tower of finite covers. Thus, we are led to the following related in-
variants of a group Γ:

1. the first Betti number b1(Γ),

2. the torsion part H1(Γ)tor of first homology,
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3. the rank dp(Γ) of mod p homology,

4. the rank of Γ, denoted d(Γ), which is the minimal number of generators.

For each of these invariants, it is natural to consider its growth rate in a nested
sequence of finite index subgroups Γi. For example, one can define the rank
gradient which is

lim inf
i

d(Γi)

[Γ : Γi]
.

The mod p homology gradient and first Betti number gradient are defined simi-
larly. The latter is in fact, by a theorem of Lück [47], related to the first L2 Betti

number of Γ (denoted b
(2)
1 (Γ)). More precisely, when Γi is a nested sequence of

finite-index normal subgroups of a finitely presented group Γ, and their inter-

section is the identity, then their first Betti number gradient is equal to b
(2)
1 (Γ).

When Γ is the fundamental group of a finite-volume hyperbolic 3-manifold,

b
(2)
1 (Γ) is known to be zero, and hence b1(Γi) always grows sub-linearly as a
function of the covering degree [Γ : Γi]. Interestingly, there is no corresponding
theory for mod p homology gradient, and the following question is at present
unanswered.

Question. Let Γ be a finitely presented group, let Γi be a nested sequence of
finite-index normal subgroups that intersect in the identity. Then does their mod
p homology gradient depend only on Γ and possibly p, but not the sequence Γi?

This is unknown, but it seems very likely that the mod p homology gradient
is always zero when Γ is the fundamental group of a finite-volume hyperbolic
3-manifold and the subgroups intersect in the identity. However, if we drop
the condition that the subgroups intersect in the identity, then there is an
interesting situation where positive mod p homology gradient is known to hold,
by the following result of the author [30].

Theorem 6.1. Let Γ be the fundamental group of either an arithmetic hyper-
bolic 3-manifold or a finite-volume hyperbolic 3-orbifold with non-empty singu-
lar locus. Then, for some prime p, Γ has a nested strictly descending sequence
of finite-index subgroups with positive mod p homology gradient.

We will explore this in more detail in Section 9. But we observe here that
it rapidly implies Theorem 5.3. The existence of such a sequence of finite-
index subgroups seems to be a very strong conclusion. In fact, the following is
unknown.

Question. Suppose that a finitely presented group Γ has a strictly descending
sequence of finite-index subgroups with positive mod p homology gradient, for
some prime p. Does this imply that Γ is large?

We will give some affirmative evidence for this in Section 10. Somewhat
surprisingly, this question is related to the theory of error-correcting codes (see
[32]).
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We have mostly focused on the existence of very fast homology growth for
certain covers of hyperbolic 3-manifolds. But one can also consider the other
end of the spectrum, and ask how slowly the homology groups of a tower of
covers can grow. In this context, the following theorem of Boston and Ellenberg
[7] is striking (see also [12]).

Theorem 6.2. There is an example of a closed hyperbolic 3-manifold, with
fundamental group that has a sequence of nested finite-index normal subgroups
Γi which intersect in the identity, such that b1(Γi) = 0 and d3(Γi) = 3 for all i.

This is proved using the theory of pro-p groups. This is a particularly promis-
ing set of techniques, which will doubtless have other applications to 3-manifold
theory.

7. The Behaviour of Geometric and Topological

Invariants in Finite Covers

In addition to the above algebraic invariants, it seems to be important also to
understand the behaviour of various geometric and topological invariants in a
tower of covers, including the following:

1. the first eigenvalue of the Laplacian,

2. the Cheeger constant,

3. the Heegaard genus.

We will recall the definitions of these terms below.
It is well known that the Laplacian on a closed Riemannian manifold M has

a discrete set of eigenvalues, and hence there is a smallest positive eigenvalue,
denoted λ1(M). This exerts considerable control over the geometry of the man-
ifold. In particular, it is related to the Cheeger constant h(M), which is defined
to be

inf
S

Area(S)

min{Volume(M1),Volume(M2)}
,

as S ranges over all codimension-one submanifolds that divide M into subman-
ifolds M1 and M2. It is a famous theorem of Cheeger [14] and Buser [11] that
if M is closed Riemannian n-manifold with Ricci curvature at least −(n− 1)a2

(for some a ≥ 0), then

h(M)2/4 ≤ λ1(M) ≤ 2a(n− 1)h(M) + 10(h(M))2.

A consequence is that if Mi is a sequence of finite covers of M , then λ1(Mi)
is bounded away from zero if and only if h(Mi) is. In this case, π1(M) is said
to have Property (τ) with respect to the subgroups {π1(Mi)}. As the definition
implies, this depends only on the fundamental group π1(M) and the subgroups
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{π1(Mi)}, and not on the choice of particular Riemannian metric on M . Also,
π1(M) is said to have Property (τ) if it has Property (τ) with respect to the
collection of all its finite-index subgroups. Since any finitely presented group is
the fundamental group of some closed Riemannian manifold, this is therefore a
property that is or is not enjoyed by any finitely presented group. In fact, one
can extend the definition to finitely generated groups that need not be finitely
presented. (See [42, 46] for excellent surveys of this concept.)

The reason for the ‘τ ’ terminology is that Property (τ) is a weak form
of Kazhdan’s Property (T). In particular, any finitely generated group with
Property (T) also has Property (τ) [49]. A harder result is due to Selberg [58],
which implies that SL(2,Z) has Property (τ) with respect to its congruence
subgroups.

The simplest example of a group without Property (τ) is Z. Also, if there
is a surjective group homomorphism Γ → Γ and Γ does not have Property (τ),
then nor does Γ. Hence, if a group has a finite-index subgroup with positive
first Betti number, then it does not have Property (τ). Strikingly, it remains
an open question whether the converse holds in the finitely presented case.

Question. If a finitely presented group does not have Property (τ), then must
it have a finite-index subgroup with positive first Betti number?

The assumption that the group is finitely presented here is critical. For
example, Grigorchuk’s group [23] is residually finite and amenable, and hence
does not have Property (τ), and yet it is a torsion group, and so no finite-index
subgroup has positive first Betti number. Although a positive answer to this
question is unlikely, it might have some striking applications. For example, every
residually finite group with sub-exponential growth does not have Property (τ).
So, a positive answer to the above question might be a step in establishing that
such groups are virtually nilpotent, provided they are finitely presented.

One small piece of evidence for an affirmative answer to the question is
given by the following theorem of the author [29], which relates the behaviour
of λ1 and h to the existence of a finite-index subgroup with positive first Betti
number.

Theorem 7.1. Let M be a closed Riemannian manifold. Then the following
are equivalent:

• there exists a tower of finite covers {Mi} of M with degree di, where each
Mi → M1 is regular, and such that λ1(Mi)di → 0;

• there exists a tower of finite covers {Mi} of M with degree di, where each
Mi → M1 is regular, and such that h(Mi)

√
di → 0;

• there exists a finite-index subgroup of π1(M) with positive first Betti num-
ber.



Finite Covering Spaces of 3-manifolds 1057

However, it remains unlikely that the above question has a positive answer.
Hence, the following conjecture [44] about 3-manifolds is a priori much weaker
than the Positive Virtual b1 Conjecture.

Conjecture (Lubotzky-Sarnak). The fundamental group of any closed hyper-
bolic 3-manifold does not have Property (τ).

This is a natural question for many reasons. It is known that if Γ is a
lattice in a semi-simple Lie group G, then whether or not Γ has Kazhdan’s
Property (T) depends only on G. It remains an open question whether a similar
phenomenon holds for Property (τ), but if it did, then this would of course imply
the Lubotzky-Sarnak Conjecture.

An ‘infinite’ version of the Lubotzky-Sarnak Conjecture is known to hold,
according to the following result of the author, Long and Reid [36].

Theorem 7.2. Any closed hyperbolic 3-manifold has a sequence of infinite-
sheeted covers Mi where λ1(Mi) and h(Mi) both tend to zero.

Of course, λ1(Mi) and h(Mi) need to be defined appropriately, since each
Mi has infinite volume. In the case of λ1(Mi), this is just the bottom of the
spectrum of the Laplacian on L2 functions onMi. To define h(Mi), one considers
all compact codimension-zero submanifolds of Mi, one evaluates the ratio of the
area of their boundary to their volume, and then one takes the infimum. Just
as in the finite-volume case, there is a result of Cheeger [14] which asserts
that λ1(Mi) ≥ h(Mi)

2/4. Also, in the case of hyperbolic 3-manifolds Mi, these
quantities are related to another important invariant δ(Mi), which is the critical
exponent. A theorem of Sullivan [61] asserts that

λ1(Mi) =

{

δ(Mi)(2− δ(Mi)) if δ(Mi) ≥ 1

1 if δ(Mi) ≤ 1.

The proof of Theorem 7.2 relies crucially on a recent result of Bowen [9],
which asserts that, given any closed hyperbolic 3-manifold M and any finitely
generated discrete free convex-cocompact subgroup F of PSL(2,C), there is an
arbitrarily small ‘perturbation’ of F which places a finite-index subgroup of F
as a subgroup of π1(M). Starting with a group F where δ(F ) is very close to 2,
the critical exponent of this perturbation remains close to 2. Thus, this produces
subgroups of π1(M) with critical exponent arbitrarily close to 2. By Sullivan’s
theorem, the corresponding covers Mi of M have λ1(Mi) arbitrarily close to
zero. By Cheeger’s theorem, h(Mi) also tends to zero, proving Theorem 7.2.

Although the infinite version of the Lubotzky-Sarnak Conjecture does not
seem to have any immediate consequence for finite covering spaces of closed
hyperbolic 3-manifolds, it can be used to produce surface subgroups. Indeed, it
is a key step in the proof of Theorem 2.1. We will give more details in Section 9.

In addition to understanding λ1(Mi) and h(Mi) for finite covering spaces
Mi, it also seems to be important to understand the growth rate of their Hee-
gaard genus. Recall that any closed orientable 3-manifold M can be obtained
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by gluing two handlebodies via a homeomorphism between their boundaries.
This is a Heegaard splitting for M , and the image of the boundary of each han-
dlebody is a Heegaard surface. The minimal genus of a Heegaard surface in M
is known as the Heegaard genus g(M). A related quantity is the Heegaard Euler
characteristic χh

−
(M), which is 2g(M)− 2. These are widely-studied invariants

of 3-manifolds, and there is now a well-developed theory of Heegaard splittings
[56]. It is therefore natural to consider the Heegaard gradient of a sequence of
finite covers {Mi}, which is

lim inf
i

χh
−
(Mi)

degree(Mi → M)
.

Somewhat surprisingly, the Cheeger constant and the Heegaard genus of a
closed hyperbolic 3-manifold are related by the following inequality of the au-
thor [29].

Theorem 7.3. Let M be a closed orientable hyperbolic 3-manifold. Then

h(M) ≤ 8π(g(M)− 1)

Volume(M)
.

A consequence is that if the Heegaard gradient of a sequence of finite covers
of M is zero, then the corresponding subgroups of π1(M) do not have Property
(τ). Equivalently, if a sequence of finite covers has Property (τ), then these
covers have positive Heegaard gradient.

We now give a sketch of the proof of Theorem 7.3. Any Heegaard split-
ting for a 3-manifold M determines a ‘sweepout’ of the manifold by surfaces,
as follows. The Heegaard surface divides the manifold into two handlebodies,
each of which is a regular neighbourhood of a core graph. Thus, there is a 1-
parameter family of copies of the surface, starting with the boundary of a thin
regular neighbourhood of one core graph and ending with the boundary of a
thin regular neighbourhood of the other graph. Consider sweepouts where the
maximum area of the surfaces is as small as possible. Then, using work of Pitts
and Rubinstein [53], one can arrange that the surfaces of maximal area tend (in
a certain sense) to a minimal surface S, which is obtained from the Heegaard
surface possibly by performing some compressions. Since S is a minimal sur-
face in a hyperbolic 3-manifold, Gauss-Bonnet implies that its area is at most
−2πχ(S) ≤ 4π(g(M)−1). Hence, we obtain a sweepout of M by surfaces, each
of which has area at most this bound (plus an arbitrarily small ε > 0). One of
these surfaces divides M into two parts of equal volume. This decomposition
gives the required upper bound on the Cheeger constant h(M).

There is an important special case when the Heegaard gradient of a sequence
of finite covers is zero. Suppose that M fibres over the circle with fibre F . Then
it is easy to construct a Heegaard splitting for M with genus at most 2g(F )+1,
where g(F ) is the genus of F . Hence, the finite cyclic covers of M dual to F have
uniformly bounded Heegaard genus. In particular, their Heegaard gradient is
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zero. This is the only known method of constructing sequences of finite covers
of a hyperbolic 3-manifold with zero Heegaard gradient. And so we are led to
the following conjecture of the author, called the Heegaard Gradient Conjecture
[29].

Conjecture. A closed orientable hyperbolic 3-manifold has zero Heegaard gra-
dient if and only if it virtually fibres over the circle.

This remains a difficult open problem. However, a qualitative version of it
is known to be true. More specifically, if a closed hyperbolic 3-manifold has a
sequence of finite covers with Heegaard genus that grows ‘sufficiently slowly’,
then these covers are eventually fibred, by the following result of the author
[27].

Theorem 7.4. Let M be a closed orientable hyperbolic 3-manifold, and let Mi

be a sequence of finite regular covers, with degree di. Suppose that g(Mi)/
4
√
di →

0. Then, for all sufficiently large i, Mi fibres over the circle.

The proof of this uses several of the results mentioned above. Using Theorem

7.3, the hypothesis that g(Mi)/
4
√
di → 0 implies that h(Mi)d

3/4
i → 0. Hence,

by Theorem 7.1, we deduce that some finite-sheeted cover of M has positive
first Betti number. In fact, if we go back to the proof of Theorem 7.1, we see
that this is true of each Mi sufficiently far down the sequence, and with further
work, one can actually prove that these manifolds fibre over the circle.

We will see that the two conjectures introduced in this section, the
Lubotzky-Sarnak Conjecture and the Heegaard Gradient Conjecture, may be
a route to proving the Virtually Haken Conjecture.

8. Two Approaches to the Virtually Haken

Conjecture

The two conjectures introduced in the previous section can be combined to form
an approach to the Virtually Haken Conjecture, via the following theorem of
the author [29].

Theorem 8.1. Let M be a closed orientable irreducible 3-manifold, and let Mi

be a tower of finite regular covers of M such that

1. their Heegaard gradient is positive, and

2. they do not have Property (τ).

Then, for all sufficiently large i, Mi is Haken.

Hence, the Lubotzky-Sarnak Conjecture and the Heegaard Gradient Con-
jecture together imply the Virtually Haken Conjecture. For, assuming the
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Lubotzky-Sarnak Conjecture, a closed orientable hyperbolic 3-manifold M has
a tower of finite regular covers without Property (τ). If these have positive
Heegaard gradient, then by Theorem 8.1, they are eventually Haken. On the
other hand, if they have zero Heegaard gradient, then by the Heegaard Gradient
Conjecture, M is virtually fibred.

The proof requires some ideas from the theory of Heegaard splittings. A cen-
tral concept in this theory is the notion of a strongly irreducible Heegaard surface
S, which means that any compression disc on one side of S must intersect any
compression disc on the other side. A key theorem of Casson and Gordon [13]
implies that if a closed orientable irreducible 3-manifold has a minimal genus
Heegaard splitting that is not strongly irreducible, then the manifold is Haken.
A quantified version of this is as follows. Suppose that S is a Heegaard surface
for the closed 3-manifold M , and that there are d disjoint non-parallel com-
pression discs on one side of S that are all disjoint from d disjoint non-parallel
compression discs on the other side of S. Then, either g(M) ≤ g(S)− (d/6) or
M is Haken.

Suppose now that Mi is a sequence of covers of M as in Theorem 8.1. Let
S be a minimal genus Heegaard surface for M . Its inverse image in each Mi is
a Heegaard surface Si. We are assuming that the Heegaard gradient of these
covers is positive. Hence (by replacing M by some Mi if necessary), we may
assume that g(Mi) is roughly g(Si). Now, we are also assuming that these
covers do not have Property (τ). Hence, there is a way of decomposing Mi into
two pieces Ai and Bi with large volume, and with small intersection. By using
compression discs on one side of Si that lie in Ai and compression discs on
the other side of Si that lie in Bi, we obtain di discs on each side of Si which
are all disjoint and non-parallel, and where di grows linearly as a function of
the covering degree of Mi → M . Hence, by the quantified version of Casson-
Gordon, if Mi is not Haken, then g(Mi) is substantially less than g(Si), which
is a contradiction, thereby proving Theorem 8.1.

Of course, it remains unclear whether the hypotheses of Theorem 8.1 always
hold, and hence the Virtually Haken Conjecture remains open. However, there
is another intriguing approach. By using results of Bourgain and Gamburd [8]
which give lower bounds on the first eigenvalue of the Laplacian on certain
Cayley graphs of SL(2, p), Long, Lubotzky and Reid [39] were able to establish
the following theorem.

Theorem 8.2. Let M be a closed orientable hyperbolic 3-manifold. Then M
has a sequence of finite covers Mi with Property (τ) and such that the subgroups
π1(Mi) of π1(M) intersect in the identity.

Combining this with Theorem 7.3, we deduce that these covers have positive
Heegaard gradient. Now, Theorem 8.2 does not provide a tower of finite regular
covers, but it is not unreasonable to suppose that this can be achieved. Hence,
by replacing M by some Mi if necessary, we may assume that the Heegaard
gradient of these covers is very close to χh

−
(M). Let S be any minimal genus
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Heegaard surface for M . Its inverse image Si in Mi is a Heegaard splitting of
Mi, and it therefore is nearly of minimal genus. It is reasonable to conjecture
that there is a minimal genus splitting Si for Mi with geometry ‘approximating’
that of Si. Now, Si inevitably fails to be strongly irreducible when the degree of
Mi → M is large, via a simple argument that counts compression discs and their
points of intersection. One might conjecture that this is also true of Si, which
would therefore imply that Mi is Haken for all sufficiently large i. Of course,
this is somewhat speculative, and the conjectural relationship between Si and
Si may not hold. But it highlights the useful interaction between Heegaard
splittings, Property (τ) and the Virtually Haken Conjecture.

9. Covering Spaces of Hyperbolic 3-orbifolds

and Arithmetic 3-manifolds

The material in the previous section is, without doubt, rather speculative. How-
ever, the ideas behind it have been profitably applied in some important special
cases. It seems to be easiest to make progress when analysing finite covers of
either of the following spaces:

1. hyperbolic 3-orbifolds with non-empty singular locus;

2. arithmetic hyperbolic 3-manifolds.

There is a well-developed theory of orbifolds, their fundamental groups and
their covering spaces. We will only give a very brief introduction here, and refer
the reader to [57] for more details.

Recall that an orientable hyperbolic 3-orbifold O is the quotient of hyper-
bolic 3-space H3 by a discrete group Γ of orientation-preserving isometries.
This group may have non-trivial torsion, in which case it does not act freely.
The images in O of points in H3 with non-trivial stabiliser form the singular
locus sing(O). This is a collection of 1-manifolds and trivalent graphs. Each
1-manifold and each edge of each graph has an associated positive integer, its
order, which is the order of the finite stabiliser of corresponding points in H3.
For any positive integer n, singn(O) denotes the closure of the union of sin-
gular edges and 1-manifolds that have order a multiple of n. The underlying
topological space of a 3-orbifold O is always a 3-manifold, denoted |O|.

One can define the fundamental group π1(O) of any orbifold O, which is, in
general, different from the usual fundamental group of |O|. When O is hyper-
bolic, and hence of the form H3/Γ, its fundamental group is Γ. One can also
define the notion of a covering map between orbifolds. In the hyperbolic case,
these maps are of the form H3/Γ′ → H3/Γ, for some subgroup Γ′ of Γ. Note
that this need not be a cover in the usual topological sense.

The following result of the author, Long and Reid [35] allows one to apply
orbifold technology in the arithmetic case.
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Theorem 9.1. Any arithmetic hyperbolic 3-manifold is commensurable with a
3-orbifold O with non-empty singular locus. Indeed, one may arrange that every
curve and arc of the singular locus has order 2 and that there is at least one
singular vertex.

The main reason why 3-orbifolds are often more tractable than 3-manifolds
is the following lower bound on the rank of their homology [30]. For an orbifold
O and prime p, we let dp(O) denote dp(π1(O)).

Theorem 9.2. Let O be a compact orientable 3-orbifold. Then for any prime
p, dp(O) ≥ b1(singp(O)).

The reason is that π1(O) can be computed by starting with the usual fun-
damental group of the manifold O − sing(O) and then quotienting out powers
of the meridians of the singular locus, where the power is the relevant edge’s
singularity order. If this order is a multiple of p, then quotienting out this power
of this meridian has no effect on dp. On the other hand, if the order of a singular
edge or curve is coprime to p, then we may replace these points by manifold
points without changing dp. Hence, dp(O) = dp(|O| − int(N(singp(O)))). Now,
the latter space is a compact orientable 3-manifold M with boundary, and it is
a well-known consequence of Poincaré duality that dp(M) is at least dp(∂M)/2.
From this, the required inequality rapidly follows.

So, as far as mod p homology is concerned, orbifolds O where singp(O) is
non-empty behave as though they have non-empty boundary. And 3-manifolds
with non-empty boundary are often much more tractable than closed ones.

Theorem 9.2 is the basis behind Theorem 6.1. Here, we are given a finite-
volume hyperbolic 3-orbifold O with non-empty singular locus. The main case is
whenO is closed. Let p be a prime that divides the order of some edge or curve in
the singular locus. We first show that one can find a finite cover Õ where sing(Õ)
is a non-empty collection of simple closed curves with singularity order p, and
where dp(Õ) ≥ 11, using techniques that are generalisations of those in Section

3. Let λ and µ be a longitude and meridian of some component L of sing(Õ),
viewed as elements of π1(Õ). Then, using the Golod-Shafarevich inequality [40],
we can show that π1(Õ)/〈〈λ, µ〉〉 is infinite, and in fact has an infinite sequence
of finite-index subgroups. These pull back to finite-index subgroups of π1(Õ),
which determine a sequence of covering spaces Oi. Because these subgroups
contain the normal subgroup 〈〈λ, µ〉〉, the inverse image of L in each Oi is a
disjoint union of copies of L. Hence, there is a linear lower bound on the number
of components of singp(Oi) as a function of the covering degree. Therefore, by
Theorem 9.2, dp(Oi) grows linearly, as required.

For any closed orientable 3-manifold M , there are obvious inequalities
g(M) ≥ d(π1(M)) ≥ dp(M), and the same is true for closed orientable 3-
orbifolds (with an appropriate definition of Heegaard genus). Hence, Theorem
6.1 provides a sequence of finite covers of the orbifold O with positive Heegaard
gradient. If we also knew that these covers did not have Property (τ), then by
(an orbifold version of) Theorem 8.1, we would deduce that they are eventually
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Haken. In fact, we would get much more than this. We would be able to deduce
that π1(O) is large, via the following theorem of the author [32].

Theorem 9.3. Let Γ be a finitely presented group, let p be a prime and suppose
that Γ ≥ Γ1 . Γ2 . . . . is a sequence of finite-index subgroups, where each Γi+1

is normal in Γi and has index a power of p. Suppose that

1. the subgroups Γi have positive mod p homology gradient, and

2. the subgroups Γi do not have Property (τ).

Then Γ is large.

We will explain the proof of this and related results in the next section.
Similar reasoning also gives the the following theorem [35].

Theorem 9.4. The Lubotzky-Sarnak Conjecture implies that any closed hy-
perbolic 3-orbifold that has at least one singular vertex has large fundamental
group. In particular, the Lubotzky-Sarnak Conjecture implies that every arith-
metic hyperbolic 3-manifold has large fundamental group.

It is quite striking that the Lubotzky-Sarnak Conjecture, which is a ques-
tion solely about the spectrum of the Laplacian, should have such far-reaching
consequences for arithmetic hyperbolic 3-manifolds.

The way that this is proved is as follows. One starts with the closed hy-
perbolic 3-orbifold O with at least one singular vertex. Its fundamental group
therefore contains a finite non-cyclic subgroup. For simplicity, suppose that
this is Z/2 × Z/2 (which is the case considered in [35]). One can then pass to
a finite cover Õ where every arc and circle of the singular locus has order 2
and which has at least one singular vertex. Any finite cover of the underlying
manifold |Õ| induces a finite cover Oi of Õ where sing(Oi) is the inverse image
of sing(Õ). Since sing(Õ) contains a trivalent vertex, b1(sing2(Oi)) grows lin-
early as a function of the covering degree. Hence, {π1(Oi)} has positive mod 2
homology gradient. With some further work, and using the solution to the Ge-
ometrisation Conjecture, we may arrange that |Õ| has a hyperbolic structure
or has a finite cover with positive b1. Hence, assuming the Lubotzky-Sarnak
Conjecture, one can find finite covers |Oi| with Cheeger constants tending to
zero. Thus, π1(O) is large, by Theorem 9.3.

The above arguments are closely related to those behind Theorem 2.1. In
fact, we can prove the following stronger version [33].

Theorem 9.5. Let Γ be the fundamental group of a finite-volume hyperbolic
3-orbifold or 3-manifold. Suppose that Γ has a finite non-cyclic subgroup or
is arithmetic. Then Γ contains the fundamental group of a closed orientable
surface with positive genus.

The proof runs as follows. One uses the same finite cover Õ as above. We do
not know that the Lubotzky-Sarnak Conjecture holds, but we have Theorem
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7.2, which provides a sequence of infinite-sheeted covers |Oi| of |Õ| with Cheeger
constants tending to zero. These induce covers Oi of Õ. One can use the singular
locus of Oi to find a finite cover with more than one end. It then follows quickly
that π1(Oi) contains a surface subgroup.

To make further progress with finite covers, it seems to be necessary to
establish the Lubotzky-Sarnak Conjecture. But there is an important special
case where this holds trivially: when the manifold or orbifold has a finite cover
with positive first Betti number. For example, suppose that O is a compact
orientable 3-orbifold with singular locus that contains a simple closed curve C.
Suppose also that there is a surjective homomorphism π1(O) → Z that sends
[C] to zero. Then the resulting finite cyclic covers have linear growth of mod
p homology (where p divides the order of C) and also their Cheeger constants
tend to zero. So, by Theorem 9.3, π1(O) is large. Using this observation, the
author, Long and Reid were able to prove the following [35].

Theorem 9.6. Let Γ be the fundamental group of a finite-volume hyperbolic
3-manifold or 3-orbifold. Suppose that Γ is arithmetic or contains Z/2 × Z/2.
Suppose also that Γ has a finite-index subgroup Γ̃ with b1(Γ̃) ≥ 4. Then Γ is
large.

This is significant because such a finite-index subgroup Γ̃ is known to ex-
ist in many cases. Indeed, arithmetic techniques, due to Clozel [15], Labesse-
Schwermer [26], Lubotzky [44] and others, often provide a congruence subgroup
with positive first Betti number. Then, using a theorem of Borel [6], one can
find congruence subgroups with arbitrarily large first Betti number. The con-
sequence of Theorem 9.6 is that one can in fact strengthen the conclusion to
deduce that these groups are large.

10. Group-theoretic Generalisations

We have discussed several topological results, such as Theorem 8.1, which are
helpful in tackling the Virtually Haken Conjecture. It is natural to ask whether
there are more general group-theoretic versions of these theorems. In many
cases, there are. For example, the following is a version of Theorem 8.1, due to
the author [28].

Theorem 10.1. Let Γ be a finitely presented group, and let {Γi} be a nested
sequence of finite-index normal subgroups. Suppose that

1. their rank gradient is positive, and

2. they do not have Property (τ).

Then, for all sufficiently large i, Γi is an amalgamated free product or HNN
extension.
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We now give an indication of the proof. As is typical with arguments in
this area, one starts with a finite cell complex K with fundamental group Γ.
Let Ki be the finite covering space corresponding to Γi. The hypothesis that
Γ does not have Property (τ) with respect to {Γi} implies that one can form
a decomposition of Ki into two sets Bi and Ci with large volume but small
intersection. Via the Seifert - van Kampen theorem, this then determines a
decomposition of Γi into a graph of groups. We must show that this is a non-
trivial decomposition. In other words, we must ensure that neither π1(Bi) nor
π1(Ci) surjects onto Γi. This is where the hypothesis that {Γi} has positive
rank gradient is used. The number of 1-cells of Bi (or Ci) gives an upper bound
to the rank of π1(Bi), and this is a definite fraction of the total number of
1-cells of Ki. Hence if π1(Bi) or π1(Ci) were to surject onto Γi, one could use
this to deduce that the rank of Γi was too small.

We have also seen Theorem 9.3, which starts with the stronger hypothesis of
positive mod p homology gradient, and which ends with the strong conclusion
of largeness. The proof follows similar lines, but now the goal is to show that
neither H1(Bi;Fp) nor H1(Ci;Fp) surjects onto H1(Γi;Fp). Instead of using
the Seifert - van Kampen theorem, the Meyer-Vietoris theorem is used. One
deduces that if H1(Bi;Fp) or H1(Ci;Fp) were to surject onto H1(Γi;Fp), then
H1(Γi;Fp) would be too small, contradicting the assumption that the subgroups
Γi have positive mod p homology gradient. Hence, again we get a graph of
groups decomposition for Γi. This induces a graph of groups decomposition for
Γ̃i = [Γi,Γi](Γi)

p. Its underlying graph has valence at least p at each vertex.
And Γ̃i surjects onto the fundamental group of this graph, which is a non-
abelian free group (when p 6= 2), as required.

One might wonder whether Theorem 9.3 remains true even if we do not
assume that the subgroups {Γi} do not have Property (τ). The above proof
breaks down. But is the hypothesis that the subgroups Γi have positive mod
p homology gradient enough to deduce largeness? As mentioned in Section 6,
this question relates to error-correcting codes. More details can be found in [32].
However, there is one interesting and natural situation where the hypothesis of
positive mod p homology gradient is enough to deduce largeness, according to
the following theorem of the author [34].

Theorem 10.2. Let Γ be a finitely presented group. Suppose that its derived
p-series has positive mod p homology gradient. Then Γ is large.

The main part of the proof is showing that if the derived p-series of Γ
has positive mod p homology gradient, then it does not have Property (τ).
Hence, by Theorem 9.3, Γ is large. Once again, let K be a finite 2-complex
with fundamental group Γ, and let Ki be the covering space corresponding to
the subgroup Γi in the derived p-series. One needs to show that the Cheeger
constant of Ki is arbitrarily small. This is achieved by finding non-trivial 1-
cocycles on Ki−1 with small support size, compared with the total number of
edges of Ki−1. If K̃i−1 denotes the cyclic covering space dual to such a cocycle,
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then the inverse image of the cocycle determines a decomposition of K̃i−1 into
two parts with large volume and small intersection. Since Ki finitely covers
K̃i−1, it too has small Cheeger constant. In fact, one keeps track of not just
one cocycle on Ki−1, but several of them, and one uses these to create cocycles
on Ki with slightly smaller relative support size, and so on. This is achieved
using the technology explained in Section 4 for constructing cocycles on abelian
covers, together with an elementary theorem from coding theory, known as the
Plotkin bound.

