INTERNATIONAL CONGRESS
OF MATHEMATICIANS
2022 JULY 6—14

PLENARY LECTURES




EM
=N

PRESS






INTERNATIONAL CONGRESS
I M OF MATHEMATICIANS

2022 JULY 6—14
PLENARY LECTURES

EDITED BY D. BELIAEV AND S. SMIRNOV

EM
=N

PRESS




Editors

Dmitry Beliaev Stanislav Smirnov
Mathematical Institute Section de mathématiques
University of Oxford Université de Geneve
Andrew Wiles Building rue du Conseil-Général 7-9
Radcliffe Observatory Quarter 1205 Geneéve, Switzerland

Woodstock Road

Oxford OX2 6GG, UK Email: stanislav.smirnov@unige.ch

Email: belyaev@maths.ox.ac.uk

2020 Mathematics Subject Classification: 00B25
ISBN 978-3-98547-058-7, elSBN 978-3-98547-558-2, DOI 10.4171/ICM2022

Volume 1. Prize Lectures

ISBN 978-3-98547-059-4, elSBN 978-3-98547-559-9, DOI 10.4171/ICM2022-1
— Volume 2. Plenary Lectures

ISBN 978-3-98547-060-0, elSBN 978-3-98547-560-5, DOI 10.4171/ICM2022-2
Volume 3. Sections 1-4

ISBN 978-3-98547-061-7, elSBN 978-3-98547-561-2, DOI 10.4171/ICM2022-3
Volume 4. Sections 5-8

ISBN 978-3-98547-062-4, elSBN 978-3-98547-562-9, DOI 10.4171/ICM2022-4
Volume 5. Sections 9-11

ISBN 978-3-98547-063-1, elSBN 978-3-98547-563-6, DOI 10.4171/ICM2022-5
Volume 6. Sections 12-14

ISBN 978-3-98547-064-8, elSBN 978-3-98547-564-3, DOI 10.4171/ICM2022-6
Volume 7. Sections 15-20

ISBN 978-3-98547-065-5, elSBN 978-3-98547-565-0, DOI 10.4171/ICM2022-7

The content of this volume is licensed under the CC BY 4.0 license, with the exception of the logos
and branding of the International Mathematical Union and EMS Press, and where otherwise noted.

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

Published by EMS Press, an imprint of the

European Mathematical Society — EMS — Publishing House GmbH
Institut fir Mathematik

Technische Universitat Berlin

StralRe des 17. Juni 136

10623 Berlin, Germany

https://ems.press
© 2023 International Mathematical Union

Typesetting using the authors’ LaTeX sources: VTeX, Vilnius, Lithuania
Printed in Germany
Printed on acid free paper



CONTENTS

VOLUME 1

Foreword .. ... ..o Vv
International Congresses of Mathematicians ............... ..., 1
Fields medalists and IMU prize Winners .................cooeiiiiieeennnnnn... 3
Opening greetings by the IMU President ............ ... ... ... i ... 5
Closing remarks by the IMU President ........... ... . ... ... . oiii.. 9
Status report for the IMU . ... .. i1
Photographs .. ... 21
THE WORK OF THE FIELDS MEDALISTS AND THE IMU PRIZE WINNERS

Martin Hairer, The work of Hugo Duminil-Copin ............ ... ... ... . .... 26
Gil Kalai, The work of June Huh . ....... .. .. 50
Kannan Soundararajan, The work of James Maynard ........................... 66
Henry Cohn, The work of Maryna Viazovska .............. ...t 82
Ran Raz, The work of Mark Braverman ............... ... ... ... iiiiiaao... 106
Henri Darmon, The work of Barry Mazur ........... ... ..o ... 118
Rupert L. Frank, The work of Elliott Lieb ........... ... ... .. ... ... ..., 142

Tadashi Tokieda, Nikolai Andreev and the art of mathematical animation and model-
DUILAING . ..o 160



PRIZE LECTURES

Hugo Duminil-Copin, 100 years of the (critical) Ising model on the hypercubic

JattiCe .« et 164
June Huh, Combinatorics and Hodge theory .............. ... ... ... ... 212
James Maynard, Counting primes ...............ooiuiiiiiineanieenineanne.. 240
Maryna Viazovska, On discrete Fourier uniqueness sets in Euclidean space ...... 270
Mark Braverman, Communication and information complexity ................. 284

Nikolai Andreev, Popularization of math: sketches of Russian projects and traditions 322

Marie-France Vignéras, Representations of p-adic groups over commutative rings 332

POPULAR SCIENTIFIC EXPOSITIONS

Andrei Okounkov, The Ising model in our dimension and our times ............. 376
Andrei Okounkov, Combinatorial geometry takes thelead ...................... 414
Andrei Okounkov, Rhymes in primes ............. ... i, 460
Andrei Okounkov, The magicof 8and 24 ....... ... ... .. .. . ... 492

SUMMARIES OF PRIZE WINNERS’ WORK

Allyn Jackson, 2022 Abacus Medal: Mark Braverman .......................... 548
Allyn Jackson, 2022 Chern Medal: Barry Mazur ........... ... ... ... .. ..., 554
Allyn Jackson, 2022 Gauss Prize: Elliott H. Lieb ....................... .. ... 560
Allyn Jackson, 2022 Leelavati Prize: Nikolai Andreev ......................... 566
List of contributors . ... 571

VOLUME 2

SPECIAL PLENARY LECTURES

Kevin Buzzard, What is the point of computers? A question for pure mathematicians 578
Frank Calegari, Reciprocity in the Langlands program since Fermat’s Last Theorem 610

Frans Pretorius, A survey of gravitational waves ....................oiieia.an. 652

PLENARY LECTURES

Mladen Bestvina, Groups acting on hyperbolic spaces—a survey ................ 678

VI



Bhargav Bhatt, Algebraic geometry in mixed characteristic ..................... 712

Thierry Bodineau, Isabelle Gallagher, Laure Saint-Raymond, Sergio Simonella,
Dynamics of dilute gases: a statistical approach .................. ... ... ... ... 750

Alexander Braverman, David Kazhdan, Automorphic functions on moduli spaces of

bundles on curves over local fields: asurvey .............cooiiiiiiiiiiiii. 796
Tobias Holck Colding, Evolution of form and shape ............................ 826
Camillo De Lellis, The regularity theory for the area functional (in geometric mea-

N1 0110 ) 872
Weinan E, A mathematical perspective of machine learning .................... 914
Craig Gentry, Homomorphic encryption: a mathematical survey ................ 956
Alice Guionnet, Rare events in random matrix theory .......................... 1008
Larry Guth, Decoupling estimates in Fourier analysis .......................... ie54

Svetlana Jitomirskaya, One-dimensional quasiperiodic operators: global theory, dual-

ity, and sharp analysis of small denominators .............. ... ... ... ... ie90
Igor Krichever, Abelian pole systems and Riemann—Schottky-type problems ... .. 1122
Alexander Kuznetsov, Semiorthogonal decompositions in families .............. 1154
Scott Sheffield, What is a random surface? ............. ittt 1202
Kannan Soundararajan, The distribution of values of zeta and L-functions ....... 1260
Catharina Stroppel, Categorification: tangle invariants and TQFTs ............... 1312
Michel Van den Bergh, Noncommutative crepant resolutions, an overview ....... 1354

Avi Wigderson, Interactions of computational complexity theory and mathematics 1392

List of contribUtors . ...t 1433

VOLUME 3

1. LOGIC

Gal Binyamini, Dmitry Novikov, Tameness in geometry and arithmetic: beyond

O-MINIMALILY ..ottt i440
Natasha Dobrinen, Ramsey theory of homogeneous structures: current trends and

OPEN PrODICINS ...\ttt e e e e e e 1462
Andrew S. Marks, Measurable graph combinatorics ........................... 1488

Keita Yokoyama, The Paris—Harrington principle and second-order arithmetic—
bridging the finite and infinite Ramsey theorem .............. ... ... ... ... .. 1504

VII CONTENTS



Dmitriy Zhuk, Constraint satisfaction problem: what makes the problem easy .... 1530

2. ALGEBRA

Pierre-Emmanuel Caprace, George A. Willis, A totally disconnected invitation to

locally COMPACt GrOUPS . .. v v vttt ettt et e e e 1554
Neena Gupta, The Zariski cancellation problem and related problems in affine alge-

DraiC EOMEIIY ..\ttt ettt e et e et et e e e e 1578
Syu Kato, The formal model of semi-infinite flag manifolds .................... 1600
Michael J. Larsen, Character estimates for finite simple groups and applications .. 1624

Amnon Neeman, Finite approximations as a tool for studying triangulated categories 1636

Irena Peeva, Syzygies over a polynomial ring ................. ... ... ... ..., 1660

3. NUMBER THEORY - SPECIAL LECTURE

Joseph H. Silverman, Survey lecture on arithmetic dynamics .................... 1682

3. NUMBER THEORY

Raphaél Beuzart-Plessis, Relative trace formulae and the Gan—Gross—Prasad conjec-
EUTES ottt ettt ettt e e e e e e 1712

Ana Caraiani, The cohomology of Shimura varieties with torsion coefficients .... 1744
Samit Dasgupta, Mahesh Kakde, On the Brumer—Stark conjecture and refinements 1768
Alexander Gamburd, Arithmetic and dynamics on varieties of Markoff type ...... 1800
Philipp Habegger, The number of rational points on a curve of genus at least two . 1838
Atsushi Ichino, Theta lifting and Langlands functoriality ....................... 1870
Dimitris Koukoulopoulos, Rational approximations of irrational numbers ........ 1894

David Loeffler, Sarah Livia Zerbes, Euler systems and the Bloch—Kato conjecture for

automorphic Galois representations .. ................oiieiiiiiiiiiiiieaa.. 1918
Lillian B. Pierce, Counting problems: class groups, primes, and number fields .... 1940
Sug Woo Shin, Points on Shimura varieties modulo primes ..................... 1966
Ye Tian, The congruent number problem and elliptic curves .................... 1990
Xinwen Zhu, Arithmetic and geometric Langlands program .................... 2012

4. ALGEBRAIC AND COMPLEX GEOMETRY - SPECIAL LECTURE

Marc Levine, Motivic cohomology ..........co.iiuiiiiiiii i 2048

VIII



4. ALGEBRAIC AND COMPLEX GEOMETRY

Mina Aganagic, Homological knot invariants from mirror symmetry ............ 2108
Aravind Asok, Jean Fasel, Vector bundles on algebraic varieties ................. 2146

Arend Bayer, Emanuele Macri, The unreasonable effectiveness of wall-crossing in

algebraiC GEOMELIY ... ...t e 2172
Vincent Delecroix, Elise Goujard, Peter Zograf, Anton Zorich, Counting lattice

points in moduli spaces of quadratic differentials ............. .. ... ... ... ... 2196
Alexander 1. Efimov, K-theory of large categories ..................coooiii.n. 2212
Tamas Hausel, Enhanced mirror symmetry for Langlands dual Hitchin systems ... 2228
Bruno Klingler, Hodge theory, between algebraicity and transcendence .......... 2250
Chi Li, Canonical Kihler metrics and stability of algebraic varieties ............. 2286
Aaron Pixton, The double ramification cycle formula .......................... 2312

Yuri Prokhorov, Effective results in the three-dimensional minimal model program 2324
Olivier Wittenberg, Some aspects of rational points and rational curves .......... 2346

LiSt Of CONIIDULOTS . ..\ttt 2369

VOLUME 4

5. GEOMETRY - SPECIAL LECTURES

Bruce Kleiner, Developments in 3D Ricci flow since Perelman .................. 2376
Richard Evan Schwartz, Survey lecture on billiards ............................ 2392
5. GEOMETRY

Richard H. Bamler, Some recent developments in Ricci flow .................... 2432
Robert J. Berman, Emergent complex geometry ...............cooviieinieann... 2456
Danny Calegari, SaUSAZES . ... ...outtn et 2484
Kai Cieliebak, Lagrange multiplier functionals and their applications in symplectic
geometry and String topology ... ...t e 2504
Penka Georgieva, Real Gromov—Wittentheory ....................coovivi.nn.. 2530
Hiroshi Iritani, Gamma classes and quantum cohomology ...................... 2552
Gang Liu, Kéhler manifolds with curvature bounded below ..................... 2576
Kathryn Mann, Groups acting atinfinity .............. ... ... . ... ... ... ... 2594

IX CONTENTS



Mark McLean, Floer cohomology, singularities, and birational geometry ......... 2616

Iskander A. Taimanov, Surfaces via spinors and soliton equations ............... 2638
Lu Wang, Entropy in mean curvature flow ............ ... ... . ... ... ... .. 2656
Robert J. Young, Composing and decomposing surfaces and functions ........... 2678
Xin Zhou, Mean curvature and variational theory ................ ... ... ... .. 2696
Xiaohua Zhu, Kéahler—Ricci flow on Fano manifolds ........................... 2718

6. TOPOLOGY

Jennifer Hom, Homology cobordism, knot concordance, and Heegaard Floer homol-

DY+ ettt e e 2740
Daniel C. Isaksen, Guozhen Wang, Zhouli Xu, Stable homotopy groups of spheres

and motivic homotopy theory . .......... ... 2768
Yi Liu, Surface automorphisms and finite covers .............................. 2792
Roman Mikhailov, Homotopy patterns in group theory ......................... 2806
Thomas Nikolaus, Frobenius homomorphisms in higher algebra ................ 2826
Oscar Randal-Williams, Diffeomorphisms of discs ............ ... ... ... .. ... 2856
Jacob Rasmussen, Floer homology of 3-manifolds with torus boundary .......... 2880
Nathalie Wahl, Homological stability: a tool for computations .................. 2904

7. LIE THEORY AND GENERALIZATIONS

Evgeny Feigin, PBW degenerations, quiver Grassmannians, and toric varieties .... 2930
Tasho Kaletha, Representations of reductive groups over local fields ............. 2948

Joel Kamnitzer, Perfect bases in representation theory: three mountains and their

SPIIIIES et ettt e e e e e e e e e 2976
Yiannis Sakellaridis, Spherical varieties, functoriality, and quantization .......... 2998
Peng Shan, Categorification and applications .................cccvviiivine.n... 3038
Binyong Sun, Chen-Bo Zhu, Theta correspondence and the orbit method ........ 3062
Weigiang Wang, Quantum symmetric pairs ................c.ooiiiiiiiiana... 3080

8. ANALYSIS - SPECIAL LECTURE

Keith Ball, Convex geometry and its connections to harmonic analysis, functional
analysis and probability theory ........ ... . ... . 3104



8. ANALYSIS

Benoit Collins, Moment methods on compact groups: Weingarten calculus and its

APPLICALIONS . . .ottt 3142
Mikael de la Salle, Analysis on simple Lie groups and lattices .................. 3166
Xiumin Du, Weighted Fourier extension estimates and applications .............. 3190
Cyril Houdayer, Noncommutative ergodic theory of higher rank lattices ......... 3202
Malabika Pramanik, On some properties of sparse sets: a survey ................ 3224

Gideon Schechtman, The number of closed ideals in the algebra of bounded operators
ON LebESZUE SPACES . .t vttt ettt ettt e et et e e e e 3250

Pablo Shmerkin, Slices and distances: on two problems of Furstenberg and Falconer 3266

Konstantin Tikhomirov, Quantitative invertibility of non-Hermitian random matrices 3292

Stuart White, Abstract classification theorems for amenable C*-algebras ......... 3314
Tianyi Zheng, Asymptotic behaviors of random walks on countable groups ...... 3340
List of CONtribDULOrS . ...t 3367

VOLUME 5

9. DYNAMICS

Miklés Abért, On a curious problem and whatitleadto ........................ 3374
Aaron Brown, Lattice subgroups acting on manifolds .......................... 3388

Jon Chaika, Barak Weiss, The horocycle flow on the moduli space of translation
SUITACES . ...t 3412

O ottt 3484
Mariusz Lemariczyk, Furstenberg disjointness, Ratner properties, and Sarnak’s con-

JECTULE ..ottt e ettt e e e 3508
Amir Mohammadi, Finitary analysis in homogeneous spaces ................... 3530
Michela Procesi, Stability and recursive solutions in Hamiltonian PDEs .......... 3552
Corinna Ulcigrai, Dynamics and “arithmetics” of higher genus surface flows ... .. 3576
Péter P. Varju, Self-similar sets and measuresontheline ....................... 3610

XI CONTENTS



10. PARTIAL DIFFERENTIAL EQUATIONS

Tristan Buckmaster, Theodore D. Drivas, Steve Shkoller, Vlad Vicol, Formation and

development of singularities for the compressible Euler equations ............... 3636
Pierre Cardaliaguet, Francois Delarue, Selected topics in mean field games ... ... 3660
Semyon Dyatlov, Macroscopic limits of chaotic eigenfunctions .................. 3704

Rita Ferreira, Irene Fonseca, Raghavendra Venkatraman, Variational homogeniza-
tion: old and NEW . ... ... 3724

Rupert L. Frank, Lieb-Thirring inequalities and other functional inequalities for
orthonormal SYStEIMNS . . ... v vttt 3756

Alexandru D. Tonescu, Hao Jia, On the nonlinear stability of shear flows and vortices 3776

Mathieu Lewin, Mean-field limits for quantum systems and nonlinear Gibbs mea-

SUTES vttt e et et ettt et et e e e e e e e e e 3800
Kenji Nakanishi, Global dynamics around and away from solitons ............... 3822
Alexander 1. Nazarov, Variety of fractional Laplacians ......................... 3842
Galina Perelman, Formation of singularities in nonlinear dispersive PDEs ........ 3854

Gabriella Tarantello, On the asymptotics for minimizers of Donaldson functional in
Teichmiiller theory ....... ... 3880

Dongyi Wei, Zhifei Zhang, Hydrodynamic stability at high Reynolds number .... 3902

11. MATHEMATICAL PHYSICS - SPECIAL LECTURE

Peter Hintz, Gustav Holzegel, Recent progress in general relativity .............. 3924

11. MATHEMATICAL PHYSICS

Roland Bauerschmidt, Tyler Helmuth, Spin systems with hyperbolic symmetry:
T P 3986

Federico Bonetto, Eric Carlen, Michael Loss, The Kac model: variations on atheme 4010
Seren Fournais, Jan Philip Solovej, On the energy of dilute Bose gases .......... 4026
Alessandro Giuliani, Scaling limits and universality of Ising and dimer models ... 4040

Matthew B. Hastings, Gapped quantum systems: from higher-dimensional Lieb—
Schultz—Mattis to the quantum Hall effect ............... ... ... ... . ... .. .. 4074

Karol Kajetan Kozlowski, Bootstrap approach to 1+1-dimensional integrable quan-
tum field theories: the case of the sinh-Gordon model .......................... 4096

Jonathan Luk, Singularities in general relativity ............................... 4120

XII



Yoshiko Ogata, Classification of gapped ground state phases in quantum spin sys-

List of contributors . ...t 4163

VOLUME 6

12. PROBABILITY - SPECIAL LECTURE

Elchanan Mossel, Combinatorial statistics and the sciences ..................... 4170

12. PROBABILITY

Jinho Baik, KPZ limit theorems ........ ...t 4190

Jian Ding, Julien Dubédat, Ewain Gwynne, Introduction to the Liouville quantum
SEAVILY TNEITIC ..o vttt ettt et et e e et et et et et e e 4212

Ronen Eldan, Analysis of high-dimensional distributions using pathwise methods 4246
Alison Etheridge, Natural selection in spatially structured populations ........... 4272

Tadahisa Funaki, Hydrodynamic limit and stochastic PDEs related to interface

8010 0 4302
Patricia Gongalves, On the universality from interacting particle systems ......... 4326
Hubert Lacoin, Mixing time and cutoff for one-dimensional particle systems .. ... 4350
Dmitry Panchenko, Ultrametricity in spin glasses ................ ... ... ... .. 4376
Kavita Ramanan, Interacting stochastic processes on sparse random graphs ...... 4394
Daniel Remenik, Integrable fluctuations in the KPZ universality class ........... 4426
Laurent Saloff-Coste, Heat kernel estimates on Harnack manifolds and beyond ... 4452

13. COMBINATORICS - SPECIAL LECTURE

Melanie Matchett Wood, Probability theory for random groups arising in number
19015703 o1 P 4476

13. COMBINATORICS

Federico Ardila-Mantilla, The geometry of geometries: matroid theory, old and new 4510

Julia Bottcher, Graph and hypergraph packing ................co ... 4542
Ehud Friedgut, KKL’s influenceonme ............... ..., 4568
Allen Knutson, Schubert calculus and quiver varieties .......................... 4582

XIII CONTENTS



Sergey Norin, Recent progress towards Hadwiger’s conjecture .................. 4606

Isabella Novik, Face numbers: the upper bound side of the story ................ 4622
Mathias Schacht, Restricted problems in extremal combinatorics ................ 4646
Alex Scott, Graphs of large chromatic number ............... .. .. .. ... 4660
Asaf Shapira, Local-vs-global combinatorics ..................ccoiiiiiiana... 4682

Lauren K. Williams, The positive Grassmannian, the amplituhedron, and cluster alge-
DIaS oot e 4710

14. MATHEMATICS OF COMPUTER SCIENCE - SPECIAL LECTURES

Cynthia Dwork, Differential privacy: getting more forless ...................... 4740
Aayush Jain, Huijia Lin, Amit Sahai, Indistinguishability obfuscation ............ 4762
David Silver, Andre Barreto, Simulation-based search control ................... 4800
Bernd Sturmfels, Beyond linear algebra ............. ..., 4820

14. MATHEMATICS OF COMPUTER SCIENCE

Roy Gotlib, Tali Kaufman, Nowhere to go but high: a perspective on high-dimensional

EXPANACTS . ..ottt ettt e e e 4842
Jelani Nelson, Forty years of frequentitems ............. ... ... ....oiaa... 4872
Oded Regev, Some questions related to the reverse Minkowski theorem .......... 4898

Muli (Shmuel) Safra, Mathematics of computation through the lens of linear equa-
tions and JattiCes ... ......ouuiin it e 4914

Ola Svensson, Polyhedral techniques in combinatorial optimization: matchings and

BOUTS .ottt ettt e e e e e 4970
Thomas Vidick, MIP* =RE: a negative resolution to Connes’ embedding problem

and Tsirelson’s problem ......... ... ... 4996
List of contributors ......... ... 5027

VOLUME 7

15. NUMERICAL ANALYSIS AND SCIENTIFIC COMPUTING

Gang Bao, Mathematical analysis and numerical methods for inverse scattering prob-

X1V



Marsha J. Berger, Randall J. LeVeque, Towards adaptive simulations of dispersive
tsunami propagation from an asteroid impact ............... . ... 5056

Jan S. Hesthaven, Cecilia Pagliantini, Nicoldo Ripamonti, Structure-preserving model
order reduction of Hamiltonian Systems ...............coiiiiiiireenneinn.n. 5072

Nicholas J. Higham, Numerical stability of algorithms at extreme scale and low pre-
CISTOMS ettt ettt e e 5098

Gitta Kutyniok, The mathematics of artificial intelligence ...................... 5118

Rachel Ward, Stochastic gradient descent: where optimization meets machine learn-

16. CONTROL THEORY AND OPTIMIZATION - SPECIAL LECTURE

Nikhil Bansal, Discrepancy theory and related algorithms ...................... 5178

16. CONTROL THEORY AND OPTIMIZATION

Regina S. Burachik, Enlargements: a bridge between maximal monotonicity and con-
VBXILY e 5212

Martin Burger, Nonlinear eigenvalue problems for seminorms and applications ... 5234

Coralia Cartis, Nicholas I. M. Gould, Philippe L. Toint, The evaluation complexity
of finding high-order minimizers of nonconvex optimization .................... 5256

Yu-Hong Dai, An overview of nonlinear optimization .......................... 5290

Qi Lii, Control theory of stochastic distributed parameter systems: recent progress
and open ProbIemS . .. ... ...t 5314

Asuman Ozdaglar, Muhammed O. Sayin, Kaiqing Zhang, Independent learning in
StOChASIC GAIMES . . o vttt ettt e e 5340

Marius Tucsnak, Reachable states for infinite-dimensional linear systems: old and

17. STATISTICS AND DATA ANALYSIS

Francis Bach, Lénaic Chizat, Gradient descent on infinitely wide neural networks:

global convergence and generalization ............. ... ..., 5398
Bin Dong, On mathematical modeling in image reconstruction and beyond ....... 5420
Stefanie Jegelka, Theory of graph neural networks: representation and learning ... 5450
Oleg V. Lepski, Theory of adaptive estimation ......................ccoviua... 5478

XV CONTENTS



Gabor Lugosi, Mean estimation in high dimension ............................. 5500

Richard Nickl, Gabriel P. Paternain, On some information-theoretic aspects of non-
linear statistical inverse problems .. ...t 5516

Bernhard Scholkopf, Julius von Kiigelgen, From statistical to causal learning .. ... 5540

Cun-Hui Zhang, Second- and higher-order Gaussian anticoncentration inequalities
and error bounds in Slepian’s comparison theorem ............... ... . ... ..... 5594

18. STOCHASTIC AND DIFFERENTIAL MODELLING

Jacob Bedrossian, Alex Blumenthal, Sam Punshon-Smith, Lower bounds on the Lya-
punov exponents of stochastic differential equations ............................ 5618

Nicolas Champagnat, Sylvie Méléard, Viet Chi Tran, Multiscale eco-evolutionary
models: from individuals to populations ........... ... ... ... . 5656

Hyeonbae Kang, Quantitative analysis of field concentration in presence of closely
located inclusions of high contrast ............. ... ... ... i 5680

19. MATHEMATICAL EDUCATION AND POPULARIZATION OF MATHEMATICS

Clara I. Grima, The hug of the scutoid .......... ... ... ... ... ... ... ... 5702

Anna Sfard, The long way from mathematics to mathematics education: how edu-
cational research may change one’s vision of mathematics and of its learning and
teaching ... ... . 5716

20. HISTORY OF MATHEMATICS

June Barrow-Green, George Birkhoff’s forgotten manuscript and his programme for
dynamics ... ... 5748

Annette Imhausen, Some uses and associations of mathematics, as seen from a distant
historical perspective . ... ... ... 5772

Krishnamurthi Ramasubramanian, The history and historiography of the discovery
of calculusinIndia ..... ... .. 5784

List of CONtIiDULOLS . ..ottt e e 5813

XVI



SPECIAL PLENARY
LECTURES



WHAT IS THE POINT
OF COMPUTERS?

A QUESTION FOR PURE

MATHEMATICIANS

KEVIN BUZZARD

ABSTRACT

We discuss the idea that computers might soon help mathematicians prove theorems in

areas where they have not previously been useful. Furthermore, we argue that these same

computer tools will also help us in the communication and teaching of mathematics.
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1. INTRODUCTION

Computers in 2021 are phenomenal. They can do billions of calculations in a second.
They are extremely good at obeying precise instructions accurately. Mathematics is a game
with precise rules. One can thus ask in what ways computers can be used to help us' math-
ematicians to do our job.

Of course, computers have been used to help some mathematicians to do their
job ever since computers have existed. Birch and Swinnerton-Dyer used an early computer
(which was the size of a large room and had 20 kilobytes of memory) to compute many exam-
ples of solutions to cubic equations in two variables modulo prime numbers [5]. Graphing
the output data in the right way led to new insights in the theory of elliptic curves which
ultimately became the Birch and Swinnerton-Dyer conjecture, one of the Clay Millennium
problems. At the time of writing, this conjecture is still open, although regular breakthroughs
(most recently in noncommutative Iwasawa theory) provide us with incremental progress.

This article is not about using computers in that way. This article is an attempt to
explain to all researchers in mathematics that, thanks to breakthroughs in computer science,
computers can now be used to help us not just with computations, but with reasoning. In
other words, it is about the possibility that computers might soon be helping us prove the-
orems, whether they be about “computable” objects such as elliptic curves, or about more
intractable objects such as Banach spaces, schemes, abelian categories or perfectoid spaces,
things which cannot be listed or classified, or in general stored in a traditional computer alge-
bra package in any meaningful way. In particular, it is about the possibility that computer
proof assistants can help mathematicians who up until this point have had no need for com-
putation in their research and might hence incorrectly deduce that computers have nothing at
all to offer them. I should also stress that the applications are not limited to people interested
in foundational subjects such as set theory or type theory; I am thinking about applications
in geometry, topology, combinatorics, number theory, algebra, analysis,...

I end this introduction with a summary of what to expect, and what not to expect,
from this fast-growing area within the next decade. The first thing to stress is that computers
will not be putting us out of a job. Computer proof assistants can now understand the state-
ment of the Riemann hypothesis, but I will eat my hat if a computer, all by itself, comes up
with a proof of the Riemann hypothesis (or indeed a proof of any open problem of interest
to mainstream pure mathematicians) within the next 10 years.”

What I do believe is going to happen within the next 10 years: tools will be cre-
ated which will help mathematicians prove theorems. Digitized and semantically searchable
databases of mathematics are appearing. Computers are going to start doing diagram chases
for us, filling in the proofs of lemmas, pointing out counterexamples to our ideas, and sug-
gesting results which might be helpful to us. The technology to make such tools is already

1 Throughout this article, by “us” and “we” I am referring to the community of people who,
like myself, identify themselves as pure mathematicians.

2 Conjectures which stretch beyond a 10-year period are, I think, very unwise; like mathe-
matics, sometimes computer science moves very quickly.
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coming; it is viable. Furthermore, the databases of theorem statements and proofs which are
appearing will not only have applications in research; we will be able to use them for teach-
ing and for communicating mathematics in new ways. Undergraduates will be able to get
instant feedback on their work. PhD students will be able to search for theorems and coun-
terexamples in databases. Researchers will be able to write next-generation error-free papers
where details can be folded and unfolded by the user. Patrick Massot has written a thoughtful
piece [44] explaining these and other ideas in more detail. Computers are going to be able to
understand your area of mathematics, and even keep up with it as it develops. But there is a
catch. Who is going to make the database of important results in noncommutative Iwasawa
theory, or whatever area you are interested in, which will power these tools? It is not going
to be the computer scientists, because most of them know nothing about noncommutative
Iwasawa theory. It has to be us.

If you want to see progress within this domain in your own area of mathematics,
I would urge you to take some time working through some tutorials and learning one of these
computer proof assistant languages. It is not difficult to do so—I teach a popular course to
final year mathematics students where we learn how to do undergraduate level mathematics
(topology, analysis, group theory, and so on) using the Lean theorem prover.® Engaging with
harder mathematics is not at all difficult once you know the language. If you want to learn
Lean’s language, a good place to start is the Lean prover community’s website [58]. Coq and
Isabelle/HOL are two other well-established theorem provers with big mathematics libraries,
and there are plenty of others. If you can get to the point where you are able to explain the
statements of your own theorems to a computer proof assistant, then these statements can be
added to databases, and, furthermore, you have learnt a new skill. If, however, you can get to
the point where you can explain the proofs, then the Al people will be extremely interested,
as will the people building huge formalized mathematical libraries which represent a 21st
century Bourbaki. Furthermore, you will be having fun: formalization of proofs is mathemat-
ics reinterpreted as an interesting computer puzzle game. If you do not have the time, then
find a student who does. Instead of the traditional “do a project consisting of reading a paper
and then writing a paper showing that you understood the paper,” why not get a student to
write some code which proves that they understood the paper? They can learn the language
of the prover themselves, and then teach it to you as you teach them the mathematics.

The files which computer proof assistants can read and write represent a way of
digitizing mathematical ideas. Digitizing something completely changes (in fact, it vastly
augments) the ways in which it can be used. Consider, for example, the digitization of music,
with the CD and the mp3 file. This has revolutionized how music is consumed and delivered.
My collection of music consists of hundreds of vinyl records, tapes, and CDs in my office
and loft. My children’s collection is in the cloud, has essentially zero mass and volume, and
is accessible anywhere. Not only that, but cloud-based music platforms have also fundamen-
tally changed the way the modern musicians communicate with their fans, bypassing the
traditional process completely. The music industry was turned upside-down by digitization.

3 If you have Lean installed then you can take the course yourself; the materials are here [8].
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Mathematics has been done in the same “pencil and paper” way for millennia, but
now there is a true opportunity to rethink and enhance this approach. I do not dare to dream
what the ultimate consequences of digitizing mathematics will be, but I firmly believe that
it will make mathematics more accessible—and easier for us to do, to communicate, and to
play with. The ball is in our court.

2. OVERVIEW OF THE PAPER

This paper describes a “new” way in which computers can be used by mathemati-
cians. As mathematicians, our typical experience with computers is that we can use tra-
ditional programming languages like Python or traditional computer algebra packages like
sage to do things like compute the sum of the first 100 prime numbers. We know equally
well that these traditional tools, even though they can compute as many prime numbers as
you like (within reason), are not capable of proving that there are infinitely many primes; the
infinite is our domain, not the domain of the computer.

However, this is no longer the case. Computer proof assistants are programs which
know the axioms of mathematics. A consequence of this is that they can do both com-
puting in the traditional sense, and also reasoning. In practice this means that one can
write some computer code in a proof assistant which corresponds to the proof that there
are infinitely many primes (https://leanprover-community.github.io/lean-web-editor/#url=
https%3A%2F%2Fraw.githubusercontent.com%?2Fkbuzzard%2Fxena%2Fmaster%2Fsrc%
2FICMY%2Finfinitude_primes.lean), or even to a proof [22] of the main result in a recent
Annals paper [26].

I wrote “new” in quotes above because it is not new at all; computer scientists have
been creating tools like this for decades now. Indeed, the first computer proof assistants
appeared in the 1960s. However, more recently three things have happened. First, the tech-
nology has now reached the point where research level results across all of the traditional
mainstream areas of pure mathematics are now simultaneously accessible to these systems, at
least in theory, and, increasingly, in practice. Secondly, the systems are far more autonomous
than they used to be. Tactics are commands which can be designed by users and which are
capable of putting together hundreds if not thousands of tedious axiomatic steps, enabling
mathematicians to communicate with these machines in a high-level way, similar to the way
which they communicate with each other. Finally, and crucially, research level mathemati-
cians are finally beginning to get involved; we are seeing material at MSc level and beyond
being formalized, by mathematicians, across many areas of mathematics now. These devel-
opments mean that teaching research level material to a computer proof system in all areas
of mathematics is now becoming a feasible possibility—indeed, it is already happening right
now, and shows no signs of stopping.

The main body of this paper consists of 4 sections (numbered sections 3 to 6), which
are independent of one another, and can be read in any order.

The first is historical; it consists of descriptions of the systems which are being, or
have been used, to formalize mathematics, and discussions of results which have been taught
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by humans to computers over the last 20 years. It also notes various historical technical
advances.

The second is an overview of one of the largest currently available monolithic math-
ematical libraries in existence, namely Lean’s mathematics library mathlib. Lean [23]is a
free and open source computer proof assistant written primarily by Leonardo de Moura at
Microsoft Research. Lean’s maths library math1ib [6e] is a free and open source library for
Lean, developed by a community of users across the world, ranging from undergraduates to
professional mathematicians. mathlib is the library which has powered several of the most
recent significant results in the area.

The third section consists of an introduction to type theory as a foundation for mathe-
matics; it explains how mathematical structures, theorems, and proofs can be encoded within
these foundations. Note that many of the modern computer proof systems where nonfounda-
tional mathematics is happening (Lean, Coq, Isabelle/HOL) use type theory rather than set
theory; however, type theory proves the same theorems as set theory. Furthermore, mathe-
maticians who can prove theorems but who do not know the axioms of ZFC set theory can
happily write code in a type theory proof system corresponding to these theorems without
knowing the axioms of type theory either.

Finally, a speculative final section describes in more detail some personal ideas of
the author and others about the kinds of things which software such as this can be used for,
and how it might help us to do our jobs.

I thank the Lean prover community for welcoming me, a mathematician with very
little programming experience, into their community back in 2017, and also for reading and
giving extensive comments on a preliminary version of this article. Patrick Massot in par-
ticular sent many helpful comments on a first draft. I thank Assia Mahboubi and Manuel
Eberl for giving advice on the Coq and Isabelle/HOL code in this paper, and to both them
and Jeremy Avigad for helpful historical comments. Finally, I would like to effusively thank
Leonardo de Moura for writing my favorite computer game, and Mario Carneiro for teaching
me how to play it.

3. A BRIEF HISTORY OF FORMALLY VERIFIED THEOREMS

In this section [ will talk about the previous successes of computer proof assistants—
computer programs which check human proofs—in mathematics. There are far more projects
here which I could have mentioned, and I apologize to those who have undertaken major
mathematical formalization projects which I have not cited. Examples of computer proof
assistants in which a substantial amount of mathematics has been formalized include
Lean [23], Coq [19], Isabelle/HOL [48], HOL Light [37], Metamath [45], and Mizar [47].

For a computer to formally verify a theorem, it ultimately needs to be able to deduce
the theorem from the axioms of the foundational system (typically, set theory or type theory)
which the proof assistant has been designed to use. I will use the below discussion of histor-
ical results to introduce some conceptual breakthroughs which have over the years enabled
the formalization of mathematics to become feasible.
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This section cannot do justice to all of the work which has occurred in the area;
I thoroughly recommend Hales’ paper “Mathematics in the age of the Turing machine” [33]
for more background and examples, although much has happened since that paper was writ-
ten in 2014.

3.1. The 20th century

Consider the problem of proving from first principles that if x and y are real num-
bers, then (x + y)(x + 2y)(x + 3y) = x3 + 6x2y + 11xy? + 6y>. We all know that the
real numbers are a commutative ring, so let us assume that fact. The question now becomes
how to use the axioms of a commutative ring to prove the equality that we want. How many
lines would a proof from first principles be? Surely not too many! We apply distributivity a
few times to expand out the brackets on the left-hand side, and then, of course, it just becomes
a matter of tidying up and equating terms. As humans we do not think too much about the
tidying-up process; however, if you try proving this in a theorem prover then you will dis-
cover that actually it is a combinatorial nightmare. For example, there is a step in the proof
where where we need to prove something of the form

((A+B)+(C+E))+ ((D+ F)+ (G + H))
=(((((A+B)+C)+D)+E)+F)+G)+H

using only the laws of commutativity and associativity of addition. Humans apply a principle
to justify this step, not an axiom, and indeed proving such a triviality using only the axioms
of a ring is surprisingly fiddly. There is also the issue of turning things like x ((2y)x) into
(2(x?))y and so on.

The very early theorem provers had very limited ability to apply principles, meaning
that proving results such (x + y)(x + 2y)(x + 3y) = x> + 6x2y + 11xy? + 6y3 would
need to be done manually, meaning something like a 30 line proof. If such a triviality hides
30 lines of axiomatic mathematics, imagine what is hidden behind claims of the form “The
function f is clearly O(x~2) for x large”? It is one thing writing a computer proof assistant—
it is quite another one to write one which scales to do the kind of things which we humans
do intuitively. For this and other reasons, many of the earlier formalization achievements of
the 20th century were mathematically trivial. In particular, there were many proofs of the
irrationality of +/2 and of the infinitude of primes, but these were being used as benchmarks
for the systems.

In the final two decades of the 20th century, computer provers began to appear which
had new functionality. In these later systems, users could write “tactics.” Tactics are com-
puter code which assembles axiom applications together into principles. For example, in a
modern prover like Lean, (x + y)(x + 2y)(x + 3y) = x3 + 6x2y + 11xy? + 6y3 can
now be proved in one line by invoking the ring tactic.* Tactics allow formalized mathemat-
ics to more closely resemble ordinary mathematical practice by making “obvious” things
automatic.

4 See [31] for a description of the sort of issues which arise when writing such a tactic.
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3.2. The prime number theorem

In 2004, a team comprising Jeremy Avigad, Kevin Donnelly, David Gray, and Paul
Raff formally verified the prime number theorem, in the Isabelle/HOL system. The proof they
formalized was the ErdGs—Selberg “elementary proof.” The work used inputs from both arith-
metic and basic real analysis. Of course, calculations involving growth of functions which
look easy on paper still took time and effort to formalize. Manipulation of inequalities which
to humans look easy need to be done either by hand or via a Fourier—Motzkin elimination
tactic in a theorem prover. The reason that the Erd§s—Selberg proof was preferred to the tra-
ditional complex analysis proof was that at that time Isabelle/HOL had no complex analysis
library at all.

What we conclude is that by 2004, more serious undergraduate and MSc level mate-
rial was now in theory accessible to these systems, at least in some areas of mathematics.
We also see that we are at a stage where libraries of proofs in distinct areas of mathematics
are able to interact with one another.

In 2009 John Harrison formalized the complex-analytic proof of the prime number
theorem in the HOL Light theorem prover [36], motivated in part by the fact that HOL Light
already had a theory of complex analysis including Cauchy’s integral formula. In 2016 Mario
Carneiro formalized the Erd§s—Selberg proof in Metamath, a set theory based prover which
has essentially no tactics; as you can imagine this was a heroic effort.

Thus the Prime Number Theorem became some kind of a poster child for formal-
ization. One can understand why—it was a celebrated theorem in mathematics, the proof is
not at all trivial, and any formalization in a theorem prover demonstrates that the prover is
capable of reasoning about both the discrete and the continuous simultaneously.

As may be becoming apparent to the reader, however, one reason that the result
was being independently formalized in several theorem provers was that it is extremely dif-
ficult to translate a proof written in one of the systems to a proof in another system. One
issue is that different systems might have different foundations; for example, HOL Light and
Isabelle/HOL are type theory systems, and Metamath is a set theory system. Another issue
is that even if two proof systems have very similar foundations, they might have different
idioms; different libraries in different systems could be set up to do the same thing in very
different ways. Without getting too technical, in order for these computer proof systems to
work, one has to have some kind of a method for moving between structures “behind the
scenes”’—for example, the reals are a field, and hence they are an additive group (and a mul-
tiplicative monoid), and in particular one wants all theorems about additive groups such as
0 + a = a to apply instantly to fields such as the reals without any fuss. Humans, of course,
have no problems with this, but in a computer proof system one needs some kind of infras-
tructure which is making this happen automatically, and if different systems are doing this
in different ways then, of course, this makes automatic proof translation much harder.

Thus it came as a shock to me when in 2020 Mario Carneiro announced that he
had used his Metamath Zero project [14] to port the Metamath proof of the prime number
theorem to Lean. The two systems are about as far apart as it is possible to be—Metamath
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uses set theory as a foundation and Lean uses type theory, for example. Metamath proofs are
typically far more low-level, with limited automation available, whereas typical Lean proofs
are very tactic-heavy. However, the system worked, and produced code which compiled; it
was, of course, also unreadable. It was tens of thousands of lines of completely unmotivated
primitive code defining variables and applying basic principles of logic, with no comments.
In fact, it was a wonderful example of something which satisfied a formal definition of “being
a proof,” whilst in some sense imparting no information whatsoever to the human reader
other than the fact that the theorem was true.

Of course, if computers begin to write proofs by themselves, they might all look like
this, at least at first.

3.3. The four color theorem

The four color theorem (formerly the four color conjecture) was a notorious problem
in graph theory raised in the 1850s and which remained unresolved for over 100 years. One
formulation of it is the assertion that the vertices of every planar graph can be colored with
four colors in such a way that no two adjacent vertices share a color. The statement is an ele-
gant combinatorial problem, and it came as a shock to some in the mathematical community
that the proof, announced by Appel and Haken in 1976, used a computer in an essential way.
Appel and Haken constructed a collection of 1834 graphs with the property that a minimal
counterexample must contain one of these graphs as a subgraph, but that conversely no graph
containing one of these 1834 graphs as a subgraph can be a minimal counterexample. The
verification of these claims was done using a bespoke computer program which, in those
days, took over a month to finish running. The Appel-Haken proof was an outlier because
whilst the principle of the proof was possible to understand, the details were too difficult for
a human to follow in practice; one billion case splits (this is what the computer part of the
proof looks like) is not something which humans can do manually and accurately within a
reasonable time frame. The proof relies, essentially, on a computer calculation and hence it
relies on the correctness of the computer code. Small bugs in computer code are, of course,
commonplace, although it could be added that small bugs in human-written proofs are also
commonplace. However, the mathematical community is well-equipped to discover and fix
small bugs in human-written proofs, and was perhaps rather less well equipped to verify the
correctness of computer code, especially in 1976.

In 2004 Georges Gonthier finished a formal verification of the Appel-Haken
result—more precisely he formalized the 1997 Robertson—Sanders—Seymour—Thomas vari-
ant of the argument [27]. The work comprised 60,000 lines of code written in the Coq
proof assistant. In particular, it completely dwarfs the prime number project discussed in
the previous subsection. It contains a complete formalization of the theoretical part of the
work—formal proofs of results in topology (to reduce the statement about arbitrary planar
graphs to one of a discrete combinatorial nature) and graph theory—whilst also formally
verifying the computer calculation necessary to finish the proof. Note in particular that (as in
the proof of the prime number theorem) much of the work comprised writing foundational
material rather than formalizing the proof itself.
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It is interesting to note that the process of formalization led to simplifications in the
argument. For example, Gonthier developed a theory of what he called combinatorial hyper-
maps, which greatly reduced the amount of topology needed in the proof, and in particular
removed the dependency of the argument on the Jordan Curve theorem. Gonthier developed
some original mathematics as part of the work—for example, he isolated a combinatorial
criterion for his hypermaps which was equivalent to planarity.

Naively, it looks like in this case we are replacing one “proof by computer” with
another one; however, this is missing the point. Firstly, the Coq formalization covers not
just the Appel-Haken computer code, but also all of the rest of the Appel-Haken argument.
Secondly, one can view the formal verification as an independent check of the proof. Finally,
instead of having to trust the code written by Appel and Haken and which few people have
read, we are instead having to trust code written by the authors of Coq. Coq has been around
for a long time (the first version was written in 1984), has a small kernel, and the system has
many users. A bug which meant that Coq could incorrectly claim that an unproved theorem
was true would be unlikely to manifest itself in just one project and is far more likely to
ultimately be discovered. In contrast, the Appel-Haken code is a bespoke piece of code with
few users so arguably bugs are more likely.

Gonthier wrote a very informative piece [28] about his work for the Notices of the
American Mathematical Society (including an exposition of the theory of hypermaps), as
part of the November 2008 issue; this issue was devoted to formal verification of mathematics
in a computer proof system and provides an excellent survey of the field as it then stood.

3.4. The odd order theorem

The odd order theorem is the theorem that any finite group of odd order is solvable.
In 2013 a team of 15 people led by Gonthier formally verified a proof of this theorem in
Coq [29]. This piece of work is notable for several reasons. Firstly, the proof is very long;
a complete argument (modulo the basics in group and representation theory) is presented
in the two volumes [2] and [5e]. Secondly, we have moved way beyond MSc level math-
ematics here—this work was one of the reasons that Thompson was awarded the Fields
Medal in 1970. The proof is a very delicate argument in finite group theory, much of which
involves analyzing the structure of a minimal counterexample and ultimately showing that it
cannot exist. The Coq proof involved formalizing both of the books mentioned above, plus,
of course, all the background material in group theory, representation theory, Galois theory,
and number theory; indeed, formalization of the background material took up much of the
six years which the authors spent on the proof. Figuring out how to handle such a large-scale
formalization project was also a nontrivial task.

It is perhaps worth stepping back and asking how work like this contributes to human
understanding. The naive answer to this is “it guarantees that the human proof is correct.”
However, in my opinion, this is not the main contribution. Humans were well aware even
back in the 1960s that the proof was correct—had there been any doubt, Thompson would
not have got the Fields Medal. What the formalization work shows us that theorem provers
have now become able to operate at this kind of scale. Entire books of mathematics can now
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be formalized in one system without the system running out of memory or grinding to a halt.
On average, one line of mathematics in [2] or [5e] corresponded to five lines of computer
code, so we learn that by 2013 the so-called “De Bruijn factor” for this kind of mathematics
is around 5. However, this ratio should not be taken too seriously: in parts of the argument,
the ratio is essentially one, and in other parts it is much larger. Note also that this factor may
vary considerably between theorem provers.

We also learn that large formalization projects such as this are a very effective way
to motivate development of foundational mathematics libraries. One consequence of this
formalization project was that Coq developed a very solid library of undergraduate-level
algebra which can, of course, be used (and is used) for other projects.

The write-up [29] of the odd order work is an interesting read. Some sections con-
centrate on the mathematics or the history, but there is also a discussion about constructive
mathematics, something which I felt should have nothing to do with the work, and also about
implementation issues, something else which mathematicians typically do not ever have to
think about. For example, one observation made in section 3 was that many theorems involv-
ing two or more finite groups would usually be formalised assuming that these groups were
both subgroups of some larger ambient finite group X . This can be done without any loss of
generality of course, because given two groups G and H , they are both subgroups of G x H.
Why is this observation important? This is an implementation issue — the domain of the com-
puter scientist. Working with subgroups rather than groups might be easier, or nicer, when
it comes to actually implement certain theorems in the theorem prover. It is worth noting
however that such a trick does not work more generally: for example in algebraic geometry
one uses the category of commutative rings with 1, and morphisms by definition send 1 to 1.
If R and S are general commutative rings with 1 then there is in general no morphism of
rings from R to R x S sending 1 to 1, so one is forced to implement commutative ring theory
in a more “traditional” manner. See [63] for how this was done in Lean.

Regarding constructivism — the authors of the work put in a lot of effort to keep their
proof “constructive”, for example the avoidance of all uses of the complex numbers when
setting up the basics of representation theory. The complex numbers do not have decidable
equality, meaning that there is in general no algorithm for proving that two constructively
defined complex numbers are equal (for example, one can evaluate a definite integral numer-
ically and observe that it seems to be 0 to 1000 decimal places, but there is not some generic
algorithm which we can apply to an arbitrary integral in order to decide whether or not it
equals 0). This means that in constructive mathematics, where the law of the excluded middle
cannot be assumed, one cannot do a case split on whether z = 0 or not, if z is a complex
number, and more generally plenty of constructions become noncomputable and hence much
harder to reason with constructively. These design choices thus increase the amount of work
needed to get representation theory working. I had thought that constructivists had died out
in the early part of the 20th century. It turns out that they are alive and well, and typically
working nowadays in computer science departments. One reason for this is that construc-
tivism plays an important role in the theory of programming languages. Reluctance to use
the law of the excluded middle is to a certain extent a cultural decision. However there are also
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situations where working constructively enables a computer proof system to prove certain
results “automatically” (for example by an explicit computation). Whilst working construc-
tively may have been feasible for a project about finite groups, the law of the excluded middle
is used throughout most modern research level mathematics and it is not really feasible to
work constructively when doing the kind of mathematics which is happening nowadays in
mathematics departments. However it is also worth stressing that most modern proof assis-
tants have no problems with the law of the excluded middle, the axiom of choice, and other
non-constructive axioms — they are available, if you want them. Certain proof strategies are
ruled out if one chooses to work nonconstructively, but one can counter this by writing new
tactics specifically designed to do computations in fields such as the real and complex num-
bers. Nonconstructive axioms are used extensively in Lean’s mathematics library mathlib,
for example.

3.5. The Kepler conjecture

The Kepler conjecture states that the face-centered cubic packing is the densest way
to pack congruent spheres in 3-space. Hales and Ferguson proved the conjecture in 1998; it
had at that point been open for over 350 years (it was raised by Kepler before Fermat proposed
his Last Theorem). Part of the Hales—Ferguson proof involved the checking of over 23000
nonlinear inequalities on a computer; another part involved a computer classification of all
tame graphs. Other computer calculations were also involved. In this respect the proof is
similar to the Appel-Haken proof of the four color theorem; computations need to be carried
out which are simply far too great for humans to do in a reasonable time frame.

Because the result was regarded as important, the referees felt duty-bound to attempt
to check the computer part of the proof in some way; however, ultimately they gave up, and
in [34] Hales states that the paper was published (in the Annals) without complete certifi-
cation from the referees. In 2003 Hales announced a project to formally verify the proof
using computer proof systems. Hales used a combination of HOL Light and Isabelle/HOL,
and the project turned into an international collaboration, with 22 authors listed on the final
paper. The formalization project took around 12 years to complete, and comprised over half
a million lines of code. Just as for the other projects in this section, one of the main benefits
of the work to the formal proof community is that HOL Light’s standard library grew to
include theorems such as the Brouwer fixed-point theorem, the Krein—-Milman theorem, and
the Stone—Weierstrass theorem.

In 2017 Hales gave a talk [32] at the Newton Institute where he told the story of the
Kepler proof, and explained a vision for the future of formalized mathematics. This talk was,
for me, the turning point, and was one of the main motivations behind the work described in
the following subsection.

3.6. Perfectoid spaces

The previous formalized results all have something in common. Whilst some of
them represent truly deep mathematics, all of the formalized proofs involve reasoning about
objects which are in some sense elementary (planar graphs, prime numbers, finite groups,
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spheres). Furthermore, most (but not all) of the formalizing done prior to 2017 was being
done by computer scientists. In Hales’ talk linked to above, he coherently argued that for
further progress in this area, this state of affairs had to change. At that time I had only just
begun to dabble with computer proof assistants and my initial plans were to attempt to inte-
grate them into my undergraduate teaching. However, Hales” arguments resonated with me,
and within a few months I found myself working with undergraduates at Imperial College,
formalizing the definition and basic properties of schemes in the Lean theorem prover. This
project involved developing basic theories of localization of rings and of sheaves on topo-
logical spaces; however, it was relatively straightforward (modulo poor design decisions; the
reader interested in more details can see them in [12]). I was thus shocked to discover after-
wards that schemes—such a basic notion in algebraic geometry—had not been previously
formalized in any other computer proof system! Furthermore, the project made it quite clear
to me that formalizing far more heavyweight mathematical objects should easily be possible.

In late 2017 Patrick Massot (a topologist) and myself independently came up with
the idea of formalizing perfectoid spaces; the topic was in the air because it was at that time
an open secret that Scholze was going to be awarded a Fields Medal for his invention/dis-
covery of the concept and its applications to arithmetic geometry. I knew the mathematical
definition, having dabbled in the area myself, and when Johan Commelin, another arithmetic
geometer, appeared in the Lean Zulip chatroom in 2018 the three of us decided to go for it.
Around 16000 lines of code and eight months later, we had a formalized definition; one could
summarize the work as a computer formalization of the single line of mathematics “let X be
a perfectoid space”.’

The work was, of course, partly intended as a public relations stunt; computer scien-
tists were well aware of the existence of computer theorem provers, however, mathematicians
seemed not to be, and this was an attempt to make them notice. The plan was a success—
the project did seem to raise the profile of computer theorem provers within the mathematics
community. Note, however, that we did not construct any examples of perfectoid spaces other
than the empty perfectoid space,® and all three of us were well aware of the problems prevent-
ing us from formalizing any of Scholze’s serious theorems about perfectoid spaces at that
time; we were missing so many of the prerequisites. As with previous projects, one tangible
gain from the work was the growth of the mathematics library of the system in question.
Most of the results in Bourbaki’s General Topology ended up as part of Lean’s mathematics
library mathlib as a result of this project, as well as plenty of results in topological algebra,
and it also motivated the beginnings of a theory of valuations and discrete valuation fields.

One can consider the perfectoid space work as in some sense being orthogonal to
what was usually being attempted in a theorem prover. Many of the prior results highlighted

5 In the odd order formalization, the de Bruijn factor (ratio of lines of computer code to lines
of human text) was around 5. Here one could argue that it is 16000. However, one could,
of course, also argue that it might well take several thousand lines of human text to define a
perfectoid space in full.

6 To prove that the empty set can be given the structure of a perfectoid space, one needs to
check that an arbitrary product of trivial topological rings is the trivial topological ring.
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in this section are proofs of long and complex theorems about relatively simple objects.
The proof that the empty set can be given the structure of a perfectoid space is a very simple
theorem about a much more complex concept. Of course, the natural next question is whether
computer proof systems can prove complex theorems about complex objects. One year after
the perfectoid space project, we began to find out.

3.7. Condensed mathematics

Clausen and Scholze have been developing a theory of condensed mathematics.
A condensed set is a variant of a topological space. The main insight is that condensed objects
may have better homological properties than topological objects (for example, the category
of condensed abelian groups is an abelian category, whereas the category of topological
abelian groups is not). They hope that these ideas will enable techniques in homological
algebra to apply to new areas of analytic geometry. At the end of 2020, Scholze approached
me and asked if we had had a study group on the work at Imperial; I answered that we had.
Scholze then asked whether we had looked through all the details of the proof of Theorem 9.1
of [51]; I answered that we had not. Scholze then remarked that he had had the same response
from other mathematicians, and raised the possibility that perhaps nobody other than himself
and Clausen had ever read the proof carefully. Furthermore, he suggested that perhaps this
might remain true even after the refereeing process. The reason he was concerned about this
was that, for Scholze, this was the theorem that the entire theory stood upon. The proof was
very technical; it built upon a more “elementary” but rather unwieldy intermediate result,
Theorem 9.4 of [51]. Scholze agreed to challenge the formalization community to prove his
Theorem 9.1 in a blog post [55], later published as [53]. Although the challenge was to the
formalization community in general, it seems that only the Lean community responded; this
is perhaps unsurprising, as (for perhaps only for sociological reasons) it has come to be the
case that mathematicians interested in “the kind of mathematics which wins Fields Medals”
and also interested in theorem provers tend to gravitate towards Lean.

Johan Commelin became the de facto leader of the formalization process, with
Patrick Massot supporting him in making a blueprint [18] of the strategy (that is, a carefully-
written roadmap) and a team of algebraic number theorists, arithmetic geometers and other
mathematicians (Riccardo Brasca, Damiano Testa, Filippo Nuccio, Adam Topaz, myself,
Patrick Massot, Bhavik Mehta,...) then began working on the project, with the occasional
help from people with a computer science background such as Mario Carneiro. Within six
months the team had grown to over ten people and we had formalized a complete proof of
Theorem 9.4 (see [15]). At the time of writing, we have not deduced Theorem 9.1, but it
is only a matter of time. A second blog post [54] by Scholze indicates his thoughts on the
matter; in particular, we see that he is now far less concerned about the situation regarding
the correctness of the results. Furthermore, Scholze has indicated (personal communication)
that the process has enabled him to better understand what powers the proof, and Commelin
not only learnt the mathematics as part of the process, but also simplified the argument in
several places, most notably in the removal of the dependency of the argument on prior work
of Breen and Deligne.
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For me, this represents substantial evidence that now any pure mathematics can
be formalized in theorem provers—both in theory, and in practice. It takes time, but it is
possible. The formalization of the work led both to better understanding of it, and to sim-
plifications of the argument. Also worth mentioning is that, as in many other formalization
projects, a substantial amount of time was spent formalizing background material (for exam-
ple, the theory of normed groups and the theory of profinite spaces). As the libraries of the
provers get better and start to contain the kind of material which working mathematicians
take for granted, there will be fewer of these “startup costs.”

3.8. Other results

There are plenty more examples of serious formalization efforts which we do not
have the space to cover. We list some examples here. Gouézel formalized the basic defi-
nitions of C* and C° manifolds in Lean, extending earlier work done in Isabelle/HOL.
Mahboubi and Sibut-Pinote proved irrationality of {(3) in Coq [16] and Eberl proved it in
Isabelle/HOL [24]. Mahboubi has also done extensive work on rigorous numerical values of
integrals in Coq, and also in Coq Bertot, Rideau, and Théry formally verified the first one
million decimal digits of 7 [4]. Eberl has formalized much of Apostol’s textbook on analytic
number theory in Isabelle/HOL [25]. Han and van Doorn proved independence of the contin-
uum hypothesis in Lean [35]. Immler formally verified Tucker’s calculations used to verify
the existence of the strange attractor [38]. Mehta and Dillies formally verified Szemerédi’s
regularity lemma and Roth’s theorem on arithmetic progressions in Lean, and Edmonds,
Koutsoukou-Argyraki and Paulson verified them in Isabelle/HOL. The Poincaré—Bendixson
theorem was formalized by Immler and Tan [39] in Isabelle/HOL; note that the usual proof
as understood by mathematicians relies on drawings, and formalizing drawings can be hard
work. The Ellenberg—Gijswijt resolution of the cap set conjecture was verified in Lean by
Dahmen, H6lzl, and Lewis [22]. Commelin and Lewis constructed Witt vectors and showed
that W(IF,) = Z, in [17]; this work is interesting because not only did they formalize the
delicate mathematics involved, they also wrote tactics which would enable them to reduce
various questions to the universal case in a painless manner. Finiteness of the class group
of a global field was proved in Lean by Baanen, Dahmen, Narayanan, and Nuccio in [1] (it
still astonishes me that this result, special cases of which were known to Gauss and which
is a standard theorem in an undergraduate mathematics degree, was formalized in a proof
assistant for the first time in 2021).

There is also work in progress (at the time of writing). Teams of people who collab-
orate on the Lean Zulip chat [65] are currently working on a proof of Fermat’s Last Theorem
for regular primes, and on Smale’s theorem that it is possible to evert a sphere. A general
project to formalize many basic results in the theory of schemes is also underway.

4. mathlib
In this section I will give an overview of Lean’s mathematics library, one of the
largest monolithic collections of formalized mathematics in existence and, more importantly,
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one which is currently experiencing rapid growth. To a certain extent it is a personal perspec-
tive; a different point of view, which talks more about the computer science powering the
library, is presented in [6e].

The principal developer of the Lean Theorem Prover is Leonardo de Moura, who
started the project in 2013. At the 2017 Big Proof conference in Cambridge, it was decided
to split off most of the “mathematical” part of the prover from the “core” part, and move
the mathematics into a library of its own. Thus mathlib was born. At the time mathlib
contained definitions of groups, rings, and topological spaces, filters, a construction of the
rational numbers (the naturals and integers remained in core Lean), and little else. Johannes
Holzl and Mario Carneiro became the maintainers of the library, and between them they
began to slowly build more mathematics, for example, the real numbers. Holzl had written a
lot of the topology part of the repository, following the Isabelle/HOL approach which relied
heavily on the concept of a filter. Carneiro wrote a robust theory of finiteness, and slowly the
library began to become relevant to the “working mathematician.”

The library is a free and open source project. It is monolithic in the sense that there
is one definition of a group, one definition of a ring, one definition of the real numbers, and
so on, and all of these definitions can be imported simultaneously and interact with each
other. Initially it was not clear what its goals were, other than being a place where people
could experiment with doing mathematics in Lean. Mathematicians such as Scott Morrison,
myself, and Patrick Massot got involved at a very early stage, and because our background
was in mathematics which relied on classical logic (i. e., the law of the excluded middle) and
other nonconstructive axioms such as the axiom of choice, the library developed with these
classical assumptions at its core. Each successful mathematics project written in Lean and
powered by mathlib seemed to attract more mathematicians to its chatroom, which in turn
led to more projects. Within a couple of years Lewis had formalized the p-adic numbers [41],
myself and a team of undergraduates (Lau, Hughes, Livingston, and Fernandez Mir) formal-
ized schemes [12], Dahmen, Ho1zl, and Lewis formalized the 2017 Ellenberg—Gijswijt Annals
proof of the cap set conjecture [22], and Massot, Commelin, and myself formalized the def-
inition of a perfectoid space [16]. Each of these projects could not have happened without
mathlib; conversely, each of these projects contributed to the growth of mathlib.

Plenty of developments were also taking place which were not written up as papers,
and whose main purpose was simply to grow mathlib. I supervised student projects where
undergraduates could formalize material they were learning in class and add it to the library;
for example, Sylow’s theorems (Chris Hughes), nilpotent groups (Ines Wright), conformal
maps (Yourong Zang), and the Radon—-Nikodym theorem (Kexing Ying) were added this
way. Amelia Livingston developed a theory of localization of monoids and rings which we
needed for algebraic geometry. I pushed undergraduates (Hughes, Lau, Lee) to formalize
a standard Galois theory course in Lean; they developed a theory of field extensions, and
the project was then taken up by a group of mathematics PhD students in Berkeley (Miller,
Browning, Lutz) who finished the job, proving the fundamental theorem of Galois theory
and the insolvability of the quintic [7] (note that this was coincidentally formalized in Coq
just a couple of months beforehand [3]). Baanen, Dahmen, Narayanan, and Nuccio formal-
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ized a proof of the finiteness of the class group of a global field [1]. I was pushing algebra,
but others were pushing geometry and analysis. Gou€zel and Macbeth developed a theory
of manifolds, and Gouézel and Kudryashov developed an extensive theory of single and
multivariable calculus, including the implicit function theorem and the Picard-Lindelof the-
orem. Gouézel also formalized the Gromov—Hausdorft space: a metric space parametrizing
nonempty compact Hausdorff metric spaces up to isometry.

Morrison has developed a huge amount of category theory, and he and Topaz have
now formalized the definitions of abelian categories and the beginning of the development
of derived functors and homological algebra. Massot has developed valuation theory and a
theory of completions of uniform spaces and of topological groups and rings. Tuma devel-
oped the theory of Jacobson rings, and I developed some of the basics of other standard
ideas in commutative algebra (projective and flat modules, discrete valuation rings), and
Springer, Kuelshammer, and many others have also contributed to algebra. Holzl developed
the theory of Lebesgue measure, and van Doorn formalized Haar measure. There are many
more people who have made contributions (mathlib now has over 200 contributors) and
new contributions are always welcome. Contributions are reviewed by the maintainers. One
of the principles of the library is to do things “in the correct generality.” This meant, for exam-
ple, that multivariable calculus and some exotic integrals taking values in Banach vector
spaces was developed first, and single variable calculus was deduced as a corollary. The
library is not optimized for pedagogy or readability; the idea is to continue to make a solid
foundation for the kind of mathematics which is happening in a contemporary mathematics
department.

It is interesting to note that Lean seems to be learning mathematics at around the
same speed as an undergraduate. In the four years which the library has been growing, it
has gone from essentially zero to a solid MSc level coverage in number theory and commu-
tative algebra, and BSc level real analysis. In complex analysis, differential geometry, and
representation theory it is perhaps not quite yet at final year BSc level, but things move fast
and this sentence, written in 2021, will quickly date. For an up to date idea of the current
status of math1lib, the best idea is to take a look at the Lean community’s full overview of
mathlib [57], or its summary of the undergraduate level mathematics it contains [59].

5. A BRIEF GUIDE TO TYPE THEORY

In this section we explain the basics of type theory and how it can be used as a
foundation of mathematics. Many modern theorem provers use some version of type theory
as their foundations. For example, Isabelle/HOL and the other HOL systems use simple type
theory, Lean and Coq use dependent type theory, and the various HoTT systems developed by
Voevodsky and others use homotopy type theory. There are a few computer proof assistants
which use set theory—Metamath and Mizar are the two most prominent—howeyver, it is not
unfair to say that what nowadays most mathematics have done in theorem provers is done in
a type theory system, so a mathematician interested in dabbling in formal proofs should at
least know something about the basics, which is what this section attempts to describe.
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5.1. What is a type?

Mathematicians nowadays are used to seeing the word “set” floating around when
it comes to basic definitions. For example, we are told that a group is a set equipped with a
multiplication such that some axioms hold. We are not told what a set is though; a course on
ZFC set theory tells us a list of properties which sets have, but they do not tell us what a set is.
Indeed, in this context the word “set” has no formal definition; it is simply the generic term
for an object in our model of the axioms of mathematics, and we build other mathematical
objects on top of this basic object.

In definitions such as the definition of a group, the word “set” is being used to mean
no more than “collection of elements.” In type theory, the role of a “collection of elements”
is played by the fype. A type is a collection of terms. The definition of a group in type
theory: a group is a type equipped with a multiplication such that some axioms hold. The only
difference is the notation: the set-theoretic a € X is replaced by the type-theoretic a : X.

As mentioned above, those of us who have been to a set theory class will know
that, when using set theory as a foundation of mathematics, everything is a set. For example,
the elements of a group are, strictly speaking, also sets, so one could in theory talk about
their elements too, although within the context of group theory such questions would not
be mathematically meaningful, as they are not isomorphism-invariant. In type theory this is
not possible; the elements of a type are called ferms, and in general terms are not types. In
type theory, everything is a term, and every term has a type, but not every term is a type.
For example, in type theory 3772 is a term, whose type is R, the type of real numbers. We
write 3772 : R. However, x : 3772 does not make sense, because 3772 is not a type. In a
set-theory based theorem prover, questions such as asking if the trivial group is an element of
the Riemann zeta function would make sense but its meaning would be unmathematical—it
would depend on implementation decisions. Type theory thus provides a basic check that
what you are writing has mathematical meaning.

In a type theory system, the type R is still built from Q as equivalence classes of
Cauchy sequences, or via Dedekind cuts, or as another of the standard constructions; the
mathematical part of the story is identical to the set theory setup, it is just that the language
used is slightly different (types and terms, rather than sets and elements).

One difference between types and sets, however, is that fypes do not mix: distinct
types are disjoint. This has practical advantages when formalizing mathematics because it
provides a strong check that the mathematics you are typing makes sense: in type theory, if
g is an element of the group G, then the only type that g can ever be a term of is G.

This approach does, however, have consequences which can initially come as a
shock to a mathematician. For example, one could make a type representing the positive
reals R and a type representing the reals R, but if a term x had type R~ then x itself
would not, strictly speaking, have type R; I stress again that every term has a unique type. To
make a term of type R ¢, one has to give two pieces of data: a real number, and a proof that it
is positive. A term of type R~ is an object corresponding to this pair, so, strictly speaking, it
is not a real number, and a type theory based system will hold you to this. However, of course,
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there is a canonical map from R~ to R—you just throw away the proof. More generally, a
type theory system could well have a coercion system, consisting of a collection of “invisi-
ble functions” mapping types to other types in the way which mathematicians would expect.
For example, given a term of type R~ ¢, it might well be possible to feed it into a function
which is expecting a term of type R; the system will just throw away the proof of positivity
and use the underlying real number anyway. Mathematicians use these invisible functions
everywhere, often without noticing. We have already mentioned above that in a foundational
system the real numbers need to be built using one of the standard constructions, for exam-
ple, via Cauchy sequences. In particular, a rational number is not literally a real number.
However, taking Lean as an example, if one has a term x : Q then one can simply write
x : R to get the corresponding real number, although a careful inspection of the corre-
sponding term will unearth the fact that the real number is actually called 1 x, indicating that
a coercion has been applied. The coercion is a ring homomorphism, and Lean has a “nor-
malize casts” tactic [42] which knows this and will apply theorems such as 1 (x+y) =1x+1y
and 1 (xxy) =7x*1y automatically (before this tactic had been written, doing mathematics
which involved switching between the naturals, integers, and rationals could be quite frus-
trating because of these invisible maps). In summary then, type theory forces you to think
more precisely about the actual objects you are working with, however, tactics can be used
to manipulate these objects the way we usually manipulate them. Learning how to “steer”
mathematics in a theorem prover this way simply comes from practice.

5.2. Inductive types

I have already mentioned that in a type theory system the definition of the real num-
bers is the same as in a set theory system—it is Cauchy sequences, or Dedekind cuts, or
whatever your favorite construction of the reals is. Similarly, the usual definitions of the
rationals and integers as quotients work just as well in type theory as they do in set theory.
But one place where the type-theoretic and set-theoretic foundations of mathematics differ
is in the definition of the natural numbers. The natural numbers are a foundational object in
mathematics—they are typically the first example of an infinite object to be born—so it is
perhaps unsurprising that different foundational systems will treat them in different ways.

In ZFC set theory, the existence of the set of natural numbers is postulated as an
axiom, namely the axiom of infinity. Type theories such as Lean’s instead allow the user
to define custom inductive types. Such types include the naturals and other recursively-
defined constructions. Implementation details of this so-called calculus of inductive con-
structions [2e] differ between systems; the rest of this section explains details which are
specific to Lean’s type theory, but much of what I say applies to Coq and Agda, other popular
type theory provers.

In Lean, the definition of the naturals looks like this:

inductive nat
| zero : nat

| succ (n : nat) : nat
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This definition says “zero is a natural number, the successor of a natural number is
a natural number, and that is it.” As one might guess, this inductive construction can be used
to construct far more exotic types, but one can show that any type which can be defined using
the rules of the calculus of inductive constructions corresponds to a set which can be built
using the usual axioms of set theory.

Let us see what goes on under the hood when the naturals are defined as an inductive
type. When such a definition is made, a new type nat appears in the system, as does the
term nat . zero and the function nat.succ : nat — nat. The latter terms are called
constructors: they are ways to make natural numbers. However, one more thing also appears,
namely the eliminator for the type—the object which enables the user to construct functions
whose domain is the naturals and whose codomain is something else. It represents the idea
that the only way that one can construct naturals is via nat.zero and nat . succ, and it
states that to define a function out of the naturals, it suffices to (1) say where nat.zero
goes, and (2) to say where nat . succ n goes, given where n went. In other words, it is the
principle of recursion.

So this is how new inductive types are born in Lean; after their definition they,
together with their constructors and eliminator, are automatically added by the proof assis-
tant to the system as new constants, or axioms, or however you would like to think of them.
There are, of course, precise rules telling us the exact form of the eliminator for a given induc-
tive type; we do not go into these here. From a foundational point of view, this approach,
where new axioms appear “by magic” as types are constructed, is very different to the set-
theoretic viewpoint; however, in [62] it is shown that type theory with these constructions is
equiconsistent with set theory. The strategy of the proof is to make a model of set theory
within type theory, and to make a model of type theory within set theory. For a more precise
statement, one has to be more precise about exactly what kind of type theory one is work-
ing with. For example, Mario Carneiro’s MSc thesis [13] shows that Lean’s type theory is
equiconsistent with ZFC plus countably many inaccessible cardinals.

It is worth noting, and quite amusing, that equality itself is defined as an inductive
type in many type theory systems. This is in contrast to set theory, where equality is typically
considered as part of the logic. Indeed, equality in type theory is generally more subtle than
in set theory. Here is Lean’s definition of equality:

inductive eq {X : Type} : X — X — Prop

| refl (a : X) : eqg a a

The slightly unnerving X — X — Prop, bracketed as X — (X — Prop),
means that equality is a function which takes in an element of X and outputs a function
which takes in an element of X and outputs a Proposition, that is, a true—false statement. In
other words, if a and b are terms of type X then eq a b is a true—false statement. Using the
usual notation a = b for eq a b, we see that equality of terms of a type X is an inductive
type with one constructor, namely eq. refl a,aproofthata = a. It turns out that from this
definition we can prove all the usual properties of equality! The eliminator for the equality
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type is the substitution property, that if a = b then given a term of type P(a) we can get
a term of type P (b). It is a rather pleasant game to go on from this to deduce that equality
is both symmetric and transitive (for more details on this, see, for example, [9]). Of course,
whilst it is of interest to some to see how basic properties of equality can be proved within a
type theory system, it is also worth stressing that to use a computer theorem prover one does
not have to know anything about them.

5.3. Dependent types

Lean and Coq both use a version of type theory called dependent type theory, so
it is perhaps worth taking some time to explain what a dependent type is. Imagine X is a
geometric object, for example, a real manifold. Say that we have a vector bundle on X, that s,
for each point x of X a vector space V (which varies smoothly with x in some appropriate
sense). A section of this bundle is a function which takes as input a point x in X and outputs
an element of V. From a foundational point of view, there are two ways to think about such
a section. One could regard this section as a function from X to the disjoint union of the Vy,
sending x € X to an element of V. Alternatively, one could regard it as a slightly stranger
kind of “function” which has domain X but whose codomain varies according to the input.
There are times in mathematics when taking the disjoint union of the codomains is a natural
thing to do—for example, in the example above, the disjoint union of the V is naturally a
space V sitting above X. However, there are also times when taking the disjoint union is
quite unnatural. For example, in algebraic geometry one way of defining the sections of the
structure sheaf on an affine scheme Spec(R) is functions which send a prime ideal P of R
to an element of the localization Rp of R at P, and the disjoint union of the Rp as P varies
over the prime ideals of R has no natural algebraic structure. The set or type consisting of
the disjoint union of these local rings is typically not part of the mental model which an
algebraic geometer has when describing these sections.

These kinds of “functions” which have a well-defined domain, but a codomain
which can vary according to the input, are called dependent functions. Not all proof assistants
have such functions; for example, Isabelle/HOL (a powerful proof assistant which contains
a lot of analysis and analytic number theory) and various other HOL systems do not have
them, which means that certain constructions in geometry are more convoluted than in Coq
or Lean. See, for example, [6], which defines schemes in Isabelle/HOL but which has to build
a new implementation of ring theory from scratch in order to do so.

5.4. Examples

Let us take a look at some examples of what mathematics looks like in a theorem
prover based on type theory. I give these examples mainly to convince the reader who has
been brought up using the language of set theory that there really is very little difference.

Here is what the claim that /2 is not rational looks like in Isabelle/HOL:

theorem sqgrt2_not_rational:
"sgrt 2 ¢ Q"
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You can see the proof on Isabelle’s Wikipedia article [64]. The fact that 2 is a term
of a type and not a set, or an element of a set, is invisible.
Here is some more advanced mathematics, written in Coq:

Lemma prod_Cyclotomic n

(n > 0)%N —-> \prod_(d <- divisors n) 'Phi_d = 'X"n - 1.

This is the statement that the product of the dth cyclotomic polynomials over d | n
is X — 1. Note the hypothesis n > 0, an assumption which a human would typically omit;
computers are very picky with such “edge cases.”

Here is the definition of a perfectoid ring in Lean, taken from the Lean perfectoid
spaces website [11] which accompanies the article [16].

/—— A perfectoid ring is a Huber ring that is complete, uniform,
that has a pseudo-uniformizer whose p-th power divides p in the
power bounded subring,
and such that Frobenius is a surjection on the reduction
modulo p.-/
structure perfectoid_ring (R : Type) [Huber_ring R] extends

Tate_ring R : Prop :=

(complete : is_complete_hausdorff R)

(uniform : is_uniform R)

(ramified : d w : pseudo_uniformizer R, w”"p | p in R°)
(Frobenius : surjective (Frob R°/p))

The comment at the top of the code is the “docstring” for the code—this is the
human-readable explanation of what the Lean definition perfectoid_ring represents,
and this docstring is visible when you hover your cursor on the word perfectoid_ring
in some Lean code; if you are running the code in an IDE such as Microsoft VS Code then
right-clicking on this word will jump you to the definition.

The Lean definition pretty much coincides with the human definition. If R is a Huber
ring which is a Tate ring (these are technical properties of topological rings), then we say R
is a perfectoid ring if it is complete, uniform, and satisfies a couple of technical properties.
The point to observe is that the computer code is no more or less difficult than the human
definition.

5.5. Foundations

In my experience, mathematicians often have very little interest in the technicalities
of the logical foundations of their subject—they cannot list the axioms of set theory, but
they know from experience what is “legal mathematics.” The controversies of the early 20th
century about whether nonconstructive methods are allowed in mathematical proofs have
long ago died down; working mathematicians use the law of the excluded middle all over the
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place, and many use the axiom of choice in some form or another (indeed, countable depen-
dent choice can be invoked almost without one noticing). A typical research mathematician
will have gone to at most one course on the foundations of mathematics; in such a course
one typically learns that Zermelo—Frankel set theory with the axiom of choice, or ZFC, can
be used as a foundation for much of mathematics. Indeed, it can be used for essentially all of
mathematics up until the 1960s; however, Grothendieck’s supergeneral cohomology theories
developed in SGA4 introduced a new “axiom of universes” (the assertion that every set is an
element of a set which is a model of ZFC). This axiom cannot be proved from the axioms
of ZFC, by Godel’s theorem. The original proofs of the Weil conjectures in theory used this
axiom in the weak sense that at the time the only reference for étale cohomology was SGA4.
However, Deligne and others point out in SGA4% that the theory of étale cohomology, and
hence the proof of the Weil conjectures, can be set up within ZFC alone. Readers interested
in the contortions that one has to go through in order to do this can look at the Set Theory sec-
tion of the Stacks project, for example, here [61, HTTPS://STACKS.MATH.COLUMBIA.EDU/TAG/@@@H].
For a more extreme example, see Section 4 of [52], where we see a Fields Medallist forcing
a more elaborate theory into ZFC.

My personal opinion is that whilst ZFC was a wonderful foundation for much of
early 20th century mathematics, the lack of a universe axiom now means that it is becoming
more and more of an effort to get parts of modern mathematics to fit into it. In books and
papers dealing with infinity categories or condensed mathematics, it is not at all uncommon
to see universes showing up, and I do wonder whether now it is time for mathematicians
to begin embracing universes, as Grothendieck was encouraging us to do since the 1960s.
Coq’s type theory and Lean’s type theory both contain universes as part of the foundations;
however, mathematicians can choose not to use them if they so desire.

6. THE FUTURE

In this section I describe some of the plausible consequences of formalizing mathe-
matics in a computer theorem prover. I also highlight some things which I believe will remain
out of reach for some time yet. Patrick Massot’s more extensive observations [44] are also
well worth a read (indeed, several of my ideas here were formed after conversations with
Massot).

6.1. A new kind of mathematical document

Right now, an author of a textbook or research paper has to decide how much
background material to assume, and which techniques they will regard as standard in the
arguments they present. In other words, they have to decide where to start, and how fast to
go. If a potential reader (for example, a new PhD student, or an undergraduate interested in
the area) does not have the necessary prerequisites then it will be far more difficult for them
to get anything out of the paper.

Computer formalization offers the possibility of a new kind of mathematical doc-
ument, where the reader can make the decisions about how much detail is visible. Patrick
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Massot has been experimenting with such documents. A preliminary version of his vision
can be seen at his Sphere Eversion Project web pages [43]. This is a project whose main
goal is to formalize in Lean a proof of Smale’s theorem saying that a sphere can be turned
inside out (or more formally, that there is a homotopy of immersions between the identity
immersion of S? in R and the antipodal immersion). At the time of writing, the proof is
not yet fully formalized, but it is only a matter of time. The blueprint is written in IKTgX, but
using plasTeX it has been converted into a web page with live Lean links. Right now these
links take you to static web pages containing Lean code, but tools are currently being devel-
oped which will change this. Alectryon is a program available for Coq and Lean which can
turn compiled code into web pages. Tools like Alectryon will enable us to make documents
which will allow links to dynamic web pages displaying anything from mathematical details
to interactive pictures, in a human-readable form, and which will allow one to keep digging
right down to the axioms, although, of course, it is unlikely that anyone would like to go
down this far.

There are already variants of this idea in existence, Lamport’s idea of a “structured
proof” came from a desire to encourage mathematicians to write far more details down in
their papers, but one can see why such a proposal would not go down well. Here we can
let automation do part of the work for us. The Metamath proof assistant also offers similar
functionality already, because Metamath has very little automation and hence drilling down
to the axioms is essentially the same as inspecting the proof.

One could also imagine error-free undergraduate textbooks also written in this way,
where statements which a student cannot understand (perhaps because they are ambiguous)
can be inspected in more details until difficulties are resolved.

6.2. Semantic search in a mathematical database

One thing that is not going to happen any time soon is some kind of revolution where
all mathematicians start writing all their papers in a formal proof assistant. Whilst one might
expect a future where some papers are partially, or even completely formalized in a theorem
prover (see, for example, [30, 48, 56]), this kind of approach will not become the norm any
time soon. Faced with this reality, how will formalized mathematics be able to keep up with
the frontiers of mathematics?

I have already mentioned Tom Hales’ 2017 “Big Conjectures” talk at the Newton
Institute in Cambridge. In the talk [32], Hales argued for a formalized version of Math
Reviews/Zentralblatt. That is, a website whose role is to formally szate the results being
announced in the main mathematical journals. Note that such a project is nowhere near as
far-fetched as the idea of formalizing mathematical proofs in real time; theorem statements
are far easier to formalize.

The issue with Hales’ plan, as he points out in the talk, is that to be able to formalize
statements of theorems in even a part of modern mathematics such as the Langlands philos-
ophy, one would have to define all of the basic objects which mathematicians in this area
use. In the Langlands philosophy this would include, but be by no means limited to, defini-
tions of automorphic forms and automorphic representations, Galois representations, abelian
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varieties, the rings defined by Fontaine and used to do p-adic Hodge theory, schemes, all the
cohomology theories used in the area, perfectoid spaces, adeles and ideles,.... The Lean
community has over the last few years pushed hard to get some of the main definitions of
modern research mathematics into mathlib. At Imperial College alone we currently have
Oliver Nash developing the basics of the theory of Lie Algebras so we can talk about centers
of universal enveloping algebras, Marfa Inés de Frutos-Ferndndez developing the theory of
adeles and ideles of global fields with an eye on the statements of class field theory, Amelia
Livingston developing group and Galois cohomology, Jujian Zhang developing sheaf coho-
mology with an eye on GAGA, and Ashvni Narayanan developing the basics of Iwasawa
theory in her PhD thesis. I have already mentioned the work of myself, Massot and Commelin
defining perfectoid spaces. The work of Scott Morrison, Bhavik Mehta, Justus Springer, and
Adam Topaz has recently enabled us to start developing the theory of sheaves on sites and
homological algebra, so cohomology theories are now not too far away. Of course, much
remains to be done, but we are hoping that the idea of being able to formally state the theo-
rems of Annals and Inventiones algebraic number theory papers in Lean will soon become
a reality.

A related project is formalizing tags in the Stacks Project [61], which is a gigantic
online database of algebraic geometry, freely accessible online. When printed out, it fills
over 7000 pdf pages. Formalizing all the proofs in the database would be an extremely
arduous task involving many person-decades of work with current technology. In theory
it is possible, however, one would need a team who were experts in both algebraic geom-
etry and in formalization. Furthermore, for it to actually happen, the incentive structure in
academic mathematics would have to change drastically. Publishing papers in prestigious
computer science conference proceedings explaining how you developed the basic theory
of Cohen—Macauley rings and modules in a theorem prover (and, of course, such work
would be publishable in a prestigious computer science conference proceedings—nobody
has ever done it before) is perhaps not something which is recognized by promotions com-
mittees.

However, there is a solution available to us right now. Formalizing just the definitions
and theorem statements in the Stacks Project is a much simpler task. Anybody interested in
algebraic geometry would be more than welcome to learn Lean by attempting to formalize
statements in Stacks Project tags. Point your web browser to the Lean Zulip instance [65] and
ask where to get started in the #new members stream.

The reason that building such databases is important is that they will enable the
community to build tools the likes of which mathematicians have never seen before. Let
us imagine that all the definitions and theorem statements in the Stacks Project have been
formalized in Lean or some other theorem prover. A “hammer” is a tool which runs inside
a theorem prover and which can attempt to construct mathematical arguments by piecing
together results in a database. The original hammer was Isabelle/HOL’s Sledgehammer [49].
The cleverness behind such tools is the ability to isolate which of the many results in the
database look the most useful, and to concentrate on these when attempting to prove the
required result. Now consider a PhD student who is beginning to learn algebraic geometry.
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Such a student would then be able to ask the theorem prover a question, and the prover could
attempt to use the database to answer the question positively (by piecing together a proof) or
negatively (by producing a counterexample, like the website w-base [21] is doing for coun-
terexamples in topology). The resulting output of the computer would be able to explicitly
point to references in the literature, or direct proofs of the claims it is making in its argument.
This sort of tool—computer assisted learning—has the potential to beat the techniques cur-
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rently used by PhD students (“‘google hopefully,” “page through a textbook/paper hopefully,”
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“ask on a maths website and then wait,” “ask another human’) hands down. But as I have
stressed before, the main thing which is missing is the database of theorems, and it is up to
us to construct it. The sooner it is there, the sooner the tools will appear. And the bigger the

database gets, the more powerful the tools will become.

6.3. Checking proofs

Some computer scientists have argued that mathematicians are sloppy, and our liter-
ature has errors in, and that this problem can be solved with computer proof assistants. Such
an argument might initially look plausible, and I myself was a proponent of it a few years
ago, but it does not stand up to much scrutiny. Firstly, the experts in our community know
which results can be relied upon. Secondly, many errors are not serious and can be fixed.
Thirdly, the more serious instances of this problem cannot be solved with computer proof
assistants right now anyway. A great example is Mochizuki’s claimed proof of the ABC con-
jecture [46]. This proof has now been published in a serious research journal; however, it is
clear that it is not accepted by the mathematical community in general. One could challenge
Mochizuki, or indeed anyone, to formalize the proof in a computer theorem prover. How-
ever, this would be a completely unreasonable thing to do. A computer formalization is not
expected of other proofs appearing in our literature. Furthermore, the key sticking point right
now is that the unbelievers argue that more details are needed in the proof of Corollary 3.12
in the main paper, and the state-of-the-art right now is simply that one cannot begin to for-
malize this corollary without access to these details in some form (for example, a paper proof
containing far more information about the argument).

What would, however, be feasible is for mathematicians to formalize parts of tech-
nical work, or to get others to do so. There might be several reasons to do such a thing—
Commelin and his team have already shown that theorem provers can be used to check parts
of complex proofs which humans might find it difficult to plough through, whilst learning
about the mathematics in the process.