11. Subgroup Separability, Special Cube

Complexes and Virtual Fibering

There are many other interesting directions in the theory of finite covers of
3-manifolds, which we can only briefly discuss here.

The first of these is the notion of subgroup separability. A subgroup H of
a group Γ is separable if for every element γ ∈ Γ that does not lie in H, there
is a homomorphism φ from Γ onto a finite group such that φ(γ) 6∈ φ(H). A
group Γ is said to be LERF if every finitely generated subgroup is separable.
The relevance of this concept to 3-manifolds arises from the following theorem
[38].

Theorem 11.1. Let M be a compact orientable irreducible 3-manifold, and
suppose that π1(M) has a separable subgroup that is isomorphic to the funda-
mental group of a closed orientable surface with positive genus. Then either M
is virtually fibred or π1(M) is large. In particular, M is virtually Haken.

This raises the question of which 3-manifolds have LERF fundamental
group. There are examples of certain graph 3-manifolds M for which π1(M)
is not LERF [10]. But it is conjectured that the fundamental group of every
closed hyperbolic 3-manifold is LERF. A piece of evidence for this conjecture is
given by the following important theorem, which is an amalgamation of work
by Agol, Long and Reid [4] and Bergeron, Haglund and Wise [5].

Theorem 11.2. Let M be an arithmetic hyperbolic 3-manifold which contains
a closed immersed totally geodesic surface. Then every geometrically finite sub-
group of π1(M) is separable.

There is an important new concept, introduced by Haglund and Wise [24],
that relates to subgroup separability. They considered a certain type of cell
complex, known as a special cube complex. A group is said to be virtually special
if it has a finite index subgroup which is the fundamental group of a compact
special cube complex. One major motivation for introducing this concept is the
following theorem of Haglund and Wise [24].

Theorem 11.3. Let Γ be a word-hyperbolic group that is virtually special. Then
every quasi-convex subgroup of Γ is separable.
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In the 3-dimensional case, it is known that this condition is equivalent to
having ‘enough’ surface subgroups that are separable. Indeed Theorem 11.2 is
proved in the case when M is closed by using the surface subgroups arising
from totally geodesic surfaces to deduce that π1(M) is virtually special.

This is related to work of Agol [1]. He introduced a condition on a group,
called RFRS. We will not give the definition of this here, but we note that if a
group is virtually special then it is virtually RFRS. Agol was able to show that
this condition can be used to prove that a 3-manifold virtually fibres over the
circle.

Theorem 11.4. Let M be a compact orientable irreducible 3-manifold with
boundary a (possibly empty) collection of tori. Suppose that π1(M) is virtually
RFRS. Then M has a finite cover that fibres over the circle.

The hypotheses that π1(M) is virtually RFRS or virtually special are strong
ones. However, Wise has recently raised the possibility of showing that if a com-
pact orientable hyperbolic 3-manifold M has a properly embedded orientable
incompressible surface that is not a sphere or a virtual fibre, then π1(M) is
virtually special, by using induction along a hierarchy for M . While this would
not say anything about the Virtually Haken Conjecture itself, it would be a
very major development, as it would nearly reduce all the other conjectures
to it. For example, combined with Theorem 11.4, it would show that every
finite-volume orientable hyperbolic Haken 3-manifold is virtually fibred.
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[22] F. González-Acuña, H. Short, Cyclic branched coverings of knots and homology
spheres, Revista Math. 4 (1991) 97–120.

[23] R. Grigorchuk, Degrees of growth of finitely generated groups and the theory of
invariant means. Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), no. 5, 939–985.

[24] F. Haglund, D. Wise, Special cube complexes. Geom. Funct. Anal. 17 (2008), no.
5, 1551–1620.

[25] J. Kahn, V. Markovic, Immersing almost geodesic surfaces in a closed hyperbolic
three manifold, arXiv:0910.5501

[26] J.-P. Labesse, J. Schwermer, On liftings and cusp cohomology of arithmetic
groups. Invent. Math. 83 (1986), no. 2, 383–401.

[27] M. Lackenby, The asymptotic behaviour of Heegaard genus, Math. Res. Lett. 11
(2004) 139-149

[28] M. Lackenby, Expanders, rank and graphs of groups, Israel J. Math. 146 (2005)
357–370.

[29] M. Lackenby, Heegaard splittings, the virtually Haken conjecture and Property
(τ), Invent. Math. 164 (2006) 317–359.



Finite Covering Spaces of 3-manifolds 1069

[30] M. Lackenby, Covering spaces of 3-orbifolds, Duke Math J. 136 (2007) 181–203.

[31] M. Lackenby, New lower bounds on subgroup growth and homology growth, Proc.
London Math. Soc. 98 (2009) 271–297.

[32] M. Lackenby, Large groups, Property (τ) and the homology growth of subgroups,
Math. Proc. Camb. Phil. Soc. 146 (2009) 625–648.

[33] M. Lackenby, Surface subgroups of Kleinian groups with torsion, Invent. Math.
179 (2010) 175–190.

[34] M. Lackenby, Detecting large groups, arxiv:math.GR/0702571

[35] M. Lackenby, D. Long, A. Reid, Covering spaces of arithmetic 3-orbifolds, Int.
Math. Res. Not. (2008)

[36] M. Lackenby, D. Long, A. Reid, LERF and the Lubotzky-Sarnak conjecture,
Geom. Topol. 12 (2008) 2047–2056.

[37] C. Leininger, Surgeries on one component of the Whitehead link are virtually
fibered. Topology 41 (2002), no. 2, 307–320

[38] D. Long, Immersions and embeddings of totally geodesic surfaces. Bull. London
Math. Soc. 19 (1987) 481–484.

[39] D. Long, A. Lubotzky, A. Reid, Heegaard genus and property τ for hyperbolic
3-manifolds. J. Topol. 1 (2008), no. 1, 152–158.

[40] A. Lubotzky, Group presentation, p-adic analytic groups and lattices in SL2(C).
Ann. of Math. (2) 118 (1983), no. 1, 115–130

[41] A. Lubotzky, On finite index subgroups of linear groups. Bull. London Math. Soc.
19 (1987), no. 4, 325–328.

[42] A. Lubotzky, Discrete groups, expanding graphs and invariant measures. With
an appendix by Jonathan D. Rogawski. Progress in Mathematics, 125. Birkhuser
Verlag, Basel, 1994

[43] A. Lubotzky, Subgroup growth and congruence subgroups. Invent. Math. 119
(1995), no. 2, 267–295.

[44] A. Lubotzky, Eigenvalues of the Laplacian, the first Betti number and the con-
gruence subgroup problem. Ann. of Math. (2) 144 (1996), no. 2, 441–452.

[45] A. Lubotzky, D. Segal, Subgroup growth. Progress in Mathematics, 212.
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0. Introduction

The algebraicK- and L-theory of group rings —Kn(RG) and Ln(RG) for a ring
R and a group G— are highly significant, but are very hard to compute when G
is infinite. The main ingredient for their analysis is the Farrell-Jones Conjecture.
It identifies them with certain equivariant homology theories evaluated on the
classifying space for the family of virtually cyclic subgroups of G. Roughly
speaking, the Farrell-Jones Conjecture predicts that one can compute the values
of these K- and L-groups for RG if one understands all of the values for RH,
where H runs through the virtually cyclic subgroups of G.

Why is the Farrell-Jones Conjecture so important? One reason is that it
plays an important role in the classification and geometry of manifolds. A sec-
ond reason is that it implies a variety of well-known conjectures, such as the
ones due to Bass, Borel, Kaplansky and Novikov. (These conjectures are ex-
plained in Section 1.) There are many groups for which these conjectures were
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previously unknown but are now consequences of the proof that they satisfy
the Farrell-Jones Conjecture. A third reason is that most of the explicit compu-
tations of K- and L-theory of group rings for infinite groups are based on the
Farrell-Jones Conjecture, since it identifies them with equivariant homology
groups which are more accessible via standard tools from algebraic topology
and geometry (see Section 5).

The rather complicated general formulation of the Farrell-Jones Conjecture
is given in Section 3. The much easier, but already very interesting, special case
of a torsionfree group is discussed in Section 2. In this situation the K- and
L-groups are identified with certain homology theories applied to the classifying
space BG.

The recent proofs of the Farrell-Jones Conjecture for hyperbolic groups and
CAT(0)-groups are deep and technically very involved. Nonetheless, we give a
glimpse of the key ideas in Section 6. In each of these proofs there is decisive in-
put coming from the geometry of the groups that is reminiscent of non-positive
curvature. In order to exploit these geometric properties one needs to employ
controlled topology and construct flow spaces that mimic the geodesic flow on
a Riemannian manifold.

The class of groups for which the Farrell-Jones Conjecture is known is fur-
ther extended by the fact that it has certain inheritance properties. For in-
stance, subgroups of direct products of finitely many hyperbolic groups and
directed colimits of hyperbolic groups belong to this class. Hence, there are
many examples of exotic groups, such as groups with expanders, that satisfy
the Farrell-Jones Conjecture because they are constructed as such colimits.
There are of course groups for which the Farrell-Jones Conjecture has not been
proved, like solvable groups, but there is no example or property of a group
known that threatens to produce a counterexample. Nevertheless, there may
well be counterexamples and the challenge is to develop new tools to find and
construct them.

The status of the Farrell-Jones Conjecture is given in Section 4, and open
problems are discussed in Section 7.

1. Some Well-known Conjectures

In this section we briefly recall some well-known conjectures. They address
topics from different areas, including topology, algebra and geometric group
theory. They have one — at first sight not at all obvious — common feature.
Namely, their solution is related to questions about the K- and L-theory of
group rings.

1.1. Borel Conjecture. A closed manifold M is said to be topologically
rigid if every homotopy equivalence from a closed manifold to M is homo-
topic to a homeomorphism. In particular, if M is topologically rigid, then every
manifold homotopy equivalent to M is homeomorphic to M . For example, the
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spheres Sn are topologically rigid, as predicted by the Poincaré Conjecture. A
connected manifold is called aspherical if its homotopy groups in degree ≥ 2 are
trivial. A sphere Sn for n ≥ 2 has trivial fundamental group, but its higher ho-
motopy groups are very complicated. Aspherical manifolds, on the other hand,
have complicated fundamental groups and trivial higher homotopy groups. Ex-
amples of closed aspherical manifolds are closed Riemannian manifolds with
non-positive sectional curvature, and double quotients G\L/K for a connected
Lie group L with K ⊆ L a maximal compact subgroup and G ⊆ L a torsionfree
cocompact discrete subgroup. More information about aspherical manifolds can
be found, for instance, in [59].

Conjecture 1.1 (Borel Conjecture). Closed aspherical manifolds are topolog-
ically rigid.

In particular the Borel Conjecture predicts that two closed aspherical man-
ifolds are homeomorphic if and only if their fundamental groups are isomor-
phic. Hence the Borel Conjecture may be viewed as the topological version of
Mostow rigidity. One version of Mostow rigidity says that two hyperbolic closed
manifolds of dimension ≥ 3 are isometrically diffeomorphic if and only if their
fundamental groups are isomorphic.

It is not true that any homotopy equivalence of aspherical closed smooth
manifolds is homotopic to a diffeomorphism. The n-dimensional torus for n ≥ 5
yields a counterexample (see [88, 15A]). Counterexamples with sectional cur-
vature pinched arbitrarily close to −1 are given in [29, Theorem 1.1].

For more information about topologically rigid manifolds which are not
necessarily aspherical, the reader is referred to [48].

1.2. Fundamental groups of closed manifolds. The Borel Con-
jecture is a uniqueness result. There is also an existence part. The problem is to
determine when a given group G is the fundamental group of a closed aspherical
manifold. Let us collect some obvious conditions that a group G must satisfy
so that G = π1(M) for a closed aspherical manifold M . It must be finitely pre-
sented, since the fundamental group of any closed manifold is finitely presented.
Since the cellular ZG-chain complex of the universal covering of M yields a fi-
nite free ZG-resolution of the trivial ZG-module Z, the group G must be of type
FP, i.e., the trivial ZG-module Z possesses a finite projective ZG-resolution.
Since M̃ is a model for the classifying G-space EG, Poincaré duality implies
Hi(G;ZG) ∼= Hdim(M)−i(M̃ ;Z), where Hi(G;ZG) is the cohomology of G with

coefficients in the ZG-module ZG and Hi(M̃ ;Z) is the homology of M̃ with

integer coefficients. Since M̃ is contractible, Hi(G;ZG) = 0 for i 6= dim(M)
and Hdim(M)(G;ZG) ∼= Z. Thus, a group G is called a Poincaré duality group of
dimension n if G is finitely presented, is of type FP, Hi(G;ZG) = 0 for i 6= n,
and Hn(G;ZG) ∼= Z.
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Conjecture 1.2 (Poincaré duality groups). A group G is the fundamental
group of a closed aspherical manifold of dimension n if and only if G is a
Poincaré duality group of dimension n.

For more information about Poincaré duality groups, see [25, 42, 87].

1.3. Novikov Conjecture. LetG be a group and u : M → BG be a map
from a closed oriented smooth manifoldM to BG. Let L(M) ∈

∏
k≥0 H

k(M ;Q)
be the L-class of M , which is a certain polynomial in the Pontrjagin classes.
Therefore it depends, a priori, on the tangent bundle and hence on the differ-
entiable structure of M . For x ∈

∏
k≥0 H

k(BG;Q), define the higher signature
of M associated to x and u to be the rational number

signx(M,u) := 〈L(M) ∪ u∗x, [M ]〉.

We say that signx for x ∈
∏

n≥0 H
n(BG;Q) is homotopy invariant if, for two

closed oriented smooth manifolds M and N with reference maps u : M → BG
and v : N → BG, we have

signx(M,u) = signx(N, v)

whenever there is an orientation preserving homotopy equivalence f : M → N
such that v ◦ f and u are homotopic.

Conjecture 1.3 (Novikov Conjecture). Let G be a group. Then signx is ho-
motopy invariant for all x ∈

∏
k≥0 H

k(BG;Q).

The Hirzebruch signature formula says that for x = 1 the signature
sign1(M, c) coincides with the ordinary signature sign(M) of M if dim(M) =
4n, and is zero if dim(M) is not divisible by four. Obviously sign(M) depends
only on the oriented homotopy type of M and hence the Novikov Conjecture 1.3
is true for x = 1.

A consequence of the Novikov Conjecture 1.3 is that for a homotopy equiv-
alence f : M → N of orientable closed manifolds, we get f∗L(M) = L(N)
provided M and N are aspherical. This is surprising since it is not true in
general. Often the L-classes are used to distinguish the homeomorphism or dif-
feomorphism types of homotopy equivalent closed manifolds. However, if one
believes in the Borel Conjecture 1.1, then the map f above is homotopic to
a homeomorphism and a celebrated result of Novikov [69] on the topological
invariance of rational Pontrjagin classes says that f∗L(M) = L(N) holds for
any homeomorphism of closed manifolds.

For more information about the Novikov Conjecture, see, for instance,
[37, 47].
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1.4. Kaplansky Conjecture. Let F be a field of characteristic zero.
Consider a group G. Let g ∈ G be an element of finite order |g|. Set Ng =∑|g|

i=1 g
i. ThenNg ·Ng = |g|·Ng. Hence x = Ng/|g| is an idempotent, i.e., x2 = x.

There are no other constructions known to produce idempotents different from
0 in FG. If G is torsionfree, this construction yields only the obvious idempotent
1. This motivates:

Conjecture 1.4 (Kaplansky Conjecture). Let F be a field of characteristic
zero and let G be a torsionfree group. Then the group ring FG contains no
idempotents except 0 and 1.

1.5. Hyperbolic groups with spheres as boundary. Let G be a
hyperbolic group. One can assign to G its boundary ∂G. For information about
the boundaries of hyperbolic groups, the reader is referred to [16, 43, 60]. Let
M be an n-dimensional closed connected Riemannian manifold with negative
sectional curvature. Then its fundamental group π1(M) is a hyperbolic group.
The exponential map at a point x ∈ M yields a diffeomorphism exp: TxR

n →
M , which sends 0 to x, and a linear ray emanating from 0 in TxR

n ∼= Rn is
mapped to a geodesic ray in M emanating from x. Hence, it is not surprising
that the boundary of π1(M) is Sdim(M)−1. This motivates (see Gromov [38,
page 192]):

Conjecture 1.5 (Hyperbolic groups with spheres as boundary). Let G be a
hyperbolic group whose boundary ∂G is homeomorphic to Sn−1. Then G is the
fundamental group of an aspherical closed manifold of dimension n.

This conjecture has been proved for n ≥ 6 by Bartels-Lück-Weinberger [9]
using the proof of the Farrell-Jones Conjecture for hyperbolic groups (see [4])
and the topology of homology ANR-manifolds (see, for example, [17, 76]).

1.6. Vanishing of the reduced projective class group. Let R
be an (associative) ring (with unit). Define its projective class group K0(R) to
be the abelian group whose generators are isomorphism classes [P ] of finitely
generated projective R-modules P , and whose relations are [P0] + [P2] = [P1]
for any exact sequence 0 → P0 → P1 → P2 → 0 of finitely generated projective
R-modules. Define the reduced projective class group K̃0(R) to be the quotient
of K0(R) by the abelian subgroup {[Rm]− [Rn] | n,m ∈ Z,m, n ≥ 0}, which is
the same as the abelian subgroup generated by the class [R].

Let P be a finitely generated projective R-module. Then its class [P ] ∈

K̃0(R) is trivial if and only if P is stably free, i.e., P ⊕Rr ∼= Rs for appropriate

integers r, s ≥ 0. So the reduced projective class group K̃0(R) measures the
deviation of a finitely generated projective R-module from being stably free.
Notice that stably free does not, in general, imply free.



1076 Wolfgang Lück

A ring R is called regular if it is Noetherian and every R-module has a
finite-dimensional projective resolution. Any principal ideal domain, such as Z
or a field, is regular.

Conjecture 1.6 (Vanishing of the reduced projective class group). Let R be a
regular ring and let G be a torsionfree group. Then the change of rings homo-
morphism

K0(R) → K0(RG)

is an isomorphism.
In particular K̃0(RG) vanishes for every principal ideal domain R and every

torsionfree group G.

The vanishing of K̃0(RG) contains valuable information about the finitely
generated projective RG-modules over RG. In the case R = Z, it also has the
following important geometric interpretation.

Let X be a connected CW -complex. It is called finite if it consists of finitely
many cells, or, equivalently, if X is compact. It is called finitely dominated if
there is a finite CW -complex Y , together with maps i : X → Y and r : Y → X,
such that r ◦ i is homotopic to the identity on X. The fundamental group of
a finitely dominated CW -complex is always finitely presented. While studying
existence problems for spaces with prescribed properties (like group actions,
for example), it is occasionally relatively easy to construct a finitely domi-
nated CW -complex within a given homotopy type, whereas it is not at all clear
whether one can also find a homotopy equivalent finite CW -complex. Wall’s
finiteness obstruction, a certain obstruction element õ(X) ∈ K̃0(Zπ1(X)), de-
cides this question.

The vanishing of K̃0(ZG), as predicted in Conjecture 1.6 for torsionfree
groups, has the following interpretation: For a finitely presented group G, the
vanishing of K̃0(ZG) is equivalent to the statement that any connected finitely
dominated CW -complex X with G ∼= π1(X) is homotopy equivalent to a finite
CW -complex.

For more information about the finiteness obstruction, see [35, 49, 67, 86].

1.7. Vanishing of the Whitehead group. The first algebraic K-
group K1(R) of a ring R is defined to be the abelian group whose generators
[f ] are conjugacy classes of automorphisms f : P → P of finitely generated
projective R-modules P and has the following relations. For each exact sequence
0 → (P0, f0) → (P1, f1) → (P2, f2) → 0 of automorphisms of finitely generated
projective R-modules, there is the relation [f0]− [f1] + [f2] = 0; and for every
two automorphisms f, g : P → P of the same finitely generated projective R-
module, there is the relation [f ◦ g] = [f ] + [g]. Equivalently, K1(R) is the
abelianization of the general linear group GL(R) = colimn→∞ GLn(R).

An invertible matrix A over R represents the trivial element in K1(R) if it
can be transformed by elementary row and column operations and by stabiliza-
tion, A → A⊕ 1 or the inverse, to the empty matrix.
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Let G be a group, and let {±g | g ∈ G} be the subgroup of K1(ZG) given
by the classes of (1, 1)-matrices of the shape (±g) for g ∈ G. The Whitehead
group Wh(G) of G is the quotient K1(ZG)/{±g | g ∈ G}.

Conjecture 1.7 (Vanishing of the Whitehead group). The Whitehead group
of a torsionfree group vanishes.

This conjecture has the following geometric interpretation.
An n-dimensional cobordism (W ;M0,M1) consists of a compact oriented n-

dimensional smooth manifold W together with a disjoint decomposition ∂W =
M0

∐
M1 of the boundary ∂W ofW . It is called an h-cobordism if the inclusions

Mi → W for i = 0, 1 are homotopy equivalences. An h-cobordism (W ;M0,M1)
is trivial if it is diffeomorphic relative M0 to the trivial h-cobordism (M0 ×
[0, 1],M0 × {0},M0 × {1}). One can assign to an h-cobordism its Whitehead
torsion τ(W,M0) in Wh(π1(M0)).

Theorem 1.8 (s-Cobordism Theorem). Let M0 be a closed connected oriented
smooth manifold of dimension n ≥ 5 with fundamental group π = π1(M0).
Then:

(i) An h-cobordism (W ;M0,M1) is trivial if and only if its Whitehead torsion
τ(W,M0) ∈ Wh(π) vanishes;

(ii) For any x ∈ Wh(π) there is an h-cobordism (W ;M0,M1) with
τ(W,M0) = x ∈ Wh(π).

The s-Cobordism Theorem 1.8 is due to Barden, Mazur, Stallings. Its topo-
logical version was proved by Kirby and Siebenmann [45, Essay II]. More infor-
mation about the s-Cobordism Theorem can be found, for instance, in [44], [52,
Chapter 1], [66]. The Poincaré Conjecture of dimension ≥ 5 is a consequence of
the s-Cobordism Theorem 1.8. The s-Cobordism Theorem 1.8 is an important
ingredient in the surgery theory due to Browder, Novikov, Sullivan and Wall,
which is the main tool for the classification of manifolds.

The s-Cobordism Theorem tells us that the vanishing of the Whitehead
group, as predicted in Conjecture 1.7, has the following geometric interpreta-
tion: For a finitely presented group G the vanishing of the Whitehead group
Wh(G) is equivalent to the statement that every h-cobordism W of dimension
≥ 6 with fundamental group π1(W ) ∼= G is trivial.

1.8. The Bass Conjecture. For a finite group G there is a well-known
fact that the homomorphism from the complexification of the complex repre-
sentation ring of G to the C-algebra of complex-valued class functions on G,
given by taking the character of a finite-dimensional complex representation, is
an isomorphism. The Bass Conjecture aims at a generalization of this fact to
arbitrary groups.

Let con(G) be the set of conjugacy classes (g) of elements g ∈ G. Denote by
con(G)f the subset of con(G) consisting of those conjugacy classes (g) for which
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each representative g has finite order. Let class0(G) and class0(G)f respectively
be the C-vector spaces with the set con(G) and con(G)f respectively as basis.
This is the same as the C-vector space of C-valued functions on con(G) and
con(G)f with finite support. Define the universal C-trace as

truCG : CG → class0(G),
∑

g∈G

λg · g 7→
∑

g∈G

λg · (g).

It extends to a function tru
CG : Mn(CG) → class0(G) on (n, n)-matrices over

CG by taking the sum of the traces of the diagonal entries. Let P be a finitely
generated projective CG-module. Choose a matrix A ∈ Mn(CG) such that A2 =
A and the image of the CG-map rA : CGn → CGn given by right multiplication
with A is CG-isomorphic to P . Define the Hattori-Stallings rank of P as

HSCG(P ) := truCG(A) ∈ class0(G).

The Hattori-Stallings rank depends only on the isomorphism class of the CG-
module P and induces a homomorphism HSCG : K0(CG) → class0(G).

Conjecture 1.9 ((Strong) Bass Conjecture for K0(CG)). The Hattori-Stalling
rank yields an isomorphism

HSCG : K0(CG)⊗Z C → class0(G)f .

More information and further references about the Bass Conjecture can be
found in [8, 0.5], [13],[54, Subsection 9.5.2], and [63, 3.1.3].

2. The Farrell-Jones Conjecture for Torsionfree
Groups

2.1. The K-theoretic Farrell-Jones Conjecture for torsion-
free groups and regular coefficient rings. We have already ex-
plained K0(R) and K1(R) for a ring R. There exist algebraic K-groups Kn(R),
for every n ∈ Z, defined as the homotopy groups of the associated K-theory
spectrum K(R). For the definition of higher algebraic K-theory groups and the
(connective) K-theory spectrum see, for instance, [20, 74, 82, 85]. For informa-
tion about negative K-groups, we refer the reader to [12, 32, 72, 73, 80, 82].

How can one come to a conjecture about the structure of the groups
Kn(RG)? Let us consider the special situation, where the coefficient ring R
is regular. Then one gets isomorphisms

Kn(R[Z]) ∼= Kn(R)⊕Kn−1(R);

Kn(R[G ∗H])⊕Kn(R) ∼= Kn(RG)⊕Kn(RH).
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Now notice that for any generalized homology theory H, we obtain isomor-
phisms

Hn(BZ) ∼= Hn({•})⊕Hn−1({•});

Hn(B(G ∗H))⊕Hn({•}) ∼= Hn(BG)⊕H(BH).

This and other analogies suggest that Kn(RG) may coincide with Hn(BG)
for an appropriate generalized homology theory. If this is the case, we must
have Hn({•}) = Kn(R). Hence, a natural guess for Hn is Hn(−;K(R)), the
homology theory associated to the algebraic K-theory spectrum K(R) of R.
These considerations lead to:

Conjecture 2.1 (K-theoretic Farrell-Jones Conjecture for torsionfree groups
and regular coefficient rings). Let R be a regular ring and let G be a torsionfree
group. Then there is an isomorphism

Hn(BG;K(R))
∼=
−→ Kn(RG).

Remark 2.2 (The Farrell-Jones Conjecture and the vanishing of middle
K-groups). If R is a regular ring, thenKq(R) = 0 for q ≤ −1. Hence the Atiyah-
Hirzebruch spectral sequence converging to Hn(BG;K(R)) is a first quadrant
spectral sequence. Its E2-term is Hp(BG;Kq(R)). The edge homomorphism at

(0, 0) obviously yields an isomorphism H0(BG;K0(R))
∼=
−→ H0(BG;K(R)). The

Farrell-Jones Conjecture 2.1 predicts, because of H0(BG;K0(R)) ∼= K0(R),

that there is an isomorphism K0(R)
∼=
−→ K0(RG). We have not specified the

isomorphism appearing in the Farrell-Jones Conjecture 2.1 above. However, we

remark that it is easy to check that this isomorphism K0(R)
∼=
−→ K0(RG) must

be the change of rings map associated to the inclusion R → RG. Thus, we see
that the Farrell-Jones Conjecture 2.1 implies Conjecture 1.6.

The Atiyah-Hirzebruch spectral sequence yields an exact sequence 0 →
K1(R) → H1(BG;K(R)) → H1(G,K0(R)) → 0. In the special case R = Z, this
reduces to an exact sequence 0 → {±1} → H1(BG;K(R)) → G/[G,G] → 0.
This implies that the assembly map sends H1(BG;K(R)) bijectively onto the
subgroup {±g | g ∈ G} of K1(ZG). Hence, the Farrell-Jones Conjecture 2.1
implies Conjecture 1.7.

Remark 2.3 (The Farrell-Jones Conjecture and the Kaplansky Conjecture).
The Farrell-Jones Conjecture 2.1 also implies the Kaplansky Conjecture 1.4
(see [8, Theorem 0.12]).

Remark 2.4 (The conditions torsionfree and regular are needed in Conjec-
ture 2.1). The version of the Farrell-Jones Conjecture 2.1 cannot be true with-
out the assumptions that R is regular and G is torsionfree. The Bass-Heller-
Swan decomposition yields an isomorphism Kn(R[Z]) ∼= Kn(R) ⊕Kn−1(R) ⊕
NKn(R)⊕NKn(R), whereas Hn(BZ;K(R)) ∼= Kn(R)⊕Kn−1(R). If R is reg-
ular, then NKn(R) is trivial, but there are rings R with non-trivial NKn(R).
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Suppose that R = C and G is finite. Then H0(BG;KC) ∼= K0(C) ∼= Z,
whereas K0(CG) is the complex representation ring of G, which is isomorphic
to Z if and only if G is trivial.

2.2. The L-theoretic Farrell-Jones Conjecture for torsion-
free groups. There is also an L-theoretic version of Conjecture 2.1:

Conjecture 2.5 (L-theoretic Farrell-Jones Conjecture for torsionfree groups).
Let R be a ring with involution and let G be a torsionfree group. Then there is
an isomorphism

Hn

(
BG;L(R)〈−∞〉

) ∼=
−→ L〈−∞〉

n (RG).

Here L(R)〈−∞〉 is the periodic quadratic L-theory spectrum of the ring

with involution R with decoration 〈−∞〉, and L
〈−∞〉
n (R) is the n-th quadratic

L-group with decoration 〈−∞〉, which can be identified with the n-th homotopy

group of L
〈−∞〉
RG . For more information about the various types of L-groups and

decorations and L-theory spectra we refer the reader to [18, 19, 75, 78, 79, 80,
81, 88]. Roughly speaking, L-theory deals with quadratic forms. For even n,
Ln(R) is related to the Witt group of quadratic forms and for odd n, Ln(R)
is related to automorphisms of quadratic forms. Moreover, the L-groups are
four-periodic, i.e., Ln(R) ∼= Ln+4(R).

Theorem 2.6 (The Farrell-Jones Conjecture implies the Borel Conjecture in
dimensions ≥ 5). Suppose that a torsionfree group G satisfies Conjecture 2.1
and Conjecture 2.5 for R = Z. Then the Borel Conjecture 1.1 holds for any
closed aspherical manifold of dimension ≥ 5 whose fundamental group is iso-
morphic to G.

Sketch of proof. The topological structure set Stop(M) of a closed manifold
M is defined to be the set of equivalence classes of homotopy equivalences
f : M ′ → M , with a topological closed manifold as its source and M as its
target, for which f0 : M0 → M and f1 : M1 → M are equivalent if there is a
homeomorphism g : M0 → M1 such that f1 ◦g and f0 are homotopic. The Borel
Conjecture 1.1 can be reformulated in the language of surgery theory to the
statement that Stop(M) consists of a single point if M is an aspherical closed
topological manifold.

The surgery sequence of a closed topological manifold M of dimension n ≥ 5
is the exact sequence

. . . → Nn+1(M × [0, 1],M × {0, 1})
σ
−→ Ls

n+1(Zπ1(M))
∂
−→ Stop(M)

η
−→ Nn(M)

σ
−→ Ls

n(Zπ1(M)), (2.7)

which extends infinitely to the left. It is the fundamental tool for the clas-
sification of topological manifolds. (There is also a smooth version of it.)
The map σ appearing in the sequence sends a normal map of degree one



K- and L-theory of Group Rings 1081

to its surgery obstruction. This map can be identified with the version of
the L-theory assembly map, where one works with the 1-connected cover
Ls(Z)〈1〉 of Ls(Z). The map Hk(M ;Ls(Z)〈1〉) → Hk(M ;Ls(Z)) is injective
for k = n and an isomorphism for k > n. Because of the K-theoretic as-
sumptions (and the so-called Rothenberg sequence), we can replace the s-
decoration with the 〈−∞〉-decoration. Therefore the Farrell-Jones Conjec-
ture 2.5 implies that the map σ : Nn(M) → Ls

n(Zπ1(M)) is injective and the

map Nn+1(M × [0, 1],M × {0, 1})
σ
−→ Ls

n+1(Zπ1(M)) is bijective. Thus, by the
surgery sequence, Stop(M) is a point and hence the Borel Conjecture 1.1 holds
for M . More details can be found in [36, pages 17,18,28], [79, Chapter 18].

For more information about surgery theory, see [18, 19, 46, 52, 81, 88].

3. The General Formulation of the Farrell-Jones
Conjecture

3.1. Classifying spaces for families. Let G be a group. A family
F of subgroups of G is a set of subgroups which is closed under conjugation
with elements of G and under taking subgroups. A G-CW-complex, all of whose
isotropy groups belong to F and whose H-fixed point sets are contractible for
all H ∈ F , is called a classifying space for the family F and will be denoted
EF (G). Such a space is unique up to G-homotopy, because it is characterized by
the property that for any G-CW -complex X, all whose isotropy groups belong
to F , there is precisely one G-map from X to EF (G) up to G-homotopy. These
spaces were introduced by tom Dieck [84]. A functorial “bar-type” construction
is given in [23, section 7].

The space ETR(G), for TR the family consisting of the trivial subgroup
only, is the same as the space EG, which is by definition the total space of the
universal G-principal bundle G → EG → BG, or, equivalently, the universal
covering of BG. A model for EALL(G), for the family ALL of all subgroups, is
given by the space G/G = {•} consisting of one point.

The space EF in(G), for F in the family of finite subgroups, is also known
as the classifying space for proper G-actions, and is denoted by EG in the
literature. Recall that a G-CW -complex X is proper if and only if all of its
isotropy groups are finite (see for instance [50, Theorem 1.23 on page 18]).

There are often nice models for EG. If G is word hyperbolic in the sense of
Gromov, then the Rips-complex is a finite model [65]. If G is a discrete subgroup
of a Lie group L with finitely many path components, then for any maximal
compact subgroup K ⊆ L, the space L/K with its left G-action is a model for
EG. More information about EG can be found in [14, 27, 51, 58, 62].

Let VCyc be the family of virtually cyclic subgroups, i.e., subgroups which
are either finite or contain Z as subgroup of finite index. We often abbreviate
EG = EVCyc(G).



1082 Wolfgang Lück

3.2. G-homology theories. Fix a group G. A G-homology theory HG
∗

is a collection of covariant functors HG
n from the category of G-CW -pairs to

the category of abelian groups indexed by n ∈ Z together with natural trans-
formations

∂G
n (X,A) : HG

n (X,A) → HG
n−1(A) := HG

n−1(A, ∅)

for n ∈ Z, such that four axioms hold; namely, G-homotopy invariance, long
exact sequence of a pair, excision, and the disjoint union axiom. The obvious
formulation of these axioms is left to the reader or can be found in [53]. Of
course a G-homology theory for the trivial group G = {1} is a homology theory
(satisfying the disjoint union axiom) in the classical non-equivariant sense.

Remark 3.1 (G-homology theories and spectra over Or(G)). The orbit cat-
egory Or(G) has as objects the homogeneous spaces G/H and as morphisms
G-maps. Given a covariant functor E from Or(G) to the category of spectra,
there exists a G-homology theory HG

∗ such that HG
n (G/H) = πn(E(G/H))

holds for all n ∈ Z and subgroups H ⊆ G (see [23], [63, Proposition 6.3 on
page 737]). For trivial G, this boils down to the classical fact that a spectrum
defines a homology theory.

3.3. The Meta-Isomorphism Conjecture. Now we can formulate
the following Meta-Conjecture for a group G, a family of subgroups F , and a
G-homology theory HG

∗ .

Conjecture 3.2 (Meta-Conjecture). The so-called assembly map

AF : HG
n (EF (G)) → HG

n (pt),

which is the map induced by the projection EF (G) → pt, is an isomorphism for
n ∈ Z.

Notice that the Meta-Conjecture 3.2 is always true if we choose F = ALL.
So given G and HG

∗ , the point is to choose F as small as possible.

3.4. The Farrell-Jones Conjecture. Let R be a ring. Then one
can construct for every group G, using Remark 3.1, G-homology theories

HG
∗ (−;KR) and HG

∗

(
−;L

〈−∞〉
R

)
satisfying HG

n (G/H;KR) ∼= Kn(RH) and

HG
n

(
G/H;L

〈−∞〉
R

)
∼= L

〈−∞〉
n (RH). The Meta-Conjecture 3.2 for F = VCyc

is the Farrell-Jones Conjecture:

Conjecture 3.3 (Farrell-Jones Conjecture). The maps induced by the projec-
tion EG → G/G are, for every n ∈ Z, isomorphisms

HG
n (EG;KR) → HG

n (G/G;KR) = Kn(RG);

HG
n

(
EG;L

〈−∞〉
R

)
→ HG

n

(
G/G;L

〈−∞〉
R

)
= L〈−∞〉

n (RG).
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The version of the Farrell-Jones Conjecture 3.3 is equivalent to the original
version due to Farrell-Jones [30, 1.6 on page 257]. The decoration 〈−∞〉 cannot
be replaced by the decorations h, s or p in general, since there are counterex-
amples for these decorations (see [34]).

Remark 3.4 (Generalized Induction Theorem). One may interpret the Farrell-
Jones Conjecture as a kind of generalized induction theorem. A prototype of an
induction theorem is Artin’s Theorem, which essentially says that the complex
representation ring of a finite group can be computed in terms of the represen-
tation rings of the cyclic subgroups. In the Farrell-Jones setting one wants to

compute Kn(RG) and L
〈−∞〉
n (RG) in terms of the values of these functors on

virtually cyclic subgroups, where one has to take into account all the relations
coming from inclusions and conjugations, and the values in degree n depend on
all the values in degree k ≤ n on virtually cyclic subgroups.

Remark 3.5 (The choice of the family VCyc). One can show that, in general,
VCyc is the smallest family of subgroups for which one can hope that the
Farrell-Jones Conjecture is true for all G and R. The family F in is definitely
too small. Under certain conditions one can use smaller families, for instance,
F in is sufficient if R is regular and contains Q, and TR is sufficient if R is regular
andG is torsionfree. This explains that Conjecture 3.3 reduces to Conjecture 2.1
and Conjecture 2.5. More information about reducing the family of subgroups
can be found in [3], [22], [24], [57, Lemma 4.2], [63, 2.2], [77].

Remarks 3.4 and 3.5 can be illustrated by the following consequence of the
Farrell-Jones Conjecture 3.3: Given a field F of characteristic zero and a group
G, the obvious map

⊕

H⊆G,|H|<∞

K0(FH) → K0(FG)

coming from the various inclusions H ⊆ G is surjective, and actually induces
an isomorphism

colimH⊆G,|H|<∞ K0(FH)
∼=
−→ K0(FG).

Remark 3.6 (The K-theoretic Farrell-Jones Conjecture and the Bass Conjec-
ture). The K-theoretic Farrell-Jones Conjecture 3.3 implies the Bass Conjec-
ture 3.3 (see [8, Theorem 0.9]).

Remark 3.7 (Coefficients in additive categories). It is sometimes important
to consider twisted group rings, where we take a G-action on R into account, or
more generally, crossed product rings R ∗G. In the L-theory case we also want
to allow orientation characters. All of these generalizations can be uniformly
handled if one allows coefficients in an additive category. These more general
versions of the Farrell-Jones Conjectures are explained for K-theory in [10] and
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for L-theory in [5]. These generalizations also encompass the so-called fibered
versions. One of their main features is that they have much better inheritance
properties, (e.g., passing to subgroups, direct and free products, directed col-
imits) than the untwisted version 3.3.

For proofs the coefficients are often dummy variables. In the right setup
it does not matter whether one uses coefficients in a ring R or in an additive
category.

3.5. The Baum-Connes and the Bost Conjectures. There
also exists a G-homology theory HG

∗

(
−;Ktop

C∗

r

)
with the property that

HG
n

(
G/H;Ktop

C∗

r

)
= Kn(C

∗
r (H)), where Kn(C

∗
r (H)) is the topological K-theory

of the reduced group C∗-algebra. For a proper G-CW -complex X, the equiv-
ariant topological K-theory KG

n (X) agrees with HG
n

(
X;Ktop

C∗

r

)
. The Meta-

Conjecture 3.2 for F = F in is:

Conjecture 3.8 (Baum-Connes Conjecture). The maps induced by the projec-
tion EG → G/G

KG
n (EG) = HG

n

(
EG;Ktop

C∗

r

)
→ HG

n

(
G/G;Ktop

C∗

r

)
= Kn(C

∗
r (G)).

are isomorphisms for every n ∈ Z.

The original version of the Baum-Connes Conjecture is stated in [14, Con-
jecture 3.15 on page 254]. For more information about the Baum-Connes Con-
jecture, see, for instance, [40, 63, 68].

Remark 3.9 (The relation between the conjectures of Novikov, Farrell-Jones
and Baum-Connes). Both the L-theoretic Farrell-Jones Conjecture 3.3 and
the Baum-Connes Conjecture 3.8 imply the Novikov Conjecture. See [47, Sec-
tion 23], where the relation between the L-theoretic Farrell-Jones Conjecture 3.3
and the Baum-Connes Conjecture 3.8 is also explained.

4. The Status of the Farrell-Jones Conjecture

4.1. The work of Farrell-Jones and the status in 2004. One
of the highlights of the work of Farrell and Jones is their proof of the Borel Con-
jecture 1.1 for manifolds of dimension ≥ 5 which support a Riemannian metric
of non-positive sectional curvature [31]. They were able to extend this result to
cover compact complete affine flat manifolds of dimension ≥ 5 [33]. This was
done by considering complete non-positively curved manifolds that are not nec-
essarily compact. Further results by Farrell and Jones about their conjecture
for K-theory and pseudo-isotopy can be found in [30]. For a detailed report
about the status of the Baum-Connes Conjecture and Farrell-Jones Conjecture
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in 2004 we refer to [63, Chapter 5], where one can also find further references
to relevant papers.

4.2. Hyperbolic groups and CAT(0)-groups. In recent years,
the class of groups for which the Farrell-Jones Conjecture, and hence the other
conjectures appearing in Section 1, are true has been extended considerably
beyond fundamental groups of non-positively curved manifolds. In what follows,
a hyperbolic group is to be understood in the sense of Gromov. A CAT(0)-group
is a group that admits a proper isometric cocompact action on some CAT(0)-
space of finite topological dimension.

Theorem 4.1 (Hyperbolic groups). The Farrell-Jones Conjecture with coeffi-
cients in additive categories (see Remark 3.7) holds for both K- and L-theory
for every hyperbolic group.

Proof. The K-theory part is proved in Bartels-Lück-Reich [7], the L-theory
part in Bartels-Lück [4].

Theorem 4.2 (CAT(0)-groups).

(i) The L-theoretic Farrell-Jones Conjecture with coefficients in additive cat-
egories (see Remark 3.7) holds for every CAT(0)-group;

(ii) The assembly map for the K-theoretic Farrell-Jones Conjecture with co-
efficients in additive categories (see Remark 3.7) is bijective in degrees
n ≤ 0 and surjective in degree n = 1 for every CAT(0)-group.

Proof. This is proved in Bartels-Lück [4].

For the proofs that the Farrell-Jones Conjecture implies the conjectures
mentioned in Section 1, it suffices to know the statements appearing in Theo-
rem 4.2. For instance Theorem 4.2 implies the Borel Conjecture for every closed
aspherical manifold of dimension ≥ 5 whose fundamental group is a CAT(0)-
group.

4.3. Inheritance properties. We have already mentioned that the ver-
sion of the Farrell-Jones Conjecture with coefficients in additive categories (see
Remark 3.7) does not only include twisted group rings and allow one to insert
orientation homomorphisms, but it also has very valuable inheritance proper-
ties.

Theorem 4.3 (Inheritance properties). Let (A) be one of the following asser-
tions for a group G:

• The K-theoretic Farrell-Jones Conjecture with coefficients in additive cat-
egories (see Remark 3.7) holds for G;
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• The K-theoretic Farrell-Jones Conjecture with coefficients in additive cat-
egories (see Remark 3.7) holds for G up to degree one, i.e., the assembly
map is bijective in dimension n ≤ 0 and surjective for n = 1;

• The L-theoretic Farrell-Jones Conjecture with coefficients in additive cat-
egories (see Remark 3.7) holds for G.

Then the following is true:

(i) If G satisfies assertion (A), then also every subgroup H ⊆ G satisfies (A);

(ii) If G1 and G2 satisfies assertion (A), then also the free product G1 ∗ G2

and the direct product G1 ×G2 satisfy assertion (A);

(iii) Let π : G → Q be a group homomorphism. If Q satisfies (A) and for every
virtually cyclic subgroup V ⊆ Q, its preimage π−1(V ) satisfies (A), then
G satisfies assertion (A);

(iv) Let {Gi | i ∈ I} be a directed system of groups (with not necessarily injec-
tive structure maps). If each Gi satisfies assertion (A), then the colimit
colimi∈I Gi satisfies assertion (A).

Proof. See [4, Lemma 2.3].

Examples. Let FJ be the class of groups satisfying both the K-theoretic
and L-theoretic Farrell-Jones Conjecture with additive categories as coefficients
(see Remark 3.7). Let FJ≤1 be the class of groups which satisfy the L-theoretic
Farrell-Jones Conjecture with additive categories as coefficients and the K-
theoretic Farrell-Jones Conjecture with additive categories as coefficients up to
degree one.

In view of the results above, these classes contain many groups which lie
in the region Hic Abundant Leones in Martin Bridson’s universe of groups
(see [15]). Theorem 4.1 and Theorem 4.3 (iv) imply that directed colimits of
hyperbolic groups belong to FJ . This class of groups contains a number of
groups with unusual properties. Counterexamples to the Baum-Connes Conjec-
ture with coefficients are groups with expanders [41]. The only known construc-
tion of such groups is as a directed colimit of hyperbolic groups (see [2]). Thus
the Farrell-Jones Conjecture in K- and L-theory holds for the only presently
known counterexamples to the Baum-Connes Conjecture with coefficients. (We
remark that the formulation of the Farrell-Jones Conjecture we are consid-
ering allows for twisted group rings, so this includes the correct analog of the
Baum-Connes Conjecture with coefficients.) The class of directed colimits of hy-
perbolic groups contains, for instance, a torsionfree non-cyclic group all whose
proper subgroups are cyclic, constructed by Ol’shanskii [70]. Further examples
are lacunary groups (see [71]).

Davis and Januszkiewicz used Gromov’s hyperbolization technique to con-
struct exotic aspherical manifolds. They showed that for every n ≥ 5 there are
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closed aspherical n-dimensional manifolds such that their universal covering is
a CAT(0)-space whose fundamental group at infinity is non-trivial [26, The-
orem 5b.1]. In particular, these universal coverings are not homeomorphic to
Euclidean space. Because these examples are non-positively curved polyhedron,
their fundamental groups are CAT(0)-groups and belong to FJ≤1. There is a
variation of this construction that uses the strict hyperbolization of Charney-
Davis [21] and produces closed aspherical manifolds whose universal cover is not
homeomorphic to Euclidean space and whose fundamental group is hyperbolic.
All of these examples are topologically rigid.

Limit groups in the sense of Zela have been a focus of geometric group
theory in recent years. Alibegović-Bestvina [1] have shown that limit groups
are CAT(0)-groups.

Let G be a (not necessarily cocompact) lattice in SO(n, 1), e.g., the funda-
mental group of a hyperbolic Riemannian manifold with finite volume. Then G
acts properly cocompactly and isometrically on a CAT(0)-space by [16, Corol-
lary 11.28 in Chapter II.11 on page 362], and hence belongs to FJ≤1.

5. Computational Aspects

It is very hard to compute Kn(RG) or L
〈−∞〉
n (RG) directly. It is easier to

compute the source of the assembly map appearing in the Farrell-Jones Con-
jecture 3.3, since one can apply standard techniques for the computation of
equivariant homology theories and there are often nice models for EG. Ra-
tionally, equivariant Chern characters, as developed in [53, 55, 56] give rather
general answers. We illustrate this with the following result taken from [53,
Example 8.11].

Theorem 5.1. Let G be a group for which the Farrell-Jones Conjecture 3.3
holds for R = C. Let T be the set of conjugacy classes (g) of elements g ∈ G of
finite order. For an element g ∈ G, denote by CG〈g〉 the centralizer of g. Then
we obtain isomorphisms

⊕

p+q=n

⊕

(g)∈T

Hp(CG〈g〉;C)⊗Z Kq(C) → C⊗Z Kn(CG);

⊕

p+q=n

⊕

(g)∈T

Hp(CG〈g〉;C)⊗Z L〈−∞〉
q (C) → C⊗Z L〈−∞〉

n (CG),

where we use the involutions coming from complex conjugation in the definition

of L
〈−∞〉
q (C) and L

〈−∞〉
n (CG).

Integral computations can only be given in special cases. For example, the
semi-direct product Zr oZ/n cannot be handled in general. Not even its ordi-
nary group homology is known, so it is not a surprise that the K- and L-theory
of the associated group ring are unknown in general. Sometimes explicit an-
swers can be found in the literature, see for instance [63, 8.3]. As an illustration
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we mention the following result which follows from Theorem 4.1 using [11,
Theorem 1.3], and [64, Corollary 2.11 and Example 3.6].

Theorem 5.2 (Torsionfree hyperbolic groups). Let G be a torsionfree hyper-
bolic group. Let M be a complete system of representatives of the conjugacy
classes of maximal infinite cyclic subgroups of G.

(i) For every n ∈ Z, there is an isomorphism

Hn

(
BG;K(R)

)
⊕

⊕

V ∈M

NKn(R)⊕NKn(R)
∼=
−→ Kn(RG),

where NKn(R) the Bass-Nil-groups of R;

(ii) For every n ∈ Z, there is an isomorphism

Hn

(
BG;L〈−∞〉(R)

) ∼=
−→ L〈−∞〉

n (RG).

Computations of L-groups of group rings are important in the classification
of manifolds since they appear in the surgery sequence (2.7).

6. Methods of Proof

Here is a brief sketch of the strategy of proof which has led to the results
about hyperbolic groups and CAT(0)-groups mentioned above. It is influenced
by ideas of Farrell and Jones. However, we have to deal with spaces that are not
manifolds, and hence new ideas and techniques are required. A more detailed
survey about methods of proof can be found in [4, Section 1], [6, Section 1], [7,
Section 1], [61] and [63, Chapter 7].

Assembly and forget control. We have defined the assembly map appearing
in the Farrell-Jones Conjecture as a map induced by the projection EG → G/G.
A homotopy theoretic interpretation by homotopy colimits and a description
in terms of the universal property that it is the best approximation from the
left by a homology theory is presented in [23]. This interpretation is good for
structural and computational aspects but is not helpful for actual proofs. For
this purpose the interpretation of the assembly map as a forget control map is
the right one. This fundamental idea is due to Quinn.

Roughly speaking, one attaches to a metric space certain categories, to these
categories spectra and then takes their homotopy groups, where everything
depends on a choice of certain control conditions which in some sense measure
sizes of cycles. If one requires certain control conditions, one obtains the source
of the assembly map. If one requires no control conditions, one obtains the
target of the assembly map. The assembly map itself is forgetting the control
condition.



K- and L-theory of Group Rings 1089

One of the basic features of a homology theory is excision. It often comes
from the fact that a representing cycle can be found with arbitrarily good
control. An example is the technique of subdivision which allows to make the
representing cycles for simplicial homology arbitrarily controlled. That is, the
diameter of any simplex appearing with non-zero coefficient is very small. One
may say that requiring control conditions amounts to implementing homological
properties.

With this interpretation it is clear what the main task in the proof of sur-
jectivity of the assembly map is: achieve control, i.e., manipulate cycles without
changing their homology class so that they become sufficiently controlled. There
is a general principle that a proof of surjectivity also gives injectivity, Namely,
proving injectivity means that one must construct a cycle whose boundary is a
given cycle, i.e., one has to solve a surjectivity problem in a relative situation.

Contracting maps and open coverings. Contracting maps on suitable con-
trol spaces are very useful for gaining control. The idea is that the contraction
improves the control of a cycle without changing its homology class if the con-
tracting map is, roughly speaking, homotopic to the identity. Of course one has
to choose the contracting maps and control spaces with care. If a G-space X has
a fixed point, the projection to this fixed point is a contracting G-equivariant
map, but it turns out that this is just enough to prove the trivial version of
the Meta Conjecture, where the family F is not VCyc as desired, but rather
consists of all subgroups.

Let F be a family of subgroups and letX be a metric space with an isometric
G-action. An F-covering U is an open covering U such that gU ∈ U holds for
U ∈ U , g ∈ G, for every U ∈ U and g ∈ G we have gU ∩ U 6= ∅ =⇒ gU = U ,
and for every U ∈ U the subgroup GU = {g ∈ G | gU = U} belongs to F .
Associated to these data there is a map fU : X → |U| from X to the simplicial
nerve of U . The larger the Lebesgue number of U is, the more contracting the
map becomes with respect to the L1-metric on |U|, provided we are able to fix
a uniform bound on its covering dimension (see [7, Proposition 5.3]).

Notice that the simplicial nerve carries a G-CW -complex structure and all
its isotropy groups belong to F . We see that F-coverings can yield contract-
ing maps, as long as the covering dimension of the possible U are uniformly
bounded.

An axiomatic description of the properties such an equivariant covering has
to fulfill can be found in [7, Section 1] and more generally in [4, Section 1].
The equivariant coverings satisfy conditions that are similar to those for finite
asymptotic dimension, but with extra requirements about equivariance. A key
technical paper for the construction of such equivariant coverings is [6], where
the connection to asymptotic dimension is explained.

Enlarging G and transfer. Let us try to find F-coverings for G considered
as a metric space with the word metric. If we take U = {G}, we obtain a G-
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invariant open covering with arbitrarily large Lebesgue number, but the open
set G is an F-set only if we take F to be the family of all subgroups. If we
take U =

{
{g} | g ∈ G

}
and denote by TR the family consisting only of the

trivial subgroup, we obtain a TR-covering of topological dimension zero, but
the Lebesgue number is not very impressive, it’s just 1. In order to increase
the Lebesgue number, we could take large balls around each element. Since the
covering has to be G-invariant, we could start with U =

{
BR(g) | g ∈ G

}
,

where BR(g) is the open ball of radius R around g. This is a G-invariant open
covering with Lebesgue number R, but the sets BR(g) are not F-sets in general
and the covering dimension grows with R.

One of the main ideas is not to cover G itself, but to enlarge G to G ×X
for an appropriate compactification X of a certain contractible metric space
X that has an isometric proper cocompact G-action. This allows us to spread
out the open sets and avoid having too many intersections. This strategy has
also been successfully used in measurable group theory, where the role of the
topological space X is played by a probability space with measure preserving
G-action (see Gromov [39, page 300]).

The elements under consideration lie in K- or L-theory spaces associated
to the control space G. Using a transfer they can be lifted to G × X. (This
step corresponds in the proofs of Farrell and Jones to the passage to the sphere
tangent bundle.) We gain control there and then push the elements down to
G. Since the space X is contractible, its Euler characteristic is 1 and hence the
composite of the push-down map with the transfer map is the identity on the
K-theory level. On the L-theory level one needs something with signature 1.
On the algebra level this corresponds to the assignment of a finitely generated
projective Z-module P to its multiplicative hyperbolic form H⊗(P ). It is given
by replacing ⊕ by ⊗ in the standard definition of a hyperbolic form, i.e., the
underlying Z-module is P ∗⊗P and the symmetric form is given by the formula
(α, p)⊗ (β, q) 7→ α(q) ·β(p). Notice that the signature of H⊗(Z) is 1 and taking
the multiplicative hyperbolic form yields an isomorphism of rings K0(Z) →
L0(Z).

We can construct VCyc-coverings that are contracting in the G-direction but
will actually expand in the X-direction. The latter defect can be compensated
for because the transfer yields elements over G×X with arbitrarily good control
in the X-direction.

Flows. To find such coverings of G × X, it is crucial to construct, for hy-
perbolic and CAT(0)-spaces, flow spaces FS(X) which are the analog of the
geodesic flow on a simply connected Riemannian manifold with negative or non-
positive sectional curvature. One constructs appropriate coverings on FS(X),
often called long and thin coverings, and then pulls them back with a certain
map G ×X → FS(X). The flow is used to improve a given covering. The use
flow spaces to gain control is one of the fundamental ideas of Farrell and Jones
(see for instance [28]).
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Let us look at a special example to illustrate the use of a flow. Consider two
points with coordinates (x1, y1) and (x2, y2) in the upper half plane model of
two-dimensional hyperbolic space. We want to use the geodesic flow to make
their distance smaller in a functorial fashion. This is achieved by letting these
points flow towards the boundary at infinity along the geodesic given by the
vertical line through these points, i.e., towards infinity in the y-direction. There
is a fundamental problem: if x1 = x2, then the distance of these points is
unchanged. Therefore we make the following prearrangement. Suppose that
y1 < y2. Then we first let the point (x1, y1) flow so that it reaches a position
where y1 = y2. Inspecting the hyperbolic metric, one sees that the distance
between the two points (x1, τ) and (x2, τ) goes to zero if τ goes to infinity. This
is the basic idea to gain control in the negatively curved case.

Why is the non-positively curved case harder? Again, consider the upper
half plane, but this time equip it with the flat Riemannian metric coming from
Euclidean space. Then the same construction makes sense, but the distance be-
tween two points (x1, τ) and (x2, τ) is unchanged if we change τ . The basic first
idea is to choose a focal point far away, say f :=

(
(x1 + x2)/2, τ + 169356991

)
,

and then let (x1, τ) and (x2, τ) flow along the rays emanating from them and
passing through the focal point f . In the beginning the effect is indeed that the
distance becomes smaller, but as soon as we have passed the focal point the dis-
tance grows again. Either one chooses the focal point very far away or uses the
idea of moving the focal point towards infinity while the points flow. Roughly
speaking, we are suggesting the idea of a dog and sausage principle. We have
a dog, and attached to it is a long stick pointing in front of it with a delicious
sausage on the end. The dog will try to reach the sausage, but the sausage is
moving away according to the movement of the dog, so the dog will never reach
the sausage. (The dog will become long and thin this way, but this is a different
effect). The problem with this idea is obvious, we must describe this process in
a functorial way and carefully check all the estimates to guarantee the desired
effects.

7. Open Problems

7.1. Virtually poly-cyclic groups, cocompact lattices and
3-manifold groups. It is conceivable that our methods can be used to
show that virtually poly-cyclic groups belong to FJ or FJ≤1. This already
implies the same conclusion for cocompact lattices in almost connected Lie
groups following ideas of Farrell-Jones [30] and for fundamental groups of (not
necessarily compact) 3-manifolds (possibly with boundary) following ideas of
Roushon [83].

7.2. Solvable groups. Show that solvable groups belong to FJ or FJ≤1.
In view of the large class of groups belonging to FJ or FJ≤1, it is very sur-
prising that it is not known whether a semi-direct product A oϕ Z for a (not
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necessarily finitely generated) abelian group A belongs to FJ or FJ≤1. The
problem is the possibly complicated dynamics of the automorphism ϕ of A.

Such groups are easy to handle in the Baum-Connes setting, where one
can use the long exact Wang sequence for topological K-theory associated to
a semi-direct product. Such a sequence does not exists for algebraic K-theory,
and new contributions involving Nil-terms occur.

7.3. Other open cases. Show that mapping class groups, Out(Fn) and
Thompson’s groups belong to FJ or FJ≤1. The point here is not that this has
striking consequence in and of itself, but rather their proofs will probably give
more insight in the Farrell-Jones Conjecture and will require some new input
about the geometry of these groups which may be interesting in its own right.

A very interesting open case is SLn(Z). The main obstacle is that SLn(Z)
does not act cocompactly isometrically properly on a CAT(0)-space; the canon-
ical action on SLn(R)/SO(n) is proper and isometric and of finite covolume
but not cocompact. The Baum-Connes Conjecture is also open for SLn(Z).

7.4. Searching for counterexamples. There is no group known for
which the Farrell-Jones Conjecture is false. There has been some hope that
groups with expanders may yield counterexamples, but this hope has been
dampened since colimits of hyperbolic groups satisfy it. At the moment one
does not know any property of a group which makes it likely to produce a
counterexample. The same holds for the Borel Conjecture. Many of the known
exotic examples of closed aspherical manifolds are known to satisfy the Borel
Conjecture.

In order to find counterexamples one seems to need completely new ideas,
maybe from random groups or logic.

7.5. Pseudo-isotopy. Extend our results to pseudo-isotopy spaces.
There are already interesting results for these proved by Farrell-Jones [30].

7.6. Transfer of methods. The Baum-Connes Conjecture is unknown
for all CAT(0)-groups. Can one use the techniques of the proof of the Farrell-
Jones Conjecture for CAT(0)-groups to prove the Baum-Connes Conjecture for
them? In particular it is not at all clear how the transfer methods in the Farrell-
Jones setting carry over to the Baum-Connes case. In the other direction, the
Dirac-Dual Dirac method, which is the main tool for proofs of the Baum-Connes
Conjecture, lacks an analog on the Farrell-Jones side.

7.7. Classification of (non-aspherical) manifolds. The Farrell-
Jones Conjecture is also very useful when one considers not necessarily as-
pherical manifolds. Namely, because of the surgery sequence (2.7), it gives an
interpretation of the structure set as a relative homology group. So it simpli-
fies the classification of manifolds substantially and opens the door to explicit
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answers in favorable interesting cases. Here, a lot of work can and will have to
be done.
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Abstract

In algebraic geometry, it is common to study a geometric object X (such as
a scheme) by means of the functor R 7→ Hom(SpecR,X) represented by X.
In this paper, we consider functors which are defined on larger classes of rings
(such as the class of ring spectra which arise in algebraic topology), and sketch
some applications to deformation theory.
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Introduction

The following thesis plays a central role in deformation theory:

(∗) If X is a moduli space over a field k of characteristic zero, then a formal
neighborhood of any point x ∈ X is controlled by a differential graded
Lie algebra.

This idea was developed in unpublished work of Deligne, Drinfeld, and Feigin,
and has powerfully influenced subsequent contributions of Hinich, Kontsevich-
Soibelman, Manetti, and many others. The goal of this paper is to give a precise
formulation of (∗) using the language of higher category theory. Our main result
is Theorem 6.20, which can be regarded as an analogue of (∗) in the setting of
noncommutative geometry. Our proof uses a method which can be adapted to
prove a version of (∗) itself (Theorem 5.3).