6.4. Teaching

I have heard students say “I think my proof is OK” when talking about their home-
work. Computer proof assistants are able to tell them immediately if this is so—as long as
the student has taken the trouble to learn the language of the proof assistant. Should we be
teaching undergraduate mathematicians how to use computer proof assistants? I certainly
think so. Patrick Massot in Orsay and myself at Imperial College London are both teaching
undergraduate-level courses which do precisely this.
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Students want feedback on their work as soon as possible. A computer proof assis-
tant can supply it immediately.

Beginner students can be confused about the basics. What is the difference between
Ve > 0,36 > 0,...and 3§ > 0, Ve > 0, ...? Once these systems become easier for mathe-
maticians to use, students can experiment for themselves with well-chosen examples supplied
by a lecturer and begin to understand what is going on. I was once told by a student “I did
not understand equivalence relations, so I formalized them in Lean, and then I understood
them.” Forcing students to think pedantically and logically can be good for them.

It is, however, worth stressing that asking a weak student to both keep up with your
course and to simultaneously learn how to use a computer theorem prover is clearly asking
too much from that student. The provers need to become easier to use, perhaps with graphical
interfaces and documentation more appropriate for mathematicians. Asking people to change
the way they teach is, of course, asking a lot. However, mathematics education experts will
be only too happy to tell us that our preferred medium—“write for an hour on a board”—is
becoming less and less appropriate for our students, who like to learn things by watching 5
minute videos or playing with interactive toys. Can we make abstract mathematics more inter-
active? I suspect that we can. The more people who understand how to use these machines,
the sooner the new ideas will come.

6.5. Other ideas

I do not claim to have exhausted the possibilities here. The people who designed
the CD in the 1980s surely could not envisage music services like YouTube and Spotify,
or the audiobook. The people who started to think about how to make typesetting of books
look good on a computer screen surely did not envisage devices like the Kindle. It is time to
look beyond how we usually teach and learn mathematics, and try to understand how we as
a community of mathematicians can use the inevitable digitization of mathematical material
as a tool to make our lives, and the lives of our students, better. As Carneiro once said, you
cannot stop progress.
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1. INTRODUCTION

The reciprocity conjecture in the Langlands program predicts a relationship between
pure motives' and automorphic representations. The simplest version (as formulated by
Clozel [48, coNJ. 2.1]) states that there should be a bijection between irreducible motives M
over a number field F with coefficients in Q and cuspidal algebraic representations 7
of GL,, (A F) satisfying a number of explicit additional compatibilities, including the equal-
ity of algebraic and analytic L-functions L(M, s) = L(m, s). In light of multiplicity-one
theorems [1e5], this pins down the correspondence uniquely. There is also a version of this
conjecture for more general reductive groups, although its formulation requires some care
(as was done by Buzzard and Gee [32]). Beyond the spectacular application by Wiles to
Fermat’s Last Theorem [181, THEOREM @.5], the Taylor—Wiles method [171, 181] gave a com-
pletely new technique—and to this date the most successful one—for studying the problem
of reciprocity. The ideas in these two papers have sustained progress in the field for almost”
30 years. In this survey, we explain how the Taylor—Wiles method has evolved over this
period and where it stands today. One warning: the intended audience for this document is
entirely complementary to the audience for my talk—I shall assume more than a passing
familiarity with the arguments of [171,181]. Moreover, this survey is as much a personal and
historical® discussion as a mathematical one—giving anything more than hints on even a
fraction of what is discussed here would be close to impossible given the space constraints
and the competence of the author. Even with the absence of any real mathematical details in
this paper, the sheer amount of activity in this field has led me to discard any discussion of
advances not directly related to R = T theorems, which necessitates the omission of a lot of
closely related beautiful mathematics.

1.1. The Fontaine-Mazur conjecture
Let F be a number field. The Fontaine-Mazur conjecture* [83] predicts that any
continuous irreducible p-adic Galois representation

p: Gr — GL, (Gp)

1 Here (in light of the standard conjectures [124]) one may take pure motives up to numerical
or homological equivalence. Conjecturally, one can also substitute (for irreducible motive)
the notion of an irreducible weakly compatible system of Galois representations [167] or an
irreducible geometric Galois representation in the sense of Fontaine-Mazur [83].

2 Wiles in [181] dates the completion of the proof to September 19, 1994.

3 A whiggish history, naturally. Even with this caveat, it should be clear that the narrative arc
of progress presented here at best represents my own interpretation of events. I have added
a few quotes from first hand sources when I felt they conveyed a sense of what the experts
were thinking in a manner not easily obtainable from other sources. For other survey articles
on similar topics, see [24, 30].

4 Fontaine told me (over a salad de gésiers in Roscoff in 2009) that he and Mazur formulated
their conjecture in the mid-1980s. (Colmez pointed me towards these notes [81] from a
talk given by Fontaine at the 1988 Mathematische Arbeitstagung in Bonn.) He noted that
Serre had originally been skeptical, particularly of the claim that any everywhere unramified
representation inside GL,, (61,) must have finite image, and set off to find a counterexample
(using the construction of Golod—Shavarevich [91]). He (Serre) did not succeed!
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which is both unramified outside finitely many primes and potentially semistable (equiva-
lently, de Rham [62]) at all places v|p should be associated to a motive M/ F with coef-
ficients in Q. Any such p is automatically conjugate to a representation in GL,(E) for
some finite field £/Q, and further stabilizes an @ g-lattice. The corresponding residual
representation p : G — GL, (k) where k = Og/ng is the residue field of E is unique
up to semisimplification. Let us assume here for expositional convenience that p is abso-
lutely irreducible. Following Mazur [129], one may define a universal deformation ring which
parameterizes all deformations of p unramified outside a finite set S. One can then further
impose local conditions to define deformation rings R whose 61, -valued points are associ-
ated to Galois representations which are de Rham at v|p with fixed Hodge—Tate weights.
Assuming the Fontaine—-Mazur conjecture, these GP—Valued points correspond to all pure
motives M unramified outside S whose p-adic realizations are Galois representations with
the same local conditions at p and the same fixed residual representation p. Assuming the
reciprocity conjecture, these motives should then be associated to a finite dimensional space
of automorphic forms. This leads to the extremely nontrivial prediction that R has finitely
many Gp-valued points. The problem of reciprocity is now to link these 61, -valued points
of R to automorphic forms.

1.2. R = T theorems

Associated to the (conjectural) space of automorphic forms corresponding to
Gp-valued points of R is a ring of endomorphisms generated by Hecke operators. The
naive version of T is defined to be the completion of this ring with respect to a maximal
ideal m defined in terms of p. The mere existence of wm is itself conjectural, and amounts—
in the special case of odd absolutely irreducible 2-dimensional representations p of Gg—to
Serre’s conjecture [156]. Hence, in the Taylor—Wiles method, one usually assumes the exis-
tence of a suitable m as a hypothesis. The usual shorthand way of describing what comes
out of the Taylor—Wiles method is then an “R = T theorem.” Proving an R = T theorem
can more or less be divided into three different problems:

(1) Understanding T. Why does there exist’ a map R — T? This is the problem
of the “existence of Galois representations.” Implicit here is the problem of
showing that those Galois representations not only exist but have the “right local
properties” at the ramified primes, particularly those dividing p.

(2) Understanding R. Wiles introduced a mechanism for controlling R via its tan-
gent space using Galois cohomology (in particular Poitou-Tate duality [131]),
and this idea has proved remarkably versatile. What has changed, however, is
our understanding of local Galois representations and how this information can
be leveraged to understand the structure of R.

(3) Understanding why the map R — T is an isomorphism.
5 At the time of Wiles’ result, this was seen as the easier direction (if not easy), although,

in light of the success of the Taylor—Wiles method, it may well be the harder direction in
general.
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We begin by summarizing the original R = T theorem from this viewpoint (or
more precisely, the modification by Faltings which appears as an appendix to [171]). We

” since this is most relevant for subse-

only discuss for now the so-called “minimal case
quent generalizations (see Section 6.2). Our summary is cursory, but see [67, 68] for excellent
expositional sources on early versions of the Taylor—Wiles method. We start with a represen-
tation p : Gg — GL, (Fp) for p > 2 which (say) comes from a semistable elliptic curve E and
which we assume to be modular. By a theorem of Ribet [149], we may assume it is modular

of level either N = N(p) or N = N(p)p where N(p) is the Serre weight [156] of p.

(1) Understanding T: The construction of Galois representations associated to mod-
ular forms has its own interesting history (omitted here), but (in the form origi-
nally needed by Wiles) was more or less complete for modular forms (and even
Hilbert modular forms) by 1990. The required local properties at primes dif-
ferent from p followed from work of Carayol [47], and the local properties at p
were well understood either by Fontaine—Laffaille theory [82], or, in the ordinary
case, by Mazur—Wiles [130] (see also work of Hida [1e1,162]).

(2) Understanding R: Here R is a deformation ring of p subject to precise local
deformation conditions at p and the primes dividing N(p). For the prime p, the
local conditions amount either to an “ordinary” or “finite-flat” restriction. One
then interprets the dual of the reduced tangent space m g/ (mi, p) of Rinterms
of Galois cohomology, in particular as a subgroup (Selmer group) of classes
in H'(Q, ad®(p)) satisfying local conditions. This can be thought of as analo-
gous to a class group, and one does not have any a priori understanding of how
large it can be although it has some finite dimension d. Using the Greenberg—
Wiles formula, the obstructions in H2(Q, ad®()) can be related to the reduced
tangent space, and allow one to realize R as a quotient of W(k)[x1,...,x4] by
d relations. In particular, if R was finite and free as a W(k)-module (as would
be the case if R = T) then R would be a complete intersection.

(3) Understanding why the map R — T is an isomorphism. Here lies the heart of
the Taylor—Wiles method. The ring T acts on a natural module M of modular
forms. One shows—under a mild hypothesis on p—the existence of (infinitely
many) sets Q = Qy for any natural number N of cardinality |Q| = d—so-
called Taylor—Wiles primes—with a number of pleasant properties:

(i)  The primes ¢ € Q are congruent to 1 mod p¥.

(i) Let Rp be the deformation ring capturing the same local properties as R
but modified so that the representations at primes in Q may now be ram-
ified of degree p™. There is naturally a surjection Ro — R, but for

6 The case when the Galois representations attached to R and T have minimal level N as
determined by the residual representation.
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Taylor—Wiles primes, this modification does not increase the size of the
tangent space. In particular, for a fixed ring Roo = W(k)[x1, ..., x4]
there are surjections Roc — Ro — R for every Q.

(iii) The corresponding rings T and T act naturally on spaces of modu-
lar forms M and Mg, respectively. Using multiplicity one theorems,
Wiles proves (see [181, THEOREM 2.1]) that M and Mg are free of rank
one over T and Ty, respectively. The space M can be interpreted as a
space of modular forms for a particular modular curve X. The second
key property of Taylor—Wiles primes is that there are no new modular
forms associated to p at level Xo(Q), and hence M can also be inter-
preted as a space of modular forms for Xo(Q). There is a Galois cover
X1(Q) — Xo(Q) with Galois group (Z/QZ)*, and hence an intermedi-
ate cover Xz (Q) — Xo(Q) with Galois group Ay = (Z/pNZ)? acting
via diamond operators. The space Mg is essentially a localization of
a certain space of modular forms for Xg(Q) (with some care taken at
the Hecke operators for primes dividing Q). Since the cohomology of
modular curves (localized at the maximal ideal corresponding to mt) is
concentrated in degree one, the module Mo turns out to be free over
an auxiliary ring Sy = W(k)[An] of diamond operators, and the quo-
tient Mg /ag for the augmentation ideal ap of Sy is isomorphic to M.
It follows that Tg /ap = T.

(iv) The diamond operators have an interpretation on the Galois deformation
side, and there is a identification Rg / ag = R where Rg and T can be
viewed compatibly as Sy -modules.

(4) Finally, one “patches” these constructions together for larger and larger Q. This
is somewhat counterintuitive, since for different Q the Galois representations
involved are not compatible. However, one forgets the Galois representations
and only remembers the structures relative to both the diamond operators Sy
and R, giving the data of a surjection

Roo — Too
with a compatible action of So, = projlim Sy >~ W(k)[t1,...,14]. Using the
fact that T, is free of finite rank over S, and that Ry, and S are formally

smooth of the same dimension, one deduces that Rooc = T, and then R =T
after quotienting out by the augmentation ideal of S.

2. THE EARLY YEARS

2.1. The work of Diamond and Fujiwara

Wiles made essential uses of multiplicity one theorems in order to deduce that Mg
was free over Tg. Diamond [72] and Fujiwara [85] (independently) had the key insight that
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one could instead patch the modules M directly—and then argue directly with the resulting
object Mo, as a module over Ro, which was also free over Soo. Using the fact that Ry
is formally smooth, this allowed one to deduce a posteriori that M, was free over Roo
using the Auslander—Buchsbaum formula [9]. This not only removed the necessity of proving
difficult multiplicity-one results but gave new proofs of these results’ which could then be
generalized to situations where the known methods (often using the g-expansion principle)
were unavailable.® Diamond had the following to say about how he came up with the idea to
patch modules rather than use multiplicity-one theorems:

My vague memory is that [ was writing down examples of ring homomorphisms
and modules, subject to some constraints imposed by a Taylor-Wiles setup, and [
could not break “M free over the group ring implies M free over R.” (I still have
the notebook with the calculations somewhere, mostly done during a short trip
with some friends to Portugal.) I did not know what commutative algebra state-
ment I needed, but I knew I needed to learn more commutative algebra and found
my way to Bruns and Herzog’s “Cohen—Macaulay Rings” [28] (back in the library
in Cambridge, UK by then). When I saw the statement of Auslander—Buchsbaum,
it just clicked.

Diamond made a second improvement [7e,71] dealing with primes away from p in
situations where the corresponding minimal local deformation problem was not controlled
by the Serre level N(p) alone.

2.2. Integral p-adic Hodge Theory, part I: Conrad—Diamond-Taylor

One early goal after Fermat was the resolution of the full Taniyama—Shimura con-
jecture, namely, the modularity of all elliptic curves over Q. After the improvements of
Diamond, the key remaining problem was understanding deformation rings associated to
local Galois representations at p coming from elliptic curves with bad reduction at p. Since
Wiles’ method (via Langlands—Tunnell [127,178]) was ultimately reliant on working with the
prime p = 3, this meant understanding deformations at p of level p? and level p3, since any
elliptic curve over Q has a twist such that the largest power of 3 dividing the conductor is at
most 27. Ramakrishna in his thesis [145] had studied the local deformation problem for finite
flat representations (the case when (N, p) = 1) and proved that the corresponding local defor-
mation rings were formally smooth. The case when p exactly divides N was subsumed into
the ordinary case, also treated by Wiles. In level p2, one can show that the Galois represen-

7 There is an intriguing result of Brochard [27] which weakens the hypotheses of Diamond’s

freeness criterion even further, although this idea has not yet been fully exploited.
8 The history of the subject involves difficult theorems in the arithmetic geometry of Shimura

varieties being replaced by insights from commutative algebra, paving the way to gener-
alizations where further insights from the arithmetic geometry of Shimura varieties are
required.
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tations associated to the relevant modular forms’ of level p? become finite flat after passing
to a finite extension L /Q,, with ramification degree e < p — 1. In this range, Conrad [64,65]
was able to adapt ideas of Fontaine [8e] to give an equivalence between the local Galois
deformations (assuming mGQp was irreducible) and linear algebra data. In particular, as in
the work of Ramakrishna, one can show that the relevant local deformation rings are formally
smooth, and so Conrad, Diamond, and Taylor were able to adapt the Taylor—Wiles method
to this setting [66].

2.3. Integral p-adic Hodge Theory, part II: Breuil-Conrad-Diamond-Taylor

A central technical ingredient in all of the arguments so far has been some use
of integral p-adic Hodge Theory, and in particular the theory of finite flat group schemes
and Barsotti—Tate groups as developed by Fontaine and others. All integral versions of this
theory required a hypothesis on either the weight or the ramification index e relative to the
bound p — 1. However, around this time, Christophe Breuil made a breakthrough'® by find-
ing a new way to understand the integral theory of finite flat group schemes over arbitrarily
ramified bases [19]. This was just the technical tool required to push the methods of [66] to
level p3. Using these results, Breuil, Conrad, Diamond, and Taylor [25] were able to show
that enough suitably chosen local deformation rings were formally smooth to prove the mod-
ularity of all elliptic curves.

2.4. Higher weights, totally real fields, and base change

Many of the methods which worked for modular forms were directly adaptable to the
case both of general rank 2 motives over Q with distinct Hodge—Tate weights (corresponding
to modular forms of weight k > 2 rather than k = 2) and also to such motives over totally real
fields (which are related to Hilbert modular forms), see in particular the work of Fujiwara [85]
(and more recently Frietas—Le Hung—Siksek [84]). Another very useful innovation was a
base change idea of Skinner—Wiles [161] which circumvented the need to rely on Ribet’s
level lowering theorem. The use of cyclic base change ([127] in this case and [5] in general)
subsequently became a standard tool in the subject. For example, it meant that one could
always reduce to a situation where the ramification at all primes v } p was unipotent. The
paper [161] was related to a more ambitious plan by Wiles to prove modularity for all totally
real fields:

After Fermat I started to work with Taylor and then Diamond on the general case
but decided very soon that I would rather try to do the totally real case for GL(2).

9 This is not true for all modular forms of level p? and weight 2, but only for those whose
conductor at p remains divisible by p? after any quadratic twist.
10 Much of the development of integral p-adic Hodge theory over the last 20 years since [25]

has been inspired by its use in the Taylor—Wiles method. However, the timing of Breuil’s
work was more of a happy coincidence, although Breuil was certainly aware of the fact that
a computable theory of finite flat group schemes over highly ramified bases could well have
implications in the Langlands program.
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1 think this was while I was getting back into other kinds of problems but I thought
1 should still earn my bread and butter. One lunch time at the IAS in 1996 Flo-
rian Pop spoke to me and explained to me about finding points over fields totally
split at some primes (e.g., real places) as he had written a paper [92] about this
with some others. Was this any use for the Tate—Shafarevich group? I immediately
saw that whether or not it was any use for TS (I doubted it) it should certainly give
potential modularity. This gave some kinds of lifting so I worked on the other half
(i.e., descent) thinking that just needed a similar insight. At some point I suggested
to Chris that we try to do Ribet’s theorem using cyclic base change as that would
be useful in proving modularity and was buying time while I waited to get the
right idea. Unfortunately, I completely misjudged the difficulty of descent and the
problem is still there. I think it is both much harder than I thought and also more
important. I hope still to prove it! Of course, Taylor found potential modularity
and then, what I had assumed was much harder, a way to think about GL(n).

3. REDUCIBLE REPRESENTATIONS: SKINNER-WILES
One of the key hypotheses in the Taylor—Wiles method concerns restrictions on the

representation p, in particular the hypothesis that 5|GQ@F) is absolutely irreducible. In [159,

160,162], Skinner and Wiles introduced a new argument in which this hypothesis was relaxed,

at least assuming the representations were ordinary at p. In the ordinary setting, one can

replace the rings R and T (which in the original setting are finite over W (k)) by rings which

are finite (and typically flat) over Iwasawa algebras A = W(k) [[(Zp)d]] for some d which

arise as weight spaces, the point being that the ordinary deformations of varying weight admit

a good integral theory. The first innovation (in part) involves making a base change so that

the reducible locus is (relatively) “small,” (measured in terms of the codimension over A).

The second idea is then to apply a variant of the Taylor—Wiles method to representations

0 : Gg — GLy(T/p) for nonmaximal prime ideals p of F.'! Wiles again:

We had worked out a few cases we could do without big Hecke rings in some
other papers and I would say it was more a feat of stamina and technique to work
through it. Of course, the use of these primes was much more general and system-
atic than anything that went before. There is also an amusing point in this paper
where we use a result from commutative algebra. It seemed crucial then though I
don’t know if it still is. This is Proposition A.1 of Raynaud [148). I had thought at
some point during the work on Fermat that this result might be needed and had
asked Michel Raynaud about it. He said he would think about it. A week later he
came back to me, somewhat embarrassed that he had not known right away, to say

11 Representations o to infinite quotients T/p had also arisen in Wiles’ paper on Galois
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that it was a result in his wife’s thesis. So the reference to M. Raynaud is actually
to his wife, Michéle Raynaud, though he gave the reference.

Allen [1] was later able to adapt these arguments to the p = 2 dihedral case, which
(in a certain sense) realized the original desire'” of Wiles to work at the prime p = 2.

4. THE ARTIN CONJECTURE

While the approach of [171,181] applied (in principle) to all Galois representations
associated to modular forms of weight k > 2, the case of modular forms of weight k = 1 is
qualitatively quite different (see also Section 10.1). It was therefore quite surprising when
Buzzard-Taylor [33] proved weight one modularity lifting theorems for odd continuous
representations o : Gg — GLZ(Gp) which were unramified at p. Using this, Buzzard-
Dickinson—Shepherd-Barron—Taylor [31] proved the Artin conjecture for a positive propor-
tion of all odd A5 representations, which had previously only been known in a finite number
of cases'® up to twist. Standard ordinary modularity theorems showed the existence of ordi-
nary modular forms associated to such representations p—however, the classicality theorems
of Hida [1e1] do not apply (and are not true!) in weight one. The main idea of [33] was to
exploit the fact that p is unramified to construct two ordinary modular forms each corre-
sponding to a choice of eigenvalue of p(Frob,) assuming these eigenvalues are distinct.'*
One then has to argue [33] that these two ordinary forms are the oldforms associated to a
classical eigenform of weight one, which one can do by exploiting both the rigid geometry
of modular curves and the g-expansion principle.

Although the original version of this argument required a number of improvements
to the usual Taylor—Wiles method (Dickinson overcame some technical issues when p =
2 [73] and Shepherd-Barron-Taylor proved some new cases of Serre’s conjecture for SL, (F4)
and SL, (Fs)-representations in [157]), it was ripe for generalization to totally real fields."”
After a key early improvement by Kassaei [106], the n = 2 Artin conjecture for totally real
fields is now completely resolved under the additional assumption that the representation is
odd by a number of authors, including Kassaei—Sasaki—Tian and Pilloni—Stroh [167-189,141,

12 As far as primary historical sources go, the introduction of Wiles’ paper [181] is certainly
worth reading.

13 In a computational tour de force for the time, Buhler [29] in his thesis had previously estab-
lished the modularity of an explicit odd projective A5 representation of conductor 800.

14 This argument can be modified to deal with the case when the eigenvalues of p(Frob, )

coincide by modifying R and T to include operators corresponding (on the Hecke side)
to Up. Geraghty and I discovered an integral version of this idea ourselves (“doubling,”
following Wiese’s paper [179]) during the process of writing [38], although it turned out
that, at least in characteristic zero, Taylor already had the idea in his back pocket in the early
2000s.

15 The proof all that finite odd 2-dimensional representations over Q are modular was com-
pleted by Khare and Wintenberger as a consequence of their proof of Serre’s conjecture,
see Section 8.
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143,152]. On the other hand, the reliance on g-expansions in this argument has proved an
obstruction to extending this to other groups. (See also Section 11.2.)

5. POTENTIAL MODULARITY

One new idea which emerged in Taylor’s paper [166] was the concept of potential
modularity. Starting with a representation p : Gr — GL, (61,) for a totally real field I, one
could sidestep the (difficult) problem of proving the modularity of p by proving it was modu-
lar over some finite totally real extension F’/F. In the original paper [181], Wiles employed
a 3-5 switch to deduce the modularity of certain mod 5 representations from the modu-
larity of mod 3 representations. More generally, one can prove the modularity of a mod p
representation p,, from the modularity of a mod ¢ representation p, if one can find both of
them occurring as the residual representation of a compatible family where the Taylor—Wiles
hypotheses apply to p,. For example, if p,, and p, are representations valued in GL,(F))
and GL,(F,) respectively, one can try to find the compatible family by finding an elliptic
curve with a given mod p and mod ¢ representation. The obstruction to doing such a p—¢q
switch over F is that the corresponding moduli spaces (which in this case are twists of the
modular curve X(pq)) are not in general rational, and hence have no reason to admit ratio-
nal points. However, exploiting an idea due to Moret-Bailly [132], Taylor showed that these
moduli spaces at least had many points over totally real fields where one could addition-
ally ensure that the Taylor—Wiles hypothesis applies at the prime g. At the cost of proving
a weaker result, this gives a huge amount of extra flexibility that has proved remarkably
useful. Taylor’s first application of this idea was to prove the Fontaine—-Mazur conjecture for
many 2-dimensional representations, since the potential modularity of these representations
was enough to prove (for example) that they come from compatible families of Galois rep-
resentations (even over the original field F'!), and that they satisfy purity (which is known
for Hilbert modular forms of regular weight). The concept of potential modularity, however,
has proved crucial for other applications, not least of which is the proof of the Sato—Tate
conjecture (see Section 9.2).

6. THE WORK OF KISIN

A key ingredient in the work of Breuil-Conrad—Diamond-Taylor (Sections 2.2
and 2.3) (and subsequent work of Savitt [153,154]) was the fact that a certain local defor-
mation ring R" defined in terms of integral p-adic Hodge theory was formally smooth.
The calculations of [25, 154], however, applied only to some (very) carefully chosen situ-
ations sufficient for elliptic curves but certainly not for all 2-dimensional representations.
In the 2000s, Kisin made a number of significant contributions, both to the understand-
ing of local deformation rings but also to the structure of the Taylor—Wiles argument
itself [117-119,121-123].
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6.1. Local deformation rings at v = p

One difficulty with understanding local deformation rings R associated to finite
flat group schemes over highly ramified bases is that the group schemes themselves are
not uniquely defined by their generic fibers. Kisin [122] had the idea that one could also
define the moduli space of the group schemes themselves, giving a projective resolution
Y% — Spec(R") (this map is an isomorphism after inverting p). Kisin further realized that
the geometry of 4% was related to local models of Shimura varieties, for which one had
other available techniques to analyze their structure and singularities. Later, Kisin was also
able [119] to construct local deformation rings R capturing deformations of a fixed local rep-
resentation p which become semistable over a fixed extension L/Q, and had Hodge-Tate
weights in any fixed finite range [a, b], absent a complete integral theory of such representa-
tions. (There are also are constructions where one fixes the inertial type of the corresponding
representation.) Kisin further proved that the generic fibers of these rings were indeed of the
expected dimension and often formally smooth.

6.2. Kisin’s modification of Taylor-Wiles

Beyond analyzing the local deformation rings themselves, Kisin crucially found a
way [122] to modify the Taylor—Wiles method to avoid the requirement that these rings are for-
mally smooth, thus greatly expanding the scope of the method. First of all, Kisin reimagined
the global deformation ring R as an algebra over a (completed tensor product)

R = ®UES Ry

of local deformation rings R, for sets of places v € S, in particular including the prime p.'°
Now, after a Taylor—Wiles patching argument, one constructs a big module My, over Ry
(and free over the auxiliary ring of diamond operators S,) but where R, is no longer a
power series ring over W (k) but a power series ring over R'°. If the algebras R, for v € S are
themselves power series rings, one is reduced precisely to the original Taylor—Wiles setting
as modified by Diamond. On the other hand, if the R,, are (for example) not power series
rings but are integral domains over W (k) of the expected dimension, then Kisin explained
how one could still deduce that M [1/p] was a faithful R[1/p]-module, which proves that
R[1/p] = T[1/ p] and suffices for applications to modularity. More generally, assuming only
that the R, are flat over W (k) and that the generic fiber R, [1/ p] is equidimensional of the
expected dimension, the modularity of any point of R reduces to showing that there is at
least one modular point which lies on the same component of R,[1/p].!”

16 Since the local residual representations are typically reducible, Kisin also introduced the
notion of framed deformation rings which are always well defined, and which (properly
taking into account the extra variables) are compatible with the Taylor—Wiles argument.

17 There are some subtleties to understanding R[1/ p] for complete local Noetherian W (k)-
algebras that are not obvious on first consideration. The first and most obvious blunder
to avoid is to recognize that R[1/ p] is usually far from being a local ring. Similarly, the
ring R[1/ p] can be regular and still have multiple components, as can be seen in an example
as simple as R = Z, [X]/X(X — p). Perhaps more importantly, however, the ring R[1/ p]
“behaves” in some important ways like a finitely generated algebra over a field.
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In the original modularity lifting arguments, one treated the minimal case first and
then deduced the nonminimal cases using a subtle commutative algebra criterion which
detected isomorphisms between complete intersections. From the perspective of Kisin’s
modification, all that is required is to show that there exists a single modular point with the
right nonminimal local properties. In either case, both Wiles and Kisin used Ihara’s Lemma
to establish the existence of congruences between old and new forms, but Kisin’s argument
is much softer and thus more generalizable to other situations.'® Kisin had the following to
say about his thought process:

The idea of thinking of R as an R'® algebra just popped into my head, after I'd
been thinking about the Wiles—Poitou—Tate formula, and how it fit into the Taylor—
Wiles patching argument. This was in Germany, I think in 2002. I had the idea
about moduli of finite flat group schemes in the Fall of 2003, after I arrived in
Chicago. It was entirely motivated by modularity. I had been trying to compute
these deformation rings, by looking at deformations of finite flat group schemes.
For e < p — 1, the finite flat model is unique, so I knew this gave the deformation
ring in this case; this already gave some new cases. However, I was stuck about
the meaning of these calculations in general for quite some time. At some point

I thought I'd better write up what I had, but as soon as I started thinking about
that—within a day—I realized what the correct picture was with the families of
finite flat group schemes resolving the deformation ring. I already knew about
Breuil’s unpublished note [18), and quite quickly was able to prove the picture was
correct. It was remarkable that prior to coming to Chicago, I didn’t even know
the definition of the affine Grassmannian, but within a few months of arriving, it
actually showed up in my own work.

To me the whole project was incredibly instructive. If I had known more about
what was (thought to be) essential in the Taylor—Wiles method, I never would
have started the project. Not having fixed ideas gave me time to build up intuition.
I also should have gotten the idea about moduli of finite flat group schemes much
sooner if I'd been more attentive to what the geometry was trying to tell me.

7. p-ADIC LOCAL LANGLANDS

7.1. The Breuil-Mézard conjecture

Prior to Kisin’s work, Breuil and Mézard [26] undertook a study of certain low
weight potentially semistable deformation rings, motivated by [25]. They discovered (in part
conjecturally) a crucial link between the geometry of these Galois deformation rings (in

18 In particular, Wiles’ numerical criterion [68, THM. 5.3] relies on certain rings being com-
plete intersections, and Kisin’s local deformation rings are not complete intersections (or
even Gorenstein) in general—see [163].
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particular, the Hilbert—Samuel multiplicities of their special fibers) with the mod- p reduc-
tions (and corresponding irreducible constituents) of lattices inside locally algebraic p-adic
representations of GL,(Z,). In the subsequent papers [2e, 21], Breuil raised the hope that
there could exist a p-adic Langlands correspondence relating certain mod-p (or p-adic
Banach space) representations of GL,(Q,) to geometric 2-dimensional p-adic represen-
tations of GQI,.19 Breuil recounts the origins of these conjectures as follows:

The precise moment I became 100% sure that there would be a non-trivial p-adic
correspondence for GL,(Qp) was in the computations of [21]. In these compu-
tations, I reduced mod p certain Zp—lattices in certain locally algebraic repre-
sentations of GL,(Q)), and at some point, I found out that this reduction mod p
had a really nice behaviour, so nice that clearly, it was predicting (via the mod-p
correspondence) what the reduction mod-p would be on the Gal(ﬁl7 /Qp)-side.

These ideas were further developed by Colmez in [57-59] amongst other papers’:
Colmez studied various Banach space completions defined by Breuil and proved they were
nonzero using the theory of (¢, I')-modules. Since the theory of (¢, I')-modules applies
to all Galois representations and not just potentially semistable ones, this led Colmez
to propose a p-adic local Langlands correspondence for arbitrary 2-dimensional repre-
sentations Gg, — GL2(E), and he was ultimately able to construct a functor from suit-
able GL2(Qj)-representations to Galois representations of Gq,. Colmez gave a talk on
his construction at a conference in Montreal in September 2005. At the same conference,
Kisin gave a talk presenting a proof of the Breuil-Mézard conjecture by relating it directly
to R = T theorems and the Fontaine—Mazur conjecture for odd 2-dimensional representa-
tions of G with distinct Hodge—Tate weights. While Kisin’s argument exploited results of
Berger—Breuil [14] and Colmez, it was realized by the key participants (perhaps in real time)
that Colmez’ p-adic local Langlands correspondence should be viewed as taking place over

19 The starting observation [22] is as follows: if 7 = ®’y is the automorphic representation
associated to a modular form f, then , determines (and is determined by) ps |GQv for
all v # p (at least up to Frobenius semisimplification). On the other hand, 7, does not
determine the p-adic representation pr |GQp (except in the exceptional setting where 7, is
spherical and a, is not a p-adic unit), raising the question of what extra GL2(Qp) structure
associated to f* should determine (and be determined by) pr IGQp .

20 In [116], Kisin had shown that the p-adic representations V' associated to nonclassical finite
slope overconvergent modular forms with Up-eigenvalue a,, satisfied dim Deyis(V) = 1,
and moreover that crystalline Frobenius acted on this space by a,. (This paper was itself
apparently motived by the goal of disproving the Fontaine-Mazur conjecture!) On the way
to the 2004 Durham symposia on L-functions and Galois representations, Fontaine raised
the question to Colmez to what extent this determined the corresponding Galois represen-
tation. Colmez worked out the answer the evening before his talk and incorporated it into
his lecture the following day, ultimately leading to the notion of trianguline representa-
tions [57].

622 F. CALEGARI



the entire local deformation ring. Subsequently Colmez was able to construct the inverse
functor.”! Colmez writes:

I received a paper of Breuil (a former version of [23]) during my stay at the

Tata Institute in December 2003—January 2004. In December, I was spending
Christmas under Goa’s palm trees with my daughter when Breuil’s paper arrived
in my email. That paper contained a conjecture (in the semi-stable case) that I
was sure I could prove using (¢, I')-modules (if it was true...). I spent January
2004 working on it and after 15 days of computations in the dark, I finally found
a meaning to some part of a painful formula (you can find some shadow of all of
this in (iii) of Remark 0.5 of my unpublished [56]). By the end of the month, I was
confident that the conjecture was proved and I told so to Breuil who adapted the
computations to the crystalline case, and wrote them down with the help of Berger
(which developed into [14]). (One thing that makes computations easier and more
conceptual in the crystalline case is that you end up with the universal completion
of the locally algebraic representation you start with; something that is crucial

in Matthew [Emerton]’s proof of the FM conjecture.) Durham was in August of
that year and Berger—Breuil had notes from a course they had given in China [13].
Those notes were instrumental in my dealing with trianguline representations at
Durham (actually, I did some small computation and the theory just developed

by itself during the night before my talk which was supposed to be on something
else...I think I came up with the concept of trianguline representations later, to
Jjustify the computations, I don’t remember what language I used in my talk which

had some part on Banach—Colmez spaces as far as I can remember.

7.2. Local-global compatibility for completed cohomology

From a different perspective, Emerton had introduced the completed cohomology
groups [77] as an alternative means for constructing the Coleman—Mazur eigencurve [55].
Inspired by Breuil’s work, Emerton formulated [76] a local-global compatibility conjecture
for completed cohomology in the language of the then nascent p-adic Langlands correspon-
dence. After the construction of the correspondence for GL,(Q,) by Colmez and Kisin,

21 To add some further confusion to the historical chain of events, the published version
of [12@] incorporates some of these subsequent developments. Note also that the cur-
rent state of affairs is that the proof of the full p-adic local Langlands correspondence
for GL2(Qp) (for example as proved in [63] but see also [59, REMARQUE VI.6.51]) still
relies on the global methods of [78], which in turn relies on [69]. These mutual depen-
dencies, however, are not circular! The difficulty arises in the supercuspidal case. One
philosophical reason that global methods are useful here is that all global representations
are yoked together by an object (the completed cohomology group H! (Zp)) with good
finiteness properties. One can then exploit the fact that crystabeline representations (for
which the p-adic local Langlands correspondence is known by [59]) are Zariski dense
inside unrestricted global deformation rings ([78, THEOREM 1.2.3], using arguments going
back to Bockle [15]).
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Emerton was able to prove most of his conjecture, leading to a new proof of (many cases of)
the Fontaine—-Mazur conjecture. The results of Kisin [12e] and Emerton fell short of proving
the full version of this conjecture for two reasons. The first was related to some technical
issues with the p-adic local Langlands correspondence, both at the primes p = 2 and 3
but also when the residual representation locally had the shape 1 & g for the cyclotomic
character ¢. (The local issues have now more or less all been resolved [63]. The most gen-
eral global results for p = 2 are currently due to Tung [177].) A second restriction was the
Taylor—Wiles hypothesis that p was irreducible. Over the intervening years, a number of
key improvements to the local story have been found, in particular by Colmez, Dospinescu,
Hu, and Paskiinas [63, 184,139]. Very recently, Lue Pan [137] found a way to marry tech-
niques from Skinner—Wiles in the reducible case (Section 3) to techniques from p-adic
local Langlands to completely prove the modularity (up to twist) of any geometric repre-
sentation p : Gg — GL, (Gp) for p > 5 only assuming the hypotheses that p has distinct
Hodge-Tate weights and that p is odd.*

8. SERRE’S CONJECTURE

In Wiles’ original lectures in Cambridge in 1993, he introduced his method with the
statement that it was orthogonal to Serre’s conjecture [150]. In some senses, this viewpoint
turned out to be the opposite of prophetic, in that the ultimate resolution of Serre’s conjec-
ture used the Taylor—Wiles method as its central core. The proof of Serre’s conjecture by
Khare and Wintenberger [111,113-115] introduced a new technique for lifting residual Galois
representations to characteristic zero (see §8.2) which has proved very useful for subsequent
modularity lifting theorems.

8.1. Ramakrishna lifting

Ramakrishna, in a series of papers in the late 1990s [146,147], studied the question
of lifting an odd Galois representation

p:Go — GL,(F))

to a global potentially semistable representation in characteristic zero unramified outside
finitely many primes. This is a trivial consequence of Serre’s conjecture® but is highly
nonobvious without such an assumption. Ramakrishna succeeded in proving the existence
of lifts by an ingenious argument involving adding auxiliary primes and modifying the local
deformation problem to a setting where there all global obstructions vanished. The resulting
lifts had the added property that they were valued in GL, (W (k)) whenever p was valued
in GL, (k). Adaptations of Ramakrishna’s method had a number of important applications

22 The assumption on the Hodge—Tate weights is almost certainly removable using recent
progress on the ideas discussed in Section 4 (Sasaki has announced such a result). More-
over, Pan has found a different approach to this case as well, see [138, THEOREM 1.0.5]
and the subsequent comments. The hypothesis that p is odd is more troublesome—see Sec-
tion 9.7.

23 Trivial only assuming the results of Tsuji [176] and Saito [151], of course.
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even under the assumption of residual modularity, including in [5e] where it was used to
produce characteristic zero lifts with Steinberg conditions at some auxiliary primes. There
is also recent work of Fakhruddin, Khare, and Patrikis [79] which considerably extends these
results in a number of directions.

8.2. The Khare—-Wintenberger method

One disadvantage of Ramakrishna’s method was that it required allowing auxil-
iary ramification which (assuming Serre’s conjecture) should not be necessary.”* Khare and
Wintenberger found a new powerful method for avoiding this. The starting point is the idea
that, given an odd representation p : G — GL, (Fp) for a totally real field F satisfying the
Taylor—Wiles hypotheses, one could find a finite extension H/ F where p is modular (exactly
as in Section 5). Then, using an R = T theorem over H, one proves that the corresponding
deformation ring Ry of p|g,, is finite over W (k). However, for formal reasons, there is a
map Ry — RF (where R is the deformation ring corresponding to the original representa-
tion p) which is a finite morphism, and hence the ring Rr /p is Artinian. Then, by Galois
cohomological arguments, one proves the ring R has dimension at least one, from which
one deduces that R has Gp-valued points. Even more can be extracted from this argument,
however,—the ﬁp-valued point of R certainly comes from a QP-Valued point of Ry, and
hence comes from a compatible family of Galois representations over H . Using the fact that
one member of the family extends to G, it can be argued that the entire family descends
to a compatible family over F. This one can then hope to prove is modular by working at a
different (possibly smaller) prime, where (hopefully) one can prove the associated residual
representation is modular. In this way, one can inductively reduce Serre’s conjecture [156]
to the case p = 2 and N(p) = 1, where Tate had previously proved in a letter to Serre [61,
JuLY 2, 1973] (also [164]) that all such absolutely irreducible representations are modular by
showing that no such representations exist. The entire idea is very clean, although in prac-
tice the difficulty reduces to the step of proving modularity lifting theorems knowing either
that p is either modular and absolutely irreducible or is reducible. Khare and Wintenberger’s
timing was such that the automorphy lifting technology was just good enough for the proof
to work, although this required some extra effort at the prime p = 2 (both in their own work
and in a key assist by Kisin [121]). As with Ramakrishna’s method, the Khare-Wintenberger
lifting method has also been systematically exploited for modularity lifting applications (for
example, in [11] (see Section 9.6) building on ideas of Gee [87]).

9. HIGHER DIMENSIONS
Parallel to the developments of p-adic Langlands for n = 2, the first steps were
made to generalize the theory to higher dimensional representations. Unlike in the case of

24 If one insists on finding a lift valued in GL, (W (k)) rather than GL, (O g) for some ramified
extension E/W(k)[1/ p], then some auxiliary ramification is necessary in general, at least
in fixed weight.
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modular forms, substantially less was known about the existence of Galois representations
until the 1990s.

9.1. Construction of Galois representations, part I: Clozel-Kottwitz

The first general construction® of Galois representations in dimension n > 2 was
made by Clozel [48] (see also the work of Kottwitz [125]). Clozel’s theorem applies to cer-
tain automorphic forms for GL, (A1) for CM fields L/L™. The construction requires three
important hypotheses on 7: The first is that 7 is conjugate self-dual, thatis, 7V ~ 7¢. If 7 is
a base change from an algebraic representation of L™ and n = 2 then this condition is auto-
matic,® but it is far from automatic when n > 2. The second condition is an assumption on
the infinitesimal character which (in the case of modular forms) is equivalent to the condition
that the weight k is > 2. Finally, there is a technical condition that for some finite place x
the representation i, is square integrable. A number of improvements (particularly at the
bad primes) were made by Harris—Taylor in [1ee, THEOREM c], and later by Taylor—Yoshida
and Caraiani [42,43,172], bringing the theory roughly in line with that of modular forms at
the time of Wiles, and in particular primed for possible generalizations of the Taylor—Wiles
method to higher dimensions.

9.2. The Sato-Tate conjecture, part I

Harris and Taylor (as early as 1996) started the work of generalizing the Taylor—
Wiles machinery to the setting of n-dimensional representations. They quickly understood
that the natural generalization of these ideas in n-dimensions required the hypothesis that the
Galois representations were self-dual up to a twist. This meant that one should not consider
general automorphic forms on the group GL, (Aq) but rather groups of symplectic or orthog-
onal type depending on the parity of n. If one replaced Galois representations over totally
real fields by Galois representations over imaginary CM fields and then further imposed the
condition that the Galois representations are conjugate self-dual, the relevant automorphic
forms should then come from unitary groups. There were two benefits of working with these
hypotheses. First of all, the relevant automorphic representations for unitary groups were,
as with modular forms, associated to cohomology classes on Shimura varieties. In partic-
ular, under the assumption that there existed an auxiliary prime x such that &, was square
integrable, they could be seen inside the “simple” Shimura varieties of type U(n — 1, 1)
considered by Kottwitz [125]. On the other hand, the same Hecke eigenclasses (if not Galois
representations) also came from a compact form of the group and thus inside the coho-
mology of zero-dimensional varieties.”’” The advantage of working in this setting is that

25 Clozel’s paper is from 1991 and thus not strictly “post-Fermat” as is the remit of this survey.
However, it can be considered a natural starting point for the “modern” arithmetic theory of
automorphic forms for GL(n) and so it seems reasonable to mention it here.

26 At least after a twist which is always possible to achieve in practice, see [68, LEMMA 4.1.4].
More generally, one can work with unitary similitude groups and consider 7 with
7V ~ 7¢ ® y for suitable characters .

27 Inside HO, of course.
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the freeness of Mo over the ring of diamond operators is immediate.” In the fundamental
paper [50], Clozel, Harris, and Taylor succeeded in overcoming many of the technical difficul-
ties generalizing the arguments of [171,181] to these representations. Although the argument
in spirit was very much the same, there are a number of points for GL, where things are
much easier. One representative example of this phenomenon is understanding Taylor—Wiles
primes. While the Galois side generalizes readily, the automorphic side requires many new
ideas and some quite subtle arguments concerning the mod p structure of certain GL, (Qg)-
representations of conductor 1 and conductor ¢g. In order to prove the Sato—Tate conjecture
for a modular form £, it was already observed by Langlands that it sufficed to prove the mod-
ularity of all the symmetric powers of f. However, it turns out that the weaker assumption
that each of these symmetric powers is potentially modular suffices, and by some subterfuge
only the even powers are required [95]. In order to prove potential modularity theorems,
one needs to be able to carry out some version of the p—q switch (Section 5). In order to
do this, one needs a source of motives which both generate Galois representations of the
right shape (conjugate self dual and with distinct Hodge—Tate weights) and yet also come
in positive dimensional families. It turned out that there already existed such motives in the
literature, namely, the so-called Dwork family. However, given the strength of the automor-
phy lifting theorems in [5e], considerable effort had to be made in studying the geometry of
the Dwork family to ensure that the p—¢q switch would produce geometric Galois representa-
tions with the right local properties. These issues were precisely addressed in the companion
paper by Harris, Shepherd-Barron, and Taylor [97]. Taken together, these papers contained
all the ingredients to prove the potential modularity of higher symmetric powers of modu-
lar forms (satisfying a technical square integrable condition at some auxiliary prime) with
one exception. As mentioned earlier, the work of Kisin had simplified the passage from the
minimal case to the nonminimal case—*all” that was required was to produce congruences
between the original form and forms of higher level rather than to compute a precise congru-
ence number as in [181]. However, even applying Kisin’s approach seemed to require Thara’s
Lemma, and despite several years of effort, the authors of [5e] were not able to overcome this
obstacle.”” Here is Michael Harris’ recollection of the process:

In the spring of 1995, I was at Brandeis, Richard was at MIT, and I wanted to
understand the brand new proof of Fermat’s Last Theorem. So I asked Richard if
he would help me learn by collaborating on modularity for higher-dimensional
groups. The collaboration took off a year later, when Richard wrote to tell me
about the Diamond—Fujiwara argument and suggested that we work out the
Taylor-Wiles method for unitary groups. This developed over the next 18 months
or so into the early version of what eventually became the IHES paper with
Clozel. But it had no punch line. I was hoping to work out some non-trivial exam-

28 In more general contexts, the freeness of Mg is closely related to the vanishing of coho-
mology localized at mt in all but one degree.
29 The issue remains unresolved to this day.
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ples of tensor product functoriality for GL(n) x GL(m), where one of the two
representations was congruent mod [ to one induced from a CM Hecke character.
This would have required some numerical verification. In the meantime we got
sidetracked into proving the local Langlands conjecture [100].

The manuscript on automorphy lifting went through several drafts and was cir-
culated; you can still read it on my home page [99]. Genestier and Tilouine [88]
quoted it when they proved modularity lifting for Siegel modular forms. When
Clozel saw the draft he told me we should try to prove the Sato—Tate Conjecture.
Although this was in line with my hope for examples of tensor product functori-
ality, it seemed completely out of reach, because I saw no way to prove residual
modularity of symmetric powers.

When I heard about the Skinner—Wiles paper I came up with a quixotic plan to
prove symmetric power functoriality for Eisenstein representations, using the main
conjecture of Iwasawa theory to control the growth of the deformation rings. This
was in the spring of 2000, at the IHP special semester on the Langlands program,
where I first met Chris Skinner.

One day Chris told me that Richard had invented potential modularity. This led
me to a slightly less hopeless plan to prove potential symmetric power functo-
riality by proving it for 2-dimensional representations congruent to potentially
abelian representations, as in the potential modularity argument. I told Richard
about this idea, probably the day he arrived in Paris. He asked: why apply poten-
tial modularity to the 2-dimensional representation; why not instead apply it to
the symmetric power representations directly? I then replied: that would require
a variation of Hodge structures with a short list of properties: mainly, the cor-
rect h?"1’s and large monodromy groups. We checked that potential modularity
was sufficient for Sato—Tate. We then resolved to ask our contacts if they knew of
VHS with the required properties. The whole conversation lasted about 20 min-
utes.

I asked a well-known algebraic geometer, who said he did not know of any such
VHS. Richard asked Shepherd-Barron, who immediately told him about the
Calabi—Yau hypersurfaces that had played such an important role in the mirror
symmetry program. (And if my algebraic geometer hadn’t wanted to be dismissive,
for whatever reason, he would have realized this as well.) The h?*1’s were fine
but we didn’t know about the monodromy. However, Richard was staying at the
IHES, and by a happy accident so was Katz, and when Richard asked Katz about
the monodromy for this family of hypersurfaces Katz told him they were called the
Dwork family and gave him the page numbers in one of his books.

So within a week or two of our first conversation, we found ourselves needing
only one more result to complete the proof of Sato—Tate. This was Thara’s lemma,
which occupied our attention over the next five years. In the meantime, Clozel had
written a manuscript on symmetric powers, based on the reducibility mod ell of

symmetric powers. The argument was incomplete but he had several ideas that led
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to his joining the project, and he also hoped to use ergodic theory to prove lhara’s
lemma. In the summer of 2003 Clozel and I joined Richard in “old” Cambridge
to try to work this out. The rest you know. We finally released a proof conditional
on Thara’s lemma in the fall of 2005. A few months later Richard found his local
deformation argument, and the proof was complete.

9.3. Taylor’s trick: Ihara avoidance

Shortly after the preprints [5e,157] appeared, Taylor [168] found a way to overcome
the problem of Thara’s lemma. Inspired by Kisin’s formulation of the Taylor—Wiles method
(Section 6.2), Taylor had the idea of comparing two global deformation rings R! and RZ.
Here (for simplicity) the local deformation problems associated to R! and R? are formally
smooth at all but a single prime ¢. At the prime ¢, however, the local deformation problem
associated to R! consists of tamely ramified representations where a generator o of tame
inertia has characteristic polynomial (X — 1)", and for R? the characteristic polynomial has
the shape (X — ¢y) --- (X — &) for some fixed distinct roots of unity ; = 1 mod p. On
the automorphic side, there are two patched modules H; and H, and there is an equal-
ity Hy/p = H,/p. The local deformation ring R; associated to R! at ¢ is reducible and
has multiple components in the generic fiber, although the components in characteristic zero
are in bijection to the components in the special fiber. On the other hand, the local deforma-
tion ring associated to R? at g consists of a single component, and so using Kisin’s argument
one deduces that H, has full support. Now a commutative algebra argument using the iden-
tity H;/p = H,/p and the structure of R; implies that H; has sufficiently large support
over Rj, enabling one to deduce the modularity of every Gp -valued point of R;.%

9.4. The Sato-Tate conjecture, part I1

After Taylor’s trick, one was almost in a position to complete the proof of Sato—Tate
for all classical modular forms. A few more arguments were required. One was the tensor
product trick due to Harris which enabled one to pass from conjugate self-dual motives with
weights in an arithmetic progression to conjugate self-dual motives with consecutive Hodge—
Tate weights by a judicious twisting argument using CM characters. A second ingredient was
the analysis of the ordinary deformation ring by Geraghty [89]. One of the requirements of
the p—q trick was the condition that certain moduli spaces (the Dwork family in this case)
had points over various local extensions £ of Qp, in order to construct a motive M over
a number field F' with F, = E for v|p. For the purposes of modularity lifting, one wants
strong control over the local deformation ring at p, and the choice of local deformation ring
is more or less forced by the geometric properties of the p-adic representations associated
to M. One way to achieve this would be to work in the Fontaine—Laffaille range where the

30 Taylor’s argument proves theorems of the form R[1/p]*d = T[1/ p] rather than R = T.
This is still perfectly sufficient for proving modularity lifting results, but not always other
interesting corollaries associated to R = T theorems like finiteness of the corresponding
adjoint Selmer groups (though see [2,133]).

629 RECIPROCITY IN THE LANGLANDS PROGRAM SINCE FERMAT’S LAST THEOREM



local deformation rings were smooth. But this requires both that M is smooth at p and that
the ramification degree e of £/Q), is one. It is not so clear, however, that the Dwork family
contains suitable points (for a fixed residual representation p) which lie in any unramified
extension of Q,. What Geraghty showed, however, was that certain ordinary deformation
rings®! were connected over arbitrarily ramified bases. The final piece, however, was the
construction of Galois representations for all conjugate self-dual regular algebraic cuspidal &
without the extra condition that 7, was square integrable for some q. This story merits it own
separate discussion; suffice to say that it required the combined efforts of many people and
the resolution of many difficult problems, not least of which was the fundamental lemma by
Laumon and Ngo6 [128,136] (see also the Paris book project [49,93], the work of Shin [158],
and many more references which if I attempted to make complete would weigh down the
bibliography and still contain grievous omissions).

9.5. Big image conditions

The original arguments in [171,181] required a “big image” hypothesis, namely that p
was absolutely irreducible after restriction to the Galois group of Q({,). Wiles’ argument
also required the vanishing of certain cohomology groups associated to the adjoint repre-
sentation of the image of p. These assumptions had natural analogues in [5e] (so-called
“big image” hypotheses) although they were quite restrictive, and it wasn’t clear that they
would even apply to most residual representations coming from some irreducible compatible
family. In the setting of 2-dimensional representations, the Taylor—Wiles hypothesis guaran-
tees the existence of many primes ¢ such that ¢ = 1 mod p and such that p(Frob,) has
distinct eigenvalues. This ensures, for example, that there cannot be any Steinberg deforma-
tions at g because the ratio of the eigenvalues of any Steinberg deformation must be g. In
dimension 7, one natural way to generalize this might be to say that p(Frob,) has distinct
eigenvalues, although this is not always possible to achieve for many irreducible representa-
tions p. A weaker condition is that p(Frob,) has an eigenvalue o with multiplicity one. For
such ¢, there will be no deformations which are unipotent on inertia at g for which the gen-
eralized o eigenspace is not associated to a 1-dimensional block. The translation of this into
an automorphic condition on U, -eigenvalues is precisely what is done in [5e] (there are addi-
tional technical conditions on Frob, with respect to the adjoint representation ad(p) which
we omit here). In [173], however, Thorne finds a way to allow p(Frob,) to have an eigen-
value o with higher multiplicity, and yet still cut out (integrally) the space of automorphic
forms whose Galois representations decompose at g as an unramified representation plus a
one dimensional representation which is tamely ramified of p-power order. This technical
improvement is very important because (as proved in the appendix by Guralnick, Herzig,
Taylor, and Thorne [173]) it imposes no restrictions on p when p > 2n + 1 beyond the con-

31 In Geraghty’s setting, the residual representations p were locally trivial. Hence the defini-
tion of “ordinary” was not something that could be defined on the level of Artinian rings,
and the construction (as with Kisin’s construction of local deformation rings associated to
certain types) is therefore indirect.
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dition that p is absolutely irreducible after restriction to Gq¢,). This improvement is very
useful for applications.

9.6. Potentially diagonalizable representations

After the proof of Sato—Tate for modular forms, Barnet-Lamb, Gee, and Geraghty
turned their attention to proving the analogous theorem for Hilbert modular forms of regular
weight. The methods developed so far were well suited both to representations p which were
either ordinary or when p was not ordinary but still Fontaine—Laffaille. (The latter implies
that ﬁlGQp is absolutely irreducible of some particular shape.) For a modular form over Q,
one easily sees that p takes one of one of these forms for any sufficiently large p. For Hilbert
modular forms, one certainly expects that the ordinary hypothesis should hold for all v|p
and infinitely many p, but this remains open. The difficulty arises when, for some prime p
(that splits completely, say) the p-adic representation is ordinary at some v|p but nonordi-
nary other v|p. The reason that this causes issues is that, when applying the Moret-Bailly
argument in the p—g switch, one wants to avoid any ramification at p for the nonordinary
case, and yet have large ramification at the ordinary case to make p locally trivial, and these
desires are not compatible. The resolution in [1e] involved a clever refinement of the Harris
tensor product trick. These ideas were further refined in [11] and led to the concept of a poten-
tially diagonalizable representation p : Gg — GL, (61,) for some finite extension of £/Q,.
Recall from Section 6.2 that, in the modified form of the Taylor—Wiles method, proving
modularity of some lift of p often comes down to showing the existence of a modular lift
lying on a smooth point of the corresponding component of the generic fiber of R'°. In light
of Taylor’s Ihara avoidance trick (Section 9.3), the difficulty in this problem is mostly at the
prime p, and in particular the fact that one knows very little about the components of general
Kisin potentially crystalline deformation rings. A potentially diagonalizable representation
is one for which, after some finite (necessarily solvable!) extension E’/E, the representa-
tion p|G;3 is crystalline and lies on the same generic irreducible component as a diagonal
representation. This notion has a number of felicitous properties. First, it includes Fontaine—
Laffaille representations and ordinary potentially crystalline representations. Second, it is
clearly invariant under base change. Third, it is compatible with the tensor product trick of
Harris. These features make it supremely well adapted to the current forms of the Taylor—
Wiles method. By combining this notion with methods of [1e,12], as well as extensive use of
Khare—Wintenberger lifting (Section 8.2), Barnet-Lamb, Gee, Geraghty, and Taylor in [11]
proved the potential automorphy of all conjugate self-dual irreducible*” odd** compatible
systems of Galois representations over a totally real field.

32 One variant proved shortly thereafter by Patrikis—Taylor [140] replaced the irreducibility
condition by a purity condition (which is automatically satisfied by representations coming
from pure motives).

33 Although there is no longer a nontrivial complex conjugation in the Galois group of a CM
field, there is still an oddness condition related to the conjugate self-duality of the represen-
tation and the fact that there are two ways for an irreducible representation to be self-dual
(orthogonal and symplectic).
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9.7. Even Galois representations

The Fontaine-Mazur conjecture for geometric Galois representations p : Gg —
GL, (61,) predicts that, up to twist, either p is modular or p is even with finite image. The
methods of [171,181] required the assumption that p was modular and so a priori the assump-
tion that p was odd (at least when p > 2). Nothing at all was known about the even case
before the papers [34,35] in which a very simple trick made the problem accessible to modu-
larity lifting machinery under the assumption that the Hodge—Tate weights are distinct. The
punch line is that, for any CM field F/F*, the restriction Sym?(p) : G — GL3 ((_)p) is
conjugate self-dual and no longer sees the “evenness” of p.>* Hence one can hope to prove
it is potentially modular for some CM extension L /L™, and then by cyclic base change [5]
potentially modular for the totally real field L. But Galois representations coming from
regular algebraic automorphic forms for totally real fields will not be even,* and thus one
obtains a contradiction. These ideas are already enough to deduce the main result of [34]
directly from [11], although in contrast [35] uses (indirectly) the full strength of the p-adic
local Langlands correspondence via theorems of Kisin [12e]. The papers [34,35] still fall short
of completely resolving the Fontaine-Mazur in this case even for p > 7, since there remain
big image hypotheses on p. On the other hand, this trick has nothing to say about the case
when the Hodge—Tate weights are equal (see Section 12).

9.8. Modularity of higher symmetric powers

Another parallel development in higher dimensions was the extension of Skinner—
Wiles (Section 3) to higher dimensions. Many of the arguments of Skinner—Wiles relied
heavily on the fact that any proper submodule of a 2-dimensional representation must have
dimension 1, and one-dimensional representations are very well understood by class field
theory. Nonetheless, in [174], Thorne proved a residually reducible modularity theorem
for higher dimensional representations. In order to overcome the difficulty of controlling
reducible deformations, he imposed a Steinberg condition at some auxiliary prime. Although
this is a definite restriction, it does apply (for example) to the Galois representation coming
from the symmetric power of a modular form which also satisfies this condition. In a
sequence of papers [51-53], Clozel and Thorne applied this modularity lifting theorem to
prove new cases of symmetric power functoriality (see also the paper of Dieulefait [74]).
A key difficulty here is again the absence of Thara’s lemma in order to find automorphic
forms with the correct local properties. Very recently (using a number of new ideas), Newton
and Thorne [134,135] were able to (spectacularly!) complete this program and prove the full
modularity of all symmetric powers of all modular forms.

34 The representation p itself restricted to Gz will not be odd in the required sense—one
exploits the fact here that 3 is odd whereas symplectic representations are always even
dimensional.

35 I managed to twist Taylor’s arm into writing the paper [169] which proved this for odd n,
which sufficed for my purposes where n was either 3 or 9. This is now also known for gen-
eral n, see Caraiani-Le Hung [44].
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10. BEYOND SELF-DUALITY AND SHIMURA VARIETIES

All the results discussed so far—with the exception of those discussed in Sec-
tion 4—apply only to Galois representations which are both regular and satisfy some form
of self-duality. Moreover, they all correspond to automorphic forms which can be detected
by the (étale) cohomology of Shimura varieties. Once one goes beyond these representations,
many of the established methods begin to break immediately.*®

An instructive case to consider is the case of 2-dimensional geometric Galois rep-
resentations of an imaginary quadratic field F' with distinct Hodge—Tate weights. The cor-
responding automorphic forms for GL, (A ) contribute to the cohomology of locally sym-
metric spaces X which are arithmetic hyperbolic 3-manifolds.’” These spaces are certainly
not algebraic varieties and their cohomology is hard to access via algebraic methods. One of
the first new questions to arise in this context is the relationship between torsion classes
and Galois representations. Some speculations about this matter were made by Elstrodt,
Grunewald, and Mennicke at least as far back as 1981 [75], but the most influential conjec-
ture was due to Ash [6], who conjectured that eigenclasses in the cohomology of congruence
subgroups of GL,,(Z) over Fp (which need not lift to characteristic zero) should give rise to n-
dimensional Galois representations over finite fields. Later, conjectures were made [7,8] in
the converse conjecture in the spirit of Serre [156] linking Galois representations to classes in
cohomology modulo p. Certainly around 2004, however, it was not at all clear what exactly
one should expect the landscape to be,*® and so it was around this time I decided to start
thinking about this question®” in earnest. I became convinced very soon (for aesthetic rea-
sons if not anything else) that if one modified T to be the ring of endomorphisms acting on
integral cohomology (so that it would see not only the relevant automorphic forms but also
the torsion classes) then there should still be an isomorphism R = T. Moreover, this equality
would not only be a form of reciprocity which moved beyond the conjecture linking motives
to automorphic forms, but it suggested that the integral cohomology of arithmetic groups
(including the torsion classes) were themselves the fundamental object of interest. Various

36 I should warn the reader that this section and the next (even more than the rest of this paper)
is filtered through the lens of my own personal research journey—caveat lector!

37 Already by 1970, Serre (following ideas of Langlands) was trying to link Mennicke’s
computation that GL; (Z[+/—109]) is infinite to the possible existence of elliptic curves
over Q(+/—109) with good reduction everywhere [60, JAN 14, 1970].

38 I recall conversations with a number of experts at the 2004 Durham conference, where
nobody seemed quite sure even what the dimension of the ordinary deformation ring R
of a 3-dimensional representation p : Gg — GL3 (Fp) should be. Ash, Pollack, and
Stevens had computed numerical examples where a regular algebraic ordinary cuspidal
form for GL3(Aq) not twist-equivalent to a symmetric square did not appear to admit
classical deformations. (I learnt about this example from Stevens at a talk at Banff in
December 2003.) This would be easily explained if R had (relative) dimension 0 over Z,
but be more mysterious otherwise.

39 One great benefit to me at the time of thinking about Galois representations over imaginary
quadratic fields was that it did not require me to understand the geometry of Shimura vari-
eties which I have always found too complicated to understand. The irony, of course, is that
the results of [4,17] ultimately rely on extremely intricate properties of Shimura varieties.
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developments served only to confirm this point of view. In my paper with Mazur [4e], we gave
some theoretical evidence for why ordinary families of Galois representations of imaginary
quadratic fields might on the one hand be positive dimensional and explained completely by
torsion classes and yet not contain any classical automorphic points at all. During the pro-
cess of writing [36], Dunfield (numerically) compared the torsion classes in the cohomology
of inner forms of GL, and the data was in perfect agreement with a conjectural Jacquet—
Langlands correspondence for torsion (later taken up in joint work with Venkatesh [41]).
Emerton and I had the idea of working with completed cohomology groups both to con-
struct Galois representations and even possibly to approach questions of modularity. The
first idea was to exploit the well-known relationship between the cohomology of these man-
ifolds and the cohomology of the boundary of certain Shimura varieties. We realized that if
we could control the codimension of the completed cohomology groups over the noncom-
mutative Iwasawa algebra, the Hecke eigenclasses would be forced to be seen by eigenclasses
coming from the middle degree of these Shimura varieties where one had access to Galois
representations.*” On the automorphy lifting side, we had even vaguer ideas [37, s1.8]*' on
how to proceed. A different (and similarly unsuccessful) approach*” was to work with ordi-
nary deformations over a partial weight space for a split prime p = vw in an imaginary
quadratic field F'. That is, deformations of p which had an unramified quotient at v and w
but with varying weight at v and fixed weight at w. Here the yoga of Galois deformations
suggested that R should be finite flat over W(k) in this case (and even a complete inter-
section). Moreover, one had access to T using an overlooked®? result of Hida [103], and in
particular one could deduce that T has dimension at least one. If one could show that T
was flat over W(k), then one could plausibly apply (assuming the existence of Galois repre-
sentations) the original argument of [171,181]. The flatness of T, however, remains an open
problem.**

10.1. The Taylor—Wiles method when /¢ > 0, part I: Calegari—-Geraghty

Shortly before (and then during) the special year on Galois representations at the IAS
in 2010-2011, I started to work with Geraghty in earnest on the problem of proving R = T
in the case of imaginary quadratic fields, assuming the existence of a surjection R — T.
A computation in Galois cohomology shows that the expected “virtual” dimension of R
over W(k) should be —1, and hence the patched module M, should have codimension 1

40 Unfortunately, these conjectures [37, CONJ. 1.5] remain all open in more or less all cases
except for Scholze’s results in the case of certain Shimura varieties [155, COR. 4.2.3].

41 Pan’s remarkable paper [137] turned some of these pipe dreams into reality.

42 This is taken from my 2006 NSF proposal, and I believe influenced by my conversations

with Taylor at Harvard around that time.

43 One should never overlook results of Hida. I only learnt about this paper when Hida pointed
it out to me (with a characteristic smile on his face) after my talk in Montreal in 2005. I was
pleased at least that the idea that these families were genuinely nonclassical was not antici-
pated either in [183] or in Section 4 of Taylor’s thesis [170].

a4 One might even argue that there is no compelling argument to believe it is true—the
problem is analogous to the vanishing of the j-invariant in Iwasawa-theoretic settings.
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over the ring of diamond operators So.. We realized this was a consequence of the fact
that, after localizing the cohomology at a non-Eisenstein maximal ideal, the cohomology
should be nonzero in exactly two degrees. More precisely, patching the presentations of these
Sn-modules would result in a balanced presentation of M, as an Seo-module with the same
(finite) number of generators as relations. We then realized that the same principle held more
generally for n-dimensional representations over any number field. In characteristic zero,
the localized cohomology groups were nonzero exactly in a range [qo, g0 + lo] (With gg
and [y as defined in [26]) where —/y coincided with the expected virtual dimension of R
over W(k) coming from Galois cohomology. We could thus show—assuming the localized
torsion cohomology also vanished in this range—that by patching complexes Pg (rather than
modules M), one arrives at a complex Py, of free Soo modules in degrees [qo, go + lo].
Because the ring Ro, of dimension dim Ry, = (dim Se) — g acts by patching on H*(Pw),
a simple commutative algebra lemma then shows that Mo, = H *(Poo) has codimension /g
over So and must be concentrated in the final degree. In particular, the Taylor—Wiles method
(as modified by Diamond) could be happily adapted to this general setting.*> Moreover, the
arguments were compatible with all the other improvements, including Taylor’s Thara avoid-
ance argument amongst other things.*® We also realized that the same idea applied to Galois
representations coming from the coherent cohomology of Shimura varieties even when the
corresponding automorphic forms were not discrete series. While our general formulation
involved a number of conjectures we considered hopeless, the coherent case had at least one
setting in which many more results were available, namely the case of modular forms of
weight one, where the required vanishing conjecture was obvious, and where we were able
to establish the existence of the required map R — T with all the required local proper-
ties by direct arguments. Although the state of knowledge concerning Galois representations
increased tremendously between the original conception of [38] and its final publication, by
early 2016 it still seemed out of reach to make any of the results in [38] unconditional.

10.2. Construction of Galois representations, part I1

Before one can hope to prove R = T theorems, one needs to be able to associate
Galois representations to the corresponding automorphic forms. There are two contexts in
which one might hope to make progress. The first is in situations where the automorphic
forms contribute to the Betti cohomology of some locally symmetric space—for exam-
ple, tempered algebraic cuspidal automorphic representations for GL,,(Ar) and any F. The
second is in situations where the automorphic forms contribute to the coherent cohomology

45 David Hansen came up with a number of these ideas independently [94].

46 These methods only prove R[1/p]™d =T[1/ p]d, of course. In situations where T ® Q =0,
the methods of [38] in the minimal case prove not only that R = T but also that (both) rings
are complete intersections. Moreover, one also has access to level raising (on the level of
complexes) and Ihara’s lemma [41, §4], and I tried for some time (unsuccessfully) to adapt
the original minimal = nonminimal arguments of [181] to this setting. There certainly
seems to be some rich ideas in commutative algebra in these situations to explore, see, for
example, recent work of Tilouine—Urban [175].
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of some Shimura variety. Here the first and easiest case corresponds to weight one modular
forms, where the Galois representations were first constructed by Deligne and Serre [69].

In work of Harris—Soudry—Taylor [98,165], Galois representations were constructed
for regular algebraic forms for GL, (A ) for an imaginary quadratic field F and satisfying a
further restriction on the central character. Harris, Soudry, and Taylor exploited (more or less)
the fact that the automorphic induction of such forms are self-dual (although not regular) and
still contribute to coherent cohomology, so one can construct Galois representations using a
congruence argument as in the paper of Deligne and Serre [69]. On the other hand, this does
not prove the expected local properties of the Galois representation at v| p.

It was well-known for many years that the Hecke eigenclasses associated to regular
algebraic cuspidal automorphic forms for GL, (AF) for a CM field F could be realized as
eigenclasses coming from the boundary of certain unitary Shimura varieties of type U(n, n).
It was, however, also well known that the corresponding étale cohomology classes did not
realize the desired Galois representations.*’” Remarkably, this problem was completely and
unexpectedly resolved in 2011 in [96] by Harris—Lan—Taylor—Thorne. Richard Taylor writes:

For [96] I knew that the Hecke eigenvalues we were interested in contributed to
Betti cohomology of U(n, n). The problem was to show that they contributed to
overconvergent p-adic cusp forms. I was convinced on the basis of Coleman’s
paper “classical and overconvergent modular forms” [54] that this must be so.

I can’t now reconstruct exactly why Coleman’s paper convinced me of this, and it
is possible, even probable, that my reasoning didn’t really make any sense. How-
ever, it was definitely this that kept me working at the problem, when we weren’t
really getting anywhere.

Amazingly, this breakthrough immediately inspired the next development:

10.3. Construction of Galois representations, part III: Scholze

In [155], Scholze succeeded in constructing Galois representations associated to tor-
sion classes in the setting of GL, (Af) for a CM field F. Scholze had the idea after seeing
some lectures on [96]:

During a HIM trimester at Bonn, Harris and Lan gave some talks about their con-
struction of Galois representations. At the time, I had some ideas in my head

that I didn’t have any use for: That Shimura varieties became perfectoid at infi-
nite level, and that there is a Hodge—Tate period map defined on them. The only
consequence I could draw from this were certain vanishing results for completed
cohomology as conjectured in your work with Emerton; so at least I knew that the

a7 For a more basic example of what can go wrong, note that the Hecke eigenvalues of 7
on HO(X, Qp) of a modular curve are 1 + /, which corresponds to the Galois representa-
tion Q, & Q,(1). However, only the piece Q, occurs inside H°.
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methods were able to say something nontrivial about torsion classes in the coho-
mology. After hearing Harris’ and Lan’s talks, I was trying to see whether these
ideas could help in extending their results to torsion classes. After a little bit of
trying, I found the fake-Hasse invariants, and then it was clear how the argument
would go.

Even after this breakthrough, Scholze’s construction still fell short of the conjectures
in [38] in two ways. The first was that the Galois representation (ignoring here issues of
pseudorepresentations) was valued not in T but in T/ for some ideal I of fixed nilpotence.
This is not a crucial obstruction to the methods of [38]. The second issue, however, was that
the Galois representations were constructed (in the end) via p-adic congruences, and thus
one did not have control over their local properties at p which are crucial for modularity
applications.

10.4. The Taylor—Wiles method when /y > 0, part II: DAG

Although not directly related to new R = T theorems, one new recent idea in the
subject has been the work of Galatius—Venkatesh [86] on derived deformation rings in the
context of Venkatesh’s conjectures over Z. This work (in part) reinterprets the arguments
of [38] in terms of a derived Hecke action. The authors define a derived version R of R
with mo(R) = R. Under similar hypotheses to [38], the higher homotopy groups of R are
shown to exist precisely in degrees 0 to /o. One viewpoint of the minimal case of [38] is that
one constructs a (highly noncanonical) formally smooth ring R, of dimension n — [y with
an action of a formally smooth ring S, of dimension 7 such that the minimal deformation
ring R is Roo ®s,., Soo/a for the augmentation ideal a. Moreover, the ring R is identified
both with the action of T on the entire cohomology and simultaneously on the cohomol-
ogy in degree go + lo. On the other hand, when /g > 1, the intersection of R and Seo/a
over So is never transverse,*® and homotopy groups of the derived intersection recover the
cohomology in all degrees (under the running assumption, one also knows that the patched
cohomology is free). On the other hand, there is a more canonical way to define R, namely
to take the unrestricted global deformation ring R#'°® (which has no derived structure) and
intersect it with a suitable local crystalline deformation ring as algebras over the unrestricted
local deformation ring. The expected dimension of this intersection is also —ly over W(k),
although this is not so clear from this construction. Hence [86] can be viewed as giving an
intrinsic definition of R independent of any choices of Taylor—Wiles primes and showing
that its homotopy groups are related (as with Ry ®]§w Seo/a) to the cohomology.*” These

48 When [y = 1, the intersection can be transverse when R is a finite ring. In this setting, the
relevant cohomology is also nonzero and finite in exactly one degree. On the other hand,
as soon as Hom(R, 6],) is nonzero (for example, when there exists an associated motive)
and /o > 0, the intersection will always be nontransverse.

49 There are some subtleties as to what the precise statement should be in the presence of
global congruences, but already this author gets confused at the best of times between
homology and cohomology, so I will not try to unentangle these issues here.
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ideas have hinted at a closer connection between the Langlands program in the arithmetic
case and the function field case than was previously anticipated,’® see, for example, the work
of Zhu [182].

11. RECENT PROGRESS

11.1. Avoiding conjectures involving torsion I: the 10-author paper

As mentioned in Section 10.3, even after the results of [155] there remained a signif-
icant gap to make the results of [38] unconditional, namely, the conjecture that these Galois
representations had the right local properties at p and a second conjecture predicting the
vanishing of (integral) cohomology localized at a nonmaximal ideal mt outside a certain
precise range (corresponding to known results in characteristic zero). It should be noted
that the second conjecture was still open (in all but the easiest cases) in the simpler setting
of Shimura varieties. The first hints that one could possibly make progress on this second
conjecture (at least for Shimura varieties) was given in an informal talk by Scholze in Bel-
lairs®' in 2014. This very quickly led to a long term collaboration between Scholze and
Caraiani [45,46], which Caraiani describes as follows:

At the Barbados conference in May 2014, Peter gave a lecture on how one might
compute the cohomology of compact unitary Shimura varieties with torsion coef-
ficients. The key was to have some control for Rrgr«Fy restricted to any given
Newton stratum. He was expressing this in terms of a conjecture that had grown
out of his work on local Langlands using the Langlands—Kottwitz method. After
his talk, I went to ask him some questions about this conjecture and it sounded
like there were some things that still needed to be made precise. He asked if I
wanted to help him make his strategy work. After some hesitation (because I didn’t
think I knew enough or was strong enough to work with him), I accepted. Later
that evening, I suggested switching from the Langlands—Kottwitz approach to
understanding Rrg .y to an approach more in the style of Harris—Taylor. This
relies on the beautiful Mantovan product formula that describes Newton strata

in terms of Rapoport—Zink spaces and Igusa varieties. Maybe something like this
could help illuminate the geometry of the Hodge—Tate period morphism? Peter

50 Not anticipated by many people, at least; Michael Harris has been proselytizing the exis-
tence of a connection for quite some time.

51 I was invited to give the lecture series in Bellairs after Matthew Emerton did not respond to
his emails. Through some combination of the appeal of my own work and the fact that the
lectures were given on a beach in Barbados, I managed to persuade Patrick Allen, George
Boxer, Ana Caraiani, Toby Gee, Vincent Pilloni, Peter Scholze, and Jack Thorne to come,
all of whom are now my coauthors, and all of whom (if they were not already at the time)
are now more of an expert in this subject than I am. The thought that I managed to teach any
of them something about the subject is pleasing indeed.
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immediately saw that this should work and we made plans for me to visit Bonn
that summer to continue the collaboration.

As Peter and I were finishing writing up the compact case, it became clear to us
that the vanishing theorem would give a way to construct Galois representations
associated to generic mod p classes that preserves the desired information at p.
Peter started thinking about the non-compact case and how that might apply to
the local-global compatibility needed for Calegari—-Geraghty. I remember dis-
cussing this with him at the Clay Research conference in Oxford in September
2015. By spring 2016, Richard started floating the idea of a working group on
Calegari—-Geraghty and found out that Peter and I had an approach to local-
global compatibility. Around June 2016, Richard suggested to me to organize the
working group with him. Peter was very excited about the idea, but wasn’t sure
he would be able to attend for family reasons. In the end, we found a date in late
October 2016 that worked for everyone.

The working group met under the auspices of the first “emerging topics” workshop””
at the IAS to determine the extent to which the expected consequences could be applied
to modularity lifting: A clear stumbling point was the vanishing of integral cohomology
after localization outside the range of degrees [gg, go + lo]. On the other hand, Khare and
Thorne had already observed in [112] by a localization argument that this could sometimes
be avoided in certain minimal cases. It was this argument we were able to modify for the
general case, thus avoiding the need to prove the (still open) vanishing conjectures for torsion
classes.”® The result of the workshop was a success beyond what we could have reasonably
anticipated—we ended up with more or less®* the outline of a plan to prove all the main
modularity lifting theorems which finally appeared in [4], namely the Ramanujan conjecture
for regular algebraic automorphic forms for GL, (A r) of weight zero for any CM field F,
and potential modularity (and the Sato—Tate conjecture) for elliptic curves over CM fields.

There have already been a number of advancements beyond [4] including in particu-
lar by Allen, Khare, and Thorne [3] proving the modularity of many elliptic curves over CM

52 Although later described as a “secret” workshop, it was an “invitation-only working group.”

53 I regard my main contribution to [4] as explaining how the arguments in [38] using Taylor’s
Thara avoidance (Section 9.3) were incompatible with any characteristic zero localization
argument in the absence of (unknown) integral vanishing results in cohomology. The objec-
tion (even in the case /o = 0) was that it was easy to construct complexes P! and P2 of
free Soo modules so that the support of H*(P1/p) and H*(P?/p) coincided (as they
must) but that (for example) H* (P 1)[1/ p] was zero even though H*(P?)[1/p] was not.
The objection to this objection, however, which was resolved during the workshop (and
which to be clear I played no part in resolving!) is to not merely to compare the support
of the complexes P?/p but to consider the entire complex in the derived category. In
particular, even (say) for a finite Z,-module M, the module M[1/ p] is nonzero exactly
when M @ F, has nonzero Euler characteristic.

54 It is worth emphasizing that an incredible amount of work was required to turn these ideas
into reality, and that this intellectual effort was by and large carried out by the younger
members of the collaboration.
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fields and a potential automorphy theorem for ordinary representations by Qian [144]. It does
not seem completely implausible that results of the strength of [11] for n-dimensional regular
Galois representations of G¢ are within reach.

11.2. Avoiding conjectures involving torsion II: abelian surfaces

A second example that Geraghty and I had considered during the 2010-2011 IAS
special year was the case of abelian surfaces, corresponding to low (irregular) weight Siegel
modular forms of genus g = 2. It was clear that a key difficulty was proving the vanish-
ing of H2(X, w?)y where X was a (compactified) Siegel 3-fold with good reduction at p,
where m is maximal ideal of the Hecke algebra corresponding to an absolutely irreducible
representation, and where w|y = det n*Qi% /y On the open moduli space ¥ C X admitting
a corresponding universal abelian surface #/Y. In other irregular weights (correspond-
ing to motives with Hodge-Tate weights [0,0,k — 1,k — 1] for k > 4) the vanishing of
the corresponding cohomology groups was known by Lan and Suh [126]. The vanishing
of H?(X,w?)y was more subtle, however, because the corresponding group does not vanish
in general before localization in contrast to the previous cases. In [39], we proved a minimal
modularity theorem for these higher weight representations and a minimal modularity the-
orem in the abelian case contingent on the vanishing conjecture above which we did not
manage to resolve (and which remains unresolved). I finished and then submitted the paper
after I had moved to Chicago and Geraghty had moved to Facebook in 2015. I then started
working with Boxer and Gee>> on this vanishing question under certain supplementary local
hypotheses. (By this point, Galois representations associated to torsion classes in coherent
cohomology had been constructed by Boxer [16] and Goldring—Koskivirta [9e].) But then
in November of 2016 (one week after the IAS workshop!), Pilloni’s paper on higher Hida
theory [142] was first posted. It was apparent to us that Pilloni’s ideas would be extremely
useful, and the four of us began a collaboration almost immediately. Just as in [4], we were
ultimately able to avoid proving any vanishing conjectures. However, unlike [4], the way
around this problem was not purely by commutative algebra, but instead by working with
ideas from [142]. Namely, instead of working with the cohomology of the full Siegel modu-
lar variety X, one could work with the coherent cohomology of a certain open variety of X
with cohomological dimension one whose (infinite dimensional) cohomology could still be
tamed using the methods of higher Hida theory [142] in a way analogous to how Hida theory
controls the (infinite dimensional) cohomology of the affine variety (with cohomological
dimension zero) corresponding to the ordinary locus. Generalizing this to a totally real field,
one could then combine these ideas with the Taylor—Wiles method as modified in [38] to

55 George Boxer had also arrived at Chicago in 2015, and was collaborating with Gee on
companion form results for Siegel modular forms, with the hope (in part) of deducing the
modularity of abelian surfaces from Serre’s conjecture for GSp, in a manner analogous
to the deduction by of the Artin conjecture from Serre’s conjecture for GL, in [110, 114].
They usually worked together at Plein Air cafe. Since I had thought about similar questions
with Geraghty and frequently went to Plein Air for 6 oz cappuccinos, it was not entirely
surprising for us to start working together.
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prove the potential modularity of abelian surfaces over totally real fields [17]. This coinci-
dentally gives a second proof of the potential modularity of elliptic curves over CM fields
proven in [4]. (The papers [4] and [17] both were conceived of and completed within a week
or so of each other.)

12, THE DEPTHS OF OUR IGNORANCE

Despite what can reasonably be considered significant progress in proving many
cases of modularity since 1993, it remains the case that many problems appear just as hope-
less as they did then.’® Perhaps most embarrassing is the case of even Galois represen-
tations Gg — GL,(C) with nonsolvable image (equivalently, projective image As). For
example, we cannot establish the Artin conjecture for a single Galois representation whose
image is the binary icosahedral group SL,(Fs) of order 120. The key problem is that the
automorphic forms (Maass forms with eigenvalue A = 1/4 in this case) are very hard to
access—given an even (projective) As Galois representation, we do not even know how to
prove that there exists a corresponding Maass form with the right Laplacian eigenvalue, let
alone one whose Hecke eigenvalues correspond to the Galois representation.’’ In many ways,
we have made no real progress on this question. The case of curves of genus g > 2 whose
Jacobians have no extra endomorphisms seems equally hopeless. One can only take solace
in the fact that the Shimura—Taniyama conjecture seemed equally out of reach before Wiles’
announcement in Cambridge in 1993.
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1. INTRODUCTION

This article is meant to serve as an overview of the current state of the field of gravi-
tational wave astrophysics. It is not meant to be comprehensive, or a reference for experts, but
rather an introduction to this nascent field of observational science, targeted toward mathe-
maticians and scientists. The three primary goals are (a) to give a sufficient introduction to
the physics of general relativity to appreciate the challenges of gravitational wave detection,
as well as the remarkable nature of sources of gravitational waves in the dynamical, strong
field regime of the theory, (b) to review what has been learnt about the Universe from the
gravitational wave signals detected to date by the LIGO (Laser Interferometer Gravitational-
Wave Observatory)/Virgo detectors, and (c) to briefly speculate about future discoveries that
will unfold over the coming decades as a variety of observational campaigns are undertaken.
To set the stage then, in Section 2 we review the underlying theoretical framework, Einstein’s
theory of general relativity, focusing on the nature of gravitational waves and how they are
produced. In Section 3 we briefly survey the current detectors and observational campaigns,
either in operation today or planned for the coming decade or two: ground-based detectors (as
LIGO/Virgo), the space-based mission LISA (Laser Interferometer Space Antenna), pulsar
timing arrays, and the search for B-mode polarization of the cosmic microwave background
(CMB).

LIGO measured the first gravitational wave signal, GW 150914, in 2015, which is
interpreted as originating from the merger of two black holes [1]. Since then, LIGO/Virgo has
observed almost 100 additional signals, most also from binary black hole mergers, though
a small handful likely coming from black hole/neutron star or binary neutron star mergers.
However, the loudest event to date, GW170817, was a binary neutron star merger, as con-
firmed by a spectacular suite of electromagnetic observations of its aftermath. In Section 4
we review these observations, and what they have so far taught us about the Universe. High-
lights are the first quantitative evidence that black holes as described by Einstein’s theory
do in fact exist, that the speed of gravitational waves is equal to that of the speed of light
to within ~ 1 part in 10'%, and that neutron star mergers are responsible for at least a class
of the mysterious so-called short gamma ray bursts (observed at a rate of about one every 3
days by special purpose satellites designed for this).

We conclude in Section 5 with speculations on the coming two decades of gravita-
tional wave astronomy.

2. EINSTEIN GRAVITY

The working hypothesis upon which the science of gravitational wave astrophysics
is built is that “gravity” is described by Einstein’s classical theory of general relativity. This
begins by positing that space and time taken together, or spacetime for short, has the structure
of a 4-dimensional Lorentzian geometry. A convenient way to describe this geometry is via
the metric tensor g5, defined in a coordinate basis through the line element

ds? = gabdx”dxb, )
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which gives the local, infinitesimal proper distance-squared ds? as a quadratic form of an
arbitrary infinitesimal coordinate displacement dx? (we use the Einstein summation con-
vention where repeated indices in a tensor expression imply summation). The phrase proper
distance means the coordinate invariant, physically measurable length or time interval, in
contrast to a coordinate distance in some (arbitrary) coordinate system. The Lorentzian
(indefinite) character of the metric is crucial, as it allows one to define causality through
geometry: two different events are causally related if and only if there exists at least one
curve connecting them where the proper distance along the curve is everywhere timelike,
ds? < 0, and/or null, ds?> = 0 (the sign convention for timelike ds? < 0 versus spacelike
ds? > 0 is arbitrary).

The second key postulate of general relativity is that the geometry of spacetime
relevant to the Universe is not a fixed structure given a priori, but instead is a dynamical
entity governed by the Einstein field equations:

G, =R lR _ 8rG
ab = Rap B 8ab = o4
where the Einstein tensor G is defined as above in terms of the Ricci tensor R, and

Typ, @

Ricci scalar R, T,y is the stress—energy—momentum tensor of the matter content of the Uni-
verse, G is Newton’s constant, and ¢ is the speed of light. General relativity ignores torsion,
which is thought would only be needed to describe matter with intrinsic spin, and is expected
to be irrelevant for macroscopic distributions of matter in the classical limit. Thus all ten-
sors appearing in (2) are symmetric. In terms of practically solving this equation, one views
the Einstein tensor as a second order, quasilinear partial differential operator acting on the
metric tensor g,p. In 4 spacetime dimensions, this gives a set of 10 coupled equations for
the independent components of g,5, and must be solved simultaneously with the additional
equations governing the matter fields in 7. It is obvious from (2) then that matter (7,)
will influence the dynamics and curvature of spacetime. Less obvious is even in the absence
of matter (7,5 = 0) nontrivial, dynamical solutions exist: most interesting among these are
those describing black holes and gravitational waves.