Let us now outline the contents of this paper. Our first step is to define pre-
cisely what we mean by a moduli space. We will adopt Grothendieck’s “functor
of points” philosophy: giving the moduli space X is equivalent to specifying the
functor R 7→ X(R) = Hom(SpecR,X). We will consider several variations on
this theme:

∗Harvard University. E-mail: lurie@math.harvard.edu.
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(a) Allowing R to range over the category Ring of commutative rings, we
obtain the notion of a classical moduli problem (Definition 1.3). We will
discuss this notion and give several examples in §1.

(b) To understand the deformation theory of a moduli space X, it is often
useful to extend the definition of the functor R 7→ X(R) to a more general
class of rings. Algebraic topology provides such a generalization via the
theory of E∞-ring spectra (or, as we will call them, E∞-rings). We will
review this theory in §3 and use it to formulate the notion of a derived
moduli problem (Definition 3.3).

(c) Let k be a field. To study the local structure of a moduli space X near a
point x ∈ X(k), it is useful to restrict our attention to the values X(R)
where R is a ring which is, in some sense, very similar to k (for example,
local Artin algebras having residue field k). In §4, we will make this precise
by introducing the notion of a formal moduli problem (Definition 4.6).

(d) Another way of enlarging the category of commutative rings is by weak-
ening the requirement of commutativity. In the setting of ring spectra
there are several flavors of commutativity available, given by the theory
of En-rings for 0 ≤ n < ∞. We will review the theory of En-rings in §6,
and use it to formulate the notion of a formal En-moduli problem.

In order to adequately treat cases (b) through (d), it is important to note
that for 0 ≤ n ≤ ∞, an En-ring is an essentially homotopy-theoretic object,
and should therefore be treated using the formalism of higher category theory.
In §2 we will give an overview of this formalism; in particular, we introduce
the notion of an ∞-category (Definition 2.9). Most of the basic objects under
consideration in this paper form∞-categories, and the main results announced
here can be formulated as equivalences of ∞-categories:

(∗′) If k is a field of characteristic zero, then the∞-category of formal moduli
problems over k is equivalent to the∞-category of differential graded Lie
algebras over k (Theorem 5.3).

(∗′′) If k is any field and 0 ≤ n < ∞, the ∞-category of formal En moduli
problems over k is equivalent to the∞-category of augmented En-algebras
over k (Theorem 6.20).

We will formulate these statements more precisely in §5 and §6, respectively.

Remark 0.1. The subject of deformation theory has a voluminous literature,
some of which has substantial overlap with the material discussed in this paper.
Though we have tried to provide relevant references in the body of the text,
there are undoubtedly many sins of omission for which we apologize in advance.

Warning 0.2. The approach to the study of deformation theory described in
this paper makes extensive use of higher category theory. We will sketch some
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of the central ideas of this theory in §2, and then proceed to use these ideas in
an informal way. For a more comprehensive approach, we refer the reader to
the author’s book [22] and the series of papers [23].

I would like to thank David Ben-Zvi, Vladimir Drinfeld, Pavel Etingof, John
Francis, Dennis Gaitsgory, Mike Hopkins, David Nadler, Bertrand Toën, and
Gabriele Vezzosi for helpful conversations related to the subject of this paper.

1. Moduli Problems for Commutative Rings

Let Ring denote the category of commutative rings and Set the category of sets.
Throughout this paper, we will make extensive use of Grothendieck’s “functor
of points” philosophy: that is, we will identify a geometric object X (such as a
scheme) with the functor Ring → Set represented by X, given by the formula
R 7→ Hom(SpecR,X).

Example 1.1. Let X : Ring → Set be the functor which assigns to each
commutative ringR the setR× of invertible elements ofR. For any commutative
ring R, we have a canonical bijection X(R) = R× ' HomRing(Z[t

±1], R). In
other words, we can identifyX with the functor represented by the commutative
ring Z[t±1].

Example 1.2. Fix an integer n ≥ 0. We define a functor X : Ring → Set
by letting F (R) denote the set of all submodules M ⊆ Rn+1 such that the
quotient Rn+1/M is a projective R-module of rank n (from which it follows
that M is a projective R-module of rank 1). The functor X is not representable
by a commutative ring. However, it is representable in the larger category Sch
of schemes. That is, for any commutative ring R we have a canonical bijection
X(R) ' HomSch(SpecR,Pn), where Pn ' ProjZ[x0, . . . , xn] denotes projective
space of dimension n.

For some purposes, the notion of a functor X : Ring→ Set is too restrictive.
We often want to study moduli problems X which assign to a commutative ring
R some class of geometric objects which depend on R. The trouble is that this
collection of geometric objects is naturally organized into a category, rather
than a set. This motivates the following definition:

Definition 1.3. Let Gpd denote the collection of groupoids: that is, categories
in which every morphism is an isomorphism. We regard Gpd as a 2-category:
morphisms are given by functors between groupoids, and 2-morphisms are given
by natural transformations (which are automatically invertible). A classical
moduli problem is a functor X : Ring→ Gpd.

Remark 1.4. Every set S can be regarded as a groupoid by setting

HomS(x, y) =

{
{idx} if x = y

∅ if x 6= y.
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This construction allows us to identify the category Set with a full subcategory
of the 2-category Gpd. In particular, every functor X : Ring → Set can be
identified with a classical moduli problem in the sense of Definition 1.3.

Example 1.5. For every commutative ring R, let X(R) be the category of
elliptic curves E → SpecR (morphisms in the category X(R) are given by
isomorphisms of elliptic curves). Then F determines a functor Ring → Gpd,
and can therefore be regarded as a moduli problem in the sense of Definition 1.3.
This moduli problem cannot be represented by a commutative ring or even by a
scheme: for any scheme Y , HomSch(SpecR, Y ) is a set. In particular, if we regard
HomSch(SpecR, Y ) as a groupoid, every object has a trivial automorphism
group. In contrast, every object of X(R) has a nontrivial automorphism group:
every elliptic curve admits a nontrivial automorphism, given by multiplication
by −1.

Nevertheless, the moduli problem X is representable if we work not in the
category of schemes but in the larger 2-category StDM of Deligne-Mumford
stacks. More precisely, there exists a Deligne-Mumford stack MEll (the moduli
stack of elliptic curves) for which there is a canonical equivalence of categories
X(R) ' HomStDM

(SpecR,MEll) for every commutative ring R.

Example 1.6. Fix an integer n ≥ 0. For every commutative ring R, let X(R)
denote the category whose objects are projective R-modules of rank n, and
whose morphisms are given by isomorphisms of R-modules. Then X can be
regarded as a moduli problem Ring → Gpd. This moduli problem is not rep-
resentable in the 2-category StDM of Deligne-Mumford stacks, because pro-
jective R-modules admit continuous families of automorphisms. However, F
is representable in the larger 2-category StArt of Artin stacks. Namely, there
is an Artin stack BGL(n) ∈ StArt for which there is a canonical bijection
X(R) ' HomStArt

(SpecR,BGL(n)) for every commutative ring R.

2. Higher Category Theory

In §1, we discussed the notion of a moduli problem in classical algebraic geom-
etry. Even very simple moduli problems involve the classification of geometric
objects which admit nontrivial automorphisms, and should therefore be treated
as categories rather than as sets (Examples 1.5 and 1.6). Consequently, moduli
problems themselves (and the geometric objects which represent them) are or-
ganized not into a category, but into a 2-category. Our discussion in this paper
will take us much further into the realm of higher categories. We will devote
this section to providing an informal overview of the ideas involved.

Definition 2.1 (Informal). Let n ≥ 0 be a nonnegative integer. The notion of
an n-category is defined by induction on n. If n = 0, an n-category is simply a
set. If n > 0, an n-category C consists of the following:

(1) A collection of objects X,Y, Z, . . .
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(2) For every pair of objects X,Y ∈ C, an (n− 1)-category HomC(X,Y ).

(3) Composition laws φX,Y,Z : HomC(X,Y ) × HomC(Y,Z) → HomC(X,Z)
which are required to be unital and associative.

If η is an object of the (n − 1)-category HomC(X,Y ) for some pair of objects
X,Y ∈ C, then we will say that η is a 1-morphism of C. More generally, a
k-morphism in C is a (k− 1)-morphism in some (n− 1)-category HomC(X,Y ).

Example 2.2. Every topological space X determines an n-category π≤nX,
the fundamental n-groupoid of X. If n = 0, we let π≤nX = π0X be the set
of path components of X. For n > 0, we let π≤nX be the n-category whose
objects are points ofX, where Homπ≤n

(x, y) is the fundamental (n−1)-groupoid
π≤n−1Px,y(X), where Px,y(X) = {p : [0, 1] → X : p(0) = x, p(1) = y} is the
space of paths from x to y inX. Composition in π≤nX is given by concatenation
of paths. If n = 1, this definition recovers the usual fundamental groupoid of
X.

Definition 2.1 is informal because we did not specify precisely what sort of
associative law the composition in C is required to satisfy. If n = 1, there is no
real ambiguity and Definition 2.1 recovers the usual definition of a category.
When n = 2, the situation is more subtle: the associative law should posit the
commutativity of a diagram having the form

HomC(W,X)×HomC(X,Y )×HomC(Y,Z)
φW,X,Y

//

φX,Y,Z

��

HomC(W,Y )×HomC(Y,Z)

φW,Y,Z

��

HomC(W,X)×HomC(X,Z)
φW,X,Z

// HomC(W,Z).

Since this is a diagram of categories and functors, rather than sets and functions,
we are faced with a question: do we require this diagram to commute “on the
nose” or only up to isomorphism? In the former case, we obtain the definition
of a strict 2-category. This generalizes in a straightforward way: we can require
strict associativity in Definition 2.1 to obtain a notion of strict n-category for
every n. However, this notion turns out to be of limited use. For example, the
fundamental n-groupoid of a topological space π≤nX usually cannot be realized
as a strict n-category when n > 2.

To accommodate Example 2.2, it is necessary to interpret Definition 2.1
differently. In place of equality, we require the existence of isomorphisms

γW,X,Y,Z : φW,X,Z ◦ (idHomC(W,X)×φX,Y,Z) ' φW,Y,Z ◦ (φW,X,Y × idHomC(Y,Z)).

These isomorphisms are themselves part of the structure of C, and are required
to satisfy certain coherence conditions. When n > 2, these coherence conditions
are themselves only required to hold up to isomorphism: these isomorphisms
must also be specified and required to satisfy further coherences, and so forth.
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As n grows, it becomes prohibitively difficult to specify these coherences ex-
plicitly.

The situation is dramatically simpler if we wish to study not arbitrary n-
categories, but n-groupoids. An n-category C is called an n-groupoid if every
k-morphism in C is invertible. If X is any topological space, then the n-category
π≤nX is an example of an n-groupoid: for example, the 1-morphisms in π≤nX
are given by paths p : [0, 1] → X, and every path p has an inverse q (up to
homotopy) given by q(t) = p(1 − t). In fact, all n-groupoids arise in this way.
To formulate this more precisely, let us recall that a topological space X is an
n-type if the homotopy groups πm(X,x) are trivial for every m > n and every
point x ∈ X. The following idea goes back (at least) to Grothendieck:

Thesis 2.3. The construction X 7→ π≤nX establishes a bijective correspon-
dence between n-types (up to weak homotopy equivalence) and n-groupoids (up
to equivalence).

We call Thesis 2.3 a thesis, rather than a theorem, because we have not given
a precise definition of n-categories (or n-groupoids) in this paper. Thesis 2.3
should instead be regarded as a requirement that any reasonable definition of
n-category must satisfy: when we restrict to n-categories where all morphisms
are invertible, we should recover the usual homotopy theory of n-types. On the
other hand, it is easy to concoct a definition of n-groupoid which tautologically
satisfies this requirement:

Definition 2.4. An n-groupoid is an n-type.

Definition 2.4 has an evident extension to the case n =∞:

Definition 2.5. An ∞-groupoid is a topological space.

It is possible to make sense of Definition 2.1 also in the case where n =∞:
that is, we can talk about higher categories which have k-morphisms for every
positive integer k. In the case where all of these morphisms turn out to be
invertible, this reduces to the classical homotopy theory of topological spaces.
We will be interested in the next simplest case:

Definition 2.6 (Informal). An (∞, 1)-category is an∞-category in which every
k-morphism is invertible for k > 1.

In other words, an (∞, 1)-category C consists of a collection of objects to-
gether with an ∞-groupoid HomC(X,Y ) for every pair of objects X,Y ∈ C,
which are equipped with an associative composition law. We can therefore use
Definition 2.5 to formulate a more precise version of Definition 2.6.

Definition 2.7. A topological category is a category C for which each of the
sets HomC(X,Y ) is equipped with a topology, and each of the compositions
maps HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z) is continuous. If C and D are
topological categories, we will say that a functor F : C → D is continuous if,
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for every pair of objects X,Y ∈ C, the map HomC(X,Y ) → HomD(FX,FY )
is continuous. The collection of (small) topological categories and continuous
functors forms a category, which we will denote by Catt.

Construction 2.8. Let C be a topological category. We can associate to C an
ordinary category hC as follows:

• The objects of hC are the objects of C.

• For every pair of objects X,Y ∈ C, we let HomhC(X,Y ) =
π0 HomC(X,Y ): that is, maps from X to Y in hC are homotopy classes
of maps from X to Y in C.

We say that a morphism f in C is an equivalence if the image of f in hC is an
isomorphism.

Definition 2.9. Let F : C → D be a continuous functor between topological
categories. We will say that F is a weak equivalence if the following conditions
are satisfied:

(1) The functor F induces an equivalence of ordinary categories hC→ hD.

(2) For every pair of objects X,Y ∈ C, the induced map

HomC(X,Y )→ HomD(FX,FY )

is a weak homotopy equivalence.

Let hCat∞ be the category obtained from Catt by formally inverting the col-
lection of weak equivalences. An (∞, 1)-category is an object of hCat∞. We will
refer to hCat∞ as the homotopy category of (∞, 1)-categories.

Remark 2.10. More precisely, we should say that hCat∞ is the homotopy cat-
egory of small (∞, 1)-categories. We will also consider (∞, 1)-categories which
are not small.

Remark 2.11. There are numerous approaches to the theory of (∞, 1)-
categories which are now known to be equivalent, in the sense that they generate
categories equivalent to hCat∞. The approach described above (based on Defi-
nitions 2.7 and 2.9) is probably the easiest to grasp psychologically, but is one
of the most difficult to actually work with. We refer the reader to [1] for a
description of some alternatives to Definition 2.7 and their relationship to one
another.

All of the higher categories we consider in this paper will have k-morphisms
invertible for k > 1. Consequently, it will be convenient for us to adopt the
following:

Convention 2.12. The term ∞-category will refer to an (∞, 1)-category C

in the sense of Definition 2.9. That is, we will implicitly assume that all k-
morphisms in C are invertible for k > 1.
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With some effort, one can show that Definition 2.7 gives rise to a rich and
powerful theory of ∞-categories, which admits generalizations of most of the
important ideas from classical category theory. For example, one can develop
∞-categorical analogues of the theories of limits, colimits, adjoint functors,
sheaves, and so forth. Throughout this paper, we will make free use of these
ideas; for details, we refer the reader to [22].

Example 2.13. Let C and D be ∞-categories. Then there exists another ∞-
category Fun(C,D) with the following universal property: for every∞-category
C
′, there is a canonical bijection

HomhCat∞(C′,Fun(C,D)) ' HomhCat∞(C×C
′,D).

We will refer to objects of Fun(C,D) simply as functors from C to D.

Warning 2.14. By definition, an ∞-category C is simply an object of hCat∞:
that is, a topological category. However, there are generally objects of Fun(C,D)
which are not given by continuous functors between the underlying topological
categories.

Warning 2.15. The process of generalizing from the setting of ordinary cat-
egories to the setting of ∞-categories is not always straightforward. For ex-
ample, if C is an ordinary category, then a product of a pair of objects X
and Y is another object Z equipped with a pair of maps X ← Z → Y
having the following property: for every object C ∈ C, the induced map
θ : HomC(C,Z) → HomC(C,X) × HomC(C, Y ) is a bijection. In the ∞-
categorical context, it is natural to demand not that θ is bijective but instead
that it is a weak homotopy equivalence. Consequently, products in C viewed
as an ordinary category (enriched over topological spaces) are not necessarily
the same as products in C when viewed as an ∞-category. To avoid confusion,
limits and colimits in the ∞-category C are sometimes called homotopy limits
and homotopy colimits.

We close this section by describing a method which can be used to construct
a large class of examples of ∞-categories.

Construction 2.16. Let C be an ordinary category and letW be a collection of
morphisms in C. Then we let C[W−1] denote an ∞-category which is equipped
with a functor α : C → C[W−1] having the following universal property: for
every ∞-category D, composition with α induces a fully faithful embedding

Fun(C[W−1],D)→ Fun(C,D)

whose essential image consists of those functors which carry every morphism in
W to an equivalence in D. More informally: C[W−1] is the∞-category obtained
from C by formally inverting the morphisms in W .
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Example 2.17. Let C be the category of all topological spaces and let W be
the collection of weak homotopy equivalences. We will refer to C[W−1] as the
∞-category of spaces, and denote it by S.

Example 2.18. Let R be an associative ring and let ChainR denote the cat-
egory of chain complexes of R-modules. A morphism f : M• → N• in ChainR
is said to be a quasi-isomorphism if the induced map of homology groups
Hn(M) → Hn(N) is an isomorphism for every integer n. Let W be the col-
lection of all quasi-isomorphisms in C; then ChainR[W

−1] is an ∞-category
which we will denote by ModR. The homotopy category hModR can be identi-
fied with the classical derived category of R-modules.

Example 2.19. Let k be a field of characteristic zero. A differential graded
Lie algebra over k is a Lie algebra object of the category Chaink: that is, a
chain complex of k-vector spaces g• equipped with a Lie bracket operation
[, ] : g• ⊗ g• → g• which satisfies the identities

[x, y] + (−1)d(x)d(y)[y, x] = 0

(−1)d(z)d(x)[x, [y, z]] + (−1)d(x)d(y)[y, [z, x]] + (−1)d(y)d(z)[z, [x, y]] = 0

for homogeneous elements x ∈ gd(x), y ∈ gd(y), z ∈ gd(z). Let C be the category
of differential graded Lie algebras over k and let W be the collection of mor-
phisms in C which induce a quasi-isomorphism between the underlying chain
complexes. Then C[W−1] is an ∞-category which we will denote by Liedgk ; we

will refer to Liedgk as the ∞-category of differential graded Lie algebras over k.

Example 2.20. Let Catt be the ordinary category of Definition 2.9, whose
objects are topologically enriched categories and whose morphisms are contin-
uous functors. Let W be the collection of all weak equivalences in Catt and
set Cat∞ = Catt[W

−1]. We will refer to Cat∞ as the ∞-category of (small)
∞-categories. By construction, the homotopy category of Cat∞ is equivalent to
the category hCat∞ of Definition 2.9.

3. Higher Algebra

Arguably the most important example of an∞-category is the∞-category S of
spaces of Example 2.17. A more explicit description of S can be given as follows:

(a) The objects of S are CW complexes.

(b) For every pair of CW complexes X and Y , we let HomS(X,Y ) denote the
space of continuous maps from X to Y (endowed with the compact-open
topology).
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The role of S in the theory of ∞-categories is analogous to that of the
ordinary category of sets in classical category theory. For example, for any ∞-
category C one can define a Yoneda embedding j : C → Fun(Cop, S), given by
j(C)(D) = HomC(D,C) ∈ S.

In this paper, we will be interested in studying the∞-categorical analogues
of more algebraic structures like commutative rings. As a first step, we recall
the following notion from stable homotopy theory:

Definition 3.1. A spectrum is a sequence of pointed spaces X0, X1, . . . ∈ S∗
equipped with weak homotopy equivalences Xn ' ΩXn+1; here Ω : S∗ → S∗
denotes the based loop space functor X 7→ {p : [0, 1]→ X|p(0) = p(1) = ∗}.

To any spectrum X, we can associate abelian groups πkX for every integer
k, defined by πkX = πk+nXn for n� 0. We say thatX is connective if πnX ' 0
for n < 0.

The collection of spectra is itself organized into an ∞-category which we
will denote by Sp. If X = {Xn, αn : Xn ' ΩXn+1}n≥0 is a spectrum, then we
will refer to X0 as the 0th space of X. The construction X 7→ X0 determines a
forgetful functor Sp→ S, which we will denote by Ω∞.

We will say a spectrum X is discrete if the homotopy groups πiX vanish
for i 6= 0. The construction X 7→ π0X determines an equivalence from the
∞-category of discrete spectra to the ordinary category of abelian groups. In
other words, we can regard the∞-category Sp as an enlargement of the ordinary
category of abelian groups, just as the ∞-category S is an enlargment of the
ordinary category of sets.

The category Ab of abelian groups is an example of a symmetric monoidal
category: that is, there is a tensor product operation ⊗ : Ab×Ab→ Ab which
is commutative and associative up to isomorphism. This operation has a coun-
terpart in the setting of spectra: namely, the∞-category Sp admits a symmetric
monoidal structure ∧ : Sp× Sp→ Sp. This operation is called the smash prod-
uct, and is compatible with the usual tensor product of abelian groups in the
following sense: if X and Y are connective spectra, then there is a canonical
isomorphism of abelian groups π0(X ∧ Y ) ' π0X ⊗ π0Y . The unit object for
the the smash product ∧ is called the sphere spectrum and denoted by S.

The symmetric monoidal structure on the∞-category Sp allows us to define
an ∞-category CAlg(Sp) of commutative algebra objects of Sp. An object of
CAlg(Sp) is a spectrum R equipped with a multiplication R ∧ R → R which
is unital, associative, and commutative up to coherent homotopy. We will refer
to the objects of CAlg(Sp) as E∞-rings, and to CAlg(Sp) as the ∞-category
of E∞-rings. The sphere spectrum S can be regarded as an E∞-ring in an
essentially unique way, and is an initial object of the ∞-category CAlg(Sp).

For any E∞-ring R, the product on R determines a multiplication on the
direct sum π∗R = ⊕nπnR. This multiplication is unital, associative, and com-
mutative in the graded sense (that is, for x ∈ πiR and y ∈ πjR we have
xy = (−1)ijyx ∈ πi+j(R)). In particular, π0R is a commutative ring and each
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πiR has the structure of a module over π0R. The construction R 7→ π0R de-
termines an equivalence between the ∞-category of discrete E∞-rings and the
ordinary category of commutative rings. Consequently, we can view CAlg(Sp)
as an enlargement of the ordinary category of commutative rings.

Remark 3.2. To every E∞-ring R, we can associate an∞-category ModR(Sp)
of R-module spectra: that is, modules over R in the ∞-category of spectra. If
M and N are R-module spectra, we will denote the space HomModR(Sp)(M,N)
simply by HomR(M,N). If M is an R-module spectrum, then π∗M is a graded
module over the ring π∗R. In particular, each homotopy group πnM has the
structure of a π0R-module. If R is a discrete commutative ring, then ModR(Sp)
can be identified with the∞-category ModR = ChainR[W

−1] of Example 2.18.
In particular, the homotopy category hModR(Sp) is equivalent to the classical
derived category of R-modules.

We have the following table of analogies:

Classical Notion ∞-Categorical Analogue
Set topological space

Category ∞-Category

Abelian group Spectrum

Commutative Ring E∞-Ring

Ring of integers Z Sphere spectrum S

Motivated by these analogies, we introduce the following variant of Defini-
tion 1.3:

Definition 3.3. A derived moduli problem is a functor X from the∞-category
CAlg(Sp) of E∞-rings to the ∞-category S of spaces.

Remark 3.4. Suppose that X0 : Ring → Gpd is a classical moduli problem.
We will say that a derived moduli problemX : CAlg(Sp)→ S is an enhancement
of F if, whenever R is a commutative ring (regarded as a discrete E∞-ring),
we have an equivalence of categories X0(R) ' π≤1X(R), and the homotopy
groups πiX(R) vanish for i ≥ 2 (and any choice of base point).

Example 3.5. Let A be an E∞-ring. Then R defines a derived moduli prob-
lem, given by the formula X(R) = HomCAlg(Sp)(A,R). Assume that A is con-
nective: that is, the homotopy groups πiA vanish for i < 0. Then X can be
regarded as an enhancement of the classical moduli problem Spec(π0A) : R 7→
HomRing(π0A,R).
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Example 3.6. Let R be an E∞-ring and let M be an R-module spectrum. We
say that M is projective of rank r if the π0R-module π0M is projective of rank
r, and the map πkR⊗π0R π0M → πkM is an isomorphism for every integer k.
Fix an integer n ≥ 0. For every E∞-ring R, let X(R) denote the ∞-category
space for maps of R-modules f : M → Rn+1 such that the cofiber Rn+1/M
is a projective R-module of rank n; the maps in X(R) are given by homotopy
equivalences of R-modules (compatible with the map to Rn+1). The X(R) is
an ∞-groupoid, so we can regard X as a functor CAlg(Sp) → S. Then X is
a derived moduli problem, which is an enhancement of the classical moduli
problem represented by the scheme P

n = ProjZ[x0, x1, . . . , xn] (Example 1.2).
We can think of X as providing a generalization of projective space to the
setting of E∞-rings.

Example 3.7. Let X be the functor which associates to every E∞-ring R
the ∞-groupoid of projective R-modules of rank n. Then X : CAlg(Sp) → S

is a derived moduli problem, which can be regarded as an enhancement of the
classical moduli problem represented by the Artin stack BGL(n) (Example 1.6).

Let us now summarize several motivations for the study of derived moduli
problems:

(a) Let X0 be a scheme (or, more generally, an algebraic stack), and let
X0 be the classical moduli problem given by the formula F0(R) =
Hom(SpecR,X0). Examples 3.6 and 3.7 illustrate the following general
phenomenon: we can often give a conceptual description of X0(R) which
continues to make sense in the case where R is an arbitrary E∞-ring,
and thereby obtain a derived moduli problem X : CAlg(Sp) → S which
enhances X0. In these cases, one can often think of X as itself being repre-
sented by a scheme (or algebraic stack) X in the setting of E∞-rings (see,
for example, [32], [31], or [23]). A good understanding of the derived mod-
uli problem X (or, equivalently, the geometric object X) is often helpful
for analyzing X0.

For example, let Y be a smooth algebraic variety over the complex num-
bers, and let Mg(Y ) denote the Kontsevich moduli stack of curves of
genus g equipped with a stable map to Y (see, for example, [12]). Then
Mg(Y ) represents a functor X0 : Ring → Gpd which admits a natural
enhancement X : CAlg(Sp)→ S. This enhancement contains a great deal
of useful information about the original moduli stack Mg(Y ): for exam-
ple, it determines the virtual fundamental class of Mg(Y ) which plays an
important role in Gromov-Witten theory.

(b) Let GC be a reductive algebraic group over the complex numbers. Then
GC is canonically defined over the ring Z of integers. More precisely,
there exists a split reductive group scheme GZ over SpecZ (well-defined
up to isomorphism) such that GZ × SpecC ' GC ([4]). Since Z is the
initial object in the category of commutative rings, the group scheme GZ
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can be regarded as a “universal version” of the reductive algebraic group
GC: it determines a reductive group scheme GR = GZ × SpecR over
any commutative ring R. However, there are some suggestions that GZ

might admit an even more primordial description (for example, it has been
suggested that we should regard the Weyl group W of GC as the set of
points G(F1) of G with values in the “field with 1 element”; see [28]). The
language of ring spectra provides one way of testing this hypothesis: the
initial object in the∞-category CAlg(Sp) is given by the sphere spectrum
S, rather than the discrete ring Z ' π0S. Therefore it makes sense to ask
if the algebraic group GC can be defined over the sphere spectrum; it
was this question which originally motivated the theory described in this
paper.

(c) Let X0 : Ring → Gpd be the classical moduli problem of Ex-
ample 1.5, which assigns to each commutative ring R the groupoid
Hom(SpecR,M1,1) of elliptic curves over R. It is possible to make sense
of the notion of an elliptic curve over R when R is an arbitrary E∞-ring,
and thereby obtain an enhancement X : CAlg(Sp) → S of MEll. One
can use this enhancement to give a moduli-theoretic reformulation of the
Goerss-Hopkins-Miller theory of topological modular forms; we refer the
reader to [21] for are more detailed discussion.

(d) The framework of derived moduli problems (or, more precisely, their for-
mal analogues: see Definition 4.6) provides a good setting for the study of
deformation theory. We will explain this point in more detail in the next
section.

4. Formal Moduli Problems

Let X : CAlgSp → S be a derived moduli problem. We define a point of X to
be a pair x = (k, η), where k is a field (regarded as a discrete E∞-ring) and
η ∈ X(k). Our goal in this section is to study the local structure of the moduli
problem X “near” the point x. More precisely, we will study the restriction
of X to E∞-rings which are closely related to the field k. To make this idea
precise, we need to introduce a bit of terminology.

Definition 4.1. Let k be a field. We let CAlgk denote the ∞-category whose
objects are E∞-rings A equipped with a map k → A, where morphisms are
given by commutative triangles

k

����
��

��
�

  A
AA

AA
AA

A

A // A′.

We will refer to the objects of CAlgk as E∞-algebras over k.
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Remark 4.2. We say that a k-algebra A is discrete if it is discrete as an
E∞-ring: that is, if the homotopy groups πiA vanish for i 6= 0. The discrete
k-algebras determine a full subcategory of CAlgk, which is equivalent to the
ordinary category of commutative rings A with a map k → A.

Remark 4.3. Let k be a field. The category Chaink of chain complexes over k
admits a symmetric monoidal structure, given by the usual tensor product of
chain complexes. A commutative algebra in the category Chaink is called a com-
mutative differential graded algebra over k. The functor Chaink → Modk is sym-
metric monoidal, and determines a functor φ : CAlg(Chaink)→ CAlg(Modk) '

CAlgk. We say that a morphism f : A• → B• in CAlgdgk is a quasi-isomorphism
if it induces a quasi-isomorphism between the underlying chain complexes of A•

and B•. The functor φ carries every quasi-isomorphism of commutative differ-
ential graded algebras to an equivalence in CAlgk. If k is a field of characteristic
zero, then φ induces an equivalence CAlg(Chaink)[W

−1] ' CAlgk, where W
is the collection of quasi-isomorphisms: in other words, we can think of the
∞-category of E∞-algebras over k as obtained from the ordinary category of
commutative differential graded k-algebras by formally inverting the collection
of quasi-isomorphisms.

Definition 4.4. Let k be a field and let V ∈ Modk be a k-module spectrum.
We will say that V is small if the following conditions are satisfied:

(1) For every integer n, the homotopy group πnV is finite dimensional as a
k-vector space.

(2) The homotopy groups πnV vanish for n < 0 and n� 0.

Let A be an E∞-algebra over k. We will say that A is small if it is small as a
k-module spectrum, and satisfies the following additional condition:

(3) The commutative ring π0A has a unique maximal ideal p, and the map

k → π0A→ π0A/p

is an isomorphism.

We let Modsm denote the full subcategory of Modk spanned by the small k-
module spectra, and CAlgsm denote the full subcategory of CAlgk spanned by
the small E∞-algebras over k.

Remark 4.5. Let A be a small E∞-algebra over k. Then there is a unique
morphism ε : A→ k in CAlgk; we will refer to ε as the augmentation on A.

Let X : CAlg(Sp) → S be a derived moduli problem, and let x = (k, η) be
a point of X. We define a functor Xx : CAlgsm → S as follows: for every small
E∞-algebra A over k, we let Xx(A) denote the fiber of the map X(A)→ X(k)
(induced by the augmentation ε : A → k) over the point η. The intuition is
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that Xx encodes the local structure of the derived moduli problem X near the
point x.

Let us now axiomatize the expected behavior of the functor Xx:

Definition 4.6. Let k be a field. A formal moduli problem over k is a functor
X : CAlgsm → S with the following properties:

(1) The space X(k) is contractible.

(2) Suppose that φ : A → B and φ′ : A′ → B are maps between small E∞-
algebras over k which induce surjections π0A→ π0B, π0A

′ → π0B. Then
the canonical map

X(A×B A′)→ X(A)×X(B) X(A′)

is a homotopy equivalence.

Remark 4.7. Let X be a derived moduli problem and let x = (k, η) be a point
ofX. Then the functorXx : CAlgsm → S automatically satisfies condition (1) of
Definition 4.6. Condition (2) is not automatic, but holds whenever the functorX
is defined in a sufficiently “geometric” way. To see this, let us imagine that there
exists some ∞-category of geometric objects G with the following properties:

(a) To every small k-algebra A we can assign an object SpecA ∈ G, which is
contravariantly functorial in A.

(b) There exists an object X ∈ G which represents X, in the sense that
X(A) ' HomG(SpecA,X) for every small k-algebra A.

To verify that Xx satisfies condition (2) of Definition 4.6, it suffices to show
that when φ : A → B and φ : A′ → B are maps of small E∞ algebras over k
which induce surjections π0A→ π0B ← π0A

′, then the diagram

SpecB //

��

SpecA′

��

SpecA // Spec(A×B A′)

is a pushout square in G. This assumption expresses the idea that Spec(A×BA′)
should be obtained by “gluing” SpecA and SpecB together along the common
closed subobject SpecB.

For examples of ∞-categories G satisfying the above requirements, we refer
the reader to the work of Toën and Vezzosi on derived stacks (see, for example,
[32]).

Remark 4.8. Let X : CAlgsm → S be a formal moduli problem. Then X
determines a functor X : CAlgsm → Set, given by the formula X(A) = π0X(A).
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It follows from condition (2) of Definition 4.6 that if we are given maps of small
E∞-algebras A→ B ← A′ which induce surjections π0A→ π0B ← π0A

′, then
the induced map

X(A×B A′)→ X(A)×X(B) X(A′)

is a surjection of sets (in fact, this holds under weaker assumptions: see Remark
6.19). There is a substantial literature on set-valued moduli functors of this
type; see, for example, [24] and [18].

5. Tangent Complexes

Let X : Ring → Set be a classical moduli problem. Let k be a field and let
η ∈ X(k), so that the pair x = (k, η) can be regarded as a point of X. Following
Grothendieck, we define the tangent space TX,x to be the fiber of the map
X(k[ε]/(ε2)) → X(k) over the point η. Under very mild assumptions, one can
show that this fiber has the structure of a vector space over k: for example, if λ ∈
k is a scalar, then the action of λ on TX,x is induced by the ring homomorphism
k[ε]/(ε2)→ k[ε]/(ε2) given by ε 7→ λε.

Now suppose that X : CAlgsm → S is a formal moduli problem over a field
k. Then X(k[ε]/(ε2)) ∈ S is a topological space, which we will denote by TX(0).
As in the classical case, TX(0) admits a great deal of algebraic structure. To
see this, we need to introduce a bit of notation.

Let k be a field and let V be a k-module spectrum. We let k⊕V denote the
direct sum of k and V (as a k-module spectrum). We will regard k ⊕ V as an
E∞-algebra over k, with a “square-zero” multiplication on the submodule V .
Note that if V is a small k-module, then k⊕ V is a small k-algebra (Definition
4.4). For each integer n ≥ 0, we let k[n] denote the n-fold shift of k as a
k-module spectrum: it is characterized up to equivalence by the requirement

πik[n] '

{
k if i = n

0 ifi 6= n

If X is a formal moduli problem over k, we set TX(n) = X(k⊕k[n]) (this agrees
with our previous definition in the case n = 0). For n > 0, we have a pullback
diagram of E∞-algebras

k ⊕ k[n− 1] //

��

k

��

k // k ⊕ k[n]
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which, using conditions (1) and (2) of Definition 4.6, gives a pullback diagram

TX(n− 1) //

��

∗

��

∗ // TX(n)

in the ∞-category of spaces. That is, we can identify TX(n− 1) with the loop
space of TX(n), so that the sequence {TX(n)}n≥0 can be regarded as a spec-
trum, which we will denote by TX . We will refer to TX as the tangent complex
to the formal moduli problem X.

In fact, we can say more: the spectrum TX admits the structure of a module
over k. Roughly speaking, this module structure comes from the following con-
struction: for each scalar λ ∈ k, multiplication by λ induces a map from k[n]
to itself, and therefore a map from TX(n) to itself; these maps are compatible
with one another and give an action of k on the spectrum TX .

Remark 5.1. Here is a more rigorous construction of the k-module structure
on the tangent complex TX . We say that a functor U : Modsm → S is excisive
if it satisfies the following linear version of the conditions of Definition 4.6:

(1) The space U(0) is contractible.

(2) For every pushout diagram

V //

��

V ′

��

W // W ′

in the ∞-category Modsm, the induced diagram of spaces

U(V ) //

��

U(V ′)

��

U(W ) // U(W ′)

is a pullback square.

If W ∈ Modk is an arbitrary k-module spectrum, then the construction V 7→
Homk(V

∨,W ) gives an excisive functor from Modsm to S (here V ∨ denotes the
k-linear dual of V ). In fact, every excisive functor arises in this way: the above
construction determines a fully faithful embedding Modk ↪→ Fun(Modsm, S)
whose essential image is the collection of excisive functors.

If X : CAlgsm → S is a formal moduli problem, then one can show that
the functor V 7→ X(k ⊕ V ) is excisive. It follows that there exists a k-module
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spectrum W (which is determined uniquely up to equivalence) for which X(k⊕
V ) ' Homk(V

∨,W ). This k-module spectrum W can be identified with the
tangent complex TX ; for example, we have

Ω∞TX = TX(0) = X(k ⊕ k[0]) ' Homk(k[0]
∨,W ) ' Ω∞W

Remark 5.2. The tangent complex to a formal moduli problem X carries
a great deal of information about X. For example, if α : X → X ′ is a nat-
ural transformation between formal moduli problems, then α is an equiva-
lence if and only if it induces a homotopy equivalence of k-module spectra
TX → TX′ . In concrete terms, this means that if α induces a homotopy equiv-
alence X(k ⊕ k[n]) → X ′(k ⊕ k[n]) every integer n ≥ 0, then α induces a
homotopy equivalence F (A) → F ′(A) for every small E∞-algebra A over k.
This follows from the fact that A admits a “composition series”

A = A(m)→ A(m− 1)→ · · · → A(0) = k,

where each of the maps A(j)→ A(j − 1) fits into a pullback diagram

A(j) //

��

A(j − 1)

��

k // k ⊕ k[nj ]

for some nj > 0.

Remark 5.2 suggests that it should be possible to reconstruct a formal mod-
uli problem X from its tangent complex TX . If k is a field of characteristic zero,
then mathematical folklore asserts that every formal moduli problem is “con-
trolled” by a differential graded Lie algebra over k. This can be formulated
more precisely as follows:

Theorem 5.3. Let k be a field of characteristic zero, and let Moduli denote
the full subcategory of Fun(CAlgsm, S) spanned by the formal moduli problems

over k. Then there is an equivalence of∞-categories Φ : Moduli→ Liedgk , where

Liedgk denotes the∞-category of differential graded Lie algebras over k (Example

2.19). Moreover, if U : Liedgk → Modk denotes the forgetful functor (which
assigns to each differential graded Lie algebra its underlying chain complex),
then the composition U ◦ Φ can be identified with the functor X 7→ TX [−1].

In other words, if X is a formal moduli problem, then the shifted tangent
complex TX [−1] ∈ Modk can be realized as a differential graded Lie algebra
over k. Conversely, every differential graded Lie algebra over k arises in this
way (up to quasi-isomorphism).

Remark 5.4. The functor Φ−1 : Liedgk → Moduli ⊆ Fun(CAlgsm, S) is con-
structed by Hinich in [14]. Roughly speaking, if g is a differential graded Lie
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algebra and A is a small E∞-algebra over k, then Φ−1(g)(A) is the space of
solutions to the Maurer-Cartan equation dx = [x, x] in the differential graded
Lie algebra g⊗k mA.

Remark 5.5. The notion that differential graded Lie algebras should play an
important role in the description of moduli spaces goes back to Quillen’s work
on rational homotopy theory ([33]), and was developed further in unpublished
work of Deligne, Drinfeld, and Feigin. Many mathematicians have subsequently
taken up these ideas: see, for example, the book of Kontsevich and Soibelman
([18]).

Remark 5.6. For applications of Theorem 5.3 to the classification of deforma-
tions of algebraic structures, we refer the reader to [15] and [17].

Remark 5.7. Suppose that R is a commutative k-algebra equipped with an
augmentation ε : R → k. Then R defines a formal moduli problem X over k,
which carries a small E∞-algebra A over k to the fiber of the map

HomCAlgk
(R,A)→ HomCAlgk

(R, k).

When k is of characteristic zero, the tangent complex TX can be identified
with the complex Andre-Quillen cochains taking values in k. In this case, the
existence of a natural differential graded Lie algebra structure on TX [−1] is
proven in [26].

Remark 5.8. Here is a heuristic explanation of Theorem 5.3. Let X :
CAlgsm → S be a formal moduli problem. Since every k-algebra A comes
equipped with a canonical map k → A, we get an induced map ∗ ' X(k) →
X(A): in other words, each of the spaces X(A) comes equipped with a natu-
ral base point. We can then define a new functor ΩX : CAlgsm → S by the
formula (ΩX)(A) = ΩX(A) (here Ω denotes the loop space functor from the
∞-category of pointed spaces to itself). Then ΩX is another formal moduli
problem, and an elementary calculation gives TΩX ' TX [−1]. However, ΩX is
equipped with additional structure: composition of loops gives a multiplication
on ΩX (which is associative up to coherent homotopy), so we can think of ΩX
as a group object in the ∞-category of formal moduli problems.

In classical algebraic geometry, the tangent space to an algebraic group G
at the origin admits a Lie algebra structure. In characteristic zero, this Lie
algebra structure permits us to reconstruct the formal completion of G (via the
Campbell-Hausdorff formula). Theorem 5.3 can be regarded as an analogous
statement in the context of formal moduli problems: the group structure on
ΩX determines a Lie algebra structure on its tangent complex TΩX ' TX [−1].
Since we are working in a formal neighborhood of a fixed point, allows us to
reconstruct the group ΩX (and, with a bit more effort, the original formal
moduli problem X).
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Example 5.9. Let X : CAlg(Sp)→ S be the formal moduli problem of Exam-
ple 3.7, which assigns to every E∞-ring A the ∞-groupoid F (A) of projective
A-modules of rank n. Giving a point x = (k, η) of X is equivalent to giving a
field k together with a vector space V0 of dimension n over k. In this case, the
functor Xx : CAlgsm → S can be described as follows: to every small k-algebra
A, the functor Xx assigns the ∞-category of pairs (V, α), where V is a projec-
tive A-module of rank n and α : k ∧A V → V0 is an isomorphism of k-vector
spaces. It is not difficult to show that Xx is a formal moduli problem in the
sense of Definition 4.6. We will denote its tangent complex TX,x.

Unwinding the definitions, we see that TX,x(0) = Xx(k[ε]/(ε
2)) can be iden-

tified with a classifying space for the groupoid of projective k[ε]/(ε2)-modules V
which deform V0. This groupoid has only one object up to isomorphism, given by
the tensor product k[ε]/(ε2)⊗kV0. It follows that TX,x(0) can be identified with
the classifying space BG for the group G of automorphisms of k[ε]/(ε2) ⊗k V0

which reduce to the identity moduli ε. Such an automorphism can be written
as 1+ εM , where M ∈ End(V0). Consequently, TX,x(0) is homotopy equivalent
to the classifying space for the k-vector space Endk(V0), regarded as a group
under addition.

Amplifying this argument, we obtain an equivalence of k-module spectra
TX,x ' Endk(V0)[1]. The shifted tangent complex TX,x[−1] ' Endk(V0) has
the structure of a Lie algebra over k (and therefore of a differential graded
Lie algebra over k, with trivial grading and differential), given by the usual
commutator bracket of endomorphisms.

6. Noncommutative Geometry

Our goal in this paper is to describe an analogue of Theorem 5.3 in the setting of
noncommutative geometry. We begin by describing a noncommutative analogue
of the theory of E∞-rings.

Definition 6.1. Let C be a symmetric monoidal∞-category. We can associate
to C a new ∞-category Alg(C) of associative algebra objects of C. The ∞-
category Alg(C) inherits the structure of a symmetric monoidal ∞-category.

We can therefore define a sequence of ∞-categories Alg(n)(C) by induction on
n:

(a) If n = 1, we let Alg(n)(C) = Alg(C).

(b) If n > 1, we let Alg(n)(C) = Alg(Alg(n−1)(C)).

We will refer to Alg(n)(C) as the ∞-category of En-algebras in C.

Remark 6.2. We can summarize Definition 6.1 informally as follows: an En-
algebra object of a symmetric monoidal ∞-category C is an object A ∈ C

which is equipped with n multiplication operations {mi : A ⊗ A → A}1≤i≤n;
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these multiplications are required to be associative and unital (up to coherent
homotopy) and to be compatible with one another in a suitable sense.

Example 6.3. Let C = S be the ∞-category of spaces, endowed with the
symmetric monoidal structure given by Cartesian products of spaces. For every
pointed space X, the loop space ΩX has the structure of an algebra object
of S: the multiplication on ΩX is given by concatenation of loops. In fact,
we can say a bit more: the algebra object ΩX ∈ Alg(S) is grouplike, in the
sense that the multiplication on Ω(X) determines a group structure on the
set π0Ω(X) ' π1X. This construction determines an equivalence from the ∞-
category of connected pointed spaces to the full subcategory of Alg(C) spanned
by the grouplike associative algebras.

More generally, the construction X 7→ ΩnX establishes an equivalence be-
tween the ∞-category of (n− 1)-connected pointed spaces and the full subcat-
egory of grouplike En-algebras of S. See [25] for further details.

Example 6.4. Fix an E∞-ring k, and let Modk = Modk(Sp) denote the
∞-category of k-module spectra. Then Modk admits a symmetric monoidal
structure, given by the relative smash product (M,N) 7→ M ∧k N . We will

refer to En-algebra objects of Modk as En-algebras over k. We let Alg
(n)
k =

Alg(n)(Modk) denote the ∞-category of En-algebras over k. When k is the
sphere spectrum S, we will refer to an En-algebra over k simply as an En-ring.

Remark 6.5. For any symmetric monoidal ∞-category C, there is a forgetful
functor Alg(C) → C, which assigns to an associative algebra its underlying
object of C. These forgetful functors determine rise to a tower of ∞-categories

· · · → Alg(3)(C)→ Alg(2)(C)→ Alg(1)(C).

The inverse limit of this tower can be identified with the ∞-category CAlg(C)
of commutative algebra objects of C.

Remark 6.6. There is a non-inductive description of the∞-category Alg(n)(C)
of En-algebra objects in C: it can be obtained as the ∞-category of representa-
tions in C of the little n-cubes operad introduced by Boardman and Vogt; see
[2].

Remark 6.7. It is convenient to extend Definition 6.1 to the case n = 0: an
E0-algebra object of C is an object A ∈ C which is equipped with a distinguished
map 1→ A, where 1 denotes the unit with respect to the tensor product on C.

Remark 6.8. When C is an ordinary category, Definition 6.1 is somewhat
degenerate: the categories Alg(n)(C) coincide with CAlg(C) for n ≥ 2. This is
a consequence of the classical Eckmann-Hilton argument: if A ∈ C is equipped
with two commuting unital multiplication operations m1 and m2, then m1 and
m2 are commutative and coincide with one another. If C is the category of
sets, the proof can be given as follows. Since the unit map 1 → A for the
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multipication m1 is a homomorphism with multiplication m2, we see that the
unit elements of A for the multiplications m1 and m2 coincide with a single
element u ∈ A. Then

m1(a, b) = m1(m2(a, u),m2(u, b)) = m2(m1(a, u),m1(u, b)) = m2(a, b).

A similar calculation gives m1(a, b) = m2(b, a), so that m1 = m2 is commuta-
tive.

Remark 6.9. Let k be a field, and let Chaink be the ordinary category of chain
complexes over k. The functor Chaink → Modk of Remark 3.2 is symmetric
monoidal: in other words, the relative smash product ∧k is compatible with
the usual tensor product of chain complexes. In particular, we get a functor

θ : Alg(Chaink) → Alg(Modk) = Alg
(1)
k . The category Alg(Chaink) can be

identified with the category of differential graded algebras over k. We say that
a map of differential graded algebras f : A• → B• is a quasi-isomorphism if it
induces a quasi-isomorphism between the underlying chain complexes of A• and

B•; in this case, the morphism θ(f) is an equivalence in Alg
(1)
k . Let W be the

collection of quasi-isomorphisms between differential graded algebras. One can

show that θ induces an equivalence Alg(Chaink)[W
−1] → Alg

(1)
k : that is, E1-

algebras over a field k (of any characteristic) can be identified with differential
graded algebras over k.

Remark 6.10. Let k be a field and let A be an En-algebra over k. If n ≥ 1, then
A has an underlying associative multiplication. This multiplication endows π∗A
with the structure of a graded algebra over k. In particular, π0A is an associative
k-algebra.

Definition 6.11. Let k be a field and let A be an En-algebra over k, where
n ≥ 1. We will say that A is small if the following conditions are satisfied:

(1) The algebra A is small when regarded as a k-module spectrum: that is,
the homotopy groups πiA are finite dimensional, and vanish if i < 0 or
i� 0.

(2) Let p be the radical of the (finite-dimensional) associative k-algebra π0A.
Then the composite map k → π0A→ π0A/p is an isomorphism.

We let Alg(n)sm denote the full subcategory of Alg
(n)
k spanned by the small En-

algebras over k.

Remark 6.12. Let A be an En-algebra over a field k. An augmentation on
A is a map of En-algebras A → k. The collection of augmented En-algebras
over k can be organized into an ∞-category, which we will denote by Alg(n)aug. If
n ≥ 1 and A is a small En-algebra over k, then A admits a unique augmentation
A→ k (up to a contractible space of choices). Consequently, we can view Alg(n)sm

as a full subcategory of Alg(n)aug.
If η : A→ k is an augmented En-algebra over k, we let mA denote the fiber

of the map η. We will refer to mA as the augmentation ideal of A.
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Remark 6.13. If n = 0, then an augmentation on an E0-algebra A ∈ Alg
(0)
k

is a map of k-module spectra η : A → k which is left inverse to the unit map
k → A. The construction (η : A → k) 7→ mA determines an equivalence of

∞-categories Alg(0)aug ' Modk.
It is convenient to extend Definition 6.11 to the case n = 0. We say that an

augmented E0-algebra A is small if A (or, equivalently, the augmentation ideal

mA) is small when regarded as a k-module spectrum. We let Alg(0)sm ⊆ Alg(0)aug '
Modk denote the full subcategory spanned by the small E0-algebras over k.

The following elementary observation will be used several times in this pa-
per:

Claim 6.14. Let f : A → B be a map of small En-algebras over k which
induces a surjection π0A→ π0B. Then there exists a sequence of maps

A = A(0)→ A(1)→ · · · → A(m) = B

with the following property: for each integer 0 ≤ i < m, there is a pullback
diagram of small En-algebras

A(i) //

��

A(i+ 1)

��

k // k ⊕ k[j]

for some j > 0 (in other words, A(i) can be identified with the fiber of some
map A(i+ 1)→ k ⊕ k[j]).

Remark 6.15. Claim 6.14 is most useful in the case where f is the augmen-
tation map A→ k. We will refer to a sequence of maps

A = A(0)→ A(1)→ · · · → A(m) ' k

satisfying the requirements of Claim 6.14 as a composition series for A.

Definition 6.16. Let k be a field and let n ≥ 0 be an integer. A formal En

moduli problem over k is a functor X : Alg(n)sm → S with the following properties:

(1) The space X(k) is contractible.

(2) Suppose we are given a pullback diagram of small En-algebras

A′ //

��

A

��

B′ // B



1122 Jacob Lurie

such that the maps π0A → π0B and π0B
′ → π0B are surjective. Then

the diagram

X(A′) //

��

X(A)

��

X(B′) // X(B)

is a pullback diagram in S.

Remark 6.17. Every formal En moduli problem X : Alg(n)sm → S determines
a formal moduli problem X ′ in the sense of Definition 4.6, where X ′ is given
by the composition

Algsm → Alg(n)sm
X
→ S .

We define the tangent complex of X to be the tangent complex of X ′, as defined
in §5. We will denote the tangent complex of X by TX ∈ Modk.

Remark 6.18. Let X be as in Definition 6.16. By virtue of Claim 6.14, it
suffices to check condition (2) in the special case where A = k and B = k⊕k[j],
for some j > 0. In other words, condition (2) is equivalent to the requirement
that for every map B′ → k ⊕ k[j], we have a fiber sequence

X(B ×k⊕k[j] k)→ X(B)→ X(k ⊕ k[j]).

The final term in this sequence can be identified with TX(j) = Ω∞(TX [j]).

Remark 6.19. The argument of Remark 6.18 shows that condition (2) of
Definition 6.16 is equivalent to the following apparently stronger condition:

(2′) Suppose we are given a pullback diagram of small En-algebras

A′ //

��

A

��

B′ // B

such that the maps π0A→ π0B is surjective. Then the diagram

X(A′) //

��

X(A)

��

X(B′) // X(B)

is a pullback diagram in S.

Let V0 be a finite dimensional vector space over k, and let Xx : CAlgsm → S

be the formal moduli problem of Example 5.9, so that Xx assigns to every small
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E∞-algebra A over k the ∞-groupoid of pairs (V, α), where V is an A-module
and α : k ∧A V ' V0 is an equivalence. The definition of Xx does not make
any use of the commutativity of A. Consequently, Xx extends naturally to a
functor X̂x : Alg(1),sm → S, By definition, the shifted tangent complex of X̂x[−1]
is given by the Lie algebra TXx

[−1] ' End(V0). If k is of characteristic zero,
then Theorem 5.3 implies that the formal moduli problem Xx can be canoni-
cally reconstructed from the vector space End(V0) together with its Lie algebra

structure. However, the formal E1 moduli problem X̂x is additional data, since
we can evaluate X̂x on algebras which are not necessarily commutative. Con-
sequently, it is natural to expect the existence of X̂x to be reflected in some
additional structure on the Lie algebra End(V0). We observe that End(V0) is
not merely a Lie algebra: there is an associative product (given by composition)
whose commutator gives the Lie bracket on End(V0). In fact, this is a general
phenomenon:

Theorem 6.20. Let k be a field, let n ≥ 0, and let Modulin be the full sub-
category of Fun(Alg(n)sm , S) spanned by the formal En moduli problems. Then

there exists an equivalence of ∞-categories Φ : Modulin → Alg(n)aug. Moreover,

if U : Alg(n)aug → Modk denotes the forgetful functor A 7→ mA which assigns to
each augmented En-algebra its augmentation ideal, then the composition U ◦Φ
can be identified with the functor X 7→ TX [−n].

In other words, ifX is a formal En-module problem, then the shifted tangent
complex TX [−n] can be identified with the augmentation ideal in an augmented
En-algebra A: that is, TX [−n] admits a nonunital En-algebra structure. More-
over, this structure determines the formal En moduli problem up to equivalence.

Example 6.21. Suppose that n = 0. The construction V 7→ k⊕V determines
an equivalence Modsm ' Alg(0)sm . Under this equivalence, we can identify the
∞-category Moduli0 of formal E0 moduli problems with the full subcategory of
Fun(Modsm, S) spanned by the excisive functors (see Remark 5.1). In this case,
Theorem 6.20 reduces to the claim of Remark 5.1: every excisive functor U :
Modsm → S has the form V 7→ Homk(V

∨,W ) ' Ω∞(V ∧k W ) for some object
W ∈ Modk, which is determined up to equivalence. Note that we can identify
W with the tangent complex to the formal E0 moduli problem A 7→ U(mA).

Remark 6.22. Unlike Theorem 5.3, Theorem 6.20 does not require any as-
sumption on the characteristic of the ground field k.

Remark 6.23. Theorem 6.20 is a consequence of the Koszul self-duality of
the little cubes operad En (see [11]). More precisely, for every field k one can

define a Koszul duality functor D : Alg(n)aug → (Alg(n)aug)
op. The construction

Φ−1 : Alg(n)aug → Modulin is then given by the formula

Φ−1(A)(B) = Hom
Alg

(n)
aug

(DB,A).
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Abstract

This paper investigates the geometric properties of random hyperbolic surfaces
with respect to the Weil-Petersson measure. We describe the relationship be-
tween the behavior of lengths of simple closed geodesics on a hyperbolic surface
and properties of the moduli space of such surfaces. First, we study the asymp-
totic behavior of Weil-Petersson volumes of the moduli spaces of hyperbolic
surfaces of genus g as g → ∞. Then we apply these asymptotic estimates to
study the geometric properties of random hyperbolic surfaces, such as the length
of the shortest simple closed geodesic of a given combinatorial type.
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1. Introduction

The space of hyperbolic surfaces of a given genus is equipped with a natural
notion of measure, which is induced by the Weil-Petersson symplectic form.
We are interested in geometric properties of a random hyperbolic surface with
respect to this measure. In particular, we are interested in the behavior of the
length of the shortest separating/non-separating simple closed geodesic on a
random surface of genus g as g → ∞.

∗The author has been supported by a Clay Fellowship (2004-08) and an NSF Research
Grant.

Stanford University, Dept. of Mathematics, Building 380, Stanford, CA 94305, USA.
E-mail: mmirzakh@math.stanford.edu.



Random Hyperbolic Surfaces 1127

Notation. Let Mg,n be the moduli space of complete hyperbolic surfaces of
genus g with n punctures. The universal cover of Mg,n is the Teichmüller space
Tg,n; every X ∈ Tg,n represents a marked hyperbolic structure on a surface of
genus g with n punctures. The space Mg,n is a connected orbifold of dimension

6g − 6 + 2n, while Tg,n is homeomorphic to R
3g−3+n × R

3g−3+n
+ .

Every isotopy class of a closed curve on a hyperbolic surface contains a
unique closed geodesic. Given a homotopy class of a closed curve α on a topo-
logical surface Sg,n of genus g with n marked points and X ∈ Tg,n, let `α(X)
be the length of the unique geodesic in the homotopy class of α on X. This
defines a length function `α on the Teichmüller space Tg,n.

When studying the behavior of these length functions, it proves fruitful to
consider more generally bordered hyperbolic surfaces with geodesic boundary
components. Given L = (L1, . . . , Ln) ∈ R

n
+, we consider the Teichmüller

space Tg,n(L) of hyperbolic structures with geodesic boundary components
of length L1, . . . , Ln. Note that a geodesic of length zero is the same as a
puncture. The space Tg,n(L) is naturally equipped with a symplectic structure;
this symplectic form ω = ωwp is called the Weil-Petersson symplectic form.
When L = 0, this form is the symplectic form of a Kähler noncomplete metric
on the moduli space Mg,n introduced by Weil [IT]. Wolpert showed that
the Weil-Petersson symplectic form has a simple expression in terms of the
Fenchel-Nielsen twist-length coordinates on the Teichmüller space (§2). As a
result, there is a close relationship between the Weil-Petersson geometry and
the lengths of simple closed geodesics on surfaces in Mg.

Our results. In this paper, we present the following results, old and new:

1. In §2, following [M2] and [M1], we discuss a method to integrate geomet-

ric functions given in terms of the hyperbolic length functions over Mg,n.
This implies that the Weil-Petersson volume Vg,n(L) of Mg,n(L1, . . . , Ln)
is a polynomial in L2

1, . . . , L
2
n. The constant term of this polynomial,

Vg,n = Vg,n(0, . . . , 0), is the Weil-Petersson volume of the moduli space of
complete hyperbolic surfaces of genus g with n punctures. More generally,
the coefficients of Vg,n(L) can be written in terms of the intersection pair-
ings of tautological line bundles over Deligne-Mumford compactification
Mg,n of the moduli space.

2. Next, in §3, we study the asymptotic behavior of Weil-Petersson volumes,
and the other coefficients of volume polynomials. In particular, we show
that for n ≥ 0

lim
g→∞

Vg,n
Vg−1,n+2

= 1,

and

lim
g→∞

Vg,n+1

2gVg,n
= 4π2.
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These results were predicted by Zograf [Z2]. We obtain several related
estimates for the growth of the volumes of moduli spaces.

3. Finally, in §4, we describe the relationship between the asymptotic behav-
ior of the Weil-Petersson volumes and the geometry of a random hyper-
bolic surface. In particular, we will see that in a typical hyperbolic surface
of large genus, the shortest non-separating simple closed geodesic tends
to be shorter than any separating simple closed geodesic. Further, we get
lower bounds on the expected length of the shortest closed geodesic of
a given type. For example, the shortest simple closed geodesic separat-
ing the surface into two roughly equal areas has expected length at least
linear in g.

Notation. In this paper, A � B means that A/C < B < AC for some
universal constant C. Also, A = O(B) means that A < BC, for some universal
constant C.

Notes and remarks.

1. In [BM] Brooks and Makover developed a method for the study of typical
Riemann surfaces with large genus by using trivalent graphs. In this model
the expected value of the systole of a random Riemann surface turns
out to be bounded (independent of the genus) [MM]. See also [Ga]. It
seems that a random Riemann surface with respect to the Weil-Petersson
volume form has some similar features. However, it is not clear how the
measure induced by their model is related to the measure induced by the
Weil-Petersson volume.

2. The distribution of hyperbolic surfaces of genus g produced randomly
by gluing Riemann surfaces with long geodesic boundary components is
closely related to the measure induced by ω on Mg,n. See [M4] for details.

3. The following exact asymptotic formula was proved in [MZ]. There exists
C > 0 such that for any fixed g ≥ 0

Vg,n = n!Cnn(5g−7)/2(ag +O(1/n)), (1)

as n→ ∞.

Moreover, Zograf developed a fast algorithm for calculating the volume
polynomials, and made the following conjecture on the basis of the nu-
merical data obtained by his algorithm [Z2]:

Conjecture 1.1 (Zograf). For any fixed n ≥ 0

Vg,n = (4π2)2g+n−3(2g − 3 + n)!
1√
gπ

(

1 +
cn
g

+O

(

1

g2

))

as g → ∞.



Random Hyperbolic Surfaces 1129

4. We warn the reader that there are some small differences in the normal-
ization of the Weil-Petersson volume form in the literature; in this paper,

Vg,n = Vg,n(0, . . . , 0) =
1

(3g − 3 + n)!

∫

Mg,n

ω3g−3+n

which is slightly different from the notation used in [Z2] and [ST]. Also,
in [Z1] the Weil-Petersson Kähler form is 1/2 the imaginary part of the
Weil-Petersson pairing, while here the factor 1/2 does not appear. So our
answers are different by a power of 2.