It is often stated that a third key postulate of general relativity is the geodesic hypoth-
esis: a test body not subject to any force follows a geodesic of the spacetime (a test body is
one with insufficient energy to cause any noticeable perturbation on the surrounding geom-
etry). However, perhaps more fundamentally, geodesic motion in the test body limit can be
viewed as coming from energy/momentum conservation, which is already built into the Ein-
stein equations and does not need to be imposed as a separate hypotheses. This follows from
the contracted Bianchi identities, showing that the Einstein tensor necessarily has vanishing
divergence V,G% = 0. Thus, any matter that can self-consistently be coupled to spacetime
through the Einstein equations (2) must have a divergenceless stress tensor V, 7% = 0, the
latter equation being the covariant statement of the conservation of energy/momentum of
the matter. Likewise, pure spacetime energy, whether in the form of gravitational waves, or
confined to black holes, will exhibit similar dynamics in an equivalent test body limit. For
example, in vacuum an infinitesimal mass black hole will orbit a large (finite mass) black
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hole following a geodesic of the latter’s spacetime by virtue of the vacuum Einstein equa-
tions alone, and not any additional hypothesis one needs to supply.

If the nature of spacetime is as described by general relativity, the most immediate
consequences of this are well described by Newtonian’s theory of gravity in the weak field
limit (for example, our environment here on Earth and in the solar system). This is why
Einstein’s theory is also called a theory of gravity despite there being no gravitational force
in general relativity.

2.1. Gravitational waves

It is not possible to precisely define what a gravitational wave is in all scenarios.
For our purposes, it suffices to think of gravitational waves as small, local disturbances
in spacetime that propagate at the speed of light. In an asymptotically flat space time (the
metric at large distances from any source of curvature approaches that of special relativity—
Minkowski spacetime) the properties of gravitational waves can be defined more precisely.
Our Universe is not asymptotically flat, though with appropriate accommodation for the over-
all cosmic expansion with time, to good approximation we can consider ourselves to be in
an asymptotically flat region relative to any source we expect to observe.

Regarding sources of gravitational waves, there are two broad classes. First is what
one traditionally thinks of as a source: at some place a localized event occurs that produces
gravitational waves over a period of time, and these waves then stream outward away from
the source. Second are “primordial” gravitational waves, namely an overall background of
gravitational waves filling all of space, having been produced in an earlier epoch of the evo-
lution of the Universe. In some cases the distinction between these classes is blurred; for
example, a sufficiently high density of localized sources emitting over a long period of time
will eventually also fill the observable Universe with a background of gravitational waves.
In these settings then, we next review some of the basic properties of gravitational waves,
and how they are produced.

2.1.1. Basic properties of gravitational waves in the weak field limit

Consider a metric perturbation %, about a background Minkowski spacetime 7,5,
i.e., 8ab = Nap + hap With ngpdx*dx? = —c2dt? + dx* + dy? + dz? in Cartesian coordi-
nates. Then the linearized Einstein equations show that general relativity allows two linearly
independent gravitational wave solutions for 4, or so-called polarizations,' propagating in
any given direction. Even restricting the background metric to be in Cartesian form, there
is still much coordinate (or “gauge”) freedom to choose the representation of the solution.
A gauge commonly used is the so-called transverse traceless gauge, and in these coordinates
a wave propagating in the +z direction (for example) takes the form (e.g., [18,29])

hapdx®dx® = hy(t— Z/c)[dx2 — dyz] + hx(t —z/c)[2dxdy]. 3)

1 In principle, a general metric theory of gravity can allow up to 6 linearly independent polar-
izations; see, e.g., [63].
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Here hy and hy are arbitrary (but small amplitude) functions of their arguments, and
describe the so-called plus and cross polarized waves, respectively. From (3) one can see
that gravitational waves in general relativity are transverse, namely they only perturb the
background metric along a plane (the (x, y) plane in this example) orthogonal to the direc-
tion of propagation (z here). Equation (3) also shows that as a plus polarized wave passes a
given point, when 44 > 0, it will stretch proper distances in x by m while simulta-
neously squeezing distances in y by m , and the opposite when /4 < 0. The effect
of the cross-polarized wave on the transverse geometry is qualitatively the same, except the
directions of stretching/squeezing are rotated by 45° about the z axis relative to that of the
plus polarized wave.
The energy flux density carried by these waves is

dE 3 [(dhi\?  [(dhy\?
= +(—-) ) “
dAdt ~ 167G \\ dt dt

where d A is the transverse area element, and the angle brackets denote a time average over

a characteristic period of the wave (the reason for the averaging is that gravitational wave
energy cannot be localized—see, e.g., [41]). A truly infinite plane wave such as (3) will have
infinite total energy, which is not consistent with an asymptotically flat space time when
backreaction is taken into account. However, sufficiently far from a local source (as discussed
below) the outgoing spherical wavefronts are locally well approximated by these plane wave
solutions. Similarly, an on-average homogeneous, primordial stochastic background that fills
all of spacetime cannot be asymptotically flat when backreaction is considered,” but still the
above (generalizing to superpositions of plane waves traveling in all directions) can give a
good description of the geometry in any local patch of the spacetime.

Notice the way G and c appear in (4), and hence the dimension-full constant relating
energy flux on the left-hand side to the time derivative of metric strain on the right-hand side:
in SI units ¢3/G ~ 1036] . s/m?. This implies, at least from the perspective of our every-
day intuition of energy and length scales, that it requires an enormous amount of energy to
perturb spacetime by a comparatively miniscule amount. This is the reason why it is com-
pletely impractical to study gravitational waves by building transmitters/receivers on Earth
in analogy with electromagnetic waves. Instead, we must look to cataclysmic gravitational
wave “explosions” in the cosmos, such as those produced by black hole mergers, and even
then, despite the astonishing sensitivity of the LIGO/Virgo detectors, we are now just barely
able to observe them.

Regarding localized sources of gravitational waves, good insight can again be
obtained from linearized theory, resulting in the so-called quadrupole formula. Here, one
assumes a weak field, slowly varying distribution of energy density p(¢, x, y, z). This will
emit gravitational waves propagating outward that at a large distance r from the source takes

2 Instead, then one obtains the Friedmann—Robertson-Lemaitre—Walker (FRLW) asymptotics
that observations indicate describe our Universe on very large scales.
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the following form in terms of the spatial components of the metric perturbation h;;:

12Gd2<fk1(l‘—r/C) kvl 1 kl
hij(l,r)—;FT[Pi Pj _EP Piji|’ ®)

with all indices here only running over the spatial coordinates x; € (x, y, z) (in transverse
traceless gauge there are no time—time or space-time propagating components of /,p),
d;j is the reduced quadrupole moment tensor of the source, and the projection tensor
P;j = 6;j —n;n;, where n' is a unit spatial vector pointing from the origin r = 0 to the
observer location r = /x2 + y2 + z2; 4;; is defined in terms of the quadrupole moment
tensor /;; as

1
dij = I — glkk&'j, Lij (1) = /Xixjp(f,x,y,z)dV, (6)

where the integration is over all of space at some instant of time 7, but note that in deriving
(5) the source is assumed to be localized in space around r = 0, and the observer location
r > 0 is assumed to be in vacuum.

Several properties of gravitational wave emission are evident from (5). First, unsur-
prisingly, the outgoing wave propagates at the speed of light, and its amplitude decays with
distance like 1/r from the source. Second, similar to that implied by the energy expres-
sion in (4), the factor of G/c* ~ 1074452 /kg/m illustrates what extreme dynamics, in the
form of rapid accelerations of large energy densities, need to be present in the source to
produce nonnegligible metric perturbations. Third, it is only the acceleration of asymmetric
concentrations of energy that produce gravitational waves in general relativity; for example,
a spherically symmetric pulsating star cannot produce any gravitational waves.

2.1.2. Weak field emission from a compact object binary

Though it is not obvious from the discussion above, it turns out that the quadrupole
formula (5) gives a good approximation to the gravitational wave emission even for certain
strong field sources, and even if the energy density is purely gravitational, such as with black
hole binaries. Another property of binary systems in general relativity that we will simply
mention without giving further details is that backreaction from the loss of energy to grav-
itational wave emission not only causes the semimajor axis of the binary to decrease (as
anticipated by Newtonian energy balance), but it also reduces the eccentricity of the binary
with time. LIGO/Virgo is only sensitive to the very last stages of binary inspiral, and the
majority of observable systems are thus expected to have close to zero eccentricity. In all then,
to get a good understanding of the structure of gravitational waves emitted by such a so-called
quasicircular inspiral, we can evaluate the quadrupole formula (5) for two point masses 11
and m» orbiting each other on a circle separated by a distance D, with orbital frequency w,
which for large separations is well approximated by the Keplerian result = \/GT/D3 ,
with M = m + m,. For a binary orbiting in the z = 0 plane about r = 0, using spherical
polar coordinates to label the observer location (x, y,z) = (r cos¢ sin 6, r sing sin 6, r cos 0),
and expressing the answer in terms of the two polarization amplitudes in the plane orthogonal
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to the propagation vector nt, gives

2

hy(t,r,0,¢) = %i—?uDza)z cos(2w(r —r/c) —2¢) [#} (7)
14G 2 2.

hy(t,r.0,¢) = ;c_“MD w?sin(2w(t —r/c) — 2¢) cos 6, (8)

where u = mymy/(my + my) is the reduced mass of the binary, and an arbitrary initial
phase was set to zero. The corresponding orbit-averaged energy fluxes, from (4), are

dE+ 2 G 5.4 ¢[1+cos?07?
=———u’D B 9
dAdt  wr2c’ @ 2 ©)
dE 2 G
dA;t = mc—suzD“wG cos? 6. (10)
Integrating these over the sphere gives the net radiated power in the two modes
dE;L 56G
AT v
dE 8G
de = 50—5M2D4w6. (12)

Several interesting properties are apparent from expressions (7)—(12): the observed gravita-
tional wave frequency is twice the orbital frequency, the orbit averaged amplitudes (hence
energy fluxes) are not isotropic in latitude, nor is emission equally balanced between the
plus and cross polarizations. Also, as expected, the emission vanishes in the test body limit
u — 0. The total energy flux dE/dt = 32Gu?D*w®/5¢>, or using the Kepler relation for
w(D), is

dE  32G*M3u2  32G73MA43¢10/3)2
dt — 5¢5D5 505 .
This illustrates how sensitive the luminosity is to orbital separation D or frequency w.

13)

Note again that equations (7)—(13) do not include back reaction; we have simply
evaluated the quadrupole formula for two point masses moving in a circular orbit. To obtain
the so-called Newtonian quasicircular approximation to estimate the radiation reaction on
the orbit, one elevates the frequency (or equivalently separation) to a function of time w(z),
assumes the Newtonian expression for the energy of the orbit, and uses the latter together with
the total luminosity of the binary to derive an equation for the evolution of w(¢) consistent
with total energy conservation. The result is

do 96 (GM\*?
-11/34® _ 70 14

@ dt 5 v( c3 ) ’ 14
where v = /M is the symmetric mass ratio of the binary. It is essentially a measurement
of (14) from the famous Hulse-Taylor binary pulsar that gave the first (indirect) evidence

for the existence of gravitational waves, and that the weak-field description of the emission
process is consistent with general relativity.
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2.1.3. Strong field gravitational wave emission

In contrast to the other fundamental laws of physics, the strongly interacting, or
strong field, regime of classical general relativity is not associated with any particular scale
within the theory. Or said another way, general relativity is a geometric theory, but there is no
fundamental constant of dimension length in the field equations that would describe a radius
of curvature to demark a scale where a qualitative change in the character of solutions might
occur. Despite that, general relativity does have a strong field regime, essentially because the
field equations are nonlinear. In contrast, Newtonian gravity, a scale-free linear theory, does
not have a strong field regime: the Newtonian gravitational force can certainly be “strong,”
but it is not qualitatively different from a “weak” Newtonian gravitational force—they only
differ in magnitude.

In general relativity there is no universal criteria for when nonlinear effects become
significant enough to qualitatively change solutions, though for spherical-like compact
objects in asymptotically flat spacetime there is a good heuristic understanding: if an amount
of energy Mc? is confined to a region within a radius (roughly) smaller than its so-called
Schwarzschild radius Ry = 2GM /c?, the geometry of spacetime qualitatively changes char-
acter compared to a less compact distribution of energy. In particular, spacetime necessarily
becomes dynamical, undergoing what is called gravitational collapse, and some kind of
spacetime singularity forms in the interior. A version of Penrose’s cosmic censorship con-
jecture argues that generically one expects an event horizon to form about the collapsing
region of spacetime [43], i.e., from an exterior observer’s perspective a black hole forms.
If the collapsing region is much more elongated (more cylindrical rather than spherical),
Thorne’s hoop conjecture argues a naked singularity would form instead [52], though there
are comparatively few studies of such asymmetric collapse, nor indications that such scenar-
ios arise in astrophysical settings.

Regarding sources of gravitational waves, again it is not easy to define when we are
in the strong versus weak field emission regime, though for binary inspiral we can heuris-
tically characterize the differences. In the weak field the linearized results described in the
previous section are quite accurate. Somewhat surprisingly, as mentioned, the weak field
description can still be good even if the individual members of the binary by themselves
require strong field gravity to describe their local geometries (case in point the Hulse—Taylor
binary pulsar, as a neutron star’s radius is only a factor of 3 or so larger than its Schwarzschild
radius). A strong field description for a compact binary interaction is necessary either when
the two objects come close enough that the local geometry of one object is significantly
perturbed by the other (i.e., the point mass approximation breaks down), or the metric per-
turbation /4, of the observed radiation, when “scaled back” by r to the location of the source,
becomes of order unity.

Interestingly, the radiative perturbation reaching of order unity coincides with the
gravitational wave luminosity approaching the Planck luminosity, L, = ¢/ G. Planck units
are a set of units based on the dimensionful constants one can obtain from the simplest prod-
ucts of powers of the fundamental constants of nature, in particular G, ¢, Planck’s constant /,
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and the Boltzmann constant k. It is theorized that “quantum gravity” effects become impor-
tant when any relevant physical scale in a process becomes of order unity when measured
in Planck units. The Planck luminosity does not involve Planck’s constant, the hallmark of
quantum processes, yet still, exceeding L, in a local interaction does seem to anticipate
evolution to a regime where quantum gravity would be necessary. The reason is based on
dimensional analysis, together with the above heuristic for when one expects gravity to be so
strong that a black hole would be present, as follows.* Consider a causal process confined to
a volume of characteristic size 2R, emitting gravitational waves with total energy E. For the
gravitational waves by themselves to not have enough energy to form a black hole requires
R to be larger than the effective Schwarzschild radius 2GE/c* of the gravitational wave
energy, or E < ¢*R/2G. If not confined to a black hole, these gravitational waves will
leak out on a light crossing time of the system 7" = 2R /c, implying a luminosity limit of
L = E/T < L,/4. Or conversely, a process emitting at super-Planck luminosity is neces-
sarily confined to a black hole, hence censored from exterior observation, and whose interior
would require some form of quantum gravity for a complete description.

2.1.4. Strong field emission from a compact object binary

For a quasicircular binary black hole merger, the weak field description breaks down
primarily because of finite size effects (the two horizons fuse together), and less so because
of high gravitational wave luminosity, which “only” reaches up to around 1073 L, for equal
mass mergers (i = M/4) as computed via full numerical solutions [45].* To put this number
in context, the sun’s luminosity in light is ~ 10726, p; thus, for the brief moment about the
time of merger, a binary black hole radiates as much power in gravitational waves as 10?3
suns do in light—that is comparable to the current estimated luminosity of all stars in the
visible Universe combined. That gravitational wave energy liberated from black hole mergers
does not dominate the energy content of the Universe is in part because they are so rare,
and in part because this incredible luminosity only lasts for a short time. For example, with
GW150914, the merger of two black holes each roughly 30 times the mass of the sun Mg, the
luminosity integrated over the entire inspiral and merger came to about 3Mgc?; the majority
of this was emitted within a few tens of milliseconds [1].

The quadrupole formula based calculation (13) does a decent job of anticipating
these properties, both the rapid increase in luminosity approaching merger, and the ballpark

3 To our knowledge, arguments like this were first proposed by Dyson in thought experiments
on whether a single “graviton,” the hypothetical quantum particle of geometry, could be
detected [25].

4 A binary neutron star merger has a peak luminosity a couple of orders of magnitude lower

than that of a binary black hole merger. Finite size effects are more pronounced for neutron
stars at late stages of the inspiral due to their higher tidal deformability, and, of course,
when they finally collide the point mass approximation used in (7)—(13) completely breaks
down. If the neutron star does not promptly collapse to a black hole, the gravitational wave
emission of the remnant can still qualitatively be understood using weak field/quadrupole-
formula type analysis, though the complicated dynamics of the matter in the remnant would
not be easy to compute without a numerical solution.
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maximum, if for the latter we take some liberty in interpreting when the inspiral should
terminate. Rewriting the distance D between the two point masses in (13) as a fraction
D; of the Schwarzschild radius 2GM /02 of the combined mass M of the system, i.e.,
D = Dy -2GM/c?, for the equal mass . = M /4 case gives
dE L)
dt — 80D5

Clearly, the maximum inspiral luminosity depends quite sensitively on D;. For an upper

15)

limit, one would not expect this to be remotely accurately if Dy < 1, as then the two horizons
of the individual black holes would already be overlapping. With Ds ~ 1, dE/dt ~ 1072 L,,.
For a lower limit estimate, one can appeal to a result from circular geodesics, where the inner
most stable orbit is at R = 3R, and then a small loss of angular momentum will cause the
geodesic to plunge into the black hole. Setting D ~ 3 for the maximum in (15) thus amounts
to assuming that for comparable mass mergers a similar instability sets in that accelerates
the merger beyond what radiation reaction does by itself; this gives dE /dt ~ 107*L,,.

Of course, for these back-of-the-envelope estimates to have any relevance to the
maximum merger luminosity requires that the actual collision of two black holes is not much
more violent than the last stages of inspiral. In fact, before numerical solutions become avail-
able, it was unknown whether black hole collisions would generically even adhere to cosmic
censorship, let alone how bright they ultimately were. If a merger does satisfy cosmic cen-
sorship, the no-bifurcation theorem of Hawking would apply, telling us two black holes must
fuse into a larger one [35]; then also, by Hawking’s area theorem [34], one can place limits on
the maximum amount of energy that could be liberated in this most nonlinear phase of the
merger. If a naked singularity is produced, classical general relativity will cease to predict
the spacetime to the causal future of this event, and we would have no idea what the remnant
of such a black hole collision is. Fortunately for our ability to predict waveforms to interpret
LIGO events, but unfortunately for our ability to use black hole mergers to give an observa-
tional glimpse into the mystery of quantum gravity, there is no example yet from a merger
simulation that shows any violation of cosmic censorship, or anomalously large curvatures
forming exterior to the existing horizons.’

Though likely not relevant to the kind of black hole mergers that occur in the Uni-
verse, there is a regime of the two body problem where it is large gravitational energy that
pushes the interaction to the nonlinear regime, and not any finite size effects: the ultrarela-
tivistic scattering problem. Here, one imagines shooting two black holes toward each other at
very high velocities, so that in the center of mass frame of the interaction the kinetic energy
of either black hole is much greater than its rest mass energy: (y; — 1)m;c? > m;c?, with

5 In spacetime dimensions above four, there are examples of (apparent) naked singularity
formation from fragmentation of unstable horizons [4@], and hints that certain collisions
may also lead to naked singularities [42]. Though the kind of microscopic extra dimensions
that could exist while still evading experimental detection will not cause instabilities in
astrophysically sized black holes, and then the effective four dimensional simulations used
to study the latter should be quite accurate.
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yi =1/4/1— vi2 /c?. Though few detailed results are available for the case with generic
impact parameter b, it is expected that when b is of order a few times or less than that of
the Schwarzschild radius Ry = 2GE/c* = 2G(y1m; + yam»)/c? of the system (and note
that this scale is much larger than the Schwarzschild radii of either black hole when y; > 1),
a sizable fraction of the kinetic energy can be converted to gravitational wave energy on a
time scale R;/c. Moreover, for b < R;, an encompassing black hole forms, trapping most of
the kinetic/gravitational wave energy. Again, exactly how much is not known for generic b,
though for b = 0 numerical simulations show ~ 14% of FE is liberated as gravitational wave
energy, with the remainder trapped [51]. It has been conjectured that the highest luminosity
will be reached at the critical impact parameter b, ,;; marking the threshold of formation of a
central black hole (for larger impact parameters the two black holes will fly apart again) [47].
Then, essentially all of the kinetic energy (= FE) is expected to be converted to gravitational
wave energy, though due to how strongly this seems to be focused inward when produced,
only about half of this energy may likely escape as gravitational waves [33,50]. The other half
will then be trapped in the central black hole for b < b.,;;, or the two individual black holes
for b = b.rir (whose local Schwarzschild radii would consequently grow by an enormous
amount).

A fascinating conjectured aspect of the ultrarelativistic scattering problem is that it
actually does not matter what the source of the kinetic energy is, be it black holes, or some
compact distribution of matter, such as a neutron star, or even a fundamental particle. It is
this conjecture behind the arguments that the Large Hadron Collider(LHC) [24,32], or cosmic
ray collisions with the earth’s atmosphere [27], could produce black holes in certain extra
dimension scenarios which give a much lower Planck luminosity than our (then erroneous)
4-dimensional analysis predicts. To date, numerical evidence in favor of this “matter does
not matter” conjecture has only been obtained for a few select matter models in the head-on
collision limit [23,26,46].

2.1.5. The ringdown

Due to the uniqueness, or “no hair” theorems of general relativity [21, 35,37, 48], the
two-parameter (mass and angular momentum) Kerr family of metrics are the only vacuum,
stationary, asymptotically flat black hole solutions without any exterior (naked) singularities
allowed by general relativity in four spacetime dimensions. Taken by itself, this would sug-
gest that either black holes are sets of measure zero and not relevant to realistic gravitational
collapse (the Kerr solutions being axisymmetric and stationary), or Kerr black holes are in a
sense dynamical attractors where once an asymmetric, dynamical horizon forms, evolution
causes the exterior spacetime to “loose its hair” and settle down to a Kerr solution. The latter
is a special case of Penrose’s final state conjecture [44]: the generic endstate of evolution
governed by general relativity, beginning with naked-singularity free vacuum initial data on
a Cauchy slice of an asymptotically flat spacetime, is a set black holes flying apart, the local
geometry of each approaching that of a given member of the Kerr family, together with grav-
itational waves streaming outward to null infinity. Indeed, this is what seems to generically
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happen in gravitational collapse studies and merger simulations to date. In particular, for both
quasicircular inspirals and ultrarelativistic scattering with b < b.,;;, once a single common
horizon forms, the spacetime rapidly settles down to a Kerr black hole. This is accompa-
nied by the emission of gravitational waves, whose characteristics are largely determined
by the quasinormal mode oscillation spectrum of the remnant black hole. In analogy with
a bell emitting decaying sound waves after it is hit, this is called the ringdown of the black
hole. The least damped mode of a Kerr black hole is the £ = m = 2 spherical harmonic
mode. The damping rate decreases with the spin of the black hole, approaching zero for the
maximally spinning (extremal) black holes allowed in general relativity. However, the spins
of remnants produced in comparable mass mergers, as observed by LIGO/Virgo, are suffi-
ciently far from extremal that their ringdown phases are very short, damping exponentially
with a characteristic e-fold time on order-of-magnitude the light-crossing time R;/c of the
remnant.

3. GRAVITATIONAL WAVE OBSERVATIONAL LANDSCAPE

In this section we outline what the current and planned near future observational
campaigns to witness the Universe in gravitational waves are. Gravitational wave “observa-
tories” fall into two categories: those that people have built specifically for this purpose, and
those that the Universe has fortuitously provided us. The former include earlier resonant bar
detectors pioneered by Joseph Weber, the LIGO/Virgo and Kagra ground-based detectors,
and various planned future ground- and space-based detectors. The latter include a network
of millisecond pulsars in our galaxy, and the cosmic microwave background (CMB). We will
not cover the history of any of these endeavors, instead we will comment on properties/chal-
lenges common to any of them that can be appreciated with knowledge of the properties of
gravitational waves outlined in the previous section.

Given that general relativity is a theory about the geometric nature of space and
time, and that gravitational waves are propagating distortions in the geometry, it should not
be surprising that essentially all gravitational wave detectors are composed of elements that
are sensitive to changing distances or times. Moreover, the most sensitive measurements
are those adapted to the plus and cross-polarized transverse disturbances allowed in general
relativity. This informs the “L” shape of the current ground-based detectors, that measure
relative changes in distances along the two arms of the detector through laser interferome-
try. Pulsar timing relies on the remarkably stable rotational periods of certain pulsars, where
models can be built to predict the arrival time of radio pulses from them to within tens of
nanoseconds over a year of observation. Long wavelength gravitational waves between the
earth and the pulsar will change the arrival times, and the most subtle signals can be extracted
from correlations between changes in arrival times between pairs of pulsars. Regarding the
CMB, this is an image of the “surface of last scattering,” where photons were last able to
Thompson-scatter off free electrons (afterward the temperature of the Universe dropped
below a threshold allowing the electrons to recombined with free protons to form neutral
hydrogen). The photons can pick up a net polarization after Thompson scattering if the
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background radiation field is anisotropic. The ability to use polarization measurements of
the CMB to detect gravitational waves present then is due to the fact that of the known
sources of anisotropy in the early Universe, only gravitational waves are able to produce
anisotropy that creates a so-called “B-mode” polarization pattern over the CMB (as opposed
to an “E-mode” pattern, that both matter anisotropies and gravitational waves can create).

Most sources produce gravitational waves at some characteristic length or frequency
scale. Gravitational wave detectors tend to be most sensitive to a frequency/length associ-
ated with some scale of the detector. Therefore, since the different detectors operate at very
different scales, they are sensitive to a correspondingly broad spectrum of potential sources.
The ground-based detectors are km-scale instruments, and are most sensitive to physical
processes associated with km-scale sources: stellar mass black holes, neutron stars, and the
inner core of a star undergoing a supernova explosion. The space-based LISA instrument is
planned to be a triangular configuration of satellites with 2.5 million km length arms; this is
the scale of the smaller of the so-called supermassive black holes thought to exist in the cen-
ters of most galaxies, as well as the orbits of many close binaries containing white dwarfs,
neutron stars, and black holes. Pulsar timing is most sensitive to gravitational waves with
periods close to the years-to-decades long observation time of the pulsars. This translates to
physical scales on the order of a few light years, and one of the most promising sources on this
scale is an effective stochastic background from the population of supermassive black hole
binaries in their last stages of inspiral. Gravitational waves from the early Universe would
likely leave a most pronounced effect on the CMB on scales of order the Hubble radius at
the surface of last scattering, which is roughly 1/1000 that of the present day Hubble radius
Ry, ~ 10?6 m.

A common problem for all detectors is how weak the gravitational waves are
expected to be when they reach the detectors. This is true even for the strongest known
source—a binary black hole merger—when factoring in how far away the event is expected
to occur from the earth. For stellar mass black hole binaries, the observed merger rate is ~ 10
per cubic gigaparsec (Gpc) per year [12]. In fact, the first event ever detected, GW 150914,
is still one of the closest black hole mergers seen to date, at an estimated distance of
0.4 Gpc ~ 1025 m. Since gravitational waves decay like 1/distance from the source, what
were metric perturbations of magnitude 2 ~ 1/10 on the ~ 10° m scale of GW150914s last
orbit, caused a metric perturbation & ~ 102! as it passed the earth, resulting in a maximum
change in distance along LIGO’s 4 km long arms of ~ 10~!7 m, or about 1/100th the diame-
ter of a proton!® It is not surprising then that one of the most significant challenges facing all

6 Though the 1/distance decay seems like a curse, and it is for being able to detect rare events
like black hole mergers relatively frequently on a human timescale, once the tremendous
experimental effort needed to cross that threshold has been met, the 1/distance decay also
means it does not take that much more effort to open up a significantly larger volume of
spacetime to observation. For example, the next (third) generation of ground-based detectors
are planned to be about 10 times more sensitive than Advanced LIGO’s design sensitivity.
Being able to see 10 times further is enough that GW150914-like black hole mergers could
be seen throughout the visible Universe!
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detectors is a thorough understanding and mitigation of sources of noise that could otherwise
swamp or masquerade as gravitational waves. This is one of the primary reasons why LIGO
consists of two detectors with nearly the same orientation relative to the sky, but separated
by a few thousand kilometers: a true gravitational wave must produce signals with similar
characteristics in both detectors, separated in time by at most the few ms of light travel time
between them; conversely, the probability that noise could mimic such a correlated signal is
much less than noise being able to mimic a gravitational wave in a single detector alone.

A second issue with most gravitational wave detectors is how to interpret an observed
signal once it is confirmed to be of likely astrophysical origin. Except for the CMB, the dif-
ficulty here is that the signal is a one-dimensional time series, and so these detectors are
more akin to seismometers than telescopes (with the CMB a two-dimensional polariza-
tion map over the sky can be obtained). Without theoretical templates of waveforms from
expected sources to compare against, there is very little other than broad temporal/spectral
characteristics that could be inferred from a novel, or unmodeled, source. Thus a crucial
part of the gravitational wave astronomy endeavor is to have banks of template waveforms
from expected sources. For compact object mergers, the issue of source interpretation is
also closely tied to detection: current instruments are still not sensitive enough for the vast
majority of mergers to be clearly evident above the detector noise, and matched filtering is
essential to extract such weak signals from the noise.” This is why solving the two-body
problem in general relativity became such a focused effort within the theoretical general
relativity community beginning in the early 1990s. Due to the complexities of the Einstein
field equations, no analytical solution seems possible, and currently a full solution (for a
given set of orbital parameters) needs to be computed numerically, which introduces some
numerical truncation error. Moreover, since numerical solutions are currently too computa-
tionally expensive to use to produce template banks that densely sample parameter space,
template banks of practical use are constructed using various approximation methods; these
include the effective one body (EOB) approach [19], modern versions of which use select
numerical results to calibrate the stitching together of perturbative post-Newtonian inspiral
calculations with linear quasinormal mode ringdown calculations, and reduced basis models
constructed from a set of numerical waveforms [28] (see [16] for a review of these and other
approaches). In the future, as more sensitive detectors come online, templates will not be
needed as much for detection, though will still be crucial for source identification and param-
eter estimation, which would be hampered if systematic modeling errors are present in the
template libraries. Thus, even though the first numerical solution to a general relativistic two
body problem describing inspiral, merger, and ringdown was obtained almost two decades
ago [45], it is still an active area of research to calculate ever more accurate binary merger
waveforms.

7 Matched filtering refers to convolving the detector signal with a template waveform. If a
nearly periodic signal with many cycles is present, such as the inspiral phase of a merger,
and an accurate template is phase aligned with the signal, then with time the convolution
will increase the signal-to-noise ratio, as the signal will add coherently while typical noise
will not.
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4. SURVEY OF WHAT HAS BEEN OBSERVED TO DATE

In this section we give an overview of the three most important (in our opinion)
scientific advances to date coming from gravitational wave observation of the Universe:
testing dynamical strong field gravity, multimessenger observation of neutron star merg-
ers, and obtaining the first glimpses of the demographics of black holes in our Universe.
Amongst the observatories mentioned in the previous section, only LIGO/Virgo have made
actual detections, and we will only comment on these.®

First quantifiable evidence for the existence of black holes as governed by the theory
of general relativity. Though the evidence for the existence of black holes has steadily
grown since the first candidates where identified beginning in the 1960s—the first stellar
mass black hole candidate Cygnus X-1, the suggested connection between quasars and super-
massive black holes, our own Milky Way supermassive black hole Sagittarius A*—before
GW150914 the evidence was all circumstantial. In other words, the only scientifically sound
statement one could have made is that the Universe definitely harbors a few ultracompact
objects and has some unusual sources of electromagnetic emission, and none of these obser-
vations can readily be explained using conventional physics if Kerr black holes are not
involved.

The gravitational wave data from black hole mergers is fundamentally different in
this regard, as it is coming from the strong field dynamics of spacetime itself, and there
is already enough signal in some of the loudest events, such as GW150914, that quantifi-
able self-consistency tests can be performed. Most notable in this regard is the consistency
between the inspiral and ringdown portions of the waveforms. From the inspiral signal alone,
an estimate of the progenitor black holes in the binary can be made, and from this, together
with predicted dynamics of the merger using numerical solutions of the field equations, the
mass and spin of the remnant can be computed. From the observed decay and frequency of
the ringdown signal alone, and using black hole perturbation theory calculations, the mass
and spin of the remnant black hole can also be determined. These two independent measures
of properties of the final black hole must agree if the signal comes from two Kerr black holes
colliding and forming a remnant Kerr black hole, as described by general relativity. So far
all the LIGO/Virgo data is consistent in this regard [2,13,14], albeit the error bars are quite
large, as the signal-to-noise ratios (SNRs) of current events are still quite small for making
precise tests of this kind. As an illustrative example to put this data and its veracity in context
compared to that obtained using the Event Horizon Telescope images of M87, or the Nobel
prize winning data of stellar orbits around Sagittarius A* used to measure its gravitational
mass and confirm its ultracompact nature: we still cannot rule out that M87 or Sagittarius

8 Of course, that is not to say that the absence of a signal does not provide useful informa-
tion, e.g., the negative results from the CMB and pulsar timing place constraints on the
magnitude of stochastic backgrounds, and the absence of long-lived periodic signals in
LIGO/Virgo data from known pulsars place limits on the size of quadrupolar deformations
(“mountains”) of those neutron stars.
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A* are ultracompact boson stars’; nor can we exclude that the progenitors in GW150914
were ultracompact boson stars. However, for the latter, if they were boson stars, the ring-
down part of the signal shows they promptly collapsed and formed a Kerr black hole, with
mass and angular momentum consistent with that of the binary just prior to merger. In other
words, even in this hypothetical scenario GW 150194 still gives evidence for the existence of
Kerr black holes—exotic compact objects more “bizarre” than boson stars would need to be
invoked to avoid that conclusion [54].

Because of the uniqueness properties of black holes in general relativity, and if
general relativity does accurately describe strong field gravity on astrophysical scales, then
unfortunately we cannot learn anything more about the physics of black holes from more
precise merger observations (the astrophysics of black holes is a different issue, discussed
below). In other words, all black holes in the Universe are then Kerr black holes to within
environmental perturbations, and perhaps future ultraprecise measurements of mergers could
show imprints of a circumbinary environment, but there are no novel classes, shapes, or
topologies of black holes to discover. Then, the utility of black hole merger observations for
fundamental physics is essentially entirely to provide detailed tests of nonlinear general rela-
tivity as outlined in the previous paragraph. Of course, as the scientific method requires such
tests for the health of its theories this is a useful endeavor, and we do not need a motivation
other than that. However, there is at least one observationally driven motivation for why one
might be skeptical about the precise nature of strong field gravity as described by general
relativity, namely dark energy.

On large scales, the Universe is observed to be in an epoch of accelerated expansion;
interpreting this as being due to dark energy comes from assuming that Einstein gravity accu-
rately describes the geometry of the Universe on such scales. Specifically, on large scales it
is assumed that, with an appropriate time slicing, the spatial metric of the Universe is nearly
homogeneous and isotropic, and its time evolution is driven by a stress energy tensor charac-
terizing the average energy densities and pressures of all the matter/energy in the Universe.
It is sometimes stated that today (i.e., away from any “big bang” singularities) gravity on
average in the Universe is weak, and certainly on small scales like our solar system, galaxy,
or even that of galaxy clusters it is weak (except near the rare black hole or neutron star).
However, as described in Section 2.1.3, the strong field regime of general relativity is not
associated with any physical length scale per se, but rather manifests when some physi-
cal scale in the problem becomes commensurate with the radius of curvature of spacetime.
And by that measure, our Universe is always in the strong field regime on scales of the
Hubble radius Ry, i.e., Ry is of the same order of magnitude as the Schwarzschild radius
Rs ~ /3¢? /87 Gp of a spherical distribution of matter with the same average energy density
p as the matter in the Universe. For example, today py is roughly that of six hydrogen atoms

[4 Boson stars are hypothetical star-like objects formed from exotic (i.e., not part of the stan-
dard model of particle physics) self-interacting bosonic matter, in contrast to neutron stars
which are largely composed of fermionic matter. A boson star’s gravitational dynamics is
still governed by general relativity, so it is not an “alternative” to a black hole, but could be
a novel class of compact object.
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per cubic meter, giving Ryo ~ 102 m ~ Rp,. One might complain that the Schwarzschild
radius argument does not apply to our Universe because the latter is not asymptotically flat.
Perhaps, though the point here is not to argue whether or not we are inside a Schwarzschild
black hole, but instead that on scales of the Hubble radius the Universe must be in the nonlin-
ear regime of general relativity for an entirely different class of solution (the FRLW metrics)
to be possible. Bringing the discussion back to testing gravity on stellar mass black holes
scales, if dark energy is telling us general relativity gets things wrong on the scale of the
Hubble radius, we should be cautious about immediately accepting its predictions for black
holes, as the scale-free nature of general relativity implies cosmological horizons and event
horizons reside in a related regime of the theory.'? The current LIGO/Virgo observations are
therefore an important step toward quantitative verification of the physics of horizons.

The wealth of knowledge gained from GW170817, the first binary neutron star merger
detected [4]. That so much information was garnered from this event is because a host of
electromagnetic counterpart emission was also seen—the first, and to date only gravitational
wave—electromagnetic “multimessenger” event [5]. Here we briefly comment on the high-
lights. The first is that a short Gamma Ray Burst (sGRB) was detected ~ 1.7 s after the
observed gravitational wave inspiral, the latter which ended a few ms before the presumed
collision of the two neutron stars (this and any postcollision gravitational waves were not seen
by LIGO/Virgo, which is as expected as they occur at frequencies several times higher than
what LIGO/Virgo is sensitive to). The origin of sGRBs has long been a mystery, though one
of the leading hypothesis for their formation is that they are produced in polar jets powered
by accretion onto the remnant of a binary neutron star merger (whether it be a hypermassive
neutron star or a black hole that formed, though the latter seems to be a more favorable envi-
ronment for jet formation). The coincidence of the gravitational wave emission and sGRB,
both in terms of time and region of the sky where both fluxes appeared to come from, gives
the first solid evidence that at least a class of SGRBs are produced following a binary neutron
star merger. Assuming this connection, together with the estimated distance to the event of
~ 40 Mpc, then also gives a direct measurement of the speed of gravitational waves rela-
tive to the speed of light, and a remarkably tight constraint for a first measurement: the two
speeds are the same to within approximately 1 part in 10'° [3].

Almost immediately after GW170817 was detected, a worldwide effort was under-
taken by astronomers to search for other electromagnetic counterparts, and within 11 hours
a bright, but fading, optical transient was identified in the galaxy NGC 4993. Follow-up
observation over the subsequent weeks saw the event in radio, X-ray, infrared, and the ultra-
violet. The observed properties of the emission are consistent with the neutron star merger
having produce a so-called kilonova (or macronova) [39]. During merger, a small fraction
(~ 0.1-1%) of the neutron star’s material is tidally ejected from the system at mildly relativis-

10 The majority of proposals to explain dark energy using modified gravity specifically intro-
duce a new physical length scale into the problem, and if that scale is tuned to the Hubble
radius it would avoid the conclusion that altering gravity on present day cosmological
horizon scales could have consequences for stellar mass or supermassive black holes.
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tic speeds (~ ¢/3), and over the subsequent few seconds following merger a similar amount
of material can be blown away from a hot accretion disk formed around the remnant, at sim-
ilar but slightly lower velocities. This initially high density material is very neutron rich,
and as it expands heavy elements (with atomic number in the range Z € 28..90) are formed
through the r-process. Many of these elements are radioactive with relatively short lifetimes,
and it is their decay over the subsequent days that produces the light of the kilonova. This
also confirms that neutron star mergers are one of the sites where a significant fraction of
the Universe’s heavy elements are produced—it is quite likely that the gold and platinum we
humans so love to adorn ourselves with are the ashes of ancient galactic neutron star mergers.

The late stages of the gravitational wave emission in GW 170817 also showed mild
deviation from the predictions of a black hole inspiral, indicative of tidal deformations occur-
ring in both neutron stars. The strength of the tidal deformation is governed by the equation of
state of matter at nuclear density, which is not theoretically well understood today, or acces-
sible to experiments on the earth to investigate. Thus neutron star mergers offer an avenue to
explore this extreme state of matter, and though this first event did not provide strong con-
straints on competing models, this is one of the subjects future observations are expected to
bring increasing clarity to.

Another subject that GW170817 allowed gravitational wave astronomy to take a
first step in, but will also require more future observations to make a useful contribution
toward, is measuring the local expansion rate of the Universe. This is typically done by mea-
suring both the distance d and redshift z to a set of sources in galaxies, and the expansion
history can be inferred from the relationship z(d) (for small redshifts, so nearby galaxies,
z &~ Hyd/c, where Hy is the Hubble constant). Measuring the distance to a source is quite
challenging. One method relies on a so-called standard candle, where the intrinsic luminos-
ity L of a source is assumed known, and hence the observed flux is simply L/4wd?. Type Ia
supernovae are the most well-known standard candles, though inferring their intrinsic lumi-
nosity relies on several calibration steps, including the cosmic distance ladder. With a binary
neutron star merger where a counterpart is seen (and hence the host galaxy identified for
a redshift measurement), a luminosity distance-redshift measurement can be obtained that
bypasses all of these calibration steps, since the intrinsic luminosity of the merger is known
from the general relativity waveform calculation. This makes a binary neutron star merger a
standard “siren” (siren is used here instead of candle as the last stages of inspiral emit waves
in the audio frequency range).'! GW170817 has already by itself allowed a measurement of
H)j to within about 10%; though this is not an improvement over other existing measure-
ments, the more multimessenger binary neutron star events that are observed, the tighter the
standard siren based value will become. Eventually, this might prove to be instrumental to
help resolve the present “Hubble tension”: measurements of Hy inferred by the Planck satel-

11 Binary black holes are also standard sirens, and better ones in fact, as some uncertainty will
be present in the neutron star measurements until the nuclear equation of state is known.
However, binary black holes are not typically expected to be in an environment where a
strong electromagnetic counterpart will be produced, and none have been observed to date.
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lite’s observation of the CMB show a small, but statistically significant, mismatch with Hy
obtained using supernovae data (see, e.g., [30]).

Tentative hints pointing to an “‘unusual’ stellar mass black hole population. Of the
almost 100 signals LIGO/Virgo have so far detected that are of likely astrophysical origin, the
vast majority are consistent with binary black hole merger templates [7,10,11].'> As discussed
above, if general relativity is correct, then we know these are all merging Kerr black holes,
forming remnant Kerr black holes. The utility then in having this large number of events, and
anticipating even more in the years to come, is to learn what the distribution of masses and
spins of this subpopulation of black holes in the Universe is as a function of time (redshift).
This will provide information on the fates of the most massive stars that are expected to
form black holes at the ends of their lives, as well as binary formation channels. Regarding
the latter, the two thought to be predominant are from stellar binaries where both stars are
massive enough to form black holes, and dynamical assembly in dense cluster environments
(following chance encounters between either two isolated black holes, a binary containing
a black hole and a single black hole, or a binary—binary interaction where each contains a
black hole). Though even 100 events is not yet enough to give definitive answers to some of
these population questions, there are already some interesting trends, and a few outliers that
are somewhat puzzling or surprising (at least without hindsight to select amongst the many
reasonable arguments present in the prior body of literature speculating about the unknown).

The first surprise came with GW150914, in that both progenitor black holes had
masses (~ 29M¢ and 36 M) at least twice that of any known stellar mass black hole can-
didate in the Milky Way (see, e.g., [22]). Subsequent detections showed that GW 150914 is
not an outlier in this regard, and most (though not all) LIGO/Virgo black hole progenitors
are more massive than known galactic black holes. This could partly be a selection effect, as
LIGO/Virgo is more sensitive to higher mass mergers, and also that the X-ray binary systems
that have been used to identify galactic black holes might be a distinct population of binaries
from those that lead to black holes that merge within a Hubble time.

A second puzzle is that the vast majority of progenitor black holes seem to have very
low spin (the remnants acquire higher spin, around 60-80% that of the maximum allowed
for Kerr black holes). Or to be more technically precise, given the detector’s current sensitiv-
ities, with most inspirals a confident measurement can only be made of the net spin angular
momentum aligned with the orbital angular momentum—for most mergers detected to date
this result is consistent with zero (to within error bars). There are three primary configu-
rations that can achieve this: (1) the individual black holes actually do have close to zero
spins, (2) the individual black holes have roughly equal but opposite spin angular momenta,

12 The remainder also match binary black hole templates, but when one or both compan-
ions have masses less than ~ 2.5M @, the event is classified as a black hole-neutron star
or binary neutron star merger, respectively. To be able to distinguish between black holes
and neutron stars from the gravitational waves alone would require observation of the higher
frequency late stages of inspiral/merger, or a high enough SNR event that the effect of tidal
deformation is already evident in the earlier lower frequency inspiral that can be observed
with present detectors.
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one aligned, the other antialigned with the orbital angular momentum, (3) the black holes
have arbitrary spins (less than extremal) but the spin vectors are mostly within the orbital
plane. Both options (2) and (3) are difficult to explain with a binary formed from a stellar
binary, where one would typically expect the spin vectors to be almost aligned with the orbital
angular momentum vector. Options (2) and (3) are consistent with the occasional dynami-
cally assembled binary, as there is no preferential orientation for an essentially random close
encounter, but one would not expect this for the majority of events as currently observed.
Thus (1) seems the most plausible explanation at the moment. Given how challenging it is
to simulate stellar collapse at present, hence have robust predictions for what the initial spin
distributions of black holes should be, the observations will serve as useful guide posts for
ongoing theoretical studies of collapse.

There are more speculative suggestions for why the progenitors have low spin. One
is that many of these low-spinning black holes are primordial in nature, meaning the black
holes might have formed at a very early epoch in the Universe (well before structure forma-
tion) from rare superhigh density fluctuations in the background radiation field. The concrete
mechanisms people have proposed for this typically produce very low spin black holes (see,
e.g., [2e0] for a review). Another possibility is that there are as of yet undiscovered “ultra-
light” particles, with Compton wavelengths on the order of the tens of kilometer scale of
the Schwarzschild radii of stellar mass black holes. Such particles can form bound states
around the black holes, and if the black hole is spinning, these bound states can grow by a
so-called superradiant interaction with the surrounding spacetime [17]. In reaction, the black
hole spins down, possibly quite rapidly on astrophysical timescales (much less than the rel-
evant gigayear timescale, which is order of magnitude the maximum time between a black
hole’s birth and when it should suffer a collision with another to be visible to LIGO/Virgo).
Of course, even if such particles exists, they might not be the reason for the low spin black
hole population—that could still just be due to properties of stellar collapse and black hole
formation.

The third surprise relates to several outlier events, the two most prominent being
GW190521 and GW 190814, that seem to have progenitor compact objects in the so-called
“mass gaps.” GW190814 is the merger of a ~ 23 + 1My (presumed) black hole with a
~ 2.6 = 0.1 M compact object [9]. GW 190521 is the merger of a ~ 85 &= 20M black hole
with a ~ 66 = 18 M black hole [8]. Regarding GW 190814, arguments from stellar collapse
studies, as well as a dearth of candidates from our known galactic compact object popu-
lation, suggest objects with masses in the range ~ 2.5My—5M do not typically form in
stellar collapse. Moreover, it is currently unknown if the maximum allowed mass for a neu-
tron star can reach 2.5 Mo ; if it turns out to be less than 2.5M s, the lower mass companion of
GW190814 would be challenging to explain (or be an exceedingly rare object, for example,
alow mass black hole formed via a prior binary neutron star merger). Regarding GW 190521,
stellar structure theory suggests stars with cores in the mass range ~ 65Mo—135M, are sub-
ject to the so-called pulsational pair-instability supernova processes, which blows the cores
apart leaving behind no remnant. However, similar to the issue of the spin of a black hole
at birth, there is a fair amount of uncertainty to the exact range of this mass gap, and given
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the error bars in the mass measurements, there is only mild tension between GW 190814 and
conventional theories.

5. THE FUTURE OF GRAVITATIONAL WAVE ASTRONOMY

Einstein’s theory of general relativity is over 100 years old, and the quest to observe
the Universe in gravitational waves is over 50 years old, beginning with Joseph Weber’s pio-
neering attempts in the 1960s. Despite these long histories, the field of gravitational wave
astronomy is in its infancy, with the first detection only 6 years ago. Though many signals
observed to date are solidly above the threshold for confident assertion that they are grav-
itational waves coming from astrophysical sources, they are still not loud enough for high
precision tests of strong field gravity, or for high accuracy estimation of all source parameters.
Moreover, most of these detections have relied on theoretical templates of expected sources,
which improves the effective sensitivity of the detectors. Thus any truly novel source will
likely only be discovered once the detector sensitivities are well above the threshold the new
source could otherwise have been seen using templates. The one exception here is a source
that emits a short burst well approximated by a sine-Gaussian, as LIGO/Virgo do employ
searches using such templates (this can be thought of as an “unmodeled” search in the sense
that there is no particular astrophysical source from which the template is derived).

To realize a future where a detailed picture of the Universe in gravitational waves is
attained will thus require more sensitive detectors that cover a broader range of frequencies
than at present. These are being planned, and within the next decade or two we can expect
an order of magnitude improvement over essentially the entire slate of observational cam-
paigns. LIGO is within a factor of two of the original “Advanced LIGO” design sensitivity,
which should be reached during the next observing campaign (beginning late 2022—early
2023), when the KAGRA detector in Japan will also join the LIGO/Virgo network [6]. Fol-
lowing that, the plan is for an “A+” upgrade that will improve sensitivity by another factor
of two, and LIGO India will join the network (anticipated to start in 2025). To improve
sensitivities significantly beyond this will require new facilities, and several third genera-
tion designs are being planned for the 2030s, including Cosmic Explorer and the Einstein
Telescope [38]. These could further increase sensitivity by a factor of 10, as well as offer
improved frequency bandwidth over both lower (earlier in the inspiral for binary compact
objects) and higher frequencies (merger regime for binary neutron stars). New technologies
are also being considered, most promising among these are atom interferometers [31], though
it is less clear what the timeline for their deployment is. The space-based LISA mission is
expected to launch in the late 2030s. Both LISA and third generation ground-based detectors
could see black hole mergers with SNR close to a thousand (the current SNR record holder
is GW170817, at ~ 32). CMB measurements of B-mode polarization over the next decade
(e.g., with the Simons Observatory [15] currently under construction, and the LiteBIRD satel-
lite planned to be launched by the end of the decade [49]), should lower the threshold above
which cosmic gravitational waves would be observed by about an order of magnitude. The
sensitivity of the pulsar timing network increases roughly with the square-root of the obser-
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vation time, and could be accelerated with the discovery of more highly stable pulsars clocks
to add to the network (see, e.g., [36]).

We conclude with a brief discussion of what we can hope/expect to learn from these
observatories if everything goes according to plan. At the very least we can expect an ever
clearer picture of the demographics of compact objects in our Universe unfolding, improved
tests of the dynamical strong field regime of general relativity, tighter constraints on the
Hubble constant Hy from gravitational wave standard sirens, first detection of a stochastic
background of gravitational waves from unresolved supermassive black hole binaries, and
either a first measurement of a primordial gravitational wave background from an inflation-
ary epoch in the early Universe, or a bound on the latter that would severely challenge the
inflationary paradigm. If we are fortunate, a binary neutron star merger as close or closer
than GW 170817 will occur during the era of the third generation of ground-based detectors,
which would provide unprecedented insight into the nature of matter at the extreme nuclear
densities present in the interior of neutron stars. If we are very fortunate, a star will go super-
nova (while the detectors are on!) in our neighborhood of the Milky Way, which should be
close enough for us to be able to hear it in gravitational waves.

A wish opening up our view of the Universe to the medium of gravitational waves
has always been that new, unexpected, and surprising sources will be discovered. Though,
of course, we cannot make a list of the truly unexpected, there are sources that people have
speculated about that would be surprising, and some quite revolutionary, if discovered. These
include cosmic strings, ultralight particles driving black hole superradiance, new kinds of
compact objects such as boson stars, and various “exotic”” horizonless compact object alter-
natives to black holes. The latter include fuzzballs, gravastars, and AdS (anti-de Sitter) black
bubbles, all inspired by ideas on how “quantum gravity” could resolve the singularities of
general relativity and apparent information loss paradox associated with black holes that
evaporate via the Hawking process. But perhaps the biggest surprise of all would be if, once
all is said and done, there are no surprises beyond a few black holes having been born with
their two strands of Kerr hair standing mildly out of place.
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This is a (very subjective) survey paper for nonspecialists, covering group actions on
Gromov hyperbolic spaces. The first section is about hyperbolic groups themselves,
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1. INTRODUCTION

The goal of this paper is to give a flavor of the developments in geometric group
theory in the last 35 years, focusing on groups acting on Gromov hyperbolic spaces. The
field of geometric group theory is relatively young and its birth can be attributed to Gromov’s
paper [71] in 1987, when the subject exploded and attracted many mathematicians. The term
itself was coined by Niblo and Roller, who organized and named a very influential conference
in 1991 [1e7,1e8] (though it was possibly used informally before). Loosely speaking, geomet-
ric group theory studies groups by looking at their actions on metric spaces and the geometry
and topology of these spaces. Increasingly, methods of other branches of mathematics, such
as dynamics and analysis, are also brought to bear.

There were, of course, significant developments that can be comfortably placed
within this subject even long before Gromov’s paper. Works of Klein, Dehn, Nielsen,
Stallings, and others in some sense form the backbone of the subject. The theory of groups
acting on trees, i.e., Bass—Serre theory [6,131] and its language, will be used freely in these
notes. Gromov’s celebrated theorem that groups of polynomial growth are virtually nilpo-
tent [69] appeared in 1981, and Gromov’s basic philosophy of viewing groups as metric
spaces was eloquently explained in [7e]. Of course, the influence on this subject of the work
of Thurston cannot be overstated. Perhaps the development of combinatorial group theory,
focusing on the combinatorics of the words in a finitely presented group, distracted from a
more geometric approach to group theory.

This paper will focus on the part of geometric group theory that studies groups acting
on (Gromov) hyperbolic spaces. In the early days, right after Gromov’s paper, this meant
studying (Gromov) hyperbolic groups. Around 2000, the work of Masur and Minsky [95,96]
shifted the focus to groups that are not hyperbolic but admit interesting actions on hyperbolic
spaces. The main examples of such groups are mapping class groups of compact surfaces
(the subject of the papers by Masur and Minsky) and Out( F},), the outer automorphism group
of a finite rank free group. This survey will concentrate on these two classes of groups.

The definition of Gromov hyperbolic spaces is modeled on the standard hyperbolic
spaces by “coarsification” and captures the fact that geodesic triangles in the hyperbolic plane
are “thin.” For a wonderful survey of the history of hyperbolic geometry from Lobachevsky
to 1980, see Milnor’s paper [99]. For much more about this subject, see Bridson—Haefliger
[44], Ghys—de la Harpe [68], or Drutu—Kapovich [58]. There are many important topics this
survey will not cover, e.g., relative hyperbolicity [61], hyperbolic Dehn filling [74,114], small
cancelation [1,112], uniform embeddings in Hilbert spaces [12e], the celebrated work of Agol
and Wise, see, e.g., [16], random walk [93], Cannon—Thurston maps [1ee], and many others.

2. HYPERBOLIC GROUPS

Every finitely generated group G can be viewed as a metric space. Fix a finite gener-
ating set S which is symmetric, i.e., S™! = S. The word norm |g|s of g € G is the smallest
n such that g can be written as g = 5155 ---5, fors; € S. Then ds(g,h) = |g "' h|s is the
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word metric on G, and left translations Ly : g — xg are isometries. More geometrically, this
is the distance function on the vertices of the Cayley graph I's, with vertex set G, and edges
of length 1 between g and gs for g € G and s € S. If S is a different finite symmetric gener-
ating set for G, the identity map G — G is bilipschitz with respect to the two word metrics,
and are considered equivalent. There is a more general equivalence relation between metric
spaces that is very convenient in the subject. Let (X, dx ) and (Y, dy ) be metric spaces. A (not
necessarily continuous) function f : X — Y is a quasiisometry if there is a number A > 0
such that |
—dx(@.b) = A = dy(f(@). (b)) < Adx(a.b) + 4

forall a,b € X, and every metric ball of radius A in Y intersects the image of f. Without the
second condition, f is a quasiisometric embedding (when we want to refer to the constant A4,
we say A-quasiisometric embedding). Two metric spaces are quasiisometric if there is a
quasiisometry between them, and this is an equivalence relation. For example, inclusion
Z — R is a quasiisometry, as is any bilipschitz homeomorphism or a finite index inclusion
between finitely generated groups equipped with word metrics. More generally, the following
is considered to be the Fundamental Theorem of Geometric Group Theory.

Theorem 2.1 (Milnor [98], Svarc [135]). Suppose a group G acts properly and cocompactly
by isometries on a proper geodesic metric space X. Then G is finitely generated and any
orbit map G — X is a quasiisometry.

A metric space is proper if closed metric balls are compact, and it is geodesic if any
two distinct points a, b are joined by a subset isometric to the closed interval [0, d(a, D)].
For example, cocompact lattices in a simple Lie group are quasiisometric to each other. The
“Gromov program” is to classify groups, at least in a given class, up to quasiisometry.

According to Gromov, the following definition was given by Rips. There are several
other definitions, all of which are equivalent up to changing the value of §, see [44,58].

Definition 2.2. Let § > 0. A geodesic metric space X is §-hyperbolic if in any geodesic
triangle each side is contained in the §-neighborhood of the other two sides. We say X is
hyperbolic if it is §-hyperbolic for some § > 0. See Figure 1.

For example, trees are 0-hyperbolic and so are complete simply-connected Rieman-
nian manifolds of sectional curvature < —¢ < 0. A fundamental property of hyperbolic
spaces is the Morse Lemma, proved by Morse [185], Busemann [48], and Gromov [71] in
increasing generality.

Lemma 2.3 (Morse Lemma). There is a number D = D(8, A) such that for any §-hyperbolic
space X and any A-quasiisometric embedding f : [a,b] — X the image of f is contained
in the D-neighborhood of any geodesic from f(a) to f(b).

It then quickly follows that if two geodesic spaces are quasiisometric and one is
hyperbolic, so is the other. In particular, groups that act properly and cocompactly by isome-
tries on proper hyperbolic spaces are hyperbolic.
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FIGURE 1
The union of the §-neighborhoods of two sides contains the third.

Hyperbolic groups are well behaved, both topologically and geometrically, and they
are generic, so they form a model class of groups in geometric group theory. We now elab-
orate.

2.1. Classification of elements

Let G be a hyperbolic group. If g € G has finite order, then there is a coset (g)x that
has diameter < 46 + 2, so in particular there is an a priori bound on the order in terms of §
and the number of generators. This is proved by a coarse version of the standard argument
that a bounded set in R” (or any Hadamard manifold) is contained in a unique closed ball
of smallest radius. If g has infinite order, then k — g¥x is a quasiisometric embedding for
every x € G, and g is loxodromic.

2.2. The Rips complex

The classical Cartan-Hadamard theorem states that closed manifolds of nonposi-
tive sectional curvature have contractible universal cover. In a similar way, every hyperbolic
group G acts properly and cocompactly on a contractible simplicial complex, called the Rips
complex. It is constructed as follows. Fix a number d > 0 and form the complex P;(G):
the set of vertices is G, and a set {vg, v1, ..., v,} of distinct vertices forms a simplex if
d(v;,v;) < d forall i, j. This is a version of the Vietoris approximation of a metric space
by a simplicial complex, except here we think of d as being large.

Theorem 2.4. Ford > 45 + 6, P;(G) is contractible.

So, for example, if G is torsion-free, the quotient P;(G)/G is a finite classifying
space for G, and in any case G is finitely presented, and has a classifying space with finitely
many cells in each dimension. Every finite subgroup of G fixes a point of Py (G) (for d large),
so it follows that G has finitely many conjugacy classes of finite subgroups. Interestingly, it
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is not known whether every infinite hyperbolic group is virtually torsion-free, or even if it
always has a proper subgroup of finite index.

2.3. Subgroups

If g € G has infinite order, there is a unique maximal virtually cyclic subgroup E(g)
of G that contains g, and E(g) also contains the normalizer of g. It follows that G cannot
contain Z?2 as a subgroup. Translation length considerations show that G cannot contain any
Baumslag—Solitar groups B(m,n) = {a,t | ta™t™' = a"}, m,n # 0, as subgroups. The long
standing open question whether every group with finite classifying space and not containing
any B(m, n) is necessarily hyperbolic was recently answered in the negative [86].

2.4. Boundary

Inspired by the visual boundary of Hadamard manifolds, Gromov defined a bound-
ary dG of a hyperbolic group (or a proper geodesic metric space which is hyperbolic). It
is a compact metrizable space and a point is represented by a quasigeodesic ray Z+ — G,
with two rays representing the same boundary point if their images stay a bounded distance
apart. The topology is based on the principle that rays issuing from a basepoint and with
fixed quasigeodesic constants will stay longer together if they represent points that are closer
together. If G is infinite and virtually cyclic then dG consists of two points, and if G is not
virtually cyclic (termed “nonelementary”) dG has no isolated points.

There is also a natural topology on the union

X = P;(G)LUIG

of the Rips complex and the Gromov boundary that makes it into a compact metrizable
space, and G acts naturally by homeomorphisms. Loxodromic elements act by north—south
dynamics on X. The most important property of the boundary, used, for example, in the
proof of Mostow rigidity [1e6], is the following:

Theorem 2.5. Let f : X — Y be a quasiisometry between two hyperbolic proper geodesic
mmetric spaces. Then f extends to a homeomorphism X — dY .

Theorem 2.6 ([38]). X is a Euclidean retract, i.e., it is contractible, locally contractible, and
finite-dimensional. The covering dimension of 0G can be computed from the cohomology of
G and, in particular, if G is torsion-free, dim 0G equals the cohomological dimension of G
minus 1, and in any case the rational cohomological dimension of 0G equals the rational
cohomological dimension of G minus 1.

2.5. Asymptotic dimension

In [72] Gromov introduced many quasiisometric invariants of groups and spaces.
Here we focus on asymptotic dimension. Let X be any metric space. For an integer n > 0,
we write asdim(X) < n provided that for every R > 0 there exists a cover of X by uniformly
bounded sets such that every ball of radius R in X intersects at most n + 1 elements of
the cover. This is the “large scale” analog of the usual covering dimension. For example,
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asdim(R") = n and asdim(7") < 1 for a tree T with the geodesic metric. This is a quasiiso-
metric invariant, so it is well defined for finitely generated groups as well. See [12] for the
basic properties of asdim. There are many groups that contain Z" for every n, and they will
have infinite asymptotic dimension. However, Gromov proved:

Theorem 2.7 ([72]). Every hyperbolic group has finite asymptotic dimension.

One can hardly make a claim that one understands the large-scale geometry of a
group if its asymptotic dimension is not known to be finite or infinite. However, the signif-
icance of the theorem became particularly clear with the work of Guoliang Yu [143] (see
also [571), who proved that groups with finite asdim and finite classifying space satisfy the
Novikov conjecture (this predicts the possible placement of Pontrjagin classes in the coho-
mology ring of a closed oriented manifold with the given fundamental group).

An even stronger conjecture in manifold topology is the Farrell-Jones conjecture.
If it holds for a (torsion-free) group G then one can in principle compute the set of closed
manifolds homotopy equivalent to a given closed manifold of dimension > 5 and fundamen-
tal group G. Following the work of Farrell and Jones, there has been a great progress in
proving the Farrell-Jones conjecture for many groups. For hyperbolic groups, this was done
by Bartel, Liick, and Reich [5], see also [3] for a proof using coarse methods that generalize
to other groups.

2.6. JSJ decomposition

For simplicity, we now assume that G is a torsion-free hyperbolic group. By Grush-
ko’s theorem [75,132], G can be decomposed as a free product G = G * G, * -+ - x Gg * F;
where each G; is noncyclic and freely indecomposable and F, is a free group. Each G;
is a 1-ended group by the celebrated theorem of Stallings [133], meaning that the Cayley
graph of G; has one end (every finite subgraph has only one unbounded complementary
component). Quite unexpectedly, Rips—Sela [119] discovered a further structure theorem for
1-ended hyperbolic groups (the theorem applies to many groups that are not hyperbolic as
well). The theorem is motivated by the Jaco—Shalen—Johanssen torus decomposition the-
orem for 3-manifolds, which provides a canonical decomposition of an aspherical closed
orientable 3-manifold by cutting along pairwise disjoint tori so that each piece either has
many tori (it is Seifert fibered), or it is not an /-bundle and has no essential tori (except on
the boundary, and then by Thurston’s hyperbolization theorem it is hyperbolic), or it is an
I-bundle. The Rips—Sela theorem can be stated as follows:

Theorem 2.8. Let G be a 1-ended torsion-free hyperbolic group. Then G is a finite graph of
groups with all edge group infinite cyclic, and with vertex groups V coming in three types:

(QH) V is the fundamental group of a compact surface (with a pair of intersecting
2-sided simple closed curves) and the incident edge groups correspond exactly
to the boundary components,
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(rigid) V is not cyclic and does not admit a nontrivial splitting over a cyclic group
such that all incident edge groups are elliptic, and

(cyclic) V is cyclic.

See also [59, 64,76] for different proofs and generalizations, and [4e] for how to read
off the JSJ decomposition purely from the boundary of G. For example, a splitting over Z
gives a pair of points in G that together separate dG, and Bowditch shows how to go in the
other direction. Thus the QH vertices give rise to many splittings of G over cyclic groups
(one for every simple closed curve), while rigid vertices give rise to none.

0]

FIGURE 2
A possible JSJ decomposition of a group G, with two rigid vertices and one QH vertex.

We can picture G as the fundamental group of the space obtained from a disjoint
union of compact surfaces, “black boxes” and circles by attaching cylinders according to
the graph of groups. See Figure 2. The JSJ decomposition is not quite unique, but there are
standard moves that transform one such decomposition to another. For example, sometimes
one can slide one cylinder over another if they meet at a common circle. The main feature
of a JSJ decomposition is that splittings over cyclic groups can be “read off,” at least up
the standard moves, just like all essential tori in a 3-manifold can be read off from its JSJ
decomposition.

2.7. The combination theorem

This is also motivated by 3-manifold theory. The classical Klein-Maskit combi-
nation theorem gives conditions under which two discrete groups A, B of isometries of
hyperbolic space H? with intersection C = A N B generate the amalgam A *¢ B. Thurston’s
Hyperbolization Theorem [101,138] is proved by cutting the 3-manifold into pieces, and then
inductively constructing a hyperbolic structure when gluing the pieces together. There are
two opposite extremes in the kinds of gluings, when the intersection of the pieces is quasi-
isometrically embedded on both sides, and when it is exponentially distorted. The latter
arises when the 3-manifold fibers over the circle and the monodromy is pseudo-Anosov. The
following is the hyperbolic group analog.
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Theorem 2.9 ([25,26]). Let G be the fundamental group of a finite graph of hyperbolic groups
so that each edge group is quasiisometrically embedded in both vertex groups (but not nec-
essarily in G). Assume the “annuli flare” condition. Then G is a hyperbolic group.

The precise definition of the annuli flare condition is a bit technical, but let us men-
tion two special cases. The first is when the graph of groups is acylindrical, that is, for some
M > 0 the stabilizer of every segment of length M in the associated Bass—Serre tree is finite.
In this case there are no (long) annuli at all. The other case is that of a hyperbolic automor-
phism ¢ : H — H of a hyperbolic group H . This means that there is M > 0 such that for
every element i € H of sufficiently large word length |/| we have

max{|¢™ (n)|, |p~™ (h)|} = 2|A],

so in this case the induced infinite annulus defined on S! x R sending S! x {K} to the
loop determined by ¢ X () flares exponentially. Aside from automorphisms of closed surface
groups induced by pseudo-Anosov homeomorphisms, there are many examples (in fact, they
are generic in the sense of random walk [87]) of hyperbolic automorphisms of free groups
coming from train track theory [34]. The combination theorem then implies that the mapping
torus H x4 Z is hyperbolic.

The combination theorem has also been used to study hyperbolicity of extensions of
free or surface groups in terms of the monodromy homomorphism from the quotient group
to the mapping class group or Out(F,), giving rise to convex cocompact subgroups of these
groups [56,63,78,89].

2.8. Random groups are hyperbolic
The most straightforward way to talk about “random groups” is the following model.
Fix integers k > 2 and m > 1, and for integers n1, . . ., n,, consider the finite set

Nk,m;ny,...,ny)

of all group presentations with k generators and m relators of lengths ny, ..., n,. We say
that a random group has property P if the fraction of groups in N(k,m;ny, ..., n,) that
have P goes to 1 as min{ny,...,n,} — oco.

Theorem 2.10 ([50e,118]). A random group is hyperbolic and its boundary is the Menger

curve.

Thus a random group has rational cohomological dimension 2 and does not split
over a finite or a 2-ended group.

Gromov [73] introduced a more sophisticated random model for groups, called the
density model, that depends on a parameter d € (0, 1) and properties of random group depend
on the chosen range of d. For more information, see [67,111].

2.9. R-trees and applications
R-trees are metric spaces such that any two distinct points x, y are contained in

a unique subspace homeomorphic to a closed interval in R with x, y corresponding to the
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endpoints, and this subspace is isometric to a closed interval. Simplicial trees with the length
metric induced by identifying edges with closed intervals are examples of R-trees. More
generally, R-trees can have a dense set of “vertices” (points whose complement has more
than two components). For example, let T = R? as the underlying set, and define the metric
d as follows: d(x, y) = |x — y| is the Euclidean distance if x, y are on the same vertical
line, and otherwise if x = (x1,x2), y = (y1, y2), then d(x, y) = |y1| + |y2| + |x1 — x2].
Thus one imagines train lines running along all vertical lines and along the x-axis, with the
distance function being the shortest train trip.

R-trees were put to good use by Morgan and Shalen [182-104] in their work on
hyperbolization of 3-manifolds following Thurston’s work.

The importance of R-trees in geometric group theory comes from two principles
that we briefly review. Let X be a proper hyperbolic space with the isometry group of X
acting with coarsely dense orbits.

(1) A sequence of actions of a finitely generated group G on X either, after taking
a subsequence, converges (after conjugations) to an isometric action on X, or
else it converges to an isometric action on an R-tree.

(2) Thereis atheory analogous to the Bass—Serre theory, called the “Rips machine,”
that explains the structure of a group acting isometrically on an R-tree from the
stabilizers of the action (under some technical conditions).

2.10. Hyperbolic spaces degenerate to R-trees
This construction is due to F. Paulin [116] and the author [13]. See also [14]. We fix
a group G and a finite generating set ay, ..., a,. Suppose we are given an isometric action
p: g p(g): X = X of G on a proper §-hyperbolic space X, defined up to conjugation
by an isometry of X. We impose the mild assumption that the action is nonelementary, i.e.,
the function
X mjax{dx (x.a;(x))}

is a proper function X — [0, co). We then choose a basepoint x, € X where the minimum
is attained. Identifying G with the orbit of x,, this induces a left-invariant (pseudo)metric
on G via

dp(g.h) = dx (g(xp). h(xp)).

This metric is “hyperbolic,” although G as a discrete set is not a geodesic metric
space. To make this precise, it is convenient to give Gromov’s reformulation of §-hyper-
bolicity, in terms of the “4-point condition.” For a, b € X, define the “Gromov product”

(a-b) = %(dx(xp,a) + dx(x,,b) — dX(a,b)).

Thus, when X is a tree, (a - b) is the distance between x, and [a, b], and in general it is
within 26 of it. If a, b, ¢ € X then consider the 3 numbers (a - b), (b - ¢), and (¢ - a). When
X is a tree, the two smaller numbers are equal. Gromov’s 4-point condition is that the two
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smaller numbers are within § of each other. Up to changing the value of 8, a geodesic metric
space is hyperbolic if and only if it satisfies the 4-point condition. Moreover, if the 4-point
condition holds with § = 0, then the space can be isometrically embedded in an R-tree.

Returning to our setup, assume now that p; is a sequence of isometric actions of
G on X, x,, are the corresponding basepoints, and d,, the induced metrics on G. They all
satisfy the 4-point condition with a fixed §. There are now two cases, up to passing to a
subsequence. Define D; = max;{x,,,a;(xp,)}.

Case 1. D; — oo. Then rescale the metrics d,,; by D;, i.e., consider dp, / D;. After a
subsequence, this will converge to a (pseudo)metric on G which will now satisfy the 4-point
condition with § = 0. Thus (G, d) can be isometrically embedded into a (unique) R-tree T’
and there will be an induced isometric action of G on 7. Thanks to the careful choice of
basepoints, this action will not have a global fixed point.

Case 2. D; stays bounded. Under the mild condition that the isometry group of X
acts with coarsely dense orbits, we can conjugate the given actions so that all x,, belong to
a fixed bounded set. Since X is proper, there is a further subsequence so that p; converge to
an isometric action p of G on X.

2.11. The Rips machine

If a group acts freely on a simplicial tree, it is necessarily free. This simple instance
of Bass—Serre theory follows quickly from covering space theory. However, this is not true
for R-trees. For example, Z" acts freely on R by letting basis elements act by n rationally
independent translations. More interestingly, closed surfaces of Euler characteristic < —1
admit measured foliations with simple singularities and with all leaves being trees (and all
but finitely many are lines), see [14e]. Lifting to the universal cover, the transverse measure
turns the leaf space to an R-tree and the deck group induces a free action of the fundamental
group of the surface on this R-tree.

Suppose now we are given an isometric action of a finitely presented group G on an
R-tree 7. We make a technical condition that the action is stable meaning that for every arc
I C T there is a subarc J C [ such that the stabilizer of J is equal to the stabilizer of any
further subarc of J. This property is frequently satisfied for actions on R-trees obtained by
degenerating §-hyperbolic spaces described above. We then fix a finite simplicial 2-complex
K with G = 7;(K) and construct a G-equivariant map K — T, called a resolution of T.
Point inverses form a foliation of K (with certain standard singularities) which descends
to K. The Rips machine transforms K with this foliation, changing neither the fundamental
group nor the fact that the universal cover resolves 7', and puts it in a certain “normal form.”
The pieces of this normal form are foliated subcomplexes that occur, very surprisingly, in
only the following four types:

(simplicial) leaves are compact and the piece resolves a simplicial tree,

(surface) the piece is a surface (perhaps with boundary) and the nonboundary leaves
are trees as above,
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(axial) the piece resolves the tree which is a line, and
(Levitt) the piece is of Levitt type.

Levitt-type foliations were first constructed by G. Levitt [91]. Generic leaves are 1-
ended graphs, and in fact they are quasiisometric to 1-ended trees with finite graphs attached.
In addition to proving this classification, the Rips machine also provides the structure of the
group corresponding to these cases, and particularly in the Levitt case. It turns out that if
there is a Levitt piece then G always splits along a subgroup which fixes an arc in 7. The
other three cases are classical, with the simplicial case amounting to Bass—Serre theory. As
an example, Rips proved the conjecture of Morgan and Shalen that any finitely generated
group acting freely on an R-tree is isomorphic to the free product of surface groups and free
abelian groups. For more details, see [28,66].

2.12. Applications

We mention some of the applications of R-trees; for more see [14]. They are a basic
tool in the theory of Out(F}). Zlil Sela used them extensively in his seminal work on the
Tarski problems [124-130].

2.12.1. Automorphisms of hyperbolic groups
Let G be a 1-ended hyperbolic group, and for simplicity assume it is torsion-free.
Combining Paulin’s construction [117] with the Rips machine, we get

Theorem 2.11. If G does not split over Z then Out(G) is finite.

This is analogous to a consequence of Mostow Rigidity that Out(G) is finite when
G is the fundamental group of a closed hyperbolic n-manifold with n > 3.

The proof goes like this. Assuming Out(G) is infinite, choose a sequence f; of
automorphisms in distinct classes and consider isometric actions p; of G on itself given by
left translations twisted by f;, i.e., g — (h +— f;(g)h). Since f; are distinct in Out(G), we
see that we are in Case 2 of the construction outlined above and we obtain an isometric action
of G on an R-tree and with arc stabilizers cyclic (or trivial). The Rips machine now yields a
splitting of G over a cyclic group.

A proper generalization of this theorem was given by Z. Sela. Fix a JSJ decomposi-
tion of G. There are now “visible” automorphisms of G realized as compositions of powers
of Dehn twists in the cylinders and homeomorphisms of the QH vertices, which are surfaces.

Theorem 2.12 ([118]). The subgroup of visible automorphisms has finite index in Out(G).

The proof is quite a bit harder. The idea is that if the index is infinite, one can choose
a sequence of automorphisms f; in distinct cosets of the visible subgroup. In addition, one
chooses the f;’s to be the “shortest” in their cosets. Then one argues that the action in the
limit produces a “new” splitting of G, one not explained by the JSJ, or else the f; could be
shortened for large i.
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Recall that a group G is Hopfian if every surjective endomorphism of G is an auto-
morphism and it is co-Hopfian if every injective endomorphism is an automorphism. For
example, nontrivial free groups are not co-Hopfian. By adapting the above methods to endo-
morphisms, Sela proved:

Theorem 2.13 ([122,123]). Let G be torsion-free hyperbolic. Then G is Hopfian. If G is
1-ended it is also co-Hopfian.

In 1911 Max Dehn proposed three algorithmic problems about groups: the word
problem (decide if a word in the generators represents the trivial element), the conjugacy
problem (decide if two words in the generators represent conjugate elements), and the iso-
morphism problem (decide if two groups given by presentations are isomorphic). Dehn
solved the word problem for surface groups and his solution generalizes to hyperbolic groups.
There is also a similar solution of the conjugacy problem for hyperbolic groups, see [71]. The
isomorphism problem takes more work and uses R-trees. For torsion-free hyperbolic groups
that do not split over cyclic subgroups, the isomorphism problem was solved by Sela [121],
and for general hyperbolic groups by Dahmani—Guirardel [54].

Even though hyperbolic groups are generally very well behaved, they also contain
a certain amount of pathologies, see, e.g., [46].

2.12.2. Local connectivity of 0G
The use of R-trees completed the proof of the following theorem.

Theorem 2.14. If G is a 1-ended hyperbolic group, then 0G is locally connected (as well

as connected).

There are several ingredients in the proof. First, [38] shows that if dG is not locally
connected then it has (many) cut points. Bowditch [4e] then shows that G acts on an R-
tree constructed as a kind of a “dual” tree, which does not come with a metric but can be
endowed with one using [92]. The Rips machine then yields a splitting of G over a 2-ended
group, finishing the proof if such splittings do not exist. Swarup [136] finished the proof in
the general case by showing how to continue refining these splittings (in the presence of cut
points in dG) until the full JSJ decomposition is obtained, at which point a contradiction
arises with any further splitting.

2.12.3. Thurston’s compactness theorem
With the machinery of R-trees one can give a quick proof of the following theorem.

Theorem 2.15 ([139]). Let M be a compact aspherical 3-manifold whose fundamental group
does not split over a cyclic group. Then the space of hyperbolic structures H(M) on M is
compact.

The space H(M) is the space of discrete and faithful representations of G = 71 (M)
into the orientation isometry group PSL,(€) of hyperbolic 3-space H?>, up to conjugacy
(it takes some work to see that the quotient of H? by such a group is homeomorphic to
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the interior of M). Indeed, to rule out Case 2 above, one shows that the limiting action
on an R-tree is stable and has abelian arc stabilizers (which follows from discreteness and
faithfulness).

3. MAPPING CLASS GROUPS

A fundamental shift in the subject occurred after the work of Masur and Minsky
[95,96] on mapping class groups, the work that set the foundations for an eventual under-
standing of the large scale geometry of these groups. Mapping class groups are not hyperbolic
(except for some sporadic surfaces) but naturally act on hyperbolic spaces.

We start by recalling some definitions. Let S be an orientable surface of finite type,
i.e., one obtained from a closed orientable surface by removing finitely many points (called
punctures). The group Homeo (S) of orientation preserving homeomorphisms of S has
the natural compact-open topology which makes it locally path-connected, and the mapping
class group (or the Teichmiiller modular group) Mod(S) is the discrete group of (path) com-
ponents of Homeo (.5). Classically, this group has been studied since the early 20th century.
A very nice introduction to the subject is the book [62], and we will freely use the standard
concepts. For example, the subgroup PMod(.S) of “pure” mapping classes (those that fix the
punctures) is generated by finitely many Dehn twists and the group will not be hyperbolic if
S is big enough to contain two essential (not bounding a disk or a punctured disk) nonparallel
(not cobounding an annulus) disjoint simple closed curves.

To the surface S Harvey [83] associates a simplicial complex € = €(S), called the
curve complex of S. A vertex is an isotopy class of essential simple closed curves. A col-
lection of distinct vertices spans a simplex if each pair can be represented by curves that
intersect minimally (most of the time this means “disjointly,” but in a torus punctured at
most once it means “once” and in a four times punctured sphere it means “twice”). For the
purposes of this discussion, we restrict to the 1-skeleton (called the curve graph), which we
equip with the length metric with all edges of length 1. The group Mod(S) acts naturally
on €(S). For some very small surfaces, like a 3 times punctured sphere, the curve complex
is empty, but otherwise it is infinite, and even locally infinite, a big contrast with Cayley
graphs of hyperbolic groups. In a similar way, one can define the arc complex of a surface
with punctures.

Theorem 3.1 ([951). €(S) is hyperbolic. An element of Mod(S) acts loxodromically if and
only if it is pseudo-Anosov.

Here are some ideas in the original proof, which uses Teichmiiller theory. Let T =
7 (S) be the Teichmiiller space of S, i.e., the space of all (marked) hyperbolic structures
on S. There is a natural coarse map 7 : 7 — € that to a hyperbolic metric on S assigns
(the isotopy class of) a shortest simple closed geodesic. Any two points in 7~ are joined by a
unique Teichmiiller geodesic, and their images under 7 form a family of coarse paths in €
satisfying (and this needs proof):
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¢ any two points in € are connected by some such path,
¢ the family is closed under taking subpaths,

e any two paths in the collection starting at nearby points are contained in each
other’s uniform Hausdorff neighborhood (i.e., they fellow travel), and

* triangles formed by these paths are uniformly thin.

Thus the collection behaves like the collection of geodesics in a hyperbolic space.
Remarkably, the existence of such a collection of paths implies that the space is hyperbolic
and the paths are (reparametrized) quasigeodesics with uniform constants. See [97], which
proves that arc complexes are hyperbolic, and [42].

Since the original proof of hyperbolicity of €(S), there have been others, the sim-
plest being [84], not using Teichmiiller theory at all but constructing a family of paths in
€(S) directly using surgeries on curves. Perhaps surprisingly, the more recent proofs also
show that curve graphs are uniformly hyperbolic, i.e., § can be taken independently of the
surface.

3.1. The boundary of the curve complex

If X is a hyperbolic space which is not proper, its boundary dX may not be compact.
For example, the boundary of the wedge of countably many rays joined at the initial point
is a discrete countable set, and the boundary of a tree all of whose vertices have countable
valence is homeomorphic to the irrationals.

In [9e] E. Klarreich identified the boundary d€ of the curve complex as a proper
quotient of a subspace of Thurston’s boundary of Teichmiiller space 7. This description
serves as a model for boundaries of other hyperbolic complexes.

3.2. WPD, acylindrically hyperbolic groups, quasimorphisms
In the absence of properness of the action, one needs some kind of a substitute. The
property WPD (for “weak proper discontinuity’’) was introduced in [32].

Definition 3.2. Suppose a group G acts by isometries on a hyperbolic space X. A loxo-
dromic element g € G is WPD if for every x € X and C > 0 there is N > 0 such that the
set

{heGld(x, h(x) <C.d(g"(x), hgV(x) <C)

is finite. The action of G on X is WPD if G is not virtually cyclic and every loxodromic
element is WPD.

The WPD condition says that the collection of translates of an axis (or an orbit) of
a loxodromic element is discrete: any two translates are either parallel or else they are in a
bounded Hausdorft neighborhood of each other only along a bounded length interval.
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Theorem 3.3 ([32]). The action of Mod(S) on €(S) is WPD. If a nonvirtually cyclic group
acts isometrically on a hyperbolic space with a WPD element then the space Q~H(G) of
(reduced) quasimorphisms on G is infinite-dimensional.

A quasimorphism is a function f : G — R such that
sup | f(ab) — f(a) — f(b)| < oc.
a,beG

Denote by QH(G) the vector space of all quasimorphisms on G and note the vector subspaces
Hom(G, R) of homomorphisms G — R and B(G) of bounded functions on G. Then the
space aﬁ(G) is defined as the quotient

QH(G) = QH(G)/(Hom(G,R) + B(G))

and it can also be identified with the kernel of the natural homomorphism H §(G§ R) —
H?(G;R) from bounded cohomology of G. For more on bounded cohomology, see [49].

The basic method for showing éﬁ(G) is infinite-dimensional is due to Brooks [47]
in the case of free groups. Fix a free group F with a basis a1, a,, ... Let w be any cyclically
reduced word in the basis. Define f,, : F — Z C R as f,(x) = Cy(x) — Cypy-1(x), where
Cy (x) is the number of occurrences of w as a subword of x, written as a reduced word. That
Jfw is a quasimorphism can be seen by considering the tripod in the Cayley tree of F spanned
by 1,a, and ab, and marking all occurrences of w*! along it. All such occurrences that do
not contain the central vertex will be counted twice, with opposite signs, in the expression
f(ab) — f(a) — f(b), and, of course, the number occurrences that do contain the central
vertex is uniformly bounded. With a bit more work, one can show that for a suitable choice of
w;’s the quasimorphisms f,,, will yield linearly independent elements of ()ﬁ(F ). The proof
of the second half of Theorem 3.3 is a coarse version of this method, where w is replaced by
a long segment along an axis of a WPD element, and the discreteness of the set of translates
guarantees that the counting function is finite.

A quick application is the following statement, suggesting that pseudo-Anosov ele-
ments of Mod(S) are “generic.”

Corollary 3.4. Fix a finite generating set and the corresponding word metric on Mod(S).
For any R > 0, there exists M > 0 such that every ball of radius M contains a ball of radius
R that consist entirely of pseudo-Anosov mapping classes.

This follows quickly from the feature of the quasimorphisms on Mod(S) constructed
above that they are uniformly bounded on all elements of Mod(S) which are not pseudo-
Anosov.

Bowditch noticed that the action of Mod(S) on €(S) satisfies a property stronger
than WPD.

Definition 3.5. An isometric action of G on a hyperbolic space X is acylindrical if for all
r > 0 there exist R, N > 0 so that whenever a, b € X with d(a, b) > R, then there are at
most N elements 2 of G such that d(a, h(a)) < r and d(b,h(b)) <r.
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Thus acylindricity gives control in all directions, not only along axes of loxodromic
elements.

Theorem 3.6 ([41]). The action of Mod(S) on €(S) is acylindrical.

These results motivated Denis Osin to propose acylindrically hyperbolic groups as a
generalization of hyperbolic groups. A group is acylindrically hyperbolic if it is not virtually
cyclic and admits an acylindrical action on a hyperbolic space with unbounded orbits. This
class contains many groups of interest (e.g., mapping class groups and Out(F;)) and many
constructions on hyperbolic groups carry over to this larger class, e.g., small cancelation
theory, or quasimorphisms indicated above; see [113,115].

3.3. Subsurface projections

The main drawback of acylindrically hyperbolic groups is that in general one does
not have access to elements that do not act loxodromically. In the case of mapping class
groups, this problem is resolved through subsurface projections of Masur and Minsky [95,96].

Let S be a surface as before and X C S a connected r;-injective subsurface which
is closed as a subset. Let « be a simple closed curve in S which cannot be homotoped in the
complement of X and which is in minimal position with respect to dX . Then the intersection
a N X consists of finitely many disjoint arcs (or just « if @ C X). For each such arc J,
consider one or two curves obtained as follows. If the endpoints of J are contained in the
same boundary component b of X, there are two ways of closing up J to a closed curve by
adding an arc in b; take both of these curves. If the endpoints of J are on distinct boundary
components b, b’ then form a curve by taking two parallel copies of J and connect them by
adding “long” arcs in b and b’. It is not hard to see that taking the collection of all these curves
for all arcs J produces a uniformly bounded set mx (o) C €(X) (we collapse all boundary
components of X to punctures). This construction makes sense whenever € (X) is defined
(so notably a pair of pants is excluded). It also makes sense when X is an annulus, in which
case the curve complex is formed by arcs joining the boundary components, but we will not
describe this case in detail. If « is disjoint from X then 7y (o) is not defined and we set it to
be empty.

Now fix a finite collection of curves @ = {a1,...,a,}in S that “fill” the surface, i.e.,
every (essential) curve intersects at least one of them. By the classical fact that the distance
in the curve complex is bounded by a function of the intersection number, if 7y (¢;) and
mx (a;) are both defined then their union has uniformly bounded diameter (with the bound
depending on the intersection number between «; and «;). We then define

nx (@) = Uﬂx(ai)~

This is always a nonempty, uniformly bounded subset of € (X).

The following is the fundamental result of Masur and Minsky, expressing (coarsely)
the word metric in Mod(S) in terms of subsurface projections. For K > 0 and x > 0, define
{{x}}k as0if x < K and as x if x > K.
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Theorem 3.7 (The distance formula, [96]). For all sufficiently large K (depending on &) and
Jorall g,h € Mod(S), we have

d(g.h) = > {{dx (g@). h@)}} ¢

X

The left-hand side is the distance in the word metric. The summation is over all
(isotopy classes of) connected, 71 -injective subsurfaces X with €(X) # @, and the displayed
summand is the diameter of the set x (g(&)) U mx (2(c)). The symbol < means that there is
a linear function (depending on K and the finite generating set of Mod(S)) f(x) = Ax + B
such that the left-hand side is bounded by the f-value of the right-hand side, and vice versa.
In particular, only finitely many terms are > K.

The distance formula is a powerful tool in the study of large-scale geometry of map-
ping class groups. It is used in an essential way in the following remarkable theorem, estab-
lishing quasiisometric rigidity of mapping class groups. To state the theorem, let Mod*(S)
denote the extended mapping class group, i.e., allowing orientation-reversing homeomor-
phisms (this is an index 2 extension of Mod(S)). If G is a finitely generated group with
a word metric, denote by QI(G) the group of quasiisometries G — G with the equiva-
lence relation fi ~ f2 if sup, d(f1(g), f2(g)) < oco. There is a natural homomorphism
G — QI(G) sending g to the left translation by g.

Theorem 3.8 ([10,79]). Let S be a surface of finite type. Except for a small number of spo-
radic surfaces, the natural homomorphism Mod* (S) — QI(Mod* (S)) is an isomorphism.
In particular, if G is any group quasiisometric to Mod(S), then there is a homomorphism
G — Mod*(S) with finite kernel and finite index image.

4. PROJECTION COMPLEXES
It is tempting to view the distance formula as saying that the coarse map

Mod(S) — [Jex)
X

defined by g — mx(g(@)) is a quasiisometric embedding, where we equip the right-hand
side with the £;-metric. The trouble is that this is not really a metric, and “cutting oft” at K
in each coordinate would not satisfy the triangle inequality. Up to modifying each coordinate
a bounded amount, the image of this map was identified in [7, 16]. The main restriction on
the image is the following inequality.

Theorem 4.1 (Behrstock inequality, [7]). There is a 8 > 0 such that the following holds.
Suppose X,Y C S are two subsurfaces such that the boundary of each intersects the other.
Then at least one of dx (3Y, &) and dy (0X, &) is < 6.

There is a simple proof of the Behrstock inequality, due to Chris Leininger, see
[94]. If we focus on the two coordinates €(X) x €(Y), the inequality says that the image is
contained in a Hausdorff neighborhood of the “wedge” of €(X) x {y} U {x} x €(Y) where
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x =y (0Y)and y = 7y (0X). This suggests taking wedges instead of products for the right-
hand side in order to fix the metrizability problem, and leads to the following construction
that can be axiomatized.

Let ¥ be a collection of metric spaces (technically we allow the distance to be infi-
nite, for example, we might have disconnected graphs with the path metric). Suppose that
for distinct X,Y € Y we are given asubset nx (Y) C X.If Z € ¥, Z # X, we define

dx(Y,Z) = diam(nX(Y) U my (Z))
We will assume that the following axioms hold for some fixed 6 > 0:
(P1) dx(Y.Y) <,
(P2) ifdx(Y,Z) > O thendy(X,Z) <6, and

(P3) for X # Z, the set
{Y €Y |dy(X.Z) > 6}

is finite.
There are many natural situations where these axioms hold.

Examples 4.2. (1) Let T be a simplicial tree and ¥ a collection of pairwise disjoint
simplicial subtrees. The projection wx (Y) is the point of X nearest to Y. The
axioms hold with 8 = 0. See Figure 3.

A ‘ 74(B)=74(C) ng(A)=nB(C)‘ B
— —

e (A) e (B)

FIGURE 3
The situation of Example 4.2(1), d¢ (A, B) > 0 while d4(B,C) = dp(A,C) = 0.

(2) Let S be aclosed hyperbolic surface and y an immersed closed geodesic which
is not a multiple. In the universal cover S = H? consider the set ¥ of all lifts
of y, and define projections as nearest point projections. A similar construction
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can be performed with a group acting on a hyperbolic space and a maximal
virtually cyclic subgroup that contains a WPD element.

(3) Let.S be a complete hyperbolic surface of finite area and a cusp. In the universal

cover S = H?2, consider the set ¥ of all lifts of a fixed horocyclic curve in the
cusp (with either the intrinsic or the induced metric). Again the projection is the
nearest point projection. A similar construction can be performed with relatively
hyperbolic groups.

(4) Let G be a group acting on a simplicial hyperbolic graph X and let H be the

stabilizer of a vertex v € X. Assume that H acts simply transitively on the edges
incident to v, and that the metric on the link Lk(v, X) (which can be identified
with H') induced by the path metric on X ~ {v} is proper (finite radius balls con-
tain finitely many points; here we allow distances to be infinite). Let ¥ be the
collection of links of vertices in the orbit of v with this proper metric on each.
If u, w are two distinct vertices in the orbit of v the projection of Lk(u, X) to
Lk(w, X) is the set of points in Lk(w, X') that belong to a geodesic between u
and w. If (G, H) admit such an action, H is said to be hyperbolically embed-
ded in G; see [55]. For example, parabolic subgroups of hyperbolic groups, or
maximal virtually cyclic subgroups containing a WPD element as in (2) are
hyperbolically embedded, as can be seen by building the projection complex
below.

(5) Let S be an orientable surface of finite type and let ¥ be a collection of isotopy

classes of mq-injective subsurfaces where subsurface projections are defined,
and assume that if X,Y € ¥ and X # Y then 0X is not disjoint from Y (up to
isotopy). Define ny (X) = my (0X).

The construction of a projection complex & (¥) (and the blow-up version €(¥)) is

kind of a converse to Example 4.2(2) above, where one tries to “reconstruct” the ambient

space from the projection data (though usually one gets a different ambient space).

Theorem 4.3 ([19], for a simpler construction see [22]). Suppose the projection data

(y, ﬂx(Y), 9)

satisfy (P1)—(P3). There is a metric space €(Y) containing metric spaces in ¥ as pairwise

disjoint isometrically embedded subspaces and so that wx (Y') agrees, up to a bounded error,

with the nearest point projection of Y to X within €(¥). Moreover,
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Ifeach Y € ¥ is §-hyperbolic for some § > 0 then €(Y) is hyperbolic.

Ifeach Y € Y is quasiisometric to a tree (a “quasitree”) with fixed QI constants,
then €(¥) is also a quasitree.

If the collection ¥ consists of finitely many isometry types of metric spaces and

they all have asymptotic dimension < n then asdim€(¥) <n + 1.
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e The space P (Y) obtained from € (YY) by collapsing all embedded copies of spaces
in Y is a quasitree.

* If a group G acts by isometries on | ly.y Y preserving the projections (i.e.,
g(mx(Z) = mex)(g(2)) for all g € G) then G acts by isometries on €(¥Y)
extending the action on | ly .y Y, and it also acts isometrically on P (¥).

We briefly outline the construction. As indicated above, the idea is to start with the
disjoint union of all Y € ¥ and then for certain pairs (X, Z) add edges joining points in
nx (Z) to points in 7z (X).

Step 1 is to promote (P2) to a stronger property (P2++):

(P2++) If dy (X, Z) > 6 then 7y (X) = 7y (Z).

This can be done by modifying the projection 7y (Y) by a bounded amount and
replacing 6 by a larger constant. This modification preserves group equivariance.

In step 2, assuming (P1), (P2++), and (P3), one chooses a constant K > 26 and posits
that X and Z are connected by edges as above provided dy (X, Z) < K forall Y # X, Z.
The key property that makes the proof of Theorem 4.3 possible is that the set

(XyU{Y | dy(X,Z) > K} U{Z)}

is finite (by (P3)) and is naturally linearly ordered giving a path from X to Z, called a stan-
dard path, in Pk (Y). These standard paths are quasigeodesics and behave very nicely. The
construction depends on the choice of the constant K: when K is enlarged, there will be
more edges attached.

We mention a few applications of this construction to mapping class groups.

Theorem 4.4 ([19]). asdim(Mod(S)) < oo.

The basic idea is to replace the infinite product of curve complexes by a smaller
space. The collection of all subsurfaces ¥ does not satisfy the assumptions of Example 4.2(5)
above since subsurfaces can be disjoint or nested. However, one shows that there is a way
to write ¥ equivariantly as a finite disjoint union LY; so that each collection Y; satisfies
Example 4.2(5). Thus one gets the spaces € (¥Y;). These are all hyperbolic, and crucially, have
finite asymptotic dimension by Theorem 4.3 and the theorem of Bell-Fujiwara [11] that curve
complexes have finite asymptotic dimension. Then we have a quasiisometric embedding

Mod(S) — [ [e®:)
1
which finishes the proof since passing to finite products and subspaces preserves finiteness
of asymptotic dimension.

There is quite a bit of inefficiency when we take the product of the blown-up projec-
tion complexes over the families ¥;. There is a more involved system of axioms that keeps
track of pairs of surfaces that are disjoint or nested leading to the notion of a hierarchically
hyperbolic group, due to J. Behrstock, M. Hagen, and A. Sisto. For example, in [8] they
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derive a bound on asdim(Mod(S)), using [18], which is quadratic in the complexity of the
surface. There are other applications of this theory, for example, in [9] they show how to
understand quasiflats in mapping class groups and how to approximate a “hull” of a finite
set by a CAT(0) cube complex.

Theorem 4.5 ([21]). There is a classification, in terms of the Nielsen—Thurston normal form,
of those elements g of Mod(S) that have stable commutator length scl(g) = 0.

Recall that for g € [G, G] cl(g) is the smallest k such that g can be written as a
product of k commutators, and scl(g) = lim,, Cl(nL"). By Bavard duality (see [49]), scl(g) > 0
is equivalent to having a quasimorphism G — R which is unbounded on the powers of g.
Projection complexes are used to construct actions of finite index subgroups of Mod(S)
on hyperbolic spaces with a power of a given element acting loxodromically, and then
the Brooks method can be used to construct such quasimorphisms. It is worth stating this
fact:

Theorem 4.6 ([21]). Let S be a finite type surface. There is a torsion-free finite index sub-
group G < Mod(S) such that for every element g € G of infinite order there an action of G
on a hyperbolic space such that g is loxodromic.

For example, this applies to (powers of) Dehn twists. By contrast, a theorem of
Bridson [43] says that whenever Mod(S) (with S of genus > 3) acts on a CAT(0) space,
Dehn twists have translation length 0.

Projection complexes are useful more generally for constructing quasicocycles on
groups G with coefficients in orthogonal representations on strictly convex Banach spaces
(such as [?(G) for 1 < p < 00); see [26].

Theorem 4.7 (Balasubramanya [2]). If a group G acts on a hyperbolic space with a WPD
element, then it admits a cobounded acylindrical action on a quasitree.

Another proof of Balasubramanya’s theorem is given in [22]. The quasitree is the
projection complex applied to Example 4.2(2) and acylindricity is proved using the geometry
of standard paths.

F. Dahmani, V. Guirardel, and D. Osin solved a long standing open problem when
they proved the following.

Theorem 4.8 ([55]). Let ¢ € Mod(S) be a pseudo-Anosov mapping class. Then for a suitable
power ¢" with n > 0 the subgroup normally generated by ¢" is free.

They derive this theorem using the method of rotating families.

Theorem 4.9 ([55]). For every § > 0 there is R > 0 such that the following holds. Let X be
a §-hyperbolic space and G a group of isometries of X. Let C C X be a G-invariant set
which is R-separated (meaning that d(c,c’) > R if c,c’ € C are distinct). Suppose for every
¢ € C we are given a subgroup G, of the stabilizer Stabg (c) such that
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(i)  Gg)=8Gcg ' forc e Cand g € G, and

(i) ifg € G ~{1},¢' € C and ¢’ # c then every geodesic from ¢’ to g(c’) passes
through c.

Then the subgroup of G generated by U.ec G is the free product of a subcollection of the
SJamily {G¢}cec.

To prove Theorem 4.8, they apply this theorem to the space obtained from the curve
complex €(S) by equivariantly coning off an orbit of the elementary closure EC(¢). Pre-
tending that this orbit is in an isometrically embedded line, one would attach the universal
cover of a disk of large radius in H? punctured at the center, and then completed to add the
cone point back in. The set of these cone points is the set C from the theorem, and G is the
cyclic group generated by (a conjugate of) a suitable power ¢".

More recently, M. Clay, J. Mangahas, and D. Margalit proved a version of The-
orem 4.9 that applies to projection complexes. Rotating families are replaced by spinning

Sfamilies.

Theorem 4.10 ([51]). For every 0 and K, there is L so that the following holds. Suppose a
group G acts on the projection data and on the associated projection complex P = Pk (Y).
Suppose for every vertex v € P we are given a subgroup G, of the stabilizer Stabg (v) such
that

) Gew) = 2Gog™! for any vertex v and g € G, and
(i) if v, v’ are distinct vertices and g € G, ~ {1} then d,(v', g(v")) > L.

Then the subgroup of G generated by \ J,, Gy is the free product of a subcollection of the
Jamily {Gy}yep©-

They derive Theorem 4.8 directly from Theorem 4.10 using the projection complex
as in Example 4.2(2). They also prove several statements about normal closures of powers
of other kinds of elements, or collections of elements, in Mod(S). One extreme behavior is
that the normal closure is free, another that it is the whole Mod(S), but surprisingly there
are examples when the normal closure turns out to be a certain kind of (infinitely generated)
right angled Artin groups.

In [24] the two theorems above are revisited, and in particular the paper shows how
to derive Theorem 4.9 from Theorem 4.10.

Here are two more applications of projection complexes to mapping class groups,
though we will not comment on the proofs.

Theorem 4.11 ([4]). Mapping class groups satisfy the Farrell-Jones conjecture.

Theorem 4.12 ([60]). Mapping class groups are semihyperbolic.

699 GROUPS ACTING ON HYPERBOLIC SPACES—A SURVEY



This means that one can equivariantly choose uniform quasigeodesics connecting
any pair of points in Mod(.S) so that they fellow-travel, i.e., if the endpoints are at distance
< 1 then each is in the other’s uniform Hausdorff neighborhood.

5. GROUP Out(F,)

Let F, be the free group of rank n > 2, Aut(F},) its automorphism group, and
Out(F,) = Aut(F,)/ F, the outer automorphism group of F,, obtained by quotienting out
the inner automorphisms. This group has been studied for over a century, see Nielsen’s paper
[1e9] where he proves that Out(F,,) is generated by n + 1 involutions. A big impediment in
the study of Out(F,), and free groups in general, was the tendency to think of elements of
free groups as words in a basis. A much more flexible approach is to think of a free group as
the fundamental group of a graph, which is not necessarily a rose R, (a wedge of n circles).
For example, the proof that subgroups of free groups are free is essentially trivial using cov-
ering spaces and general graphs, while the more algebraic proof is much less transparent. In
[134] J. Stallings introduced the operation of folding graphs and used it to show that many
standard algorithmic problems about free groups have easy solutions.

5.1. Outer space

Given this philosophy, the definition of Culler—Vogtmann’s Outer space CV,, should
seem very natural. Fix the rose R,. A pointin CV,, is represented by a homotopy equivalence
h: R, — T, called marking, where T" is a finite graph with all vertices of valence > 2
equipped with a metric of volume 1, i.e., an assignment of positive numbers to its edges that
add to 1. Two such markings & : R, — I" and &' : R, — T"/ represent the same point in CV,,
if there is an isometry ¢ : I' — T such that ¢/ is homotopic to /’. Formally, the definition
is analogous to the definition of Teichmiiller space, where metric graphs are replaced by
hyperbolic surfaces. There are many useful analogies between mapping class groups and
Out(Fy,), perhaps stemming from the classical theorem of Dehn—Nielsen—Baer (see [62]) that
when G is the fundamental group of a closed orientable surface S then Out(G) = Mod® (S).
While Teichmiiller space is diffeomorphic to Euclidean space, Outer space is a contractible
polyhedron and the study of Out(F},) is decidedly more combinatorial compared to the study
of mapping class groups. The group Out(F},) acts naturally on CV,, by changing the marking.
The action is proper. For more on Outer space and the consequences to the structure of
Out(Fy,), see the original paper [53], as well as the excellent survey [141], and also [15].

5.2. The boundary of Outer space

By taking universal covers, another way to think about a point # : R,, — I" in CV,,
is as a free action of F; on a simplicial metric tree. The construction in Section 2.10 then
yields a compactification of CV,, with the points in the ideal boundary d CV,, represented
by actions of F,, on R-trees (which are either nonsimplicial or non-free). This construction
was carried out in [52]. Exactly which trees arise in d CV,, was identified in [27,85].

700 M. BESTVINA



5.3. Lipschitz metric and train-track maps
There is a natural notion of a Lipschitz distance between two points i; : R, — Iy,
i = 1,2. Itis defined by
d(Fl, Fz) = IOg)L

where A > 1 is the smallest possible Lipschitz constant of all maps f : 'y — I, that com-
mute with markings, i.e., &, f is homotopic to &; (and I'; are viewed as geodesic metric
spaces). This “metric” is not symmetric, but satisfies the triangle inequality d(I'y, I'3) <
d(Ty,T5) + d(T,T3), and d(T, ') > 0 with equality only for I' = T”’. This metric has
interesting properties and displays a mixture of behaviors of the well-studied metrics on
Teichmiiller space (Teichmiiller, Weil-Petersson, and Thurston metrics). It can be used in
the Out(F;,) setting in a way similar to the Bers’ proof of the Nielsen—Thurston classifica-
tion of mapping classes (see [62]) to give a proof of the following train-track theorem; see
[17].

Theorem 5.1 ([35]). Every irreducible automorphism ¢ € Out(Fy) can be represented by a
train-track map f : T' — T for some I € CV,,.

A marking gives an identification between 71 (I") and F;, and f : ' — T “repre-
sents” ¢ if the induced endomorphism on 771 (I") is ¢p. We say that ¢ is irreducible if it cannot
be represented by some f : ' — T that leaves a proper subgraph with nontrivial 7r; invari-
ant. The map f is a train-track map if all positive powers of f are locally injective on all
edges of I'. It is easy to control the growth of lengths of loops under iteration by train-track
maps, which makes them important in the study of the dynamics of an automorphism. More
generally, when ¢ is not irreducible, there are relative train-track representatives.

The Lipschitz metric admits geodesic paths, called folding paths, which are induced,
in the spirit of Stallings, by identifying segments of the same length and issuing from the
same vertex. For more on this, see [17].

5.4. Hyperbolic complexes
By analogy with the arc and curve complexes, there are several complexes where
Out(Fy) acts.

5.4.1. The free splitting complex FS,,

This one is analogous to the arc complex. A k-simplex is a (k + 1)-edge free split-
ting of F, i.e., it is a minimal action of F}, on a simplicial tree with vertices of valence > 2,
with trivial edge stabilizers and with (k + 1) orbits of edges. Passing to a face is induced
by equivariantly collapsing an orbit of edges. Outer space CV,, is naturally a subset of FS,,,
which can be viewed as a “simplicial completion” of CV,,.

5.4.2. The cyclic splitting complex FZ,

This is defined the same way, except that the edge stabilizers can be cyclic sub-
groups. It is analogous to the curve complex.
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5.4.3. The free factor complex FF,

This one is different from FZ,, but can also be viewed as an analog of the curve com-
plex. A vertex of FF, is a proper free factor A < F,, i.e., a subgroup such that
F, = A x B for some A # 1 # B, defined up to conjugation. A k-simplex is a k-tuple
of distinct conjugacy classes of proper free factors that are nested after suitable conjugation.

There are natural coarse equivariant maps

CV, — FS, — FZ, — FF,.

For example, FS,, — FF, sends a free splitting to a nontrivial vertex group (or if they are all
trivial, to a free factor represented by a subgraph of the quotient graph).

Now, it turns out that all three of these complexes are hyperbolic, and there are
several others that this survey is not mentioning. The first hyperbolic Out(F,)-complex was
constructed in [29], though it is not canonical. The hyperbolicity of FF,, was established in [3e]
along the lines of the Masur—Minsky’s argument for the curve complex, by projecting folding
paths from CV,, to FF,,. A novel argument by Handel-Mosher [8e] established hyperbolicity
of FS,,, by considering folding paths directly in FS,. Kapovich-Rafi [88] found a general
criterion that a Lipschitz map X — Y has to satisfy in order for the hyperbolicity of X to
imply the hyperbolicity of Y. Essentially, Lipschitz images of thin triangles are thin triangles.
The maps FS,, — FZ,, — FF,, satisfy the Kapovich—Rafi criterion, so the hyperbolicity of
FS,, implies the hyperbolicity of the other two. Loxodromic elements in FF,, are precisely the
fully irreducible automorphisms (those whose positive powers are irreducible) and they are
all WPD (in FS,, there are more loxodromic elements and they are not all WPD). Thus the
space of quasimorphisms on Out(F},) is infinite-dimensional and Out(F},) is acylindrically
hyperbolic. Handel and Mosher [81, 82] extended this and proved the H. bz-alternative: any
subgroup of Out(F;) which is not virtually abelian has an infinite-dimensional space of
quasimorphisms. This recovers the theorem of Bridson and Wade [45] that no higher rank
lattice embeds as a subgroup of Out(F},). The proof is much more involved than the H bz_
alternative for mapping class groups [32].

The boundary of FF,, was identified with a proper quotient of a subspace of d CV,,
in [39] and in [77].

5.5. Subfactor projections

By analogy with the Masur-Minsky subsurface projections, there are subfactor
projections, see [31,137]. Let A, B be two proper free factors in F,,. Our goal is to define
w4(B) € FS(A), the projection of B to the free splitting complex of A. Choose I' € CV,, so
that B is represented by a subgraph I'p of I'. Then represent A by an immersion 'y — T'.
Thus 'y determines a simplex in Outer space for A, and can be projected to FS(A) (or
FF(A)). It takes some work to show that coarsely this projection does not depend on the
choice of T, at least when A and B are sufficiently far apart in FF,. Moreover, the set ¥
of all free factors can be equivariantly and finitely partitioned into LI¥; so that projection is
defined within each ¥;, and this projection satisfies the projection axioms. One then gets a
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map

Out(F,) — [ e

in the same way as for mapping class groups (see the discussion after Theorem 4.4). However,
here the map is not a quasiisometric embedding. The main issue is that there is no analog
of annulus projections: when A has rank 1, the corresponding complex FS(A) is a single
point. For example, the orbits on the right-hand side under the powers of any polynomially
growing automorphism are bounded. For more on this, see [142].

5.6. Questions

The following is the key question, if one hopes to understand Out( F;,) using hyper-
bolic methods. The other questions reiterate the state of affairs that the large scale geometry
of Out(Fy) is lagging behind the one of mapping class groups.

(1) Given ¢ € Out(F,) of infinite order, is there a finite index subgroup G <
Out(F,) and an isometric action of G on a hyperbolic space so that a positive
power of ¢ that belongs to G acts loxodromically?

This is true for mapping class groups (see Theorem 4.6), and it is also true for auto-
morphisms ¢ that grow exponentially.

(2) Do any of hyperbolic Out(F},)-complexes admit tight (quasi-)geodesics?

These were defined for curve complexes by Masur and Minsky, and a very strong
finiteness property was established by Bowditch [41]. Thus the question is asking for an
equivariant collection of uniform quasigeodesics so that any two are connected by at least
one, but only finitely many of these.

Bowditch used his strong finiteness of tight geodesics to show that translation
lengths in the curve complex are rational, and Bell-Fujiwara [11] used it to show that curve
complexes have finite asymptotic dimension.

(3) Do the hyperbolic Out(F,)-complexes FS,, FZ,, FF, have finite asymptotic
dimension? Are the translation lengths always rational? Does Out(F;) have
finite asymptotic dimension?

We remark that the Novikov conjecture is known for Out(F;,) [33].
The following seems out of reach with the present methods, although [36] is a
promising start:

(4) Does Out(F},) satisfy the Farrell-Jones conjecture?
(5) Does the local and global connectivity of d FF,, go to infinity as n — 0co?

By the work of Gabai [65], the answer is yes for the boundary of the curve complex.
Each 0 FF,, is finiteOdimensional [37], and [23] is a start. Of course, the same question can be
asked about the boundaries of FZ,, and FS,,.
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1. INTRODUCTION

Fix a prime number p. The last decade has witnessed multiple conceptual advances
in algebraic geometry over mixed characteristic rings (which, in this article, we take to mean
commutative rings that are p-adically complete). These advances have led to the resolution of
longstanding questions in different areas of mathematics where p-adic completions appear.
Moreover, entirely new and fascinating domains of inquiry have been uncovered. The goal of
this survey is to discuss some of these developments, especially in topics close to the author’s
expertise.

A highlight of the last decade of activity in the area has been its seat as an exchange
of ideas across different fields of mathematics. For instance, a central topic of this survey
is prismatic cohomology, which is a new cohomology theory for mixed characteristic rings
(Sections 2 and 3); its discovery was inspired in part by calculations in homotopy theory and
in part by developments in Galois representation theory (Remark 4.5). Prismatic cohomology
in turn played a prominent role in the proof of a mixed characteristic analog of the Kodaira
vanishing theorem (Theorem 5.7), which then helped develop the minimal model program
in the birational geometry of arithmetic threefolds (Theorem 5.10). In the reverse direction,
an important flatness lemma discovered in the solution [3] of a longstanding question in
commutative algebra facilitated, via prismatic cohomology again, the proof of an analog
of Bott’s vanishing theorem for algebraic K-theory (Theorem 4.8). The author hopes this
survey can convey some of the excitement surrounding this interplay of ideas.

We emphasize right away that the topics covered are chosen somewhat idiosyncrat-
ically, and we have not attempted to be comprehensive even in the topics we do cover; to
make partial amends, a number of references have been included to help the reader navigate
the subject. Moreover, the level of the exposition is uneven across sections; for instance, we
have taken a macroscopic view of topics that are reasonably well documented elsewhere, but
have gone into more detail and depth while covering very recent ideas that seem promising.

This survey is organized as follows. In Section 2, we discuss relative prismatic coho-
mology and related developments. The absolute version of this story, which is comparatively
new, is the subject of Section 3. We then present applications, covering algebraic K-theory in
Section 4 and commutative algebra and birational geometry in Section 5. We end in Section 6
with some relatively recent work on p-adic Riemann—Hilbert problems and their algebro-
geometric implications.

All rings that appear are assumed commutative unless otherwise specified.

2. PRISMS AND RELATIVE PRISMATIC COHOMOLOGY

In the last century, especially following the work of Grothendieck, cohomology the-
ories have emerged as extremely important tools in algebraic geometry and number theory:
they lie at the heart of some of the deepest theorems and conjectures in both subjects. For
example, classical Hodge theory, which studies the singular cohomology with real/complex
coefficients for complex varieties, is a central topic in modern algebraic geometry, with appli-
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cations throughout the subject and beyond. Likewise, p-adic Hodge theory, which studies
the p-adic cohomology of p-adic varieties, is an equally fundamental notion in arithmetic
geometry: it provides one of the best known tools for understanding Galois representations
of the absolute Galois group of Q. Moreover, unlike in the complex setting, there is a large
number of cohomology theories in the p-adic world: étale, de Rham, Hodge, crystalline, de
Rham—Witt, etc. In this section, we will report on work from the last few years dedicated
to finding an organizational framework to better understand p-adic cohomology theories in
p-adic arithmetic geometry, especially their relationships with each other.

Remark 2.1 (Why do derived objects appear repeatedly?). Before embarking on our jour-
ney, let us explain one reason derived notions (i.e., those with a homological/homotopical
flavor) often appear in recent work in the area and consequently also in our exposition.

In classical algebraic geometry, the fundamental objects are smooth algebraic vari-
eties over an algebraically closed field. Similarly, in mixed characteristic algebraic geometry,
the basic geometric objects are (p-adic formal') smooth schemes over the ring of integers
Oc of a complete algebraically closed nonarchimedean field C /Q,,. In particular, unlike the
classical setting, the rings of functions that appear in mixed characteristic algebraic geometry
are often not noetherian: indeed, the ring Q¢ is a nonnoetherian valuation ring as its value
group is divisible. Replacing O ¢ with a discrete valuation ring like Z,, while quite tempting
and important for applications, leads to arithmetic subtleties that one would like to avoid, at
least at first pass, in a purely geometric study. Even more exotic nonnoetherian rings are crit-
ical to several recent innovations in the area, such as perfectoid geometry [143,202], descent
techniques for extremely fine Grothendieck topologies such as the pro-étale, quasisyntomic,
v and arc topologies [36,38-40,205], the theory of §-rings [138], etc.

In the nonclassical situations described above, derived notions often have better sta-
bility properties than their classical counterparts. For instance, given a commutative ring R
with a finitely generated ideal I, the category of derived /-complete R-modules forms an
abelian subcategory (e.g., it is closed under kernels and cokernels) of the category of all
R-modules, unlike the subcategory of classically /-adically complete R-modules; more-
over, the assignment carrying R to the oo-category Dj_comp(R) of derived /-complete
R-complexes forms a stack for the flat topology (or even a suitably defined 7 -completely flat
topology), unlike the corresponding assignment at the triangulated category level. For such
reasons, the language of higher category theory and derived algebraic geometry [169-171,223,
224] has played an important role in the developments discussed in this paper.

The work described in this section began with the goal to enhance Fontaine’s per-
spective [93] on p-adic Hodge theory to work well with integral coefficients. A concrete goal
was to understand how the torsion in the Z,-étale cohomology of the geometric generic fiber
of a smooth projective scheme over a mixed characteristic discrete valuation ring relates
to the torsion in the crystalline cohomology of its special fiber; this question was already

1 A p-adic formal scheme is a formal scheme whose affine opens are given by formal spectra
of p-adically complete rings equipped with the p-adic topology.
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stressed by Grothendieck in his Algerian letter to Deligne in 1965 (see [6e] for a survey on
the status of this question 20 years ago, and Section 2 in [6e] for history). After initial attempts
[37,38] that worked well in important examples, a satisfactory theory was found via the notion
of a prism, recalled next. The definition relies on the notion of a §-ring, which is roughly a
commutative ring A equipped with a map ¢ : A — A lifting the Frobenius endomorphism
f + fP of A/p (interpreted in a derived sense when A has p-torsion); see [61,138]. The
importance of this notion in arithmetic geometry has long been stressed by Borger, see [57].

Definition 2.2 (Prisms, [41]). A prism is a pair (A, I), where A is a §-ring and / C A is an
invertible ideal such that A is derived (p, I )-complete and p € (I, ¢(I)). Write A := A/I.

In practice, we restrict to bounded prisms, i.e., those prisms (A, /) where the p-
power torsion in A is annihilated by p" for some n > 0; this restriction allows us to avoid
certain derived technicalities without sacrificing the key examples. Two important examples
are discussed next; see Remark 2.9 for another key example.

Example 2.3 (Crystalline prisms). If A is any p-complete p-torsion-free §-ring, then
(A, (p)) is a bounded prism. For instance, given a reduced F,-algebra R, we could take
A = W(R) to be the ring of p-typical Witt vectors of ring with its natural Frobenius lift.

Example 2.4 (Perfect prisms). A prism (A, I) is called perfect if the Frobenius map
¢ : A — A is an isomorphism; any such prism is bounded and the ring A is perfectoid
as in [37,1e1]. In fact, the construction (4, ) — A yields an equivalence of categories
between perfect prisms and perfectoid rings; thus, the notion of a prism may be viewed
as a “deperfection” of the notion of a perfectoid ring. An important example is the perfect
prism (A, I) corresponding to the perfectoid ring A = O¢, where C/ Q, is a complete and
algebraically closed extension; we call this a Fontaine prism, in homage to its discovery
[92, §5].

Given a bounded prism (A, 1) as well as an A-scheme X, the following key defini-
tion allows us to extract an A-linear cohomology theory for X.

Definition 2.5 (The relative prismatic site). Fix a bounded prism (A4, /) and a p-adic formal
A-scheme X. The relative prismatic site (X/ A)) is the category of all bounded prisms
(B, J) over (A, I) equipped with an A-map Spf(B/J) — X, topologized via the flat topol-
ogy; write (9A, IA’ and EA for the sheaves obtained by remembering B, J, and B/J,
respectively, so there is a natural p-action on Op and Op = Op /Iy . Write RT (X/A) :=
RT((X/ A\, Op) © @ for the resulting cohomology theory.

The main comparison theorems for RI’p (X /A) are informally summarized next:

Theorem 2.6 (Relative prismatic cohomology, [37,41]). Fix a bounded prism (A, I) and
let X be a smooth p-adic formal A-scheme. The relative prismatic cohomology theory
RTp (X/A) © ¢ recovers the standard integral p-adic cohomology theories for X /A with
their extra structures (e.g., étale, de Rham, Hodge, crystalline, de Rham—Witt) via a special-

ization procedure, thereby giving new relationships between them.
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For instance, if (A, I) is crystalline, Theorem 2.6 leads to a canonical Frobenius
descent of crystalline cohomology [17]; this descent was previously observed on cohomol-
ogy groups in [189,210]. On the other hand, the A;,-cohomology of [37] is recovered by
specializing to a Fontaine prism; we refer to the surveys [24, 183] for more precise assertions
(with pictures!) about the comparisons in this case. An early concrete application of the
latter was the following result relating étale and de Rham cohomology integrally; via classi-
cal comparisons, this gives a new technique to bound the p-torsion in singular cohomology
of complex algebraic varieties via the geometry of their mod p reductions.

Corollary 2.7 (Torsion inequality, [371). Let C/Q) be a complete and algebraically closed
field with residue field k (e.g., we may take C = C, = Q_p, sok = E). Let X/O¢ be a

proper smooth p-adic formal scheme. Then
dimg, H!,(Xc.Fp) < dimg Hix(Xyx) foralli > 0.

More generally, a similar inequality bounds the length of the torsion subgroup of
Hl,(Xc,Zp) in terms of that of erys(Xk). In particular, if the latter is torsion-free, so
is the former.

Since its discovery, the prismatic theory in [37, 41] has found several applications,
some of which are discussed below and elsewhere in this paper. Other results featuring this
theory include: Hodge theory of classifying spaces of reductive groups [28, 154], vanishing
theorems for the cohomology of the moduli space of curves with level structures [196], essen-
tial dimension calculations [89], Poincaré duality for Z/ p"-coefficients in rigid geometry
[232], calculation of the Z;,-cohomology of Drinfeld’s p-adic symmetric spaces [67], a fairly
optimal form of Dieudonné theory in mixed characteristic [8], better understanding of the
moduli stacks of Breuil-Kisin—Fargues modules [81], and several improvements to known
comparisons in integral p-adic Hodge theory [168,161,182].

Remark 2.8 (Rational comparison theorems). Specializing part of Theorem 2.6 to a Fon-
taine prism (A, I) gives a generalization of Fontaine’s crystalline comparison conjecture
Cerys to proper smooth formal schemes X / A; variants of both this result and its proof have
a long history in p-adic Hodge theory, including [15,5e, 68,83, 85,95, 187,226].

Remark 2.9 (g-de Rham cohomology, [41]). Given a smooth Z-algebra R equipped with
a choice of étale coordinates (which we call a framing and indicate by [J), one can define
a complex qQER,D) of Z[q — 1]-modules by g-deforming the differential of the de Rham
complex Q% Iz (see [12,204]); this complex strongly depends on the framing [J. Neverthe-
less, motivated by some local calculations from [37], Scholze had conjectured in [2e4] that
qQZR,EI) is independent of the framing [ up to canonical quasiisomorphism. This conjec-
ture was deduced from the existence of prismatic cohomology in [41], as explained next;
prior partial progress was made by Pridham [192], also using §-rings.

By a patching procedure, Scholze’s coordinate independence conjecture reduces
to its analog when all objects are p-completed. The latter follows from the existence of

. . . . pP_
prismatic cohomology relative to the g-de Rham prism (4, 1) := (Z,[q — 1], (qq_l1 )) where
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¢(q) = g”: given a formally smooth p-complete Z,-algebra R equipped with a framing (] as
before, the relative prismatic complex RI') (Spf(R ®z, A)/A) (which s visibly independent
of the framing [J) is naturally quasiisomorphic to the ¢g-dR complex qu R.0)

The preceding perspective on g-de Rham cohomology also yields a formalism for
more systematically discussing related notions such as, e.g., Gauss—Manin g-connections;
we refer to [64,107, 108, 184] for more on these and related developments.

Remark 2.10 (Perfections in mixed characteristic, [41]). The theory of perfectoid rings can
be regarded as a mixed characteristic analog of the theory of perfect F,-algebras, i.e., F)-
algebras where the Frobenius map is bijective. The utility of this analogy is enhanced by
Theorem 2.6: by attaching objects with Frobenius actions to rings in mixed characteristic,
this result yields a notion of “perfectoidization” for a large class of mixed characteristic rings.
Indeed, given any perfect prism (A4, I) and an A-algebra R, one can naturally construct a
“(derived) perfectoidization” R — Rperfq With excellent formal properties. For instance, if
R is integral over A, then R — Rperfa is in fact the universal map to a perfectoid ring. This
construction has several applications. For instance, [41] uses these to prove an optimal gener-
alization of the Faltings’ almost purity theorem (extending versions from [4,83,86,143,202]),
as well as the result that “Zariski closed = strongly Zariski closed” for affinoid perfectoid
spaces; the latter plays an important role in aspects of [9e]. The perfectoidization functor also
powers the construction of the p-adic Riemann—Hilbert functor in Section 6.

Remark 2.11 (A new perspective on de Rham—Witt complexes, [34]). The de Rham—Witt
complex of Bloch—Deligne—Illusie [47,134] is a fundamental object in characteristic p alge-
braic geometry with applications transcending algebra (e.g., [119]). Its construction tradi-
tionally relied on somewhat laborious calculations. The paper [34], inspired by structures on
relative prismatic cohomology, offered a new homological perspective on this object.

To explain this, we first recall the isogeny theorem for prismatic cohomology. In the
setup of Theorem 2.6, when X = Spf(R) is affine, one often writesAg/4 = RI (X/A),
regarded as an object of the derived category of A. There is then a natural quasiisomorphism

QR4 @ AR/a = LNiAR)A (Isog)
induced by the relative Frobenius map, where Ly is a variant of the Berthelot—-Ogus—De-
ligne décalage functor (see [37, §61); the isomorphism @ g, 4, which is a prismatic avatar of
the Berthelot—Ogus isogeny theorem [18], plays a critical organizational role in capturing the
additional structures onA g /4 (such as the Nygaard filtration).

The paper [34] shows that when (A, 1) is a perfect crystalline prism (e.g., (Zp, (p))),
one can reconstruct the de Rham—Witt complex W Q2% from the pair (Ag/4, ¢ r/4) by a pure
homological algebra construction dubbed “saturation.” Moreover, this construction has the
potential to offer a better behaved alternative to the de Rham complex for singular varieties
in characteristic p, analogous to the du Bois complex in characteristic 0; we refer to [135,188]
for more on these developments.

Remark 2.12 (Logarithmic analogs). The smoothness assumption on X in Theorem 2.6 is a
“good reduction” hypothesis. While adequate for several purposes, this is often too restrictive
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for studying the generic fiber: not every proper smooth scheme X, /C admits such a smooth
model X/O¢. A more natural assumption—one that is conjecturally always satisfied, up to
replacing models—would be a form of logarithmic smoothness of X/Oc¢ (e.g., semistabil-
ity) in the sense of log geometry [139]. Thus, one wants a version of [37,41] in the logarithmic
setting. This has been accomplished in [62,156,151]; it is also possible to approach this prob-
lem by reduction to the smooth case using the language of infinite root stacks, following
ideas of Olsson [198] (work in progress with Mathew).

Remark 2.13 (Nonabelian p-adic Hodge theory). Fix a bounded prism (4, /') and a smooth
p-adic formal A-scheme X. Motivated by the precise form of Theorem 2.6, define a pris-
matic F-crystal on (X/A) to be a vector bundle & on ((X/A)p, Op) equipped with a
Frobenius structure ¢g : ¢*& [i] ~& [i]; see Definition 3.2 for a more explicit descrip-
tion in a variant context. Prismatic F'-crystals provide a viable notion of “coefficients” in the
theory, somewhat analogous to the role played by harmonic bundles in complex nonabelian
Hodge theory [212,213]. In particular, given such an F-crystal (&, ¢g), the specialization
functors used in Theorem 2.6 yield a Z,-local system T'(&€) on the rigid generic fiber X,
when A is perfect, a vector bundle &gz with flat connection on X /Z, an F-crystal &y, on
X ®7 (4/ D)pert> and (under certain auxiliary lifting data) a Higgs bundle Epges on X /A.
The relationship realized by these functors is rather close and has been investigated by vari-
ous authors (such as [32,184,222]). When (A, /) is a Fontaine prism, this relationship is part
of the p-adic Simpson correspondence pioneered by Faltings [1,87,88]. On the other hand, if
(A, I) is a perfect crystalline prism, this relationship yields an alternative perspective on (at
least the local aspects of) the nonabelian Hodge theory of [189].

Remark 2.14 (Extension to the singular case via animation). For several applications
including most results discussed in this paper, it is important to extend the prismatic coho-
mology construction R — Ag/4 (see Remark 2.11) to possibly singular A-algebras R.
Directly imitating Definition 2.5 does not produce a computable or useable result. Instead,
inspired by the construction of the cotangent complex and derived de Rham cohomology
[132,133] as well as their utility in a wide variety of problems [14,19,20,26,111,136], one extends
the functorA _, 4 to arbitrary p-complete A-algebras by Quillen’s nonabelian derived functor
machinery [194] (dubbed animation by Clausen [63]) as reformulated in [169]. The resulting
complexA g/ 4 can be fairly efficiently controlled using the cotangent complex L 5 /4 thanks
to the animated Hodge—Tate comparison, which makes this extension quite useable.

3. ABSOLUTE PRISMATIC COHOMOLOGY

In Section 2, we fixed a base prism (A4, /) and discussed results about the rela-
tive prismatic cohomology of a smooth p-adic formal A-scheme X. In this section, we
describe the picture that arises if one does not fix a base prism (A4, I). This distinction is
analogous to that between geometric and absolute étale cohomology in arithmetic, or that
between singular cohomology and Deligne—Beilinson cohomology in Hodge theory. The
objects considered here are newer than those in Section 2; consequently, some results are
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surely not optimal, and we have tried to indicate some natural further directions in the expo-
sition.

3.1. Definition and key examples
To begin, let us recall the definition of the absolute prismatic site (obtained roughly
from Definition 2.5 by discarding (4, I)).

Definition 3.1 (The absolute prismatic site). Given a p-adic formal scheme X, its abso-
lute prismatic site X is the category of all bounded prisms (B, J) equipped with a map
Spf(B/J) — X, topologized using the flat topology; write O , Iy , and EA for the sheaves
obtained by remembering B, J, and B/ J, respectively. Write Ry (X) := RT'(Xp,0p) O ¢
and RI'Z(X ) == RT(Xp, 5A) for the resulting cohomology theories.

If there exists a perfect prism (A4, /) and a map X — Spf(A), the natural map
(X/A)p\ — X is an equivalence, so Theorem 2.6 describes Ry (X) in this case, e.g.,
RT) (Spf(A)) >~ A. Atthe other end, Spf(Z, ), is the opposite of the category of all bounded
prisms. As this category has no final object, the cohomology theory RT)p (Spf(Z,)) is poten-
tially interesting; in fact, we shall see in Section 4 that RTp (Spf(Z)p)) is closely related to
the p-completed algebraic K-theory of Z,.

In this section, we shall be interested in the following objects on X :

Definition 3.2 (Crystals). Fix a p-adic formal scheme X . A prismatic crystal (resp. Hodge—
Tate crystal) & of vector bundles on X is given by an assignment

(B,J) € X) — &(B) € Vectpg := {finite projective B-modules}
(resp. (B, J) € Xp — &(B) € Vectg)y)

that is compatible with base change in (B, J) € X . A prismatic F-crystal of vector bundles
on X is given by a prismatic crystal & with an isomorphism gg : *& [i] ~& [i]. Similarly,
one has analogous notions of crystals of perfect (or just (p, Iy )-complete) complexes.

As in the relative case (Remark 2.13), there are realization functors carrying a pris-
matic F'-crystal & on X to a Z,-local system 7(€) on the rigid generic fiber Xy, a vector
bundle &4z with flat connection on X, and an F'-crystal E.ys on X ®z, F,. The simplest
examples of such crystals are as follows:

Example 3.3 (Breuil-Kisin twists). Forany prism (B, J), one has a naturally defined invert-
ible B-module B{1} given heuristically by

B{l} =J®¢* ] Q@¢>*T Q---.

This B-module comes equipped with a natural isomorphism g1y : * B{1} ~ J~! ® B{1},
so the assignment (B, J) > (B{1}, pp(1}) gives a prismatic F-crystal (Op {1}, ¢@, {1}) on
Spf(Z,)p (and thus on Xy for any X); we refer to this F-crystal as the (first) Breuil-Kisin
twist. The étale realization of O {1} is identified with the usual Tate twist Z,(1).
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Example 3.4 (Gauss—Manin F-crystals). Fix a proper smooth map f : Y — X of
p-adic formal schemes. The formalism of relative prismatic cohomology yields an F-crystal
RO of perfect complexes on X) : its value on a prism (B, J) € X identifies with the rel-
ative prismatic complex RIp ((Y xx Spf(B/J))/B). Similarly, one obtains a Hodge-Tate
crystal RfxOp of perfect complexes on Xp . The formation of RfxOp (resp. Rf«Op)
is compatible with the aforementioned realization functors. Moreover, if ¥ = P! x X,
then the prismatic logarithm [32] yields a natural isomorphism 2 (R f; Op) = Op{—1} of
F-crystals, giving a geometric description of the Breuil-Kisin twist.

3.2. Hodge-Tate crystals

In this subsection, we fix a perfect field k of characteristic p, and write
W(k)p = Spf(W(k))p for the absolute prismatic site of W(k). Our goal is to explicitly
describe the structure of Hodge-Tate crystals on W (k) ; we then specialize this description
to the Gauss—Manin case to obtain geometric consequences. For the former, we have:

Proposition 3.5 (Sen theory, [32,76,77]). The co-category @crys(W(k)A , @A) of Hodge—Tate
crystals & of p-complete complexes on W(k)p can be identified as the co-category of pairs
(E, ®) consisting of a p-complete object E € D(W(k)) and an endomorphism © : E — E
such that ®P — © is locally nilpotent on H*(E/p); we refer to such pairs (E, ®) as Sen
complexes and ® as the Sen operator.

The implicit functor carrying the crystal & to £ € D (W(k)) in Proposition 3.5 is
given by evaluating at the object of W(k), obtained by base changing to W (k) the F-fixed
points of the g-de Rham prism (Remark 2.9).

Remark 3.6 (The stacky approach to prismatic crystals, [32,761). Proposition 3.5 is proven
via a stacky approach to prismatic cohomology, developed independently in [76] (with a
precursor in [75]) and [32]. Using a tiny amount of derived algebraic geometry [171], these
works attach a stack WCarty —the Cartier—Witt stack of X (called the prismatization XA in
[76])—on p-nilpotent test rings to any p-adic formal scheme X . This stack comes equipped
with an effective Cartier divisor WCarty' C WCarty called the Hodge-Tate locus. These
stacks are devised to geometrize the study of crystals on the prismatic site: for a quasisyn-
tomic X, there is a natural ®-identification of the co-category @CWS(XA, O ) of crystals
of (p, Ip )-complete complexes on (XA’ (9A) with the quasicoherent derived oco-category
Dy (WCarty ); similarly the oo-category iA)C,yS(XA,aA) of crystals of p-complete com-
plexes on (X , @A) identifies with the quasicoherent derived oco-category Dy (WCart)I}T .
Proposition 3.5 is then deduced from an explicit description of WCart%,T( k) as BG for a group
scheme G/ W (k) whose representations are identified with Sen complexes.

Notation 3.7 (Diffracted Hodge cohomology). Let f : X — Spf(W(k)) be a smooth map
of p-adic formal schemes. Write (RT"(X, Q ), ®) for the Sen complex corresponding to the
Hodge-Tate crystal R f*EA € o(écws(W(k)A , EA) via Proposition 3.5; we call RT"(X, 2 )z(p )
the diffracted Hodge complex of X .
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The next result says that RT"(X, )l? ) is a slightly twisted form of the Hodge coho-
mology complex €B; RT" (X, Q% [—i]), justifying the name “diffracted Hodge cohomology.”

Theorem 3.8 (The Sen structure of Q)I(D , [32]). Let X/ W (k) be a smooth p-adic formal
scheme. Then the Sen complex (RT'(X, Q}I? ), ®) has a natural multiplicative increasing

L[]
conj

grl (RT(X.Q2),0) = (RT(X, Qo) [—i1. © = —i)

conjugate filtration Fil . equipped with natural isomorphisms

foralli.

Theorem 3.8 also shows that the assignment U — RT (U, Qg ) patches to a perfect
complex Q)I(D on X, justifying the notation RT" (X, Q)I?).

Remark 3.9 (Relation to classical Sen theory, [32]). Fix a proper smooth map f : X —
Spf(W(k)) of p-adic formal schemes; write K = W (k)[1/ p], fix a completed algebraic clo-
sure C/K, and write Gg for the absolute Galois group of K. Classical results in
p-adic Hodge theory [83,209] show that for each n > 0, the C -semilinear G g -representation
H"(Xc,Qp) ®q, C comes equipped with a canonical semisimple endomorphism 6, whose
eigenvalue decomposition yields the Hodge—Tate decomposition: we have

n
H"(Xc,Qp) ®q, C ~ ) H" (X, way) ®wiry C(—i),
i=0
with 6, acting by —i on the i th summand on the right. Using the comparison isomorphisms
in Theorem 2.6, one can roughly regard Theorem 3.8 as an integral lift of this assertion: the
value of R f*@A on the Fontaine prism for O¢ recovers RI'(X¢, Qp) ®q, C on inverting
p, the Sen operator ® from Theorem 3.8 induces the Sen operator 6, on each H" with
the conjugate filtration from Theorem 3.8 yielding the Hodge—Tate decomposition. It was a
pleasant surprise to the author that the Sen operator admits a nice integral form.

Remark 3.10 (Drinfeld’s refinement of Deligne-Illusie, [32,76]). In the setup of Theo-
rem 3.8, there is a natural identification RI'(X, Q)? )/ p >~ RT4r(Xy) compatible with
the conjugate filtration via Theorem 2.6. Drinfeld observed that the Sen operator then
yields interesting consequences for RI'4g (X% ). More precisely, there is a Z/ p-grading on
RT'4r(X}) corresponding to the generalized eigenspace decomposition for the Sen operator
®, and the ith conjugate graded piece grlc.Onj ~ RI(Xg, Qg(k)[—i ] contributes only to the
generalized eigenspace for ® = —i by Theorem 3.8. In particular, if dim(X%) < p, the con-
jugate filtration on RI'4r (X% ) splits canonically. This gives a conceptual new proof—in fact,
a refinement—of the seminal Deligne—Illusie result [73] on Hodge-to-de Rham degeneration
(itself inspired by [83,95,141]). As in [73], one only needs a W5 (k)-lift of X to obtain the
Sen operator—and thus the Z/ p-grading—on RT'4r (X} ); this follows from an analysis of
WCartII',{,T2 (k) similar to Proposition 3.5. The results discussed in this paragraph refine those
in [2] by one cohomological degree; another stacky proof was recently found in [162].

For X/W(k), a smooth formal scheme without any constraints on dim(Xg),
one now obtains a residual nilpotent operator ® + i on the generalized ®-eigenspace
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RT4r(X%)i C RT4r(Xy) corresponding to the eigenvalue —i; this operator seems to be
a new piece of structure that awaits further investigation.

3.3. The Nygaard filtration

The absolute prismatic cohomology” RT (X) of a p-adic formal scheme X carries
an important filtration Fily, called the Nygaard filtration. This filtration plays roughly the
same role for prismatic cohomology as the Hodge filtration does for de Rham cohomology.
Moreover, for applications to algebraic topology (such as Theorem 4.8 below), it is critical
to understand this filtration. Its defining feature is that the Frobenius map ¢ on RT) (X)
carries Fily RT) (X) to RT(Xp, IA) for all i. The relative version of this filtration is well
understood, at least on graded pieces, thanks to the isomorphism (Isog) and the Beilinson
t-structure (see [38, PROPOSITION 5.8]). For the absolute version, one has a similar description:

Theorem 3.11 (The Nygaard fiber sequence, [32]). For any p-adic formal scheme X and
any integer i > 0, there are natural fiber sequences

O+i

griy RTp (X) — Fill™RT (X, 22) =5 Fill™ RT (X, 22) (Nyg)

and
RIG(X){i} = RI’(XA QA{l}) — RI'(X, Q;l?) —> RF(X QX) (HT)

with the convention that Fllcom 0.

Remark 3.12 (Calculations via the Nygaard fiber sequence). The sequence (Nyg) is quite
useful for calculations of the Nygaard filtration. For instance, in conjunction with the THH(—)
variant of Theorem 4.2 below (see Remark 4.3 as well), one may use (Nyg) to calculate
m«THH(R; Z,) for a p-completely smooth Ok-algebra R, where K is a discretely valued
extension of Q, with perfect residue field; this recovers calculations of [54, 163]. Compar-
ing (Nyg) and (HT) also quantifies the failure of the Frobenius map ¢ : gr’}v RTp (X) —
RI‘Z(X ){i} to be an isomorphism in terms of coherent cohomology, thus giving a new
mechanism to study the so-called Segal conjecture for THH.

Remark 3.13 (View Spec(Z) as a curve). Several results in mathematics have been inspired
by the seemingly nonsensical idea that Spec(Z) is a curve over some nonexistent base F. In
p-adic arithmetic geometry, this idea can sometimes lead to useful (and testable!) predictions
in conjunction with the following related heuristics:

e Perfectoid rings (e.g., finite fields) are formally étale over F.

* Topologically finite type regular p-complete Z,-algebras R are smooth over F of
relative dimension dim(R) (the Krull dimension).

2 The complex RI) (X) as defined in Definition 3.1 works well under mild assumptions on
the singularities of X (e.g., for Ici X). In general, one modifies the definition of RIx (X) by
a categorical procedure involving quasisyntomic descent and animation; we do not elaborate
on this further in this survey and refer to [11, 32] for more.
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We briefly discuss some examples of such predictions. First, if R is a perfectoid ring,
then the p-completion of L gz, identifies with R[1], which is consistent with the prediction
of a transitivity triangle of cotangent complexes for F — Z — R and the heuristics above;
this was already essentially observed in [84].

Next, Theorem 3.11 was partially conceived based on these heuristics: the fiber
sequence (Nyg) is obtained as the associated graded of a fiber sequence of filtered complexes
allowing one to compute the absolute Nygaard filtration in terms of the relative one; the
underlying fiber sequence of complexes for the latter was guessed based on the analogy
between Z and a smooth curve over a perfectoid ring.

Next, if one views the Hodge—Tate locus WCan)I}T C WCarty of the Cartier—Witt
stack (Remark 3.6) as a version of the Hodge stack (i.e., the classifying stack of the tangent
bundle) over F, then the second heuristic above predicts that WCart}IﬁT is well behaved if X
is regular, e.g., the map  : WCart}I“}T — X should be a gerbe, and R, must have coherent
cohomological dimension at most dim(X); the first of these predictions is true, while the
second is true at least in dimension 1 ([32]). Relatedly, there are some recently defined can-
didate notions of differential forms relative to F [8e,128,198]; it would be interesting to find
a direct connection between the stack WCarty' and these objects.

Finally, let us remark that the philosophy discussed in this remark also featured in
Scholze’s report for the previous ICM [2e6], and has paid amazing dividends in geometrizing
the local Langlands correspondence in recent years [96, 205, 207].

Remark 3.14 (p-adic Tate twists, [38,41]). An early observable extracted from absolute pris-
matic cohomology was a good notion of p-adic Tate twists Z, (i ) (—) in mixed characteristic:
these are functors on p-adic formal schemes X defined by a fiber sequence

Z,,(1)(X) — Filly RTy (X){i} > RT (X)fi} (Syn)

for all i > 0. These functors are often called syntomic complexes for mixed characteris-
tic rings as they extend those in characteristic p considered in [14e, 181]. One can also
regard Z,(i)(—) as a form of étale motivic cohomology in weight i (see the forthcom-
ing Remark 4.6). In fact, for formally smooth Og-schemes with K/Q, finite, the syntomic
complexes Z,(i)(—) agree with the p-adic étale Tate twists of Geisser—Sato—Schneider
[183,199,200] defined by glueing motivic complexes on the generic and special fibers [35].
We refer the reader to [11, 32, 38,41] for more on these syntomic complexes.

Remark 3.15 (p-adic Picard and Brauer groups via coherent cohomology). The syntomic
complex from Remark 3.14 in weight 1 has the following relationship with G, ([38, PROPO-
SITION 7.17]), as motivic intuition predicts: for any p-adic formal scheme X, we have

Z,(1)(X) 2= RT (Xer, Gm)"[—1],
where the completion is p-adic. Plugging this into the sequence (Syn) gives a fiber sequence

RT(Xer, Gm) 1] — Filly RTp (X){1} g RTp (X){1} (Lef)
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that can be regarded as a weak p-adic analog of the Lefschetz (1, 1)-theorem, e.g., it enables
one to compute the p-completion of Pic(X) or Br(X) in terms of absolute prismatic coho-
mology, and thus ultimately via coherent cohomology.

The idea described in the previous paragraph inspired the eventual proof of (a gen-
eralization of) Gabber’s purity conjectures for Picard and Brauer groups in [63]. In a global
direction, Cotner and Zavyalov have recently used (Lef) to prove the vanishing of Pic* (X))
for complete intersection surfaces X C PV in characteristic p (in progress), settling a ques-
tion left open since [1@9]. In a different direction, the sequence (Lef) can be used to prove that
R +— RT(Spf(R)er, Gpy)” commutes with sifted colimits in R (in the p-complete world);
this allows one to reduce general questions about RT(Spf(R)es, Gi»)” to particularly nice
rings, and played an important role in Bragg and Olsson’s work [58] on finiteness results for
higher direct images of finite flat group schemes along projective morphisms in characteris-
tic p.

3.4. Galois representations

In this subsection, fix a discretely valued field K/Q, with perfect residue field k.
We discuss the relationship of prismatic F -crystals over X = Spf(OQg) and Galois represen-
tations of Gx = Gal(K/K).

For a prime £ # p, the notion of unramifiedness for Z;- or Qg-representations of Gg
is a Galois-theoretic analog of the property of having “good reduction” for varieties over K:
viewed as an £-adic local system on Spec(K), an unramified G g -representation is exactly one
that extends to a local system over Spf(Okx). In contrast, for Z,- or
Qp-representations, unramifiedness is too restrictive: even the cyclotomic character—or
any nonzero H' (Y%, Qp) with Y /Ok smooth projective and i > 0—is not unramified. To
remedy this, Fontaine invented [93] the notion of crystalline G k-representations; it has been
stunningly successful at capturing the desired “good reduction” intuition. On the other hand,
any prismatic F-crystal & on Spf(O) gives rise to a Gk -representation 7'(&), as well an
F-crystal Ecrys on k (see Definition 3.2 and following discussion); these have the same rank,
so one may view &y as “a special fiber” of T'(&), suggesting that the prismatic F'-crystal &
itself should be viewed as a witness for a “good reduction” of T'(&). The following theorem
shows that these two perspectives on good reduction for p-adic representations coincide:

Theorem 3.16 (Prismatic F-crystals and crystalline Gg-representations, [42]). The étale
realization functor & +— T (&) gives an equivalence of the category of prismatic F-crystals

on Spf(O) with the category of Ly-lattices in crystalline Qp-representations of Gg.

Thus, prismatic F-crystals on Spf(OQg) provide a reasonable notion for “local sys-
tems on Spf(Qk) with Z,-coeflicients”.

Remark 3.17. Theorem 3.16 can be viewed as a refinement of Kisin’s classification of crys-
talline G -representations [146]; in particular, this refinement attaches prismatic meaning to
the integrality properties of a somewhat mysterious connection in [146]. An alternative proof
of Theorem 3.16 was since given in [78], relying on the theory in [166]; see also [23e].
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Various results in the deformation theory of G g -representations (e.g., [81,147]) indi-
cate it would be fruitful to extend the notion of crystalline Gg-representations to torsion
coefficients or even to the derived category. However, as the property of being crystalline
is essentially a rational concept, it is not clear how to proceed. Theorem 3.16 points to a
way forward, e.g., perhaps prismatic F-crystals with Oy / p"-coeflicients are a reasonable
candidate for crystalline Z/ p”-representations? While satisfactory for describing Z,-local
systems, this approach does not quite lead to a reasonable derived theory as the definition of a
prismatic F-crystal (&, pg) is not quantitative enough: the isomorphism g does not come
equipped with bounds on its poles/zeroes, leading to certain poorly behaved Ext-groups.
Instead, the correct objects seem to be perfect complexes on an enlargement of the Cartier—
Witt stack WCarto, (Remark 3.6) constructed by Drinfeld [76]; we describe one piece of
evidence for this correctness assertion in the rest of the subsection.

: ®
Write i)perf

(WCarth) for the oo-category of perfect complexes on the stack
Spf(O K)A” from [76, §1.8]; let us call such objects prismatic F-gauges on Og>. Given such an
F-gauge &, write RI"? (WCarth, &) for its global sections. To a first approximation, a pris-
matic F-gauge & consists of a prismatic F-crystal E of perfect complexes on WCarto,
equipped with the additional datum of a Nygaard-style filtration on RI'(WCartg, , E); in
fact, this can be made precise if O is replaced by a qrsp ring (work in progress with Lurie).
The prismatic F'-crystals from Examples 3.3 and 3.4 have natural lifts to prismatic F'-gauges.

The promised piece of evidence is the following result:
Theorem 3.18 (A Lagrangian property, [33]). Assume K is unramified. Let
& eD?

et (WCarth)

be a prismatic F-gauge with O-linear dual D(8) and étale realization T (&) in an appro-

priate derived category of continuous Zy,-representations of Gg. Then the natural map
RT¢(WCarty ,€) — RT(Gk, T(€))

is the exact annihilator of the corresponding map of local Tate duals, i.e., there is a natural
fiber sequence

RT¥(WCart} ,€) — RT(Gk, T(€)) — (RI“”(WCartQ;K,D(8){1}[2]))V (Lag)
where (—)" = RHomg, (—, Z,) on the rightmost term.

Theorem 3.18 is work in progress with Lurie [33]; the statement is likely not quite
optimal yet (e.g., we hope to show it for ramified K as well).

Remark 3.19 (The crystalline part of Galois cohomology). Given a Qp-representation V'
of Gg, Bloch-Kato constructed [51, §3] the “crystalline part” H } (Gk,V) c HY(Gg, V)
of the Galois cohomology of V', and proved that the crystalline parts for V and V'V (1) are

3 The definition of WCartJ(;K in [76] (and denoted 2’(9K there) is inspired by the Fontaine—
Jansen theory [94] of F-gauges in crystalline cohomology.
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orthogonal complements under the Tate duality pairing. When V is crystalline, Theorem 3.18
may be viewed as an integral and cochain-level variant of this statement. Such integral refine-
ments have been formulated previously in special cases (e.g., [162]); it would be interesting
to compare them to Theorem 3.18.

Remark 3.20 (The analogy with 3-manifolds). In the Mazur(-Mumford) analogy between
number rings and 3-manifolds [158, 18e], the scheme Spec(K) corresponds to a Riemann
surface ¥ while Spf(Ok) corresponds to a 3-manifold M with boundary 0M = X. A stan-
dard topological result states that the space Loc(X) of local systems on X has a symplectic
structure induced by Poincaré duality on X, and the restriction map Loc(M) — Loc(X) is
Lagrangian (see [96, PROPOSITION 3.27]). The sequence (Lag) may be viewed as an arithmetic
analogue of the infinitesimal form of this result, with the role of a local system on Spf(Ok)
played by prismatic F-gauges; in fact, this picture motivated the discovery of Theorem 3.18.

Remark 3.21 (Lichtenbaum—Quillen for Ok). The Breuil-Kisin prismatic F-gauges O{i}
compute the p-adic Tate twists from Remark 3.14, i.e., we have natural identifications
RT? (WCaItgk, O{i}) ~ Z,(i)(Ok). Using the vanishing of Z,(i)(—) for i < 0, the se-
quence (Lag) then implies that the natural map

Z,(i)(Ok) — RT(Gk.Zy(i))

is an equivalence for i > 2. Under the relationship of either side to the étale K-theory of Ok
and K, as well as the localization sequence in K-theory, this result was essentially known
([119]); nevertheless, Theorem 3.18 provides a different conceptual explanation.

4. ALGEBRAIC K-THEORY

Quillen’s algebraic K-theory [193] functor attaches a space (in fact, a spectrum)
K(X) to a scheme X, generalizing the construction of the Grothendieck group Ko (X); the
study of these invariants and their generalizations is an important pursuit in modern alge-
braic topology. In fact, its impact extends far beyond algebraic topology: the higher K-groups
K; (X) feature prominently in some of the deepest conjectures in arithmetic geometry. In this
section, we report on some recent progress in understanding the structural features of the p-
completed algebraic K-theory spectrum K(R;Z,) of a p-complete ring R, with an emphasis
on connections to prismatic cohomology; the case of £-adic completions for £ # p is clas-
sical, going back to work of Thomason [221], Suslin [217], and Gabber [98]. More complete
recent surveys of material covered in this section include [12e,121,179].

In classical algebraic topology, combining the Atiyah—Hirzeburch spectral sequence
with Bott periodicity gives the following structure on the complex K-theory K'P(X) of a
(reasonable) topological space X:

The K-theory spectrum K'°P(X) admits a natural filtration with gr’
identified with the shifted singular cohomology complex RT' (X, Z)[2i]. (Filtg)
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In recent work, motivated in part by conjectures of Beilinson [13] and Hesselholt,
a p-adic analog of (Filtg) for (étale sheafified) algebraic K-theory of p-complete rings has
been established, with the role of singular cohomology now played by prismatic cohomology.
To explain this better, recall that algebraic topologists often study algebraic K-theory through
a “cyclotomic trace” map
Tr: K(—) — TC(-),

where TC(—) is the fopological cyclic homology functor; this invariant of rings was invented
by contemplating Hochschild homology over the sphere spectrum, goes back to [55], and
was recently given a simple co-categorical definition in [186]. The trace map is a powerful
calculational tool (see [104, 117-119] for some successes), and there are two main reasons
for this. First, TC(—) is built, via a rather elaborate homotopical procedure, from objects of
coherent cohomology (namely, differential forms) and is thus potentially more computable
than K-theory. Secondly, the trace map turns out to yield a very good approximation of
K-theory in various situations; in our p-adic context, the state of the art is the following:

Theorem 4.1 (p-adic étale K-theory is TC, [65,66]). For p-complete rings R, the trace map
K(R;Z,) — TC(R; Zp) identifies the target with the p-completed étale sheafified K -theory
of R. Moreover, the étale sheafification is not necessary in sufficiently large degrees if R

satisfies mild finiteness conditions.

Via Theorem 4.1, the following result can be viewed as a p-adic analog of the
Atiyah—Hirzebuch part of (Filtg):
Theorem 4.2 (The motivic filtration on étale K -theory, [11,38]). As a functor on p-complete
rings, there is a natural “motivic” filtration on TC(—; Z,) with gr', TC(—; Z,) naturally
identified with the shifted syntomic complex Z(i)(—)[2i] from Remark 3.14.

Remark 4.3 (Variants for THH and cousins). Let us briefly recall the [186] approach to cal-
culating TC. For a commutative ring R, the p-completed topological Hochschild homology
spectrum THH(R; Z,) comes equipped with a natural action of the circle S ! and a certain
Frobenius map. One can then define auxiliary invariants TC™ (R; Z,) := THH(R; Zp)hs1
and TP(R; Z,) := THH(R; ZI,,)’S1 together with two natural maps can, ¢ : TC™ (R;Z,) —
TP(R;Z,). The paper [186] then proves there is a natural fiber sequence

TC(R; Z,) — TC™(R:Z,) L5 TP(R; Z,). (TC)
thereby yielding a clean modern construction of TC(R; Z,).

The construction of the motivic filtration on TC(—; Z,) in Theorem 4.2 is suffi-
ciently flexible to ensure that similar ideas also yield compatible “motivic filtrations” on
TC™(R;Z,) and TP(R; Z,). In fact, [38] lifts the sequence (TC) to a filtered fiber sequence
that recovers the sequence (Syn) on associated graded pieces, up to Nygaard completions. In
particular, one recovers (Nygaard completed) absolute prismatic cohomology as the associ-
ated graded of a filtration on TP.

Note that while THH(—) and cousins are noncommutative invariants (i.e., can be
defined for arbitrary stable co-categories), the construction of the motivic filtration crucially
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uses algebraic geometrys; it is unclear if analogous filtrations exist even in slightly more gen-
eral settings, e.g., for TC(€) for a symmetric monoidal stable co-category €.

Remark 4.4 (Comparison with the Hodge filtration on classical Hochschild homology).
The topological Hochschild homology of a commutative ring R is defined as THH(R) :=
HH(R/S), i.e., it is the Hochschild homology relative to the sphere spectrum S. From this
optic, Theorem 4.2 and the variants in Remark 4.3 are analogs of known constructions in
the Hochschild homology of ordinary rings. For instance, given a smooth algebra R over a
commutative ring k, there is a natural filtration on HC™(R/k) := HH(R/k)"S " with ar!
identified with the Hodge filtration level Filfqodgeﬂ;e /i[21] (see [167, §5.1.2] and [228] for char-
acteristic 0, and [38, §5.2] and [9] in general). Specializing to k = A for a Fontaine prism
(A, I), this allows one to recover crystalline and de Rham cohomology—but not étale coho-
mology of the generic fiber—as graded pieces of a natural filtration on classical Hochschild
homology and its variants. Theorem 4.2 and the variants in Remark 4.3 thus contain the sur-
prise that working relative to the sphere spectrum permits one to see the étale cohomology
of the generic fiber as well: one can in fact recover prismatic cohomology.

Remark 4.5 (Origin story). Let (4, I) be a Fontaine prism (Example 2.4). Write Ay, for
the ring obtained by formally adjoining divided powers of 7 to A in the p-complete set-
ting. Given a smooth proper scheme X over Oc = A, its absolute crystalline cohomology
RT¢ys(X) is a perfect complex of Acys-modules with a Frobenius structure. The relation
between the theory of Breuil modules [59] and Breuil-Kisin modules [146] in Galois represen-
tation theory strongly suggested that RI'¢rys(X ) ought to descend naturally along A — Acrys.
Separately, Hesselholt had calculated [116] that 7o TP(Oc¢; Z,) equals A. Comparing this to
the known fact that moHP(O¢; Z,) equals Ay (up to a completion), it was natural to spec-
ulate that for any X /Oc as above, one could find a filtration on TP(X; Z,) whose graded
pieces realize the desired descent of Ry (X) along A — Acys; this eventually led to the
TP(—)-variant of Theorem 4.2 and gave a construction of prismatic cohomology over the
Fontaine and Breuil-Kisin prisms [3s, s11]. In fact, as TP(—; Z;) is independent of the base
O, this also gave the first construction of absolute prismatic cohomology [38, §7.3].

Remark 4.6 (Etale motivic cohomology). We briefly explain why Theorem 4.2 can be
viewed as a p-completed and étale sheafified analog of the filtration of algebraic K-theory
by motivic cohomology (defined via Bloch’s higher Chow groups [48]). Recall that the latter
geometric motivic filtration was conjectured to exist in [13], and established in many cases,
including most smooth cases, in [52,97,159,227]; see [129] for a clean construction. It is thus
natural to conjecture that the p-completed étale sheafification of this geometric motivic fil-
tration identifies with the one in Theorem 4.2. For smooth varieties over a perfect field k of
characteristic p, this is indeed the case by combining [1e6] and [38]. In mixed characteristic,
while we do not know the full story, a positive answer at the associated graded level follows
from the comparison result from [35] mentioned in Remark 3.14. Let us also remark that
[168] has established the expected relationship of Milnor K-theory (extended as in [145]) and
the (i, i)-part of the syntomic complexes, giving a p-adic analog of [185,225].
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The above discussion raises a natural question: as Theorem 4.2 applies to any p-
complete ring, can the domain of definition of the geometric motivic filtration of the previous
paragraph also be extended to all p-complete rings? In particular, is there a meaningful
geometric motivic filtration on K(R) for a non-reduced p-complete ring R? Thanks to a
forthcoming result of Mathew on glueing the filtration from Theorem 4.2 with the étale
sheafified Postnikov filtration on K(1)-local K-theory, there is a variant of Theorem 4.2 for
any ring, so one may even reasonably ask these questions for all rings.

Remark 4.7 (Constructing the motivic filtration via quasisyntomic descent). The construc-
tion of the motivic filtration in Theorem 4.2 is quite different from that of the geometric
motivic filtration mentioned in Remark 4.6. Indeed, the general case of Theorem 4.2 is proven
in [11] (see also [32]) by reducing (via animation as in Remark 2.14) to the quasisyntomic
case treated in [38]. The latter has two essential ingredients. The topological ingredient is
Bokstedt’s fundamental periodicity result [53] that 7. THH(F,) = F,[u] for a degree 2 class
u; see [153] for a quick modern proof based on properties of the dual Steenrod algebra, [91] for
an overview of other approaches, and [12e] for a deduction of Bott periodicity from Bokstedt
periodicity. The new algebraic input is the flat descent property ([2e, 38]) of the cotangent
complex, used in conjunction with the very perfectoid idea (going back in spirit to [95])
that working with certain infinitely ramified covers can “discretize” constructions involving
differential forms in the p-adic world.

As Remark 4.5 explains, the first construction of absolute prismatic cohomology
was through Theorem 4.2 and variants. However, thanks to the alternative and more direct
construction via the prismatic site, one can now use Theorem 4.2 as a tool to study K -theory
via prismatic cohomology. For instance, this approach gives the following result:

Theorem 4.8 (The odd vanishing theorem, [41]). Forodd i, the functor rr; K(—;Z,) is quasi-
syntomic locally 0 on the category of quasi-syntomic rings.

Theorem 4.8 can be regarded as a variant of the Bott periodicity part of (Filtx) in
the algebraic setting: while periodicity is known to be false due to geometric phenomena, we
still have vanishing in odd degrees. The proof in [41] relies on André’s flatness lemma [3],
and it would be interesting to find a more explicit description of the necessary covers.

Remark 4.9 (Further relations to p-adic arithmetic geometry). Another application of pris-
matic cohomology to K-theory was proving that Lg 1) K(R) >~ Lg)K(R[1/p]) for any
associative ring R ([27]). This equality is a K-theoretic avatar of the étale comparison from
[41] and was proved in [27] via explicit calculations in prismatic cohomology; it has since
been reproved and significantly extended using purely homotopy-theoretic methods in [156].

In the reverse direction (and preceding most of the developments reported in this
paper), [49] used results from topological cyclic homology [1e5] to prove the infinitesimal
portion of the p-adic variational Hodge conjecture in the unramified case. The extension
to the ramified case was recently obtained in [11] as a consequence of a purely K-theoretic
assertion called the Beilinson fiber square. Using this square and Theorem 4.2, [11] also
gave a simple description of the rationalized syntomic complexes Z, (i) (—)[1/ p] via derived
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de Rham cohomology. This description is quite useful as derived de Rham cohomology is
more computable in practice than prismatic cohomology; in fact, this description formed an
essential ingredient in the classification of crystalline representations given in Theorem 3.16.
The connections discussed above have mostly concerned relative prismatic coho-
mology. It seems likely that a better understanding of absolute prismatic cohomology (as in
Section 3) will lead to more refined applications. For instance, [164] recovers rather conceptu-
ally the highly non-trivial calculation [119] of the K -theory of local fields K /Q,, by exploiting
certain covers of the final object in the absolute prismatic topos of Ok coming from Breuil—-
Kisin prisms. Other related observations are discussed in Remark 3.12 and Remark 3.21.

5. COMMUTATIVE ALGEBRA AND BIRATIONAL GEOMETRY

The Kodaira vanishing theorem (as well as the generalization by Kawamata—Vieh-
weg) is one of the most important foundational results in complex algebraic geometrys; it is
especially useful in birational geometry. Its (original) proof relies crucially on Hodge theory,
and thus no longer applies in positive/mixed characteristic. In fact, the result is known to be
false in those settings [195]; alongside the nonavailability of resolution of singularities in
dimensions > 4, this is a major obstacle to progress in birational geometry in positive/mixed
characteristic. About a decade ago, Schwede observed [2e8] that methods from F'-singularity
theory in positive characteristic commutative algebra can sometimes be used as a substitute
for the use of vanishing theorems in positive characteristic algebraic geometry; this eventu-
ally led to significant progress in birational geometry in positive characteristic in dimension
< 3, such as [113]. In recent years, input from p-adic Hodge theory has made it possible to
prove similar vanishing theorems in mixed characteristic algebraic geometry; this has led
to solutions of longstanding questions in commutative algebra and also to progress in the
minimal model program in mixed characteristic.

5.1. Vanishing theorems in commutative algebra

F-singularity theory is the study of singularities in positive characteristic via the
behavior of the Frobenius endomorphism. It was born with a classical theorem of Kunz [155]
proving that a noetherian F,-algebra is regular exactly when its Frobenius endomorphism is
flat. This subject was systematically developed by Hochster—Huneke and several others over
many decades; see [125] as well as the survey [218]. An important landmark in the subject was
a Cohen—Macaulayness result of Hochster—Huneke [126]; see [130] for a fairly recent survey.
The following recent result extends this to mixed characteristic:

Theorem 5.1 (Cohen—Macaulayness of RY, [25,43]). Let R be an excellent noetherian
domain. Let Rt be the integral closure of R in an algebraic closure of its fraction field.
Then the p-adic completion R is Cohen—Macaulay over R.

Remark 5.2 (A concrete formulation). Despite involving the large ring R™, Theorem 5.1 is a
finitistic statement whose essential content is the following: if R is local and
x :={p,x1,..., X4} is a system of parameters, then any relation on x becomes a linear
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combination of the trivial Koszul relations in a finite extension S of R. This formulation
explains why Theorem 5.1 can be viewed as a “vanishing theorem up to finite covers”: it
says that the local cohomology classes on R coming from the potentially nontrivial relations
can be annihilated by passing to finite extensions R — S. Moreover, it also highlights the
essential difficulty: one must construct finite extensions of R from the unwanted relations.

Remark 5.3 (Weakly functorial Cohen—Macaulay algebras). André’s recent resolution [3,4]
of Hochster’s direct summand conjecture led to a lot of activity in mixed characteristic
commutative algebra, including [23,115,175,176,178,211]; see [177] for a recent survey. In partic-
ular, André [6] and Gabber [99] proved the existence of “weakly functorial Cohen—Macaulay
algebras” in the key remaining mixed characteristic case (via rather indirect constructions).
This existence result implies many of the “homological conjectures” in commutative algebra
(anotable exception being Serre’s intersection multiplicity conjecture); see [5,123,124]. Prior
to André and Gabber’s work, this existence was known [114,122] only in dimension < 3.
Theorem 5.1 now yields an alternative and extremely simple construction of sucﬁl\ weakly
functorial Cohen—Macaulay algebras in mixed characteristic: we may simply use R™T.

Remark 5.4 (What was known?). Theorem 5.1 is straightforward in dimension < 2, and
is the main result of [126] in the positive characteristic case. In mixed characteristic, The-
orem 5.1 is new even in dimension 3: it was previously known [114] in dimension < 3
only in the almost category (in the sense of Faltings’ almost mathematics [83, 18e]); see [25,
REMARK 1.9] for an explanation of prior expectations.

Remark 5.5 (Splinters). A noetherian commutative ring R is called a splinter if it satisfies
the conclusion of the direct summand conjecture, i.e., it splits off as a module from every
finite extension. This class of singularities, formally introduced in [172], has recently received
renewed attention (e.g., [7,10,70,173]). An external reason to care about this notion is a major
conjecture in F-singularity theory (see [126, PAGE 85], [127, PAGE 640]): splinters in charac-
teristic p are expected to be the same as strongly F-regular rings (see [174, END OF §3] for a
discussion). This conjecture is known for Q-Gorenstein rings [214]. One consequence of this
conjecture is that characteristic p splinters are derived splinters, i.e., they satisfy a derived
version of the splinter condition for any proper surjective map and are thus analogous to
rational singularities. This consequence was proven unconditionally in [21]. Methods from
[29] used in proving Theorem 5.1 give the same result in mixed characteristic. In conjunction
with Theorem 5.1 itself, one learns that any mixed characteristic splinter is Cohen—Macaulay
and has rational singularities in the sense of [152]; it would be interesting to prove the latter
(even just after inverting p) without using p-adic Hodge theory.

Remark 5.6 (Ingredients in the proof of Theorem 5.1). Using essentially elementary meth-
ods, [43] reduces Theorem 5.1 to the statement that Rt / p is Cohen—Macaulay over R/ p,
which is proven in [25]. Despite the simple reformulation highlighted in Remark 5.2, the proof
relies on two major theoretical inputs. The first is prismatic cohomology (Theorem 2.6),
which gives a substitute for the Frobenius operator in mixed characteristic; this allows one
to begin mimicking the cohomological proof of [126] given in [131] in mixed characteristic
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at the cost of replacing rings with derived rings. The second is the p-adic Riemann—Hilbert
functor from Theorem 6.1 below, applied to certain perverse F,-sheaves on the generic fiber
Spec(R[1/ p]) arising from finite covers, to facilitate the induction on dimension strategy
of [131]. This proof is not effective, and it might be interesting to explicitly constructed the
relevant covers in low dimensional examples, such as cones over smooth projective curves
and surfaces over a p-adic discrete valuation ring.

5.2. Birational geometry

There is a well-known analogy between projective geometry and local algebra, e.g.,
the global cohomological properties of a projective variety X C P” are faithfully reflected
in the local cohomological properties of its affine cone Y C A"*! over X near the vertex
0 € Y. This analogy suggests that Theorem 5.1 ought to have a global variant; this is indeed
the case, and the result can be summarized as follows:

Theorem 5.7 (Kodaira vanishing up to finite covers, [25]). Let V be a p-adic discrete val-
uation ring (e.g., V = 1Zp). Let X/ V be a flat proper scheme equipped with a semiample
and big line bundle L. Then any p-power torsion class in H*(X, L™'), H*(X, Ox), or
H*(X, L) can be annihilated by pullback to a finite cover of X .

Analogous results hold true in the relative setting [25], and were previously known
in characteristic p ([126] for L ample, and [21] in general).

Remark 5.8 (Relation to Kodaira vanishing). The classical Kodaira vanishing theorem says
that H <dm()(y, M ~1) = 0 for a smooth projective variety ¥ /C with ample line bundle M .
This assertion is false in characteristic p ([195]) and mixed characteristic (by Totaro, see [43,
FooTNoTE 1]). The L~ case of Theorem 5.7 can be viewed as an “up to finite covers” variant
of the Kodaira vanishing theorem that is true in mixed characteristic: spurious cohomology
classes—those that should not be there if Kodaira vanishing were true for (X, L)—can be
annihilated by passing to finite covers. This “up to finite covers” perspective was pioneered
in characteristic p by [215] in the wake of [126].

For completeness, we remark that an “up to finite covers” version of the more general
Kodaira—Akizuki—Nakano vanishing theorem also holds true in the setting of Theorem 5.7:
in fact, the cases not covered by Theorem 5.7 are much easier as sheaves of differential forms
themselves become p-divisible on passage to finite covers.

Remark 5.9 (Relation to the p-adic Poincaré lemma). The assertion in Theorem 5.7 for
H*(X, Ox), with finite covers weakened to alterations, was previously known by [14, 22];
in fact, it formed the key geometric ingredient in the proof of the p-adic Poincaré lemma
in [14]. Curiously, while the p-adic Poincaré lemma was used in [14] to give a new proof
of the fundamental de Rham comparison conjecture in p-adic Hodge theory, the proof of
Theorem 5.7 uses the full strength of modern advances in p-adic Hodge theory (such as the
primitive comparison theorem of [2e3] for arbitrarily singular varieties).

We end this section with an application of Theorem 5.7 to birational geometry in
mixed characteristic. Briefly, it is possible to use this variant of Kodaira vanishing in a critical
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lifting argument in an inductive proof of the existence of flips in dimension 3, following
[113] (which goes back to ideas of Shokurov). Combining this with Witaszek’s recent mixed
characteristic analog [229] of Keel’s semiampleness theorems [144], it became possible to
emulate the ideas of [44, 45, 69,113] (amongst others) to show the following:

Theorem 5.10 (Minimal model program in mixed characteristic, [43,219]). One can run the

minimal model program for arithmetic threefolds whose residue characteristics are > 5.

Theorem 5.10 uses ideas from [46,178] and extends [142,22e]. Global geometric appli-
cations of (the ideas going into) Theorem 5.10 can be found in [43,112,216,219,231].

Remark 5.11 (The +-stable sections). We informally discuss a new notion introduced in
the proof of Theorem 5.10 in a simple case, and state a question; see [43, §4] or [219, §3.2] for
the general notion. For reasonable mixed characteristic rings R, one can define a submodule
B°(R,wR) C wg of the dualizing module wg: it is the submodule of elements that lift to
all alterations of Spec(R) under the trace maps. If R is regular, then B%(R, wg) = wg, so
in general B®(R, wg) is an invariant measuring the singularities of R. Analogous invariants
exist in characteristic 0 (given by the Grauert—Riemenschneider sheaf [157, EXAMPLE 4.3.12])
and characteristic p (given by the parameter test submodule [46, §2.5 & COROLLARY 3.4]). Basic
properties of B°(R, wg), such as its behavior under alterations or restriction to divisors,
play a key role in the proof of Theorem 5.10. However, a fundamental question about these
invariants remains open: does their formation commute with localization? Due to the infinite
intersection implicit in the definition of B O(R, ®R), this question is delicate. Nevertheless,
a positive answer (which we expect) would have several geometric applications. As evidence
for a positive answer, using Theorem 6.4, one can show the claim for inverting p: the local-
ization B®(R, wg)[1/ p] agrees with the Grauert-Riemenschneider sheaf of Spec(R[1/ p])
(work in progress as a sequel to [43]). We refer to [112, §8] for more discussion of this question.

6. p-ADIC RIEMANN—-HILBERT

The Riemann—Hilbert problem has a rich history, going back at least to Hilbert’s
21st problem. In modern terms, it asked if any C-local system on a smooth complex algebraic
curve X could be realized as the solution system of a flat vector bundle on X with regular
singularities at co; this variant was (precisely formulated and) solved by Deligne [71]. Soon
after, this picture was generalized to higher dimensions by Kashiwara and Mebkhout: there
is an equivalence of categories between topological objects (C-linear perverse sheaves) and
differential objects (regular holonomic £-modules) on any smooth complex variety, see [56].

In this section, we discuss joint work with Lurie towards a p-adic analog of the
preceding story; our aim was to extend existing results attaching flat connections to p-adic
local systems on p-adic varieties (such as [1,74,87,88,165,203]) to p-adic constructible com-
plexes and in particular, to p-adic perverse sheaves. Unlike the complex picture, there are
several meanings one can attach to *“p-adic sheaves”: one can work with Z/p", Z,, or Q-
coeflicients. Our theorem for F,-coefficients is the following (the Z/ p” case is analogous):
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Theorem 6.1 (Riemann—Hilbert for torsion coefficients, [29]). Let C/Q, be a complete and
algebraically closed extension. Let X/Oc¢ be a finite type scheme. Then there is a natural
exact functor

RH: D), (Xc.Fp) — Db(X ®o. Oc/p).

This functor commutes with proper pushforward, intertwines Verdier and Grothendieck dual-

ity in the almost category [83,100)], and interacts well with the perverse t-structure.

The functor RH above also almost commutes with tensor products and pullbacks
provided the target is refined to RH(F,)-modules. In fact, it is possible to refine the target
further to Frobenius modules over the tilt RH(Fp)b; the resulting functor is fully faithful,
and agrees with the construction in [31] (which was a dual form of [82] that works for all
characteristic p schemes) when X has characteristic p.