Acknowledgement. I would like to thank Peter Zograf for many discussions
regarding the growth of Weil-Petersson volumes. I am grateful to Curt Mc-
Mullen for his guidance which initiated this work. I would also like to thank
all my teachers and friends from Sharif University of Technology for showing
me the beauty of mathematics. Finally, I am indebted to my family for their
unceasing love, emotional support and encouragement.

2. Weil-Petersson Measure on Mg,n

First, we briefly recall some background material and constructions in Te-
ichmüller theory of Reimann surfaces with geodesic boundary components. For
further details see [IT], [M2] and [Bu].

Teichmüller Space. A point in the Teichmüller space T (S) is a complete
hyperbolic surface X equipped with a diffeomorphism f : S → X. The map
f provides a marking on X by S. Two marked surfaces f : S → X and
g : S → Y define the same point in T (S) if and only if f ◦ g−1 : Y → X
is isotopic to a conformal map. When ∂S is nonempty, consider hyperbolic
Riemann surfaces homeomorphic to S with geodesic boundary components of

fixed length. Let A = ∂S and L = (Lα)α∈A ∈ R
|A|
+ . A point X ∈ T (S,L) is a

marked hyperbolic surface with geodesic boundary components such that for
each boundary component β ∈ ∂S, we have

`β(X) = Lβ .

Let Sg,n be an oriented connected surface of genus g with n boundary compo-
nents (β1, . . . , βn). Then

Tg,n(L1, . . . , Ln) = T (Sg,n, L1, . . . , Ln),

denote the Teichmüller space of hyperbolic structures on Sg,n with geodesic
boundary components of length L1, . . . , Ln. By convention, a geodesic of length
zero is a cusp and we have

Tg,n = Tg,n(0, . . . , 0).
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Let Mod(S) denote the mapping class group of S, or the group of isotopy classes
of orientation preserving self homeomorphisms of S leaving each boundary com-
ponent setwise fixed. The mapping class group Modg,n = Mod(Sg,n) acts on
Tg,n(L) by changing the marking. The quotient space

Mg,n(L) = M(Sg,n, `βi
= Li) = Tg,n(L1, . . . , Ln)/Modg,n

is the moduli space of Riemann surfaces homeomorphic to Sg,n with n boundary
components of length `βi

= Li. Also, we have

Mg,n = Mg,n(0, . . . , 0).

For a disconnected surface S =
k
⋃

i=1

Si such that Ai = ∂Si ⊂ ∂S, we have

M(S,L) =

k
∏

i=1

M(Si, LAi
),

where LAi
= (Ls)s∈Ai

.

The Weil-Petersson symplectic form. By work of Goldman [Go], the space
Tg,n(L1, . . . , Ln) carries a natural symplectic form invariant under the action
of the mapping class group. This symplectic form is called the Weil-Petersson

symplectic form, and denoted by ω or ωwp. We investigate the volume of the
moduli space with respect to the volume form induced by the Weil-Petersson
symplectic form. Also, when S is disconnected, we have

Vol(M(S,L)) =

k
∏

i=1

Vol(M(Si, LAi
)).

When L = 0, there is a natural complex structure on Tg,n, and this symplectic
form is in fact the Kähler form of a Kähler metric [IT].

The Fenchel-Nielsen coordinates. A pants decomposition of S is a set of
disjoint simple closed curves which decompose the surface into pairs of pants.
Fix a system of pants decomposition of Sg,n, P = {αi}ki=1, where k = 6g−6+2n.
For a marked hyperbolic surface X ∈ Tg,n(L), the Fenchel-Nielsen coordinates

associated with P, {`α1
(X), . . . , `αk

(X), τα1
(X), . . . , ταk

(X)}, consists of the
set of lengths of all geodesics used in the decomposition and the set of the
twisting parameters used to glue the pieces. We have an isomorphism

Tg,n(L) ∼= R
P
+ × R

P

by the map
X → (`αi

(X), ταi
(X)).

See [Bu] for more details.
By work of Wolpert, over Teichmüller space the Weil-Petersson symplectic

structure has a simple form in Fenchel-Nielsen coordinates [W1].
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Theorem 2.1 (Wolpert). The Weil-Petersson symplectic form is given by

ωwp =

k
∑

i=1

d`αi
∧ dταi

.

Given a simple closed geodesic α on X and t ∈ R, we can deform the
hyperbolic structure of X by a right twist along α as follows. First, cut X
along α and then reglue back after twisting distance t to the right. We observe
that the hyperbolic structure of the complement of the cut extends to a new
hyperbolic structure on S. The resulting continuous path in Teichmüller space
is the Fenchel-Nielsen deformation of X along α. By Theorem 2.1 the vector
field generated by twisting around is symplectically dual to the exact one-form
d`α. In other words, the natural twisting around α is the Hamiltonian flow of
the length function of α.

Integrating geometric functions over moduli spaces. Here, we develop
a method for integrating certain geometric functions over Mg,n(L). Working
with bordered Riemann surfaces allows us to exploit the existence of commuting
Hamiltonian S1-actions on certain coverings of the moduli space in order to
integrate certain geometric functions over the moduli space of curves.

Let Sg,n be a closed surface of genus g with n boundary components and let
Y ∈ Tg,n. For a simple closed curve γ on Sg,n, let [γ] denote the homotopy class
of γ and let `γ(Y ) denote the hyperbolic length of the geodesic representative
of [γ] on Y . To each simple closed curve γ on Sg,n, we associate the set

Oγ = {[α] |α ∈ Modg,n ·γ}

of homotopy classes of simple closed curves in the Modg,n-orbit of γ on X ∈
Mg,n. Given a function f : R+ → R+, and a multicurve γ on Sg,n define

fγ : Mg,n → R

by

fγ(X) =
∑

[α]∈Oγ

f(`α(X)). (2)

The main idea for integrating over Mγ
g,n is that the decomposition of the sur-

face along γ gives rise to a description of Mγ
g,n in terms of moduli spaces

corresponding to simpler surfaces. This leads to formulas for the integral of fγ
in terms of the Weil-Petersson volumes of moduli spaces of bordered Riemann
surfaces and the function f .

We sketch the proof for the case where γ is a connected simple closed curve.
See Theorem 2.2 for the general case.

First, consider the covering space of Mg,n

πγ : Mγ
g,n = {(X,α) | X ∈ Mg,n, and α ∈ Oγ is a geodesic on X} → Mg,n,
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where πγ(X,α) = X. The hyperbolic length function descends to the function,

` : Mγ
g,n → R

defined by `(X, η) = `η(X). Therefore, we have

∫

Mg,n

fγ(X) dX =

∫

Mγ
g,n

f ◦ `(Y ) dY.

On the other hand, the function f is constant on each level set of ` and we have

∫

Mγ
g,n

f ◦ `(Y ) dY =

∞
∫

0

f(t)Vol(`−1(t)) dt,

where the volume is taken with respect to the volume form − ∗ d` on `−1(t).
Let Sg,n(γ) be the result of cutting the surface Sg,n along γ; that is Sg,n(γ) ∼=

Sg,n −Uγ , where Uγ is an open neighborhood of γ homeomorphic to γ × (0, 1).
Thus Sg,n(γ) is a possibly disconnected compact surface with n+ 2 boundary
components. We define M(Sg,n(γ), `γ = t) to be the moduli space of Riemann
surfaces homeomorphic to Sg,n(γ) such that the lengths of the 2 boundary
components corresponding to γ are equal to t. We have a natural circle bundle

S1 −−−−→ `−1(t) ⊂ Mγ
g,n





y

M(Sg,n(γ), `γ = t)

We will study the S1-action on the level set `−1(t) ⊂ Mγ
g,n induced by twisting

the surface along γ. The quotient space `−1(t)/S1 inherits a symplectic form
from the Weil-Petersson symplectic form. On the other hand, M(Sg,n(γ), `γ =
t) is equipped with the Weil-Petersson symplectic form. By investigating these
S1-actions in more detail, one can show that

`−1(t)/S1 ∼= M(Sg,n(γ), `γ = t)

as symplectic manifolds. Therefore, we have

Vol(`−1(t)) = t Vol(M(Sg,n(γ), `γ = t)).

For any connected simple closed curve γ on Sg,n, we have

∫

Mg,n

fγ(X) dX =

∞
∫

0

f(t) t Vol(M(Sg,n(γ), `γ = t)) dt. (3)

In general, we have ([M2]):
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Theorem 2.2. For any multicurve γ =
k
∑

i=1

ciγi, the integral of fγ over Mg,n(L)

with respect to the Weil-Petersson volume form is given by

∫

Mg,n(L)

fγ(X) dX =
2−M(γ)

| Sym(γ)|

∫

x∈R
k
+

f(|x|) Vg,n(Γ,x, β, L) x · dx,

where Γ = (γ1, . . . , γk), |x| =
k
∑

i=1

ci xi, x · dx = x1 · · ·xk · dx1 ∧ · · · ∧ dxk, and

M(γ) = |{i|γi separates off a one-handle from Sg,n}|.

Given a multicurve γ =
∑k

i=1 ciγi, the symmetry group of γ, Sym(γ), is
defined by

Sym(γ) = Stab(γ)/ ∩k
i=1 Stab(γi).

Recall that given x = (x1, . . . , xk) ∈ R
k
+, Vg,n(Γ,x, β, L) is defined by

Vg,n(Γ,x, β, L) = Vol(M(Sg,n(γ), `Γ = x, `β = L)).

Also,

Vg,n(Γ,x, β, L) =

s
∏

i=1

Vgi,ni
(`Ai

),

where

Sg,n(γ) =

s
⋃

i=1

Si , (4)

Si
∼= Sgi,ni

, and Ai = ∂Si.
By Theorem 2.2 integrating fγ , even for a compact Riemann surface, reduces

to the calculation of volumes of moduli spaces of bordered Riemann surfaces.
This formula can be used to relate the growth of the number of simple closed
geodesics on X ∈ Mg to the volume polynomials [M3].

Remark. Let g ∈ Sym(γ), where γ =
∑k

i=1 ciγi. Then g(γi) = γj implies that
ci = cj .

Connection with the intersection pairings of tautological line bun-
dles. The moduli space Mg,n is endowed with natural cohomology classes. An
example of such a class is the Chern class of a vector bundle on the moduli
space. When n > 0, there are n tautological line bundles defined on Mg,n as
follows. For each marked point i, there exists a canonical line bundle Li in the
orbifold sense whose fiber at the point (C, x1, . . . , xn) ∈ Mg,n is the cotangent
space of C at xi. The first Chern class of this bundle is denoted by ψi = c1(Li).
Note that although the complex curve C may have nodes, xi never coincides
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with the singular points. For any set {d1, . . . , dn} of integers, define the top
intersection number of ψ classes by

〈τd1
, . . . , τdn

〉g =

∫

Mg,n

n
∏

i=1

ψdi

i .

Such products are well defined when the d′is are non-negative integers and
n
∑

i=1

di = 3g − 3 + n. In other cases 〈τd1
, . . . , τdn

〉g is defined to be zero. Since

we are in the orbifold setting, these intersection numbers are rational numbers.
See [HM] and [AC] for more details. In [M1], we use the symplectic geometry of
moduli spaces of bordered Riemann surfaces to relate these intersection pairings
to the volume polynomials. This method allows us to read off the intersection
numbers of tautological line bundles from the volume polynomials:

Theorem 2.3. In terms of the above notation,

Vol(Mg,n(L1, . . . , Ln)) =
∑

|d|≤3g−3+n

Cg(d) L2d1

1 . . . L2dn
n ,

where d = (d1, . . . , dn), and Cg(d) is equal to

2m(g,n)|d|

2|d| |d|! (3g − 3 + n− |d|)!

∫

Mg,n

ψd1

1 · · ·ψdn
n · ω3g−3+n−|d|.

Here m(g, n) = δ(g − 1)× δ(n− 1), d! =
∏n

i=1 di!, and |d| =
∑n

i=1 di.

Recursive formulas for volume polynomials. We approach the study of
the volumes of Mg,n(L) via the length functions of simple closed geodesics on
a hyperbolic surface in Tg,n(L). Our point of departure for calculating these
volume polynomials is a result due to McShane [Mc] which gives an identity for
the lengths of certain types of simple closed geodesics on a surface X ∈ Mg,n

when n > 0. Here we just cite the simplest case of this identity for g = n = 1.
Let X ∈ T1,1 be a hyperbolic once-punctured torus. Then we have

∑

γ

(1 + e`γ(X))−1 =
1

2
,

where the sum is over all simple closed geodesics γ on X. Note that the left
hand side of this identity is a geometric function for f(t) = 1/(1 + et) in the
sense of (2), and the right hand side is independent of X.

This identity can be generalized to hyperbolic surfaces with finitely many
geodesic boundary components or cone singularities [TWZ2]. In [LM], Labourie
and McShane generalize the length identities to arbitrary cross ratios; as a result
they obtain new identities for the Hitchin representations of surface groups in
SL(n,R). For further generalization of these identities see [TWZ1] and [Bo].
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Remark. A recursive formula for the Weil-Petersson volume of the moduli
space of punctured spheres was obtained by Zograf [Z1]. Moreover, Zograf and
Manin have obtained generating functions for the Weil-Petersson volume of
Mg,n[MZ]. See also [KMZ]. Penner has developed a different method for calcu-
lating the Weil-Petersson volume of the moduli spaces of curves with marked
points by using decorated Teichmüller theory [Pe].

3. Asymptotic Behavior of Weil-Petersson

Volumes and Tautological Intersection

Pairings

In this section, we study the asymptotics behavior of the Weil-Petersson volume
of Mg,n as g → ∞.

It is known [Gr] that for a fixed n > 0 there are c1, c2 > 0 such that

cg2(2g)! < Vol(Mg,n) < cg1(2g)!.

This result was extended to the case of n = 0 in [ST]. However, these estimates
do not give much information about the growth of

Bg,n = Vg,n/Vg−1,n+2

and

Cg,n = Vg,n+1/(2gVg,n)

when g → ∞.

Notation. For d = (d1, . . . , dn) with di ∈ N ∪ {0} and |d| = d1 + . . . + dn ≤
3g − 3 + n, let d0 = 3g − 3− |d| and define

[

n
∏

i=1

τdi

]

g,n

=

∏n
i=1(2di + 1)!2|d|

∏n
i=0 di!

∫

Mg,n

ψd1

1 · · ·ψdn
n ωd0 =

=
(2π2)d0

∏n
i=1(2di + 1)!!22|d|

d0!

∫

Mg,n

ψd1

1 · · ·ψdn
n κd0

1 ,

where κ1 = ω
2π2 is the first Mumford class on Mg,n [AC]. By Theorem 2.3 for

L = (L1, . . . , Ln) we have:

Vg,n(2L) =
∑

|d|≤3g−3+n

[τd1
, . . . τdn

]g,n
L2d1

1

(2d1 + 1)!
· · · L2dn

n

(2dn + 1)!
. (5)
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Some useful recursive formulas for the intersection pairings. Given
d = (d1, . . . , dn) with |d| ≤ 3g − 3 + n, the following recursive formulas hold:

I.
[

τ0τ1

n
∏

i=1

τdi

]

g,n+2

=

[

τ40

n
∏

i=1

τdi

]

g−1,n+4

+

+
1

2

∑

g1+g2=g

{1,...,n}=IqJ

[

τ20
∏

i∈I

τdi

]

g1,|I|+2

·
[

τ20
∏

i∈J

τdi

]

g2,|J|+2

,

II.

(2g−2+n)

[

n
∏

i=1

τdi

]

g,n

=
1

2

3g−3+n
∑

L=0

(−1)L(L+1)
π2L

(2L+ 3)!

[

τL+1

n
∏

i=1

τdi

]

g,n+1

.

III. Let a0 = 1/2, and for n ≥ 1,

an = ζ(2n)(1− 21−2n).

Then we have

[τd1
, . . . , τdn

]g,n =

n
∑

j=2

Aj
d
+

1

2
Bd +

1

2
Cd,

where

Aj
d
=

d0
∑

L=0

(2dj + 1) aL



τd1+dj+L−1,
∏

i6=1,j

τdi





g,n−1

,

Bd =

d0
∑

L=0

∑

k1+k2=L+d1−2

aL



τk1
τk2

∏

i6=1

τdi





g−1,n+1

,

and

Cd =
∑

IqJ={2,...,n}

0≤g′≤g

d0
∑

L=0

∑

k1+k2=L+d1−2

aL

[

τk1

∏

i∈I

τdi

]

g′,|I|+1

×[τk2

∏

i∈J

τdi
]g−g′,|J|+1.

Remarks.

• Formula (I) is a special case of Proposition 3.3 in [LX1]. For different
proofs of (II) see [DN] and [LX1]. The proof presented in [DN] uses the
properties of moduli spaces of of hyperbolic surfaces with cone points. See
also [KMZ] and [AC].
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• In terms of the volume polynomials (II) can be written as ([DN]):

∂Vg,n+1

∂L
(L, 2πi) = 2πi(2g − 2 + n)Vg,n(L).

When n = 0,

Vg,1(2πi) = 0,

and
∂Vg,1
∂L

(2πi) = 2πi(2g − 2)Vg. (6)

Note that (III) applies only when n > 0. In the case of n = 0, (6) allows
us to prove necessary estimates for the growth of Vg,0.

• Although (III) has been described in purely combinatorial terms, it is
closely related to the topology of different types of pairs of pants in a
surface. In fact, this formula gives us the volume of Mg,n(L) in terms of
volumes of moduli spaces of Riemann surfaces that we get by removing a
pair of pants containing at least one boundary component of Sg,n.

• If d1 + . . . + dn = 3g − 3 + n, (III) gives rise to a recursive formula for
the intersection pairings of ψi classes which is the same as the Virasoro
constraints for a point. This result is equivalent to the Witten-Kontsevich
formula [M2], [LX2]. See also [MS]. For different proofs and discussions
related to these relations see [Wi], [Ko], [OP], [M1], [KL], and [EO]. In
this paper, we are mainly interested in the intersection parings only con-
taining κ1 and ψi classes. For generalizations of (III) to the case of higher
Mumford’s κ classes see [LX1] and [E].

Basic general estimates. The main advantage of using (III) is that all the
coefficients are positive. Moreover, it is easy to check that

ζ(2n)(1− 21−2n) =
1

(2n− 1)!

∫ ∞

0

t2n−1

1 + et
dt.

Hence,

an+1 − an =

∫ ∞

0

1

(1 + et)2

(

t2n+1

(2n+ 1)!
+
t2n

2n!

)

dt.

As a result, we have:

1. {an}∞n=1 is an increasing sequence, and limn→∞ an = 1;

2.

an+1 − an � 1/22n. (7)
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Using this observation one can prove the following general estimates:

• For any d = (d1, . . . , dn)

[τd1
, . . . , τdn

]g,n ≤ [τ0, . . . , τ0]g,n = Vg,n.

• Then (5) implies that

Vg,n(2L1, . . . , 2Ln) ≤ eLVg,n, (8)

where L = L1 + . . .+ Ln.

• Moreover, since
[τ1, τ0, . . . , τ0] ≤ Vg,n

(I) and (II) for d = 0 imply that for any g, n ≥ 0,

Vg,n+2 ≥ Vg−1,n+4, and b · Vg,n+1 > (2g − 2 + n)Vg,n, (9)

where b =
∑∞

L=0 π
2L(L+ 1)/(2L+ 3)!.

Remark. We will show that as g → ∞ the first inequality of (9) is asymp-
totically sharp. However, (1) implies that when g is fixed and n is large this
inequality is far from being sharp; in fact, given g ≥ 1 as n→ ∞

Vg,n+2 �
√
n Vg−1,n+4.

Asymptotic behavior of the coefficients of volume polynomials. Let
n ≥ 0. The following estimates hold:

• Combining (9) and (7) with a more careful analysis of (III) implies that
for any k ∈ N

[τk, τ0, . . . , τ0]g,n
Vg,n

= 1 +O(1/g), (10)

as g → ∞.

This is a special case of Conjecture 2 in [Z2]. However, (10) fails if k is
not very small compare to g.

• Also, (III) implies that:

g−1
∑

i=1

i(g − i)Vi,1+nVg−i,1+n = O(Vg,1+n),

and hence by (9), we get

g−1
∑

i=1

Vi,2+nVg−i,2+n = O(Vg,2+n/g), (11)

as g → ∞.
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In fact, one can prove a stronger version of (11) by replacing the right-hand
side with O(Vg,2+n/g

2).

Asymptotic behavior of ratios Bg,n and Cg,n. We use (II) to show that
when n is fixed

Vg,n � Vg−1,n+2, and Vg,n+1 � gVg,n. (12)

More generally, we show:

Theorem 3.1. Let n ≥ 0. As g → ∞

a):
Vg,n+1

2gVg,n
→ 4π2,

b):
Vg,n

Vg−1,n+2
→ 1.

Sketch of Proof. We use the following elementary observation to prove (a):

Elementary fact. Let {ri}∞i=1 be a sequence of real numbers and {kg}∞g=1 be

an increasing sequence of positive integers. Assume that for g ≥ 1, and i ∈ N,

0 ≤ cg,i ≤ ci, and limg→∞ cg,i = ci. If
∑∞

i=1 |ciri| <∞, then

lim
g→∞

kg
∑

i=1

ricg,i =
∞
∑

i=1

rici. (13)

Now, let

ri = (−1)i
π2i(i+ 1)

(2i+ 3)!
, kg = 3g − 3 + n , ci = 1 and cg,i =

[τi+1τ0 . . . τ0]g,n
Vg,n+1

.

By (13), and (II) for d = 0 we get

lim
g→∞

2(2g − 2 + n)Vg,n
Vg,n+1

=
1

3!
− 2π2

5!
+ . . .+(−1)L(L+1)

π2L

(2L+ 3)!
+ . . . =

1

2π2
.

On the other hand, from (I) and (11) we get that for n ≥ 2 :

lim
g→∞

Vg,n
Vg−1,n+2

= 1.

Finally, we can use part (a) to get the same result for n = 0, 1. 2

In fact, we can prove that as g → ∞:

Vg,n+2

2gVg,n+1
= 4π2 +O(1/g), and

Vg,n
Vg−1,n+2

= 1 +O(1/g). (14)
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These stronger results imply that:

g−1
∑

i=1

Vi,1 × Vg−i,1 � Vg,1/g
2 � Vg/g. (15)

Remark. These estimates are all consistent with the conjectures of Zograf [Z2]
on the growth of Weil-Petersson volumes as g → ∞.

4. Random Riemann Surfaces of High Genus

In this section, we will discuss the typical behavior of a Riemann surfaces of
large genus with respect to the Weil-Petersson measure.

Notation. The mapping class group Modg,n acts naturally on the set of isotopy
classes of simple closed curves on Sg,n: Two simple closed curves α1 and α2 are
of the same type if and only if there exists g ∈ Modg,n such that g · α1 = α2.
The type of a simple closed curve is determined by the topology of Sg,n − α,
the surface that we get by cutting Sg,n along α.

To simplify the notation, let γ0 be a non-separating simple closed curve on Sg,
and γi be a separating simple closed curve on Sg such that

Sg − γi = Si,1 ∪ Sg−i,1.

Thin part of Mg. First, we discuss the probability of appearance of a short
closed geodesic in a random surface. Recall that every hyperbolic surface has
a thick-thin decomposition; the thin part is the region of injectivity radius is
less than a fixed small number. The thin components of a hyperbolic surface
are neighborhoods of cusps or tubular neighborhoods of short geodesics.

The set of hyperbolic surfaces with lengths of closed geodesics bounded below
by a constant ε > 0 is a compact subset Cε

g,n of the moduli space Mg,n. Some
geometric properties of the moduli space can be controlled more easily in Cε

g,n.
See [Hu] and [Te]. Let Mε

g,n = Mg,n − Cε
g,n.

Theorem 4.1. Given c > 0, and n ≥ 0, there exists ε > 0 such that for any

g ≥ 2
Volwp(Mε

g,n) < cVolwp(Mg,n).

Here we sketch the proof for the case of n = 0. Consider the function

F ε : Mg → R+

defined by

F ε(X) = |{γ|`γ(X) ≤ ε}| = F ε
0 (X) + . . . F ε

g/2(X),
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where F ε
i (X) = |{γ|γ ∈ Oγi

, `γ(X) ≤ ε}|. Then by Theorem 2.2, we have

Volwp(Mε
g) ≤

∫

Mg

F ε(X) dX ≤

≤
g/2
∑

i=1

∫ ε

0

tVolwp(M(Sg − γi, t, t)) dt +

∫ ε

0

tVolwp(Mg−1,2(t, t)) dt

On the other hand, by (8) we know that if t is small enough for i ≥ 1,

Volwp(M(Sg − γi, t, t)) ≤ 2Vi,1 × Vg−i,1,

and
Volwp(Mg−1,2(t, t)) ≤ 2Vg−1,2.

Hence, when ε is small (independent of g), from (12) and (15) we get

Volwp(Mε
g) = O



ε2





g/2
∑

i=1

Vi,1Vg−i,1 + Vg−1,2







 = O(ε2Vg).

Remark. Even though we can make the ratio T ε
g,n = Vol(Mε

g,n)/Vol(Mg,n)
small, for any fixed ε > 0, T ε

g,n does not tend to zero as g → ∞.

Behavior of the systoles. Next, we would like to know how the length of the
shortest closed geodesic on a random Riemann surface grows with the genus. In
general, the systole of a compact metric space X is defined to be the least length
of a noncontractible loop in X. It is known that there are Riemann surfaces
of large genus whose systole behaves logarithmically in the the genus [BP]. In
fact, by [KSV] there is a principal congruence tower of Hurwitz surfaces (PCH),
such that

`syst(XPCH) ≥ 4

3
log(g(XPCH)),

where `syst(X) is the length of a shortest simple closed geodesic on X.
However, such a closed geodesic could be separating or non-separating. For
more on properties of the function `syst : Tg,n → R+ see [S1] and [S2].

First, consider the set of separating simple closed geodesics of typer γ1.
Since

Vg
V1,1 × Vg−1,1

� g,

Theorem 2.2 and (8) imply that we can not cover Mg with surfaces which have
a short separating curve γ ∈ Oγ1

. More precisely, let

Cg(L) = {X ∈ Mg| ∃ separating curve α, `α(X) ≤ L} ⊂ Mg.
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Then

Cg(L) =
g/2
⋃

i=1

Cg(γi, L),

where
Cg(γ, L) = {X ∈ Mg| ∃α ∈ Oγ , `α(X) ≤ L} ⊂ Mg.

Then by Theorem 2.2 and (8), for 1 ≤ i ≤ g/2

Volwp(Cg(γi, L)) ≤ Vi,1 × Vg−i,1e
LL2.

Hence (15) implies that

Volwp(Cg(L))
Vg

≤
∑g/2

i=1 Volwp(Cg(γi, L))
Vg

≤ L2eL
g/2
∑

i=1

Vi,1 × Vg−i,1

Vg
= O

(

L2eL

g

)

.

This implies:

Theorem 4.2. The probability that a Riemann surface in Mg has a separating

simple closed geodesic of length ≤ 1
3 log(g) tends to zero as g → ∞.

Remark. On the other hand, because
Vg

Vg−1,2
is bounded, the situation is very

different for a non-separating simple closed curve. In fact, the probability that
a random Riemann surface has a short non-separating simple closed geodesic
is asymptotically positive.

Finally, we consider the following quantity similar to the Cheeger constant [Bu]
of a Riemann surface. Given X ∈ Tg, let

L(X) = inf
C

`C(X)

min[area(A), area(B)]
,

where C runs over (possibly disconnected) simple closed geodesics on X, with
X − C = A ∪B. Then there exists c > 0 such that

Volwp{X |X ∈ Mg, L(X) < c}
Vg

→ 0

as g → ∞.
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Abstract

In this article we review how to construct new families of simply connected
complex surfaces of general type with pg = 0 and 2 ≤ K2

≤ 4 using a rational
blow-down surgery and Q-Gorenstein smoothing theory. Furthermore, we also
explain that this technique is a very powerful tool to construct many other
interesting families of complex surfaces.
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1. Introduction

One of the fundamental problems in the classification of complex surfaces is to
find a new family of simply connected surfaces of general type with pg = 0.
Surfaces with pg = 0 are interesting in view of Castelnuovo’s criterion: An
irrational surface with q = 0 must have P2 ≥ 1. This class of surfaces has been
studied extensively by algebraic geometers and topologists for a long time.
Nonetheless, simply connected surfaces of general type with pg = 0 are little
known. Although a large number of non-simply connected complex surfaces of
general type with pg = 0 have been known due to Godeaux, Campedelli and so
on ([BHPV], Chapter VII), it was only in 1983 that the first example of a simply

connected surface of general type with pg = 0 appeared, the so-called Barlow
surface [B]. Barlow surface has K2 = 1. Therefore it has been a very important
problem to find a new family of simply connected surfaces with pg = 0. In
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particular, it is very intriguing whether there is a simply connected surface of
general type with pg = 0 and K2 ≥ 2.

In 2004 the author constructed a new simply connected symplectic 4-
manifold with b+2 = 1 and K2 = 2 using a rational blow-down surgery ([P2]).
After this construction, it has been an interesting question whether such a sym-
plectic 4-manifold admits a complex structure. In 2006 Y. Lee and the author
successfully constructed a simply connected, minimal, complex surface of gen-
eral type with pg = 0 and K2 = 2 by modifying the symplectic 4-manifold
constructed in [P2] ([LP1]). Our main techniques involved in the construction
are a rational blow-down surgery and Q-Gorenstein smoothing theory, which
are very different techniques from other classical constructions such as a finite
group quotient and a multiple covering, due to Godeaux, Campedelli, Burniat
and others. In the following year H. Park, D. Shin and the author also found
proper configurations to produce simply connected surfaces of general type with
pg = 0 and 3 ≤ K2 ≤ 4 using the same technique as above ([PPS1, PPS2]).
Furthermore, we notice that many other families of complex surfaces of gen-
eral type such as surfaces with pg = 0 and small homology group, Horikawa
surfaces, and simply connected surfaces with pg = 1 and q = 0 can also be
constructed using a rational blow-down surgery and Q-Gorenstein smoothing
theory ([LP2, LP3, PPS3, PPS4]).

The aim of this article is to survey these constructions above. It is organized
as follows: In Section 2 we briefly review two main techniques, a rational blow-
down surgery and Q-Gorenstein smoothing theory, and we sketch in Section 3
how to construct new families of simply connected surfaces of general type with
pg = 0 and 2 ≤ K2 ≤ 4. And then we mention in Section 4 that many other
families of complex surfaces can also be constructed via a rational blow-down
surgery and Q-Gorenstein smoothing theory.