Remark 6.2 (Relation to existing work in p-adic geometry). Theorem 6.1 appears to be
the first general construction attaching coherent objects to constructible F,-sheaves on alge-
braic varieties in characteristic 0. On the other hand, several ingredients that go into the
proof have appeared before in p-adic arithmetic geometry. Indeed, the functor RH can be
regarded as a generalization of a perfectoidization functor from Remark 2.10 to nonconstant
coefficients: one can almost identify RH(F,) with Ox perra/ p. Moreover, the compatibility
with duality with constant coefficients is closely related to the Gabber—Zavyalov approach
[232] to Poincaré duality for the F,-cohomology of rigid spaces. Nevertheless, the flexibility
of applying RH(—) to nonconstant perverse coeflicients is immensely useful in applications
including Theorems 5.1 and 5.7 or the localization result mentioned in Remark 5.11. Relat-
edly, let us mention that Theorem 6.1 itself suffices to prove Theorem 5.1 in the almost
category, extending Heitmann’s almost vanishing theorem [114] to arbitrary dimensions.

Prima facie, Theorem 6.1 looks quite different from the complex Riemann—Hilbert
correspondence: the output is a quasicoherent (and in fact almost coherent) complex rather
than a -module. In fact, the functor in Theorem 6.1 is better understood as a p-adic analog
of a construction from Saito’s fundamental work [197] on mixed Hodge modules. Recall that
this theory gives a filtered refinement of the classical Riemann—Hilbert functor for many
constructible sheaves, including those that are “of geometric origin.” More precisely, given
a smooth proper complex variety X, any mixed Hodge module on X has an underlying
Dx-module equipped with a Hodge filtration and an underlying perverse sheaf; the picture
relating them can be summarized in the following commutative diagram:

/ij%i///// \\\\\Effi\\
b gr* (=) b * Q* (=) b
Do (X, C) DFeon(Dx) — Dcoh,gr(T X) — Dcoh,gr(X)
\\\\\Jiﬁi\sx A{ffffl/////
Db (Dx),
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where MHM(X) is Saito’s category of mixed Hodge modules, DF,,(Dy) is a suitable
derived category of Dy-modules equipped with a “good” filtration, the functor RH® is the
classical Riemann—Hilbert functor, the functor gr*(—) is the associated graded construction
carrying a filtered £-module to a graded Qx -module with an action of gr* Dy = Sym™ (Tx)
(i.e., a Higgs module), and the functor *(—) is the graded Higgs complex construction.
Heuristically, the functor in Theorem 6.1 is an analog of the composite correspondence

DL (X, €) &5 MEM(x) T b () (RF)
for F,-coefficients. Slightly surprisingly, unlike in the complex story, we get an honest func-
tor instead of a correspondence in the p-adic setting. (On the other hand, objects of MHM(X)
also have a weight filtration, which we ignore in our discussion.)

Remark 6.3 (Why is there no grading?). In comparison with the correspondence (liﬁ), there
is no grading in the target of Theorem 6.1. But this is to be expected: the grading on the target
of (ﬁl) reflects the fact that objects in MHM(X) are fairly motivic in nature, e.g., they give
variations of Hodge structures on an open subset of X. In contrast, in Theorem 6.1 we are
working with all constructible sheaves over the algebraically closed field C, so there is no
motivicity or even a Galois action.

The previous discussion suggests it might be useful to lift Theorem 6.1 to Q,-
coefficients and restrict to sheaves defined over a discretely valued field (so there is a Galois
action) in order to obtain a p-adic variant of (liﬁ). This can indeed be done, and the resulting
structure seems slightly cleaner than (ﬁ-l):

Theorem 6.4 (Riemann—Hilbert for Q,-coefficients, [3e]). Let K/Q,, be a finite extension.
Let X/ K be a smooth proper variety. Then there is a natural exact functor

RHyp : DéijT(X’ Qp) — DFeon(Dx),
b

where the source is a full subcategory of DZ,

(X, Qp) spanned by what we call “weakly
Hodge-Tate sheaves” (including all sheaves of geometric origin). This functor commutes
with proper pushforward, intertwines Verdier and Grothendieck duality, and interacts well

with the perverse t-structure.

Theorem 6.4 represents ongoing work in progress with Lurie, and the statement
above is not quite optimal (e.g., there is a variant for singular X).

Remark 6.5 (The case of local systems). The functor RHgp from Theorem 6.4 is not really
new for local systems: up to a certain nilpotent operator encoding that a weakly Hodge—Tate
local system is not quite de Rham, it coincides with the one appearing in [165, THEOREM 1.5]
(and is thus related to constructions from [2e3]; see also [1,74,87]). However, for geometric
applications such as Example 6.7 below, it is critical to apply RHgp to constructible com-
plexes that are not local systems.

Remark 6.6 (Why is the Hodge filtration automatic?). Theorem 6.4 implies that con-
structible Q,-sheaves F of geometric origin on a variety X /K as above have a functorially
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attached filtered Dy -module M := RHgp (F), i.e., the Hodge filtration on the Dx-module
M is actually determined by F', unlike in the correspondence (ﬁl). This discrepancy is ulti-
mately because the constructible sheaves in Theorem 6.4 carry Galois symmetries as they
are defined over K. Moreover, this is perfectly consistent with known phenomena in p-adic
Hodge theory that stem ultimately from the richness of the absolute Galois group G of K.
For instance, when X = Spec(K) and F = R f,Q,, for a smooth proper map f : ¥ — X,
we are simply observing that the Gg-representation H * (Y%, Q,) knows the de Rham coho-
mology of Hj, (Y/K) as a filtered vector space (and in particular knows the Hodge numbers
of X)) via the de Rham comparison; see [137] for a purely geometric application of this fact.

As Theorem 6.4 gives an honest functor, one can now directly apply RHgp to deep
theorems on the constructible side, such as the BBDG decomposition theorem [16], to obtain
highly nontrivial results on the coherent side. This mechanism appears robust enough to
yield some results in birational geometry that are traditionally best understood via mixed
Hodge module theory, e.g., Kollar’s vanishing theorems [148,149] (see [201, §25] for the Hodge
module proof); we sketch the argument for vanishing next to illustrate this idea.

Example 6.7 (Recovering Kollar vanishing, p-adically). Fix a finite extension K/Q,. Sup-
pose f : Y — X is a projective surjective morphism of proper K -varieties of dimensions
dy and dy, respectively, with Y smooth. Consider the functor

RH : D\?/HT(Y’ Qp) g Dgoh,gr(Y)

obtained by composing the functor RHgp from Theorem 6.4 with Q*(—) o gr*(—), as
in (ﬁ-l). Essentially by the local Hodge—Tate decomposition of [2e3], we have

RH(Q,[dy]) = €D 24 ldy — i)

with its natural grading, so i-forms have weight i. (If ¥ were singular, one would have a
similar formula with the Deligne—Du Bois variants Q’Y /K of differential forms, as in [79]
and [191, §7.3], on the right by [11e].) Pushing forward along f', using the proper pushforward
compatibility of RH, and extracting the weight dy summand gives

RH(Rf.Qp[dy])

On the other hand, the decomposition theorem [16,72] shows that

= Rfiwy.

Wt=dy

dy—dx

RfxQpldy] ~ ( P PJf’{—i]) ® N

i=—(dy—dx)

where each 7 ¢! is perverse and N is a summand of Rg.Q,[dy] with g : Yz — Z C X
being the restriction of f over the closed subvariety Z & X where f is not smooth. The
singular variant of the reasoning just used for f applied to g then shows that

d
RH(Rg*Qp[dy])Wtde = Rg*QY; ~ 0,
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where the last vanishing follows as Q’g = 0 since dy > dim(Yz) (see [110] for a purely
p-adic proof of this property of Deligne—Du Bois complexes). But then the same vanishing
is also true for the summand N of Rg«Q,[dy], so we learn that

dy —dx

Rfwy = RH(RfQpldy]), g, = P RH(IH[=i]),y, -
i=—(dy—dyx)

The perverse exactness properties of RH now imply that the ith summand on the right lies
in D= whence Rfywy € D% % a5 < dy —dy, ie.,

ij*a)y =0 forj > dY —dx,

proving the Kollar vanishing theorem [148, THEOREM 2.1]. From this perspective, one answer
to Kollar’s question “Why is wy better behaved than Oy ?” [149] could be the following: as
wy is the highest Hodge—Tate weight summand of RH(Q, [dy]). it does not see interference
from smaller dimensional varieties when moved around via operations such as R f.
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ABSTRACT

The evolution of a gas can be described by different models depending on the observation
scale. A natural question, raised by Hilbert in his sixth problem, is whether these models
provide consistent predictions. In particular, for rarefied gases, it is expected that con-
tinuum laws of kinetic theory can be obtained directly from molecular dynamics governed
by the fundamental principles of mechanics.

In the case of hard sphere gases, Lanford [46] showed that the Boltzmann equation emerges
as the law of large numbers in the low density limit, at least for very short times. The goal
of this survey is to present recent progress in the understanding of this limiting process,
providing a complete statistical description.
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FIGURE 1

At time ¢, the hard-sphere system is described by the positions (x{ (1))x<n and the velocities (v (t))x<n of the
N particles. Particles move in straight lines and when two particles touch each other at distance & > 0 (the
diameter of the spheres), they are scattered according to elastic reflection laws. The scattering rules, mapping the
precollisional velocities (v, v]S.) to the postcollisional velocities (v} ’ v}? "), are determined in terms of the relative
position w = (x7(t) — x{ (t))/e of the particles at the collision time 7. The collisions preserve the total
momentum v} + v = v + vj*?' and the kinetic energy %(\vflz + \v}?lz) = %(\vf'lz + Ivje.’\z).

1. AIM: PROVIDING A STATISTICAL PICTURE OF DILUTE GAS

DYNAMICS

1.1. A very simple physical model

Even though at the time Boltzmann published his famous paper [17], the atom-
istic theory was still dismissed by some scientists, it is now well established that matter
is composed of atoms, which are the elementary constituents of all solid, liquid, and gaseous
substances. The particularity of dilute gases is that their atoms are very weakly bound and
almost independent. In other words, there are very few constraints on their geometric arrange-
ment because their volume is negligible compared to the total volume occupied by the gas.

If we neglect the internal structure of atoms (consisting of a nucleus and electrons)
and their possible organization into molecules, we can represent a gas as a large system of
correlated interacting particles. We will also neglect the effect of long range interactions and
assume strong interatomic forces at very short distance. Each particle moves freely most of
the time and occasionally collides with some other particle leading to an almost instantaneous
scattering. The simplest example of such a model consists in assuming that the particles are
identical tiny balls of unit mass interacting only by contact (see Figure 1). We then speak of
a gas of hard spheres. All the results we will present should nevertheless extend to isotropic,
compactly supported stable interaction potentials [57,63].

This microscopic description of a gas is daunting because the number of particles
involved is extremely large, the individual size of these particles is tiny (of diameter ¢ < 1)
and therefore positions are very sensitive to small spatial shifts (see Figure 2). In practice,
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Case 1 : transport and collision (the velocities are scattered)

’
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FIGURE 2

Particles are very small (of diameter ¢ < 1) and therefore the dynamics is very sensitive to small spatial shifts. In
the first case depicted above, two particles with initial positions x1, x» and velocities v1, v, collide and are
scattered. In the second case, by shifting the first particle by a distance ¢ in the direction 7, the two particles no
longer collide and they move in straight lines. Thus a perturbation of order ¢ of the initial conditions can lead to
very different trajectories.

this model is not efficient for making theoretical predictions, and numerical methods are
often in favor of Monte Carlo simulations. The question we would like to address here is a
more fundamental one, namely the consistency of this (simplified) atomic description with
the kinetic or fluid models used in applications. This question was formalized by Hilbert
at the ICM in 1900, in his sixth problem: “Boltzmann’s work on the principles of mechan-
ics suggests the problem of developing mathematically the limiting processes, there merely
indicated, which lead from the atomistic view to the laws of motion of continua.”

The Boltzmann equation, mentioned by Hilbert and which we will present in more
detail later, expresses that the distribution of particles evolves under the combined effect of
free transport and collisions. For these two effects to be of the same order of magnitude,
a simple calculation shows that, in dimension d > 2, the number of particles N and their
diameter size & must satisfy the scaling relation Ne¢~! = O(1), the so-called Boltzmann—
Grad scaling [4e]. Indeed, the regime described by the Boltzmann equation is such that the
mean free path, namely the average distance covered by a particle traveling in straight line
between two collisions, is of order 1. Thus a typical particle trajectory should span a tube
of volume 1 x €97 between two collisions. This means that, on average, this tube should
intersect the position of one of the other (N — 1) particles (see Figure 3). Note that in this
regime the total volume occupied by the particles at a given time is proportional to N&? and
therefore is negligible compared to the total volume occupied by the gas. We speak then of
a dilute gas.
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FIGURE 3

Consider N spheres of diameter ¢ uniformly distributed in a box. If the mean free path is equal to 1, then the grey
tube of length 1 and section area of order gd—1 represents the volume spanned by a typical particle between two
collisions. The Boltzmann—Grad scaling N £4=1 = [ is tuned such that on average this tube intersects one particle.

1.2. Three levels of averaging

As already shown in the previous scaling argument, the equations that we want to
derive describe the behavior of “typical particles.” We therefore have to introduce several
averaging processes, and then to describe the average dynamics.

For a statistical description of a monoatomic gas, all particles are considered identi-
cal (same geometry, same mass, same interaction law, ...). This is referred to as the exchange-
ability assumption. The empirical distribution of particles is defined as

N
”zN(x’v) = %Z(gx—xf(t)(gv—vf(t)v (1.1)
i=1
where (x} (), v{(t))i<n stands for the positions and velocities of the N particles at time ¢
and §, stands for the Dirac mass at x = 0. This measure is completely symmetric (i.e.,
invariant under any permutation of the particle labels) due to the exchangeability assumption.
However, this first averaging is not enough to obtain a simple description of the dynamics
when N is large because of the instabilities mentioned in the previous section (see Figure 2)
which lead to a strong dependency in ¢ of the particle trajectories. We will therefore introduce
a second averaging with respect to initial configurations.

From the physical point of view, this averaging is natural as only fragmentary infor-
mation on the initial configuration is available. A natural starting point is the particle dis-
tribution f° = f°(x, v) which prescribes the probability for a particle to be at position x
with velocity v. As N is large, we assume that the initial data (X, Vi) = (xi, vi)1<i<N
are independent random variables identically distributed according to f°. This assumption
has, however, to be slightly corrected in order to take into account the exclusion between
particles |x; — x;| > ¢ for i # j. This statistical framework is referred to as the canoni-
cal ensemble [63]. This is a simple framework to derive rigorous foundations for the kinetic
theory, i.e., to characterize, in the large N asymptotics, the average dynamics and more
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precisely the evolution equation governing the distribution f(z, x, v) at time ¢ of a typical
particle.

In this paper, our goal is actually to go beyond this average dynamics, and to under-
stand in a fine way the correlations arising dynamically inside the gas. Fixing a priori the
number N of particles induces additional correlations and thus technical difficulties. To
bypass them, we introduce a third level of averaging, by assuming that the number N of
particles is also a random variable, and that only its average tuned by , = ¢~ @1 is deter-
mined according to the Boltzmann—Grad scaling. Roughly speaking, N is chosen according
to a Poisson law of mean close to 1., and then for any fixed N, the variables (X, Vi) are
identically distributed, and independent up to the spatial exclusion. More precisely, the vari-
ables (N, Xn, Vy) are chosen jointly under the so-called grand canonical measure which
will be introduced later in (2.3). This is referred to as the grand canonical ensemble and from
now on, we will use this setting.

We therefore seek to understand the statistical behavior of the empirical measure

N
1
nf(x, v) = M— Z 8x—xf(t)8v—vf(t)’ (12)

€ i=1

where the initial configuration (N, (X f\,o, Vlf,o)) is a random variable, but the microscopic

dynamics is completely deterministic (governed by the hard sphere equations represented in
Figure 1).

1.3. A probabilistic approach

The first question is to determine the law of large numbers, that is, the limiting
distribution of a typical particle when @, — oo. In the case of N independent identically
distributed variables (1;)1<i<n, the law of large numbers implies in particular that the aver-
age converges in probability to its expectation

N
1
N Z i m E(n).

i=1
For the interacting particle system, two difficulties arise. The first is that, even at time 0, the
variables (x;, v;)1<i<n are weakly correlated due to the exclusion. In the low density regime,
this problem is well understood by classical methods of equilibrium statistical mechanics
(see, e.g., [63]). In particular, denoting the average of any continuous test function / under
the initial empirical measure by

1 N
(e h) = —> h(x{*.v{).
Fe i 2

the following convergence in probability holds:

(ng , h) — / f%h(x,v) dxdv —— 0 under the grand-canonical measure.
Meg—>00

We stress the fact that, throughout this paper, the limit ;, — oo implies that the sphere
diameter ¢ tends also to 0 as both parameters are linked by the Boltzmann—Grad scaling
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wee?1 = 1. The second difficulty, which is the main challenge, is to understand whether

the initial quasiindependence is propagated in time so that there exists a function f(z, x, v)
such that the following convergence in probability holds:

(nf, h) — / f(@)h dxdv —— 0 under the grand-canonical measure
Meg—>00

on initial configurations, (1.3)

and whether f(¢) evolves according to a deterministic equation, namely the Boltzmann
equation. As we will see, this question is particularly delicate since the Boltzmann equa-
tion obtained in the limit is singular (see (2.1)). The major result proving this convergence
goes back to Lanford [46] and will be explained in Section 2.2.

The approximation (1.3) of the empirical measure neglects two types of errors. The
first is the fact that there are corrector terms which converge to 0 as ;, — +00. The second
is related to the vanishing probability of the initial configurations for which the convergence
does not hold. A classical question in statistical physics is to quantify more precisely these
errors, by studying fluctuations, i.e., deviations between the empirical measure and its expec-
tation. In the case of N independent and identically distributed random variables (1;)1<i<n»
the central limit theorem implies that the fluctuations are of order O(1/+/N) and the fol-
lowing convergence in law holds:

( Zm E(n)) 0 N (0, Var().

where N (0, Var()) is the normal law of variance Var(n) = E((n — E(#))?). In particular,
at this scale, some randomness is retrieved. Investigating the same fluctuation regime for the
dynamics of hard sphere gases consists in considering the scaled fluctuation field {7 defined
by duality

(65.H) = Vet ) — Eo((nf. ). (14

where / is a continuous test function, and [E, denotes the expectation on initial configurations
under the grand-canonical measure. A series of recent works [13-16] has allowed to charac-
terize these dynamical fluctuations, and to derive a stochastic evolution equation governing
the limiting process. These results will be presented in Sections 3.4 and 4.2.

The last question generally studied in a classical statistical approach is that of quanti-
fying rare events, i.e., of estimating the probability of observing an atypical behavior (which
deviates macroscopically from the average). For independent and identically distributed
random variables, this probability is exponentially small, and it is therefore natural to study
the asymptotics

an —m

I(m) := hm hm ——logIF’(
—0N
i=1

< 5) with m # E(n). 1.5)
The limit /(m) is called the large deviation function and it can be expressed as the Legendre
transform of the log-Laplace transform of a single variable u : R — log E(exp(un)) [23]. To

generalize this statement to correlated variables, it is necessary to compute a more global
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Laplace transform and this requires a control on the correlations with exponential accuracy.
The methods of dynamical cumulants introduced in [13,14] are a key tool to compute expo-
nential moments of the hard sphere distribution and, in this way, to control the measure of
events up to scales which are vanishing exponentially fast. We will give a flavor of those
techniques in Section 3.4.

Note that precise conjectures regarding those three questions are formulated by
Rezakhanlou in [62].

2. TYPICAL DYNAMICAL BEHAVIOR

2.1. Boltzmann’s great intuition

The equation which rules the typical evolution of a hard sphere gas was proposed
heuristically by Boltzmann [17] about one century before its rigorous derivation by Lan-
ford [46] as the “limit” of the particle system when p, — +o00. The revolutionary idea of
Boltzmann was to write an evolution equation for the probability density f = f(¢, x, v)
giving the proportion of particles at position x with velocity v at time ¢. In the absence of
collisions and in a domain without boundary, this density f would be exactly transported
along the physical trajectories x (t) = x(0) 4 v¢, meaning that f(¢,x,v) = f%(x — vt,v).
The difficulty consists then in taking into account the statistical effect of collisions. Insofar
as the size of the particles is negligible, one can consider that these collisions are pointwise
both in 7 and x. Boltzmann proposed therefore a rather intuitive counting:

* the number of particles with velocity v is increased when a particle of velocity v’
collides with a particle of velocity v}, and jumps to velocity v (see (2.2)). Notice
that here, the pair (v’, v) plays the role of precollisional velocities, while instead
in Figure 1 this notation was used for the postcollisional velocities in the particle
system;

* the number of particles with velocity v is decreased when a particle of velocity v
collides with a particle of velocity v, and is deflected into another velocity.

The probability of these jumps is described by a transition rate, referred to as the collision
cross-section b. The function b(v, v1, ) is nonnegative, depends only on the relative veloc-
ity |[v — v | and on the angle between (v — v1) and w, a scattering vector which is distributed
uniformly in the unit sphere SY~! € R?. For the hard sphere interactions, we shall see that o
keeps track of the way two hard spheres collide (see Figure 1) and that b(v — vy, ) =
((v — v1) - ®)+. In particular, it is invariant under (v, v;) — (v1, v) (exchangeability) and
under (v, v1, @) — (V', v}, @) (microscopic reversibility).

The fundamental assumption in Boltzmann’s theory is that, in a rarefied gas, the
correlations between two particles about to collide should be very weak. Therefore the joint
probability to have both precollisional particles of velocities v and v, at position x at time #
should be well approximated by f(, x, v) f(¢, x, v1). This independence property is called
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the molecular chaos assumption. The equation then states

hf+v-Vof =C(fLS)
S—— S——
transport collision
C(f. /), x,v) 2.1
- //[f(t,x, V) f(t, x,0)) — f(t,x,0) f(t, x, vl)] b(v—v1,w)dvidw,
gain term loss term cross section

where the scattering rules
v =v—((v—v1)-a))w, V] = v +((v—v1)-a))a) 2.2)

are analogous to the microscopic collision rules introduced in Figure 1, with the important
difference that w is now a random vector chosen uniformly in the unit sphere S¥~! C R¥.
Indeed, the relative position of the colliding particles has been forgotten in the limit ¢ — 0.
As a consequence, the Boltzmann equation is singular as it involves a product of densities at
the same point x.

Boltzmann’s idea of reducing to a kinetic equation the Hamiltonian dynamics
describing the atomistic behavior was revolutionary and opened the way to the description
of nonequilibrium phenomena by mesoscopic equations. However, the Boltzmann equation
was first heavily criticized as it seems to violate some basic physical principles. Indeed, what
made Boltzmann’s theory such a breakthrough, but also made it unacceptable by many of his
contemporaries, is that it predicts a time irreversible evolution, providing actually a quantita-
tive formulation of the second principle of thermodynamics. The Boltzmann equation (2.1)
has indeed a Lyapunov functional defined by S(¢) = — [[ f log f(t,x,v)dxdv and referred
to as the entropy, which can only increase along the evolution %S (t) = 0, with equality if
and only if the gas is at thermal equilibrium. At first sight, this irreversibility does not seem
to be compatible with the fact that the hard sphere dynamics is governed by a Hamiltonian
system, i.e., a system of ordinary differential equations which is completely time reversible.
Soon after Boltzmann postulated his equation, these two different behaviors were considered
by Loschmidt as a paradox and an obstruction to Boltzmann’s theory. A fully satisfactory
mathematical explanation of this issue remained open during almost one century, until the
role of probability was precisely identified: the underlying dynamics is reversible, but the
description which is given of this dynamics is only partial (obtained by averaging or looking
at the most probable path) and therefore is not reversible.

2.2. Lanford’s theorem
Lanford’s result [46] shows in which sense the Boltzmann equation (2.1) is a good
approximation of the hard sphere dynamics. Let us first define the initial distribution.

Initial data. Consider T¢ = [0, 1]¢ the unit domain with periodic boundary conditions
and f° = f°(x,v) a Lipschitz probability density in T? x R?, with Gaussian tails at large
velocities. To define a system of hard spheres which are initially independent (up to the exclu-
sion) and identically distributed according to f°, we introduce the grand canonical measure:
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the probability density of finding N particles with coordinates Zn = (x;, v;)i<n is given
by
1
N!

1 u¥
Wy(ZN) = oo

N

[T/ v) [[sjize. for N =0.1.2,.... (23)
i=1 ikj

where the constant Zf is the normalization factor of the probability measure. Once the
random initial configuration is chosen, the hard sphere dynamics evolve deterministically

and the corresponding probability and expectation on the particle trajectories will be
denoted by P and E,.

Lanford’s result can be stated as follows (this is not exactly the original formulation,
see in particular Section 2.5 below for comments).

Theorem 2.1 (Lanford). In the Boltzmann—Grad limit (fLe — 00 with /,Ls{;‘d_l = 1), the
empirical measure 1} of the hard sphere system defined by (1.2) concentrates on the solution

of the Boltzmann equation (2.1), i.e., for any bounded and continuous function h,
(nf, h) — / f(@)hdxdv| > 8) =0,

on a time interval [0, T1] depending only on the initial distribution f°.

Vé > 0, lim PE(
Meg—>00

Let us comment on the time of validity 77, of the approximation. This time depends
on the initial data f° and turns out to be of the order of a fraction of the mean time between
two successive collisions for a typical particle. This time is large enough for the microscopic
system to undergo a large number of collisions (of the order O(¢)), and in particular irre-
versibility already shows up at this scale. But this time is (far) too small to see phenomena
such as relaxation towards (local) thermodynamic equilibrium, and a fortiori hydrodynamic
regimes. Physically we do not expect this time to be critical, in the sense that the dynam-
ics would change nature afterwards. Actually, in practice the Boltzmann equation is used in
many applications (such as calculations for the reentrance of spatial vehicles in the atmo-
sphere) without time restriction. However, it is important to note that a time restriction may
not be only technical: from the mathematical point of view, one cannot exclude that the Boltz-
mann equation exhibits singularities (typically, spatial concentrations which would prevent
making sense of the collision term, and which would also contradict locally the low density
assumption). In order to construct global in time solutions for the Boltzmann equation, one
actually has either to consider small fluctuations around some equilibrium, or to introduce
a renormalization procedure [28]. These two approaches rely strongly on entropy production
estimates, which do not have any counterpart at the microscopic level (i.e., for fixed pg, €). In
the current state of our knowledge, the problem of extending Lanford’s convergence result to
longer times faces serious obstructions, even to the time of existence and uniqueness of the
solution to the Boltzmann equation. This will be discussed later on in Section 4.1 (see also
Section 5). In Section 4, we will also present some recent results in this direction, providing
a global in time convergence for the fluctuation field at equilibrium.
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2.3. Heuristics of the proof

Let us now explain informally how the Boltzmann equation (2.1) can be guessed
from the particle dynamics. The goal is to transport the initial grand-canonical measure,
defined in (2.3), along the dynamics and then to project this measure at time ¢ on the 1-point
particle phase space. We therefore define by duality F (¢, z) the density of a typical particle
with respect to the test function £ as

/Ff(t,z)h(z)dz = E¢((n}. h)), 2.4)

where the empirical measure r; was introduced in (1.2). More generally, we are going to
introduce n,i ;» the natural extension of the empirical measure 7r{ to k distinct particles. For
simplicity, the particle coordinates (x{ (), vy (¢)) at time ¢ will be denoted by zf(¢). For any
test function Ay of k variables, we define

(o hie) = Z hie (25, (). ... 25, (1)) (2.5)

and the sum is over the k-tuples of indices among all the particles at time z. We stress the
fact that ”1?, , differs from (nf)®k as the variables are never repeated. We will study the k-
particle correlation functions F,} which are symmetric finite dimensional projections of the
probability measure

/F]f(l‘, Zk)hk(Zk)de = ]Es((nli,t,hk>), (2.6)

denoting Z = (x;, v;)1<i<k. The correlation functions are key to describe the kinetic limit.
In particular, Theorem 2.1 shows that F (¢, z) converges to the solution of the Boltzmann
equation f(¢) in the Boltzmann—Grad limit (s — oo with e?~! = 1). Let us explain
briefly why this holds.

Let & be a bounded smooth test function on T4 x R¢. Consider the evolution of the
empirical measure during a short time interval [¢, f + 6] and split the different contributions
according to the number of collisions for each particle

Ee[{n7ys.h)] = Ee(n7 . h)]

=E[Mi 3 (h(zf(t+5))—h(z;(t)))}

no collision

+E5[2LE ; (=7 +8)) +h(z( +8)) — (zf(t))—h(zf(z)))]+0(52),

with 1 collision

2.7)

and we are going to argue that the error term §2 takes into account all the groups of particles
undergoing at least 2 collisions in the short time interval 6.

The asymptotic behavior when § tends to 0 will be analyzed now for each term
in (2.7). The transport contribution arises from the particles moving in straight line without
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FIGURE 4

Two particles collide in the time interval [¢, ¢ + §] according to the scattering rules of Figure 1. The collision
occurs at time 7 if x; —x2 + (t —1)(v] — v2) = —ew. Therefore x, has to be in a tube with axis v{ — v and the
coordinates z1, z5 at time ¢ can be parametrized by (x1, v1, v2, T, ®). This change of variables has a Jacobian
dz1dzy = €971 (v1 —v2) - w)+dwdtdx1dvidv,.

collisions; indeed, if the distribution F} is smooth enough, one gets

Es[i Z (h(zf(t + 8)) - h(zf(t)))i| = S/dlef(t,zl)vl - Vyih(z1) + 0(8).
e nocd{lision

We turn next to the term involving one collision. Note first that two particles starting
at (xq1,v1) and (x,, vp) at time ¢ collide at a later time 7 < ¢t + § if the following geo-

metric condition holds (see Figure 4):
x1—x2+ (t—1)(v1 —v2) = —sw. (2.8)

This implies that their relative position must belong to a tube oriented in the direction v; — v,
with length 8|v; — v,| and width e. This set has a size proportional to §¢?~1|v, — v, | with
respect to the Lebesgue measure. More generally, a series of k — 1 collisions between k
particles imposes k — 1 constraints of the previous form. Using the Boltzmann—Grad scaling
w1 = 1 and neglecting the velocity contribution, one can show that this event has a
vanishing probability bounded from above by

(—) . 2.9)
e

Since there are, on average, u’g ways of choosing these k colliding particles, we deduce that

the occurrence of k — 1 collisions in (2.7) has a probability of order !

Me. This explains
why in (2.7) the probability of the terms involving more than 1 collision, i.e., involving k > 3
colliding particles, has been estimated by O(82).

This crude estimate is not sufficient to recover the collision operator C( f, f) of the
Boltzmann equation (2.1). We are going now to analyze more carefully the term with one

collision in (2.7) in order to identify C( f, f). As the collision term involves 2 particles, it is
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no longer a function of the empirical measure. The correlation function F; defined in (2.6)
will be needed to rewrite it :

S (W4 8) + h(E G+ 8) — h(E W) - h(zj(t)))}

@.7)

1
Coll = Eg[
2fde

with 1 collision

= % / dz1dza F3(t, 21, 22)11 and 2 cottice [1(21(8)) + h(22(8)) — h(z1) — h(z2)]
+0(8), (2.10)

where z1(§), z2(8) stands for the particle coordinates after a time §. After the collision, the
velocities are scattered to v/, v} according to the deflection parameter  (see Figure 4), but
the positions are almost unchanged as § < ¢. Since the function £ is smooth, the last term
in (2.10) can be approximated by the velocity jump

Ah(zy, 23, 0) = h(xl, v’l) + h(xz, v’z) —h(z1) — h(z). (2.11)

By condition (2.8), it is equivalent to parametrize two colliding particles either by their coor-
dinates z1, z5 at time ¢ or by their coordinates at the collision time r which are determined by
X1,V1, T, w, Vs (see Figure 4). This change of variables has a Jacobian 4~ ((v; — v2) - @) 4.
Since ¢4~ = 1/u, and § < &, we deduce from (2.11) that

1 t+48
Coll = 5[ dt / dzydvadwF3 (1,21, 22) (v1 — v2) - a))+Ah(zl,22,w) + 0(8),
t
2.12)

with z; = (x1 + ew, v3), as both particles are next to each other at the collision time. The
cross-section b(v; — vz, w) = ((v] — v2) - @)+ in the Boltzmann equation can be identified
from the equation above. From the previous heuristics, the relation (2.7) provides “almost”
a weak formulation of the collision operator in (2.1) in the limit § — 0,

2 / Az FE(t. 20)h(z1)
_ / dzy FE(,z1)v1 - Vh(z1)

1
+ > / dzy dw dvaby,—x,—sw F (1,21, 22) ((v1 — v2) - w)+Ah(21,22,a)), (2.13)

where we used the Dirac notation to stress that z, = (x1 4+ ew, v3). The key step to close
the equation is the molecular chaos assumption postulated by Boltzmann which asserts that
the precollisional particles remain independently distributed at any time so that

F;([,Zl,Zz)ZFlg(l‘,Zl)Flg(l,Zz). (2.14)

When the diameter of the spheres ¢ tends to 0, the coordinates x; and x, coincide and the
scattering parameter w becomes a random parameter. Assuming that F{ converges, its limit
has to satisfy the Boltzmann equation (2.1). Establishing rigorously the factorization (2.14)
requires implementing a different and more involved strategy which will be presented in
Section 2.4.
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2.4. Some elements of proof

Lanford’s proof [46] has been completed and improved over the years; we refer to the
monographs [21, 22, 67] for accounts of the related results. In the more recent years, several
quantitative convergence results were established, and the proofs extended to the case of
compactly supported potentials [37,57,58]. In the following, we sketch the main steps of the
proof for the hard sphere dynamics.

The proof of Lanford’s theorem relies on the study of the correlation functions F}}
defined in (2.6), characterizing joint probabilities of k particles. In particular, we do not
consider directly the empirical measure, but only its average F; under the grand-canonical
probability P.. The starting point is the system of ordinary differential equations for the hard
sphere positions and velocities (see Figure 1), which provides, by applying Green’s formula
to the Liouville equation, the following equation on the first correlation function:

0 Ff +v-VeFf = C*(Fj).
N—— N’
transport collision at distance &

C*(F3)(t. x,v)

= //[Ff(t,x, v, x 4w, 0) = F5 (6, x,0,x —ew,01)] (v —v1) - 0) , dvido.
——
gain term loss term cross-section

(2.15)

A weak form of this equation has been stated in (2.13). In the limit u, — oo, we expect that
it can be closed by the factorization Fy ~ F} ® Fy, called the propagation of chaos (2.14).
We are unable to prove it directly, nor will it be shown directly from (2.15) that the limit F;
of F} satisfies an infinitesimal evolution equation of the previous form. We will rather obtain
a series expansion of Fp, which will be identified with the solution of the Boltzmann equation
by a uniqueness argument. The proof is therefore very different from the heuristics presented
in Section 2.3.

The proof can be divided into three steps. The first is to rewrite F{ (¢, x, v) as an
“average” (weighted with the initial correlation functions F ks ’0) of all possible dynamics
such that at time ¢, a particle stands at position x with velocity v. The analytical way of
doing so is to derive evolution equations similar to (2.15) for all correlation functions F}/,
and then to write the iterated Duhamel formula for this hierarchy of equations, called the
BBGKY hierarchy after Bogoliubov—Born—Green—Kirkwood—Yvon (see [22] for an account
and references). We will not give the details of these technical computations here, but will
retrieve the final series expansion (formally) using a more probabilistic perspective based on
geometric representations in terms of pseudotrajectories.

The idea is to track back the history of the particle sitting at position x with velocity v
at time ¢, referred to as particle *, in order to characterize all initial configurations which
contribute to F (¢, x, v). We start by following (backward in time) this particle, which has a
uniform rectilinear motion x (¢') = x — v(¢ — ') until it collides with another particle, called
particle 1, say at time #,. Note that this collision can actually be either a physical collision
(with scattering) or a mathematical artefact coming from the loss term of equation (2.15)
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FIGURE 5

The sequence of collisions in the backward history can be encoded in a tree with the root indexed by the particle *
and n branchings (here n = 4). At each creation time, the label of the particle colliding with the fresh particle is
indicated. For example, at time 73, the particle * collides with particle 3 so that az = *.

(particles touch each other but are not deflected). Thus in order to understand the history of
particle x, we need to track back the history of both particles % and 1 before time #;. From
time t1, both particles are then transported by the 2-particle backward flow until the next
collision, say with particle 2 at time #,, etc., and we iterate this procedure until time 0. Notice
that in between the creations of new particles, the particles may collide between themselves
as they are transported by the backward hard sphere flow: this will be called recollision. The
history of the particle * can be reconstructed (see Figure 5) by prescribing

¢ the total number of collisions 7;

* the combinatorics of collisions, encoded in a tree a € +4; , with root indexed by
the label * and n branchings (a; € {*,1,...,i — 1} for 1 <i <n);

* the collision parameters (T, Vi, 2,) = (ti, vi, wi)1<i<n With 0 <, < -+ <
n<t.

We then define the pseudotrajectory Wf , starting from z = (x, v) at time  as follows:
e on |t;, t;—1[, the group of i particles is transported by the backward flow;
* at time #;, particle i is added at position x4, (#;) + ew;, with velocity v;;

« if the velocities (v;, vg, (ti+)) are postcollisional, meaning that (v, (ti+) —v;) -
w; > 0, then they are instantaneously scattered as in Figure 1 (with deflection
angle w;).

We stress the fact that pseudotrajectories are not particle trajectories of the physical system,
but a geometric interpretation of an iterated Duhamel expansion. In particular, pseudo-
trajectories do not involve a fixed number of particles, they are coded in terms of random
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trees (with creation of particles at random times as in Figure 5) and of signs associated with
the gain and loss terms of the collision operator.

Note that not all collision parameters (7, V},, 2;,) are admissible since particles
should never overlap. We denote by §°¢ the set of admissible parameters. With these nota-
tions, we obtain the following representation of Fy:

+o00
Fit.x.v)=)" " / dT,dV,dQu€ (V5 ) F10, (W5 ,(0)). (2.16)

n=0aeh, g°
where W{ , (0) stands for the particle configuration at time O of the pseudotrajectory and the
term ‘C’(\Ilin) comes from the collision cross-sections

n
e(vi,) = [T((v —vai (57)) - ).
i=1

The elementary factor indexed by i is positive if the addition of particle i corresponds to a
physical collision (with scattering), and negative if not.

Remark 2.2. A similar formula holds for the k& point correlation function Ff, except that
collision trees a € sy , have k roots and n branchings.

Formula (2.16) for the first correlation function has been obtained in a rather formal
way. In order to study the convergence as 1, tends to infinity, we need to establish the uniform
convergence of the series (2.16). We actually use very rough estimates (forgetting in partic-
ular the signs of the gain and loss terms in (2.15), although the cancelations between these
different contributions should improve the estimates) and prove that the series is absolutely
convergent for short times uniformly with respect to ¢. Note that this is the only argument in
the proof which requires a restriction on short kinetic times.

Let us now estimate the size of the term in (2.16) corresponding to n branchings.
The different contributions are:

* a combinatorial factor taking into account all the branching choices |#A1,,| = n!;
* the volume #"/n! of the simplex in time {t, < --- <t; <t};
e the L°°-norm of Ff_fn which grows like || £ 0%

This leads to an upper bound of the form (C|| f°|loot)” which implies that the series is
absolutely convergent uniformly in & on a small time interval depending only on a (weighted)
L*®-norm of f°.

Remark 2.3. For the sake of simplicity, we do not discuss here the problem of large veloc-

ities which create a divergence in the collision cross-section € (¥5 ). It can be dealt with

similar, but more technical arguments, introducing weighted functional spaces encoding the
. . . e,0 .

exponential decay of correlation functions F|’, at large energies.

The convergence of F{, as e tends to infinity, will then follow termwise. In this
third step of the proof, we therefore fix the number » of branchings, as well as the collision
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FIGURE 6

When two particles recollide in the backward flow for fixed ¢, their velocities are scattered and the resulting
pseudodynamics is quite different from the Boltzmann pseudodynamics. The sets B, are the sets of integration
parameters leading to at least a recollision within a pseudotrajectory (as on the picture with n = 4).

tree a € A ,. One goal is to understand the asymptotic behavior of the pseudotrajectories
W1 - Going back to their definition, we see that it is natural to define limit pseudotrajectories
W, , (when p, tends to 0o) as follows:

* ont;,t;—1], the group of i particles is transported by the backward free flow (since
the particles become pointwise in the limit, they cannot see each other);

* attime ¢;, particle i is added at position xg; (ti+), with velocity v; (the spatial shift
at the creation time disappears);

« if the velocities (v;, vg; (ti+)) are postcollisional, then they are scattered (with
deflection angle w;).

Note that in the limit, all collision parameters are admissible (since the non overlap condition
disappears). With this definition of W; ,, we see that there is a very natural coupling between
Wi, and Wy ,: in most cases, the velocities are exactly equal and the positions differ at most
by ne. The only problem is when two particles of size ¢ recollide (see Figure 6) in the back-
ward flow on some interval ]¢;, #;—1 [ : in this case they are deflected, and the pseudotrajectory
Wi, is no longer close to Wy, on [0,7;—1]. We therefore split the set of collision parameters
(T, Vi, Q) into two parts (and correspondingly split each term in (2.16) into two integrals):
the first subset corresponds to admissible integration parameters such that there is no rec-
ollision in W{ ,, and the second subset, denoted by I§,§ corresponds either to nonadmissible
integration parameters (leading to some overlap) or to integration parameters for which ¥{ ,
has at least one recollision. Using the coupling between W{ , and W , and the regularity of
the initial limiting correlation functions (which are nothing else than ( £ )®1+7) we easily
obtain the convergence of the first integral. It remains then to prove that the set l§j has vanish-
ing measure so that the corresponding integral has a negligible contribution. The recollision

(or overlap) condition implies that the relative velocity between the two recolliding particles
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Jj1 and j, has to be in a small cone, which imposes strong constraints on the last creation
involving either j; or j,. We do not detail these geometric estimates here, but they are quite
explicit and provide the following rate of convergence for ¢ sufficiently small (independently
of €)

||Ff(t) — Fl(t)”oo < Ce¢* foranya < 1,

provided that £ is Lipschitz. This concludes the proof, as the series expansion defining F;
turns out to be the (unique) solution of the Boltzmann equation with initial data #°. Note
that the convergence still holds if £ is only continuous, but, in that case, we lose the explicit
rate of convergence.

Remark 2.4. Actually one can prove (see [12]) the following quantitative propagation of
chaos, where the sets 8} have vanishing measure:

k
sup sup F,f(t,Zk)—l_[f(t,z,-) < Cke, 2.17)
1<Tp, Z; ¢8¢ =1
for some o > 0 and a constant C depending on the initial measure f°. This is a much stronger
notion of convergence than the one stated in Theorem 2.1.

2.5. On the irreversibility

In this paragraph, we are going to argue that the answer to the irreversibility para-
dox is hidden in the chaos assumption (2.14) which holds only for specific configurations.
Understanding the range of validity of the chaos assumption will be the key to derive not
only the Boltzmann equation, but also the stochastic corrections.

Actually, the notion of convergence which appears in the statement of Theorem 2.1
differs slightly from the one used in the proof (see Section 2.4): Theorem 2.1 states the
convergence of observables (x7, 1), that is, a convergence in the sense of measures since
the test function & has to be continuous. This convergence is rather weak and is actually
not enough to ensure the stability of the collision term in the Boltzmann equation since
this term involves traces. In the proof of Lanford’s theorem, one actually considers all the
correlation functions F introduced in (2.6), and one shows that each one of these correlation
functions converges uniformly outside a set 8B; of vanishing measure when w, tends to
infinity (see Remark 2.4). Moreover, the set B of bad microscopic configurations (¢, Zx) (on
which F} is not converging) is somehow transverse to the set of precollisional configurations
(as can be seen in Figure 7, two particles in B3 tend to move far apart so that they are
unlikely to collide). The convergence defect is therefore not an obstacle to taking limits in
the collision term, however, these singular sets 32 carry important information on the time
correlations: in particular, they encode the memory of the evolution and by neglecting them
it is no longer possible to reverse time and to retrace the dynamics backwards. Thus by
discarding the microscopic information encoded in B;, one can only recover an irreversible
kinetic description which is far from describing the complete microscopic dynamics. The
singular sets B3 ,’i have been described in [12,24,68] and their complex structure has been made
more precise in [14] by means of the cumulants which will be introduced in Section 3.3.
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F3(t, %1, vy, X5, vp) = FY (2, x1, v)) Fi (2, X3, v) F3(t, %1, vy, X, ) 2 Fi(, x1, v FT (8, %, v))

FIGURE 7

(Left) Particles 1 and 2 will encounter in the future so they are likely not to have collided in the past, and we
expect that the correlation function F factorizes in the limit e — oc. (Right) The particle coordinates belong to
the bad set B5, meaning that they have met in the past. In this case, microscopic correlations have been built
dynamically and the factorization (2.14) should not be valid.

The sets leading to a forward or a backward collision have a similar geometric structure and a similar size which
vanishes with respect to the Lebesgue measure when ¢ tends to 0. However, they play different roles: the memory
of the system is encoded in the sets 8B5; on the other hand, the forward sets are the only ones relevant for the
chaos assumption. The sets B i are built similarly in terms of the backward flow of k particles (see [12]).

3. CORRELATIONS AND FLUCTUATIONS

3.1. From instability to stochasticity

In order to understand the specific features of the hard sphere dynamics in the low
density regime (dilute Boltzmann—Grad limit), it is worthwhile to compare its behavior to the
mean field dynamics. For this, let us consider more general microscopic dynamics interpo-
lating between the short range and the mean field regimes. For a given number N of particles,
we set

, d d 1 Xi —Xj
Vi < N, Exi = Vi, Evi = —WJZVQJ(T),

for some smooth repulsive (radial decreasing) potential @ : [0, 1]¢ — R+ and a fixed param-
eter A € (0, 1]. This dynamics is Hamiltonian and by choosing A = ¢ (with Ne¢~! = 1),
one recovers dynamics with a short range potential which behaves qualitatively as the hard
sphere gas and which follows a Boltzmann equation in the limit [37,57]. For fixed A, however,
say A = 1, the limiting behavior is mean field like and the typical density follows the Vlasov
equation [2e]

d; f(t,x,v)+v-Vyf(t,x,v) = (/ dydwf(t,y,w)Vo(x — y)) -V f(t, x,v).

The Vlasov equation has very different properties from the Boltzmann equation, in partic-
ular it is reversible, as the microscopic dynamics. Furthermore, contrary to the hard sphere
dynamics, the precise structure of the initial data plays no role in the limiting behavior and it
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has even been shown in [2e] that the fluctuations of the initial data are simply transported by
the linearized Vlasov equation. Finally, we stress the fact that the chaos assumption (2.14)
is known to be propagated in a very strong sense for the mean field dynamics [38, 42].

A drastic difference between the two regimes comes from the fact that the mean
field dynamics is not sensitive to a small shift of the coordinates, as the function ® is smooth
for fixed A. This is not the case for the choice A = ¢ in the Boltzmann—Grad limit. Indeed, in
the latter situation the scattering behaves qualitatively as in Figure 2, where asymptotically
for & small the deflection parameter decouples completely from the positions and becomes
random (cf. Section 2.3). This gives a probabilistic flavor to the surface integral in Boltz-
mann’s collision operator. As we shall see in Theorem 3.4, the corrections to the limiting
Boltzmann equation are driven by a stochastic noise which is also generated by the dynami-
cal instabilities. Thus the limiting structure of the hard sphere dynamics behaves qualitatively
as a stochastic process, combining free transport and a random jump process in the velocity
space. Notice that in the mean field regime, some instability remains for large times O (i)
and this is expected to lead to the Lenard—Balescu stochastic correction [3e,52].

The crucial role of randomness in the low density limit was understood by Mark
Kac. He devised a purely stochastic process [43] whose limiting distribution is a solution to
the homogeneous Boltzmann equation. Mathematically, at the microscopic level, this model
has a very different structure from the Hamiltonian dynamics previously mentioned. Indeed,
it is a Markov chain restricted only to particle velocities and the collisions are modeled by
a jump process with a random deflection parameter. For Kac’s model, the chaos assumption
has been derived in a very strong sense [51].

In the following sections, we are going to argue that the hard sphere dynamics shares,
however, many similarities with Kac’s model, not only at the typical level, but also at the level
of the fluctuations and of the large deviations. In this respect, random modeling is an excellent
approximation of the hard sphere dynamics. The key step to accessing this refined statistical
information will be to understand more precisely the chaos assumption (2.14).

3.2. Defects in the chaos assumption

Going back to the equation (2.15) on F{, one can see that up to the small spatial
shifts in the collision term (known as Enskog corrections to the Boltzmann equation), devia-
tions from the Boltzmann dynamics are due to the defect of factorization F; — Ff ® F7, the
so-called second order cumulant. In terms of our geometric interpretation, this corresponds
to pseudotrajectories which are correlated. Recall that F; can be described by interact-
ing collision trees with two roots, say labeled by 1* and 2*, and n; + n, branchings (see
Remark 2.2), while the tensor product is described by two independent collision trees each
with one root, and n1, n, branchings, respectively. The main difference when building the
pseudodynamics corresponding to F; is that particles from tree 1* and 2* may (or may not)
interact. We start by extracting the pseudotrajectories of F; having at least one interaction
between the two trees, which will be called an external recollision (see Figure 8) in contrast
with a recollision inside a collision tree which will be called internal.
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FIGURE 8

Among the pseudodynamics describing F?, we separate those having a recollision between trees 1* and 2*, and
those where particles from tree 1* and particles from tree 2* remain at a distance greater than &, which will be
denoted by +£. In this picture, n; = np = 1.

1* 2* 1* * 1* 2
* ® ~
O,
Non recolliding Independent Overlapping

FIGURE 9
Expanding the dynamical exclusion condition leads to the definition of overlaps.

We stress that pseudodynamics without external recollision are not independent
since they satisfy a dynamical exclusion condition. We therefore decompose the exclusion
condition 1+ o+ = 1 — 112+ (see Figure 9).

Note that this decomposition is a pure mathematical artefact to compare pseudo-
dynamics without external recollision with independent pseudodynamics. In particular, the
overlapping condition 1* ~ 2* does not affect the dynamics itself (overlapping particles
are not scattered!). If we ignore the correlation encoded in the initial data, we then end up
with a representation of the second order cumulant by trees which are coupled by external
recollisions or overlaps (see Figure 10).

Remark 3.1. Recall that the initial measure does not factorize exactly F5° # F{° ® F{*°
due to the exclusion condition. Thus the initial data induces also a small correlation which
is actually much smaller than the dynamical correlations (by a factor €), so we will neglect
it in the following.

Recolliding and overlapping pseudotrajectories should provide a contribution of
order 1in L*to F} — F} ® F}.Forni =n, =0, i.e., for collision trees without branchings,
this defines the bad set of configurations 85 (mentioned in Sections 2.4-2.5) encoding the
collisions between two particles in the backward flow (see Figure 7). In particular, by choos-
ing zy+ and z+ at time ¢ such that |[x1+ — xp+ — (vy* — v2+)(t — )| < & for some s <1,
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FIGURE 10
The second order cumulant corresponds to pseudotrajectories with at least one external recollision or overlap.

the contribution to the cumulant of the pseudodynamics with n; = n, = 0 is expected to
be nonzero (except at equilibrium when recollisions and overlaps almost compensate). The
smallness of the second cumulant F; — F¥ ® Fy actually comes from the size of its sup-
port. The right norm to measure the smallness of correlations is thus the L'-norm and the
quantity to be studied asymptotically is the rescaled second-order cumulant

15 = pe(F3 — Ff ® FY). 3.1)

With this scaling, we expect that £’ has a limit f, in the sense of measures. The set sup-
porting the function f5 records the correlation between two pseudotrajectories (rooted in 1*
and 2*) via arecollision or an overlap. On the other hand, once the two pseudotrajectories are
correlated by a recollision or an overlap then any additional recollision, overlap or internal
recollision will impose stronger geometric constraints and they can be discarded in the limit
as in Lanford’s proof (see Figure 6). Therefore the limit f, corresponds to pseudotrajectories
with exactly one (external) recollision or overlap on [0, ¢].

In order to understand fluctuations with respect to the Boltzmann dynamics, we
also need to understand time correlations. To characterize these time correlations, one can
proceed exactly in the same way, using a kind of duality method with weighted pseudo-
trajectories. Recall that F; is by definition

/Fzs(f,21*,22*)h1(21*)h2(22*)d21*d22* = Es( Z hy(z5 (1) hz(Z,Z(f)))

: (i1,i2)
meaning that there is a weight /1 (z1*)h2(z2+) at time ¢ in the geometric representation. The
counterpart for the time correlations

Fi[(hi. 6)i<2] = ( > ha(zf (00)ha(z 12(92))) (3.2)

: (i1,2)
is to construct the same pseudotrajectories W5 ,, starting from some 6, > 61, and to evaluate
the weight /1; on the resulting configuration of particle 1* at time 6; and the weight 4, on
the resulting configuration of particle 2* at time 6, (see Figure 11).
We then define the rescaled weighted second order cumulant

S his 0)i<a] = pe(F5[(hi. 6:)i<a| — Fi[h1, 011 Ff [h2, 62]), (3.3)
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FIGURE 11
Time correlations (3.2) can be computed by introducing weights along the pseudotrajectories.

and performing the same geometric analysis as before, the cumulant £ [(%;, 0;); <] at dif-
ferent times converges also to a limit f2[(%;, 6;)i<2] as pe diverges.

3.3. Higher-order correlations and exponential moments

For a Gaussian process, the first two correlation functions F7, Fz"3 determine com-
pletely all other correlation functions F£, but in general part of the information is encoded
in the (scaled) cumulants of higher order defined by (restricting here for simplicity to only

one time)
k L
FE@Zi) = pE Y ST (0 e - D] B Zay).
(=1 Uej)lf i=1
where J’If is the set of partitions of {1,...,k} in £ parts with o0 = {071, ..., 0¢}, |0;| stands

for the cardinality of the set 0; and Z,, = (zj);eo;. Each cumulant encodes finer and finer
correlations. Contrary to correlation functions Fy, they do not duplicate the information
which is already encoded at lower orders.

From the geometric point of view, one can extend the analysis of the previous
paragraph and show that the cumulant of order k can be represented by k pseudotrajec-
tories which are completely connected either by external recollisions or by overlaps (see
Figure 12).

One can classify these completely connected pseudotrajectories by associating them
with a dynamical graph G with k vertices representing the different trees encoding the exter-
nal recollisions (edge with a + sign) and the overlaps (edges with a — sign). Furthermore, one
can define a systematic procedure to extract from this connected graph G a minimally con-
nected graph T by identifying k — 1 “clustering recollisions” or “clustering overlaps” (see
Figure 13). Here we use a cluster expansion reminiscent of the method originally developed
by Penrose to deal with correlations in the grand canonical Gibbs measure [54,55].

We then expect the scaled cumulant f; to decompose in a sum of 2k=11k=2 terms
obtained by grouping all pseudotrajectories compatible with each one of the signed mini-
mally connected graphs T (recall that k=2 is the number of trees on k labeled vertices,
known as Cayley’s formula). For each given signed minimally connected graph, the recol-
lision/overlap conditions can be written as k — 1 “independent” constraints on the config-
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FIGURE 12
The cumulant of order k corresponds to pseudotrajectories issued from z1+, ..., zx+ completely connected by
external recollisions or overlaps.

FIGURE 13
All recollisions and overlaps from the pseudotrajectories depicted in Figure 12 are encoded in the graph G. Only
recollisions/overlaps which do not create a cycle (going backward in time) are kept in the tree 7'.

uration z*, ..., Zg+ at time . Therefore, neglecting the velocity dependence as in (2.9),
this contribution to the cumulant f;° has a support of size O((z/ we)¥~1) with respect to
Lebesgue measure and from this we deduce the expected L' estimate

k—1
Ct
k—1 k=13 k—2 k1
FEl < w2k x (— < kN (Cryk. (3.4)
” “L & ; .
scaling number of signed trees
support size

Furthermore, a geometric argument similar to the one developed in Lanford’s proof (see
Section 2.4) and already used in the study of the second order cumulant allows showing
that f;° converges to some limiting cumulant f; and that only the pseudotrajectories having
exactly k — 1 recollisions or overlaps (and no cycle) contribute in the limit.

This geometric approach allows characterizing all corrections to the chaos assump-
tion, up to exponential order, at least for times of the same order as T [13,14]. Actually,
a classical and rather straightforward computation (based on the series expansions of the
exponential and logarithm) shows that cumulants are nothing else than the coefficients of
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the series expansion of the exponential moment

JE(h) = Milog]Ea[exp(,ug(nf,h))] = MilogIE [exp(Zh £(1) )] (3.5)

&€

_Zk'/fk(; zk)]"[ heD _1)dzy.

i=1
The quantity 4 (%) is referred to as the cumulant generating function. Estimate (3.4) provides
the analyticity of 4§ (%) as a functional of e”, and this uniformly with respect to & (small
enough). The limit d; of J¢ can then be determined as a series in terms of the limiting
cumulants f.

Instead of using the cumulant expansion, we present a heuristic approach to char-
acterize the limit 4, as the solution of the Hamilton—Jacobi equation (3.8). At first reading,
this formal derivation can be skipped and the reading can be resumed at Equation (3.8). We
proceed as in Section 2.3 for the Boltzmann equation (2.1) and write the formal equation
satisfied by 47 (/) for fixed . Considering an evolution for a short time § as in (2.7) and then
taking a formal limit § — 0, we get

Ee[ exp (D hGE@)] d:95 )
i dxt
= ]E,;|:(ILL Z % . Vxh(zj-(t))) exp(z h(zf(l))):|
J i
+ [ dok. Z St (-5t (10 (V5,0 = 05, (0) - 0)

Jlaéjz

s (MERIVHHEL ) _ G, () +hiE5 ) exp( 3 h(zf(z))) ’
i#j1.)2
where @ becomes a random parameter after changing variables at the collision time as
in (2.12). We used the Dirac notation as in (2.13) to stress that xj-z (r) = xfl (t) + ew at the
collision. Denoting by 75 , the generalized empirical measure depending on 2 arguments
(see (2.6)), we get

Eo| oxp (e (7. 1)) | 805 (h) = B[ (v - Viuh} exp(uels. )]
1 [ 008 (a5 55) — sl )
(3.6)

where Ah(zy, z2, @) = h(x1, v]) + h(xz, v5) — h(z1) — h(z2) was already introduced
in (2.11). To obtain a closed equation, it remains to find the counterparts of the correla-
tion functions F{ and F; which describe the distribution under the measure tilted by the
exponential weight (17, h).
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Differentiating the exponential moment (3.5) at /4 in the direction ¢, we recover the
quantity (77, @)
47
< (h), (p> = 11m (J (h + 8¢) — d; (h))
. 1
 Eslexp(ue(nf. )]

Thus the transport term has the form (%(h), v - Vi h). By taking a second derivative, the

Ee[(w7, ¢)exp(pelni. )]

tilted distribution of the two-point correlations can be identified in terms of

29¢ & &
LO5 0+ 2 ).

e Oh2
&
The collision term is singular, but formally the right-hand side of (3.6) can be rewritten as
8J‘9 8J8 Ah(z1,22,0)
d¢d7(h) = (h)® (h) do((v2 = v1)  ©)  8xs—x1—s0(e @) —1)

oh?

<a‘1f(h) vV h>
3.7)

We recognize here a kind of Hamilton—Jacobi equation, with a small “viscous” term (involv-

L 8”? o) o) 8 Ah(z1.z20) _
+ (h), dw((UZ v1) w)+ xz—xl—sw(e 1)

ing derivatives of order 2 with respect to A, but without a definite sign). Thus the limiting
functional J; has to satisfy the following Hamilton—Jacobi equation obtained by formally
taking the limit pt, — oo,

30dy(h) = —<%<h)®%(h) [ doo((v2 — 1) - ) , By, (BNE1720) 1)>

; (3.8)
+ <8—th(h), V- Vxh>

The structure of this Hamilton—Jacobi equation is reminiscent of the Boltzmann equa-
tion (3.8), with a collision term and a transport term. However, it encodes a much more
complete description of the hard sphere dynamics, including in particular the structure of
the exponentially small correlations and of the large deviations (see Theorem 3.5).

As in (3.2), further information on the correlations in a time interval [0, ¢] can be
obtained by generalizing (3.5)

b (H) = Milogm: [exp(ZH ([o, t])))i| 3.9)

for functions H depending on the trajectory of a particle in [0, ¢]. For example, a sampling at
different times 6; < 0 < --- < 6 <t by test functions (/7)< is obtained by considering

z([0,1])) Zhg z(6y)). (3.10)

Remark 3.2. The procedure described here allows to obtain easily the limiting equa-
tion (3.8) without having to guess how to combine the different cumulant terms (which
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happens to be quite technical). However, the weak understanding we have on this equation
does not allow to use it to justify the limit as u, — oo (without going through the cumulant
analysis of [14]).

Remark 3.3. In the absence of spatial inhomogeneities, one can discard the transport term
and retrieve asymptotically the same cumulant generating function as for the Kac model, i.e.,
the dynamics in which collisions are given by a random jump process [4,41,47,60]. This indi-
cates that in the limit ;, — oo, both models are indistinguishable (up to exponentially small
corrections). In other words, the Hamilton—Jacobi equation (3.8) conserves the stochastic
reversibility, but not the deterministic reversibility: one cannot hope for any strong conver-
gence result.

3.4. A complete statistical picture for short times

As mentioned in the previous paragraph, the cumulant generating function provides
a complete statistical picture of the hard sphere dynamics. We now explain how it can be
used to answer the main questions raised in Section 1.3 (on a short time T*, of the same
order as Lanford’s time 77, in Theorem 2.1).

As a first consequence of the uniform estimates on the cumulant generating func-

&€

tion J[o,zy

the convergence of the fluctuation field, defined by (1.4) and recalled below

(65 1) = Vi (w7 1) = Es (7. 1)),
can be obtained.
At time O, it is known that, under the grand-canonical measure introduced on
page 757, the fluctuation field {§ converges in the Boltzmann—Grad limit to a Gaussian
field £y with covariance

E(So(h)¢o(g)) = /deO(Z)h(Z)g(Z)- (3.11)
The following theorem controls the dynamical fluctuations.

Theorem 3.4 (Bodineau, Gallagher, Saint-Raymond, Simonella [15]). Under the assump-
tions on the initial data stated on page 157, the fluctuation field { of the hard sphere system
converges, in the Boltzmann—Grad limit (e — 00 with p,ssd*l = 1), on a time interval

[0, T™*] towards a process C;, solution to the fluctuating Boltzmann equation
df = LeGedt +  dm
—— ——
linearized Boltzmann operator Gaussian noise
Eih=—v-Vih+ C(fy,h) + C(h, f7)
~————

transport linearized collision operator

(3.12)

where f; denotes the solution at time t to the Boltzmann equation (2.1) with initial data f°,

and dn; is a centered Gaussian noise delta-correlated in t, x with covariance
1
Cov(hy,hy) = 3 / dzydzadw((v2 — vy) - w)+5x2—x1f(f,Zl)f(f,Zz)AhlAhz(Zl,Zz,w)

with Ah(z1, 22, w) = h(z}) + h(z}) — h(z1) — h(z2) as in (2.11).
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As hinted in Section 3.2, the limiting noise is a consequence of the asymptotically
unstable structure of the microscopic dynamics (see Figure 2). The randomness of the initial
configuration is transported deterministically by the dynamics and generates a white noise
in space and time through a particular class of collisions. The velocity scattering mechanism
is coded in the covariance of the noise.

If the system starts initially from an equilibrium measure, i.e., with particle positions
spatially independent (up to the exclusion) and velocities identically distributed according
to the Maxwell-Boltzmann equilibrium distribution

ox,v) = M@v) = ;exp(—w) (3.13)
' (2m)d/2 2 ) '

then f; = £ so that the linearized operator is time independent and it will be denoted
by £q. The limiting stochastic partial differential equation d{; = £cq{; + dn; satisfies the
fluctuation/dissipation relation: the dissipation from the linearized operator £ is exactly
compensated by the noise 1;. As the equilibrium measure is time invariant, it was expected
on physical grounds that a stochastic correction should emerge in order to keep this invari-
ance in time. In fact, the equation governing the covariance of the limiting process Cov({;)
away from equilibrium was obtained, and the full fluctuating equation for ({;);>0 conjec-
tured, in the pioneering works by Spohn [65-67]. In particular, it was already understood in
[65] that out of equilibrium, a nontrivial contribution to Cov(¢;) is provided by the second-
order cumulant (3.1). Note that the predictions on the stochastic corrections from the Kac
model [49, 50, 59] fully agree with the stochastic equation emerging from the determinis-
tic hard sphere dynamics. Thus from a phenomenological point of view, it is equivalent to
consider a stochastic model (including as well the positions as in [59]) or a deterministic evo-
lution. We refer also to the work by Ernst and Cohen [34] for further discussion on the time
correlations and the fluctuations.

Note that equilibrium fluctuations for a microscopic evolution with spatial coordi-
nates and stochastic collisions have been derived in [59] for arbitrary long times. We will see
in Theorem 4.2 that the convergence time of the previous theorem can be greatly improved
at equilibrium.

Out of equilibrium, although the solution f to the Boltzmann equation (describing
the averaged dynamics) is very smooth on [0, T*], the fluctuating Boltzmann equation is
quite singular: the linearized operator £, is nonautonomous, non-self-adjoint, and the cor-
responding semigroup is not a contraction. Thus we consider a very weak notion of solution
of (3.12), requiring only that

e the process ¢, is Gaussian;
e its covariance defined, for test functions /1, i, and times 61, 6>, as
€(01,h1,02,hy) = EII_I)I}) ]Es((le , hl)(fzz, h2)) (3.14)
satisfies a set of equations governed by the linearized Boltzmann equation.

The convergence of the process ({7);<7~ can be derived in 3 steps:
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e The convergence of the time marginals to a Gaussian process
The characteristic function of the process tested at times 0; < --- < 6 < T*
by functions (h¢)¢<k is encoded by the exponential moment (3.9) by choos-

ing H(z([0,T*])) = <= Y4_, he(2(6)) asin (3.10)

k
logE, |:exp<i > (g6, he) + mm(hg{,m))))} = pedfy roy(H). (3.15)

=1
The cumulant expansion (3.5) combined with sharp controls on the cumulants
ensure that JI[SO’T*] (H) is an analytic function of H in a neighborhood of 0 so that
complex values can also be handled. Furthermore, in the scaling considered for
the fluctuations, H is of order ﬁ Thus in the cumulant expansion (3.5), the

term of order n scales as

® 1
fns((eH - 1) ”) = Mg/z’

so that the asymptotics of the characteristic function (3.15) is only determined

by the cumulants of order less than 2. This implies that the Wick rule holds and
therefore the limiting variables are Gaussian.

* The characterization of the limit covariance

The evolution equation of the covariance € (61, i1, 62, h2) can be recovered from
the equations satisfied by the first two cumulants. As already pointed out in [65],
we stress that the behavior of the covariance € (601, hy, 62, h,) is determined by
means of a careful analysis of the second cumulant f3°[(/¢, 0¢)¢<2] introduced
in (3.3). Out of equilibrium, the cumulant of order 2 takes into account the contri-
bution of one external recollision or of one overlap (as explained in Section 3.2).
Even though the contribution of the recollisions vanishes when deriving the Boltz-
mann equation (recall the chaos assumption (2.14)), it plays an important role in
the stochastic corrections.

* The tightness of the sequence ({f)¢>0
This is the most technical part of the proof as it requires to control uniform esti-
mates in time for a wide class of test functions 4,
Eo| sup [(g.h)—(cz. )]
|s—s'|<8

We will not discuss further this point and refer to [14] for details.

Note that Theorem 3.4, which is a kind of central limit theorem, does not use the fine structure
of cumulants: a sufficient decay of the correlations is enough to control the typical fluctua-
tions (which are of size O(1/./it¢)).

The strength of the cumulant generating function appears at the level of large devi-
ations, i.e., for very unlikely trajectories which are at a “distance” O(1) from the averaged
dynamics. The counterpart of the large deviation statement (1.5) for independent variables
can be rephrased, in a loose way, as follows: observing an empirical particle distribution
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close to the density ¢ (¢, x, v) during the time interval [0, T*] decays exponentially fast with
a rate quantified by the large deviation functional ¥,

Pe(mf >~ ¢, Y1 < T*) ~ exp(—peF ().

Notice that at time 0, under the grand-canonical measure introduced on page 757, it is known
that the large deviations around a density ¢° can be informally stated as follows:

Pe (s = ¢°) ~ exp(—pe H (¢°1 £°)).

with a static large deviation functional given by the relative entropy

0
4
H((p0|f0) = /((po logﬁ — (goo - fo))dz.
More precisely, the distance between ¢ and ¢ is measured with respect to a weak

topology on the Skorokhod space of measure valued functions. This topology is used in the
theorem below.

Theorem 3.5 (Bodineau, Gallagher, Saint-Raymond, Simonella [14]). Under the assump-
tions on the initial data stated on page 757, there is a time T* > 0 such that the empirical
measure (1) ;<T+ satisfies, in the Boltzmann—Grad limit jte — 00 (ueed ™1 = 1), the fol-
lowing large deviation estimates:

1
limsup — log Ps[n® € K compact] < — in;( F(p),
€

ne—>00 Mg 4

1
liminf — logP;| 7% € O > — inf F (),
imin og P[m open| = Huf (®)

He—=>00 g

for some (nontrivial) restricted set R.

The large deviation functional ¥ is defined by convex duality from the cumulant
generating function do 1+ (obtained as the limit of (3.9)). It coincides on the restricted
set R with

~ T*
Fly= H(f°)  +sup / ({p. @3¢ + v - Vi)p) = H (0. p)).
N—— p JO
relative entropy of the initial data

Legendre transform of the Hamiltonian

1
Hip,p) =3 / dz1dzy do((v2 = v1) - ©) , x,—x, (2)(22) (27 C152) — 1),
(3.16)

with Ap(z1, 22, w) = p(z}) + p(25) — p(z1) — p(z2) as in (2.11).

All the functionals appearing in the above statement are quite singular (notice that
the Hamiltonian is defined by an integral over a manifold of codimension d with a weight
growing for large velocities) and our method is restricted to considering very smooth and suf-
ficiently decaying test functions. These restrictions on the functional spaces are the reason
why we are not able to obtain a more precise large deviation principle, or to identify clearly
the large deviation functional. We refer to [14] for the proof which follows a quite standard
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path, once the limiting cumulant generating function J[o 7+ has been constructed. The iden-
tification between ¥ and ¥ relies on the limiting Hamilton—Jacobi equation (3.8).

Remark 3.6. Note that the large deviation functional % defined by (3.16) was conjectured in
[62] and [19]. As already mentioned, it actually corresponds to the large deviation functional
for stochastic microscopic processes, such as the Kac model (in the absence of transport)
[41,47], or intermediate models (with transport and stochastic collisions) introduced by Reza-
khanlou [6e].

4. BEYOND LANFORD’S TIME

Up to a short time, Theorems 3.4 and 3.5 provide a good statistical description of
the hard sphere dynamics in the Boltzmann—Grad limit (1, — oo with pue¢~' = 1). The
stochastic corrections to the Boltzmann equation emerge from the complex interplay between
the random initial data and the asymptotic instability of the dynamics.

However, these results are still far from being satisfactory as the time restriction is
not expected from physics: it does not allow understanding the relaxation toward equilib-
rium (and the corresponding entropy cascades between cumulants), or deriving fluid limits.
This question remains quite open, and the goal of this last section is to discuss theoreti-
cal obstructions and methodological difficulties, as well as some recent progress close to
equilibrium.

4.1. Main difficulties

A natural way to address this problem is trying to understand what kind of conver-
gence one can hope for beyond Lanford’s time 77 . Recall that Lanford’s theorem describes
the approximation of a reversible system by an irreversible system, where a macroscopic part
of the information is missing. This excludes any kind of “strong” convergence in terms of
relative entropy. This implies in particular that one will hardly use the fine knowledge one
might have on the solution to the Boltzmann equation to obtain a robust notion of stability
which would be as well compatible with the microscopic system.

Remark 4.1. Inthe framework of fluid limits, modulated energy or modulated entropy meth-
ods are among the most powerful to prove convergence theorems [39,64,71] since they require
very few properties on the original system, typically

* an energy/entropy inequality satisfied by weak solutions;

* the consistency of the approximation (meaning that the limiting equations are
those inferred from the formal asymptotics);

* some bootstrap estimates controlling (nonlinear) fluxes in terms of the modulated
energy/entropy.

An alternative would be to establish some weak convergence F{ — f, which para-
doxically requires better compactness estimates on the sequence (F7). In this framework,
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the best one can do in general is to retrieve the structure of the limiting equation and its good
(weak) stability properties from the solutions F} for fixed ¢, and this uniformly in ¢. The
problem here, as mentioned in Section 2.2, is that the Boltzmann equation does not have
such a weak stability. Two ingredients are necessary to construct solutions satisfying only
physical bounds (mass, energy, and entropy estimates):

* arenormalization procedure to tame the possible singularity (concentration in x)
in the loss collision term f (¢, x,v) x [ f(t,x,v1)b(v — v1, w)dwdvy;

* a bound on the entropy dissipation to control the gain term by the loss term.

These ingredients have been used in [61] to recover the Boltzmann equation from a micro-
scopic dynamics with stochastic collisions, but they do not seem to have a clear counterpart
for a deterministic microscopic evolution.

The Hamilton—Jacobi equation (3.7) retains much more information on the system,
thus the convergence of 4% to J;, in a sense to be understood, could provide a more stable
framework to study the kinetic limit for large times. This would then imply the convergence
to the Boltzmann equation.

4.2. Close to equilibrium

An easier setting to control the long-time evolution is to consider a perturbation of
an equilibrium measure. Here the stationarity of the equilibrium becomes a key tool in order
to provide uniform estimates in time and to control the pathological behaviors previously
mentioned. In a series of recent works [15,16], we took advantage of the equilibrium structure
to extend Theorem 3.4 to arbitrarily long kinetic times, and even slowly diffusive times.

Theorem 4.2 (Bodineau, Gallagher, Saint-Raymond, Simonella [15,16]). Consider a system
of hard spheres initially at equilibrium, i.e., with a spatially uniform distribution and with a
Maxwell-Boltzmann distribution M invelocities as in (3.13) (Gibbs grand-canonical ensem-
ble, f° = M in(2.3)).
Then, in the Boltzmann—Grad limit e — oo (uee®~' = 1), the fluctuation field
(&9)i=0 of the hard sphere system converges on any time interval [0, Tg], with
T: = O(logloglog ji¢), towards the process ({t)¢>o, solution to the fluctuating Boltzmann
equation
d¢ = <:ﬁeqéﬂz‘dt + dn;
—_— ——
linearized Bolizmann operator ~ Gaussian noise

Logh = —v - Veh + C(h, M) + C(M. h)
~————

.1)

transport linearized collision operator

where the linearized operator £q is time independent and 1 is a Gaussian noise delta-

correlated in t, x with a time independent covariance
1
COV(h],hz) = E / dZ]dedw((vz — 1)1) . w)+8xZ_xlM(Ul)M(vz)AhlAhz(Zl,22, a)),

with Ah(zy1, 2, w) = h(z}) + h(z}) — h(z1) — h(z2) as in (2.11).
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Since the approximation holds true for very long times compared to the mean free
time (diverging to infinity as log log log 1t,), it makes sense to look at fluid limits, i.e., at
regimes when the collision process is much faster than the transport (density is still low but

d—1 _

makes the collisions a bit more likely) e a~! witha > e, @ — 0. Starting from the

scaled linearized Boltzmann equation
1
Och +v-Vih = —(C(h, M) + C(M. ),

it is well known [3] that, in the limit « — 0, the gas will be close to a local thermodynamic
equilibrium, with density, bulk velocity, and temperature satisfying the acoustic equations.
Zooming out on longer times O(1/a), these acoustic waves become fast oscillating and thus
converge weakly to 0, but the incompressible component has a diffusive behavior, satisfying
the Stokes—Fourier equations. This by now classical asymptotic analysis can be actually com-
bined with Theorem 4.2 to derive directly the Stokes—Fourier equations from the dynamics of
hard spheres as in [11]. In a work in progress, we also take into account the noise, and get the
corresponding fluctuating hydrodynamics (satisfying the fluctuation-dissipation principle).

4.3. Some elements of the proof of Theorem 4.2

As in the previous sections, we will not enter into the technicalities of the proof,
which is actually quite involved. We will just focus here on some key arguments, provid-
ing a better understanding of large time asymptotics. We work directly on moments of the
fluctuation field, defined for any collection of times 8; < --- < 8, by

Ee[(85,- 1)+ (85, hp)]- 4.2)

and we are going to prove their convergence to the moments of the field in the stochastic
equation d{; = £ql;dt + dn;. Combined with the tightness results from [14], this fully
characterizes the convergence of the microscopic fluctuation field.

Let us start with p = 2 and compute the covariance E[¢ 51 (h1)¢ 52 (h2)]. The idea is
to pull back the observable /i, from time 6, to 6; in order to reduce the estimates at a single
time 6;. A similar strategy was presented in Sections 2.4 and 3.2 to transport the correlation
up to time O for which the distribution was known. In particular, we have seen that the cor-
relation functions at a time 6, can be represented by backward pseudotrajectories involving
collision trees with a number m of additional particles encoding the dynamical history during
the time interval [61, 6]. The time restriction T, for the convergence to Boltzmann equation
in Theorem 2.1 was due to the lack of control on the growth of the tree sizes m at large times.
Indeed, dynamical correlations may develop and form giant components of correlated par-
ticles for very pathological trajectories. In order to reach larger time scales, one has to show
that the contribution of these bad trajectories with large m remains negligible. For this we
perform a time sampling. The idea is to build the pseudotrajectories iteratively from 6, to 6,
on time steps of length ¢ < 1 and to neglect the collision trees with a fast (superexponen-
tial) growth during a time 7 (see Figure 14). The large collision trees are therefore discarded
before they reach the time 6, i.e., before their sizes become uncontrollable. This can be
achieved by using the time invariance property of the equilibrium measure which provides
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FIGURE 14

Pseudotrajectories are build iteratively on short time intervals of length t starting from 6. The procedure stops
before reaching time 6 if superexponential branchings occur in a time interval of length t. The corresponding
pseudotrajectories stop at time yop and are then discarded. A double sampling at scales § < v < 1, depicted on
the right figure, is implemented to control the recollisions.

a priori controls on the statistics. This kind of sampling was introduced for the first time in
the context of the Boltzmann—Grad limit in [1e, 11], but it is also an important ingredient in
the weak coupling limit for quantum systems leading to quantum diffusion [32, 33].

Another key ingredient, to derive the convergence to the Boltzmann equation, is the
procedure to neglect the “bad” trajectories involving recollisions (see Section 2.4). Control-
ling the growth of the collision trees is also essential to discard recollisions. The idea is to
introduce a double sampling in time (with time scales § < t < 1, see Figure 14) which
takes care simultaneously of the recollisions and of the collision tree growth. The backward
iteration is stopped and the corresponding pseudotrajectories are discarded as soon as one
of the following conditions is violated:

1
* there is at least one recollision on the last very small interval of size § = O(g!~24);

1/2

* on the last small interval of size 7 = (loglog t¢) ™'/, the number of particles has

been multiplied at least by 2.

Note that both conditions are entangled. On the one hand, the bigger the size of the system,
the easier for recollisions to occur. On the other hand, it is rather difficult to control the
growth of the system if there are recollisions.

Assuming that the pseudotrajectories can be controlled by the previous time sam-
pling, let us now explain the weak convergence method for computing the covariance. The
two-time correlation E.[(¢ 51 Lh) (¢ 52, h3)] can be rephrased as the expectation of two fluc-
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60

FIGURE 15

Starting from z* at time 6,, the blue pseudotrajectory is built backward and leads to a configuration Z,, at time
01 (with m = 3 on the picture). The dual procedure goes forward, starting from Z,, in order to reconstruct z;* as
a function of Z,, at time 6,. Following the forward flow, a tree is built by removing one of the particles at each
encounter between two particles. Notice that one has to choose which particle will be removed and if a scattering
occurs. Thus there are potentially several ways to build forward trajectories, but their combinatorics is well under
control. This is no longer the case when recollisions can occur. Indeed, this adds the possibility that when two
particles encounter in the forward flow, none of them disappears (see the dotted path on the figure) so when the
number of recollisions is not bounded the combinatorics diverges.

tuation fields at the same time 6

Ee[(g5, g5, ha)] “=" 3 Ee[(gh, - )G 0, B0 )] (4.3)

m
where the new test function ¢g,_g, (Z,,) is obtained from /&, by considering all possible
forward flows starting from Z,, at time 6; and having only one particle left at time 6, (see
Figure 15). In this sense, (4.3) is dual to the backward representation of the correlation func-
tions (2.16). The price to pay, to reduce the expectation at a single time, is that the new test
function ¢, _g, depends on m particles (a parameter related to the size of the collision trees
in the time interval [61, 65]) so that the fluctuation field an g, has the form

1
(Cfn,el s ¢02—91) = \/E(M_m Z ¢92—91 (Zfl (01)9 ceey me (91)) - E8(¢92—91 ))’

€ (ila"'aim)

which is related to the generalized empirical measure defined in (2.6), with the abbreviation

E¢(pg,—6,) = ES((”rsn,el - ))

In the following, we will abusively forget the subscript m.

The difficulty to make sense of the pullback in (4.3) is that the forward flow is not
a priori well defined. Indeed, different backward pseudotrajectories may end up at time 6
with the same particle configuration Z,,. Thus starting from Z,,, there are many possibilities
to build the forward flow from 6; to 6,: when two particles touch each other, we need to
prescribe whether one of them will be deleted (corresponding to a creation in the backward
flow) or not (corresponding to a recollision), and in the case of deletion whether there is
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scattering of the remaining particle (see Figure 15). The combinatorics of these choices is
diverging very fast if the number of recollisions is not under control. The very short time
sampling § is introduced so that the number of recollisions during a time § is controlled with
high probability under the equilibrium measure.

Then the pullback relation (4.3) is obtained by successive iterations of the sampling
time §. After the first elementary time step in the time interval [6, — §, 6,], the patholog-
ical events are discarded and then the elementary pullback can be iterated. This means
that, at each time 6, — r§, remainder terms due to recollisions are neglected, and that, at
each time 0, — k1, remainder terms due to superexponential growth can also be discarded.
Let O0p € [01, 02] be the first time at which a pseudotrajectory becomes pathological (see
Figure 14). The corresponding terms obtained by forward transport from the time Oy are
generically denoted by ¢bdd and are proved to be small by using the time invariance of the
equilibirum measure. Indeed, the time decoupling follows from a Cauchy—Schwarz estimate

[Be[(55, 1)z, o5 | < Eellh, )] Ee[(65,, 0820 T @)

eblop Oslop

and from the strong geometric constraints on the corresponding pathological pseudotrajec-
tories which can be estimated under the equilibrium measure on can deduce that

Es[(ggmp@bad )2] — 0 as i, — oo.

oslop

The last important step to prove that the limiting process is Gaussian boils down to
showing that, asymptotically when u, — oo, the moments, defined in (4.2), are determined
by the covariances according to Wick’s rule

lim |Bo[(65, )6, )] = D0 [T Eel(éG halisy hi)l| = 0. @)

Meg—>00
neah™ {i,j}en

where Ggairs is the set of partitions of {1, ..., p} made only of pairs. Notice that if p is odd
then 65;1“5 is empty and the product of the moments is asymptotically 0.

To understand this pairing mechanism, let us start with a simpler example for which
explicit computations can be achieved. Consider the moments of the fluctuation field at
time 0, under the equilibrium measure with independently distributed particles. This reduces
tothe case ¢ = 0 and 8, = --- = 6, = 0. Assuming furthermore that the test functions are
of mean E¢(h;) = 0 (we abusively write here E¢ for this iid case, not to be confused with
E, for ¢ = 0), we get

e

(=1 e

H(ZW(Z"))} e LZ Hhe(zu)} (4.6)

(=1 i seeip £=1

where the sum is over all the possible choices (with repetition) among N particles (with
N =~ u, under the grand-canonical measure). As the mean of the test functions is assumed
to be 0, each particle has to be chosen at least twice, otherwise by the independence of the
variables the expectation is equal to 0. Thus in the sum over iy, ..., ip, the number k of
different particles is such that k < p/2. Choosing k different particles gives a combinatorial
factor /,Lif so that only the pairings with k = p/2 and p even contribute to the limiting
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moment. In this way, one recovers the Wick decomposition (4.5) in terms of pairings. Note
that for ¢ > 0, a similar result holds (at time zero) in the Boltzmann—Grad limit, but a cluster
expansion of the equilibrium measure is necessary to control the (weak) correlations of the
Gibbs measure.

For time-dependent fluctuation fields, the pairing cannot be achieved in one step as
in the previous example. One has instead to proceed iteratively. Let us revisit the computation
above to explain the idea first in this simple setting. We start by focusing on the product of
two fields and decompose it as follows:

(65 hp)cs. p-) th<z,>hp G o G @)
i#j
—v = (88,hp)®(85hp-1)

The pairing between ({§, hp) and ({5, hp—1) is coded by the function W which is called

a contracted product as the variables are repeated. As the variables are independent, the
covariance between /1, and /1, is given by

EO[(ES,hpngvhp_])] = Eo[¥]. 4.8)

From the central limit theorem, W can be interpreted as a small fluctuation around the covari-
ance

| PN o 1
U =Eo[¥] + ﬁ\p with U = — (Xl: hp(zi)hp—1(zi) — pLE]EQ[hphp_l]), (4.9)
where U behaves as a random variable with finite covariance (uniformly in €). The second
term in (4.7) will be called a ®-product and denoted by ({5, hp) ® ({5, hp—1). It behaves
qualitatively as a fluctuation field as the variables are not repeated.
Returning to (4.6), to extract the pairing between (g, h) and ({5, hp—1), we write

[H G e } [(ﬁf&hz)) \P} +Eo[(ﬁ<zahz>) (& hp) ® <cs,hp_1>>} .

(=1 =1

pairing of hp, hp_q product of p — 1 fields
(4.10)

The second term can be seen as a product of p — 1 fields which will be treated recursively
at the next step. The pairing between ({§, h,) and ({5, hp—1) can be extracted from the first
term as follows. Using the decomposition (4.9), we get

E0|:<ﬁ(§3,hg)) \p:| = E{ﬁ(ég,m)}Eo[\P] + \/%E{(ﬁ(;g, hg)) @]

(=1 (=1 =1
p—2 |
- sl Tl ol )+ o 1),
where the smallness of the last term follows from Holder’s inequality
p—2 p—2
ol (Il 003 | <28 TT sl 212, o
=1 £=1
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provided bounds on the moments of single fields can be obtained. For independent variables,
this procedure is far from optimal; however, it will be extremely useful to decouple fields at
different times. In this way, the pairing between ({§, i,) and ({5, hp—1) can be extracted
without investigating the correlations between these two fields and the p — 2 other fields.
Note that a time decoupling inequality similar to (4.11) was used in the computation of the
covariance (4. 4) to neglect bad pseudotrajectories. Finally, it remains to iterate this procedure
with Eo[]_[ ZO, h¢)] and the second term in (4.10) which involves a product of at most
p—1 ﬂuctuatron fields.

We turn now to the time dependent case (4.5) and proceed backward in time to
achieve the pairing step by step. First, the fluctuation at time 6, is pulled back at time 6,_;
as a sum of (more complicated) fluctuations by the same duality method as for the covari-
ance (4.3). Using analogous notation as in (4.3), the test function £, is transformed into a
function ¢(p ) | with m variables. Forgetting for a moment the product ]_[ § 6 hg), we
focus on the product of the fields at time 6,1,

(66, ho-1NChg, - 06, ) (4.12)

and decompose it as in (4.7) according to the repeated indices in the spirit of the example
above. This leads to two types of contribution:

* a “contracted product” (by analogy with the function W) which records all the
repeated indices in the product (4.12) at time 6,_;. By Holder’s inequality as
in (4.11), this term can be decoupled from the rest of the weight formed by the
moments f:_lz (¢ 5@’ hg). This strategy is particularly relevant for time-dependent
fields as it reduces the estimates to computing moments of fields at a single time.
In an equilibrium regime, the moments of the field at a single time can be easily
analyzed as the distribution is time invariant. In this way, the moments at 91, and
0p—1 are paired and their covariance E [(gg hp— 1)(§9 . hp)] is recovered. It

remains then to study the remaining moments IE []_[ E 6, Jhe)l.