2. Preliminaries

In this section we first briefly review a rational blow-down surgery initially
introduced by R. Fintushel and R. Stern and extended by the author ([FS, P1]
for details): For any relatively prime integers p and q with p > q > 0, we define
a configuration Cp,q as a smooth 4-manifold obtained by plumbing disk bundles
over the 2-spheres instructed by the following linear diagram

−bk
◦
uk

−
−bk−1

◦
uk−1

− · · · −
−b2
◦
u2

−
−b1
◦
u1

where p2

pq−1
= [bk, bk−1, . . . , b1] is the unique continued fraction with all bi ≥ 2,

and each vertex ui represents a disk bundle over the 2-sphere whose Euler
number is −bi. Orient the 2-spheres in Cp,q so that ui · ui+1 = +1. Then the
configuration Cp,q is a negative definite simply connected smooth 4-manifold
whose boundary is the lens space L(p2, 1−pq). Note that the lens space L(p2, 1−
pq) also bounds a rational ball Bp,q with π1(Bp,q) ∼= Zp.
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Definition. SupposeM is a smooth 4-manifold containing a configuration Cp,q.
Then we construct a new smooth 4-manifold Mp, called a (generalized) rational
blow-down of M , by replacing Cp,q with the rational ball Bp,q. Note that this
process is well-defined, that is, a new smooth 4-manifold Mp is uniquely deter-
mined (up to diffeomorphism) from M because each diffeomorphism of ∂Bp,q

extends over the rational ball Bp,q. We call the procedure replacing Cp,q with
the rational ball Bp,q a rational blow-down surgery. Furthermore, M. Symington
proved that a rational blow-down manifold Mp admits a symplectic structure
in some cases. For example, if M is a symplectic 4-manifold containing a con-
figuration Cp,q such that all 2-spheres ui in Cp,q are symplectically embedded
and intersect positively, then the rational blow-down manifold Mp also admits
a symplectic structure [Sy1, Sy2].

Next, we briefly review Q-Gorenstein smoothing theory for projective sur-
faces with special quotient singularities and we quote some basic facts developed
in [LP1].

Definition. Let X be a normal projective surface with quotient singularities.
Let X → ∆ (or X/∆) be a flat family of projective surfaces over a small disk
∆. The one-parameter family of surfaces X → ∆ is called a Q-Gorenstein

smoothing of X if it satisfies the following three conditions;
(i) the general fiber Xt is a smooth projective surface,
(ii) the central fiber X0 is X,
(iii) the relative canonical divisor KX/∆ is Q-Cartier.

A Q-Gorenstein smoothing for a germ of a quotient singularity (X0, 0) is de-
fined similarly. A quotient singularity which admits a Q-Gorenstein smoothing
is called a singularity of class T.

Proposition 2.1 ([KSB, Ma]). Let (X0, 0) be a germ of two dimensional quo-

tient singularity. If (X0, 0) admits a Q-Gorenstein smoothing over the disk, then

(X0, 0) is either a rational double point or a cyclic quotient singularity of type
1

dn2 (1, dna− 1) for some integers a, n, d with a and n relatively prime.

Proposition 2.2 ([KSB, Ma]). 1. The singularities
−4
◦ and

−3
◦ −

−2
◦ −

−2
◦ −

· · · −
−2
◦ −

−3
◦ are of class T .

2. If the singularity
−b1
◦ − · · · −

−br
◦ is of class T , then so are

−2
◦ −

−b1
◦ − · · · −

−br−1

◦ −
−br−1
◦ and

−b1−1
◦ −

−b2
◦ − · · · −

−br
◦ −

−2
◦ .

3. Every singularity of class T that is not a rational double point can be

obtained by starting with one of the singularities described in (1) and

iterating the steps described in (2).

Let X be a normal projective surface with singularities of class T . Then
the natural question arises whether this local Q-Gorenstein smoothing can be
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extended over the global surface X or not. Roughly geometric interpretation
is the following: Let ∪Vα be an open covering of X such that each Vα has
at most one singularity of class T . By the existence of a local Q-Gorenstein
smoothing, there is a Q-Gorenstein smoothing Vα/∆ of Vα. The question is if
these families glue to a global one. The answer can be obtained by figuring
out the obstruction map of the sheaves of deformation T i

X = ExtiX(ΩX ,OX)
for i = 0, 1, 2. For example, if X is a smooth surface, then T 0

X is the usual
holomorphic tangent sheaf TX and T 1

X = T 2
X = 0. By applying the standard

result of deformations [LS, Pa] to a normal projective surface with quotient
singularities, we get the following

Proposition 2.3 ([Wa]). Let X be a normal projective surface with quotient

singularities. Then

1. The first order deformation space of X is represented by the global Ext

1-group T1
X = Ext1X(ΩX ,OX).

2. The obstruction lies in the global Ext 2-group T2
X = Ext2X(ΩX ,OX).

Furthermore, by applying a general result of the local-global spectral se-
quence of ext sheaves ([Pa]) to deformation theory of surfaces with quotient
singularities (i.e. Ep,q

2 = Hp(T q
X) ⇒ T

p+q
X ) and by the fact that Hj(T i

X) = 0
for i, j ≥ 1, we also get

Proposition 2.4 ([Ma, Wa]). Let X be a normal projective surface with quo-

tient singularities. Then

1. We have the exact sequence

0 → H1(T 0
X) → T1

X → ker[H0(T 1
X) → H2(T 0

X)] → 0

where H1(T 0
X) represents the first order deformations of X for which the

singularities remain locally a product.

2. If H2(T 0
X) = 0, every local deformation of the singularities may be glob-

alized.

Theorem 2.5 ([LP1]). Let X be a normal projective surface with singularities

of class T . Let π : V → X be the minimal resolution and let E be the reduced

exceptional divisors. Suppose that H2(TV (− log E)) = 0. Then H2(T 0
X) = 0

and there is a Q-Gorenstein smoothing of X.

3. Simply Connected Surfaces of General Type

with pg = 0

In this section we explain how to construct a new family of simply connected
complex surfaces of general type with pg = 0 using a rational blow-down surgery
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and Q-Gorenstein smoothing theory. The following is an overall scheme to con-
struct such surfaces:

STEP 1: We first choose a special rational elliptic surface Y → P1 with desired
singular fibers by blowing up 9 times from a cubic pencil in P2. And then

we blow up many times again to get a projective normal surface Z = Y ]kP
2

which contains several disjoint configurations {Cp1,q1 , . . . , Cpn,qn} representing
the resolution graphs of singularities of class T.

STEP 2: We perform a rational blow-down surgery along the disjoint config-
urations {Cp1,q1 , . . . , Cpn,qn} to get a symplectic 4-manifold Zp1,...,pn

. On the
other hand, we also contract these chains of curves lying in ∪n

i=1Cpi,qi from Z
to produce a projective surface X with n number of singularities of class T.

STEP 3: We apply Q-Gorenstein smoothing theory to prove that the normal
projective X has a Q-Gorenstein smoothing, i.e. there exists one-parameter
family of surfaces X = ∪Xt → ∆ with X0 = X. Note that the exis-
tence of a global Q-Gorenstein smoothing of X depends on the configurations

{Cp1,q1 , . . . , Cpn,qn} lying in Z = Y ]kP
2
. For example, we have the following

proposition which constrains a choice of configurations {Cp1,q1 , . . . , Cpn,qn} ly-
ing in Z:

Proposition 3.1 ([LP1]). Let Y be a rational elliptic surface and let g : Y → P1

be a relatively minimal elliptic fibration without multiple fibers. Assume that Z
is obtained from Y by blowing-up at the singular points p1, . . . , pj on nodal

fibers with j ≤ 2. Let F1, . . . , Fj be the proper transforms of nodal fibers. Then

H2(Z, TZ(− log(F1 + · · ·+ Fj))) = 0.

STEP 4: We show that the rational blow-down symplectic 4-manifold Zp1,...,pn

is simply connected, and we also show that the general fiber Xt of Q-Gorenstein
smoothing of X is a minimal surface of general type with pg = 0 and K2 > 0.
Note that both the simple connectivity of Zp1,...,pn

and the minimality of Xt

also depend on the configurations {Cp1,q1 , . . . , Cpn,qn} lying in Z = Y ]kP
2
. I.e.

we can choose appropriate configurations {Cp1,q1 , . . . , Cpn,qn} in a right rational

surface Z = Y ]kP
2
so that they guarantee simple connectivity and minimality.

STEP 5: By using the fact coming from the standard argument about Mil-
nor fibers that the general fiber Xt is diffeomorphic to the rational blow-down
4-manifold Zp1,p2,...,pn

, we conclude that the general fiber Xt is a simply con-
nected, minimal, surface of general type with pg = 0 and K2 > 0.

In this way, we were able to construct a series of simply connected complex
surfaces of general type with pg = 0 and 1 ≤ K2 ≤ 4:

Theorem 3.2 ([LP1, PPS1, PPS2]). There exist a family of simply connected,

minimal, complex surfaces of general type with pg = 0 and 1 ≤ K2 ≤ 4.
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In the remaining of this section, we explicitly present appropriate configu-

rations Cp,q’s in a right rational surface Z = Y ]kP
2
to produce desired simply

connected surfaces of general type with pg = 0 and 2 ≤ K2 ≤ 4.

Remark: Although an example with pg = 0 and K2 = 1 can also be constructed
similarly, we omit the case in this article because we do not know whether it is
diffeomorphic to Barlow surface or not.

3.1. An example with pg = 0 and K2 = 2. We begin with
a special elliptic fibration g : E(1) → P1 constructed as follows: Let A be
a line and B be a smooth conic in P2. Choose another line L in P2 which
meets B at two distinct points p, q, and which also meets A at a different
point r. We may assume that the conic B and the line A meet at two different
points which are not p, q, r. We now consider a cubic pencil in P2 induced
by A + B and 3L, i.e. λ(A + B) + µ(3L), for [λ : µ] ∈ P1 (Figure 1-(a)).
After we blow up first at three points p, q, r, blow up again three times at the
intersection points of the proper transforms of B,A with the three exceptional
curves e1, e2, e3. Finally, blowing up again three times at the intersection points
of the proper transforms of B and A with the three new exceptional curves

e′1, e
′

2, e
′

3, we get an elliptic fibration E(1) = P2]9P
2
over P1. Let us denote

this elliptic fibration by g : Y = E(1) → P1. Note that there is an Ẽ6-singular
fiber on the fibration g : Y → P1 which consists of the proper transforms
of L, e1, e

′

1, e2, e
′

2, e3, e
′

3. We also note that there is one I2-singular fiber on
g : Y → P1 which consists of the proper transforms of the line A and the conic
B. Furthermore, by the proper choice of curves A,B and L guarantees two more
nodal singular fibers on g : Y → P1. Hence the fibration g : Y → P1 has one
Ẽ6-singular fiber, one reducible I2-singular fiber, and two nodal singular fibers
(Figure 1-(b)).

(a) A pencil (b) Y = E(1)

Figure 1: A pencil and an elliptic surface Y for K2 = 2

Now we blow up the surface Y totally 17 times at the marked points in

Figure 1-(b) above. Then we get a rational surface Z ′ := Y ]17P
2
(Figure 2).
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Figure 2: A rational surface Z ′ = Y ]17P
2
for K2 = 2

Then, by blowing up the surface Z ′ once again at the marked point in

Figure 2, we finally get a rational surface Z := Y ]18P
2
which contains five

disjoint linear chains of P1’s (Figure 3):

C15,7 =
−2
◦ −

−10
◦ −

−2
◦ −

−2
◦ −

−2
◦ −

−2
◦ −

−2
◦ −

−3
◦ , C5,1 =

−7
◦ −

−2
◦ −

−2
◦ −

−2
◦ ,

C9,4 =
−2
◦ −

−7
◦ −

−2
◦ −

−2
◦ −

−3
◦ , C3,1 =

−5
◦ −

−2
◦ and C2,1 =

−4
◦

Figure 3: A rational surface Z = Y ]18P
2
for K2 = 2

Next, we contract these five disjoint chains {C15,7, C9,4, C5,1, C3,1, C2,1}

from Z = Y ]18P
2

so that it produces a normal projective surface
X with five quotient singular points of class T. And then, by proving
H2(Z, TZ(− logDZ)) = 0 (so that H2(X,T 0

X) = 0), we can prove that X has a
global Q-Gorenstein smoothing due to Theorem 2.5 above. Finally, it is easy to
check that the general fiber Xt of the Q-Gorenstein smoothing of X is a simply
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connected, minimal, complex surface of general type with pg = 0 and K2 = 2
(see [LP1] for details).

3.2. An example with pg = 0 and K2 = 3. Let A be a line and
B be a smooth conic in P2 such that A and B meet at two different points.
Choose a tangent line L1 to B at a point p ∈ B so that L1 intersects with A at
a different point q ∈ A, and draw a tangent line L2 from q to B which tangents
at the point r ∈ B. Let L3 be the line connecting p and r which meets A at s
(Figure 4-(a)).

(a) A pencil (b) Y = E(1)

Figure 4: A pencil and an elliptic surface Y for K2 = 3

We consider a cubic pencil in P2 induced by A+B and L1 + L2 + L3, and
blow up first at p and blow up at the intersection point of the proper transform
of B with the exceptional curve e1. And then blow up again at the intersection
point of the proper transform of B with the exceptional curve e2. Similarly,
after blowing up at r, blow up two more times at the intersection point of the
proper transform of B with the exceptional curves e4 and e5. Next, blow up at
q, and then blow up again at the intersection point of the proper transform of
A with the exceptional curve e7. Let e8 be the exceptional curve induced by
the blowing up. Finally, blowing up once at s, which induces the exceptional

divisor e9, we get an elliptic fibration E(1) = P2]9P
2
over P1. Let us denote

this elliptic fibration by g : Y → P1. Note that there is an I8-singular fiber on
g : Y → P1 which consists of the proper transforms of L1, L2, L3, e1, e2, e4,
e5, e7. There is also one I2-singular fiber on g : Y → P1 which consists of the
proper transforms of A and B, denoted by Ã and B̃ respectively. According
to the list of Persson [Pe], there exist only two more nodal singular fibers on
g : Y → P1 (Figure 4-(b)).

Now we blow up the surface Y totally 10 times at the marked points in

Figure 4-(b) above. Then we get a rational surface Z ′ := Y ]10P
2
(Figure 5).

And we blow up the surface Z ′ totally 11 times again at the marked points as
in Figure 5.
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Figure 5: A rational surface Z ′ = Y ]10P
2
for K2 = 3

Then we finally get a rational surface Z := Y ]21P
2
which contains four

disjoint linear chains of P1’s, C2,1 =
−4
◦ (Ã), C7,1 =

−9
◦ −

−2
◦ −

−2
◦ −

−2
◦ −

−2
◦ −

−2
◦

(which contains the proper transform of F2), C19,5 =
−4
◦ −

−7
◦ −

−2
◦ −

−2
◦ −

−3
◦ −

−2
◦ −

−2
◦ (which contains the proper transforms of S1, S2, and a part of proper

transforms of I8-singular fibers) and C35,6 =
−6
◦ −

−8
◦ −

−2
◦ −

−2
◦ −

−2
◦ −

−3
◦ −

−2
◦ −

−2
◦ −

−2
◦ −

−2
◦ (which contains the proper transforms of S3, F1, and a part of

proper transforms of I8-singular fibers) (Figure 6).

Figure 6: A rational surface Z = Y ]21P
2
for K2 = 3

Finally, by applying Q-Gorenstein smoothing theory to Z as above, we con-
struct a simply connected, minimal, complex surface with pg = 0 and K2 = 3.
That is, we first contract four disjoint linear chains C2,1, C7,1, C19,5 and C35,6

of P1’s from Z so that it produces a normal projective surface X with four
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permissible singular points. And then,by proving H2(Z, TZ(− logDZ)) = 0,
we conclude that X has a global Q-Gorenstein smoothing. Furthermore, the
remaining argument is the same as K2 = 2 case (see [PPS1] for details).

3.3. An example with pg = 0 and K2 = 4. Let L1, L2, L3 and A
be lines in P2 and let B be a smooth conic in P2 intersecting as in Figure 7(a).
We consider a pencil of cubics generated by two cubic curves L1 + L2 + L3

and A + B, which has 4 base points, say, p, q, r and s. In order to obtain
an elliptic fibration over P1 from the pencil, we blow up three times at p and
r, respectively, and twice at s, including infinitely near base-points at each
point, and one further blowing-up at the base point q. Then, by blowing-up
totally nine times, we resolve all base points of the pencil and we get an elliptic

fibration Y = P2]9P
2
over P1 (Figure 8). Note that the elliptic fibration Y has

an I8-singular fiber consisting of the proper transforms L̃i of Li (i = 1, 2, 3).

Also Y has an I2-singular fiber consisting of the proper transforms Ã and B̃
of A and B, respectively. According to the list of Persson [Pe], we may assume
that Y has only two more nodal singular fibers F1 and F2 by choosing generally
Li’s, A and B (Figure 8).

(a) Two generators (b) A bisection

Figure 7: A pencil of cubics for K2 = 4

Let M be the line in P2 passing through the point q and the node of the
nodal cubic curve F1. The node of F1 does not lie on any Li’s, A, and B. Hence
it satisfies that M 6= L1, M 6= A, and M̃ · M̃ = 0, where M̃ is the proper
transform of M in Y (Figure 7(b)). We may assume further that M does not
pass through the node of the other nodal cubic curve F2 by choosing generally
Li’s, A, and B. Since M meets every member in the pencil at three points, M̃
is a bisection of the elliptic fibration Y → P1. Furthermore, since q ∈ M , the
section S2 meets M̃ at one point (Figure 8).

Next, by blowing-up 9 times at the marked points on Y as in Figure 8, we

get a rational surface Z := Y ]9P
2
which contains a special linear chain of P1’s,

C252,145 =
−2
◦

u13

−
−4
◦

u12

−
−6
◦

u11

−
−2
◦

u10

−
−6
◦
u9

−
−2
◦
u8

−
−4
◦
u7

−
−2
◦
u6

−
−2
◦
u5

−
−2
◦
u4

−
−3
◦
u3

−
−2
◦
u2

−
−3
◦
u1

,
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Figure 8: A rational surface Y for K2 = 4

which contains Ã, S2, F̃2, S1, F̃1, M̃ , L̃2, L̃1, and L̃3, where ui represents an
embedded rational curve (Figure 9).

Figure 9: A rational surface Z = Y ]9P
2
for K2 = 4

Finally, the remaining argument is the same as above (see [PPS2] for de-
tails).

4. Other Surfaces Via Q-Gorenstein

Smoothings

As we notice in the previous section, Q-Gorenstein smoothing theory together
with a rational blow-down surgery is a very powerful tool to construct a new
family of simply connected surfaces of general type with pg = 0. In fact, this
technique also produces many other interesting families of complex surfaces. For
example, the following results have been obtained via Q-Gorenstein smoothings
in last several years.
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Theorem 4.1 ([LP2]). There exist minimal complex surfaces of general type

with pg = 0, K2 = 2 and H1 = Z/2Z,Z/3Z.

Theorem 4.2 ([PPS3]). There exists a minimal complex surface of general

type with pg = 0, K2 = 3 and H1 = Z/2Z.

Theorem 4.3 ([KL]). There exist minimal complex surfaces of general type

with pg = 0, 1 ≤ K2 ≤ 3 and π1 = Z/2Z.

Theorem 4.4 ([Ph]). There exists a minimal complex surface of general type

with pg = 0, K2 = 4 and π1 = Z/2Z.

Theorem 4.5 ([PPS4]). There exist a family of simply connected, minimal,

complex surfaces of general type with pg = 1, q = 0 and K2 = 1, 2, . . . , 6, 8.

Theorem 4.6 ([LP3]). The projective surface Xn obtained by contracting

two disjoint configurations Cn−2,1 on an elliptic surface E(n) admits a Q-

Gorenstein smoothing of two quotient singularities simultaneously, and a gen-

eral fiber of the Q-Gorenstein smoothing is a Horikawa surface H(n).
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1. Contact 3-manifolds

We start by reviewing basic definitions of 3-dimensional contact topology. (For
a more complete treatment the reader is advised to turn to [13].) Let Y be a
given closed, oriented, smooth 3-manifold. A 1-form α is a (positive) contact
form if α ∧ dα > 0 (with respect to the given orientation). A 2-plane field
ξ ⊂ TY is a positive, coorientable contact structure on Y if there is a contact
1-form α ∈ Ω1(Y ) such that ξ = kerα. By fixing α up to multiplication by
smooth functions f : Y → R+, we also fix an orientation for the 2-plane field ξ:
the basis {v1, v2} ⊂ ξp is positive if {v1, v2, n} with normal vector n satisfying
α(n) > 0 provides an oriented basis for TpY .

The 1-form α = dz + xdy induces a contact structure on the 3-dimensional
Euclidean space R3. It turns out that this contact structure extends to the 3-
sphere S3. In addition, the resulting 2-plane field is isotopic (through contact
structures) to the 2-plane field of complex tangencies on S3 when viewed as
the boundary of the unit 4-ball in the complex vector space C2. The above
structures are the standard contact structures on R3 and S3, and we will denote

∗The author was supported by OTKA T67928. He wants to thank Paolo Lisca, Peter
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them by ξst. According to Darboux’s Theorem, locally any contact structure is
like the standard one; more precisely, for any p ∈ Y and any contact form α on
Y there are coordinates near p in which α is the standard contact form on the
chart. In short, contact structures are locally the same. According to Gray’s
Stability Theorem, contact structures do not admit deformations, since if ξt
(t ∈ [0, 1]) is a smooth family of contact structures on the closed 3-manifold Y

then there is an isotopy (φt)t∈[0,1] such that (φt)∗(ξ0) = ξt for all t ∈ [0, 1].

Fillings. Any closed, oriented 3-manifold is the boundary of a compact 4-
manifold (i.e. the third cobordism group Ω3 is zero). Contact 3-manifolds which
are boundaries (in an appropriate sense, to be described below) of symplectic
or complex 4-manifolds admit special features. Let (X,ω) be a given compact,
symplectic 4-manifold, that is, X is a smooth, compact, oriented 4-manifold
with possibly non-empty boundary and ω is a closed 2-form with ω ∧ ω > 0
(with respect to the given orientation). (X,ω) is a weak symplectic filling of
the contact 3-manifold (Y, ξ) if ∂X = Y as oriented manifolds and ω|ξ 6= 0.
A symplectic filling (X,ω) is a strong filling of (Y, ξ) if there is a 1-form α

near ∂X with ω = dα, dα|ξ 6= 0 and ξ = {α|Y = 0}, i.e. α|Y is a contact
form for ξ. The compact complex manifold (X, J) with complex structure J

is a Stein filling of (Y, ξ) if ∂X = Y , ξ is given as the oriented 2-plane field
of complex tangencies on Y and (X, J) is a Stein domain, that is, it admits
a proper, plurisubharmonic function ϕ : X → [0,∞) (with ∂X = ϕ−1(a) for
some regular value a ∈ R), i.e., the 2-form ωϕ = −dCdϕ is a Kähler form with
associated Kähler metric gϕ. It is not hard to see that a Stein filling is always
a strong filling and a strong filling is automatically a weak filling. The converse
of any of these inclusions fail to hold. The contact 3-manifold (Y, ξ) is (weakly,
strongly or Stein) fillable if it admits a corresponding filling. Once again, weak
(and similarly, strong) implies strong (respectively, Stein) fillability, while the
converse of these implications do not hold. For more about fillings see [7].

Knots in contact topology. As knot theory plays a special role in the
study of 3-manifolds, knots compatible with contact structures are extremally
important in contact topology. A knot K ⊂ (Y, ξ) is called Legendrian if it
is tangent to ξ, i.e., if for ξ = kerα we have α(TK) = 0. Every knot can
be smoothly isotoped to a Legendrian knot, in fact, for every knot there is a
C0-close Legendrian knot smoothly isotopic to it. Legendrian knots in (R3, ξst)
(and so in (S3, ξst)) can be depicted by their front projections to the yz-plane,
since according to the equation x = − dz

dy
the slope of the tangent of the front

projection determines the x-coordinate. After possibly isotoping, every Leg-
endrian knot admits a front projection with no triple points, only transverse
double points and (2, 3)-cusps instead of vertical tangencies. Conversely, any
front projection having cusps instead of vertical tangencies and not admitting
crossings with higher slope in front uniquely specifies a Legendrian knot. For
this reason we will symbolize Legendrian knots in (R3, ξst) (and so in (S3, ξst))
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by their front projections, see also [19, 38]. Notice that if L ⊂ (Y, ξ) is Legen-
drian, it admits a canonical framing: consider the unit orthogonal of the tangent
vector of L in ξ. The resulting framing is called the contact framing of the Leg-
endrian knot L. If L is null-homologous in Y then it admits another framing,
induced by pushing off L along its existing Seifert surface; this latter framing is
called the Seifert framing. When measuring the contact framing with respect to
this Seifert framing we get an integer invariant of the Legendrian knot L called
the Thurston–Bennequin invariant tb(L). If L ⊂ (Y, ξ) is null-homologous then
there is another numerical invariant we can associate to it: consider a Seifert
surface Σ ⊂ (Y, ξ) and take the relative Euler class of ξ (as an oriented 2-plane
bundle) over Σ. For this to make sense we need to trivialize ξ over ∂Σ = L:
choose the trivialization provided by the tangents of L together with their ori-
ented normals in ξ. Note that in order to specify the tangents we need to fix an
orientation on L, which provides a compatible orientation on the Seifert surface
Σ. The resulting quantity, called the rotation number rotΣ(L), will in general
depend on the chosen Seifert surface and the orientation fixed on the knot. It is
easy to see that the two ’classical’ invariants tb(L) and rotΣ(L) of an oriented
Legendrian knot remain unchanged under Legendrian isotopy. Notice that for
knots in S3 the rotation number is independent of the chosen surface (since
H2(S

3;Z) = 0), and both the Thurston–Bennequin and the rotation numbers
can be easily read off from a front projection, cf. [38, Section 4.2].

Stabilization changes a Legendrian knot in a simple way: in a Darboux
chart we replace a segment (depicted by the left of Figure 1) with one of the
right diagrams of the same figure. After fixing an orientation on L, we can
speak of positive and negative stabilizations, resulting in L±. It follows that
tb(L±) =tb(L)− 1 and rotΣ(L

±) =rotΣ(L)± 1.

L

L

L

−

+

Figure 1. The two stabilizations of an oriented Legendrian knot.

A knot T ⊂ (Y, ξ) is called transverse if the tangent vectors of T are trans-
verse to ξ. A transverse knot comes with a natural orientation by declaring
a tangent vector positive if the contact 1-form α evaluates positively on it.
A Legendrian knot can be perturbed to become transverse, and in fact every
transverse knot occurs in this way. Assume that T is null-homologous and fix
a Seifert surface Σ for T . The self-linking number s`Σ(T ) can be conveniently
defined using the fact that T can be approximated by Legendrian knots: take
an oriented Legendrian knot L which can be perturbed to T and define s`Σ(T )
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to be equal to tbΣ(L) − rotΣ(L). Since by [8] the Legendrian approximation
of T is unique up to negative stabilization and Legendrian isotopy, the above
quantity is clearly independent of the chosen approximation.

Overtwisted versus tight dichotomy. A contact 3-manifold (Y, ξ)
is overtwisted if there is an embedded 2-disk D ⊂ Y which is tangent to ξ along
its boundary. Such a disk D is called and overtwisted disk. If (Y, ξ) contains no
overtwisted disk, we say that it is tight.

Theorem 1.1 (Eliashberg–Gromov). If the contact 3-manifold (Y, ξ) is fillable
then it is tight.

The above theorem is a major tool in proving tightness of contact structures.
For a while, actually, it was unclear whether the reverse implication of the
theorem is true or false. As we will show in Section 4, it is now known to be false.
Regarding overtwisted contact structures we have Eliashberg’s classification:

Theorem 1.2 (Eliashberg, [6]). Two overtwisted contact structures on a closed
3-manifold Y are isotopic if and only if they are homotopic as oriented 2-plane
fields. Moreover, for any oriented 2-plane field there is an overtwisted contact
structure homotopic to it.

In short, the classification of overtwisted contact structures on a closed 3-
manifold Y up to isotopy coincides with the classification of oriented 2-plane
fields up to homotopy. There is a more intimate relationship between the ge-
ometry of Y and tight structures on it.

Theorem 1.3 (Eliashberg). For any closed, oriented surface Σ ⊂ Y with Euler
characteristic χ(Σ) and tight contact structure ξ on Y either Σ = S2 and then
〈c1(ξ), [Σ]〉 = 0 or we have χ(Σ) ≤ 0 and

〈c1(ξ), [Σ]〉 ≤ −χ(Σ).

For a tight contact structure ξ on Y and a Legendrian knot L ⊂ (Y, ξ) with
Seifert surface Σ the inequality

tbΣ(L) + |rotΣ(L)| ≤ −χ(Σ)

is satisfied.

According to a result of Bennequin, the contact structure ξst on R3 (and on
S3) is tight. On the other hand, for example, the contact structure ξ1 = kerα1

for α1 = cos rdz + r sin rdθ in cylindircal coordinates (z, (r, θ)) on R3 can be
easily shown to be overtwisted.

The Giroux torsion Tor(Y, ξ) of a contact 3-manifold (Y, ξ) is defined as the
supremum of the integers n ≥ 1 for which there is a contact embedding of

Tn := (T 2 × [0, 1], ker(cos(2πnz)dx− sin(2πnz)dy))
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(with x, y coordinates on T 2 and z on [0, 1]) into (Y, ξ). We say that Tor(Y, ξ) =
0 if no such embedding exists. (Notice that Tor(Y, ξ) might be equal to ∞; for
example, the Giroux torsion is ∞ for all overtwisted contact structures.) The
importance of this invariant stems from the following result.

Theorem 1.4 ([1], Theorem 1.4). Let Y be a closed 3-manifold. For every
natural number n the 3-manifold Y carries at most finitely many isomorphism
classes of tight contact structures with Giroux torsion bounded above by n.

The central problem of 3-dimensional contact topology is to classify contact
structures on 3-manifolds. Since overtwisted structures are classified by their
homotopy type, the question reduces to understanding tight contact structures.
Tight structures are much harder to find, and seem to carry important infor-
mation about the geometry of the underlying 3-manifold, as is demonstrated
by the successful application of contact topological arguments in the solution of
several low-dimensional problems, see for example [23, 24], cf. also [44]. Great
advances have been made in the recent past in classifying tight contact struc-
tures on some simple 3-manifolds, and this question is still in the focus of
active research. In this note we would like to recall an application of contact
Ozsváth–Szabó invariants to solve the classification problem on certain classes
of 3-manifolds. Closely related to this problem, in the theory of Legendrian
and transverse knots, it is a natural question, to which extent do the ’classical’
invariants tb and rot (and s` in the transverse case) determine the Legendrian
(resp. transverse) knot in a given knot type. If these numerical invariants de-
termine the Legendrian (transverse) knot, the knot type is called Legendrian
(transverse) simple. As we will show, Ozsváth–Szabó invariants can be used to
provide examples of non-simple knot types.

Contact surgery. Suppose that L ⊂ (Y, ξ) is a Legendrian knot in the
given contact 3-manifold. Consider the contact framing on L and perform r-
surgery with respect to this framing. The resulting 3-manifold is denoted by
Yr(L). According to the classification of tight contact structures on solid tori
[20], the contact structure ξ admits an extension from Y − ν(L) to Yr(L) as
a tight structure on the new glued-up torus provided r 6= 0. (The extension
might not be tight on the entire closed 3-manifold Yr(L) but it is required to
be tight on the solid torus of the surgery.) Such a tight extension is not unique in
general; the different extensions can be determined from the continued fraction
coefficients of r. Nevertheless, the extension is unique if r ∈ Q is of the form
1
k
for some integer k ∈ Z. In particular, according to the above, we have that

if L = L+ ∪ L− ⊂ (S3, ξst) is a given Legendrian link, then the result of
contact (+1)-surgery along components of L+ and contact (−1)-surgery along
components of L− uniquely specifies a contact 3-manifold (YL, ξL). In fact, the
converse of this statement also holds, namely we have
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Theorem 1.5 (Ding–Geiges, [2], cf. also [4]). For a given contact 3-manifold
(Y, ξ) there exists a Legendrian link L = L+∪L− ⊂ (S3, ξst) such that (YL, ξL) =
(Y, ξ). In fact, we can assume that |L+| ≤ 1.