* a “®-product”’, which by definition takes into account the nonrepeated indices,
and which can be interpreted as a product of two independent fluctuations at time
0p—1.In a very loose way, we have to evaluate now the following structure:

p—2
Es[(n@s,ha)(ca,,m_Q (62 >]

=1

with a more complicated fluctuation field at time 6,_;.

The key point here is that using the cumulant techniques introduced in Section 3.3, one
can then prove that the tensorized structure ® is essentially preserved by the pullback of
test functions: the configurations for which the ®-product breaks can be neglected. Thus
with high probability the fields (;e hp—1) ® (L, Gpr” d)(p ) l) can be pulled back up to
time 6, as if they were 1ndependent Then we apply the parrrng procedure at time 6,_,.
This leads to new pairings between ({5 6y hp—») and the pulled-back fields. In particular, the
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covariances Es[@éﬂ, hp—2) (Z;P, hp)] and Eg[(égpiz, hp—2) ({g{H . hp—1)] can be identified.
The nonrepeated variables at time 6,_, build new ®-products involving the fluctuation fields
(or their pullbacks) from times 6,5, 8,1 and 6,.

Iterating this procedure up to time 6;, all the pairings can be recovered and the
Wick’s decomposition (4.5) is obtained in the limit ;e — oo. This shows that the limiting
process is Gaussian, thus achieving the proof of Theorem 4.2.

5. OPEN PROBLEMS AND PERSPECTIVES

The research program that we conducted during this last decade and which is pre-
sented in this survey has led to two important breakthroughs compared to the state-of-the-art
after Lanford’s theorem:

* an extended statistical picture of the dynamics of hard-sphere gases for short
times, including fluctuations and large deviations;

* acomplete answer to Hilbert’s sixth problem connecting the three levels of mod-
eling (atomistic, kinetic, and fluid) for linear equations of dilute hard-sphere gases
close to equilibrium.

Nevertheless, the problem of the axiomatization of gas dynamics remains largely open, even
in dilute regimes. We propose in this final section to review some important directions to be
explored in the future. We choose to discuss here only kinetic limits, involving a separation
of scales, for which an enterprise in the spirit of those discussed above is conceivable (albeit
possibly hard).

5.1. Long time behavior for dilute gases

The only case in which we have a complete picture of the transition from the atom-
istic description to fluid models is the equilibrium case. Nevertheless, the diffusive scaling
considered in these linear regimes is sublogarithmic (see, e.g., [18,15]). It would be interest-
ing to reach more relevant physical scales, for which we expect the limiting picture to remain
unchanged.

The law of large numbers in the equilibrium case is trivial, and the fluctuations are
governed by linear models. In order to extend this analysis to gases which are initially out
of equilibrium, a major obstruction is to define a good notion of stability for the nonlinear
Boltzmann equation, which plays the role of pivot between the microscopic and macroscopic
scales. In other words, this requires designing a good notion of convergence. The weak con-
vergence method developed in the equilibrium case uses a topology which is a priori too
weak to make sense of the nonlinear collision operator. Based on our analysis, we believe
that stronger convergence methods require a rather precise understanding of the mechanisms
responsible for the entropy cascade through the cumulants, retaining enough information in
the limiting system. Note that this information is encoded in the supports of the cumulants,
which have a finer and finer structure as the order of the cumulant increases. This structure
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might well be a key ingredient, as entropy and entropy dissipation play a crucial role in the
stability of the Boltzmann equation.

Beyond the law of large numbers, it would be also natural to extend the analy-
sis of fluctuations and large deviations for long kinetic times, and even diffusive times.
This would allow deriving the fluctuating hydrodynamics (typically, the fluctuating Navier—
Stokes—Fourier equations). A fine understanding of the Hamilton—Jacobi equations and of
the associated gradient structure would be certainly a major step in this direction.

5.2. The role of microscopic interactions

Our study is focused on the case of hard-sphere gases, for which the interaction is
pointwise in time and the scattering law is very simple. The papers [37, 45,57] have shown
that, despite technical complications, the same average behavior, in the low density limit,
is obtained for compactly-supported potentials satisfying some suitable lower bound (ther-
modynamic stability). Only the collision cross-section (i.e., the transition rate of the jump
process in the velocity space) and, consequently, the hydrodynamic transport coefficients are
modified. One expects, and can prove for short times [45], that multiple collisions (three or
more particles simultaneously interacting at a given time) are a correlation of higher order
with respect to the dynamical correlations determining the fluctuation theory. It is then very
likely that the description of fluctuations and large deviations for short times can be also
extended to this short-range case. Notice that the absence of monotonicity of the potential
would require a more delicate treatment, as some trajectories can be trapped for a very long
time [57].

A problem of a much higher level of difficulty is to deal with long-range interactions.
‘We know that, as soon as the potential is not compactly supported, the collision cross-section
(which can be computed by solving the two-body problem) has a nonintegrable divergence
at grazing angles. It is therefore impossible to define solutions of the Boltzmann equation
without taking into account the cancelations between the gain and loss terms in the collision
operator, which would imply to find new ideas (in our methods dealing with microscopic
systems, such cancelations are never used). Close to equilibrium, using a sampling to discard
superexponential growth (as in Section 4 above), N. Ayi [2] has proved a convergence result
for very fast decaying potentials, but the method does not seem robust enough to deal with
weaker decays or systems out of equilibrium.

A natural idea, often used by physicists, would be to decouple the short range part
(acting as “collisions”), and the long range part of the interaction potential (to be dealt with
by mean field methods). However, from the mathematical point of view, this leads to a major
issue: no analysis method is available so far, as the techniques used for the low density limit
and for the mean field limit are completely different and apparently incompatible. This prob-
lem is investigated in [27], where a linear Boltzmann—Vlasov equation is derived rigorously
for a simple (Lorentz gas) model system (see also [26]).

A related issue is how to precisely identify and separate the long range and the colli-
sional part for a given potential law, capturing the good scaling for both parts. There are some
delicate aspects here involving the details of the potential and the dimension of the problem
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[52,53]. Formal considerations as in [7] indicate that, in case of power law potentials 1/x%,
the low density scaling should lead to a Boltmann equation for s > d — 1, to a Boltzmann—
Vlasov equation for s = d — 1, and to a Vlasov equation (with Boltzmann’s operator still
describing the collisions as a long time correction) for s € (d —2,d — 1). For the Coulomb
potential (and for smaller values of s), the Boltzmann operator has to be replaced by a dif-
fusive variant of it (Landau, or Lenard—Balescu operator; see also Section 5.4). We refer to
[52] for details.

We remark that the combination of mean-field and collisions has an interest in con-
nection with the problem of binary mixtures exhibiting phase segregation [5] (see also [1] on
a derivation result for mixtures).

5.3. Nonequilibrium stationary states

For short times, Lanford’s theorem allows considering particle systems which are
initially put out of equilibrium, provided that their distribution is controlled in some sense
by an equilibrium state. This assumption is a key argument to get uniform bounds (even for
short times when the relaxation phenomenon cannot be observed). In this situation, one can
use a comparison principle because nothing forces the system to stay out of equilibrium, and
the invariant measure is well known.

A natural extension is to deal with a gas evolving in a domain with boundary con-
ditions, rather than the whole space or the periodic setting as considered previously. In the
case of boundary conditions ensuring conservation of energy, we still have a control by the
invariant measure, and the main extra difficulty caused by the presence of boundaries lies in
the geometric analysis of recollisions. This has been discussed so far in the case of simple
geometries [29,48] (see also [35] for the case of external forces).

A much more delicate situation is when the system of interacting particles is main-
tained out of equilibrium by a forcing or a boundary condition (reservoir, thermostat, ...).
One would like to derive, in this nonequilibrium framework, the Boltzmann equation and
more generally the properties of the steady states. As exposed in [18], this question is a “chal-
lenge to theorists,” and few quantitative results are known either for gas dynamics or for other
mechanical systems such as chains of anharmonic oscillators. Even though, under reason-
able assumptions on the nonequilibrium forces, the existence of a stationary measure of the
microscopic dynamics is expected, one does not know how to construct such a measure or
any exact solution which would play the role of supersolution for the actual distribution of
particles. In particular, a good starting point for the analysis of the low density limit seems to
be missing at present. Finally, it is worth mentioning that the theory of stationary solutions
for the Boltzmann equation with thermal reservoirs is still far from mature, see [36] for a
recent review.

Beyond the derivation of the Boltzmann equation for boundary driven systems, it
would be interesting to investigate the large deviations as they can provide some knowledge
on the invariant measure [6,25]. Also it is conjectured [9, 18] that the Fourier law should be
valid for a dilute gas maintained out of equilibrium by reservoirs. To prove its validity would
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require an analysis beyond the kinetic time scale in order to derive fluid equations out of
equilibrium.

5.4. A realm of kinetic limits

Besides the low density (Boltzmann—Grad) scaling discussed so far, there is a vari-
ety of interacting particle models admitting a kinetic limit and sharing many similarities with
the classical Boltzmann gas [67]. We shall only mention here the two main obvious modifi-
cations of our assumptions (which are reviewed in detail in [56]): (i) start from a microscopic
description based on quantum mechanics instead of classical mechanics, namely replace the
Newton equations by the N -body Schrédinger equation, including additional symmetry/anti-
symmetry constraints which take into account the specificity of bosons/fermions; (ii) perform
a high-density, weak-coupling scaling with potential e*¢ (x/¢), where « € [0, 1] and the par-
ticle density is correspondingly tuned as —d + 1 — 2. For « € (0, 1), the latter scaling
should lead to the diffusive Landau equation in the case of classical systems, and is suited
to a description of collisions in plasmas. The diffusion emerges from a central limit type
effect on an accumulation of many weak collisions. The limiting point & = 1 is expected to
capture the famous Lenard—-Balescu correction. Conversely, in the case of quantum systems,
each value of o should lead to a quantum version of the Boltzmann equation. The amount
and quality of quantum features surviving in the limit depends on the particular value of
a. For o = 0, the collision operator contains the full quantum cross-section. On the other
hand, for « = 1/2 (when only the first term of the Born series survives), one expects to
get additional cubic terms in the collision operator, expressing the inclination of particles to
aggregate (Bose—Einstein condensation) or to repel each other (Pauli’s exclusion principle).

For such a variety of situations, no rigorous full derivation result is available at
present, not even for short kinetic times; see however [8,56,69,70] for consistency results and
attempts in this direction (full results are instead available for Lorentz type (linear) models,
see [31,44] for the classical case and [32] for a review in the quantum case). When trying to
reproduce Lanford’s strategy, one stumbles indeed upon many difficulties. The construction
of the equilibrium measure is delicate, and it is not completely clear how to identify the
suitable functional spaces for the study of the limit. The Wigner transform, which allows
computing observables, is nonpositive and quadratic with respect to the wave function: this
implies that the combinatorics associated with the Duhamel series, which can be represented
by Feynman diagrams is much worse than the combinatorics of collision trees. In general,
these formal series are never absolutely convergent.

All the open questions regarding the long-time behavior, the structure of correlations
and the deviations from the average dynamics, the role of microscopic interactions or the
stationary nonequilibrium case remain, also in these different settings, as challenges for the
future.
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1. INTRODUCTION

1.1. Langlands correspondence over functional fields

Let € be a smooth projective irreducible curve over a finite field F,. One can con-
sider the global field F = [F,(€) of rational functions on € and its adele ring A. Given
a split semisimple group G one can study automorphic forms on the adelic group G(A)
— these are (by definition) irreducible representations of G(A) which appear in the space
of C-valued functions on G(A)/G(IF). For many purposes, it is important to consider dis-
crete automorphic representations — these are automorphic representations appearing in
L*(G(AF/G(F)).

In this introduction we restrict our attention to unramified automorphic representa-
tions, i.e., those which have a G(Or)-invariant vector where O C A is the ring of integral
adeles. In other words, we consider functions on G(OF)\G(A)/G(F) which are eigenfunc-
tions of certain commuting family of linear operators, called Hecke operators; for every place
c of F (which is the same as a point of f(E) up to the action of Frobenius), one constructs
the algebra of Hecke operators which is isomorphic to the complexified Grothendieck ring of
finite-dimensional representations of the Langlands dual group GV (and for different ¢ these
algebras commute with each other). The weak form of the Langlands conjecture (now proved
by V. Lafforgue for global fields of positive characteristic) asserts that (after the replacement
of the coefficient field C by Q,) the common eigenvalues of all the Hecke operators come
from £-adic GV -local systems on €.

The quotient G(Or)\G(A)/G(F) is canonically isomorphic to the set of F,-points
of the moduli stack Bung (€) of principal G-bundles on €. Thus Hecke eigenfunctions are
functions on Bung (€)(F,) and unramified discrete automorphic forms correspond to Hecke
eigenfunction lying in L?(Bung (€)(F,)) (with respect to the Tamagawa measure).

We fix a curve € and a group G, and will write Bun instead of Bung (€) when it
does not lead to a confusion.

1.2. Hecke eigenfunctions on moduli spaces of bundles over local fields

This survey reports on an attempt to extend the above constructions and results to
the case when instead of a curve over IF, we start with a curve over a local field F'. The idea
to consider Hecke eigenfunctions in this case was first formulated by Langlands in the case
F = C (cf. [25] and also [18]) several years ago. A systematic study of this question was
started in [9] in a slightly different framework. To simplify notations we often assume that G
is semisimple and the genus g of € is > 2.

Here several difficulties are present. First, since Bun is a stack, it is not clear what
space of functions on Bun(F) to consider. In fact, a big part of this paper is devoted to a
discussion of three different spaces with actions of Hecke algebras one can attach to stacks
over local fields and the relation between them (cf. Sections 2 and 3). In the first approach
(which follows the papers of P. Etingof, E. Frenkel, and D. Kazhdan), the action of the Hecke
algebra is defined on the Hilbert space L?(Bung(F)) of half-measures where Buny C Bun is
the open Deligne—-Mumford substack of stable bundles. In this case the space is familiar, but
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one has to justify the convergence of the integrals defining Hecke operators. In the second and
third approaches, the action of Hecke operators is well defined, but it is not easy to describe
spaces on which they act. Some of our conjectures are on the relation between these different
realizations.

In all three approaches the definition of Hecke operators, in fact, comes from [6]
where some version of Satake isomorphism for Hecke algebras over a local field F is studied
(formally, [6] only deals with non-archimedian fields, but the extension to archimedian case
is straightforward).

Remark 1.1. In[9] (which deals with the case F' = C), the role of Hecke operators is played
by the algebra O of global differential operators on Bun(F') (and their complex conjugate).
In fact, as was observed in [3] there is no nontrivial regular differential operators acting on
functions, but there is a large algebra of differential operators on half-forms. This algebra O
is commutative and is equal to algebra of functions on the moduli space of certain special
GV -local systems on € called opers. This is another reason why half-forms are better suited
for this problem. One of the main purposes of [9]is a formulation of a conjectural description
of eigenvalues of the algebra A = D ® D in terms of certain G ¥-local systems on € (opers
with real monodromy). For G = SL(2), a very close conjecture was formulated by J. Teschner
in [27].

A systematic study of Hecke operators as self-adjoint operators acting on a Hilbert
space started in [1e] (in the case F = C). As was mentioned above, the definition of Hecke
operators is based on [6], and it again follows from [6] that in order to define Hecke operators
one must work with half-forms; in this case Hecke operators are given by certain integrals
(which are not guaranteed to converge). In [1e] the authors conjectured that these integrals, in
fact, define compact self-adjoint operators on L?(Bun)(F) for any local field F (in particu-
lar, contrary to the case of finite fields, their common spectrum on L?(Bun(F)) is discrete);
in the case F = C, it is expected that their eigenvectors are essentially the same as the
eigenvectors for the algebra 4 (we shall give a precise formulation in Section 6). It is also
explained in [1e] (in the case F = C) how to produce Hecke eigenvalues from opers with
real monodromy (again, this is reviewed in Section 6). For non-archimedian fields F and
G = SL,, analogous conjectures were formulated earlier by M. Kontsevich in [22].

In Section 5 we propose two other constructions of modules over the Hecke algebra —
the last one only in the non-archimedian case. As was mentioned before, the space L?(Bun) is
not the only choice of functional space one can work with. One can define another functional
space (still having to do with half-forms) on which the Hecke operators will automatically
act. The relationship between this space and L?(Bun), in the case when G = SL,, is the
subject of a forthcoming paper by A. Braverman, D. Kazhdan, and A. Polishchuk. We review
the relevant definitions and statements in Sections 2 and 3.

As a byproduct, when F is non-archimedian and the curve € is defined over its
ring of integers O f (and has good reduction), we give a conjectural construction of finite-
dimensional spaces of cuspidal functions with an action of Hecke operators generalizing the
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space of cuspidal functions on Bun(IF,), where [, is the residue field of F (but in this way
one gets only a very small portion of Hecke eigen-functions).' This is reviewed in Section 5.
In Sections 6 and 7, we formulate in the archimedian case a precise conjecture on
the interpretation of the spectrum of Hecke operators on L2 (Bun(F)) in terms of some kind
of Galois data (involving the dual group GV). It would be extremely interesting to find an
interpretation of the spectrum of Hecke operators to for the non-archimedian case.

1.3. Relation of the archimedian case to geometric Langlands correspondence

and conformal field theory

In the case when the field F is archimedian, our program is related to the quantum
gauge theory (see [19]).

In this case Beilinson and Drinfeld associate to every G -oper o a certain algebraic
D-module M, on Bun which is a Hecke eigenmodule which is equipped with a canonical
generator (here D stands for the sheaf of differential operators on Bun acting on half-forms).
This is an important part of a general geometric Langlands conjecture. The D-module M,
can be thought of as a system of linear differential equations on Bung. The corresponding
Hecke eigen-half-form (in the case when o has real monodromy) is a solution of both this
system of equations and its complex conjugate.

The difference between the traditional categorical Langlands correspondence and
the analytic Langlands correspondence for complex curves can be illustrated by an analogy
with the two-dimensional conformal field theory (CFT). In CFT, there are two types of cor-
relation functions. The first is chiral correlation functions, also known as conformal blocks.
They form a vector space for fixed values of the parameters of the CFT, so we obtain a vector
bundle of conformal blocks on the space of parameters, equipped with a projectively flat
connection (or more generally, a twisted D-module). Conformal blocks are its multivalued
horizontal sections. The second type is the “physical” correlation functions. They can be
expressed as sesquilinear combinations of conformal blocks and their complex conjugates
(anticonformal blocks), which is a single-valued function of the parameters.

The Hecke eigensheaves on Bun constructed in the categorical Langlands cor-
respondence may be viewed as sheaves of conformal blocks of a certain CFT. They are
parametrized by all GY-opers on the curve. It turns out that for special G -opers (namely,
the real ones) there exists a sesquilinear linear combinations of these conformal blocks and
their complex conjugates which are single-valued functions (more precisely, 1/2-measures)
on Bun. These are the automorphic forms of the analytic theory. Thus, the objects of the
analytic theory of automorphic forms on Bun can be constructed from the objects of the
categorical theory in roughly the same way as the correlation functions of CFT are obtained
from conformal blocks (see [16] and the references therein for more details). An important
difference with traditional CFT is that while usually in CFT the monodromy of conformal
blocks is typically unitary, here the monodromy is expected to be in a split real group.

1 The construction itself is, in fact, not conjectural — we can do it rigorously. But at the
moment, we cannot prove that the resulting eigenfunctions are not equal to 0.
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1.4. Notations

We shall use the letter k£ to denote an arbitrary field (which could be finite) and the
letter F for local fields. For a variety (or stack) X over k, we denote by X (k) the set of
k-points (for a stack we consider isomorphism classes of points). If F is non-archimedian,
we denote by OF its ring of integers. We shall also consider the field X = k((¢)) (or F((2)))
with ring of integers which we denote just by O.

For a split semisimple group G, we denote by GV the Langlands dual group of
G considered as a group over C. We fix a Borel subgroup B = TU of G, where T is a
maximal torus and U is a maximal unipotent subgroup; similarly we have a Borel subgroup
BY =TYUY C GV.

We denote by A and AV the lattices of coweights and of weights of T (so A is also
the lattice of weights of 7V) and by AT C A the subset of dominant coweights.

1.5. Organization of the paper

In Section 2 we review some basic information about varieties and stacks over local
fields and various spaces of functions on them. In Section 3 we begin the discussion of the
moduli stack Bun of G-bundles on a curve € over a local field F' and formulate some con-
jectures about the relation between various function spaces one attaches to Bun. In Section 4
we review the definition of Hecke operators and the formulation of the unramified Langlands
correspondence for curves over IF;. In Section 5 we explain the definition of Hecke operators
in the case of local fields, formulate our main conjectures and also discuss some construc-
tions specific for the non-archimedian case. Section 6 is dedicated to the case F' = C and
Section 7 to the case F = R.

2. SMOOTH SECTIONS OF LINE BUNDLES ON VARIETIES AND

STACKS

2.1. Smooth sections on varieties

If X is an algebraic variety over a local field F (archimedian or not), the set X (F)
is endowed with a natural topology.

Definition 2.1. A function f : X(F) — C is smooth if
(a) F is non-archimedian and f is locally constant;

(b) F is archimedian and (locally) there exists a closed embedding X < Y where
Y is a smooth variety over F and a C*°-function f : Y(F) — C such that

f = flxw).

We denote by C*°(X) the space of smooth functions on X(F) and by S(X) its
subspace of functions with compact support.
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For aline bundle &£ over X, we denote by £° := &£\ X the corresponding G,,-torsor
over X and set
£ = £°(F) x Ci,

where C, denotes the 1-dimensional space C on which F* acts by | - |*. Then | £|* is a com-
plex line bundle over X (F). Since the bundle |£|* is locally trivial with respect to the natural
topology, we can define its space of smooth sections which we denote by C*°(X, |£]).
Similarly, we denote by § (X, |£|¥) C C*®(X, |£]¥) the subspace of sections with compact
support.

In the case when X is smooth we shall often take £ = wy, where wy is the line
bundle of differential forms of top degree and write S, (X)) instead of § (X, |w|¥). The case
k = 1/2 is of special interest since the space 31,2(X) is endowed with a natural Hermitian
product. We denote by L2(X) its Hilbert space completion.

Remark 2.2. (1) fU C X is an open subset and Z = X\U then we have a short
exact sequence
0— S(U,|LI) = S(X.1£°) = S(Z.1£]5) — o.

(2) More generally, instead of choosing £ € Pic(X) and k € C we can start with any
element of Pic(X) ® C — all the above definitions make sense in this context.

2.2. Smooth sections on stacks
In this subsection we extend the above definitions to a class of algebraic stacks.

Definition 2.3. An algebraic stack ¥ is admissible if locally there exists a presentation of ¥
as a quotient stack X /G where X is a smooth variety and G is an affine algebraic group. We
denote by p : X — ¥ the projection.

A presentation of ¥ as a quotient ¥ = X / GL,, is called an admissible presentation.”

Remark 2.4. (1) Any smooth admissible stack of finite type can be presented as a
quotient X / GL,, for a smooth variety X (see [21]). As follows from the Hilbert’s
90, we have ¥(F) = X(F)/ GL,(F).

(2) Any admissible stack is automatically locally of finite type.
(3) A line bundle on a quotient X /G is a G-equivariant line bundle on X.

Definition 2.5. (1) Assume that F is non-archimedian, ¥ is an admissible stack of
finite type over F. Choose an admissible presentation ¥ = X/ GL, for some
variety X and set

S 121) = S(X1Lx[) g1,y

2 The definition of admissibility that we use here is close to the one introduced in [21] but
slightly different. It is easy to see that every admissible stack locally has an admissible pre-
sentation.
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where the latter space stands for the space of GL(n, F)-coinvariants on
S(X, [£x[°).

(2) If F is non-archimedian and ¥ is only locally of finite type, then we can

write ¥ as a direct limit of open substacks ¥; of finite type over F and define
SY,|L£]€) :=1imS (¥;, |£]9).

(3) In the case when F is archimedian we make an analogous definition but take
coinvariants S (X, |£x|“)cL@,F) in the category of topological spaces where
S(X, |£x|*) is endowed with Fréchet topology.’

The above definition makes sense because of the following

Claim 2.6. If Y is an admissible stack of finite type then the space S(Y, |L|*) does not
depend on a choice of an admissible presentation ¥ = X / GL,,.

Remark 2.7. In the case when F is non-archimedian, £ = wy, and x = 1, this claim is
proven in [21, SECTION 6]. The same arguments work in the general case.

2.3. Functoriality

If ¥ is an admissible stack and U is an open substack, we have a natural map
S(U, |L) — S(Y,|L|¥), which is not injective in general.

More generally, let ' : Z — ¥ be a smooth representable map of admissible stacks
and wz,y be the relative canonical bundle. Then we have a natural (“integration over the
fibers”) map

S(Z, L] ® |a)z/y|) — S(y, |£|K).

2.4. An example: stacks over O

In this subsection we consider the case when the field F is non-archimedian (with
residue field k) and construct some explicit elements in § (¥, |£]*). Assume that ¥ = X/ G
where both X and G are defined over O and that X, is a regular scheme over Of such
that Y(F) = X(F)/G(F). Assume also that the line bundle £ is defined over O . Then in
the same way as before we can define S (Yo, |£[“) with an obvious map S (¥g,, |L£[|“) —
S(Y,|L]%).

Consider now the case when £ = wy. Then the complex line bundle |£| has a
canonical trivialization on ¥(OF). Let §(¥(k)) denote the space of C-valued functions
with finite support on ¥ (k). Then the above trivialization gives rise to a map S(¥Y(k)) —
SMoy.|L[€). Composing it with the map S (Yo, |L£[<) — S(¥, |L£[), we getamap Ey . :
S(Y(k)) — S (Y).

Remark 2.8. (1) This map is often not injective.
3 We define the space S (X, |€x|“)gL(n,F) as the quotient of § (X, |£x [*) by the clo-
sure of the subset generated by elements of the form g(s) — s where g € GL, (F) and
se8SX,|Lx[).
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(2) We will be mostly interested in the space §;,,(¥) (for a particular choice of ¥).
In the case when ¥ was a smooth scheme, this space had a canonical Hermitian
product. We do not expect to see a Hermitian product on §;,,(¥) for general
admissible stacks ¥ but we define a class of excellent stacks when such a product
exists.

(3) We write M(¥Y) := §1,2(¥).

2.5. Nice and excellent stacks

In this subsection we assume that ¥ is an admissible stack which contains an open
substack Y, C ¥ such that ¥, = Y,/Z where Y, is a smooth scheme and Z is a finite
group acting trivially on Yy.*

Remark 2.9. (1) To simplify the notations, let us assume that Z = {e} (but gener-
alization to arbitrary Z is straightforward).

(2) A choice of this open substack is not unique, and some of the definitions below
depend on this choice.

(3) Let L?(¥Y,,) be the Hilbert space completion of the space of smooth half-
measures on Y,s(F) with compact support. It is easy to see that this space
is in fact independent of the choice of Y.

If Y is of finite type over F', we choose a presentation ¥ = X/ GL,,, denote by U
the preimage of ¥, in X and by p : U — ¥, the quotient map.

Let s be a smooth section with compact support of the complex line bundle
p¥lwy, |“ ® |wx,y|. Then s|y is a section of p*|wy, | ® |wy,y|. We can try to inte-
grate it over the fibers of p to get a section of |wy, |“ on ¥,s. The problem is that these
integrals might not converge since the intersection of the support of s with the fibers of the
map p might not be compact.

Definition 2.10. (1) The stack ¥ is k-bounded if there exists an open substack of
finite type Yo C ¥ such that the map S, (¥Yo) — S, (¥) is an isomorphism.

(2) Apair(¥Y,¥Y,)is k-nice if Y is k-bounded and for every s as above supported on
the preimage of Y, the push-forward p.(s) is well-defined (i.e., it is absolutely
convergent) and defines a smooth section of |wy,, |“ on Y.

(3) A pair as above is excellent if it is nice for all « > 1/2 and for « = 1/2 we have
P« (s) € L?(Y,,) for every smooth section s with compact support.
When the substack ¥, C ¥ is fixed we refer to the stack ¥ as “nice” or “excellent.”

4 The subscript vs stands for “very stable.” The reason for this notation is that later when
we work with the stack Bun of G-bundles on a curve, we define Bun,s C Bun as the open
subset of very stable bundles.
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Remark 2.11. The convergence in the definition of «-niceness is automatically true for
Kk >1.

If ¥ is k-nice, then the map s > p«(s) descends to amap S, (¥) —> C*®(Yy). If Y
is excellent we get a map M(Y) = 81,2(¥) — L?(Yy) = L*(Y).

Example 2.12. Let X = (P!)3, G = PGL,, and ¥ = X /G, where G acts diagonally; we
take U to be the complement to all diagonals in (P!)3. Then G acts freely on U and we
set Y5 = U/ G (note that Y, is just Spec F). In this case one can check that ¥ is nice for
k > 1/3 and the stack ¥ is excellent.

3. THE CASE OF Bung: PRELIMINARIES
We fix a split connected semisimple group G and denote by Z it center.
Let € be a smooth complete irreducible curve over a field k.

Definition 3.1. (1) Bung is the stack of the principal G-bundles on € and
Bung s C Bung is the open substack of stable bundles.

(2) For a G-bundle ¥ on € we denote by Adg the adjoint bundle to ¥ associated
with the adjoint action of G on g.

(3) A G-bundle ¥ is very stable if there is no nonzero section of I'(€, Adg) ® we
whose values at all points of € are nilpotent.

(4) We denote by Bung,ys C Bung the substack of very stable bundles.
Remark 3.2. If € is of genus > 2 then:
(1) Every very stable bundle is stable.

(2) Bung is a dense open subset of Bun of the form Y /Z where Y is a smooth
scheme of finite type over F and Z acts trivially on Y.

(3) Buny is a dense open subset of Buny.

(4) When it does not lead to a confusion we shall drop the subscript G from the
notation (e.g., we shall write Bun for Bung).

Claim 3.3. The stack Bun is k-bounded for all k.
Remark 3.4. This statement is inspired by the proof of the main result of [7].
Conjecture 3.5. Assume that the genus g of € is > 2.

(1) Bun is «-nice for Re(x) > 1/2. In particular, for « > 1/2, we get a map
e S (Bun) — C°(Bunys).

(2) For k > 1/2 any section in the image of the map ¢, extends to a continuous
section of |wgy,|* on Bun.

(3) Bun is excellent.
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For G = PGL,, the first assertion of Conjecture 3.5 (as well as some special cases
of the second and third assertions) will appear in a forthcoming paper of A. Braverman,
D. Kazhdan, and A. Polishchuk. Let us note that (again for G = PGL,) the second assertion
can be reduced to the following purely algebro-geometric statement using [2] (we can prove
the conjecture for curves of genus 2 and 3).

Conjecture 3.6. Let & be a stable bundle on € of degree 2g — 1. Let Fg denote the scheme
of pairs (&£, s) where £ € Pic®(€) and s € P(H°(€, £ ® &)). Then

(1) Fg isirreducible.
(2) dim Fg = g.

(3) Fg has rational singularities.

4. AFFINE GRASSMANNIAN AND HECKE OPERATORS: THE CASE OF

FINITE FIELD

In this section we collect some facts about the canonical class of certain Schubert
varieties that we shall need in the future. All the results of this section follow easily from
[12] and [3]. In what follows we a ground field k and set denote by (@ the ring functions on
the formal one-dimensional disc D over k and by X the field of functions on the punctured
disc D*. So @ ~ k[[t]] and K ~ k((¢)). We denote by wp the canonical bundle on D and
fix a square root w 113/ 2 (unique up to an isomorphism; the isomorphism is unique up to £1).

4.1. The affine Grassmannian

Let G be a split semisimple group over k and Grg := G(K)/G(0O). It is known
that Grg has a natural structure of a proper ind-scheme over k and the orbits of the group
G(0O) on Grg are parameterized by the elements of A .

For each A € AT, we shall denote by Gré’; the corresponding orbit and by gr'é the
closure of Gré.

4.2. Satake isomorphism

In the rest of this section we assume that k is a finite field.

Let #(G, k) be the algebra of compactly supported G()-biinvariant distributions
on G(XK) (by choosing a Haar measure on G(K) such that G(O@) has volume 1, we can
identify these distributions with functions). Let G be the Langlands dual group, consid-
ered as a group over C. The Satake isomorphism identifies # (G, k) with the complexified
Grothendieck ring of the category Rep(G ") of finite-dimensional representations of GV. It
can also be identified with the algebra C[TV]% of W -invariant polynomial functions on TV

4.3. Hecke operators
Let now € be a smooth projective irreducible curve over k. As before we consider

the stack Bun := Bung of principal G-bundles on €. Let ¢ € € be a closed point with
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residue field k” which is a finite extension of k. Choose of a local parameter near c,’ (in the
end nothing will depend on this choice) and consider the stack Hecke. classifying triples
(&1, &2, n) where every &; is a principal G-bundle on € and 7 is an isomorphism between
&1 and &, on €\{c}. We have canonical projections

Hecke, LN Bun
| o))

Bun.
Every fiber of the map pr, is isomorphic to Grg and this isomorphism is canonical

up to the action of G(©). Thus every h € J (G, k’) defines a canonical function h on Hecke,.
We can use it as a correspondence, and set

The(f) = pras (pri(f) - h)
for any f : Bun(F,;) — C. This construction defines an action of the algebra #(G, k') on

the space of all functions on Bun(k) (given a choice of ¢ as above). For different choices
of ¢, these operators commute.

Claim 4.1. (1) The operators Ty preserve the space $(Bun) of functions with
finite support on Bun(k).

(2) Let L?>(Bun(k)) be the L?-completion of the space S (Bun(k)) with respect to
the standard L?-norm given by the measure on the (discrete) set Bun(k) where
the volume of every & is equal to ﬁt(é’)‘ Then for every c the action of # (G, k)
extends to an action on L>(Bun(k)) by bounded operators. If h is real-valued,
the operator Ty, . is self-adjoint.

4.4. Langlands conjectures

In the theory of automorphic forms, we are usually interested in eigenfunctions of all
the operators 7}, .. Let us replace the field of coefficients C by @e where £ is a prime number
different from the characteristic of ;. Then (the weak form) of the Langlands conjecture
states that if f is such an eigenfunction, then the eigenvalues of all the operators 7} . come
from a homomorphism p : W (€) — GV (Q,) where W (€) is the Weil group of € (a close
cousin of the fundamental group of €). In fact, in this form the Langlands conjecture has
been proved by V. Lafforgue (cf. [24]).

Let us recall the connection between Hecke-eigenvalues and homomorphisms p as
above. First of all, any ¢ defines a conjugacy class Fr, C W (€). For any V € Rep(G") the
by Satake isomorphism associates to V' an element in J# (G, k), which we denote by &y . We
denote Ty the corresponding Hecke operator. We say that the eigenvalue of an eigenfunc-
tion f comes from p if

Ty, (f) = Tr(p(Fre), V) - f )
forall c and V.

5 That is an identification of the formal neighborhood of ¢ with Spec k’[[¢]].
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In general, Hecke eigenfunctions lie neither in $(Bun) nor in L?(Bun) (here we
come back to considering C-coeflicients). Those which lie in the former are called cuspi-
dal, and those which lie in the latter are called discrete. The fact that not all eigenfunctions
are discrete is related to the fact that the operators 7}, have both discrete and continuous
spectrum.

Remark 4.2. Note that the operators T}, . would be compact, if the stack Bun were of finite
type over k (in fact, L?(Bun(k)) would be finite-dimensional in this case), and so in that their
common spectrum would be discrete. So, the existence of continuous spectrum of Hecke
operators is related to the fact that Bun is not of finite type over k.

5. THE AFFINE GRASSMANNIAN AND HECKE OPERATORS: THE CASE

OF LOCAL FIELD

5.1. More on formal discs

We are going to make a very mild change of notation (compared to the previous
section). Namely, let F be a field (very soon we shall assume that F' is a local field). In what
follows we denote by @ some discrete valuation ring over F which (as a discrete valuation
ring) is isomorphic to F[[¢]] (the point is that we do not want to fix this isomorphism). We
let K be the field of fractions of @. We set D = Spec(O), D* = Spec(.K). We shall denote
by 0 the canonical F-point of D.

We let wp be canonical sheaf of D and let wp ¢ be its fiber at 0. This is a vector
space over F.

5.2. Line bundles on Grg

It is well-known (cf. [3] and [12]) that every finite-dimensional representation V' of
G gives rise to a (determinant) line bundle £y on Grg; the fiber of this bundle over a point
g € G(K)/G(0O) is equal to the determinant of the vector space g(V(0))/g(V(O)) N V(O).
In particular, we let £4 denote the line bundle corresponding to the adjoint representation
of G. The line bundle ig_l has a square root (unique up to isomorphism) which we denote
by &Leit-

The following result from [3] is crucial for us:

Theorem 5.1. For every A € A, there is a canonical isomorphism

~ —(A.p")
Leritl g, = @6 ® wp g™

(Here, as before, e denotes the canonical bundle of on Gré’; ).6

6 The formulation of the theorem requires a clarification when G is not simply connected,
since in this case (A, p¥') might be a half-integer (and not an integer). It is sufficient for
our purposes to say that we choose a square root of wp o and that the isomorphism above
is canonical up to 1. This potential sign will disappear when we apply | - | to both sides
which we shall do in applications.
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—A
We need more information about the structure of the varieties Grg. The following
result is proved in [12] (cf. also [23] and [26] for the corresponding result in characteristic 0).

Theorem 5.2. (1) Each Eré is a normal and Cohen—Macaulay projective variety
over F.

(2) Each GrG has a resolution of singularities’ and, for every such resolution

GrG — GrG, one has
Rr} (Og) = O -
(in other words, gr/(l; has rational singularities).
The next result is an easy corollary of Theorems 5.2 and 5.1 (cf. [6] for a proof):

—A
Theorem 5.3. (1) For every A € A4, the variety Grg; is Gorenstein Moreover,
the canonical sheaf of GrG is isomorphic to éﬁcm|f,1 ® a)('1 0" Abusmg the

notation, we shall denote this sheaf by W .
G

~ ——2
(2) Forany A € Ay, let m* : Gr’é — Grg be any resolution of singularities. Then
A)*

the identification between (7w W A and G that one has at the generic point

of GrG comes from an embeddzng
A ~
(7'[ ) D > OG-

—A
(In the case chark = 0, this implies that Grg has canonical singularities).

5.3. Hecke algebra over local field

In this subsection F' can be any local field.

Let us now work over a local field F instead of k with the corresponding ring @ and
its field of fractions X .® Then we would like to define the Hecke algebra # (G, F). First we
consider the space

C%,(Grg) = lim § (Gr' (F). | Lew])-

Assume first that F' is non-archimedian. Then we define J (G, F) to be the space of
all G(O)-invariant linear functionals on C /2(Grg) with compact support. The latter condi-
tion means that we cor131der functionals § : C . I (Grg) — C which factorize through a map

C7,(Grg) — S(Gr (F), |£eric]) for some A. It is easy to see that # (G, F) is an algebra
with respect to convolution.

It turns our that Theorems 5.1, 5.2, and 5.3 allow one to construct a lot of elements

in # (G, F) (what follows is essentially equivalent to the main result of [6]). Namely, let

A be as above and let ¢ € C] /Z(Grg). Let us first trivialize the space wp,o. Then ¢|Gr,(l;

7 Of course, this statement is not a priori clear only if char F > 0.
8 In the case when F is non-archimedian the reader should not confuse @ = F[[t]] with O
which is the ring of integers of F.
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is a distribution on Gr’l(F ) and we can try to consider its integral. A priori it might not
be well defined since Gré(F ) is not compact, but it is explained in [6] that Theorems 5.2
and 5.3 imply that in fact this integral is absolutely convergent and thus defines an element
hj € #(G, F). These elements have the property that for any dominant A and . we have

haxhy = hyp.

In other words, we get an embedding C[A ] — H (G, F). It is easy to see that it is actually
an isomorphism.

If we do not want to trivialize the space wp o then canonically %, is a map from
|a)D,0|_(A’pv) — H (G, F), and we get an isomorphism

P lopol** ~ H#(G. F)
AeA 4

(the left-hand side has an obvious algebra structure).

5.4. Hecke operators for curves over local fields: the first approach

We would like to define Hecke operators in some space of actual functions on Bun
(or, rather, sections of |wBun|1/ 2), or maybe some open subset of it. Let us assume that the
genus of € is > 2. Then, as we have discussed before, Bun contains a dense open sub-
stack Bung of stable bundles which is a Deligne—Mumford stack. So, one can try to start

with a smooth section ¢ of |a)B,m|1/ 2

on Bungy(F) and apply the operator T . using the
diagram (1).°

In this case the definition will involve integration over Gr’};, and we are not guaran-
teed that the corresponding integral is convergent. The trouble is caused by the following:
take some & € Bun(F) (which one can assume to be stable or even very stable) and con-
sider pry 1(€). Let us identify it with Grg and consider the corresponding G (0)-invariant
subset @é in it. Let S be a compact subset of Buny (F). Then typically pry ! (S) N ﬁé is
not compact.

We say that ¢ € C 1°/°2(Bunvs) is good if the integral defining T, . (¢) is absolutely

convergent and the result is again an element of C.

! /Z(Bunvs). The following result is easy:

Claim 5.4. Assume the validity of Conjecture 3.5(1). Then the image of the map 11/, consists
of good sections and the map 1/, commutes with the operator T ..

Note that the image of ¢;/, obviously contains 81,5 (Bun,s). Thus Conjecture 3.5(1)
implies that any ¢ € §;/»(Buny) is good. On the other hand, without assuming Conjec-
ture 3.5(1) we cannot a priori construct any good element of C 1°/°2 (Bunyy).

We now proceed to the discussion of the action of the Hecke operators on L?(Bun).

The main expectation is the following:

9 We are slightly abusing the notation here: namely, we are going to denote by T . both the
operator on M (Bun) and on some space of sections of \wBun\l/ 2 which we are going to
discuss below. We hope that it does not lead to a confusion.
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Conjecture 5.5. The operators T, . on L?(Bun) are bounded, compact, and self-adjoint.
In particular, their common spectrum is discrete.

Philosophically, the reason for the fact that in the case of local fields the operators
T, . have discrete spectrum (as opposed to the case of finite fields) is that in the case of local
fields we always work only with some open subset of Bun of finite type (cf. also Claim 3.3),
and as was noted in Remark 4.2, the source for noncompactness of the Hecke operators in
the case of finite fields has to do with the fact that the stack Bun is not globally of finite type
(and in particular, not quasicompact).

5.5. Hecke operators for curves over local fields: the second approach

We now go back to the setup of Section 3. We would like to define Hecke operators
in this context. First, we need to decide on what space they are going to act. The first (and the
easiest) choice is to work with the space M (Bun) = §;,,(Bun) (another choice is discussed
in the next subsection). In what follows it will be convenient (but not necessary) to choose
/2

. 1
a particular square root wg,;

of wgyy (this is always possible, but the choice is slightly not
canonical).

Let us also choose a closed point ¢ of the scheme € with residue field F’ which is a
finite unramified extension of F; we shall take ( to be the local ring of ¢ (so, it is a discrete
valuation ring over F’ noncanonically isomorphic to F’[[¢]]). To emphasize the dependence
on ¢, we denote the corresponding Hecke algebra by #.(G) (instead of # (G, F")).

Then we again can consider the diagram (1) as in Section 4.3. Then since the line
bundle £ on Grg is G(O)-equivariant, we can define a line bundle ;‘Zcm on Hecke, whose
restriction to every fiber of pr, is canonically isomorphic to £ (this property makes sense

since every fiber is canonically isomorphic to Grg up to the action of G(Q)).

Lemma 5.6. We have
2 = pr; w1/2 ® cfcrit- (3)

pr)lk Wgyy = Bun

The isomorphism (3) easily allows one to define action of # (G, F') ~ C[A4]
on M(Bun). We denote by T, . the operator corresponding to /1, . (more generally, we
denote by Tj, . the operator corresponding to any & € # (G, F')). For different choices of ¢,
these actions commute. Therefore, one can try to study eigenvectors of all these operators in

M (Bun).

Remark 5.7. Recall that the operators T, . are canonically defined only up to a scalar;
canonically each T, . is an operator from M (Bun) to M(Bun) ® |a)f,c|(k’pv). Therefore
when we vary ¢ each eigenvalue gives rise to a section of |w€|_()"pv). This will not be
important for us until the end of Section 6 (where it will in fact become quite crucial).

Note that M (Bun) is an analog of the space of functions with finite support on
Bun(k) (where k is a finite field). But unlike in the case of finite fields, we expect the fol-
lowing (some philosophical reasons for this difference are discussed in the next subsection):
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Conjecture 5.8. Assume that F is non-archimedian. Then the space .M (Bun) has a basis of
Hecke eigenvectors. Similarly, in the archimedian case, the space M (Bun) has a topological
basis of Hecke eigenvectors.

Before we try to say something about the eigenvalues, let us discuss a slightly dif-
ferent version of Hecke operators.

5.6. Example

We now want to explain how to produce some Hecke eigenfunction using the con-
struction of Section 2.4.

In the case when F is non-archimedian and that € is defined over OF, i.e., we
choose a model €g,. of € over Or. We assume that €p,. is a regular scheme and we denote
by € the corresponding curve over k. Then the stack Bun is canonically defined over OF,
and we have the map Epyp,1/2 : S (Bun(k)) — M(Bun) (see Section 2.4).

We claim that this map commutes with the Hecke operators in the appropriate sense.
Namely, let F’ be a finite Galois extension of F with ring of integers O - and residue field k'.
Then one can construct a homomorphism yg: : H (G, F') — H (G, k) with the following
property. Let ¢ be a closed point of € whose residue field is F’. Note that €(F’) = €(OF),
so ¢ has canonical reduction ¢ which is a closed point of €; with residue field k’. Then for
any h € J(F, F') and for any ¢ € §(Bun(k)) we have

Egun,1/2(Ty ) (@) = Th(Epun,1/2()). 4

Remark 5.9. We do not know how to describe the map yr- in general. It is easy to see that
yr:(hy) is supported on @é (k’) (when viewed as a function on Grg (k’)). But this informa-
tion is sufficient only in the case when G = PGL,, when minuscule coweights generate A.

Equation (4) implies that Ep,,,1/2 sends Hecke eigenfunctions to Hecke eigenfunc-
tions. This operator is certainly not injective, but we expect it to be injective on cuspidal
functions. More precisely (assuming the validity of Conjecture 3.5), we formulate the fol-
lowing

Conjecture 5.10. Assume the validity of Conjecture 3.5. Then the composition of 1/, o
Egun,1/2 is unitary on cuspidal functions.

Conjecture 5.10 implies that we can attach a nonzero Hecke eigenvector in L2 (Bun)
to any cuspidal Hecke eigenfunction in § (Bun(k)). On the other hand, we expect that the map
Egyn,1/2 is highly noninjective on noncuspidal functions. For example, let G = PGL; and let
S (Bun(k)) (J:Ilsp denote the space of functions with finite support which are orthogonal to all

cuspidal functions (with respect to the standard Hermitian product). This space is infinite-
dimensional, but we expect that

dim Egyn,1/2(S (Bun(k))= ) = 1.

cusp

Note that equation (4) implies that the action of any T . on any section in the image
of Egyn,1/2 depends only on ¢ (and not on c¢). This is certainly a very restrictive condition.
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Also, one should think about Egy,,1/2 as some kind of Eisenstein series operator between
the group G (k) and the group G(F) (with G(OF) playing the role of a parabolic subgroup).
This is in fact the source for our notation.

5.7. Parabolic bundles

We would like to introduce a generalization of the above setup, which allows in
particular, to consider the case of curves of genus < 1 when we may analyze some explicit
nontrivial examples.

Definition 5.11. (1) Let us denote by Fl the variety of Borel subgroups of G.
(2) For a G-bundles ¥ on €, we denote by Flg the associated Fl-bundle over €.

(3) Foradivisor D C € defined over k, we denote by Bun? the stack of G-bundles
F on € with a section a of Flg over D.

It is easy to extend the definition of the Hecke operators T, . for ¢ ¢ D. All our
constructions and conjectures can be extended to this case. As was noted above, considering
parabolic points allows one to consider explicit examples. For example, in the case when
€ = P!, D consists of at least 3 points and G is of rank 1, Conjecture 5.5 is proved in [8]
(Proposition 3.13).

5.8. More spaces with Hecke action

5.8.1. The map Ey

Here we would like to discuss how to generalize the construction of Sections 2.4
and 5.6. Namely, let ¥ be as in Section 2.4. Let A, = O /m’,. Let ¥, denote the reduction
of Yo, modulo m’;. This is a regular stack over 4,. We consider the set ¥, (A4,) and we
set §(¥,(A,)) to be the vector space of C-valued functions on ¥,,(A4,) with finite support.
Then for any k¥ € C, we have the obvious map

$(Yn(4n) = $SW¥o,) ~ S (Yor. o).
Composing it with the natural map $ (Yo, |wy|) — Sk (Y), we get a map
Eyyen : S(:yn (An)) — S (Y).

It is easy to see that this map is surjective if the map ¥ (9) — ¥ (F) is surjective; in particular,
this is true for ¥ = Bung for a reductive group G.

In fact, when G is a reductive but not semisimple group, we also need the following
variant of the definition of §,(Y') for Y = Bung.

Definition 5.12. Let G be a reductive group and Z the connected component of the center of
G (so Z is a torus). For a character y, : Bunz ,(A4,) — C*, we denote by §,, (Bung ,(A4,))
the vector the space of (Bunz ,(An), y»)-coinvariants in S (Bung,,(A,)). Similarly, for
X : Bunz(F) = Bunz(9) — C*, we denote by S,(Bung), the space of (Bunz(F),y)-
coinvariants in §, (Bung).
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As before we have a map Egung.c,n,x & Sy, (Bung »(4,)) = S,y (Bung) provided
that y is equal to the pullback of k, under the natural map Bunz(F) = Bunz(O) —
Bunz,n(An).

5.8.2. Commutation with Hecke operators

We now want to specialize to the case ¥ = Bung and k = 1/2. We claim that in
this case the map Egyn,1/2,,» commutes with the Hecke operators in the sense similar to (4).
To explain the formulation we first need to discuss an analog of the homomorphism y r; this
is a local question.

Namely, let us consider the ring KX, = A, ((¢)). This is a locally compact topological
ring; its subring @, = A,[[¢]] is open and compact. Thus the group G(K,) is a totally
disconnected locally compact topological group with an open compact subgroup G(O,).
Hence, we may consider the corresponding Hecke algebra

Hn(G) = H(G(Kn), G(On)).

Here is a variant. Let € be a smooth projective curve over O . We denote by €, its
reduction mod m’;. Let F’ be a finite unramified extension of F and let ¢ be an F’-point
of €. As before we can also view it as an @ g/-point of € and we denote by ¢, its reduction
modulo m’,. This is an A},-point of €,. Then we might consider the corresponding Hecke
algebra #,, (G). It is noncanonically isomorphic to #,(G).

This Hecke algebra is quite bad: it is not commutative for n > 1 and apparently
it does not have any reasonable description. However, it has the following two important
features:

(1) Let € above and let ¢ be a point of € defined over a finite unramified extension
F’ of F. Then the (noncommutative) algebra #,, (G) acts on § (Bun,). Given
h € K.,(G), we denote by T}, , the corresponding operator on § (Bun,).

(2) We have a canonical homomorphism ., : #.(G) = H,(G).
(3) Forany h € #.(G) and ¢ € §(Bun,), we have
Egun,1/2.0 (Ve (The) (@) = Thc(Epun,1/2,2 (). ©)
5.8.3. Eigenfunctions and cuspidal functions: the idea
Definition 5.13. Let y be a unitary character of Bunz(A4,).

(1) A function ¢ € $(Bung ), is cuspidal if the span of {1}, ,(¢)}. h € H.(G),
¢ € €, is finite dimensional.

(2) Scusp(Bung )y, C S(Buny,), is the subspace of cuspidal functions.

Conjecture 5.14. S..,(Bun,), is finite dimensional for any n and dim(Scusp(Buny,),) ~
qn dim(Bung,z) for q> 1.
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Remark 5.15. Such that Hecke operators y. ,, (Tj ) are self-adjoint with respect to the nat-
ural Hermitian form on Scusp(Buny,) .

Since Bung (O) maps surjectively to Bung (F), it follows from the statement at the
end of Section 5.8.1 that

$c(Bung) = |_J Ebung e (S (Bung(4n)))

(and a similar statement holds for the space S, (Bung)). We can now define

SK,CUSP (Bung) = U EBunG N (Scusp (BunG,n (An)))

(and again similarly for S,y cusp(Bung)). Note that for k = 1/2 this space is locally finite
dimensional with respect to the Hecke operators.

5.9. The case of G = GL,

The proof of Conjecture 5.14 in the case G = GL, will appear in a forthcoming
publication by A. Braverman, D. Kazhdan, and A. Polishchuk. In this subsection we outline
a notion of the constant term used in our proof Conjecture 5.14 (again in the case in the case
when G = GL,; for simplicity, we shall also restrict ourselves to the case n = 2). This notion
is used for a different (but equivalent) definition of cuspidality.

5.9.1. The constant term in the usual case
Recall that the usual constant term operator (for n = 1) is defined as follows. Let
P be a parabolic subgroup of G; it has a natural homomorphism to M — the Levi factor.
Consider the diagram
Bunp (k) —2—> Bung(k)

ql (6)
Bunyy (k).
Then the constant term ¢g, p is equal to ¢y o p* (when k is a finite field).

Claim 5.16. A function ¢ on Bung (k) is cuspidal in the sense of Definition 5.13 if and only
ifeg,p(¢) = 0 for all parabolic subgroups P of G; let Sc.p(Bung (k)) be the space of all
cuspidal functions.

The following facts are well known and are easy to prove:
(1) Scusp(Bung (k)) is invariant under the Hecke operators.
(2) Scusp(Bung (k)) consists of functions with finite support.

(3) dim Scp(Bung(k)) < oo if G is semisimple. More generally,
dim Scugp, (Bung (k)) < oo if G is reductive and y is a character of Bunzo
where Z9 is the connected componenent of identity of the center of G.
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We expect that for a proof of Conjecture 5.14, one has to extend the definition of a
constant term onto the space §(Buny),.

The definition is not completely straightforward; as was mentioned above, we shall
only discuss the case G = GL, and n = 2. So, we shall now assume that G = GL, and again
just write Bun instead of Bungy,. Also in this case the only proper parabolic subgroup up
to conjugacy is the Borel subgroup; we shall also denote the corresponding constant term
operator (that we are going to define) simply by ¢,

In this case T = G, x Gy, so Buny (€;) = Pic(€;) x Pic(€,), so it would be
natural to expect that our constant term operator ¢ maps functions on Bun(%,) to functions
on Pic(€,) x Pic(€,). However, we do not know how to define such an operator if we want
it to commute with the Hecke operators in some reasonable sense. Instead, let us do the
following. Consider the semigroup Pic), (which contains the Picard group Pic, of €;). By
definition, Pic’2 consists of coherent sheaves M on € such that .M # 0 and there exists an
imbedding M <— &£ where £ is a line bundle on €. The tensor product defines the semigroup
structure on Pic).

Example 5.17. Let € = Spec(Az[x]), J C Az[x] be the maximal ideal generated by (x,?),
and ¢ the corresponding sheaf on €. Then § ® § = J where I C xA,[x] is generated by
(x2,1x).

We would like now to define an analog of the diagram (6). Namely, we consider the

diagram
Bun (€) 2, Bun,

4l @
Pic), x Pic},
where Bun; (€>) consists of all short exact sequences
0—>&1 > F > £L,—0,

where ¥ € Buny, £, £5 € Pic). It is easy to see that in this case we have £; =
Hom(£;,det(F)) fori, j =1,2andi # j. So if we fix det(¥) and one of the bundles &£
of £,, this determines the isomorphism class of the other.

Theorem 5.18. (1) The space Scusp(Buny) of Conjecture 5.14 is the space of func-
tions ¢ € S (Buny) such that (q2)p5(¢) = 0.

(2) dim Scysp,y (Buny) < oo for any unitary character y : Picy, — C*. In fact, Con-
Jecture 5.14 holds in this case.

The proof will be discussed in another publication. Let us note that it is not difficult

to deduce the second assertion of Theorem 5.18 from the first.

5.10. Main question
Assuming the above conjectures, one can ask how to describe the Hecke eigenval-
ues. It would be extremely interesting to relate them to some kind of Galois data (involving
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the dual group GY). At the moment, we do not know how to do it in the non-archimedian
case even for G = GL, when we defined an action of these operators of finite-dimensional
spaces Eun,1/2,n (Scusp,y (Buny)).

In the archimedian case, a precise conjecture of this sort is formulated in [9] and
[18]. We discuss it in the next section.

6. THE CASE F =C

6.1. From Hecke operators to differential operators: the idea

In this section we specialize to the case F = C. In this case, in addition to Hecke
operators, one can introduce another player, namely the algebra of twisted (polynomial) dif-
ferential operators on Bun, which will, roughly speaking, act on the same space as the Hecke
operators and the two actions will commute. This will allow us to formulate a variant of
Langlands conjecture in this case. More precisely, we are going to relate the Hecke eigenval-
ues to some particular G ¥-local systems on € — opers with real monodromy. Let us begin
by recalling basic information about opers and differential operators on Bun.

6.2. Opers
For a principal GV-bundle § on €, we denote by Flg the associated Fl-bundle on
€ where Fl is the variety of Borel subgroups of GV.

Definition 6.1. (1) A GV-oper on € is a triple (&, V, s), where § is a principal
GVY-bundle on €, V is a connection on ¢, and s is a section of Flg satisfying
an analog of the Griffiths-type condition with respect to V (see [4]). We denote
by Opergv (€) the variety of opers.'?

(2) For an oper 0o = (¥, V,s), we denote by ¢, : m1,(C) — GY(C) the mor-
phism defined by the connection V. We denote by Opery. (€)® C Oper(; (€) the
subset of opers o such that the homomorphisms ¢, and zo are conjugate, where
~:GY(C) — GY(C) is the complex conjugation corresponding to a choice of
a split real form of GV.

Let us make several comments. First, it is known (cf. [3]) that given just a pair (¥, V),
the B structure s is unique if it exists. Thus Opergv (€) is actually a closed subset of the
moduli stack of GV-bundles with a connection (in other words, for such a local system to be
an oper is a property rather than a structure). Second, let us comment on the reality condition
in (2). Obviously, one way to guarantee this condition is to require that the monodromy
representation of 71 (€) corresponding to (¥, V) is conjugate to a homomorphism going

10 If GV is adjoint then the moduli stack of opers is, in fact, an algebraic variety (which is
isomorphic to an affine space of dimension rk(G)). If GV is not adjoint then formally one
needs to consider the coarse moduli space here, since the center Z of GV is equal to the
group of automorphisms of every oper. We shall ignore this subtlety for the rest of this
section.
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into GY (R) for a real split form of GY. We expect that the converse is also true, and this
is proved for G¥Y = SL(2) in [1e] (Remark 1.8), but we do not know how to prove this in
general. However, it is not hard to see (cf. again [1e]) that up to conjugation the image of
the monodromy homomorphism 71 (€) — GV lies in some inner form of the split real form
of GY. When we are in the setup of Section 5.7 and |D| > 1 it is also shown in [1e] that the
monodromy is lies in the split real form of G V.

6.3. Opers and differential operators
Let D be the algebra of global sections of the sheaf D/, (Bun) of regular differential
/2

1
operators on wg,

. We denote by 7 : & — D the involution on O induced by the Cartan
involution of G.
The following statement is one of the main results of [3] (a local version of this result

appears in [13]).
Theorem 6.2. (1) The algebra D is commutative.
(2) Spec(D) = Opergv (€).

(3) Leto € Opergv(€) and let y, : D — C be the corresponding homomorphism.
Let also 1, C Dy/,(Bun) be the sheaf of ideals of D ,,(Bun) generated ele-
ments of the form d — x,(d) where d € . Then the D1, (Bun)-module M, :=
Dy/2(Bun)/ 1, is Opun-coherent when restricted to Bun,.!!

6.4. Differential operators and Hecke operators

Recall that we denote by C 1"72 (Bunyy) the space of smooth 1/2-forms on Bunys. The
algebra A := D ® D acts naturally on C 1°/°2 (Bun,s). We denote by 7 the involution on
such that 7(d; ® d») = d; ® d_f and define AR C 4 as the subalgebra of 7-fixed points.

We would like to claim that the action of the algebra + on 1/2-forms commutes with
the action of the Hecke operators. Here we must be careful, as a priori it is not clear how to
construct one vector space on which both algebras will act. For this, we need to formulate
one more definition.

Let us define a space $ch(Bun) — “the Schwartz space of Bun.” Namely, we set
Sch(Bun) = {(;S € Clofz(Bunvs)| a(¢) € L*(Bun) for any a € A}. ®)

For a € 4, we denote by a the induced endomorphism of §ch(Bun).

Note that by definition Sch(Bun) C L?(Bun) and also $ (Buny,) C Sch(Bun). The
reader might ask why we start with C°°-forms on Bun,, rather than on Bung. The reason
is that below we want to study eigenvectors of + on Sch(Bun), and it follows easily from
Theorem 6.2(3) that any such eigenvector is automatically smooth on Bunyg (but there is no
reason for it to be smooth on Buny).

11 Part (3) of this theorem explains the reason for our belief in Conjecture 3.5(2).
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Conjecture 6.3. (1) Anya € AR extends to an (unbounded) self-adjoint operator
on L2(Bun).

(2) The space Sch(Bun) is stable under the action of all Hecke operators.
(3) Sch(Bun) = t1/2(S1/2(Bun))."”
(4) The action of 4 on Sch(Bun) commutes with the action of Hecke operators.

(5) There exists a dense (in the L2-sense) subspace §ch(Bun)q of §ch(Bun) which
is stable under 4 and the Hecke operators and such that §ch(Bun)y is a direct
sum of 1-dimensional eigenspaces for # (in other words, the space Sch(Bun)g
is locally finite dimensional for 4 and every generalized eigenvalue has multi-
plicity 1).

Let us comment on the multiplicity 1 statement. A 1/2-form is actually an eigen-
vector if it satisfies a certain system of linear differential equations. Locally on Bun,,(C),
the space of solutions is finite dimensional but certainly not one dimensional (this has to do
with the fact the D-module M, has high rank on Buny; for example, for SL, this rank is
232=3) However, globally most of these solutions become multivalued, so the multiplicity-
one conjecture says that only one-dimensional space of solutions is single-valued globally.
This, in fact, would follow if we knew that the ID-module M, was irreducible and had regular
singularities. For G = PGL,, this can be deduced from [2e] (and probably similar analysis
can be carried over for PGL,,).

Conjecture 6.3 implies that L2(Bun) is a (completed) direct sum of eigenspaces
for A and eigenvalues have multiplicity 1. A priori any such eigenvalue is given by a pair
of opers (0, 0'), but part (1) of Conjecture 6.3 implies that o’ = 07, so we are supposed to
attach an eigenspace to a single oper o. It is also not difficult to see that o € Opergv ()R,
We denote the corresponding eigenspace by L?(Bun),. Note that Conjecture 6.3 implies that
L?(Bun), C Sch(Bun).

Conjecture 6.4. We have L?(Bun), # 0 if and only if 0 € Opergv (€)R.

Remark 6.5. As was remarked above, the “only if” direction is easy. What is hard is to prove
existence of eigenvectors for A which lie in L2.

Note that Conjectures 5.5, 6.3, and 6.4 together imply the following

Corollary 6.6. Let ‘W denote the set of Hecke eigenvalues on L?(Bun). Then there exists a
surjective map 1 : Opergv (€)®R — W such that for any ¢ € € and any h € #(G, C) the
operator T, . acts on L*>(Bun)o by n(0)(h).

Let us comment on the connection between Corollary 6.6 and Conjecture 5.5. We
actually expect the map 7 to be finite-to-one (and in many cases it should be an isomorphism),
so Conjecture 5.5 should imply that Oper v (€)® should be a discrete subset of Opergv (€).

12 Note that if we assume the validity of Conjecture 3.5 for F = C, then (3) implies (2).
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This assertion is not obvious, and at the moment we do not know how to prove it in general,
but let us note that for G¥ = PGL, it was proven by G. Faltings in [11].

6.5. Eigenvalues of Hecke operators

We conclude this section by describing a conjectural formula for the map 7 (the
contents of this subsection is described in more detail in [18]). More precisely, we are going
to do the following. We would like to understand the scalar by which the operator T . acts in
L?(Bun),. We can actually regard ¢ as a variable here. In view of Remark 5.7, this eigenvalue
is, in fact, a section ®, , of |a)f,c|_<’1”’v) (recall that p denotes the half-sum of positive
coroots of G).

For A € AT, let V3, be the corresponding irreducible finite-dimensional representa-
tion of GV. Choose an 0 = (¥, V, s) € Opergv (€). Moreover, the Griffiths transversality
condition implies that the 7V-bundle induced from the BY -structure s by means of the homo-
morphism BY — TV is induced from we by means of the cocharacter p¥ : G, — TV."3
Therefore if we denote by (V, 1, V, ) the vector bundle on € associated to F via the rep-
resentation V/, (with the corresponding flat connection), then s defines an embedding

\
a)gl’p ) — Vo,k

and hence a morphism
—(A,pY

Oc = o @V, .
We let 0, be the image of 1 under this morphism.

Let now o € Opergv(C )R Then we have isomorphism of V, ; and Vo, ;5 as flat
C°-bundles (and this isomorphism is canonical up to the action of the center of GV).
Since VA* >~ V_wo(n), We get a pairing (-, -); between C*°-sections of V, ; and of 7,,,,1.
Since (—wg(4), p¥) = (A, p"), we can regard 6 _,, (1) as a section ofﬁgk’pv) ® ?j. Since
a)g(’l’pv) ® EEM”JV) = |we|~***"), we can formulate the following Conjecture (cf. [1e]):

Conjecture 6.7.
Dy = (03, T—wo))r € CZ(E, |we|~*#7).

6.6. Parabolic bundles: results

All the conjectures of this section can be easily generalized to the setup of Sec-
tion 5.7. In the case when € is P! and the cardinality of the divisor D is 3, 4, or 5, they are
proven in [8] (and most of them are proven in [8] even for | D| > 5).

13 Strictly speaking, this makes sense only if GV is simply connected since pV is a well-
defined cocharacter of 7V only in that case. For general G, the corresponding 7¥-bundle is

induced from a).(li,/ 2 by the character 2p" for some choice of a)é/ 2 To simplify the notation,
we are going to write the answer in the case when GV is simply connected — the generaliza-

tion to any G is straightforward.
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7.THE CASE F =R

In this section we would like to describe the conjectural picture of the analytic Lang-
lands correspondence in the case ¥ = R. This picture has been developed by P. Etingof,
E. Frenkel, D. Gaiotto, D. Kazhdan, and E. Witten, and is discussed in [19, SECTION 6].

Warning. Some of the letters used in the previous section (such as o or t) will have a
different meaning in this section.

7.1. Real groups, L-groups, and all that

Let G be a connected complex semisimple group. Recall that a real structure on G
is defined by an antiholomorphic involution o : G — G. The corresponding group of real
points is G (it may be disconnected). The inner class of o gives rise to a based root datum
involution s = s, for G which is also one for GV. If G is semisimple, this is just a Dynkin
diagram automorphism.

Recall [1] that to G, s we may attach the Langlands L-group LG = LG, the semidi-
rect product of Z/2 = Gal(C/R) by GV, with the action of Z /2 defined by y o s, where y
is the Cartan involution.

7.2. L-systems

Let € be a compact complex Riemann surface of genus g > 2. Let 7 : € — € be an
antiholomorphic involution. Given a holomorphic principal G-bundle & on €, we can define
the antiholomorphic bundle 7(&), hence a holomorphic bundle ot (&). Let us say that & is
real under o if there exists an isomorphism A : & — o7(&) such that

ot(A)o A =1. ©)

This isomorphism 4 is unique if it exists, and (9) is automatic if Aut(&) = 1, which happens
generically for stable bundles if G is adjoint. In this case, gA : & — go (&) has the same
property for 6’ = go, where g € G and go(g) = 1. Thus the moduli space of such stable
bundles depends only on s [5, PROPOSITION 3.8]. We will denote it by Bung .

Consider the simplest case when 7 has no fixed points, i.e., €(R) = 0. Let { be a
local system on the nonorientable surface €/t with structure group ©G. Let us say that ¢
is an L-system if it attaches to every orientation-reversing path in €/t a conjugacy class in
LG that maps to the nontrivial element in Z /2. The following conjecture is formulated in
[19, SECTION 6] (in the case of the compact inner class).

Conjecture 7.1. The spectrum of Hecke operators on LZ(Bun) is parametrized by L-
systems on € /7 with values in “G = L G, whose pullback to € has a structure of a G-oper.

Example 7.2. Lets = y. Then G = Z/2 x GV, so an L-system is the same thing as a G-
local system on € /7. So in this case the condition on the G Y-local system on € to occur in
the spectrum is (conjecturally) that it extends to the 3-manifold M := (€ x [—1,1])/(z,—Id)
whose boundary is € (and this extension is a part of the data).
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Namely, in this case the spectral local systems are ¢ which are isomorphic to ¢* and
such that ¢ is an oper (hence also an anti-oper), so ¢ is a real oper “with real coefficients.”
But among these we should only choose those that extend to € /7 (and then the multiplicity
of eigenvalue may be related to the number of such extensions). This agrees with the picture
[19, SECTION 6.2] coming from 4-dimensional supersymmetric gauge theory.'* More precisely,
recall that by a result of Beilinson and Drinfeld [3], opers for adjoint groups have no nontrivial
automorphisms. So for any connected semisimple G, we get an obstruction for such ¢ to
extend to €/t which liesin Z/Z2 = H?(Z/2,Z), where Z is the center of GV.'> Moreover,
if this obstruction vanishes then the freedom for choosing the extension is in a torsor over
HY(Z/2,Z) = Z,, the 2-torsion subgroup in Z.

Example 7.3. Let G = K x K for some complex group K, and s be the permutation of
components (the only real form in this inner class is K regarded as a real group). This is
equivalent to the case F = C considered above (for € defined over R). Then L' G, =~ Gyos =
Z/2x (KY x KY), where Z/2 acts by permutation. So an L-system is a K x K" local
system on € of the form (p, p*). Thus the spectrum is parametrized by ¢ such that both { and
LT are opers, i.e., ¢ is both an oper and an anti-oper, i.e. a real oper, which agrees with the
conjecture for F = C. (Note that in this case H(Z/2, Z) = 1 so there is no obstructions
or freedom for extensions).

Remark 7.4. If €(R) # 0, the story gets more complicated, and we will not discuss the
details here. Let us just indicate that, as explained in [19, SECTION 6], to define the appropriate
moduli space and the spectral problem on it, we need to fix a real form G; of G in the inner
class s for each component (oval) C; of €(R), and the eigenvalues of Hecke operators are
conjecturally parametrized by a certain kind of “real” opers corresponding to this data, i.e.,
opers with real coefficients satisfying appropriate reality conditions on the monodromy of
the corresponding G Y -connection. Furthermore, in the tamely ramified case, when we also
have a collection of marked points D on € defined over R, to define the most general version
of our spectral problem, we need to fix a unitary representation ; of the real group G; for
every marked point ¢ € D on C; and a unitary representation of the complex group G¢
for every pair of complex conjugate marked points ¢, ¢ € D not belonging to €(R). For
example, the case of parabolic structures corresponds to taking s to be the split inner class,
G; the split forms, and 7; the unitary principal series representations. In the genus zero case,

14 More precisely, as was explained to us by E. Witten, what comes from ordinary gauge
theory is this picture for the compact inner class s. To obtain other inner classes, one needs
to consider twisted gauge theory where the twisting is by a Dynkin diagram automorphism
of G. Namely, gauge fields in this theory are invariant under complex conjugation t up to
such an automorphism.

15 Indeed, 1 (€ /1) is generated by 71 (€) and an element ¢ such that tht~1 = B(b) for some
automorphism f of 71 (€), and t? = ¢ € m1(€), so that 2(b) = chc~!. So given a
representation ¢ : 1 (€) — GV, an L-system would be given by an assignment {(¢) = T €
GV such that (1) T2 = ¢(c) and (2) T¢(a)T~1 = £(B(a)). If ¢ = p o B then T satisfying
(2) is unique up to multiplying by u € Z, and T? = ¢(c)z, z € Z. Moreover, if T is replaced
by Tu then z is replaced by zu?, hence the obstruction to satisfying (1) lies in Z/Z2.
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this was discussed in detail in [8], and it was shown that this problem leads to appearance of
T -systems.

7.3. Connection to Gaudin model
Recall that the Gaudin model for a simple complex Lie algebra g is the problem of
diagonalization of the Gaudin hamiltonians

e 3

2
1<js<N,j#i '

on the space (V3 ® --- ® Vy)9, where V; are finite-dimensional g-modules, z; € C are
distinct points, Q € (S2g)8 is the Casimir tensor dual to the Killing form, and €2;; denotes
the action of € in the ith and jth factor. These operators commute, and if g # sl, then
there are also higher Gaudin hamiltonians associated to the Feigin—Frenkel higher Sugawara
central elements at the critical level (see [14]), which commute with each other and with H;,
and the problem is to simultaneously diagonalize all these operators.

It turns out that this problem (for real z;) is a special case of the spectral problem
considered in this paper, in the case F = R. Namely, let us take € = P! with the usual
real structure and fix the compact inner class s of the complex simply connected group G
with Lie(G) = g. As explained in the previous remark, on the real locus P!(R), we are
supposed to fix a real form of G in this inner class, and we fix the compact form G.. Further,
consider marked points z1, ..., zy on the real locus (the tamely ramified case). Then we are
supposed to fix a unitary representation of G, at every z;, and we take it to be V;. Then the
Hilbert space of the analytic Langlands theory is # = (V; ® --- ® V;,)%¢ (so in this case it
is finite dimensional), and the quantum Hitchin system comprises the Gaudin hamiltonians
(including the higher ones), cf. [14].

As is explained in [15,17], the Bethe ansatz method shows that the eigenvectors of
the Gaudin hamiltonians are labeled by monodromy-free GY-opers on P! with first-order
poles at z; and residues in the conjugacy class of —A; — p, where A; is the highest weight
of V;. These are exactly the “real opers” for this situation. Thus the results of [15,17] may
be considered as a finite-dimensional instance of the tamely ramified analytic Langlands
correspondence for genus zero and F = R.
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The evolution of form and shape can be described by differential equations. Many of these
equations originate in various branches of science and engineering. They are fundamental
and in a sense canonical. The fact that they make sense geometrically means that they are
relevant everywhere and have fundamental properties that appear over and over in many
settings. Understanding them requires simultaneous insight into analysis and geometry and
the interplay between these.
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1. INTRODUCTION

The evolution of form and shape can be described by differential equations. These
equations are classical, and those we will consider are variants of the heat equation that gov-
erns how heat distributes over time. The questions and equations, many of which originate
in various branches of science and engineering, are fundamental and in a sense canonical,
and as a consequence come up in many areas. The Laplace equation, for example, is the
canonical linear second order partial differential equation once we have a metric structure.
The Laplace operator appears classically in the physics of gravity, electricity and magnetism,
fluid mechanics, and quantum mechanics, it has played a central role in many areas of math-
ematics, and its study in increasing generality played a central role in the development of the
theory of PDEs. The fact that the equations make sense geometrically means that they are
relevant everywhere in physical settings, and they have certain fundamental properties that
appear over and over. Understanding them requires simultaneous insight into analysis and
geometry, and the interplay between these. The new ideas and techniques to deal with these
questions apply to many different situations. Recent years have seen dramatic progress on
many of these questions thanks to the combined efforts of many people with different points
of views and techniques. The goal here is to give a flavor of some of these results.

The first equation we will consider is mean curvature flow of hypersurfaces. Surface
tension is the tendency of fluid surfaces to shrink into the smallest surface area possible.
Mathematically, the force of surface tension is described by the mean curvature. In equilib-
rium the mean curvature is zero and one gets minimal surfaces. Minimal surfaces date back to
Euler and Lagrange and the beginning of the calculus of variations. Many of the techniques
developed have played key roles in geometry and partial differential equations. Examples
include monotonicity and tangent cone analysis originating in the regularity theory for min-
imal surfaces, estimates for nonlinear equations based on the maximum principle arising in
Bernstein’s classical work, and even Lebesgue’s definition of the integral that he developed
in his thesis on the Plateau problem for minimal surfaces.

Under mean curvature flow, the surface moves to decrease surface area as fast as pos-
sible. If we think of the hypersurface as the level set of a function and insist that all level sets
move by mean curvature flow, then this gives rise to a nonlinear degenerate parabolic PDE
on a Euclidean space. This is the level set formulation of the equation. The level set method
has been intensively studied in many pure and applied fields over the last 35 years. One of
the first questions that comes up is the regularity of solutions. The equation is degenerate
and a priori solutions are only defined weakly. We will see that the regularity of solutions
is equivalent to a question that has been widely studied in geometry over the last 40 years,
namely, the question of uniqueness of blowups. This is very much in the spirit of the simple
fact that a function is differentiable at a point if, at all sufficiently small scales, it not only
looks like a linear function but the same linear function independent of scale.

As growth of solutions to PDEs plays an important role in many different areas, we
will discuss the growth of some classical and basic equations on manifolds. These include
harmonic and caloric functions. That is, functions that are either solutions to the Laplace
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equation or the heat equation. We will also discuss more general eigenfunctions of drift
equations. Drift Laplacians are ubiquitous in many areas, including quantum field theory,
stochastic PDE, and anywhere the heat equation or Gaussian appears, such as functional
inequalities, parabolic PDEs, geometric flows, and probability. The drift term arises in two
different ways. One is whenever there is a natural scaling or, more generally, a gradient flow.
A second way it arises is when there is a natural measure, in which case the drift operator
is the canonical self-adjoint second order operator. There is a long history of studying the
growth of solutions to differential equations, inequalities, and systems. These new growth
estimates have direct application to longstanding open questions.

Analysis of noncompact manifolds almost always requires some controlled behav-
ior at infinity. Without such, one can neither show nor expect strong properties. On the other
hand, such assumptions restrict the possible applications and often too severely. In a wide
range of areas, noncompact spaces come with a Gaussian weight and a drift Laplacian.
Eigenfunctions are L? in the weighted space allowing for extremely rapid growth. Rapid
growth would be disastrous for many applications. Surprisingly, for very general tensors,
manifolds, and weights, we will show the same polynomial growth bounds that Laplace and
Hermite observed for functions on a Euclidean space for the standard Gaussian. This covers
all shrinkers for Ricci and mean curvature flows.

These new growth estimates for the PDEs open a door to study delicate analyti-
cal questions on a wide class of non-compact manifolds without assuming any asymptotic
decay at infinity. They provide an analytic framework for investigating nonlinear PDE on
Gaussian spaces where previously the Gaussian weight allowed wild growth that made it
impossible to approximate nonlinear by linear. They are key to bound the growth of dif-
feomorphisms of noncompact manifolds and to solving the “gauge problem.” Many key
problems are defined intrinsically without a canonical coordinate system. In those prob-
lems, the infinite-dimensional diffeomorphism group (gauge group) becomes a major issue
and dealing with it a major obstacle. Ricci flow is such an example. There are many problems
where this degeneracy under diffeomorphisms plays a central role, but most techniques rely
on compactness or rapid decay which we do not have in the situations we consider.

Another common feature for all of these problems is that they are dynamical and can
be thought of as infinite-dimensional dynamical systems. Classical results from dynamics
do not apply directly, but they do give some guiding principles, [85,88,92]. In mathematics,
structural stability is a fundamental property of a dynamical system, which means that the
qualitative behavior of the trajectories is unaffected by small perturbations. Given a smooth
function f on a finite-dimensional space, the gradient V f points in the direction of the
steepest ascent. The critical points of f are the points where V f vanishes. If p is a local
minimum of f, then the second derivative test tells us that the Hessian matrix of f at p is
nonnegative. More generally, the number of negative eigenvalues of the Hessian is called the
index of the critical point. A fundamental method to find the minimum of f is the method of
gradient descent. Here, we make an initial guess po and then iteratively move in the negative
gradient direction, the direction of the steepest descent, by setting p;+1 = p; — V f(pi).
The function f'(x(¢)) decreases as efficiently as possible as x (¢) heads towards the minimum.
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The dynamics near a nondegenerate critical point are determined by the index. If the index is
zero, then the critical point is attracting and the entire neighborhood flows towards the critical
point. However, when the index is positive, a generic point will flow out of the neighborhood,
missing the critical point. In the final part we will discuss stable structures in geometry.

Part 1. Optimal regularity of PDEs. In mean curvature flow, the velocity vector field is
the mean curvature vector and the evolving front is the level set of a function that satisfies
a nonlinear degenerate parabolic equation. Solutions are defined in a weak, so-called “vis-
cosity” sense; in general, they may not even be differentiable (let alone twice differentiable).
However, it turns out that for a monotonically advancing front viscosity solutions are in fact
twice differentiable and satisfy the equation in the classical sense. Moreover, the situation
becomes very rigid when the second derivative is continuous.

Suppose ¥ C R*T1 is an embedded hypersurface and n is the unit normal of X.
The mean curvature is given by H = divy(n). Here

n
divs(n) = ) (Ven.e;),
i=1
where e; is an orthonormal basis for the tangent space of . For example, at a point where
n points in the x, 4 direction and the principal directions are in the other axis directions,

n

divsm) = Y on;

: Bxi
i=1

is the sum (n times the mean) of the principal curvatures. If ¥ = u~!(s) is the level set of a
function u on R*T1 and s is a regular value, then n = % and

n
Vu
H = Z(Vein, €i> = diVRn+1 (W)
i=1

The last equality used that (Vyn, n) is automatically O because n is a unit vector.
A one-parameter family of smooth hypersurfaces M; C R"*! flows by the mean
curvature flow if the speed is equal to the mean curvature and points inward:

x; = —Hn,

where H and n are the mean curvature and unit normal of M, at the point x. Our flows will
always start at a smooth embedded connected hypersurface, even if it becomes disconnected
and nonsmooth at later times. The earliest reference to the mean curvature flow we know
of is in the work of Birkhoff from the 1910s, where he used a discrete version of this, and
independently in the material science literature of the 1920s.

Two key properties.

* H is the gradient of area, so the mean curvature flow is the negative gradient flow
for volume (Vol M, decreases most efficiently).

* (Avoidance property) If My and Ny are disjoint, then M; and N; remain disjoint.
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The avoidance principle is simply a geometric formulation of the maximum prin-
ciple. An application of it shows that if one closed hypersurface encloses another, then the
outer one can never catch up with the inner. The reason for this is that if it did there would
be a first point of contact, and right before that the inner one would contract faster than the
outer, contradicting that the outer was catching up.

Curve shortening flow. When n = 1 and the hypersurface is a curve, the flow is the curve
shortening flow. Under the curve shortening flow, a round circle shrinks through round circles
to a point in finite time. A remarkable result of Grayson [1e3] from 1987 (using earlier work
of Gage and Hamilton [1ee]) shows that any simple closed curve in the plane remains smooth
under the flow until it disappears in finite time in a point. Right before it disappears, the curve
will be an almost round circle.

Level set flow. The analytical formulation of the flow is the level set equation that can be
deduced as follows. Given a closed embedded hypersurface & C R, choose a function
vo : R"*1 — R that is zero on I, positive inside the domain bounded by X, and negative
outside. (Alternatively, choose a function that is negative inside and positive outside.)

« If we simultaneously flow {vy = s1} and {vg = s,} for s; # 55, then avoidance
implies they stay disjoint.

« In the level set flow, we look for v : R*t1 x [0, o0) — R so that each level set
t — {v(:,t) = s} flows by mean curvature and v (-, 0) = vy.

e If Vv # 0 and the level sets of v flow by mean curvature, then

%
vy = |Vo|div v
Vol

This is degenerate parabolic and undefined when Vv = 0. It may not have classical solutions.

In a paper from 1988, Osher and Sethian [159] studied this equation numerically.
The analytical foundation was provided by Evans and Spruck [98] in a series of four papers
in the early 1990s and, independently and at the same time, by Chen, Giga, and Goto [41]; see
also [5]. Both of these two groups constructed (continuous) viscosity solutions and showed
uniqueness. The notion of viscosity solutions had been developed by Lions and Crandall in
the early 1980s. The work of these two groups on the level set flow was one of the significant
applications of this theory.

Examples of singularities. Under mean curvature flow, a round sphere remains round but
shrinks and eventually becomes extinct in a point. A round cylinder remains round and even-
tually becomes extinct in a line. The marriage ring is the example of a thin torus of revolution
in R3. Under the flow, the marriage ring shrinks to a circle then disappears.

Dumbbell. If the neck is sufficiently thin, then under the evolution the neck of a rotationally
symmetric mean convex dumbbell in R3 pinches off first and the surface disconnects into
two components. Later each component (bell) shrinks to a round point. This example falls
into a larger category of surfaces that are rotationally symmetric around an axis. Because
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of the symmetry, then the solution reduces to a one-dimensional heat equation. This was
analyzed already in the early 1990s by Angenent, Altschuler, and Giga [4]; cf. also the work of
Soner and Souganidis from around the same time. A key tool in the arguments of Angenent—
Altschuler—Giga was a parabolic Sturm-Liouville theorem of Angenent that holds in one
spatial dimension.

Singular set. Under mean curvature flow, closed hypersurfaces contract, develop singulari-
ties, and eventually become extinct. The singular set § is the set of points in space and time
where the flow is not smooth.

In the first three examples—the sphere, cylinder, and marriage ring—S$ is a point,
line, and closed curve, respectively. In each case, the singularities occur only at a single time.
In contrast, the dumbbell has two singular times with one singular point at the first time and
two at the second.

Mean convex flows. A hypersurface is convex if every principal curvature is positive. It is
mean convex if H > 0, i.e., if the sum of the principal curvatures is positive at every point.
Under the mean curvature flow, a mean convex hypersurface moves inward and, since mean
convexity is preserved, it will continue to move inward and eventually sweep out the entire
compact domain bounded by the initial hypersurface.

Monotone movement can be modeled particularly efficiently numerically by the Fast
Marching Method of Sethian.

Level set flow for mean convex hypersurfaces. When the hypersurfaces are mean convex,
the equation can be rewritten as a degenerate elliptic equation for a function u defined by

u(x) ={t | x € M;}.

We say that u is the arrival time since it is the time the hypersurfaces M, arrive at x as the
front sweeps through the compact domain bounded by the initial hypersurface. Kohn and
Serfaty [131] provided a game theoretic interpretation of the arrival time. It follows easily
that if we set v(x,¢) = u(x) — ¢, then v satisfies the level set flow. Now the level set equation
vy = |Vv|div(Vv/|Vv]|) becomes

Vu
—1 = |Vuldi .
IVl ”(ww)

This is a degenerate elliptic equation that is undefined when Vu = 0. Note that if u sat-

isfies this equation, then so does u plus a constant. This just corresponds to shifting the
time when the flow arrives by a constant. A particular example of a solution to this equa-
tion is the function u = —1 (x} + x3), that is, the arrival time for shrinking round cylinders
in R3. In general, Evans—Spruck (cf. Chen-Giga-Goto) constructed Lipschitz solutions to
this equation.

Singular set of mean convex level set flow. The singular set of the flow is the critical set
of u. Namely, (x, u(x)) is singular if and only if Vyu = 0. For instance, in the example of
the shrinking round cylinders in R3, the arrival time is given by u = —%(xf + x%) and the
flow is singular in the line x; = x, = 0; that is, exactly where Vu = 0.
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We will next see that even though the arrival time was only a solution to the level set
equation in a weak sense, it always turns out to be a twice differentiable classical solution.

Differentiability [79, se].

* u is twice differentiable everywhere, with bounded second derivatives, and smooth
away from the critical set.

 yu satisfies the equation everywhere in the classical sense.

* At each critical point, the Hessian is symmetric and has only two eigenvalues 0
and —%; —% has multiplicity £ + 1.

This result is equivalent to saying that at a critical point, say x = 0 and u(x) = 0,
the function u is (after possibly a rotation of R”*1) up to higher order terms equal to the
quadratic polynomial

1
L5 et

This second-order approximation is simply the arrival time of the shrinking round cylinders.
It suggests that the level sets of u right before the critical value and near the origin should be
approximately cylinders (with an (n — k)-dimensional axis). This has indeed been known for
a long time and is due to Huisken [114-116], White [182-184], Huisken—Sinestrari [117,118],
Andrews [8], and Haslhofer—Kleiner [109]. It also suggests that those cylinders should be
nearly the same (after rescaling to unit size). That is, the axis of the cylinders should not
depend on the value of the level set. This last property, however, was only very recently
established in [78] (cf. [98]) and is the key to proving that the function is twice differentiable.’
The proof that the axis is unique, independent on the level set, relies on a key new inequality
that draws its inspiration from real algebraic geometry although the proof is entirely new.
This kind of uniqueness is a famously difficult problem in geometric analysis and no general
case had previously been known.

Regularity of solutions. We have seen that the arrival time is always twice differentiable,
and one may wonder whether there is even more regularity. Huisken [116] showed already in
1990 that the arrival time is C? for convex Mo. However, in 1992 Ilmanen gave an example
of a rotationally symmetric mean convex My in R3 where u is not C2. This result of Ilmanen
[120] shows that the above theorem about differentiability cannot be improved to C 2 We will
see later that in fact one can entirely characterize when the arrival time is C2. In the plane,
Kohn and Serfaty [131] showed that u is C3, and for n > 1 Sesum [168] gave an example of
a convex My where u is not C 3. Thus Huisken’s result is optimal for n > 1.

The next result shows that one can entirely characterize when the arrival time is C2.

Continuous differentiability [82]. u is C?ifand only if:

1 Uniqueness of the axis is parallel to the fact that a function is differentiable at a point pre-
cisely if on all sufficiently small scales at that point it looks like the same linear function.
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» There is exactly one singular time (where the flow becomes extinct).

* The singular set § is a k-dimensional, closed, connected, embedded, C 1 subman-
ifold of cylindrical singularities.

Moreover, the axis of each cylinder is the tangent plane to .
When u is C2 in R3, the singular set § is either:

(1) A single point with a spherical singularity, or
(2) A simple closed C! curve of cylindrical singularities.

The examples of the sphere and marriage ring show that each of these phenomena
can happen, whereas the example of the dumbbell does not fall into either, showing that in
that case the arrival time is not C2.

We can restate this result for R® in terms of the structure of the critical set and
Hessian: u is C? if and only if u has exactly one critical value and the critical set is either:

(1) A single point where Hess,, is —% times the identity, or

(2) A simple closed C ! curve where Hess, has eigenvalues 0 and —1 with multi-
plicities 1 and 2, respectively.

In case (2), the kernel of Hess,, is tangent to the curve, in fact, more is true, see [84].

2. UNIQUENESS OF BLOWUPS IN GEOMETRY

We saw that the key for optimal regularity for the level set equation was to show that
the second-order approximation to a solution is independent of scale. The level sets of the
second-order approximation are cylinders, and the key was that the axis of the cylinders was
independent of scales.

This, independence of scale, is part of a larger question about uniqueness of blowups
that has been widely studied whenever singularities occur. Indeed, once singularities occur,
one naturally wonders what the singularities are like. A standard technique for analyzing sin-
gularities is to magnify around them. Unfortunately, singularities in many of the interesting
problems in geometric PDEs looked at under a microscope will resemble one blowup, but
under higher magnification, it might (as far as anyone knows) resemble a completely dif-
ferent blowup. Whether this ever happens is perhaps the most fundamental question about
singularities; see, e.g., [171] and [1e8]. By general principles, the set of blowups is connected
and, thus, the difficulty for uniqueness is when the blowups are not isolated in the space of
blowups.

One of the first major results on uniqueness was by Allard—Almgren in 1981 [3],
where uniqueness of tangent cones with smooth cross-section for minimal varieties is proven
under an additional integrability assumption on the cross-section. The integrability condition
applies in a number of important cases, but it is difficult to check and is not satisfied in many
other important cases.
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The next breakthrough on uniqueness was inspired by some old results in real alge-
braic geometry. Perhaps surprisingly, blowups for a number of important geometric PDEs
can essentially be reformulated as infinite-dimensional gradient flows of analytic function-
als. Thus, the uniqueness question would follow from an infinite-dimensional version of
Lojasiewicz’s theorem for gradient flows of analytic functionals. In real algebraic geome-
try, Lojasiewicz’s theorem asserts that any integral curve of the gradient flow of an analytic
function that has an accumulation point has a unique limit. Lojasiewicz proved this result
in the early 1960s as a consequence of his gradient inequality. Infinite-dimensional ver-
sions of Lojasiewicz’s theorem and the underlying Lojasiewicz inequalities were proven in
a celebrated work of Simon [17e] for the area, energy, and related functionals, and used, in
particular, to prove a fundamental result about uniqueness of tangent cones with smooth
cross-section of minimal surfaces. This holds, for instance, at all singular points of an area-
minimizing hypersurface in R8. It also holds for singularities with smooth compact tangent
flows for mean curvature flow by Schulze [174].

These method are very powerful and have had a major impact, but they do not apply
when the blowups are noncompact. Indeed, in the most important examples, for essentially
all of the natural flows the most common singularities are products with nontrivial Euclidean
factors and thus are noncompact.

We will say that a singular point is cylindrical if at least one tangent flow is a
multiplicity-one cylinder S x R"*~*. We will later see that these are the most common and
most important singularities. In [78] we showed that at each cylindrical singular point of a
mean curvature flow the blowup is unique, that is, it does not depend on the sequence of
rescalings.

Theorem 2.1. Let M, be an MCF in R"*!. At each cylindrical singular point, the tangent
flow is unique. That is, any other tangent flow is also a cylinder with the same R¥ factor that
points in the same direction.

This settled a major open problem that was open even in the case of mean convex
hypersurfaces where it was known that all singularities are cylindrical. Moreover, this was
the first general uniqueness theorem for blowups to a geometric PDE at a noncompact sin-
gularity.

To prove our uniqueness result, we established two completely new infinite-dimen-
sional Lojasiewicz-type inequalities. Infinite-dimensional Lojasiewicz inequalities were
pioneered 30 years ago by Simon [17e]. However, unlike all other infinite-dimensional
Lojasiewicz inequalities we know of, ours do not follow from a reduction to the classi-
cal finite-dimensional Lojasiewicz inequalities from the 1960s from algebraic geometry,
rather we prove our inequalities directly and do not rely on Lojasiewicz’s arguments or
results.

This is only a brief introduction to a very central and active area, see [37, 39, 47,52,
74,76,78,95,101,112,154,155,174].
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3. REGULARITY OF SINGULAR SET

A major theme in PDEs over the last 50 years has been understanding singularities
and the set where singularities occur. In the presence of a scale-invariant monotone quantity,
blowup arguments can often be used to bound the dimension of the singular set; see, e.g., [3].
Unfortunately, these dimension bounds say little about the structure of the set. The key to get
more structure is uniqueness of blowups. Uniqueness of tangents has important applications
to regularity of the singular set; see, e.g., [171]. We will see in this section that the results of
the previous sections lead to a rather complete description of the singular set for MCF with
cylindrical singularities:

Theorem 3.1 ([81]). Let M; C R"*! be an MCF of closed embedded hypersurfaces with
only cylindrical singularities, then the space-time singular set is contained in finitely many
(compact) embedded C submanifolds each of dimension at most (n — 1) together with a set
of dimension at most (n — 2).

In fact, [81] proves considerably more than what is stated in Theorem 3.1; see The-
orem 4.18 there. For instance, instead of just proving the first claim of the theorem, the
entire stratification of the space-time singular set is Lipschitz of the appropriate dimension.
Moreover, this holds without ever discarding any subset of measure zero of any dimension
as is always implicit in any definition of rectifiable. To illustrate the much stronger version,
consider the case of evolution of surfaces in R3. In that case, this gives that the space-time
singular set is contained in finitely many (compact) embedded Lipschitz curves with cylinder
singularities together with a countable set of spherical singularities. In higher dimensions,
the direct generalization of this is proven.

Theorem 3.1 has the following corollaries:

Corollary 3.2 ([s1]). Let M; C R**1 be an MCF of closed embedded mean convex hyper-
surfaces or an MCF with only cylindrical singularities, then the conclusion of Theorem 3.1
holds.

More can be said in dimensions three and four:

Corollary 3.3 ([81]). If M, is as in Theorem 3.1 and n = 2 or 3, then the evolving hypersur-
face is completely smooth (i.e., has no singularities) at almost all times. In particular, any

connected subset of the space-time singular set is completely contained in a time-slice.

A key technical point in [81] is to prove a strong parabolic Reifenberg property for
MCF with generic singularities. In fact, the space-time singular set is proven to be (paraboli-
cally) Reifenberg vanishing. In analysis, a subset of a Euclidean space is said to be Reifenberg
(or Reifenberg flat) if on all sufficiently small scales it is, after rescaling to unit size close,
to a k-dimensional plane. The dimension of the plane is always the same but the plane itself
may change from scale to scale. Many snowflakes, like the Koch snowflake, are Reifenberg
with Hausdorff dimension strictly larger than one. A set is said to be Reifenberg vanishing if
the closeness to a k-plane goes to zero as the scale goes to zero. It is said to have the strong

835 EVOLUTION OF FORM AND SHAPE



Reifenberg property if the k-dimensional plane depends only on the point but not on the
scale.

Using the uniqueness of tangent flows, [81] shows that the singular set in space-time
is strong (half) Reifenberg vanishing with respect to the parabolic Hausdorff distance. This
is done in two steps, showing first that nearby singularities sit inside a parabolic cone (i.e.,
between two oppositely oriented space-time paraboloids that are tangent to the time-slice
through the singularity). In fact, this parabolic cone property holds with vanishing constant.
Next, in the complementary region of the parabolic cone in space-time (that is essentially
space-like), the parabolic Reifenberg essentially follows from the space Reifenberg that the
uniqueness of tangent flows implies.

An immediate consequence, of independent interest, of the parabolic cone property
with vanishing constant is that nearby a generic singularity in space-time (nearby is with
respect to the parabolic distance) all other singularities happen at almost the same time.

These results should be contrasted with a result of Altschuler—Angenent—Giga [4]
showing that in R3 the evolution of any rotationally symmetric surface obtained by rotating
the graph of a function r = u(x), @ < x < b around the x-axis is smooth except at finitely
many singular times where either a cylindrical or spherical singularity forms. For more gen-
eral rotationally symmetric surfaces (even mean convex), the singularities can consist of
nontrivial curves. For instance, consider a torus of revolution bounding a region €2. If the
torus is thin enough, it will be mean convex. Since the symmetry is preserved and because
the surface always remains in €2, it can only collapse to a circle. Thus at the time of collapse,
the singular set is a simple closed curve.

White showed that a mean convex surface evolving by MCF in R3 must be smooth
at almost all times, and at no time can the singular set be more than 1-dimensional. In fact,
White’s general dimension reducing argument [18e, 181] gives that the singular set of any
MCF with only cylindrical singularities has dimension at most (n — 1).

These results motivate the following conjecture:

Conjecture 3.4 ([81]). Let M; be an MCF of closed embedded hypersurfaces in R* ™1 with
only cylindrical singularities. Then the space-time singular set has only finitely many com-
ponents.

If this conjecture was true, then it would follow that in R® and R* MCF with only
generic singularities is smooth except at finitely many times; cf. the three-dimensional con-
jecture at the end of Section 5 in [183].

Part 2. Growth of solutions to differential equations. On a Riemannian manifold M with
metric (-, -) and Levi-Civita connection V, the gradient of a function f is defined by

V(f)=(Vf, V) forall vectors fields V. (3.5
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The Laplacian of f is the trace of the Hessian. That is, if ¢; is an orthonormal frame for M,
then

Af = TrHessy = ZHess/f(ei,ei) = Z(Vei V,e;). (3.6)
i

1
The Laplace operator is the canonical linear second order partial differential equation once
we have a metric structure.

4. HARMONIC FUNCTIONS WITH POLYNOMIAL GROWTH

The classical Liouville theorem, named after Joseph Liouville (1809-1882), states
that a bounded (or even just positive) harmonic function on all of R” must be constant. There
is a very short proof of this for bounded functions using the mean value property:

Given two points, choose two balls with the given points as centers and of equal
radius. If the radius is large enough, the two balls will coincide except for an
arbitrarily small proportion of their volume. Since the function is bounded, the
averages of it over the two balls are arbitrarily close, and so the function assumes
the same value at any two points.

The Liouville theorem has had a huge impact across many fields, such as com-
plex analysis, partial differential equations, geometry, probability, discrete mathematics, and
complex and algebraic geometry, as well as many applied areas. The impact of the Liouville
theorem has been even larger as the starting point of many further developments.

On manifolds with nonnegative Ricci curvature, mean values inequalities hold, but
are no longer equalities, and the above proof does not give a Liouville type property. How-
ever, in the 1970s, S. T. Yau [187] showed that the Liouville theorem holds for such manifolds.
Later, in the mid 1970s, Yau together with S.Y. Cheng [42] showed a gradient estimate on
these manifolds giving an effective version of the Liouville theorem; see also Schoen [165].

The situation is very different for negatively curved manifolds such as hyperbolic
space. This is easiest seen in two dimensions where being harmonic is conformally invariant,
so each harmonic function on the Euclidean disk is also harmonic in the hyperbolic metric.
In particular, each continuous function on the circle extends to a harmonic function on the
disk and the space of bounded harmonic functions is infinite dimensional; cf. Anderson [é],
Sullivan [173], and Anderson—Schoen [7].

On a Euclidean space, as soon as one allows a polynomial rate of growth, there
are lots of harmonic functions. In fact, on a Euclidean space the harmonic functions with
polynomial growth are the harmonic polynomials which play a central role in analysis. On
a general manifold, the situation is much more complicated, and one does not expect an
explicit representation. Given a manifold M and a constant d, (M) is the linear space of
harmonic functions of polynomial growth at most d. Namely, u € #;(M) if Au = 0 and
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for some p € M and a constant C,, depending on u
sup |u|l < C,(1+ R)¢ forall R. 4.1
Br(p)

In 1974, S.T. Yau conjectured that manifolds with nonnegative Ricci curvature
should have a strong Liouville property, namely that #; (M) is finite dimensional for each
d when Ricps > 0. The conjecture was settled in [59]; see [86] for more results.? In fact,
[59,62,63] proved finite dimensionality under much weaker assumptions of:

(1) A volume doubling bound,
(2) A scale-invariant Poincaré inequality or mean value inequality.

Both (1) and (2) hold for Ric > 0 by the Bishop—Gromov volume comparison and
work of Buser. However, these properties do not require much regularity of the space and are
quite flexible. In particular, they make sense for more general metric-measure spaces and are
preserved by bi-Lipschitz changes of the metric. Moreover, properties (1) and (2) make sense
also for discrete spaces, vastly extending the theory and methods out of the continuous world.
This extension opens up applications to geometric group theory and discrete mathematics,
some of which we will touch upon later.

An interesting feature of these dimension estimates is that they follow from “rough”
properties of M and are therefore surprisingly stable under perturbation. Unlike a Ricci
curvature bound, these properties are stable under bi-Lipschitz transformations, cf. [134].
Moreover, these properties make sense also for discrete spaces, vastly extending the theory
and methods out of the continuous world. Kleiner [128] (see also Shalom—Tao [169,175,176])
used, in part, this in his new proof of an important and foundational result in geometric
group theory, originally due to Gromov [1e4]. Harmonic functions also play a central role in
complex geometry, [136,142,157].

5. ANCIENT CALORIC FUNCTIONS WITH POLYNOMIAL GROWTH

Harmonic functions are functions that are in equilibrium for the Laplace equation.
For the heat equation, equilibrium is reached when solutions have existed for all prior times.
This naturally leads to the question of whether there is a generalization of the results in the
previous section to ancient solutions of the heat equation with polynomial growth. Ancient
solutions are those that are defined for all negative . Many solutions of the heat equation,
including the fundamental solution, cannot be extended to all negative z. Given d > 0,
u € Py(M) if u is ancient (defined for all negative ¢), d,u = Au and for some p € M
and a constant C,,,

sup lu| < C,(1+ R)? forall R. (5.1)
BRr(p)x[—R2,0]

2 For Yau’s 1974 conjecture, see: page 117 in [188], problem 48 in [189], Conjecture 2.5 in
[97,124-126,165], Conjecture 1 in [137], and problem (1) in [138], amongst others.
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On R”, these functions are the classical caloric polynomials that include the spherical har-
monics and generalize the Hermite polynomials.

A manifold has polynomial volume growth if there are constants C and dy so that
Vol(Bgr(p)) < C(1 + R)? for some p € M, and all R > 0.> In [89] the following sharp
inequality, which is an equality on R”, was shown:

Theorem 5.2. If M has polynomial volume growth and k is a nonnegative integer, then

k
dim Py (M) <~ dim Ha; (M). (5.3)
i=0
Since Hy4, C Hg, for di < d,, Theorem 5.2 implies:

Corollary 5.4. If M has polynomial volume growth, then for all k > 1,
dim Por (M) < (k + 1) dim Hox (M). (5.5)
Combining this with the bound dim #; (M) < Cd "=1 when Ricpsn > 0 from [59]
gives:
Corollary 5.6. There exists C = C(n) so that if Ricygn > 0, then for d > 1,
dim Py (M) < Cd". 5.7

The exponent 7 in (5.7) is sharp: There is a constant ¢ depending on n so that for

d=>1,

¢ 'd" < dim P, (R") < cd". (5.8)
Recently, Lin and Zhang [141] proved very interesting related results, adapting the methods
of [59,62,63] to get the bound d” 1.

An immediate corollary of the parabolic gradient estimate of Li and Yau [139] is
that if d < 2 and Ric > 0, then $z(M) = H; (M) consists only of harmonic functions of
polynomial growth. In particular, #; (M) = {constant functions} for d < 1 and, moreover,
dim P (M) < n + 1, by Li and Tam [138], with equality if and only if M = R” by [38].

The exponent n — 1 is also sharp in the bound for dim #; when Ricps» > 0. How-
ever, as in Weyl’s asymptotic formula, the coefficient of d”~! can be related to the volume
[63]:

dim H; (M) < Cy Var d" ' + 0(d"™ 1), (5.9)
where

¢ V) is the “asymptotic volume ratio” lim, .o, Vol(B;)/r".

* 0(d" ') is a function of d with limg_o 0(d"1)/d"~1 = 0.

Combining (5.9) with Corollary 5.4 gives dim £y;(M) < C, Vyr d"™ + o(d™) when
Ricpymn > 0.

3 A volume-doubling space with doubling constant Cp has polynomial volume growth of
degree log, Cp.
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6. GROWTH OF DRIFT EQUATIONS

The Laplacian A is self-adjoint with respect to the ordinary L? inner product. How-
ever, if we instead use a weighted L2 inner product, then the Laplacian may not be self-adjoint
but there is a natural self-adjoint elliptic operator known as the drift Laplacian. Drift Lapla-
cians are ubiquitous in many areas, including quantum field theory, stochastic PDEs, and
anywhere the heat equation or Gaussian appear, such as functional inequalities, parabolic
PDEs, geometric flows, and probability. The drift term arises whenever there is natural mea-
sure or a natural scaling or, more generally, a gradient flow.

To make the drift Laplacian precise, fix a function ¢ and define the weighted
L?-norm || - || by

[l E[ u?e . (6.1)
M
Similarly, we will define the weighted inner product by
(u,v)g = [ uve ™. (6.2)
M
The drift Laplacian &£ is defined by
Lou = Au— (Vo, Vu) = e? div(e™® Vu) (6.3)
and
(Lpu,v)gp = —/ (Vu,Vv)e™® = (u, £yv)g. 6.4)
M

The operator is self adjoint and under reasonable hypothesis has discrete eigenvalues going to
infinity, see, for instance, [11,43,111,144]. The best-known example is the Ornstein—Uhlenbeck
operator on R”,

1
£=A- va’ (6.5)
where ¢ = # and || - ||4 is the Gaussian L?-norm.

Drift Laplacians were considered very early on. Laplace discovered that on the line
eigenfunctions of £u = u” — $u’ in the Gaussian L? space are polynomials whose degree
is exactly twice the eigenvalue. These polynomials were later rediscovered twice. First by
Chebyshev and a few years later by Hermite. They are now known as the Hermite polyno-
mials and the eigenvalue equation as the Hermite equation. The first few eigenfunctions are:
constants with eigenvalue 0, the linear function x with eigenvalue %, and the quadratic poly-
nomial x2 — 2 with eigenvalue 1. The Hermite polynomials and their higher-dimensional
analogues play an important role in diverse fields. We will describe a vast generalization of
these results that has many applications.

6.1. Growth of drift equations

We will next describe optimal polynomial growth bounds for eigenfunctions of drift
Laplacians in a general setting that includes all shrinking solitons for both Ricci and mean
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curvature flows (or MCF). These bounds are sharp for the Ornstein—Uhlenbeck operator on
Euclidean space.

There is a long history of studying the growth of solutions to differential equations,
inequalities, and systems. At a very rough level, there are two main techniques. The first,
exemplified in the work of Carleman and Hérmander, is to consider weighted L2-norms with
growing weights. The second, seen, for instance, in the work of Hadamard and Almgren, is
to study the growth of spherical maxima or averages. The second is an extreme version of
the first where the weight is a measure concentrated on a lower-dimensional set. As such,
the second method typically gives stronger information and requires greater structure, such
as invariance under dilations. However, general manifolds do not come with any dilation
structure.

The growth estimates that we describe here hold in remarkable generality and with-
out any assumptions on asymptotic decay. This is surprising and in contrast to most other
situations, like unique continuation, that require very strong geometric assumptions on the
space. A typical starting point for growth estimates is a Pohozaev identity or commutator esti-
mate that come from a dilation, or approximate dilation, structure. We have none of these
here in this general setting. In contrast, we rely on a miraculous cancelation for just the right
quantity. A consequence of the generality is that the growth estimates hold for all singularities
which is key for applications.

In many settings, one has an n-dimensional Riemannian manifold (M, g), that could
even be flat Euclidean space, with two nonnegative functions f and S satisfying

Af +S = % (6.6)
IVf?+S = f, (6.7)

and where f is proper and C". The weight e~/ gives a drift Laplacian &£ on tensors u
fu=¢e diV(e_f Vu) = Au—Vyjyu (6.8)

that is self-adjoint with respect to the L2-norm ||u ”12} = [ |ul? e~/ . Using the function f, we
can define a very natural exhaustion function b that will share many of the same properties
that the distance function has on a Euclidean space with the standard Gaussian measure.
Since |V\/7| < % by (6.7), b = 2\/7 satisfies |[Vbh| < 1 asin [35]. On R”, f = % and
S = 0 satisfy (6.6), (6.7) with £ = A — %Vx the Ornstein—Uhlenbeck operator and b = |x|.
In a Ricci flow, singularities are gradient shrinking solitons, f is the potential, and S is scalar
curvature.* In an MCF, singularities are shrinkers ¥ C RV, f= @, and S = |H|?, where
H is the mean curvature vector.’

Throughout, A > 0 is a constant and u is a tensor on M. We will often assume that

(u,u) = —Aul?; (6.9)

4 See [32,40,49-51,107,129,160,178].
5 See, e.g., [72,78,115].
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this includes eigentensors with £u = —Au. To understand the growth of u, we will study a
weighted average of |u|? on level sets of b,

I(r) =r1_"[ lu|?|Vb]. (6.10)
b=r

This is defined at regular values of b, but extends continuously to all values to be dif-
ferentiable a.e. and absolutely continuous. The weight |Vb| will play a crucial role (cf.
[1,53,68,61,75,105]). The growth of / will be bounded above in terms of the solid integral
D(r) =r>™" e%/ (IVul® + (Lu,u)) e . (6.11)
b<r
The frequency U = ? is defined when [ is positive and will measure the growth of log I .
The frequency U describes the rate of growth of the function u. To illustrate this,
when u is a degree m Hermite polynomial, so A = 7, it is easy to see that

U(r)y =m(1 4 0(r72)) =211+ 0(r7?)). (6.12)

The next theorem from [91] shows that an L? tensor satisfying (6.9) has frequency
bounded by 21 and, accordingly, it grows at most polynomially at this rate. This may seem
surprising since the weight e~/ decays rapidly, so the L2 condition a priori allows extremely
rapid growth.

Theorem 6.13. Suppose u, $u € L2, (6.6), (6.7), (6.9) hold, and u does not vanish iden-
tically outside a compact set. Given ¢ > 0, there exists R = R(n, A, ¢) such that if r > R,
then

U(r) <2A +e, (6.14)

and forallry > ry > R,

2(2A+¢)
) (6.15)

1) = 1002
r1

This is sharp for the Ornstein-Uhlenbeck operator on R where the L? eigenfunc-
tions are Hermite polynomials with degree twice the eigenvalue. Note that u cannot vanish
on an open set if u has unique continuation, e.g., if £u = —Au.

Our results give that polynomially growing “special functions” are dense in L2. This
gives manifold versions of some very classical problems in analysis. Whereas Weierstrass’s
approximation theorem shows that polynomials are dense among continuous functions on
any compact interval, the classical Bernstein problem [145], dating back to 1924, asks if
polynomials are dense on R in the weighted L?(e~/ dx) space if f is assumed to grow
sufficiently fast at infinity. On the line, the Hermite polynomials are dense in Lz(e_¥ dx)
and Lennart Carleson (and implicitly Izumi—Kawata) showed that polynomials are dense in
LP?(e”™* dx) if and only if @ > 1. A similar problem in several complex variables is the
completeness problem, going back to Carleman in 1923, about the density of polynomials in
weighted L2 spaces of holomorphic functions [22].

Almgren’s frequency has been used to show unique continuation [182] and structure
of the nodal sets [143]; prior to this, the main tool in unique continuation was Carleman
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estimates that still is the primary technique. Almgren’s frequency bounds relied on scaling
for R”; cf. [68, 61]. The papers [18] (cf. [179]), [83] developed frequencies for conical and
cylindrical MCF shrinkers and did not involve a weight like | Vb|. Theorem 6.13, in contrast,
holds very generally, including for all shrinkers in both Ricci flow and MCF. A much weaker
version of Theorem 6.13, that was not relative, was proven in [83] in the special case of
MCF.

Part 3. Stable structures. In mathematics, structural stability is a fundamental property
of a dynamical system which means that the qualitative behavior of the trajectories is unaf-
fected by small perturbations. Given a smooth function f on a finite-dimensional space, the
gradient V f points in the direction of the steepest ascent. The critical points of f are the
points where V f vanishes. If p is a local minimum of £, then the second derivative test tells
us that the Hessian matrix of f at p is nonnegative. More generally, the number of negative
eigenvalues of the Hessian is called the index of the critical point. A fundamental method
to find the minimum of f is the method of gradient descent. Here, we make an initial guess
po and then iteratively move in the negative gradient direction, the direction of the steepest
descent, by setting p;+1 = p; — V f(p;). This can also be done continuously by defining a
negative gradient flow

ili—); = —Vf(x(t)). (6.16)
The function f(x(¢)) decreases as efficiently as possible as x (¢) heads towards the minimum.
The dynamics near a nondegenerate critical point are determined by the index. If the index is
zero, then the critical point is attracting and the entire neighborhood flows towards the critical
point. However, when the index is positive, a generic point will flow out of the neighborhood,
missing the critical point.

Many of the fundamental problems in geometry can be understood as problems
about dynamical systems on an infinite-dimensional space. Sometimes this is immediate.
For instance, in the case of geodesics or minimal surfaces. Geodesics are critical points for
energy, whereas minimal surfaces are critical points for area. Another example where the
connection to dynamical systems is immediate is the mean curvature flow that is the nega-
tive gradient flow for area. In other cases the connection is hidden, but no less fundamental.
An example of this is uniqueness of blowups, that we discussed earlier. Uniqueness can be
thought of as the question of whether a related recurrent flow has a limit or is wandering.
One of the most basic and fundamental questions about a dynamical system is the question of
equilibria: which equilibria are stable (generic) and which are not. For a nongeneric equilib-
rium, a nearby flow line passes by the equilibria and thus the nongeneric ones can typically
be ignored.

We will look for stable structures in four situations and discuss what is known and
unknown, see [58]. Those four are: (1) minimal hypersurfaces; (2) minimal submanifolds of
higher codimension; (3) singularities that are stable or generic, and cannot be perturbed away,
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for motion by mean curvature of hypersurfaces; and, finally, (4) singularities for motion by
mean curvature in higher codimension.

7. MINIMAL SURFACES

Let =" C RY be a smooth submanifold (possibly with boundary). Given an infinitely
differentiable (i.e., smooth), compactly supported, normal (orthogonal to X) vector field V'
on X, consider the one-parameter variation

v ={x +sV(x) | x € T}. 7.1

This gives a path s — X i in the space of submanifolds with ¥¢ jy = X. The so-called first
variation formula of area or volume is the equation (integration is with respect to d Vol)
i Vol(Z,,v) = / (V,H), (7.2)
ds s=0 ’ b))
where H is the mean curvature vector. When X is a hypersurface, H is the unit normal times
the sum of the principal curvatures. In general, H = — ), A(e;, ¢;) where A is the second
fundamental form and e; is an orthonormal frame for the tangent space of X; A(e;, ej) =
Ajj = Veliej where V is the Euclidean derivative and “_L” is the component orthogonal to
the submanifold. When X is noncompact, X,y is replaced by I's,y = {x + sV(x) | x € I'}
where I' is a compact subset of ¥ containing the support of V.
The submanifold X is said to be a minimal if
i Vol(X5,y) =0 forall V, (7.3)
dss=0 ’
or, equivalently, by (7.2), if H is identically zero. Thus ¥ is minimal if and only if it is a
critical point for the volume functional. Since a critical point is not necessarily a minimum,
the term minimal is misleading but time-honored. It is easy to see that being minimal is
equivalent to all the coordinate functions of R restricted to the submanifold are harmonic
with respect to the Laplacian, Ay, on the submanifold. In higher codimension, the minimal
surface equation is a complicated system.
A computation shows that if ¥ is minimal, then the second derivative of volume is

2

d
—  Vol(Zy) = —/ (V,LV), 7.4
ds?s=0 ’ )

where LV = AxV + (A;j, V) A;; is the so-called second variational (or Jacobi) operator.

This is an operator on the normal bundle of ¥ and is the Laplacian plus a zeroth-order term.

When the submanifold is a hypersurface, this simplifies and becomes LV = AsV + |A|?V,

where | A|? is the sum of the squares of the principal curvatures. It simplifies further if one

identifies IV with its projection ¢ = (V, n) onto the unit normal n. Then Lo = Ax¢ + |A|*¢.
A minimal submanifold is stable if it passes the second derivative test

2

d
L Vol(Z5y) >0 forall V. (7.5)
ds? ’
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Obviously, if a minimal surface is area or volume minimizing among competitors with the
same boundary, then it is stable as well. However, stability is much more general than being
minimizing. Stability becomes a question about whether the Jacobi operator L is nonnega-
tive or not. The operator L is much simpler for hypersurfaces and, in particular, it is easy to
see that a minimal graph is stable. In higher codimension, the question of stability becomes
much more complicated because of the vector-valued nature of L and the curvature of the
normal bundle. For example, minimal graphs are not necessarily stable in higher codimen-
sion.®

A classical theorem of Bernstein from 1916 shows that entire (that is, where the
domain of definition is all of R?) minimal graphs in R? are planes. Whether this is true in
higher dimensions became known as the Bernstein problem. This problem played an impor-
tant role in the field for decades and is closely related to regularity for area minimizers.
In 1965 and 1966, De Giorgi and Almgren proved the Bernstein theorem for graphs in R*
and R>. In 1968, Simons extended the Bernstein theorem to R®, R7, and R8, which was
shown to be sharp the next year by Bombieri, De Giorgi, and Giusti. Simons’ influential
paper introduced the second variation operator and stability to minimal surface theory. Sta-
bility of hypersurfaces was studied by Schoen—Simon—Yau [166], who showed that, as long as
the dimension of the hypersurface is at most six and the volumes of balls are up to a constant
the same as Euclidean balls of the same radius and dimension, all stable minimal hyper-
surfaces are planes, cf. [186] and references there. In R3 Fischer-Colbrie and Schoen [99]
showed the same, but without assuming area bounds. This was also proved independently by
Do Carmo and Peng. Schoen [164] (see also [46,57]) later showed a local version of this that
has had a huge influence on the development of minimal surfaces in three dimensions. Stable
minimal surfaces can be constructed variationally, see, for instance, [152]. These estimates
can also be applied to low index minimal surfaces, [146,147,172]. See [64-71] and [161] for
more about minimal surfaces.

The situation is much more complicated in higher codimension where there is no
analog of the Bernstein theorem, cf. [96,163]. A simple argument of Wirtinger from the 1930s,
using Stokes’ formula, shows that any complex submanifold of CV is volume minimizing
among things with the same boundary and, thus, a stable minimal submanifold. This gives a
plethora of area-minimizing, and thus also stable, minimal submanifolds once the codimen-
sion is at least two. Moreover, these examples can have arbitrarily large areas. Remarkably,
Micallef [153] proved a converse in R%. Namely, he showed that a stable oriented, parabolic
minimal surface in R* is complex for some orthogonal complex structure. Being parabolic
is a conformal property that holds, for instance, if the volume of balls grows at most quadrat-
ically. Examples of Arezzo and Micallef show that this converse does not hold for surfaces
in codimension larger than two.

6 By [153], Osserman’s minimal graph x3 = % cos Z(e" —~3e7*1)and
X4 = _% sin 22 (e*! —3e™*1) in R* is not stable.
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8. MOTION BY MEAN CURVATURE

Surface tension is the tendency of fluid surfaces to shrink into the minimum sur-
face area possible. Mathematically, the force of surface tension is described by the mean
curvature.

A one-parameter family of n-dimensional submanifolds M; C R¥ is said to move
by motion by mean curvature, see, for instance, [9,92], if the time derivative of the position
vector x moves by minus the mean curvature. That is,

x

i —H. 8.1
It follows from the first variation formula that the mean curvature flow is the negative gradient
flow for area. That is, the mean curvature flow moves the submanifold in the direction where
the area or volume decreases as fast as possible.

We can view the mean curvature flow as a type of heat equation. This is exemplified
by that the coordinate functions of the ambient Euclidean space restricted to the evolving
submanifolds satisfy the heat equation

ox
= A . 2
5 M, X (8.2)

This equation is nonlinear since the Laplacian Ay, depends on M,. Moreover, since the
submanifolds are evolving, the induced metric is time-varying so the Laplacian Ay, is also
time-varying. From the first variation formula (7.2), it follows easily that the mean curvature
flow moves in the direction where the volume decreases as fast as possible; thus, the mean
curvature flow is the negative gradient flow of volume. The motion is by surface tension. In
higher codimension, (8.1) and (8.2) are complicated parabolic systems where much less is
known.

Since the coordinate functions on the evolving submanifolds satisfy the heat equa-
tion, it follows from the parabolic maximum principle that the evolving submanifolds remain
inside the convex hull of the initial submanifold. A straightforward computation shows that
also the function |x|?> — 2nt satisfies the heat equation on the evolving submanifolds. At
the initial time ¢ = 0, this is nonnegative and therefore, by the parabolic maximum prin-
ciple, it remains nonnegative as long as the flow exists. Since we have already seen that
maxyy, |x|? remains bounded under the evolution, it follows that the flow must become
extinct in finite time and, thus, singularities occur. There are two approaches either consider-
ing a weak flow through singularities or considering flow with surgery through singularites;
see, [17,30,110,119,130] for surgery.

For a fixed constant ¢ > 0, rescaling the flow parabolically

t = M = M., (8.3)

gives a new solution to motion by mean curvature that has the effect that the submanifolds
are magnified by the constant c. If we simultaneously with rescaling also reparametrize time,
then we get a rescaled mean curvature flow. It is easy to see that such a one-parameter family
satisfies the rescaled mean curvature flow equation

ax  xt
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The rescaled mean curvature flow, which is so critical for understanding the mean curvature
flow, can itself be interpreted as the negative gradient flow of a functional that we call the
Gaussian surface area.

8.1. Gaussian surface area and entropy
The Gaussian surface area F of an n-dimensional submanifold " C R¥ is

x|

F(X) = (47)"2 /Ee_T . (8.5)

The constant (411)_% is a normalization that makes the Gaussian area equal to one for an
n-plane through the origin. Following [72], the entropy A is the supremum of F over all
translations and dilations

A(X) = sup F(cX + xp). (8.6)

c,Xo

By considering all centers and scales and taking the supremum over these, we get some rough
low-regularity measure of the complexity of the submanifold. In particular, it is easy to see
that the entropy is always at least 1 and achieved only on a n-dimensional plane.

It follows easily from Huisken’s monotonicity formula that the entropy is monotone
under mean curvature flow and, moreover, the entropy at the initial time gives an upper bound
for the entropy of any future singularity; see [72].

Prior to the entropy, many results focused on either convexity conditions or graph-
ical restrictions as these were preserved under the flow by the maximum principle. These
properties, however, are pretty strong and heavily restrict the types of singularities that can
occur. The entropy now plays a central role in mean curvature flow and a great deal is now
known about low entropy flows, [2e, 21, 45, 48,55].

If V is a normal vector field and Xy, as before, is the variation Xy =
{x +sV(x) | x € ¥}, then an easy computation shows that

4 F(Zsv) = (4n)"2 / <V, H- ﬁ>e—3'2 . (8.7)
ds s=0 ’ > 2
It follows that the Gaussian surface area I’ is monotone nonincreasing under the rescaled
mean curvature flow and constant if and only if

x4

H= -5 (8.8)

This equation is the shrinker equation and is equivalent to the rescaled flow is static. Or,

equivalently, the evolution under the mean curvature flow is by rescaling. That is, a later time

slice is exactly like an earlier, just scaled down. That Gaussian surface area is monotone under

the rescaled flow corresponds to Huisken’s celebrated monotonicity formula [115]. From this,

it follows also that the entropy is a Lyapunov function for both the mean curvature flow and
the rescaled mean curvature flow.

From Huisken’s monotonicity [115], as well as work of Ilmanen [121] and White

[18e], one knows that every sequence ¢; — oo has a subsequence (also denoted by c¢;) such

that M., , converges to a shrinker Moo s (S0 Moo = v/ —t Moo, —1) With sup; A(Moo ) <
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sup; A(M;). Such a limit is said to be a tangent flow at the origin. Similarly, one can magnify
(blow up) around any other point in space time. If one does not fix the point around where
one blows up, but still looks at limits of a sequence of blowups, then the limiting flows are
not shrinkers, but even then the limiting flows will exist for all negative times and are said to
be ancient flows.

The shrinker equation (8.8) is a second order nonlinear elliptic equation that is
closely related to the classical minimal surface equation. In fact, shrinkers are minimal sur-
faces for a conformally changed metric that is not particularly well-behaved: it is not complete
and the curvature is unbounded. This perspective has limited utility for global questions, but
it is very useful for local regularity (e.g., any tangent cone is a minimal cone); cf. [55,72,73].

8.2. Second variation and stability
We have already seen that shrinkers are critical points for the Gaussian area. The
critical points for the Gaussian surface area are the fixed points for the rescaled flow. To
understand the dynamics of the flow, we would like to understand which fixed points can be
avoided and, more generally, the dynamics near any fixed point.
When X is a shrinker, we therefore look at the second derivative. A calculation (see
[72]) gives
d2
FJ
Here LV = £V + (A4;;, V)A;ij + LV is the second variation operator, and £V =
AxV — %V;-T V' is the Ornstein—Uhlenbeck operator on the normal bundle. For hypersur-

x|

RAOND =—(4n)—%/<V,LV)e—T. (8.9)
= =

faces, there is a similar simplification of the operator L, as we saw for the second derivative
of volume; cf. [10,14,135] for higher codimension.

For any shrinker, translations and scaling give directions where the Gaussian area
decreases [72], so there are no stable shrinkers in the usual sense. Translation of a submanifold
in the direction E € RY is infinitesimally given by the normal part E+ of E. Similarly,
rescaling is given by the normal vector field % This corresponds to EL (with E € RV)
and H = % being eigenvectors of L with eigenvalues —% and —1, respectively. Perturbing
by either translation or scaling has the effect of moving the same singularity to a different
point in space or time. However, the singularity is not avoided; it just occurs at another time
or place for the flow. For this reason, we say [72] that a shrinker is F-stable if

d? n

F&:OF(ES,V) >0 forall V orthogonal to H and to all E—. (8.10)
Here orthogonal means with respect to the Gaussian inner product on the space of normal
vector fields. It is easy to see that spheres and planes are F-stable in any codimension. In
[72] the F -stable hypersurfaces were classified.

Theorem 8.11. The only F-stable hypersurfaces are the planes and the round sphere.

At first it may seem surprising that round cylinders are not F'-stable. Indeed, for
nonompact shrinkers, it turns out that the right notion of stability is that of entropy stability,
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however, for compact singularities those two notions of stability are the same [72]. A shrinker
is entropy-stable if it is a local minimum for the entropy A. Entropy-unstable shrinkers are
singularities that can be perturbed away, whereas entropy-stable ones cannot; see [72].
Even for hypersurfaces, examples show that singularities of the mean curvature flow
are too numerous to classify. The hope is that the generic ones that cannot be perturbed away
are much simpler. Indeed, in all dimensions, generic singularities (that is, entropy-stable
shrinkers) of hypersurfaces moving by mean curvature flow have been classified in [72].

Theorem 8.12. In all dimensions, generic singularities (that is, entropy-stable shrinkers) of
hypersurfaces are round generalized cylinders Slf/ﬁ x Rk,

The generic singularities in R? are the sphere S%, cylinder Siﬁ x R, and plane R?.
In contrast to the Bernstein theorems for minimal hypersurfaces, this classification of generic
singularities holds in every dimension.

The paper [55] showed that for hypersurfaces round spheres are the shrinkers with
the smallest entropy. The authors of [55] conjectured further that round spheres had the least
entropy for any closed hypersurface; this was proven by Bernstein—Wang [2e] up to dimen-
sion 7 and extended by Zhu [19e] to higher dimensions; cf. also [21,24,127,185]. For surfaces
embedded shrinkers with genus zero has been classified by Brendle, [28].

8.3. Higher codimension

For the mean curvature flow in higher codimension, we search again for the stable
singularities. Recall that stable singularities are those that are entropy stable, which is equiv-
alent to being F-stable for closed shrinkers. In higher codimension, [87] gave the following
bound for the entropy:

Theorem 8.13. If ©2 C RY is an F-stable shrinker diffeomorphic to a two-sphere, then
A(Z) <4=eA(S). (8.14)

The sharp constant is unknown, but (8.14) is at most off by a factor of e. By [87],
similar bounds also hold for other closed shrinking surfaces of any finite index where the
entropy bound depends on the genus and index. This implies that any such F'-stable shrinker,
that, a priori, lies in a high-dimensional Euclidean space, in fact, lies in a linear subspace
of some fixed small dimension. The sharp bound for the dimension of the linear space is
unknown, though [87] provides sharp dimension bounds in various other important situations.

There is no analog of (8.14) for minimal surfaces in R*. Namely, viewing R* as
C2, one sees that the parametrized complex submanifold z — (z, z") is a stable mini-
mal variety that is topologically a plane for each integer m. It has Area(B, N ) > Cmr?
for r > 1. In contrast, [87] implies that Area(B, N ) < C(1 + y)r? for a closed stable
2-dimensional shrinker X of genus y. Similarly, there is no analog of the codimension bound
for minimal surfaces. Indeed, for each m, the parametrized surface z — (z,z2,z3,...,z"+1)
is a stable minimal variety that is topologically a plane. Its real codimension is 2m and it is
not contained in a proper subspace.
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Once one has the entropy bound in (8.14), to conclude that stable singularities have
low codimension, one needs a result about the number of linearly independent coordinate
functions. The coordinate functions on a mean curvature flow produce a linear space of
caloric functions, i.e., solutions of the heat equation, that grow at most linearly. The bound
on the codimension is a consequence of a much more general result about polynomial growth
caloric functions on an ancient mean curvature flow that has a variety of other useful appli-
cations.

Let M]' C RY be an ancient mean curvature flow of n-dimensional submanifolds
with entropies A(M;) < A9 < oco. Recall that ancient flows are solutions that exist for all
negative times. The space &5 of polynomial growth caloric functions consists of u(x, ¢) on
U; M; x {t} so that (0; — Apy,)u = 0 and there exists C depending on u with

lu(x,1)] < C(1+|x|? + [¢t]%) forall (x,7) withx € M,, t <0. (8.15)

The simplest example is when the flow consists of a static (constant in time) hyperplane R”.
In this case, 4 (R") consists of polynomials in (¢, x1, . .., x, ) known as the caloric polyno-
mials and, using the special structure in this case, it is easy to see that dim #; (R") & ¢, d".
The paper [87] showed sharp bounds for dim &#; for all d > 1 for an ancient flow with
A(My) < Ao,

dim £, < Cphod™. (8.16)

One remarkable consequence when d = 1 is a bound for the codimension. Namely, the
flow sits inside a linear subspace of dimension at most dim J#;, since a linear relation for
coordinate functions specifies a hyperplane containing the flow.

The next result we will describe gives sharp bounds for codimension in arguably
some of the most important situations for ancient flows. The bounds mentioned above were
sharp in the exponent of d and, thus, asymptotically sharp as d — oco. The next result is
more delicate and obtains sharp constants for d fixed.

Suppose that M;* C R” is an ancient MCF with sup, A(M;) < oc. For each con-
stant ¢ > 0 define the flow M, ; by M. ; = %Mczt. It follows that M, ; is an ancient MCF
as well. Since sup, A(M,) < oo, it follows from Huisken’s monotonicity [115], as well as
work of Ilmanen [121] and White [18e], that every sequence ¢; — oo has a subsequence (also
denoted by c;) such that M., ; converges to a shrinker Moo (50 Moo s = J—_th,_l) with
sup; A(Moo ) < sup, A(M;). We will say that such an M, ; is a tangent flow at —oo of the
original flow. In [87] the following sharp bound for the codimension was shown:

Theorem 8.17. If M| C RY is an ancient MCF and one tangent flow at —oc is a cylinder
S]f/ﬁ x R"7* then M, is a flow of hypersurfaces in a Euclidean subspace.

Combining this result with results of Angenent—Daskalopoulos—Sesum [12, 13],
Brendle—Choi [29], and Choi—Haslhofer—Hershkovits [48] gives uniqueness for ancient flows
of surfaces in higher codimension.
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Part 4. The gauge group. Comparing and recognizing metrics can be extraordinarily dif-
ficult because of the group of diffeomorphisms. Two metrics, which could even be the
same, could look completely different in different coordinates. Many key problems are
defined intrinsically without a canonical coordinate system. In those problems, the infinite-
dimensional diffeomorphism group (gauge group) becomes a major issue and dealing with
it a major obstacle. Ricci flow is such an example.

“Gauge theory is a term which has connotations of being a fearsomely compli-
cated part of mathematics—for instance, playing an important role in quantum
field theory, general relativity, geometric PDEs, and so forth. But the underlying
concept is really quite simple: a gauge is nothing more than a coordinate system
that varies depending on location ...By fixing a gauge (thus breaking or spending
the gauge symmetry), the model becomes something easier to analyse mathemat-
ically ...Deciding exactly how to fix a gauge (or whether one should spend the
gauge symmetry at all) is a key question in the analysis of gauge theories, and one
that often requires the input of geometric ideas and intuition into that analysis.”

[177]

One of the most interesting results of transformation groups is the existence of
slices. A slice for the action of a group on a manifold is a submanifold which is trans-
verse to the orbits near a given point.” Ebin and Palais proved the existence of a slice for
the infinite-dimensional diffeomorphism group of a compact manifold acting on the space
of all Riemannian metrics. However, here we will be interested in when the manifolds are

not compact.

8.4. A new approach to dealing with the gauge group

We describe a new way of dealing with the diffeomorphism group from [91] that
should be useful in a broad range of applications, and explain how it can be used to solve a
well-known problem in Ricci flow. A key new tool is a detailed analysis of a natural second-
order system operator &. The operator will be used to “fix the gauge.” The analysis applies
to all noncompact singularities. This makes it particularly useful, but also delicate. At each
scale, a diffeomorphism is applied to fix the gauge, requiring precise and delicate estimates
for the growth of the diffeomorphism. The gauge-fixing diffeomorphism satisfies a nonlinear
system of PDEs, where J is the linearization. We will need, and show, strong bounds for
the displacement function of the gauge-fixing diffeomorphism.

Suppose we have two weighted manifolds. Assume that on a large, but compact set,
the manifolds, metrics, and weights almost agree after identification by a diffeomorphism.

7 If the group is compact and Lie and the space is completely regular, Mostow proved, as a
generalization of works of Gleason, Koszul, Montgomery, Yang, and others, that there is a
slice through every point. If the group is not compact but Lie and if the space is a Cartan
space, then Palais proves the same result.
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On this set, in these coordinates, we write the metric on one as g and on the other as g + £,
where 4 is small, and the weights as e/ and e/ _k, where k is small. We would like to
mod out by the diffeomorphism group, by adjusting by a diffeomorphism to put the equation
in an appropriate gauge so that the difference % in the metrics is orthogonal to the action
of the group. Orthogonality corresponds to making divy 4 = 0,® which means finding a
diffeomorphism & so that

divy (®*(g +h)—g) =0. (8.18)

The pullback metric is quadratic in the differential of @, so this is a second-order nonlinear
system of PDEs for ®. This is the PDE that is in the spirit of the slice theorem for group
actions and a solution ® gives the desired “gauge-fixing.” Terms involving divy & come up
again and again, so many quantities simplify in this gauge and things become easier.

In [91] we construct the diffeomorphism solving (8.18) using an iteration scheme for
the linearized operator & on vector fields Y. We show first sharp polynomial bounds on #
and then use them to show sharp polynomial bounds for the displacement function of &

X — distg(x, <I>(x)). (8.19)

The bounds are relative, meaning that better initial bounds give better bounds further out.
These optimal bounds hold on all singularities and give a key new tool for dealing with the
gauge group of all noncompact singularities.

The linearization of (8.18) is to find a vector field whose Lie derivative of the
metric has divy equal to —divy . The Lie derivative in a direction Y can also be writ-
ten as —2 divj} Y, where div}‘ is the operator adjoint of divy with respect to the weighted
measure. Therefore, the linearization of (8.18) is Y = % divy h, where

PY =divy odiv; Y. (8.20)

Solutions of Y = % div¢ h are unique once we require that Y is orthogonal to the kernel of
& . The kernel is the Killing fields. We will solve Y = % divs & on any shrinker and show
via L?-methods that || ||y1.2 < || divy h||z2. Given the noncompactness, the L?-estimates
are not sufficient to implement the iteration scheme, and we need stronger polynomial esti-
mates. The problems are magnified by that initial closeness is only on a given compact set.
As one builds out to get closeness on larger sets, one needs at each step to adjust the entire
diffeomorphism so that the normalization is zero on larger and larger sets. Understanding
and proving growth estimates is a major point.

The L2-theory for # shares formal similarities with Hormander’s influential 1.2
d-method in several complex variables. In the L? d-method, one solves the Poisson equa-
tion du = F , with estimates, where dF = 0. To do so, one introduces the adjoint of d with
respect to a weight. Hormander’s idea for the weight came from Carleman’s method for
proving unique continuation of a PDE. Here we solve Y = F, where F = % divy h is

8 For a symmetric two-tensor /, the f-divergence is divy (h) = e/ div(e*f h) =
div(h) — h(V £, ).
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orthogonal to the kernel of div;. Hormander’s method gives weighted L2-bounds for d sim-
ilar to our weighted bounds for &. To introduce a second weight to capture the growth a
la Carleman and Hormander is less natural here. Instead, we go a different route to prove
stronger bounds.

8.5. Bounding the growth of gauge transformations

We need to control the growth of Y to control the metric in the new coordinates,
but ¥ will be constructed using weighted Z2-methods and, thus, a priori could grow rapidly.
The next theorem from [91] shows that an L? eigenvector field with eigenvalue A for &
grows polynomially of degree at most 41 + 1. A Poisson version is used to control Y with
PY = % divy h. We set b = 2\/? and measure the growth of Y by the weighted average

Iy (r) =r1_"[ |Y || Vb|. (8.21)
b=r
A one-parameter family of smooth manifolds, [15-17, 25,106, 129,130], is said to flow by the
Ricci flow if
g: = —2 Ric.
The triple (M, g, f) is a gradient shrinking soliton, or shrinker for short, if

1
Ric + Hessy = Eg;

shrinkers are the singularities in Ricci flow, [33,36,107,122,158,162].
Theorem 8.22. For any shrinker (M, g, f), if Y € L%, PY = AY and
2
Z =Y + ——Vdive(Y),
METP RS
then divy(Z) = 0 and for any § > 0 andr, > ry > R = R(A,n, ),

446
ra
Iy divy (v)(r2) = (Z) 19 iv, (v (r1), (8.23)
ra 8A+2+6
I2(r2) < (7) I2(r). (8.24)
1

Each of these growth bounds is sharp and so is the requirement that ¥ € L?. Com-
bining them bounds Y. As a corollary, L? Killing fields on a shrinker grow at most linearly.

Corollary 8.25. On any shrinker, for any L? Killing field Y, V dive(Y) is parallel and if
Z =Y +2Vdivy(Y), then divy(Z) = O and for any § > 0 and r» > r1 > R = R(n,§),
ra 2+8
Iz(r2) < (Z) I7(r1). (8.26)

It is easy to see that this is sharp; on the two-dimensional Gaussian soliton,
Y = xze; — x1e is a Killing field with divy (Y') = 0 that grows linearly.

On a shrinker, the operator J relates to the manifold version of the much studied
Ornstein—Uhlenbeck operator &£ on vector fields Y by the formula

1
—2PY = Vdivy ¥ + 2 + Y. (8.27)
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Whereas & is a true system operator, £ is not, and for that reason, & is more complicated.
On the other hand, on solitons, & has many nice properties: it commutes with &£ and if Y is
an eigenvector field of & with eigenvalue —A, then V divy(Y') is an eigenvector field of £
with eigenvalue A. The unweighted version of & was used implicitly by Bochner to show that
closed manifolds with negative Ricci curvature have no Killing fields. Building on this the
unweighted operator was later used by Bochner and Yano to show that the isometry group of
such manifolds is finite. The unweighted operator also arises in general relativity. The rela-
tionship between & and the unweighted version, used by Bochner, mirrors the relationship
between the Ornstein—Uhlenbeck operator and the Laplacian.

8.6. Applications

This new understanding of the “gauge group” can be used to settle a well-known
problem in Ricci flow. Namely, using it one can show, see [91], a strong rigidity for cylinders,
quotients of cylinders, and more general shrinking solitons; [23,34], cf. [14e].

Theorem 8.28. Let 3 be the round cylinder St x R~ (or quotient of such) as a shrinker
with potential fy = % + % There exists an R = R(n) such that if (M", g, f) is another
shrinker and { fs, < R} N X is close to { f < R} C M in the smooth topology and f~ and

f are close on this set, then (M, g, f) is a round shrinking cylinder (or quotient of such).

Since blowups only converge on compact subsets, rather than globally, the most
useful characterizations involve only a compact subset as in Theorem 8.28. An important
difficulty is that there are nontrivial infinitesimal variations, i.e., variations in the kernel of the
linearized operator (not generated by diffeomorphisms). One consequence of Theorem 8.28
is that these infinitesimal variations are not integrable; cf. also [54].

The principle behind Theorem 8.28 is that closeness to a large enough piece of X
propagates outwards, becoming even closer on larger scales. We will explain some of the
ideas behind this shortly. A much weaker extension will follow from pseudolocality [16e],
which says that flatness propagates forward in time; accordingly, flatness propagates out-
ward in space for shrinkers. This gives a priori curvature estimates on a slightly larger scale.
However, it gives little control over the metric itself because of the gauge invariance and,
second, there is a loss in the estimates that makes it impossible to iterate. There are three
major ingredients in the proof of Theorem 8.28; we loosely refer to these as propagation of
almost splitting, gauge fixing, and quadratic rigidity in the right gauge. These are of inde-
pendent interest and will described in order next.

“Propagation of almost splitting” shows that if a shrinker is close to a product
N x R"™ on a large scale, then it remains close on a fixed larger scale. The closeness
on the first scale is used to get n — £ eigenvalues that are exponentially close to %, which
is a lower bound for any shrinker that is only achieved by linear functions on products. The
corresponding eigenfunctions will have exponentially small L2-bounds for their Hessians,
which forces the gradients to be virtually parallel on small sets but says little on large balls
because of the Gaussian weight. It is here that the growth bounds from [91] first play a crucial
role, showing that the Hessian bounds can only grow polynomially so the initial exponen-
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tial smallness gives control on larger scales. These almost parallel vector fields are then
used to construct a diffeomorphism to X on the larger scale, giving vastly more control than
what followed from pseudolocality. This is very much a Ricci flow fact that does not have
an MCF analogue where we do not have a corresponding description of the bottom of the
spectrum.

The almost splitting gives considerable control on the larger scale, but does not
fix the gauge—the difference in metrics is small, but is not orthogonal to the action of the
gauge group. Moreover, even when the two metrics are the same, the difference between the
potentials could be a linear function, corresponding to a translation along the axis.

There are many other important uniqueness results in Ricci flow, see, for instance,
[16,26,27,132,133].

Part 5. Minimal surfaces. Surfaces that locally minimize area have been extensively used to
model physical phenomena, including soap films, black holes, compound polymers, protein
folding, etc. The mathematical field dates to the 1740s.

Minimal surfaces with uniform curvature or area bounds are well understood, yet
essentially nothing was known without such bounds. We discuss here the theory of embedded
(i.e., without self-intersections) minimal surfaces in Euclidean space R3 without a priori
bounds; see [64-70,77,161] for more. The study is divided into three cases, depending on
the topology of the surface. In case one the surface is a disk, in case two the surface is a
planar domain (genus zero), and the third case is that of finite (nonzero) genus. The complete
understanding of the disk case is applied in both cases two and three. In all three cases
the surface is allowed to have a boundary. This is an essential point and makes the results
particularly useful. For instance, given any minimal surface, independent of its topology, if
a component of the intersection of the surface with a Euclidean ball is a disk, then case one
applies and gives a good description of that component. Similarly, for cases two and three.
The surface itself may then be thought of as built out of these snapshots (or building blocks).
We will here mostly only discuss the case of disks.

The helicoid, which is a double spiral staircase, was discovered to be a minimal
surface by Meusnier in 1776. As we will see, the helicoid is the most important example of
an embedded minimal disk. In fact, we will see that every such disk is either a graph of a
function or part of a double spiral staircase. For planar domains the fundamental examples
are the catenoid, also discovered by Meusnier in 1776, and the Riemann examples discovered
by Riemann in the beginning of the 1860s.” Finally, for general fixed genus, an important
example is the recent example by Hoffman—Weber—Wolf of a genus-one helicoid. The genus-
one helicoid is a complete minimal surface that on a large scale, away from the genus, looks
essentially like an ordinary helicoid. This illustrates that the helicoid is one of the basic
building blocks of general minimal surfaces. This is also true for the Riemann examples.
The Riemann examples are a two-parameter family of complete minimal surfaces. As the

9 Riemann worked on minimal surfaces in the period 1860-1861. He died in 1866. The Rie-
mann example was published post-mortem in 1867 in an article edited by Poggendorf.
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parameters degenerate, the Riemann examples looks like either a collection of catenoids
stacked on top of each other or two oppositely oriented helicoids (with parallel axes) glued
together.

In the last section we discuss why (complete) embedded minimal surfaces are auto-
matically proper (i.e., why divergent sequences of points on the surface diverge in Euclidean
space). This question is known as the Calabi—Yau conjectures for embedded surfaces. For
immersed (but not embedded) surfaces, there are counterexamples by Jorge-Xavier and Nadi-
rashvili.

8.7. Minimal graphs and the helicoid

The derivation of the equation for a minimal graph goes back to Lagrange’s 1762
memoir. There are questions of existence of solutions, uniqueness of equilibria, and the
global structure of the space (or spaces) of examples. At the intersection of all of these ques-
tions is the question of what the (shape of the) natural building blocks are. In a broad sense,
graphs and helicoids are in a fundamental way the key building blocks of embedded minimal
surfaces.

There are two local models for embedded minimal disks. One model is the plane
(or, more generally, a minimal graph) and the other is a piece of a helicoid.

Minimal graphs over proper simply connected domains in R? gives a large class
of embedded minimal disks, however, by a classical theorem of Bernstein from 1916 entire
(i.e., where Q = R?) minimal graphs are planes.

The second model comes from the helicoid which was discovered by Meusnier in
1776.'° The helicoid is a “double spiral staircase” given by sweeping out a horizontal line
rotating at a constant rate as it moves up a vertical axis at a constant rate. Each half-line traces
out a spiral staircase and together the two half-lines trace out (up to scaling) the double spiral
staircase (s cost, s sint,t), where s, € R.

For the results about embedded minimal disks, it will be important to understand a
sequence of helicoids obtained from a single helicoid by rescaling as follows:

Consider the sequence X; = a; X of rescaled helicoids where a; — 0. (That is,
rescale R3 by a;, so points that used to be distance d apart will in the rescaled R be distance
a;d apart.) The curvatures of this sequence of rescaled helicoids are blowing up (i.e., the
curvatures go to infinity) along the vertical axis. The sequence converges (away from the
vertical axis) to a foliation by flat parallel planes; that is, it converges to the collection of
planes x3 = constant. The singular set (the axis) then consists of removable singularities.

10 Meusnier had been a student of Monge. He also discovered that the catenoid is minimal in
the sense of Lagrange, and he was the first to characterize a minimal surface as a surface
with vanishing mean curvature. Unlike the helicoid, the catenoid is not topologically a plane
but rather a cylinder.
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8.8. Multivalued graphs, spiral staircases, double spiral staircases

To be able to give a precise meaning to the statement that the helicoid is a double
spiral staircase, we will need the notion of a multivalued graph, each staircase will be a
multivalued graph. Intuitively, a multivalued graph is a surface covering an annulus, such
that over a neighborhood of each point of the annulus, the surface consists of N graphs.
To make this notion precise, let D, be the disk in the plane centered at the origin and of
radius r and let & be the universal cover of the punctured plane C \ {0} with global polar
coordinates (p, 8) so p > 0 and 6 € R. An N -valued graph on the annulus D \ D, isasingle
valued graph of a function u over {(p,0) | r < p <, |0| < Nn}. For working purposes, we
generally think of the intuitive picture of a multisheeted surface in R3, and we identify the
single-valued graph over the universal cover with its multivalued image in R3.

The multivalued graphs that we will consider will all be embedded, which corre-
sponds to a nonvanishing separation between the sheets (or the floors). If ¥ is the helicoid,
then X \ {x3 — axis} = ¥; U X,, where ¥, X, are co-valued graphs on C \ {0}; X is the
graph of the function 11 (p, 8) = 0 and X, is the graph of the function u,(p, ) = 6 + .
(Further, X is the subset where s > 0 in the parametrization of the helicoid and X, the
subset where s < 0.) In either case the separation between the sheets is constant, equal to
27. A multivalued minimal graph, see chapter 1 in [71], is a multivalued graph of a function
u satisfying the minimal surface equation.

8.9. Structure of embedded minimal disks

All of our results for disks, as well as for other topological types, require only a piece
of a minimal surface. In particular, the surfaces may well have boundaries and when we, for
instance, say in the next theorem “Any embedded minimal disk in R3 is either a graph of a
function or part of a double spiral staircase”, then we mean that if the surface is contained in
a Euclidean ball of radius ro and the boundary is contained in the boundary of that ball, then
in a concentric Euclidean ball with radius a fixed (small) fraction of r¢, any component of the
surface is either a graph of a function or part of a double spiral staircase. That the surfaces
are allowed to have boundaries is a major point and makes the results particularly useful.
Note also that as the conclusion is for a “fixed fraction of the surface” this is an interior
estimate.

The following is the main structure theorem for embedded minimal disks:

Theorem 8.29. Any embedded minimal disk in R is either a graph of a function or part of a
double spiral staircase. In particular, if for some point the curvature is sufficiently large, then
the surface is part of a double spiral staircase (it can be approximated by a piece of a rescaled
helicoid). On the other hand, if the curvature is below a certain threshold everywhere, then
the surface is a graph of a function.

As a consequence of this structure theorem we get the following compactness result:
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Corollary 8.30. A sequence of embedded minimal disks with curvatures blowing up (i.e.,
going to infinity'') at a point mimics the behavior of a sequence of rescaled helicoids with
curvature going to infinity.

8.10. Two key ideas behind the proof of the structure theorem for disks

The first of these key ideas says that if the curvature of such a disk X is large at some
point x € X, then near x a multivalued graph forms (in X), and this extends (in X) almost
all the way to the boundary12 of X. Moreover, the inner radius, 7., of the annulus where the
multivalued graph is defined is inversely proportional to |A|(x), and the initial separation
between the sheets is bounded by a constant times the inner radius.

An important ingredient in the proof of Theorem 8.29 is that general embedded
minimal disks with large curvature at some interior point can be built out of N -valued graphs.
In other words, any embedded minimal disk can be divided into pieces each of which is an
N -valued graph. Thus the disk itself should be thought of as being obtained by stacking
these pieces (graphs) on top of each other.

The second key result (Theorem 8.31) is a curvature estimate for embedded minimal
disks in a half-space (in this theorem ry is a scaling factor, which after rescaling can be taken
to be one):

Theorem 8.31. There exists ¢ > 0 such that for all ro > 0, if © C Bay, N {x3 >0} CR3is
an embedded minimal disk with 0% C 0Bay,, then for all components ¥ of By, N X which
intersect Ber,

sup |Az(x)|2 < r0_2. (8.32)

xex’

This theorem has an equivalent formulation that may be easier to appreciate. Namely,
for ¢ > 0 sufficiently small, (8.32) is equivalent to the statement that X’ is a graph over
(a domain in) the plane {x3 = 0}.

Theorem 8.31 is an interior estimate where the curvature bound, (8.32), is on the
ball By, of one-half of the radius of the ball B5,, containing X. This is just like a gradient
estimate for a harmonic function where the gradient bound is on one-half of the ball where
the function is defined. Theorem 8.31 is often referred to as the one-sided curvature estimate
(since X is assumed to lie on one side of a plane). The assumption in Theorem 8.31 that &
is simply connected (i.e., that X is a disk) is crucial, as can be seen from the example of
a rescaled catenoid. Rescaled catenoids converge (with multiplicity two) to the flat plane.
Likewise, by considering the universal cover of the catenoid, one sees that Theorem 8.31
requires the disk to be embedded, and not just immersed.

The one-sided curvature estimate has strong implications for embedded minimal
surfaces. We will return to some of these applications later, but note here that it can be

11 A minimal surface in R3 the curvature K = —% | A|? is nonpositive; so that by the curva-
tures of a sequence is going to infinity we mean that K — —oo or, equivalently, |4|? — oo.

12 Our results require only that we have a piece of a minimal surface and thus it may have
boundary.

858 T.H. COLDING



applied even to ends of embedded minimal surfaces with finite topology to give a different
of a conjecture of Nitsche, see [56,93].

8.11. Uniqueness theorems

There is a long history of uniqueness theorems for properly embedded minimal sur-
faces, but all of those made very strong assumptions. A typical example is Catalan’s theorem.
Catalan proved in 1842 that any complete ruled minimal surface is either a plane or a heli-
coid. A surface is said to be ruled if it has the parametrization X (s,7) = B(¢) + s8(¢), where
s,t € R, and B and § are curves in R3. The curve B(¢) is called the directrix of the surface,
and a line having §(¢) as direction vector is called a ruling. For the helicoid, the x3-axis
is a directrix, and for each fixed ¢ the line s — (s cost, s sint, ) is a ruling. More recent
uniqueness results (for instance, by Lopez, Meeks, Nirenberg, Nitsche, Osserman, Perez,
Ros, Schoen, Shiffman, and Simon) assumed either finite total curvature or periodicity. The
structure theorems in [65-68] opened up the possibility of showing uniqueness theorems in
complete generality.

To give a flavor of some of the results that led to spetacular development in the theory
of minimal surfaces, we will mention just a few highlights. Using the above structure theorem
for disks, Meeks—Rosenberg [150] proved, cf. [19], that the plane and the helicoid are the
only complete properly embedded simply-connected minimal surfaces in R3. The Riemann
examples were shown to be unique by Meeks—Perez—Ros [148]. In addition to the structure
theory for disks, they also used the structure theory of all finite-genus embedded minimal
surfaces from [7e]. The paper [148] also introduced two very interesting new techniques into
the subject: the KdV equation and a careful analysis of the Shiffman function.

9. EMBEDDED MINIMAL SURFACES ARE AUTOMATICALLY PROPER

Implicit in all of the results mentioned above was an assumption that the minimal
surfaces were proper. However, as we will see next, it turns out that embedded minimal
surfaces are, in fact, automatically proper. This was the content of the Calabi—Yau conjectures
which were proven to be true for embedded surfaces in [66].

9.1. Proper embeddings

An immersed surface in R3 is proper if the preimage of any compact subset of R3
is compact in the surface. For instance, a line is proper whereas a curve that spiral infinitely
into a circle is not.

9.2. The Calabi-Yau conjectures; the statements and examples

The Calabi—Yau conjectures about surfaces date back to the 1960s. Their original
form was given in 1965 where Calabi [31] made the following two conjectures about minimal
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surfaces'?:
Conjecture 9.1. Prove that a complete minimal surface in R® must be unbounded.

Calabi continued: “It is known that there are no compact minimal surfaces in R3
(or of any simply connected complete Riemannian 3-dimensional manifold with sectional
curvature < 0). A more ambitious conjecture is”:

Conjecture 9.2. A complete [non-flat] minimal surface in R* has an unbounded projection
in every line.

The immersed versions of these conjectures turned out to be false. Namely, Jorge and
Xavier [123] constructed non-flat minimal immersions contained between two parallel planes
in 1980, giving a counterexample to the immersed version of the more ambitious Conjec-
ture 9.2. Another significant development came in 1996, when Nadirashvili [156] constructed
a complete immersion of a minimal disk into the unit ball in R, showing that Conjecture 9.1
also failed for immersed surfaces; cf. [2].

The main result in [7e] is an effective version of properness for disks, giving a
chord-arc bound.'* Obviously, intrinsic distances are larger than extrinsic distances, so the
significance of a chord—arc bound is the reverse inequality, i.e., a bound on intrinsic distances
from above by extrinsic distances. Given such a chord—arc bound, one has that as intrinsic
distances go to infinity, so do extrinsic distances. Thus as an immediate consequence:

Theorem 9.3. A complete embedded minimal disk in R® must be proper.

Theorem 9.3 gives immediately that the first of Calabi’s conjectures is true for
embedded minimal disks. Another immediate consequence of the chord—arc bound together
with the one-sided curvature estimate (i.e., Theorem 8.31) is a version of that estimate for
intrinsic balls. As a corollary of this intrinsic one-sided curvature estimate, we get that the
second, and more ambitious, of Calabi’s conjectures is also true for embedded minimal disks.
The second Calabi conjecture (for embedded disks) is an immediate consequence of the fol-
lowing half-space theorem:

Theorem 9.4. The plane is the only complete embedded minimal disk in R3 in a half-space.

Theorem 9.4 is a byproduct of the proof of Theorem 9.3. However, given Theo-
rem 9.3, Theorem 9.4 follows from the half-space theorem of [113].

The results for disks imply both of Calabi’s conjectures and properness also for
embedded surfaces with finite topology. A surface X is said to have finite topology if it is
homeomorphic to a closed Riemann surface with a finite set of points removed or “punc-
tures.” Each puncture corresponds to an end of X.

13 S.S. Chern [44] also promoted these conjectures at roughly the same time and they were
revisited several times by S.T. Yau.

14 A chord-arc bound is a bound above and below for the ratio of intrinsic to extrinsic dis-
tances.
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See [94,149,151] for related results and further references.
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1. INTRODUCTION

Let U be a bounded open subset of the Euclidean space R”*" and let & C U be
an m-dimensional surface (e.g., a C 1 m-dimensional submanifold, but we will allow more
general concept of surfaces for most of this note). Then X is said to be a “critical point of
the area functional,” or more commonly a “minimal surface,” if

d " B
- ZZOVOI (@,(%)) =0 (1.1)

for every smooth one-parameter family of diffeomorphisms [—§, 8] > ¢ > ®; of U such that:
(a) ®;(x) = x forevery x € U and every ¢;
(b) ®o(x) = x forevery x € U.

Here Vol™ denotes a suitable concept of m-dimensional volume: in the case of classical
submanifolds, we can take the usual one from differential geometry.

Notable examples of minimal surfaces are those that minimize the volume in some
suitable class ¥ It suffices to assume that € is closed under deformations satisfying (a)
and (b) above to conclude that any minimizer in % is necessarily a critical point of the area
functional.

We call the attention of the reader to condition (a): the deformations fix the boundary
of the open set U. Thus an example of a class € is that formed by those surfaces ¥’s whose
boundary (in a suitable sense, for instance, we can take the usual one of differential topology,
if we are dealing with smooth surfaces) is a fixed I" contained in dU . Such minimizer is then
a surface of “least area spanning the contour I".” However, we ultimately have to agree on
the very definition of an “admissible surface” (Must it be embedded or do we allow self-
intersections? Do we allow any topological type? In fact, must it be smooth or do we allow
singularities? If we allow singularities, which type should we allow?), on what it means to
span I', and how we define its volume.

Having assumed that we have answered all the above questions, i.e., that we have
selected a suitable class ¢ and a related concept of m-dimensional volume, a minimizer in
% can be regarded as one possible solution to a celebrated problem in the calculus of varia-
tions, which goes under the name of Plateau problem. Indeed, the Belgian physicist Joseph
Plateau investigated it in the early 19th century with the intention of finding a good descrip-
tion of soap films. However, the problem had already appeared in the mathematical literature
decades before the investigations of Plateau, and can be found in the works of Lagrange,
Meusnier, Monge, and Légendre. In particular, Lagrange considered minimizers of the area
as early as the 1760s and he used his newly established method (which leads to what nowa-
days are called “Euler-Lagrange” conditions for minima of integral energies (cf. [79])) to
describe 2-dimensional minimal graphs in R3 through a suitable partial differential equation.

As it is well known, if T is of class C2, minimality in the sense of (1.1) is equiv-
alent to the vanishing of the mean curvature vector. The latter is a condition which can be
explained without any knowledge of differential geometry and it is, in fact, fairly easy to
describe to anybody with a basic knowledge of multivariate calculus. Having fixed a point
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Po € X, choose first an orthonormal system of coordinates so that ¥ is the graph of a map
¥ R™ D Q — R” with the properties that

e po = (0,9 (0)) (i.e., po is the origin of the coordinate system);
e and V¢ (0) = 0 (i.e., the tangent to X at the origin is horizontal).

Then the mean curvature vector of X vanishes at py if and only if Ay (0) = 0. One way
to think about minimal surfaces is thus to understand them as solutions to a (somewhat
complicated) nonlinear elliptic system of partial differential equations which linearize to the
Laplace equation, namely Ayr = 0, when we rotate the coordinates so that the tangent to the
graph is horizontal.

The Laplace equation is universally considered as the prototypical elliptic partial
differential equation of second order, and its solutions, i.e., the harmonic functions, are the
prototype to understand the behavior of solutions to more general second order elliptic PDEs.
The Laplace equation as well has a variational flavor, since it characterizes critical points of
the Dirichlet energy [ |V|%. But one could argue that minimal surfaces are even more
natural objects than harmonic functions: indeed, a surface is minimal independently of the
system of coordinates used to describe the ambient Euclidean space, while rigid motions of
graphs which “mix domain and target” do not preserve the harmonicity: the latter is a concept
which depends strongly on the selection of the dependent and independent variables used to
describe the surface as a graph.

Critical points of the area functional have fascinated (and have been the object
of study of) generations of mathematicians throughout at least two centuries and a half.
One very interesting aspect of minimal surface theory is that it is relatively easy to pro-
duce singular examples. A particularly simple instance is given by holomorphic subvarieties
in C": if we identify C" with R?" and we understand holomorphic subvarieties of dimen-
sion k as 2k-dimensional surfaces (with singularities), then the latter are always minimal.
In fact, they are much more than just minimal: they minimize the area among a vast class of
possible deformations. So an object as seemingly innocent as the complex algebraic curve
Y ={(z,w) € C?: z2 = w3} is a 2-dimensional minimal surface in R* and, in fact, it is
minimal according to one of the most restrictive meanings that we can give. However, the
origin is a point where X is not a regular submanifold: in particular, there is no neighborhood
of 0 in which it can be described as the graph of a function (at least if we understand our
functions “classically”” and do not allow them to take more than one value at each fixed point
of their domain).

Another simple example is given by the connected set E of least length which con-
tains three noncolinear points py, p2, p3 € R2. Such a set is the union of three distinct
segments o;’s which:

* have p; as one endpoint,

L]

have all a common ¢ as the other endpoint,

meet at ¢ forming angles of 120° degrees.
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Again ¢ is a “singular point” in the sense of differential topology: E is not a submanifold of
R? in any neighborhood of g.

If we accept that a good theory of minimal surfaces must include singular objects,
we then open a Pandora box, in particular the following seemingly innocent questions imme-
diately come to mind:

* How do we define the admissible surfaces, or otherwise put, which kind of sin-
gularities do we allow?

e Which kind of deformations do we take into account?
e What is the m-dimensional volume of a singular surface?

All these questions can be studied from different points of view and can be given very dif-
ferent answers depending on which goals one has in mind. For instance, answers which deal
efficiently with the problem of minimizing the m-dimensional volume of surfaces in some
fixed homology class of a given Riemannian manifold do not seem to give a satisfactory
description of the complexity of soap films in real life. On the other hand, even though real
life soap films display singularities, it can be proved that any 2-dimensional integral homol-
ogy class in a closed smooth Riemannian 3-manifold has a smooth representative which
minimizes the area. At any rate, whichever the goal, a rather large number of answers to
these questions can be given in a subject of modern mathematics called geometric measure
theory.

Geometric measure theory provides powerful tools to study various variational
questions linked to the theory of minimal surfaces and has produced, in more than half
a century, several notions of “singular minimal surfaces.” In what follows, I will address
several of them and, for lack of a better term, I will call all of them “generalized minimal
surfaces.” A subtopic of geometric measure theory, which is commonly called “regularity
theory,” studies natural questions like:

» Under which conditions singularities can be ruled out, i.e., the generalized mini-
mal surfaces of a particular class end up being classical minimal submanifolds?

* How large can the set of singularities be when its existence cannot be completely
ruled out?

* Which structural properties can the singularities have?

The ambition of this article is to give a rather extensive, and yet nontechnical, account of the
birth of this topic, of its various ramifications along the decades, of the most recent develop-
ments, and of some of the remaining challenges. Since the topic is vast and complicated, I
will probably not do a good service to much of the existing literature and I emphasize from
the start that I consider my views quite biased.
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2. PLATEAU’S PROBLEM, CRITICALITY, AND STABILITY

Before coming to a description of the “regularity theory,” I will first introduce, in
this section, some of the most common notions of “generalized minimal surfaces” considered
in geometric measure theory.

2.1. Plateau’s problem: two general approaches

As already mentioned, the Plateau problem can be loosely described as “looking for
the surfaces X of least volume spanning a given contour I'.” If the surfaces X in question
are C ! submanifolds, it is commonly understood that the m-dimensional volume is the usual
one from calculus books. If the given contour is as well a submanifold, a seemingly natural
possibility to give a rigorous definition of “X spans I'” is to say that I" is the boundary
of ¥ in the usual sense of differential topology. From this point of view, it is also natural
to consider ambient spaces more general than the Euclidean one, and a common natural
choice is to have a general complete and smooth Riemannian ambient manifold. Practically
all the “positive results” which we will discuss in this note have a generalization to smooth
Riemannian ambient manifolds, but in order to be as nontechnical as possible, I will refrain
to state the general theorems and always assume that the ambient is Euclidean. There are,
however, some counterexamples which have been thus far found only in ambient Riemannian
manifolds, and given their relevance in some of the problems examined below, I felt that they
should be discussed.

If we want to enlarge the class of surfaces (and, in particular, allow minima with
singularities in our class %), we then have to specify at the same time what we mean by
a surface, its volume, and the fact that it spans a given contour I'. First of all, we will fix
the convention that the dimension of the surfaces in € is m, the dimension of I" is m — 1,
and the ambient Euclidean space (or Riemannian manifold, when the general case will be
discussed) has dimension m + n. Secondly, we will restrict our attention to regular contours
I': even though this can be relaxed considerably and one can fix certain type of nonsmooth
boundaries (depending on the framework), clearly, when dealing with “boundary regularity”
theorems, it is natural to assume that I" itself has some regularity to start with. Once we have
defined our generalized class of surfaces, their generalized volume, and what it means for
them to span I', we will say that we have a “variational framework” for the Plateau problem.

It is possible to subdivide the various variational frameworks proposed in geomet-
ric measure theory in two large classes, which follow two rather different philosophical
approaches. I will loosely describe them as:

e Set-theoretic. We insist in this case that our generalized surfaces X are just merely
closed subsets of the ambient space which include I" as a subset. The fact that
they “span” I" will then be encoded in some topological condition which ¥ must
satisfy, while the m-dimensional volume is defined by a suitable “measure” which
satisfies the usual requirements of measure theory and coincides with the classical
m-dimensional volume when ¥ is a subset of a C! surface (or a countable union
of subsets of C! surfaces).
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 Functional-analytic. In this case we focus first on some nice, sufficiently regular,
class of surfaces X, and we prescribe that their boundary is I' in some suitable
convenient sense coming from algebraic topology: let us denote this privileged
class by Z. On &% the concept of volume will be also given in terms of classical
differential geometry and algebraic topology, and this will give us a functional A
(the area functional) on %Z. We then introduce some topology on Z, for instance,
a distance, and the class %" will be a suitable completion of this topological space,
while the functional 4 will be extended to 4" in some natural way (for instance,
we can take its lower semicontinuous envelope).

Observe that the “classical” parametric approach of Douglas and Rado does not fit in any of
these two broad descriptions. The fact that I am not including it in the scope of these notes
does not reflect any judgment on its mathematical interest: the “classical parametric theory”
is a beautiful piece of mathematics, but it has a rather different flavor compared to the results
and problems which will be discussed here.

In all the variational frameworks which we will examine, no matter whether they fall
in one class or the other, there is a common and recurrent use of two important objects from
geometric measure theory: the Hausdorff m-dimensional measure and rectifiable sets. The
Hausdorff m-dimensional measure, which we will denote by #™, is a very natural way of
extending the classical notion of m-dimensional volume to any subset of the Euclidean space
(or, more generally, of a metric space). In fact, it is just one possibility, while a general theory
of such extensions can be given in terms of the so-called “Caratheodory construction” and we
refer the reader to some of the several textbook in the literature which treats it (cf. [59,62,88]).
Rectifiable m-dimensional sets are a very natural class of sets which contain C'! surfaces but
is closed under many more operations which are natural from the point of view of measure
theory: they consist of countable unions of closed subsets of C ! m-dimensional submanifold
plus a set of zero F™ measure (some people, for instance, Misha Gromov, consider the latter
a somewhat very unpleasant technical addition, and the author agrees that there might be an
efficient theory which works without the annoying technicality of adding null sets; however,
most people in analysis grew accustomed to it, as “completing” a o-algebra by adding sets
of measure zero is a fairly common operation).

It was a major discovery of Besicovitch in the first half of the 20th century that any
set of finite #! measure can be decomposed into the union of a “rectifiable portion” and
a “purely unrectifiable portion” (cf. [14-16]). The latter is somewhat “orthogonal” to any
C! submanifold, in the sense that it intersects any C! curve in a set of #! measure zero,
even though it might have positive # ! measure. The more general theory of m-dimensional
rectifiable sets was developed later Federer, cf. [61] (and see also [92]). While the rectifiable
part has much of the features of C'! submanifolds, and can be considered as a weak version
of the latter, the purely unrectifiable part behaves in a rather counterintuitive way and in what
follows we will discount it: it is, however, one of the major early developments of geometric
measure theory that one can, without loss of generality, discard unrectifiable sets pretty much
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in all variational theories for the area functional and I am hiding quite deep and beautiful
theorems here.

2.2. Examples of set-theoretic approaches

The first to pioneer what I dubbed “set-theoretic approach” was Reifenberg in [96].
In his variational framework, the definition of “E spans I'” is that I" is trivial in the rela-
tive Cech homology of E (cf. [96] for the precise definition). More recently Harrison (cf.
[71,72]) suggested another, very elegant, possible definition of “E spans I"”” which for sim-
plicity we describe in the easiest case of (m — 1)-dimensional I"’s in R™*!: any closed curve
y C R™*1\ T which is not contractible in R™*! \ T must intersect E.

Another point of view is that taken by Almgren in his theory of (M, ¢, §)-minimal
sets, cf. [9]: rather than giving a precise notion of “spanning,” we focus on which defor-
mations are allowed and assume that our class % is closed under the latter deformations.
In his work, Almgren gave a far-reaching existence and regularity theory, and the existence
part was recently revisited and extended in [6e]. Concerning deformations, a very interesting
point raised only recently by David is that in practically all the works in the literature thus
far the authors used deformations which completely “fix” the boundary I', while it would
be much more natural to impose that they, in fact, map I" onto itself in some controlled way
(for instance, they are isotopic to the identity within the class of diffeomorphisms of I"): this
idea is at the base of his recent theory of “sliding minimizers”, cf. [25,27,28].

In all these variational frameworks, for any given sequence Ej of compact sets there
is a natural notion of convergence, that of Hausdorff, for which we can extract a converging
subsequence. However, the Hausdorff measure #™ does not behave well in terms of the
latter convergence, in the sense that it is not lower semicontinuous. On the other hand, one
can suitably adjust minimizing sequences so to achieve the lower semicontinuity of J™:
it thus suffices to prove that the limit is in the considered class € to achieve a minimizer.
The author, in a joint work with F. Ghiraldin and F. Maggi in [37], pointed out that there
is, in fact, no need to adjust the minimizing sequence and that a suitable compactness and
lower-semicontinuity statement is valid for any minimizing sequence in a class % as soon
as it allows a rather limited number of basic competitors. In particular, this gives a unified
framework which treats all known examples of set-theoretic approaches put forward thus far,
cf. also [36,57,58].

From the point of view of differential and algebraic topology, all the set-theoretic
approaches have some very undesirable properties. Typical set-theoretic minimizers of the
Plateau problem will always have singularities: if the boundary I' is complicated, it is ener-
getically convenient to form “triple junctions” along a singularity of codimension 1. On
the other hand, one of the biggest achievements of the functional-analytic approach is that
for every smooth closed embedded curve I' in R? there is always a smooth oriented 2-
dimensional submanifold with boundary I' which minimizes the 2-dimensional area among
all smooth oriented 2-dimensional submanifolds with boundary I". Likewise, it is possible to
show that every 2-dimensional integral homology class in a closed Riemannian 3-manifold
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has a smooth representative which minimizes the area. The set-theoretic approaches are not
able to detect these two beautiful phenomena.

On the other hand, actual soap films do form triple junction singularities (and even
more complicated ones) in real life, and these phenomena do not seem to be efficiently cap-
tured by functional-analytic frameworks (even though such singularities do occur in some
specific situations, see below). Much of the research in the set-theoretic frameworks is thus
motivated by the original intention of Plateau of finding a good variational description of
soap films. In that respect the recent paper [85] by Maggi, Scardicchio, and Stuvard pointed
out that much of the investigations in the mathematical literature have thus far ignored some
very relevant physical attributes of real-life soap films. Combining some of the aspects of
the set-theoretic approaches with other modern techniques, like I'-convergence, and with
more accurate considerations from mathematical physics, the papers [76-78] propose a new
variational theory which promises to provide a much more accurate description of real-life
soap films.

2.3. Functional-analytic frameworks
The pioneer of functional-analytic frameworks seems to be Renato Caccioppoli. In
his works [18,19], Caccioppoli proposed the following definition of “perimeter” of a general
(Lebesgue measurable) set of R+ (I will actually describe a slight variation of Cacciop-
poli’s approach, but the actual differences are just of technical nature and for the purposes
of this discussion I will ignore them). First of all, if the set has a C! boundary, its perime-
ter is defined to be the usual m-dimensional volume of the boundary. Next, given a general
Lebesgue measurable set £ C R, we consider all possible sequences Ej of sets with C'!
boundaries with the property that the Lebesgue measure of the symmetric difference Ex AE
goes to 0. We then consider
liminf H™ (Ey)
k—o0

and we further take the infimum of all such numbers among all approximating sequences
{Ey}. The latter is defined to be the perimeter of E. If it is finite, £ is commonly called a
set of finite perimeter or (especially if you are Italian!) Caccioppoli set.

Caccioppoli’s approach is very natural in the calculus of variations. We start from a
class of “good” objects, the open sets with smooth boundary, over which the energy we are
interested in, i.e., their perimeter, is classically defined. However, a sequence of smooth sets
with uniformly controlled perimeter might converge to nonsmooth sets (for instance, one can
easily form a corner, cusp, or other type of singularity) and we therefore would like to enlarge
this class. We then take a much larger class, that of all measurable sets, with a topology in
which the good objects are dense and we extend the energy to be the lower semicontinuous
envelope. Interestingly Caccioppoli’s approach was initially dismissed by his contemporaries
(cf. the reviews by L. C. Young of the aforementioned papers) because he was not able to
relate his abstract definition to any concrete notion of perimeter in a measure-theoretic sense.
In the early 1950s, De Giorgi took up Caccioppoli’s approach and proved, in his celebrated
works on the isoperimetric property of the sphere (cf. [29-31]), that:
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« the class of sets with finite perimeter in the sense of Caccioppoli is compact, under
a uniform bound on their perimeter;

* the perimeter has a precise measure-theoretic interpretation, i.e., if the set Q2
has a finite perimeter, one can introduce a suitable notion of (oriented) measure-
theoretic boundary which turns out to be rectifiable and whose Hausdorff measure
is indeed the perimeter of 2.