According to a result of Eliashberg, the contact 3-manifold (YL, ξL) is Stein
fillable once L = L−. The tightness of (YL, ξL) in general is, however, a rather
delicate question. As we will see, contact Ozsváth–Szabó invariants (and their
appropriate variants) provide convenient tools to study such questions.

Open book decompositions and Giroux’s theorem. The def-
inition of the contact Ozsváth–Szabó invariant rests on a seminal result of
Giroux [18], providing a close connection between open book decompositions
and contact structures on a given 3-manifold Y . Here we restrict ourselves to
an outline of this beautiful theory; for a more complete treatment the reader is
advised to turn to [9, 18].

Suppose that L ⊂ Y is a fibered link in Y , that is, the complement Y − L

fibers as f : Y −L → S1 over the circle S1, and the fibers of f provide (interiors
of) Seifert surfaces for L. A fiber F of f is a page, while L is the binding of the
open book decomposition. The monodromy ϕ of the fibration f : Y − L → S1

is called the monodromy of the open book decomposition. A contact structure
ξ on Y is said to be compatible with an open book decomposition (F,ϕ) on Y

if there is a contact 1-form α defining ξ such that the binding L is transverse
with respect to ξ and the 2-form dα is a volume form on each page. In addition,
we assume that the orientation of the binding as a transverse knot coincides
with its orientation as the boundary of a page (which is oriented by dα).

According to a classical theorem of Thurston and Winkelnkemper, for any
open book decomposition there exists a contact structure compatible with it,
and a simple argument shows that if two contact structures are compatible with
the same open book decomposition then they are isotopic. Giroux [18] proved
that the converse of this statement is also true, namely for any contact structure
there is an open book decomposition compatible with it. Let F ′ denote the
surface we get by adding a 1-handle to F . The open book decomposition with
page F ′ and monodromy ϕ ◦ ta is called a positive stabilization of (F,ϕ) if ta is
the right-handed Dehn twist along a simple closed curve a ⊂ F ′ intersecting the
cocore of the new 1-handle in a single (transverse) point. With this notion in
place, we can formulate the central result clarifying the relation between open
book decompositions and compatible contact structures.

Theorem 1.6 (Giroux, [18]). (a) For a given open book decomposition of Y
there is a compatible contact structure ξ on Y . Contact structures compatible
with a fixed open book decomposition are isotopic.

(b) For a contact structure ξ on Y there is a compatible open book decomposition
of Y . Two open book decompositions compatible with a fixed contact structure
admit common positive stabilization.
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2. Heegaard Floer Theory

In this section we outline the basics of Heegaard Floer theory; we restrict our-
selves to a short introduction, highlighting the aspects crucial for contact topo-
logical considerations. For a more detailed treatment see [41, 42].

Ozsváth–Szabó homologies of 3-manifolds. Elementary Morse
theory shows that a closed, oriented 3-manifold Y admits a Heegaard decom-
position Y = U1 ∪Σg

U2 into two solid genus-g handlebodies U1 and U2, glued
together along a surface Σg of genus g. A solid genus-g handlebody with bound-
ary Σg can be specified by g disjoint, simple closed curves α1, . . . , αg ⊂ Σg which
are linearly independent in homology: attaching handles along αi (together with
a 3-ball) we recover the given handlebody. Therefore Y can be described by a
Heegaard diagram

(Σg,α = {αi}
g
i=1,β = {βj}

g
j=1).

Consider the gth symmetric power Symg(Σg) and the g-dimensional tori Tα =
α1 × . . .× αg and Tβ = β1 × . . .× βg in it. A symplectic structure on Σg gives
rise to a symplectic structure on Symg(Σg); let J be an appropriate compatible
almost-complex structure. Furthermore, fix a point w ∈ Σg (the basepoint)
distinct from all the α- and β-curves and consider the hypersurface Vw =
{w}×Symg−1(Σg), which is disjoint from the tori Tα and Tβ . For x,y ∈ Tα∩Tβ

let Mx,y denote the moduli space of holomorphic maps u : ∆ → Symg(Σg)−Vw

from the unit disk ∆ ⊂ C with the properties that u(i) = x, u(−i) = y and the
arc connecting i and −i on ∂∆ is mapped into Tα (resp. into Tβ) if the points
on the arc have negative (resp. positive) real parts. The space Mx,y admits an
R-action, let Nx,y denote the quotient by this action.

Consider ĈF (Y ) = ⊕x∈Tα∩Tβ
Z2〈x〉 and define the map ∂̂ : ĈF (Y ) →

ĈF (Y ) by the matrix element 〈∂x,y〉 (for x,y ∈ Tα ∩ Tβ) as

〈∂̂x,y〉 = #Nx,y (mod 2),

where #Nx,y is the number of 0-dimensional components of Nx,y. (For the sake
of simplicity above we used Z2-coefficients. The theory can be set up using Z-
coefficients, in which case a coherent choice of orientations of the various moduli
spaces must be made.) When b1(Y ) 6= 0, not every Heegaard diagram gives rise
to a well-defined theory, and one must assume that the Heegaard diagram is
(weakly) admissible, cf. [41].

Standard theory of Floer homologies shows that ∂̂◦∂̂ = 0, hence (ĈF (Y ), ∂̂)

is a chain complex. We define the Ozsváth–Szabó homology ĤF (Y ) of the 3-
manifold Y as the homology of this chain complex.

Theorem 2.1 (Ozsváth–Szabó, [41]). The Abelian group ĤF (Y ) is an invari-
ant of the 3-manifold Y and is independent of the choices made throughout its
definition.
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It can be shown directly that by fixing the basepoint w, any intersection
point x ∈ Tα∩Tβ determines a spinc structure tx, and ∂̂x can have components
only with the same induced spinc structure. Consequently, the chain complex
(ĈF (Y ), ∂̂) naturally splits as a direct sum ⊕t∈Spinc(Y )(ĈF (Y, t), ∂̂), defining
a splitting

ĤF (Y ) = ⊕t∈Spinc(Y )ĤF (Y, t)

of the Ozsváth–Szabó homology groups. It has been proved [41] that the group

ĤF (Y, t) is an invariant of the spinc 3-manifold (Y, t). In addition, for a spinc

structure t with c1(t) torsion, a relative Z-grading can be defined on ĤF (Y, t),
which lifts to an absoluteQ-grading, called the homological (orMaslov) grading.

In conclusion, the Ozsváth–Szabó homology group ĤF (Y, t) with c1(t) torsion

splits as ĤF (Y, t) = ⊕d∈QĤF d(Y, t).
Suppose now that W is an oriented cobordism between the 3-manifolds Y1

and Y2. Using Heegaard triples and counting holomorphic triangles, a map

FW : ĤF (Y1) → ĤF (Y2)

is defined in [42]. As in the 3-dimensional case, the map splits according to
spinc structures on the cobordisms; in the following FW denotes the sum of the
induced maps for all spinc structures.

In addition, a spinc cobordism (W, s) from (Y1, t1) to (Y2, t2), with t1, t2
torsion spinc structures shifts the absolute Q-grading by the rational number

1
4 (c

2
1(s)− 3σ(W )− 2χ(W )).

(Notice that the fact that t1, t2 are torsion spinc structures implies that the
square c21(s) is well-defined as an element of Q.) Although the determination of

the set Tα ∩ Tβ and hence the generators of ĈF (Y ) is a purely combinatorial
question (based on the combinatorics of the Heegaard diagram (Σ,α,β)), the

boundary map ∂̂ requires the study of moduli spaces of certain J-holomorphic
maps. This step is typically far from being algorithmic and makes the compu-
tation of the homology groups a challenge in general. According to a recent
result of Sarkar-Wang [48], however, for specific diagrams (which they called

nice) the boundary operator ∂̂ can be also combinatorially computed from the
Heegaard diagram. In addition, it was also shown in [48] that every 3-manifold
admits nice Heegaard diagrams. In [40] it was shown that (by extending the

theory to admit more basepoints) an appropriately stabilized version of ĤF (Y )
can be actually defined by purely combinatorial means.

An important feature of Heegaard Floer theory is that it admits a surgery
exact triangle. To describe it, suppose that a 3-manifold Y and a knot K ⊂ Y

are given. Perform integer surgery along K, resulting in a 3-manifold YK and
a cobordism X1 from Y to YK . Consider a normal circle N to K and attach a
4-dimensional 2-handle to YK × [0, 1] along N with framing (−1). The resulting
3-manifold will be denoted by Y ′, while the cobordism is X2. Repeat this last
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step, i.e., attach a 2-handle to Y ′ along a normal circle U of N with framing
(−1). It is not hard to see that the resulting 3-manifold is diffeomorphic to Y ;
denote the last cobordism by X3. This geometric situation induces a triangle
on Ozsváth–Szabó homologies. The central result for computing Ozsváth–Szabó
homologies is the following

Theorem 2.2 (Surgery exact triangle, [42]; cf. [46]). The triangle defined above
for Ozsváth–Szabó homologies is exact.

Knot Floer homologies. By choosing two points w, z ∈ Σ − α − β,
an oriented knot is specified in the 3-manifold Y : connect z to w in the com-
plement of the α-curves and w to z in the complement of the β-curves (and
push the resulting arcs into the corresponding handlebodies). In fact, any pair
(Y,K) of a closed 3-manifold and a knot in it can be presented by such a doubly

pointed Heegaard diagram. Taking the same group ĈF (Y ), but modifying the

boundary map ∂̂ to ∂̂K by considering only those maps which have their image
in Symg(Σ) − Vz − Vw, a new chain complex, and therefore a new homology

theory ĤFK(Y,K) can be defined [43], which provides an interesting and pow-
erful invariant for knots. As an application of the theory of nice diagrams, in
[34] it was shown that these invariants can be computed combinatorially for all
knots (and links) in S3, and in fact, the theory admits a combinatorial defini-
tion for knots and links in S3 [35]. It is not hard to see that for knots in S3

the resulting theory (together with the relative spinc and homological gradings)
provides a categorification of the Alexander polynomial. Roughly the same idea
(together with the introduction of more basepoints) provides invariants of links
in 3-manifolds. The combinatorial definition of (a suitably stabilized version of)
these invariants follows the same pattern as the corresponding definition of the
homologies of 3-manifolds given in [40].

3. Contact Ozsváth–Szabó Invariants

The most spectacular success of Ozsváth–Szabó homologies stems from its ap-
plications to knot theory and to contact topology. In the following we will focus
on the contact topological applications. First we discuss the definition and basic
properties of the contact invariant defined in [45], and (some) applications will
be given in the next chapter.

Contact Ozsváth–Szabó invariants. According to the result of
Giroux on open book decompositions, we get that an invariant of an open
book decomposition which is invariant under positive stabilization is a contact
invariant.

In the definition of the contact Ozsváth–Szabó invariant we will follow the
reformulation found by Honda-Kazez-Matić [22]; for the original definition see
[45]. Suppose therefore that (Y, ξ) is a given contact 3-manifold, and choose
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an open book (F,ϕ) on Y compatible with ξ. Fix arcs a1, . . . , an properly
embedded into the page F which provide a basis of H1(F, ∂F ;Z). Let b1, . . . , bn
be displacements of the ai in such a way that ai intersects bi in a single (positive)
point. A Heegaard surface Σ for the 3-manifold Y can be given by taking the
union of F with another page of the open book decomposition (with the reversed
orientation). The images of the ai under the identity (together with the ai arcs)
define a set of simple closed curves {αi}, while the same construction applied
for the bj and their images under the monodromy map ϕ provide {βj}. It is
easy to see that the resulting triple (Σ,α,β) is a Heegaard diagram for Y , and
if we place the basepoint into the region of F which is not between any ai
and bi, the intersection point x contained by F defines an element c(Y, ξ) in

ĤF (−Y ).

Remark 3.1. For x to be a cycle we need to view it in the chain complex
given by (Σ,β,α) rather than by (Σ,α,β), explaining the fact that c(Y, ξ) is
an element of the Ozsváth–Szabó homology group of −Y .

Theorem 3.2. • The homology class c(Y, ξ) is an invariant of the (iso-
topy class of the) contact structure ξ and is independent of the chosen
compatible open book decomposition and basis {a1, . . . , an}.

• For a contact 3-manifold (Y, ξ) the contact Ozsváth–Szabó invariant

c(Y, ξ) is an element of ĤF−d3(ξ)(−Y, tξ), where tξ is the spinc struc-
ture induced by ξ (as a 2-plane field) and (if c1(tξ) is torsion) d3(ξ) is its
Hopf invariant.

• If (Y, ξ) is Stein fillable then c(Y, ξ) 6= 0.

• It Tor(Y, ξ) > 0 then the contact invariant vanishes. In particular, if
(Y, ξ) is overtwisted then c(Y, ξ) = 0.

The next property provides a way for computing the invariant for contact
structures given by contact surgery diagrams.

Theorem 3.3. Suppose that (Y2, ξ2) is given as contact (+1)-surgery along the
Legendrian knot L ⊂ (Y1, ξ1); let X denote the corresponding cobordism. Then

F−X(c(Y1, ξ1)) = c(Y2, ξ2).

Suppose that (Y, ξ) = (YL, ξL) with L = L+ ∪ L− and |L+| ≤ 1. Since L−

defines a Stein fillable contact structure, it has c(YL− , ξL−) 6= 0. The invariant
of (Y, ξ) is given by F−X(c(YL− , ξL−)), where X is the 4-dimensional cobordism
induced by the single contact (+1)-surgery on L+. The nonvanishing of this
invariant therefore depends on the relation between c(YL− , ξL−) and kerF−X ≤

ĤF(−YL−).
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Legendrian and transverse invariants. The reformulation of knot
Floer homology for knots in S3 through grid diagrams provided (as a byproduct)
Legendrian and transverse invariants for knots in the standard contact 3-sphere
(S3, ξst) [47]. The definition of these invariants motivated the extension of the
invariant of contact structures to Legendrian and transverse knots [27], which
we outline below. Suppose that (Y, ξ) is a contact 3-manifold, and (F,ϕ) is
a compatible open book decomposition. Suppose that {ai} is a chosen basis
(with {bi} being the pertured arcs of ai in F ). Recall that we have chosen the
basepoint w in the domain of F which is not between the arcs ai and bi. Now
choosing the other basepoint z from one of these regions we get a knot in Y ,
which can be shown to determine an oriented Legendrian knot type. In turn,
any oriented Legendrian knot L in a contact 3-manifold (Y, ξ) can be presented
in this way by choosing appropriate open book decomposition and basis {ai}.

Suppose therefore that L ⊂ (Y, ξ) is a given oriented Legendrian knot, and
consider an open book decomposition (F,ϕ) and a basis {ai} compatible with
it, together with the two basepoints w and z. The intersection point on the page

F providing the contact invariant now defines an element L̂(L) ∈ ĤFK(−Y, L)
in the knot Floer homology of L, which we call the Legendrian invariant of L.

Remark 3.4. Recall that in the definition of the contact invariant c(Y, ξ) the
role of the α- and the β-curves has been reversed in order to get a cycle x. For
the Legendrian invariant L̂ the same switch has to be performed. In order to
restore the orientation of L, we also switch the two basepoints z and w. In fact,
the definition extends to provide an invariant L(L), which is an element of a
further version HFK−(−Y, L) of Ozsváth–Szabó homologies.

Theorem 3.5. • The class L̂(L) ∈ ĤFK(−Y, L) for the oriented Legen-
drian knot L ⊂ (Y, ξ) is an invariant of its (oriented) Legendrian isotopy
class, in the sense that if L1 and L2 are (oriented) Legendrian isotopic

then there is a map f∗ : ĤFK(−Y, L1) → ĤFK(−Y, L2) induced by a

map f : Y − L1 → Y − L2 mapping L̂(L1) into L̂(L2).

• The invariant L̂(L) vanishes if (Y −L, ξ|Y−L) has positive Giroux torsion.

• L̂(L+) = 0 for the positive stabilization L+ of L and L̂(L) = L̂(L−)
for the negative stabilization. Since the oriented Legendrian approxima-
tion of a transverse knot is unique up to negative stabilization and iso-
topy, this property allows us to define the invariant T̂ (T ) of a transverse

knot T ⊂ (Y, ξ) by taking T̂ (T ) = L̂(L) for a Legendrian approximation
of T .

The transformation of the Legendrian invariant under contact (+1)-surgery
follows the same pattern as that of the contact Ozsváth–Szabó invariant:

Theorem 3.6 (Ozsváth-Stipsicz, [39]). Supppose that S,L ⊂ (Y, ξ) are (dis-
joint) Legendrian knots. Let (YS , ξS) denote the result of contact (+1)-surgery
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along S, and let LS denotes the image of L in (YS , ξS). Then the surgery gives

rise to a map F : ĤFK(−Y, L) → ĤFK(−YS , LS) which maps the Legendrian

invariant L̂(L) to L̂(LS).

4. Results

Surgery along knots in S3. First we examine the problem of the
existence of tight contact structures on 3-manifolds of the form Y = S3

r (K),
i.e., Y can be given by a single Dehn surgery on S3. (Here the surgery coefficient
is measured with respect to the Seifert framing of K ⊂ S3.) Let us recall that
the maximal Thurston–Bennequin number TB(K) of a knot K ⊂ S3 is defined
by

max{tb(L) | L is smoothly isotopic to K and Legendrian in (S3, ξst)}.

The slice-genus (or 4-ball genus) gs(K) of K ⊂ S3 is by definition the minimum
of the genera of surfaces smoothly embedded in D4 with boundary equal to K,
that is,

min{g(F ) | F ⊂ D4, ∂F = K ⊂ S3}.

Using gauge theory it has been proved that TB(K) ≤ 2gs(K)− 1.

Theorem 4.1 (Lisca-Stipsicz, [30]). If TB(K) = 2gs(K) − 1 > 0 is satisfied
for a knot K then S3

r (K) admits a positive tight contact structure for any r 6=
TB(K).

Notice that if K is the (p, q) torus knot Tp,q (for p, q ≥ 2 and relative prime),
then it has TB(Tp,q) = pq − p− q, which is equal to 2gs(Tp,q)− 1, hence those
knots satisfy the assumptions of the theorem. For example, the right-handed
trefoil knot T = T2,3 depicted in Figure 2 satisfies the assumptions. We sketch

Figure 2. The right-handed trefoil knot.

the argument in the special case of K = T2,3 and r = TB(K) + 1 = 2.
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Proposition 4.2. The contact structure given by the diagram of Figure 3 on
S3
2(T2,3) is tight.

+1

Figure 3. Contact structure on the manifold Y = S3
2(T(2,3)).

Proof. Let ξ denote the contact structure given by the contact surgery dia-
gram of Figure 3. According to Theorem 3.3, the invariant c(Y, ξ) is the im-

age of the unique nontrivial element c(S3, ξst) ∈ ĤF (−S3) ∼= Z2 under the
map F induced by the cobordism given by the surgery. The surgery defines
an exact triangle, where ĤF (−S3) ∼= Z2, ĤF (−S3

2(T2,3)) = Z2
2 and the third

term (which is equal to the invariant of the 3-manifold −S3
1(T2,3)) is isomor-

phic to Z2. Exactness of the triangle then implies that F is injective, hence
c(S3

2(T2,3), ξ) = F (c(S3, ξst)) ∈ ĤF(−S3
2(T2,3)) is nontrivial. The nonvanishing

of the class c(S3
2(T2,3), ξ) implies then that ξ is tight.

Proposition 4.3 (Lisca, [25]). The 3-manifold S3
2(T ) admits no fillable contact

structure.

Proof (sketch). The argument consists of two steps. In the first step, using
gauge theory one shows that any hypothesized filling of any contact structure
on S3

2(T ) must be a 4-manifold with negative definite intersection form. In
this step the property that S3

2(T ) admits a positive scalar curvature (or more
generally, it is an L-space) is used.

For the next step we observe that −S3
2(T ) can be given as the boundary

of the plumbing 4-manifold along the negative definite E7 diagram. Therefore,
the existence of a filling would provide (after gluing it to the above plumbing
4-manifold) a closed 4-manifold X with negative definite intersection form,
which contains the negative definite E7 lattice as a sublattice. By Donaldson’s
Theorem A the intersection form of X (as a closed 4-manifold with negative
definite intersection form) is diagonalizable over the integers, while a simple
computation shows that the negative definite E7 lattice does not embed into
any negative definite diagonal lattice, providing the desired contradiction with
the existence of a filling, hence completing the proof.
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Corollary 4.4. The contact structure ξ given by the surgery diagram of Fig-
ure 3 is a tight, nonfillable contact structure.

The first examples of tight, nonfillable structures were found by Etnyre-
Honda [11], for more similar examples, see [28, 29].

Notice that Theorem 4.1 deals only with surgeries satisfying r 6= TB(K).
This assumption plays an important role in defining the candidate tight contact
structure; for r = TB(K) the previous strategy (requiring contact 0-surgery)
would provide an overtwisted structure. (For a discussion on contact 0-surgery,
see [5].) It seems to be a very subtle question to understand what happens on
the 3-manifold S3

TB(K)(K). As it turns out, for the trefoil knot T the surgery

coefficient r = TB(T ) = 1 provides a 3-manifold −P , the Poincaré homol-
ogy sphere with its reversed orientation, which by a theorem of Etnyre-Honda
admits no tight contact structures [10]. If T2,2n+1 ⊂ S3 denotes the (2, 2n+1)-
torus knot and Yn (n ≥ 1) stands for the 3-manifold obtained by performing
TB(T2,2n+1) = (2n − 1)-surgery along T2,2n+1, then we get a family of 3-
manifolds with the same property: Yn carries no tight contact structure [31].
(These 3-manifolds are all small Seifert fibered 3-manifolds; we will return to
the discussion of contact structures on such 3-manifolds.) As it turns out, for
all other torus knots Tp,q (p > q > 2) the 3-manifold S3

TB(Tp,q)
(Tp,q) does admit

tight contact structures, cf. Theorem 4.6.
Regarding the general question of existence of tight structures on 3-

manifolds of the form S3
r (K), we restrict ourselves to a conjecture:

Conjecture 4.5. (High surgery conjecture) Suppose that K ⊂ S3 is a knot.
Then there is an integer nK such that for all r ≥ nK the surgered 3-manifold
S3
r (K) admits tight contact structure.

For Seifert fibered 3-manifolds the existence question of tight contact struc-
tures is now settled.

Theorem 4.6 (Lisca-Stipsicz, [33]). Let Y be a closed, oriented Seifert fibered
3-manifold. Then, either Y is orientation-preserving diffeomorphic to Yn =
S3
2n−1(T2,2n+1) for some n ≥ 1, or Y carries a positive, tight contact structure.

Recall that by [31, Corollary 1.2] each 3-manifold Yn carries no positive tight
contact structure, hence Theorem 4.6 yields a complete solution to the existence
problem for positive tight contact structures on Seifert fibered 3-manifolds.

According to the Milnor-Kneser Theorem any 3-manifold uniquely decom-
poses as the connected sum of prime 3-manifolds (i.e., of those for which a con-
nected sume decomposition necessarily applies S3 as one of the factors). Tight
contact structures obey the same connected sum decomposition theorem, in
particular, the set of tight structures on Y1#Y2 is simply the cartesian product
of the corresponding sets on Y1 and Y2 [3]. In the light of the Geometrization
Conjecture (stating that a closed, prime 3-manifold is either Seifert fibered,
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or admits a hyperbolic metric, or contains a essential torus, that is, one for
which the embedding induces an injective map on the fundamental groups),
and the fact that the existence of an essential torus guarantees the existence
of (infinitely many different) tight contact structures on a 3-manifold, as far as
existence goes we are left with the study of hyperbolic 3-manifolds.

Contact structures on small Seifert fibered 3-manifolds. Above we
showed a way to produce tight contact structures (and, in particular, verify
tightness) in certain suitable cases using contact surgery and Heegaard Floer
theory. It is much harder to find all the tight structures on a given 3-manifold.
In general this question is still open, but for some families of 3-manifolds we
have complete classification of tight structures. For lens spaces the problem
was answered by Giroux and Honda. In this case all contact structures were
Stein fillable, and could be distinguished by their homotopy theoretic invari-
ants (namely the induced spinc structure). The examples of the contact struc-
tures (and their tightness) were fairly straightforward for these 3-manifolds,
the difficult part of the classification scheme was in showing that the particu-
lar manifolds do not carry any further (tight) contact structures. In this step
convex surface theory (initiated by Giroux [17]) was applied. An extension of
these methods by Honda [21] led to a complete classification of tight contact
structures on torus bundles and circle bundles. By a further delicate application
of the convex surface theory techniques, Massot [36] provided a complete clas-
sification of tight contact structures on Seifert fibered 3-manifolds with base
of positive genus, with the additional assumption for the structures to have
negative maximal twisting. Recall that a Legendrian knot in a Seifert fibered
3-manifold Y smoothly isotopic to a regular fiber admits two framings: one
coming from the fibration and another one coming from the contact structure
ξ. The difference between the contact framing and the fibration framing is the
twisting number of the Legendrian curve. We say that the contact structure ξ

on a Seifert fibered 3-manifold has maximal twisting equal to zero if there is a
Legendrian knot L isotopic to a regular fiber such that L has twisting number
zero. If there is no such Legendrian curve in (Y, ξ), then it has negative maximal
twisting.

A Seifert fibered 3-manifoldM is small if it fibers over S2 with three singular
fibers. Equivalently, a 3-manifold is small Seifert fibered, if it can be given
by the surgery diagram of Figure 4. Let M = M(e0; r1, r2, r3) denote the 3-
manifold given by the surgery presentation of Figure 4. The classification of
tight structures on M with the extra hypothesis e0 6= −1,−2 was given in
[14, 50]. The main feature of the classification was the same as for lens spaces:
all tight structures turned out be Stein fillable, and one could distinguish them
by their induced spinc structures.

The classification is slightly more complicated for the case e0 = −1 and
r1, r2 ≥ 1

2 : in this case the 3-manifold M carries a number of nonfillable struc-
tures, and the proof of their tightness requires the application of the contact
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e
0

−_1
−_1
r

r3
2

−_1
r1

Figure 4. Surgery diagram for the Seifert fibered 3-manifold M(e0; r1, r2, r3)

Ozsváth–Szabó invariants [15]. All tight structures on these small Seifert fibred
3-manifolds admit a straightforward surgery presentation (shown by Figure 5),
and this result leads us to the a conjectured classification of tight contact struc-
tures on small Seifert 3-manifolds with zero maximal twisting. Suppose that
the small Seifert fibered 3-manifold M admits no transverse contact structures,
which property, according to [26], can be conveniently phrased in terms of the
Seifert invariants. By [32] this property implies that any tight contact structure
ξ on M can be given by a surgery diagram of Figure 5. The contact structure ξ

+1

+1

−
1
r1

−
1
r2

−
1
r3

Figure 5. Contact structures on M(−1; r1, r2, r3).

defines a 2-plane field with Hopf invariant d3(ξ) and a spinc structure tξ which
has Ozsváth–Szabó d-invariant d(ξ).

Conjecture 4.7. The contact structure ξ given by Figure 5 is tight if and only
if d3(ξ) = d(ξ). Two contact structures ξ1, ξ2 given by Figure 5 are isotopic if
and only if they induce isomorphic spinc structures tξ1 = tξ2 .

The resolution of this conjecture would reduce the classification problem of
tight structures for many small Seifert fibered 3-manifold with e0 = −1 to an al-
gebraic computation, but the general classification question still remains open.
Further classification results (also relying on the use of the contact Ozsváth–
Szabó invariant in twisted Heegaard Floer theory) were given by Ghiggini-
Van Horn-Morris in [16] for the Brieskorn spheres −Σ(2, 3, 6n − 1) (with
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reversed orientation), diffeomorphic to the small Seifert fibered 3-manifolds
M(−1; 1

2 ,
1
3 ,

n
6n−1 ).

Legendrian and transverse knots. The application of the invariant
of [47] given by Ng-Ozsváth-Thurston [37] verified the existence of many trans-
versely non-simple knot types in the standard contact 3-sphere (S3, ξst). The
connected sum formula of Vértesi [49] extended the applicability of these in-
variants even further. The similar invariant of [27], however, can also be applied
for knots in other 3-manifolds, or in S3 equipped with some other (necessarily
overtwisted) contact structure. With the aid of explicite computations of the

Legendrian invariant L̂ for a number of examples, the application of a connected
sum formula for these invariants gives the following:

Theorem 4.8 (Lisca-Ozsváth-Stipsicz-Szabó, [27]). Let (Y, ξ) be a contact
3-manifold with c(Y, ξ) 6= 0. Let ζ be an overtwisted contact structure on Y

with induced spinc structure satisfying tζ = tξ. Then, in (Y, ζ) there are null-
homologous knot types which admit two non-loose, transversely non-isotopic
transverse representatives with the same self-linking number.

Consequently, in many overtwisted contact 3-manifolds there are trans-
versely non-simple knots. The relation of the Legendrian invariant to contact
surgery (described in Theorem 3.6) provided further computational tools lead-
ing us to

Theorem 4.9 (Ozsváth-Stipsicz, [39]). The Eliashberg–Chekanov twist knot
En (which is the two-bridge knot of type 2n+1

2 ) depicted by Figure 6 is not
transversely simple for n odd and n > 3. In fact, for n odd there are at least
dn
4 e transverse knots in the standard contact 3-sphere (S3, ξst) with self-linking

number equal to 1, all topologically isotopic to En, yet not pairwise transverse
isotopic.

...

n half twists
Figure 6. The Eliashberg–Chekanov knot En.

As a special case, we have the following:

Corollary 4.10. The twist knot 72 in Rolfsen’s table is not transversely simple.

Proof. The knot 72 is the two-bridge knot 11
2 , hence Theorem 4.9 applies with

n = 5.
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The above result, when coupled with convex surface theory and contact
homology, led Etnyre-Ng-Vértesi [12] to a complete classification of Legendrian
and transverse knots in the knot types given by Figure 6. In particular, it has
been verified that (for n odd) the dn

4 e distinct transverse knots in the standard
contact 3-sphere (S3, ξst) with self-linking number equal to 1, all topologically
isotopic to En, used in Theorem 4.9 comprise a complete list of transverse
knots with the given classical invariants. We hope that similar methods can be
applied to wider classes of knots, for example, to 2-bridge knots to settle the
Legendrian/transverse classification problem.
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[12] J. Etnyre, L. Ng and V. Vértesi, Legendrian and transverse twist knots,
arXiv:1002.2400

[13] H. Geiges, An introduction to contact topology, Cambridge Studies in Advanced
Mathematics, 109. Cambridge University Press, Cambridge, 2008.

[14] P. Ghiggini, P. Lisca and A. Stipsicz, Classification of tight contact structures

on small Seifert 3-manifolds with e0 ≥ 0, Proc. Amer. Math. Soc. 134 (2006),
909–916.
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