De Giorgi also reformulated the theory of sets of finite perimeters through a useful duality: if
correctly interpreted, the usual divergence theorem holds for them, and the boundary integral
in the formulation is, in fact, a classical integral, in the sense of measure theory, over the
measure-theoretic boundary. For open sets with smooth boundaries, the “measure-theoretic”
one coincides with the topological one. An interesting byproduct (not at all obvious from the
definition) is that the perimeter as defined by Caccioppoli is, in fact, the classical surface area
of the topological boundary when the latter is smooth.

Thus, the oriented “generalized” boundaries of Caccioppoli and De Giorgi act as
linear functionals on vector fields. In the celebrated theory developed later by Federer and
Fleming (cf. [64]), these are particular instances of “integral currents,” which act on general
forms (and hence can have arbitrary codimension). Like De Giorgi’s theory of Caccioppoli
sets, the theory of integral currents of Federer and Fleming can also be seen as a suitable
variational completion: after introducing an appropriate class of good objects (in this case
integral smooth chains, which are formal linear combinations, with integer coefficients, of
smooth oriented submanifolds with smooth boundaries), the more general objects, namely
the integral currents, can be characterized as the limits, in an appropriate weak topology, of
sequences of those good objects, under uniform bound on their volume and on the volume
of their boundaries. Like in the case of De Giorgi’s theory of Caccioppoli sets, integral cur-
rents can be represented, in a suitable measure-theoretic sense, as integration over “oriented”
rectifiable sets.

While the duality with differential forms limits the choice of coefficient groups in
the formal linear combinations to integer and real coefficients (or anyway to subgroups of the
reals), the “completion point of view” allows choosing other “coefficient groups” (endowed
with an appropriate norm, so that we can make sense of the notion of “mass”), cf. the foun-
dational paper of [66] for the case of finite groups. Notable choices are the so-called “flat
chains mod p” (which, with a slight abuse of terminology, we will call currents mod p). In
the latter case, p is a positive integer larger than 1 and the coefficient groupis Z, = Z/(pZ)
(for an element [g] € Z,, endowed with the usual norm

|lg]| min{|g — kp| : k € Z}.

In this note the coeflicient group will always be either Z, or Z,. Note in particular that in
both cases the norm will always take integer values, a fact which will play a fundamental
role in our discussions.

In all these instances, we have a framework where we can apply the direct methods
of the calculus of variations. In particular,
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* the concept of a boundary comes naturally either from the duality with differential
forms, or from the closure procedure;

* the underlying space of generalized objects is closed;

* the generalized area functional (often called the mass) is lower semicontinuous
and its sublevel sets are compact (if we assume that the boundary of our general-
ized surfaces is a fixed given one).

In particular, the Plateau problem in the above frameworks has a very elegant existence
theory.

2.4. Varifolds and the calculus variations ‘“in the large”

One notable drawback of the functional-analytic frameworks outlined above is that
the mass is not continuous for the natural convergence in the underlying spaces. Continuity
along a sequence might be lost because of two mechanisms:

* High frequency oscillations: for instance, the graphs of the functions % sinkx in
the two-dimensional plane have locally bounded length and they converge, in the
sense of integral currents, to the straight line. It is, however, easy to see that the
total length of any segment in the limiting line is strictly less than the limit of the
corresponding approximations.

Cancelation: a line in R? can be given two distinct orientations, thereby defining
two different integral currents. However, their sum is 0. If we approximate the
two different oriented lines with a sequence of two shifted oriented lines with dis-
joint supports, then we get a sequence of integral currents with masses uniformly
bounded from below which converges to the trivial current.

We are concerned mostly with the second, since the approximating sequence is a sequence
of minimal surfaces. Indeed, we can reasonably expect that a sequence of critical surfaces
will not exhibit the oscillatory behavior of the first example (this fact was, in fact, proved
by Allard as a byproduct his famous regularity theory, see below). On the other hand, the
criticality assumption does not rule out the second example, which is therefore “particularly
bad” because it shows that in the space of currents we cannot expect any reasonable type of
“Palais—Smale” property.

A way to remedy this loss of continuity is to introduce the notion of varifold, which
is just a positive measure on the Grassman space of m-dimensional unoriented m-planes in
the tangent bundle of the Euclidean space (or, more generally, of a Riemannian manifold).
For a smooth (not necessarily oriented) surface X, the corresponding varifold is given by

dr.x ®d Volyg . 2.1

General varifolds were introduced by L. C. Young (cf. [126]), while in the context of minimal
surfaces Almgren introduced them precisely in order to tackle general existence problems for
critical points of the area functional, cf. [7]. A particularly useful subclass of varifolds is that
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of integral varifolds, which satisfy a structure as in (2.1) where d Voly is substituted by the
Hausdorff k-dimensional measure restricted on a general m-dimensional rectifiable set R
(with an integer-valued weight), and §7,x is substituted by §7, g, where Tx R is a natural
measure-theoretic generalization, to rectifiable sets, of the tangent to a smooth surface.

In his notable monograph [95], based on some groundbreaking ideas of Almgren
[71, Pitts developed a quite powerful variational theory for finding generalized critical points
of the area functional. In codimension 1, i.e., in the case of hypersurfaces, the theory of
Almgren and Pitts has found striking geometric applications in the works of A. Neves and
F. Coda Marques, cf. [81,86,87]. These results have spurred a number of interesting works
in the area, and Pitts’ existence theory has been revisited in several different ways, see, for
instance, [21,22,56,75,127].

Varifolds can be naturally deformed using one-parameter family of diffeomor-
phisms, and this allows introducing a rather natural notion of the kth variation of the varifold
along smooth vector fields. Of particular relevance are then

* stationary varifolds, i.e., varifolds for which the first variation vanishes along any
vector field,

* and stable varifolds, i.e., stationary varifolds for which the second variation is
nonnegative along any vector field.

Since all the objects encountered above in the existence theories for the Plateau problem nat-
urally induce corresponding varifolds, all the minimizers in the various senses given above
are, in fact, stable varifolds.

3. MONOTONICITY FORMULA AND TANGENT CONES

One simple and very powerful tool in the regularity theory for minimal submani-
folds is the monotonicity formula. In order to gain an intuition about it, consider a smooth
m-dimensional surface ¥ C R™*" which minimizes the volume in some suitable class of
comparison surfaces and fix an “interior” point p € X. Consider then a ball B, (p) which
does not intersect 3. We wish to compare the volume of ¥ N B, (p) to the volume of the
cone X, with vertex p and base X N 9B, (p). By Sard’s lemma, we can assume that ¥ inter-
sects 0B, (p) transversally. Note that our comparison surface is somewhat singular because
of the vertex singularity of the cone and the discontinuity in the tangents that might be intro-
duced by cutting ¥ N B, (p) out and replacing it with I". On the other hand, it is also simple
to see that X, U (X \ B,(p)) can be obtained as limit of deformations of ¥ by smooth iso-
topies of the ambient space: in particular, it is a good comparison surface in pretty much all
the variational frameworks considered so far.

The minimizing property of ¥ implies then that

Vol (£ N B, (p)) < Vol™(Z,) = n%VOlm_l (= N 9B, (p)).
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which in turn (considering that Vol (X N 9B, (p)) < % Vol (X N B,(p))) gives

d Vol (X NB,(p)) -
dr rm -

The latter is the classical monotonicity formula for minimal submanifolds. It is very robust,

3.1)

in the sense that

(a) It can be derived for critical points by using stationarity with respect to some
specific radial deformations. In particular, it holds for stationary varifolds
(see [4]).

(b) Allowing for suitable multiplicating factors like e€” , the formula holds for much
more general objects, in particular for stationary varifolds in smooth Rieman-
nian manifolds (cf. again [4]).

(c) A suitable version of the formula can be derived at boundary points too, under
the assumption that the boundary 0% is smooth enough (cf. [5]). An intuition
for this can be gained through the following observation: if the boundary
0% were an affine subspace passing through p, then the competitor surface
Y. U (2 \ B,(p)) would have the same boundary, namely 0X.

(d) Perhaps most importantly, a more refined version of the arguments leading
to (3.1) shows that the equality case in holds if and only if ¥, coincides with T,
i.e., if X itself is a cone with vertex p.

For further reference, we will call density of ¥ at p (denoted by ®(Z, p) the limit of the

“mass ratio”
_ Vol™(£NB,(p))
lim

{0 wp ™

’

where w,, is the volume of the m-dimensional disk. Obviously, the density is not particularly
interesting for smooth X’s as it will be 1 at every interior point and % at every boundary point
(or k at every interior point and % at every boundary point, if we entertain the possibility
of allowing for multiplicities in the normed groups Z and Z,, or if we consider integral
varifolds). However, due to (a), the density exists for any “generalized minimal surface”
encountered in the previous section and this is a very nontrivial information, given that the
latter might be singular. Another interesting byproduct of the monotonicity formula is that
the density is nowhere smaller than 1 at interior points, which in turn implies that some
suitable definition of “support” of the generalized minimal surface is a closed rectifiable set
of locally finite Hausdorff measure.

3.1. Tangent cones

Fact (d) above is maybe the most relevant, as it is the starting point for a fruitful
fundamental concept in minimal surface theory. Let us fix a point p in (the support of) our
generalized minimal surface ¥ (and, in light of (c) above, we might even fix it at the boundary
as long as the latter is sufficiently smooth). For every radius r, consider then the translated
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and rescaled surface s_p
Spr ::Tz{y:p+ry62}.

The volume of the surface in Bg(0) is then uniformly bounded for every fixed R, indepen-
dently of the parameter r. Again, while this is not particularly exciting for a smooth %, it is
a highly nontrivial fact for the generalized minimal surfaces, which are potentially singular
at p. Given the uniform bound and the compactness properties available for all the gener-
alized minimal surfaces introduced thus far, up to subsequences we can assume that X, ,
converges to a generalized minimal surface in the same class, which for convenience we will
denote by 3.

Assuming convergence of the volume (which is, in fact, correct for objects like vari-
folds because of their definition, while it is a property shared by minimizers out of variational
arguments, in any of the classes described thus far) the mass ratio R~ Vol™ (X, N Bg) is
constant in R, and hence by point (d) it is a cone. In the literature, 2. is called a tangent cone
to ¥ at p. Note that we are speaking about a tangent cone: the uniqueness of this object, i.e.,
its independence of the subsequence ry | 0, is a widely open problem, even though several
fundamental result have been proved in the past (see Section 15 below).

Ataregular point p,i.e., a point in a neighborhood of which the generalized minimal
surface ¥ is smooth, the tangent cone . is, of course, unique and it is given by the tangent
space to X at p (counted with the appropriate multiplicity, depending upon the chosen vari-
ational framework), or half of the tangent space if p is a boundary point. A later section will
examine under which assumption the latter conclusion is correct.

At any rate, even in the possible presence of singularities, we have gained a great
deal of new information about X, compared to X: 3. is a “global minimal surface” (it has
no boundary if p is in the interior, or its boundary is affine if p € dX¥) and, moreover, it is
conical. In particular, its spherical cross-section carries all the information about X, even
when X, is singular: at all effects, ¥, must be less complex than X, i.e., ¥, has “lost one
dimension.”

4. INVARIANT SPACES AND STRATA

For simplicity, in what follows we will focus on tangent cones X, at interior points
p, even though a variant of the following discussion applies to boundary tangent cones as
well. Since p is not a boundary point, 2. has no boundary. Moreover, two simple corollaries
of the monotonicity formula are that:

e O(X.,0) > O(Z,, q) forevery ¢,

« andif the quality holds at some g # 0, then X, “splits off a line,” i.e., it is invariant
under translations in the direction g.

The latter property is the starting point of Federer in his celebrated “dimension reduction
argument” (cf. [62, 63]), which we will illustrate below. Here we want to present Almgren’s
stratification theory, which is a far-reaching generalization of Federer’s original idea.
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First of all, it follows from the above consideration that the set
V={q€3::0(.q)=0(Z.0)}

is a linear subspace of R™*+"_If V has the same dimension as X, then, in fact, X, coincides
with V' (counted with the correct multiplicity and, in some cases, given the correct orienta-
tion). Otherwise, assuming that k = dim(1V), X, is the product of V' and a minimal cone X
in the orthogonal complement of V1, which is not invariant by any translation. This is a great
deal of information, and in several cases implies severe restrictions upon k. For instance, for
area-minimizing integral currents, it can be easily checked that k < m — 2 in general, while
in the particular case of codimension 1 the celebrated paper of Simons on stable minimal
hypercones (cf. [62]) implies that k < m — 7 (again this will be discussed further below)!
In [11] Almgren coined the term building dimension of the cone X to identify the nonneg-
ative integer k and introduced a stratification of the interior points p € ¥ according to the
maximal building dimension of its tangent cones. In particular, the stratum .7 is the set of
(interior) points p € X such that the building dimension of any tangent cone to X at p is at
most k. Almgren’s fundamental discovery is the following

Theorem 4.1. For a stationary integral varifold X, the stratum % is a closed set of Haus-
dorff dimension at most k.

Almgren’s approach is very general and can be applied to a variety of different con-
text. For a framework which is very flexible and covers a wide range of applications, see
[123]. Almost four decades after the work of Almgren, groundbreaking ideas allowed Naber
and Valtorta to improve massively upon Almgren’s original theorem, showing (cf. [93,94])

Theorem 4.2. For a stationary integral varifold %, the stratum % is k-rectifiable, i.e., it
can be covered, up to a set of H*-measure zero, with countably many C" submanifolds of
dimension k.

Theorem 4.2, which was predated by pioneering works of Simon (cf. [1e8,189]) cov-
ering some particular cases (most notably the stratum .%;,_7 for area-minimizing integral
currents, see below for more details), builds upon a new sophisticated version of Reifenberg’s
topological disk theorem combined with a clever use of the remainder in the monotonicity
formula. The ideas are quite general and can be applied to other contexts.

5. INTERIOR ¢-REGULARITY AT MULTIPLICITY 1 POINTS

Following the above terminology, two things are obvious: the stratum .#7, coincides
with the whole support of the m-dimensional generalized minimal surface and the stratum
%m—1 consists necessarily of singular points. A point p € ., \ -¥;,—1 is clearly a good
candidate for being a regular point, since we know that at least one tangent cone to X at p is,
in fact, a plane (counted with its multiplicity). However, a famous theorem by Federer shows
that the existence of a “flat tangent” does not guarantee the regularity of the point. Indeed,
based on a classical theorem of Wirtinger in Kéhler geometry, Federer proved (cf. [62])
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Theorem 5.1. Any holomoprhic subvariety ¥ of complex dimension k in C" induces an
area-minimizing integral current of dimension 2k in R?".

It can be readily checked that the holomorphic curve
T={2=w’:(z,w) e C?} (5.1

gives then an example of an area-minimizing integral current of dimension 2 in R* for which
0 € .2\ ! is a singular point. One crucial fact is, however, that the flat tangent at 0
is a 2-dimensional plane (i.e., the complex line {z = 0}) but counted with multiplicity 2.
A celebrated theorem of Allard (cf. [4]), extensively used in the literature, shows that the
naive expectation “flat tangent cone <= regular point” is indeed correct if the flat tangent
cone has multiplicity 1.

Theorem 5.2. If a stationary integral varifold % is sufficiently close in By, (p) to a plane
(counted with multiplicity 1) in the weak topology, then in B, (p) it is a smooth graph over
that plane. Moreover, at any interior point p where the density of X is 1, such a plane always

exists for a sufficiently small r.

Among the various objects examined in this note, there are three situations where
it is relatively simple to see a priori that our generalized minimal surface ¥ will not “pick
higher multiplicity” at flat points:

(a) X is a portion of the boundary of some Caccioppoli set;

(b) X is a solution of the Plateau problem in one of the set-theoretic senses desc-
ribed in Section 2.2;

(c) X is an area-minimizing current mod 2 or an area-minimizing current mod 3.

In fact, Theorem 5.2 was realized independently by De Giorgi and Reifenberg, in [32] and
[97,98], respectively in the particular cases of (a) and (b) (this is literally correct for De Giorgi,
while in reality Reifenberg in [97,98] dealt with the only set-theoretic solutions of the Plateau
problem known at his time, which were those he himself introduced in [96]; it must also be
noticed that De Giorgi’s monograph appeared three years before Reifenberg’s paper, but it
was probably not yet widely known when Reifenberg wrote his papers [97,98]). The two pio-
neering approaches are rather different, but they both rely on the fact that the “linearization”
of a minimal surface, understood as a graph over his tangent plane, is harmonic (in fact,
it would be more correct to say that the linearization of the minimal surface equation is the
Laplace equation, or that, at the level of the energies, the Dirichlet energy is the second order
Taylor expansion of the area functional).

Reifenberg used harmonic competitors to estimate how much an area-minimizing
surface deviates from being conical if it is close to a plane, and derived his famous “epiperi-
metric inequality,” which can be thought as a quantitative improvement of the cone-compa-
rison outlined above to prove the monotonicity formula. De Giorgi used a linearization
technique which has a more PDE flavor, and which was generalized afterwards by Almgren
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in any codimension and for much more general energy functionals, cf. [7]. Both approaches
exploit in a substantial way the minimizing property of the surfaces in question. Allard’s
proof of Theorem 5.2, while still based on the intuition that harmonic functions provide
a good approximation for minimal graphs, deviates drastically from both of them, having
to deal with stationary objects. But ultimately it is fair to say that Allard’s approach bor-
rows much more substantially from the works of De Giorgi and Almgren, than from that of
Reifenberg.

It is worth spending some words on why all the approaches mentioned above for the
e-regularity theory fail at the origin in the example (5.1): no matter how small is the scale
that we look at, it is not possible to approximate efficiently (5.1) around the origin with the
graph of a single-valued function. Of course, before knowing Theorem 5.2 we also do not
know that, under the corresponding assumptions, a generalized surface is graphical over the
approximating plane: however, a crucial point in Allard’s proof of Theorem 5.2 is that, before
proving any regularity, he was able to produce a graphical approximation which covers most
of the support of the generalized minimal surface. In contrast, no matter how small the r is,
a single-valued graph will cover no more than half of ¥ N B, (p) when X is given by (5.1).

The assumption on the multiplicity of the varifold severely limits the effectiveness
of Theorem 5.2 in bounding the size of the singular set for stationary integral varifolds. In
fact, it would be natural to expect that singular points with a flat tangent cone form anyway a
set of relatively modest size: according to the known examples, its dimension is likely m — 2.
The latter is less than the dimension of .#7,—1 and so one could reasonably conjecture that
the singular set of a stationary integral varifold has dimension at most m — 1. On the other
hand, so far the best that we can conclude is still a corollary of Theorem 5.2 noted by Allard
in [4] almost 50 years ago.

Corollary 5.3. Let X be a stationary m-dimensional varifold in U C R™ 1", Then the sin-
gular set of X is a closed subset which has empty (relative) interior.

6. BOUNDARY ¢-REGULARITY AT MULTIPLICITY % POINTS

In his second groundbreaking work [5], Allard proved a statement parallel to Theo-
rem 5.2 at boundary points. The following is an informal description of his main “boundary
regularity” theorem.

Theorem 6.1. Assume X is an m-dimensional integral varifold in some open set U C R™*",
which is stationary for variations which keep fixed a smooth (m — 1)-dimensional subman-
ifold T'. Then the following conclusions hold:

. 1
(@) If p € T belongs to the support of the varifold, then ©(p, X) > 5.

(b) If in By, (p) the varifold is sufficiently close, in the weak topology, to a single
copy of half of an m-dimensional plane m, then in B, (p) it is a C' graph over

a suitable portion of 7.
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©) IfO(p,X) = % then the assumption of (b) (and hence the corresponding con-
clusion) holds for a sufficiently small r.

For this boundary version as well, the overall intuition is that V is, in first approxi-
mation, very well approximated by the graph of a (single-valued) harmonic function.

While in the rest of this note I will touch upon interior regularity results for many
different notions of generalized minimal surfaces, concerning boundary regularity [ will only
focus on the case of area-minimizing integral currents. This is also due to the fact that there
are not many other cases studied in the literature. Aside from Allard’s general theorem (i.e.,
Theorem 6.1 stated above), the author is only aware of:

* the work [8e] (cf. also [91]), which contains a conjectural list of boundary tangent
cones for set-theoretic 2-dimensional solutions of the Plateau problem;

¢ the recent work of David [26], which, for 2-dimensional sliding minimizers, gener-
alizes the conclusion of Theorem 6.1 to the union of two half-planes, and possible
additional transverse cones as in the classical theorem of Taylor in the interior (cf.
Theorem 8.1);

e an argument by White which shows how to gain curvature estimates for stable
minimal hypercurrents at the boundary, under some convexity assumption (cf.
[45, SECTION 6.4]).

7. INTERIOR REGULARITY THEORY: MINIMIZING INTEGRAL

HYPERCURRENTS

Even though Allard’s Theorem 5.2 needs the multiplicity 1 assumption, the latter
might be dropped in the case of integral area-minimizing currents of codimension 1 (which
for simplicity we will call hypercurrents from now on). The key point is that area-minimizing
integral hypercurrents X can be locally decomposed into the sum of area-minimizing bound-
aries of Caccioppoli sets (this is a consequence of the Coarea formula, see, for instance,
[1e4]). If in B,, (p) the original current X is close to a multiple Q of a hyperplane 7, each
of these boundaries is then close to a multiplicity 1 copy of . We can then apply Allard’s
theorem to prove that each of them is a C! graph in B, (p), obtaining what can be called (cf.
for instance [102]) a “sheeting theorem” for X N B, (p). However, each of these sheets must
be ordered (for minimizing reasons they cannot cross) and they must touch at the point p:
the maximum principle (each of these graphs is a solution of the minimal surface equation)
then implies that they collapse all into a single smooth surface counted with the appropriate
multiplicity, which must be Q.

This argument rules out that an example like (5.1) could exist for integral area-
minimizing hypercurrents. We are therefore in the luckiest of situations where we can infer
that a single flat tangent cone at p is indeed a necessary and sufficient condition for regularity
at p. If we introduce the notation Sing; (X) for the interior singularities of ¥, when X is an
m-dimensional area-minimizing integral current in R™*! (or, more generally, in a complete
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smooth Riemannian manifold of dimension m + 1), we infer Sing; (X) C .%},—1. Consider,
however, that the existence of a point p € .%},—1 \ %u—2 implies the existence of a singular
1-dimensional area-minimizing cone in R2, and it is rather elementary to see that the latter
cones do not exist, namely that Sing; (¥) C .%° m=2 Of course, we can now wonder whether
for some X the set.%7,—2 \ -¥m—3 is nonempty, which is equivalent to the existence of an area-
minimizing 2-dimensional cone in R? which is not a plane (i.e., it is singular at the origin).
In [63] Federer introduced his well-known reduction argument, which could be formalized
as follows.

Theorem 7.1. Let m be the smallest integer with the property that there is an m-dimensional
area-minimizing integral current Xq in R™ 1 which is a nonplanar cone with vertex at the
origin. Then X is everywhere regular except at the origin.

It was also realized by De Giorgi in [33] that the well-known Bernstein problem, i.e.,
whether a complete minimal graph over R” ! must be affine, would also be implied by the
nonexistence of nonplanar area-minimizing oriented hypercones in R 1. After progress by
Fleming, De Giorgi, and Almgren (cf. [8, 33, 65]), Simons in [112] proved his famous result
about stable minimal hypercones, namely

Theorem 7.2. Ifm <6and Ty C 0By C R™*! is a smooth connected submanifold of dimen-
sion m — 1, such that the cone ¥ with base Ty and vertex 0 is a stable varifold, then Ty is
a great sphere (i.e., X is planar). On the other hand,

Syi= i+ x2+xd+x2=x2+x2+x3+x3) CRS (7.1)
is a nonplanar, oriented, stable singular cone of dimension 7.

Since area-minimizing currents are automatically stable varifolds, in combination
with Federer’s reduction argument, the first part of Theorem 7.2 implies that
Sing; (¥) C ¥»—7 for any m-dimensional area-minimizing integral hypercurrents. In par-
ticular, for m < 6, X is a regular hypersurface (in the interior), while, for m > 7, Sing; (%)
has dimension at most m — 7. In fact, by Theorem 4.2 we can conclude that Sing; (%) is
(m — 7)-rectifiable. The latter conclusion was first reached by Simon in his pioneering work
[1e8]. However, compared to Simon’s techniques, the approach by Naber and Valtorta (cf.
[94]) allows proving the stronger conclusion, namely

Theorem 7.3. Let X be an m-dimensional area-minimizing integral current in R™*!. Then
Sing; (X) has locally finite Hausdorff (m — 7)-dimensional measure, and it is (m — 7)-
rectifiable.

In their famous work [17], Bombieri, De Giorgi, and Giusti completed the solution
of the Bernstein problem showing that indeed the Simons cone (7.1) is an area-minimizing
integral current of dimension 7, and that in addition there is a nonaffine global solution
u : R® — R of the minimal surface equation.
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8. INTERIOR REGULARITY THEORY: MINIMAL SETS

As already mentioned, the phenomenon of “picking higher multiplicity at flat
points” is absent in the solutions of the Plateau problem that fall in the “set-theoretic”
approach. This was pioneered by Reifenberg in [97,98], who proved that his m-dimensional
solutions of the Plateau problem are always real analytic except for a closed #™-null set.
A much more general statement, valid in a variety of contexts and also for a vast class of
elliptic energies was proved by Almgren in [9].

Following the Remarks of Section 4, we conclude that the singular set of an m-
dimensional set-theoretic solution of the Plateau’s problem is necessarily contained in
#™=1 While Theorem 4.2 implies that .”*~! is rectifiable, much more can actually be
said in the codimension 1 case. First of all, for 2-dimensional minimizing sets in R* Taylor
in [117] proved the following complete structure theorem.

Theorem 8.1. Let 3 be a 2-dimensional set which minimizes the area in the sense of Alm-
gren. Then:

@) A () \ H(2) is the (locally finite) union of C%* arcs and for each
p € S1(X) there is a neighborhood U of p in which X is the union of three
classical minimal surfaces meeting in 1 (X) N U at 120 degrees;

(b) A(X) consists of isolated points and for each p € #y(X) there is a neighbor-
hood U in which X is diffeomorphic to the cone over a regular tetrahedron.

The same conclusion as in part (a) of the above remarkable theorem is, in fact, valid
for the stratum .%;, 1 \ .%n_2 of m-dimensional area-minimizing sets in R”*1 and can be
inferred from Simon’s theory on the uniqueness of multiplicity 1 cylindrical cones, cf. [186].
Part (b) can also be generalized to a similar statement for m-dimensional area-minimizing
sets of R™*1 implying in particular that . \ .%,_3 is an (m — 2)-dimensional subman-
ifold. This generalization was announced by White in [12e] and a proof has been recently
published by Colombo, Edelen, and Spolaor in [23], as a corollary of a more general result.
The main Theorem in [23] also implies that the stratum .#,_3 has finite J m=3 measure.

9. INTERIOR REGULARITY THEORY: STABLE HYPERSURFACES AND

STABLE HYPERVARIFOLDS

In [103] Schoen, Simon, and Yau realized that Simons’ theorem on stable minimal
hypercones could be recast in a suitable a priori estimate for the curvature of stable minimal
surfaces. More precisely, combining Simons’ inequality with techniques from elliptic PDEs
they were able to prove the following groundbreaking theorem.

Theorem 9.1. Let £ be a smooth minimal hypersurface in U C R™ %! with m < 5. Then
forevery V. CC U there is a constant C which depends on U,V , and H™(X) such that the
Hilbert—Schmidt norm of the second fundamental form A of ¥ is bounded by C at every
pointof X NV.
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In their subsequent work [162], Schoen and Simon were able to cover the case m = 6
of the above statement and also to give a “GMT regularity theory” counterpart of the Schoen—
Simon—Yau estimates. More precisely, they were able to prove

Theorem 9.2. Assume X is a stable m-dimensional varifold in U C R™ 1 with the property
that' J¢™~2(Sing; (X)) < oc. Then Sing;(X) C Fm—7.

It has been recently shown by Simon, see [11e, 111], that the subsequent conclu-
sion that Sing; (X) is (m — 7)-rectifiable is optimal, in the sense that there are stable m-
dimensional varifolds in m + 1 smooth Riemannian manifolds whose singular sets are
closed sets of arbitrary Hausdorff dimension o« < m — 7. On the other hand, the assump-
tion #™~2(Sing; (X)) = 0 is not at all optimal. Based on the examples known thus far, one
could expect that for a general stable hypervarifold the top stratum .%,,_; \ .%,—5 isa C 1%
(m — 1)-dimensional submanifold and that if the latter is empty, then Sing; (¥) is contained
in .%,—7. A notable theorem in this direction, in particular covering the second conclusion,
has been achieved by Wickramasekera in his deep regularity theory of stable hypervarifolds.
The main conclusion of his paper [124] is the following

Theorem 9.3. Assume X is a stable m-dimensional varifold in a connected set U C R 1,
Then:

e either Sing;(X) contains a point p in a neighborhood of which T consists
of a finite number of smooth minimal hypersurfaces meeting at a common
CY® (m — 1)-dimensional boundary (which in particular is a nonempty subset

of Sm—-1\ Sm—2),
* or otherwise Sing; (X) C S p—7.

While the latter is a remarkable achievement, for general stable hypervarifolds the
best unconditional regularity result is still that which can be concluded from the sole condi-
tion of stationarity through Allard’s work, namely Corollary 5.3.

10. INTERIOR REGULARITY THEORY: MINIMIZING INTEGRAL

CURRENTS IN HIGHER CODIMENSION

As already witnessed in Example (5.1), the regularity theory for area-minimizing
integral currents in codimension larger than 1 differs dramatically from the regularity theory
for hypercurrents, since there are singular points which belong to .%,;, \ -%,—1, and which
from now on we will call “flat singular points.” The major problem of how to give a suitable
dimension bound for “flat singular points” was finally conquered by Almgren in a titanic
effort, which resulted in a famous 1728 page preprint in the early 1980s (cf. [1e]), published

1 In their paper, Schoen and Simon assume the stronger property that J"*~2(Sing; (X)) = 0,
but it is well known by the experts that their arguments apply if the Hausdorff measure is, in
fact, finite.
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pusthumously thanks to the editorial work of Scheffer and Taylor in [11]. Almgren’s mono-
graph achieves the optimal dimension bound for area-minimizing integral currents in any
dimension and codimension.

Theorem 10.1. Let ¥ be an area-minimizing integral current of dimension m in R™1",
Then the Hausdorff dimension of the set of interior flat singular points is at most m — 2,
while the stratum Sm—» \ Fm—1 is empty. In particular, dimg (Sing; (X)) <m — 2.

Almgren invented several tools to prove Theorem 10.1. In particular,

(i) he introduced an entire new concept of “multivalued functions minimizing
the Dirichlet energy” in order to find the “appropriate linearization” of area-
minimizing integral currents at flat singular points, and he developed a subse-
quent existence and regularity theory for these new objects;

(ii) he introduced several flexible techniques to approximate currents with Lipschitz
multivalued graphs;

(iii) he developed a very intricate regularization technique to find a sufficiently
smooth “central sheet” at possible branching singularities (the so-called “center
manifold”);

(iv) he discovered a new monotonicity formula for a harmonic function (the mono-
tonicity of the “frequency”) which has meanwhile been used in a variety of
different contexts in elliptic and parabolic partial differential equations (see,
e.g., [67,70,84]).

Almgren’s theory has been revisited by the author and Emanuele Spadaro in the series of
works [47-51]. Besides making the proof of Theorem 10.1 shorter, these works improve upon
Almgren’s monograph in several aspects, and, moreover, they have been the starting point
of several further developments, which will be detailed in the next sections

Shortly after Almgren completed his 3-volume preprint, White proved that in the
case of 2-dimensional area-minimizing currents the stratum .%{ consists, in fact, of isolated
points, cf. [119] (this is indeed a corollary of a more precise theorem which shows the unique-
ness of tangent cones in that particular case and which will be discussed further in Section 15.
The program of understanding the singularities of 2-dimensional area-minimizing currents
was then completed by Chang in [2e].

Theorem 10.2. Let X be a 2-dimensional area-minimizing current in R>*™. Then Sing; ()
consists of isolated points. Moreover, for each p € Sing; (X) there is a neighborhood U in
which % can be decomposed as the union of a finite number N of branched minimal immersed
disks D; with the following properties:

* each D; is an embedding, except for the point p;

* D; N Dj is either the empty set or consists only of the point p.
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However, the proof given in [2e] is, strictly speaking, incomplete, as Chang needs
the existence of a suitable generalization of Almgren’s center manifold to a “branched ver-
sion.” For the latter, he just gives a 4-page sketch (cf. the appendix of [2e]), invoking suitable
modifications of Almgren’s statements (it must be noted that the construction of the center
manifold occupies more than half of Almgren’s monograph [11]). Based on the works [47-51],
the author, Spadaro, and Luca Spolaor gave a complete independent proof of the existence
of a branched center manifold in [52]. We also developed a suitable more general counter-
part of Chang’s theory in the papers [53-55], proving in particular the same regularity result
for spherical cross-sections of area-minimizing 3-dimensional cones and for semicalibrated
2-dimensional currents (previous theorems in [12,13] proved some cases of particular inter-
est, based on the works of Riviere and Tian, see [99-101]). Almgren’s dimension bound in
Theorem 10.1 has also been extended to semicalibrated currents by Spolaor in [113].

11. INTERIOR REGULARITY THEORY: MINIMIZING CURRENTS MOD p

The regularity theory for area-minimizing currents mod p started around the same
time as the regularity theory for integral currents. As a consequence of Almgren’s gener-
alization of De Giorgi’s ¢ regularity theorem, the cases p = 2, 3 were already rather well
understood in the 1960s. In particular, the absence of flat singular points allowed inferring
the following theorem (the case p = 2 is due to Federer, cf. his pioneering work on the
reduction argument [63]).

Theorem 11.1. If ¥ is an m-dimensional area-minimizing current mod 2 in R then
Sing; (X) C Fm—2. If T is an m-dimensional area-minimizing current mod 3, then

Sing; (X)) C Su—1-

The case p = 2 in codimension 1 allows even more restrictive results (the same regu-
larity as for integral area-minimizing currents holds and, in fact, locally any area-minimizing
integral hypercurrent mod 2 is the boundary of a Caccioppoli set), while in higher codimen-
sion there are indeed area-minimizing 2-dimensional currents mod 2 with point singularities.

For p = 3, the union of three half-planes in R3 meeting at a common line at 120
degrees gives an obvious example for which .7,—1 # 0. The beautiful result of Taylor [116]
gave a complete description of the interior singular set for area-minimizing 2-dimensional
currents mod 3 in R3: locally the singular set is always diffeomorphic to the above example.
The subsequent work of Simon [186] on the uniqueness of cylindrical tangent cones allowed
giving a suitable generalization of Taylor’s result in any dimension and codimension. The
final outcome is the following

Theorem 11.2. If ¥ is an m-dimensional area-minimizing current mod 3 in R™ " then
Fm=1 \ S m—2 is an (m — 1)-dimensional submanifold and at every p € Sjp—1 \ S m—2 there
is a neighborhood U in which X consists of 3 smooth minimal surfaces meeting at S,—1 N U
at 120 degrees. If X is in addition an hypercurrent (i.e., n = 1), then S5 \ S m—3 is an
empty set. In particular, if m = 2 and n = 1, then Sing;(X) consists of pairwise disjoint
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closed simple curves and pairwise disjoint simple arcs with endpoints lying in the support
of the boundary of X.

In order to progress beyond Corollary 5.3 for higher moduli, it is necessary to either
rule out flat singular points or bound their dimension. In the special case of mod 4 hypercur-
rents, White in [118] discovered a beautiful fact which allowed him to derive the following
structural result

Theorem 11.3. If ¥ is an m-dimensional area-minimizing current mod 4 in R™%1, then it
can be locally decomposed, away from its boundary, into the union of two m-dimensional
area-minimizing currents mod 2.

He also showed a converse to Theorem 11.3. In particular, his results imply the
existence of flat singular points even for hypercurrents mod 2k. More precisely, consider a
function u : R? D By — R which solves the minimal surface equation and, after applying a
suitable translation and rotation, assume that u(0) = 0, Vu(0) = 0, and D?u(0) # 0. Since
Au(0) = 0, it follows that the zero set of u in a neighborhood of 0 consists of 2 arcs crossing
orthogonally in 0. We can thus assume that the disk B, (0) C R? is subdivided by {u = 0}
into 4 sectors S, S2, S3, S4. We then consider in C, := B, (0) x R C R3 the union of the four
sectors S; x {0} and of the four portions G; of the graph of u lying over the respective sector
S;. We give to S; opposite alternating orientations and sum them to construct an integral
current S in C,(0). Clearly, dS is formed by the four arcs which describe {u = 0} x {0},
suitably oriented and counted with multiplicity 2. In particular, S is a cycle mod 2. We then
perform an analogous operation with the 4 portions G; of the graph of u and construct a
corresponding integral current 7. By choosing the orientations correctly, we can achieve
that 07 = 0. Therefore the current ¥ = T + § is a cycle mod 4 and, according to the
results in [118], it is area-minimizing (as a cycle mod 4). In particular, O is a flat singular
point for X.

This phenomenon is typical of even moduli, and indeed in his subsequent work
[121] White proved that area-minimizing hypercurrents mod 2k + 1 cannot have singular flat
points.

Theorem 11.4. If X is an m-dimensional area-minimizing current mod p in R™*! and p
is odd, then Sing; (X)) C Fpp—1.

In the papers [41, 42], the author, Jonas Hirsch, Andrea Marchese, and Salvatore
Stuvard developed a theory to bound the dimension of flat singular points of a general area-
minimizing current ¥ mod p (i.e., in any dimension and codimension), which implies that
the Hausdorff dimension of the set of flat singular points of ¥ is at most m — 1.

Theorem 11.5. If ¥ is an m-dimensional area-minimizing current mod p in R™*" then
dimg (Sing; (X)) <m — 1.

While the latter theorem is a considerable improvement compared to what was
known before (aside from the cases covered by Theorems 11.1, 11.3, and 11.4, in all others
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the best known result was that the singular set is meager, thanks to Corollary 5.3). Indeed,
the known examples would suggest that the set of flat singular points of any area-minimizing
current mod p is at most m — 2. The work [4e] and the forthcoming one [38], by the author,
Hirsch, Marchese, Spolaor, and Stuvard, give a first step towards the latter picture in codi-
mension 1.

Theorem 11.6. Let X be an m-dimensional area-minimizing current mod p in R™1. Then:

@) o1 \ Sz is a CY* submanifold and for every q € Fpm_1 \ Fm_2 there is
a neighborhood U in which X consists of p minimal hypersurface meeting at
ym—l n U,’

(b) At every flat singular point there is a unique tangent cone, which is a flat plane
with multiplicity % (in particular, p must be even).

In fact, after the appearance of [4e] Minder and Wickramasekera (cf. [9e]) pointed
out to the authors that it is possible to derive Theorem 11.6 directly from the theory developed
in [124], starting from one observation in [48] concerning tangent cones in the top stratum
Im-1 \ Fm—2 and the verification of Simon’s no hole condition. In [39], Theorem 11.6 will
be further used to confirm the conjectural picture in codimension 1, namely to prove

Theorem 11.7. Let X be an m-dimensional area-minimizing current mod p in R™ 1. Then
Sing; (X) N .7, is empty for p odd (as implied by Theorem 11.4), while Sing; (X) N .7, has
dimension at most m — 2 for even p.

12, BOUNDARY REGULARITY THEORY: MINIMIZING INTEGRAL

HYPERCURRENTS

The first boundary regularity theorem for area-minimizing integral currents X was
proved by Allard in his PhD thesis [3] in codimension 1. More precisely, we have

Theorem 12.1. Assume X is an area-minimizing integral current of dimension m in R™ %1
and assume that

(a) 9% is a smooth (more precisely C?) (m — 1)-dimensional surface T with mul-
tiplicity 1;
(b) there is a uniformly convex smooth (more precisely C?) bounded open set U

such that T C 9U.

Then X is smooth in a neighborhood of T'; more precisely, there is an open set V DO T such
that V N X is a smooth minimal hypersurface (with boundary) and its boundary (in V) is
precisely T (in the classical sense of differential topology).

In fact, the proof in [3] contains an e-regularity result which is the precursor of
Theorem 6.1, while assumption (a) is combined with a suitable classification of boundary
tangent cones to prove that any point p € I' has density % In order to remove the “convex
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barrier” of assumption (a), one needs to handle situations in which p might be a “2-sided”
boundary point.

To illustrate the latter point, consider a 2-dimensional plane V in R and the two
circles y; = dB1(0) NV and y, = dB,(0) N V. Give to y; and y, the “same orientation,” so
that they bound the disks D1 = B1(0) N V and D, = B,(0) N V, taken with the same orien-
tation where they overlap. It can be easily shown that, if ' = y; + y,,then ¥ = D; + D is
the unique area-minimizing integral current bounded by I'. Moreover, X can be described as
the sum of the corona D, \ D1, counted with multiplicity 1, and the disk D, counted with
multiplicity 2. A point p € y; is what can be naturally called a “2-sided” boundary point,
and note that its density is % (for a more rigorous definition, cf. [35]). The regularity theory
at such points is rather subtle, and (in codimension 1) it was handled in the famous work [69]
by Hardt and Simon.

Theorem 12.2. Let T be a smooth oriented closed (m — 1)-dimensional submanifold of
R™*1 and let T be an area-minimizing integral current whose boundary (in the sense of
currents) is given by I' counted with multiplicity 1. Then every point p € X is regular, namely
one of the following two mutually exclusive possibilities holds:

(i) eitherthe density of X at p is % and hence the conclusion of Theorem 6.1 applies
in a neighborhood U of p;

(ii) orthedensityof X at pisk + % for some positive integer k; in this case there is
a neighborhood U of p and a minimal hypersurface A of U without boundary
such that:

e A contains T';
o T subdivides A in two regions A+ and A~;

e X in U is given by AT counted with multiplicity k + 1 and A~
counted with multiplicity k.

Among the many ideas introduced in [69], one has been highly influential in several
other problems in minimal surface theory, and it is the so-called Hardt—Simon inequality. In
a nutshell, the Hardt—Simon inequality makes clever use of the remainder in the monotonic-
ity formula (namely the precise expression for the quantity % W) in order to infer
nontrivial information on the graphical approximation of X at small scales.

While we have stated Theorems 12.1 and 12.2 as “global theorems,” suitable local
versions of them are also valid, and, in fact, the very nature of the main arguments is com-

pletely local.
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13. BOUNDARY REGULARITY THEORY: MINIMIZING INTEGRAL

CURRENTS WITH SMOOTH BOUNDARIES OF MULTIPLICITY 1

In his fundamental boundary regularity paper [5], Allard noticed that Theorem 6.1
can be used to generalize the conclusion of Theorem 12.1 to all codimensions.

Theorem 13.1. Let ' be a smooth (m — 1)-dimensional closed oriented submanifold of
R™*" and let U be a bounded smooth uniformly convex set such that ' C dU. Then any area-
minimizing integral current X whose boundary is given by I' (counted with multiplicity 1)

is smooth in a neighborhood of T, in the sense of the conclusion of Theorem 12.1.

Again, a local version of the above theorem holds as well; in fact, in order to con-
clude that a boundary point p is regular and one-sided in the sense of Theorem 12.2(i),
it suffices to find a uniformly convex “barrier” which touches I' at p and so that ¥ lies
(locally) on one side of it, cf. [68]. A simple argument furnishes such a barrier for any smooth
I' ¢ R™*": for instance, one could consider the smallest closed ball containing I". It then
follows that under the mere assumption that I" is sufficiently smooth, an area-minimizing
current bounding I' (taken with multiplicity 1) has always at least one boundary regular
point.

Up until recently nothing more was known, except that in codimension higher than 1
singular boundary points are certainly possible. A simple example is given by the union
of a smooth simple curve y; C {x; = x = 0} C R* containing the origin and a smooth
simple curve y» C {x3 = x4 = 0} C R* which does not contain the origin. This union
bounds an area-minimizing 2-dimensional integral current for which O is a boundary singular
point. Moreover, since in a general Riemannian manifold the barrier argument outlined in the
previous paragraph is not available, even in the simplest case of a smooth simple closed curve
in a closed smooth Riemannian 4-manifold M, the results outlined so far could not exclude
the possibility that all boundary points of an area-minimizing current ¥ C M bounding I"
are singular.

As in the case of Theorem 12.2, the main difficulty in removing the convex barrier
assumption is the possibility that boundary points have density larger than % And as in
the case of Theorem 10.1, the most problematic issue is that, unfortunately, the existence
of a flat tangent cone at the boundary does not guarantee regularity: flat boundary singular
points exist as soon as the codimension is larger than 1, cf. [35]. In [35], the author, Guido De
Philippis, Hirsch, and Annalisa Massaccesi were able to develop a suitable “Almgren-type”
regularity theory for boundary points, building on a previous important step of Hirsch [73].
In particular, we proved the following

Theorem 13.2. Let ' be a smooth closed oriented (m — 1)-dimensional submanifold of
R™*7" and let ¥ be an area-minimizing integral current whose boundary is given by T taken
with multiplicity 1. Then the set of boundary regular points, understood as points where one
of the two alternatives (i) and (ii) of Theorem 12.2 hold, is a dense relatively open subset
of T.
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While Theorem 13.2 might look very far from optimal, it turns out that a naive
counterpart of the bound of the dimension of the interior singular set is, in fact, false. In [35]
we prove also the following

Theorem 13.3. There is a smooth 1-dimensional embedded submanifold of R* which
bounds an area-minimizing current ¥ of R* whose boundary singular set has Hausdorff

dimension 1.

Theorem 13.3 leaves open the possibility that at least the set of boundary singular
points has zero (m — 1)-dimensional Hausdorff measure and that it has dimension m — 2 if
the boundary is real analytic. We also caution the reader that a less restrictive definition of
a boundary regular point might restrict the size of boundary singularities even in the C*°
case. For a more detailed discussion of all these possibilities we refer the reader to Section 16.
However, that boundary regularity is subtle is also witnessed by the following example of
the author, De Philippis, and Hirsch (cf. [34]).

Theorem 13.4. There is a smooth closed 4-dimensional Riemannian manifold M and a
smooth simple closed curve I' C M which bounds a unique area-minimizing 2-dimensional
current X which is smooth in M \ T and whose first homology group is infinite-dimensional.
In fact, ¥ is smooth except at a single point p € T

14. BOUNDARY REGULARITY THEORY: MINIMIZING INTEGRAL

CURRENTS WITH SMOOTH BOUNDARIES OF HIGHER MULTIPLICITY

In the previous sections we examined the boundary regularity of area-minimizing
integral currents under the assumption that the multiplicity of the boundary is 1. A rather
intriguing and widely open question, already raised by Allard in his PhD thesis [3], is what
happens when the multiplicity is an integer larger than 1 (the fact that it must be an integer
is, of course, a consequence of the integrality assumption, but we also remind the reader that
when T is integer rectifiable and 07 has finite mass, a7 is necessarily integer rectifiable, cf.
[62]).

The problem raised by Allard in [3] is highlighted again by White in [1]. In the
same reference, White observes also that, thanks to the decomposition theorem for area-
minimizing hypercurrents, if ¥ is an m-dimensional area-minimizing integral current in
R™*+1 whose boundary is a smooth submanifold I' counted with multiplicity O > 1, then
¥ can be decomposed into the sum of Q area-minimizing integral currents whose bound-
ary is I' counted with multiplicity 1 also. In particular, we are in the position of applying
the Hardt—Simon Theorem 12.2 to each element of the decomposition. While this is the
same “codimension 1 phenomenon” that rules out flat singular points in the interior for area-
minimizing integral hypercurrents, we pause a moment to make one important remark. It
is well known that there are smooth (m — 1)-dimensional oriented closed submanifolds of
R™*+1 that bound more than one area-minimizing integral current. This is already the case
for smooth simple closed curves I" in 9B; C R3. Consider in particular one such I' and let 34
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and X, be two area-minimizing integral 2-dimensional currents which bound I' (with multi-
plicity 1). Thanks to the above decomposition theorem, ¥ = ¥; + 3 is an area-minimizing
current which bounds a double copy of I'2. By the interior regularity theory, ¥ and X, have
no interior point in common. Therefore, by the Hopf boundary lemma, there is no boundary
point at I" in which ¥, and ¥, have the same tangent: ¥, and X, meet at every point of I"
transversally.

In light of the above example, it seems sensible to give the following definition of a
boundary regular point.

Definition 14.1. Assume that I' C R is a smooth oriented (m — 1)-dimensional sub-
manifold and that Q is a positive integer. Let ¥ be an area-minimizing integral current in
R™*" whose boundary is given by Q copies of I'. Then p € T is a regular boundary point
if one of the following two alternatives occur in some neighborhood U of p:

(i) There are N positive integers k; with ), k; = Q and N smooth minimal sur-
faces A; in U with boundary I" such that X N U = ) ; k; A;, and each distinct
pair A; and A; meet transversally at p;

(ii) There is a minimal surface A in U without boundary, which contains I': the
latter subdivides A in two regions AT and A~ and

SNU =(Q +k)AT + QA™
for some positive integer k.

In particular, the discussion above reduces the following statement to a mere corol-
lary of Theorem 12.2:

Corollary 14.2. Let T be a smooth oriented closed (m — 1)-dimensional submanifold of
R™*1 0O be a positive integer, and ¥ an area-minimizing integral current with X = QT.
Then every boundary point p € T is regular in the sense of Definition 14.1.

The boundary regularity theory for O > 1 and in codimension larger than 1 is
widely open. A very first preliminary result, which is a counterpart of Theorem 12.1 for
2-dimensional area-minimizing currents, has been proved very recently by the author, Ste-
fano Nardulli, and Simone Steinbriichel in [43,44], building in part upon the theory developed
in [35] and the paper [74].

Theorem 14.3. Consider a smooth 1-dimensional closed submanifold T of R*™" and
assume that there is a bounded smooth uniformly convex open set U such that T' C dU.

2 It is one of the most beautiful discoveries of geometric measure theory that this conclu-
sion is in general false in higher codimension. In particular, following the pioneering
work of L. C. Young [125], there are several constructions of smooth simple curves I'
in R* with the following remarkable property. If we let m(T") be the mass of an area-
minimizing 2-dimensional current which bounds one copy of I and m(2T") the mass of
an area-minimizing integral current which bounds two copies of I', then m(2I') < 2m(T).
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Let X be an area-minimizing 2-dimensional integral current such that 0% = QT for some
integer Q. Then every point p € T is a boundary regular point and moreover alternative (i)
in Definition 14.1 holds at every such point.

15. UNIQUENESS OF TANGENT CONES

One major open question in the regularity theory of minimal submanifolds, which
has attracted the attention of a large number of researchers since the dawn of geometric
measure theory, is the uniqueness of tangent cones. This amounts to the question of whether
there is at every point p a unique limit for the rescalings ¥ of the minimal submanifold X.
In some situations the question is intimately connected to the understanding of the regularity
properties of the various strata .%% \ -#%—1. For instance, the pioneering works of Taylor [116,
117] leading to the Theorems 8.1 and 11.2 can be reduced to suitable uniqueness statements
for the relevant tangent cones.

The most striking result in the area is the celebrated theorem of Simon in [185].

Theorem 15.1. Let X be a stationary integral varifold and assume that the spherical cross-
section of one tangent cone % at an interior point p of X is a regular submanifold of 0B
with multiplicity 1. Then X is the unique tangent cone to % at p.

Once again a similar uniqueness theorem is widely open when the multiplicity of the
cross-section is allowed to take multiplicity higher than 1, except for some lucky situations
in which the case of higher multiplicity can be reduced to that of multiplicity 1. Two notable
examples are that of area-minimizing hypercurrents and that of area-minimizing currents
mod 2.

Corollary 15.2. Let ¥ be an area-minimizing m-dimensional integral current in R™1 or
an area-minimizing m-dimensional current mod 2 in R™" and assume that p is an interior
point at which one tangent cone Xy has smooth spherical cross-section. Then X is the
unique tangent cone at p.

Even in the case of multiplicity 1, the uniqueness of tangent cones whose spherical
cross-section is not smooth is a much more subtle issue. Before discussing it, we wish to
introduce a suitable concept which has played a pivotal role in many contexts. Let X be a
stationary varifold which is a cone with smooth cross-section I'g, taken with multiplicity 1.
It is then well known that I'¢ is a minimal submanifold of the sphere dB; . If X is a sequence
of cones converging to X, with cross-section I'x, up to extraction of a subsequence I'y is
the graph of a solution of a suitable linear elliptic PDE over I'y plus higher order terms.
Such solutions are called Jacobi fields in the literature, and they are the higher-dimensional
counterpart of the classical Jacobi fields on geodesics. A Jacobi field u is called “integrable”
if there is a sequence 'y of minimal submanifolds of 9B converging to Iy which generates
u as outlined above. Prior to Theorem 15.1, Allard and Almgren in [6] proved the following
important result:
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Theorem 15.3. Let X be a stationary integral varifold, let p be an interior point and assume
that a tangent cone X to X at p satisfies the following two properties:

(i) The spherical cross-section Ty of X is smooth and is taken with multiplicity 1;

(ii) Every Jacobi field of Ty is integrable.

Then X is the unique tangent cone to % at p and, moreover, the rescalings ? converge

to X with a polynomial rate.

The integrability condition (ii) of Theorem 15.3 has several drawbacks. In order to
verify it, one must know rather explicitly the cross-section I'g. But even in the cases in which
I"o is known and has a rather simple formula, verifying the condition is in general quite hard
(in particular, it requires a classification result for all the solutions of some particular elliptic
PDE). Last but not least, there are examples in which it does not hold, see [2], and in which
the convergence rate of ¥ to Xy is just logarithmic. The powerful approach of Simon to
Theorem 15.1 avoids any discussion of the integrability of the Jacobi vector fields thanks to
his realization that the convergence of ¥ to X can be reduced to an infinite-dimensional
version of a classical result of Lojasiewicz for finite-dimensional gradient flows. The corre-
sponding “Lojasiewicz—Simon inequality” has been widely used to study the convergence of
parabolic PDEs to a unique steady state and the uniqueness of model singularities in other
geometric variational problems.

Coming back to cones whose spherical cross-sections are not smooth, a particu-
larly simple subclass are called “cylindrical tangent cones.” In his notable investigation [106],
Simon has been able to prove a useful generalization of the Allard—Almgren Theorem 15.3.

Theorem 15.4. Let X be a stationary integral varifold, let p be an interior point, and assume
that a tangent cone X to X at p satisfies the following structural properties:

(i) 2o =V x Ag for some minimal cone Ao and some linear subspace V ;
(ii) The spherical cross-section Ty of Ao is smooth and is taken with multiplicity 1;
(iii) Every Jacobi field of Ty is integrable;

(iv) The following “no hole condition” holds for a sufficiently small §(Ty): pro-
vided ? is sufficiently close to X, every Bs(q) with q € By NV contains a
point x of density ©(X, x) larger than ©(XZ, p) — 6.

Then X is the unique tangent cone to ¥ at p and, moreover, the rescalings ? converge

to X with a polynomial rate.

Quite a few of the structural results for singular strata mentioned in the previous
sections depend heavily on the above result (or can be deduced from it). A notable exception
is the uniqueness theorem of Taylor which underlines the second conclusion of Theorem 8.1
(and the higher-dimensional counterpart in [23]). The latter is, in fact, derived through a direct
epiperimetric inequality a la Reifenberg.
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One major drawback of the approaches to Theorems 15.1, 15.3, and 15.4 is that the
underlying PDE arguments rely heavily on the e-regularity result of Allard, namely Theo-
rem 5.2 (or on some other analogous results). For instance, in Theorem 15.1 the multiplicity 1
assumption and the regularity of I'g allow us to conclude that 0B; N @ is a smooth graph
over I'g. On the contrary, the epiperimetric inequality, which is based on exhibiting a suit-
able competitor, can be applied in situations where the cross-section is irregular or taken
with higher multiplicity. On the other hand, its applicability is limited to minimizers. Up
until recently, another obvious objection to a wider plausibility of an epiperimetric inequal-
ity a la Reifenberg was that it immediately implies a polynomial decay rate, which is known
to be false in general cf. [2]. However, the recent paper of Colombo, Spolaor, and Velichkov
[24] shows that Theorem 15.1 can be recovered (and, in fact, generalized to suitable “quasi-
minima”) through a suitable generalization of Reifenberg’s epiperimetric (it must be noted
that the proof of the latter is nonetheless achieved using the Lojasiewicz—Simon inequality).

An important case in which an epiperimetric inequality can be proved and used
effectively to prove uniqueness of tangent cones (while a “PDE-approach” has not been given
yet) is that of 2-dimensional area-minimizing currents at interior points. In particular, White
in [119] proved

Theorem 15.5. Let X be a 2-dimensional area-minimizing integral current in R*>*". Then
the tangent cone to X is unique at every interior point p.

A counterpart to Theorem 15.5 has been shown by Hirsch and Marini in [74] at
smooth boundaries taken with multiplicity 1. However, as noticed in [44], the proof of Hirsch
and Marini can easily be adapated to the case of smooth boundaries with arbitrary multiplic-
ities, thus giving a complete result for 2-dimensional area-minimizing integral currents in
any dimension and codimension.

16. OPEN PROBLEMS

In this section we will collect some open questions. I wish to emphasize that the
selection given here by no means exhausts the interesting open problems in the area, it rather
reflects a personal choice of the author.

16.1. Stationary and stable varifolds

Perhaps the most intriguing question is whether it is possible to improve Corol-
lary 5.3 in any situation which is not the trivial one of 1-dimensional stationary varifolds.
The most modest goal would be to show that the singular set of stationary 2-dimensional
integral varifolds in R3 has zero 2-dimensional Hausdorff measure. In general, there is no
example of singular stationary m-dimensional varifolds (in any codimension) for which the
singular set has dimension larger than m — 1.

In the case of stable varifolds of codimension 1, the deep theory of Wickramasekera
developed in [124] (see also [89] for some further progress) gives one hope that in the future
some final unconditional structural result might be at hand. A coronation of the efforts in the
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area would be a theorem which proves that .%,,_; \ #},—2 is a C1* (m — 1)-dimensional
submanifold, while the set of flat singularities is (m — 2)-rectifiable. The latter statement
seems to be reachable in the very particular case of area-minimizing hypercurrents mod p.

A widely open problem is whether stability allows going beyond Allard’s conclusion
in codimension higher than 1. It is quite baffling that no further regularity information has
been concluded thus far for stable varifolds as soon as the codimension is larger than 1. A par-
ticularly intriguing case would be that of 2-dimensional stable varifolds, already in R*. A first
question in that direction is whether some counterpart of the Schoen—Simon—Yau estimates
and hence a corresponding compactness theorem hold for classical (possibly branched) min-
imal 2-dimensional surfaces in, say, R*. In other words, assume that ¥ is such a sequence in
some bounded open set U C R, that the area of X is uniformly bounded, and that each Iy
is stable. Is it possible to extract a subsequence which is converging (in the varifold sense) to
a classical stable (possibly branched) immersed minimal surface? What if we restrict further
Y and ask that they are embedded except for a finite number of branching singularities?
Note that Theorem 10.2 does imply the desired conclusion if each X4 can be oriented so to
give an area-minimizing integral 2-dimensional current.

16.2. Singularities of area-minimizing integral hypercurrents

Area-minimizing integral currents of dimension m in R™*! are the objects for
which we have the strongest regularity theory. Is it possible to prove more facts about the
structure of the singular set? In particular, is it true that .%;,,_7 \ .%),—g is a C "% submanifold,
or rather are there examples (as the recent stable minimal hypersurfaces in some Rieman-
nian manifolds given by Simon in [11e]) for which .%,,_7 has a fractal Hausdorff dimension
m — 8 < a < m — 77 Does it make a difference if the ambient is a smooth Riemannian
manifold rather than Euclidean space?

A closely related question is whether the no-hole condition of (iv) in Theorem 15.4
can be violated at some point p of an area-minimizing hypercurrent (in the Euclidean space
or in a general smooth Riemannian ambient). This is indeed the case for some points in the
examples of stable minimal hypersurfaces constructed in [11e], while in the Euclidean space
a completely different example has been given by Gabor Székelyhidi in [115].

16.3. Singularities of area-minimizing integral currents in codimension

higher than 1

It is very tempting to conjecture that for m > 3 Almgren’s partial regularity theo-
rem can improved to say that the singular set of any area-minimizing integral m-dimensional
current in R”*" is (m — 2)-rectifiable. This problem seems intimately linked to the “sim-
plest” open case of uniqueness of tangent cones for area-minimizing currents in codimension

n>2:

* Consider an area-minimizing integral current ¥ of dimension 7 in R and let
p € Sing; (%) be a point where one tangent cone is flat. Is the latter the unique
tangent cone to X at p?

903 THE REGULARITY THEORY FOR THE AREA FUNCTIONAL (IN GEOMETRIC MEASURE THEORY)



The forthcoming work [46] seems to suggest that a positive answer to the latter question,
together with the additional information that the convergence rate is polynomial, would imply
(m — 2)-rectifiability of Sing; (¥).

On the other hand, the works [82, 83] suggest that further structural results cannot
be expected, at least not in general smooth ambient manifolds, and instead there are 3-
dimensional area-minimizing integral currents in closed smooth Riemannian manifolds
whose singular sets have any preassigned Hausdorft dimension & € (0, 1).

16.4. Singularities of area-minimizing currents mod p

As already mentioned, in the works [38-48] (see also [98,124]) we plan to show that,
for an m-dimensional area-minimizing current mod p in R”*1, the stratum .71 \ .72
isa C1% (m — 1)-dimensional submanifold, while the set of flat singular points has dimen-
sion at most m — 2. In fact, it is expected that the latter is (m — 2)-rectifiable. The same
properties could be expected in higher codimension, but the problem poses considerable dif-
ficulties. Moreover, the author does not know examples in which the stratum .2 \ ™3
is nonempty. To that respect, the most basic question is whether there is any counterpart of
Taylor’s theorem for the case p = 3: is there any 2-dimensional area-minimizing cone mod p
in R3 which is not invariant under some translation? The works [116] and [118] imply that the
answer is no for p = 3 and 4 (while it is a simple exercise to see that it is no for p = 2 as
well, since it reduces to the case of integral currents).

16.5. Boundary regularity of area-minimizing integral currents at

multiplicity 1 boundaries

Is it possible to improve Theorem 13.2 and show that for general smooth I" the set
of boundary singular points has zero Hausdorff (m — 1)-dimensional measure? It must also
be noted that, in the examples of Theorem 13.3 given by the argument of [35], most of the
boundary singular points p’s are of “crossing type,” i.e., in some neighborhood U of such p’s
the area-minimizing current can be decomposed in one area-minimizing current which takes
the boundary I" smoothly and a second one which is area-minimizing and has no boundary
(but includes p in its support). In particular, the following two conjectures seem likely:

* Boundary singularities of noncrossing type have a much lower dimension (accord-
ing to the examples, the best we can hope is m — 2).

« Since crossing-type singularities have necessarily dimension m — 2 when I' (and
the ambient Riemannian manifold) is real analytic, the whole boundary singular
set has dimension at most m — 2 under the latter assumption.

In fact, the following elegant conjecture is due to White in [122].

Conjecture 16.1. Let I' C R?™™ be a simple closed real-analytic curve and ¥ an area-
minimizing integral current such that 0% = I'. Then the union of the boundary and interior

singular points of X is discrete. In particular,
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e the “overall singular set” is finite,
e ¥ has finite genus g,

e and it is a classical Douglas—Rado solution of the Plateau problem among sur-
faces of genus g.

16.6. Boundary regularity of area-minimizing integral currents at boundaries

with higher multiplicity

It is tempting to conjecture that Theorem 14.3 holds for m-dimensional integral cur-
rents for m > 2, but in reality the situation might be more complicated. Otherwise, a more
modest expectation is that for general m, under the assumptions of Theorem 14.3, the bound-
ary singular set has dimension at most m — 3. Nothing is known in the case of a general
integral multiplicity O and a general boundary I, i.e., without the assumption that there is a
“convex barrier” at (a portion of) I". One might expect that the counterpart of Theorem 13.2
holds for general multiplicities Q > 1.

16.7. Uniqueness of tangent cones

The uniqueness of interior tangent cones when the multiplicity of the cross-section
is larger than 1 is widely open. As already mentioned, the most striking case is that of flat
singular points, i.e., points at which at least one tangent cone is a plane with higher multi-
plicity, but the generalized minimal surface is not regular. This problem is open for integral
area-minimizing currents of dimension m > 3 in codimension larger than n > 2, but it is
also open for stationary and stable varifolds in dimension 7 > 2 and codimension 1.

Itis also widely open whether Simon’s Theorem 15.4 can be improved. In particular,
can one drop the “no-hole condition” (iv) or the integrability condition (iii), at least for some
suitable subclass of stationary varifolds? Some situations in which the “no-hole condition”
can be dropped are given in [167], while the recent work [114] is the first, to the best of author’s
knowledge, in which the uniqueness of the cylindrical cone is proved for one example in
which both conditions (iii) and (iv) in Theorem 15.4 can be dropped.

We finish this survey by mentioning that the following very innocent question is still
open (even in the case m = 3 andn + 2 = 5):

* Consider an m-dimensional area-minimizing integral current X in R™%" with
m > 3 and n > 2. Assume that one tangent cone X at some point p € Sing; (%)
is the union of two distinct linear planes counted both with multiplicity 1. Is Xy
the unique tangent cone to X at p?
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A MATHEMATICAL
PERSPECTIVE OF
MACHINE LEARNING
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ABSTRACT

What lies at the heart of modern neural network-based machine learning is the ability to
approximate very high dimensional functions with good accuracy. This opens up two
major avenues of research. The first is to develop machine learning-based algorithms for
scientific problems that suffer from the curse of dimensionality. The second is to build a
theoretical framework that helps us to form a better foundation for machine learning. For
the latter, the most important questions that need to be addressed include: Why do neural
network models work so well in high dimension? Why does their performance depend so
sensitively on the choice of the hyperparameters? Can we develop more robust and equally
accurate new machine learning models and algorithms? In this article, we review some of
the major progresses made in these directions.
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1. INTRODUCTION
Supervised learning. We begin with the simplest task in machine learning (ML), super-
vised learning. The goal is to approximate an unknown target function from a finite train-
ing dataset. Denote by f* : X = [0, 1]¢ — R the target function. Let S = {(x iy =
f*(x;)),j € [n] ={1,2,...,n}} be the available dataset. Our objective is to approxi-
mate f* as accurately as we can. This usually means that we would like to minimize the
population risk in a given function class:

R(f) =E(f(x) - f*(x)* = /X(.f(X) — £ () d.

where (1 is a given probability distribution on X.
A typical supervised learning algorithm consists of the following three major com-
ponents:

e Defining a hypothesis space. This is a set of functions that we use to approxi-
mate f*. It is the analog of the finite element trial function space, except that in
modern ML, we typically use neural network functions as the trial functions. We
will use #, to denote the hypothesis space where m is roughly the dimension
of #,,. We denote the functions in #, generically as f(-, #) and we use 6 to
parametrize the functions in #,,.

e Setting up an optimization problem for finding the optimal parameters. Though
we are interested in minimizing the population risk, in practice we have to work
with the empirical risk (or its variants):

@) =+ (0510 =) = = Y (1.0 = )’
J J

or, more generally,

1
Ru(0) = — > 2 4;(0).
J

where the term £; is the loss for the jth data point. Regularization terms are
sometimes added to this expression. The population and empirical risks are more
commonly referred to as the training and testing errors, respectively.

The difference between the true objective, the population risk, and the objective
function that we work with in practice, the empirical risk, is an important issue
that differentiates the optimization problems in ML from those in other settings.

e Solving this optimization problem. The simplest idea is to use the gradient descent
algorithm (GD),

1
Oct1 = Ok = NV R (0h) = O —n— >V (0),
J

where 7 is called the learning rate. Since the full gradient is an average over all
training samples and is costly to evaluate, in practice, one often randomly selects
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one term in that average and uses it instead of the full gradient. This leads to the
stochastic gradient descent algorithm (SGD),

Ok+1 = Ok — VL, (Ok),

where ji, ja,... arei.i.d. random variables uniformly drawn from {1,2,...,n}.
One of the main mysteries in ML is that SGD is not only more efficient than GD,
it often leads to a smaller test error.

How do we choose the hypothesis space? In classical numerical algorithms, we
choose polynomials, piecewise polynomials, wavelets, and the like. In linear regression, we
choose functions of the form f(x) = 8- x + By, where § and S, are the parameters to be
found. Neural network models are the most popular choice in modern ML. A simple neural
network model takes the form f(x) = )", aro(wg - x + ¢x), where o is some scalar nonlin-
ear function, called the activation function. Popular choices of ¢ include o (x) = max(x, 0),
the ReLU (rectified linear units) function, and o (x) = (1 4+ e™*)™!, the sigmoid function.
This is called a two-layer neural network model since there are two affine transformations
(represented by the parameters {ay } and {wy }, respectively) involved. As is usually the case
in ML, we have neglected the constant terms in the affine transformations. To include them,
one can think of x as being (x”, 1)T and change the dimensionality accordingly. We will
adopt this convention throughout this report. Multilayer neural network models, or deep

neural networks (DNN), are formed by compositions of functions of the form above:

f(x,0)=Wioo(Wi_io0(---00(Wox))), 6= Wo,Wy,....,Wp).

@ 9

Here the W’s are vectors or matrices, “o” means that the scalar function is applied to each
component of the vector. In practice, it has been found that training such networks is often
quite hard when L is large due to the exploding or vanishing gradient problem [5e]: The
gradient with respect to the parameters either grows or diminishes fast as L, the number
of layers or the depth, increases. This problem is very much alleviated if one switches to a
residual form:
zo(x) = Vx,
zip1(x) = z;(x) + Ujo o (Wizi(x)), 1=0,1,....,L—1,

and f(x,0) = « -z (x) for some vector «. This is the residual neural network model, or

(1.1

the ResNet model [48]. The issue of exploding or vanishing gradients has been analyzed for
DNNSs in [47], but we still lack a rigorous mathematical analysis for ResNets.

In addition to supervised learning, there are two other major subjects in classical
machine learning:

e unsupervised learning, which is mainly concerned with finding some aspects of
an underlying probability distribution using a finite sample;

e reinforcement learning, which is about finding the optimal strategy for a Markov
decision process [93].

Deep neural network-based ML is commonly referred to as deep learning [62,85].
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Deep learning is a very powerful tool. In the last ten years or so, deep learning has achieved
tremendous success for a wide variety of problems. The most representative example is in
computer vision, e.g., the classification of images. Typically, the images are labeled into
several different categories according to the content of each image. Our task is to predict the
correct category for images of the same kind. This is a supervised learning problem where
the target function is the mapping from each image to its content, i.e., the category of that
image.!

Another example is generating extremely real-looking pictures of fake human
faces.” Using pictures of real human faces as samples, generative ML models can produce
new samples which are pictures of fake human faces. This is an example of unsupervised
learning. We can view pictures of human faces as being a random variable in the spaces of
images. The probability distribution of that random variable is unknown to us. But we do
know some samples of that probability distribution, namely the pictures of real human faces.
From that sample, one can approximate the underlying probability distribution sufficiently
accurately that one can produce new samples. These new samples are the pictures of fake
human faces.

The best known example of reinforcement learning is AlphaGo [9e]. Given the strat-
egy of the opponent, the Go game can be formulated as a Markov decision process whose
optimal strategy satisfies the underlying Bellman equation. What AlphaGo did was to solve
that Bellman equation approximately for an increasingly better opponent.

Approximating functions, probability distributions, and solutions of difference or
differential equations are among the most common tasks in computational mathematics. One
is naturally led to ask: What is different in the tasks described above from those that are
commonly done in mathematics? One most important difference is the dimensionality of the
problems. Take the CIFAR-10 dataset as an example. We can view each image as being a
point in a d = 32 x 32 x 3 = 3072-dimensional space, counting the number of pixels and
the dimensionality of the color space. Classical algorithms in computational mathematics
are not able to handle problems in such high dimension.

The curse of dimensionality. To see this more clearly, let us take a look at a typical result
in classical approximation theory, the approximation by piecewise linear functions over a
regular mesh. Let / be the typical size of the mesh. Then we have

fier};lgm = Flax) = Cah? 17 Va2 ey ~ Cam™2/4 17 2y

where || f* || g2(x) is the Sobolev norm of f™*. If we want to reduce the error by a factor of 10,
we need to reduce & by a factor of +/10 and increase m by a factor of 104/2. For d = 3072,
this is truly a huge number.

1 See, for example, https://www.cs.toronto.edu/~kriz/cifar.html.
2 See, for example, https://machinelearningmastery.com/resources-for-getting-started-with-
generative-adversarial-networks/.
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The problem described here is referred to as the curse of dimensionality (CoD):
As dimensionality grows, computational cost grows exponentially. This phenomenon is
common to all classical algorithms, such as algorithms based on fixed meshes and wavelets.

CoD has been a major obstacle for many problems in science and engineering,
including quantum and classical many-body problems, dynamic programming and control
problems, and nonparametric statistics. Before deep learning, many approximate algorithms
and models have been developed to bypass the CoD problems. The most well-known ones
include the Hartree and Hartree—Fock approximation in quantum mechanics, the generalized
linear models in statistics, and approximate dynamic programming models. Although these
models are heavily used in practice, we lack systematic ways to improve their accuracy. It
is fair to say that deep learning seems to be the first general methodology that is capable of
handling a large class of such problems with satisfactory accuracy.

2. DEEP LEARNING-BASED ALGORITHMS FOR PROBLEMS IN

SCIENTIFIC COMPUTING

Deep learning has been very successful for many high-dimensional problems in
computer vision and natural language processing [62]. It is natural to ask whether it can be
used to solve high-dimensional problems in other areas such as scientific computing and
computational science. This has indeed been a very active research area since 2016. Below
we briefly review some representative progresses in this direction.

2.1. Control problems
The first successful application of deep learning to problems in scientific computing
was presented in [43] for stochastic control problems. Consider the stochastic dynamic model

Zi41 =27 + gz, up) + &, 2.1

where z;, u;, & denotes the state of the system, the control, and the noise at step /, respec-
tively. Our objective is

T-1
min E{El}{z cl(zl,ul(zl)) +CT(ZT)}. 2.2)

{u; }[T:_()1 1=0
We are interested in looking for the feedback control (or closed-loop control)
up = u(z),

and we will approximate this function by some neural network model (the details of the
network model is not important for this discussion)

ul(z):xﬁl(zwl), l=0,...,T -1

With this approximation, the optimization problem becomes

T-1
min E{fl}{z Cl(zl,ﬁ1(21|91)) +CT(ZT)}. 2.3)

o= =0
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This was the first example on developing deep learning-based algorithms for prob-
lems in scientific computing. The motivation for using this as the first example was the close
similarity between stochastic control problems and ResNet-based deep learning: the dynamic
model (2.1) in the control problem plays the role of the ResNet, the objective function (2.2)
plays the role of the empirical risk and the random noise in (2.1) plays the role of the training
data. Using this analogy, Han and E developed an SGD and neural network-based algorithm
for the stochastic control problem and demonstrated that it can readily handle very high
dimensional problems [43]. The neural network model used was a composite network, with
the control at each step represented by a subnetwork.

Subsequently, there have been many developments on deep learning-based algo-
rithms for control problems. For a survey of the activities in this area, we refer to the UCLA
IPAM workshop in the Spring of 2020. We mention in particular the extension to determinis-
tic control problems in [77]. These developments have demonstrated adequately the potential
of deep learning-based algorithms for solving real world control problems. Yet there are still
serious work to be done to fully realize that potential in practice. There are two main obsta-
cles. The first is that we often lack reliable dynamic models for the practical problems we are
interested in. The second is the robustness of the deep learning-based algorithms in realistic
settings.

2.2. High-dimensional partial differential equations

Motivated by the success for control problems, E, Han, and Jentzen developed deep
learning-based algorithms for nonlinear parabolic partial differential equations (PDEs). The
idea is to use backward stochastic differential equations (BSDEs) to reformulate the nonlin-
ear PDE as a control-like problem, and then follow similar strategies for stochastic control
problems [26,44].

Consider the initial value problem

v 1

o = EUO'T V2 4+ u-Vo+ f(6"Vv), v(0,x) = g(x).

It is better to turn this into a terminal value problem by reversing the direction of time. Let
u(t,-) = v(T —t,-). Then the problem above becomes
ou 1
o + EO'UT Viu+pu-Vu+ f(0'Vu) =0, u(T,x) = g(x).
One can reformulate this as a stochastic optimization problem using BSDEs [78]:

2

inf  E|g(X7)-Yr|’, 2.4
vt le(Xr) = Y7 24)
t t
such that X; = X ~|—/ u(s, Xs) ds ~|—/ o(s, Xg)dWs, 2.5)
0 0
t t
vo=vo- [ fzoas+ [ zoraw. 2.6)
0 0

It can be shown that both problems have unique solutions and these solutions are related to
each other by [79]

Y, =u(t,X;) and Z, =0 (t,X,) Vu(t,X;). 2.7)
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Problem (2.4) is very much like a stochastic control problem and one can then
develop algorithms using ideas similar to those described above. The resulted algorithm,
the Deep BSDE method, has turned out to be an elegant and powerful tool for solving (non-
linear) Black—Scholes equations in finance, Hamilton—Jacobi—Bellman equations, as well as
BSDE:s. See [27] for a review.

In the Deep BSDE method, much effort has gone into the reformulation of the PDE
problem as a control-like problem, in order to explore the intrinsic structure of the underlying
problem. In the opposite direction, [82,91] developed strategies that are “foolproof.” The idea
is to use least squares and formulate the PDE and boundary condition as an optimization
problem, and then more or less blindly apply ML to that optimization problem [82,91]. This
has become quite popular in applied mathematics since it offers applied mathematicians a
way to gain experience in deep learning by playing with the problems they are familiar with.

2.3. Parametrizing solutions of differential equations

Another idea is to explore the representative power of deep neural network models
and parametrize solutions of PDEs as a functional of the coefficients and boundary data. This
was first demonstrated by Khoo, Lu, and Ying for the Schrodinger equation with random
potential [59]. For a more systematic development along this direction, we refer to [66].

In contrast to most other applications in which the object of interest is a function
(though maybe in high dimension), in this setting, the object of interest is an operator on
an infinite-dimensional space. This raises new mathematical issues beyond those discussed
below.

2.4. Molecular dynamics

In molecular dynamics, we model the dynamic trajectory of each atom in a material
or a molecule by solving the Newton’s equation

2,

mi% ==V.,V, V=V(x,x2....%,...,XN),

where m;, x; are the mass and position of the i th atom, respectively. The key question is how
to model the potential energy function V' that describes the interaction between the atoms.
Traditionally, this has been modeled either empirically or by solving quantum mechanics-
based models, such as density functional theory, on the fly computing the forces between
the atoms [12,22]. Neither is satisfactory: the empirical approach is unreliable; the on-the-fly
quantum mechanics-based approach is expensive and limited to systems with only hundreds
or thousands of atoms.

With the advent of ML, we can contemplate a new paradigm in which quantum
mechanics models are used to provide data, from which one can learn a highly accurate
potential energy function, which can then be used to perform molecular dynamics. Such a
paradigm was first proposed in [9]. One of the most successful examples of such a model is
the Deep Potential models developed in [45,110] (see Figure 1). Using high performance com-
puting resources, one can perform molecular dynamics calculation with ab initio accuracy
for systems with hundreds of millions atoms [54].
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FIGURE 1

Comparison of the accuracy of the energies predicted by the Deep Potential model and density functional theory
for different kinds of systems [110].

With the Deep Potential model, one can do many things that were either impossible
or very difficult before. Examples include complex reaction processes in combustion [189],
crystal nucleation of liquid silicon [1e], liquid—liquid phase transition of water [38], one-
dimensional cooperative diffusion in a three-dimensional crystal [98], structural order in
quasicrystal growth [42], and the phase diagram of water [112].

2.5. Multiscale modeling

It has long been recognized that multiscale modeling can be a very effective tool
in computational science and engineering (see Figure 2). However, its practical usage has
been hampered by our inadequate ability to analyze the data obtained from the underlying
microscopic model [22]. This is exactly where ML can help. Indeed ML-based ab initio
molecular dynamics is an example of the application of ML to multiscale modeling. Besides
molecular dynamics, ML-based multiscale models have been developed for density func-
tional theory, coarse-grained molecular dynamics, moment closure models for the kinetic
equations, hydrodynamic models for non-Newtonian fluids, etc. There is no doubt that this
will continue to be a very fruitful line of research.
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Most if not all existing applications of ML to multiscale modeling belong to the class

of sequential multiscale modeling [22], i.e., ML algorithms are used at the pre-computing

stage to obtain accurate coarse-grained models. One is naturally led to ask: How can we

develop reliable and interpretable new physical models using ML? There are three most

important issues involved here [28]:

922

e The first is how to collect the training data. The training dataset needs to be rep-

resentative enough of all the practical situations that the model is intended for,
yet at the same time, it needs to be as small as possible since each data point
usually involves solving the microscale model. For this purpose, Zhang et al.
developed the ELT (exploration—labeling—training) algorithm and it has been suc-
cessfully applied to molecular dynamics and coarse-grained molecular dynamics
[28,111,113].

The second issue is the starting point of the new physical model. To be inter-
pretable, it usually helps to formulate the new physical model as some kind of pro-
jection of the underlying microscale model. An example is the moment-closure
model for the kinetic equation. The projection scheme, or the coarse-grained
model, should not violate the physical conservation laws in the problem.

To formulate this projection scheme, one needs to know the set of coarse-grained
variables. In principle, ML can also be a very powerful tool for this purpose. In
practice, this is still a relatively unexplored area.

The projected model is usually not closed and involves terms that need to be mod-
eled. These terms are analogous to the constitutive relations in classical models
such as the Navier—Stokes equation. This situation is very similar to that of the
heterogeneous multiscale method [22,25]. The third issue is therefore to formulate



ML models for the unclosed terms in the coarse-grained model. To do so, one has
to take into account physical constraints such as the symmetries in the system.

For a discussion of these issues, we refer to [28].

2.6. The many-electron Schrodinger equation

The many-electron Schrédinger equation in quantum mechanics is a notoriously
hard problem not only due to its high dimensionality but also the fact that its solution must
satisfy the Pauli exclusion principle, i.e., the wave-function must be antisymmetric. It is also
arguably the most fundamental problem in computational science since it represents the true
first principle. This latter feature is becoming increasingly more clear due to the advance of
ML-based algorithms and the Schrodinger equation is the ultimate provider of the data that
we use to train more coarse-grained models, particularly density functional theory models.

For the spin Schrédinger equation, Carleo and Troyer developed an algorithm using
the restricted Boltzmann machine and the least squares formulation [13]. Deep learning-
based algorithm for the many-electron Schrodinger equation was first developed in [46]. More
sophisticated ansatz for the antisymmetric part of the wave-function was developed in [49,80].
A spectral projection algorithm was proposed in [182] to fully take advantage of the linear
character of the Schrodinger equation. It is fair to say that at this stage, deep learning-based
algorithm still remains an experimental effort and has not outperformed traditional quantum
chemistry methods.

2.7. Purely data-driven methods

The most remarkable example of the purely data-driven method is AlphaFold?2 [58].
By using only the structures in the protein data bank and protein sequence data, AlphaFold2
is able to predict the native structure of proteins to experimental accuracy. This was quite
unexpected and has changed the way things are done in structural biology.

As a structural optimization problem, protein folding can be considered as a (classi-
cal) many-body problem. This is NOT how AlphaFold2 solved the problem. AlphaFold2 did
not try to find the native structure by exploring the high-dimensional configuration space of
the protein of some energy function. Instead, it took an interpolation viewpoint: Given the
structures we know in the protein data bank, try to find the unknown structures by exploring
the similarity between the given protein sequence and the sequences in the protein data bank.
For this purpose, one needs to explore the structure of the sequence space. This is done by
pushing multiple sequence alignment to a limit [58].

3. MATHEMATICAL THEORY OF NEURAL NETWORK-BASED MACHINE

LEARNING MODELS

At this point, the objective of a mathematical theory for deep learning is not to
explain in detail everything we see in practice, but rather to formulate general principles that
can help organize our thoughts and guide future work.
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The two most important puzzles in deep learning are:

e Why do deep learning models work so well on such seemingly very complicated
tasks?

e Why does the performance of deep learning models depend so sensitively on the
choice of the hyper-parameters, such as the network size, architecture, and the
learning rate in the optimization algorithm?

A more advanced question is whether we can come up with new formulations of ML models
that are both accurate and robust.

There are many different ways of looking at these issues, ranging from classical
learning theory [94], statistical physics perspective [108], to information theory perspec-
tive [1]. We will take the viewpoint of classical numerical analysis (approximation theory,
convergence of training algorithms, convergence rates, etc.) but put emphasis on the feature
of high dimensionality. For a review along this line of thoughts, we refer to [34].

Before proceeding further, let us note that we will use the terminology “norm” in a
loose way, in the sense that the triangle inequality is not necessarily satisfied.

3.1. An overview of approximation theory

Approximation theory is concerned with the question whether a given hypothesis
space can efficiently approximate the target functions we are interested in. In this direction,
there are three kinds of results.

The first is the so-called Universal Approximation Theorem (UAT), which, roughly
speaking, asserts that under mild conditions, one can use neural network functions to approx-
imate arbitrary continuous functions uniformly on compact domains [18]. Such results are of
course important, without them the whole foundation of neural network models would be in
doubt, but they do not explain why neural network models are so much better than classi-
cal polynomial approximations. After all, as we know from the Weierstrass theorem, UAT
also holds for polynomial approximations, which we know is a bad idea in high dimension.
To see the difference between the two kinds of approximations, we must study the rate of
convergence.

The second kind of results are convergence rates of neural network approximations
for functions with certain regularity conditions. A typical result states that if a function has
derivatives of order up to k, then it can be approximated by neural networks with an error of
O(m™*/?) where m is the total number of parameters. The first systematic result of this type
can be found in [1e7]. The most recent and sharpest results can be found in [7e]. These results
do suffer from CoD. But they are useful for analyzing neural network-based algorithms for
low dimensional problems.

The third kind of results are convergence rates for neural network approximations
that do not suffer from CoD. This line of research began with the pioneering work of Barron
[7,8,11,57]. We will focus on this type of results.

924 W. E



3.2. General remarks about high-dimensional problems

Before continuing, let us recap the important parameters that we have: m is the
dimensionality of the hypothesis space; n is the size of the training sample; d is the dimen-
sionality of the input variable to the ML model. We are interested in the case when d > 1.

The one high-dimensional problem that has been very well studied is high dimen-
sional numerical integration. We are interested in approximating the following integral:

I(g) = /X g(x)dx

byasum /,,(g) = % Z_/ g(x;).If we use grid-based quadrature rules such as the Trapezoidal
Rule, then the error behaves like

C(g)
me/d

I1(g) — Im(g) ~

for some fixed constant ¢, indicating CoD. If instead we use Monte Carlo integration, say by
taking {x;, j € [m]} to be independent, uniformly distributed in X, then we have

2
B~ 1)’ = " varte) = [ s ( [ ewax)

The O(1/./m) rate is (almost) the best we can hope for, and is independent of d: Improve-

ments on the convergence rate, say using quasi-Monte Carlo or other lattices, diminish
quickly as d becomes large [20].

The variance var(g) can be very large in high dimension. For this reason many
variance-reduction algorithms have been developed. These ideas allow physicists to study
statistical physical models in very high dimension.

Function approximation is a harder problem than numerical integration. In light of
the discussion above, the best we can hope for function approximation in high dimension are
results of the following type:

) ) 2 rof-
Jnt RO = inf | =S [agg < s
The questions that we need we address are: Can this be true? Given a neural network model,
say two-layer neural networks or ResNets, for what class of functions is this true? If true,
what should the quantity I'( f*) be?

3.3. Approximation theory for the random feature model

To explain the general philosophy, we will use the random feature model [81] as an
illustration. Let ¢ (-; w) denote some feature function parametrized by w, e.g., ¢(x, w) =
o(w” x). A random feature model is defined by

l m
Sm(xi@) = — Taj(xiw)), 3.1

j=1
where {w?};”zl are i.i.d. samples drawn from a prefixed distribution 9. Once drawn,
{w;’};":l are fixed; @ = (ay,...,a,)T € R™ are the trainable parameters. For simplic-
ity, we assume 2 := supp(mro) is compact. Denote W% = (w9, ..., wl)T e R™*¢_Note

that random feature models are linear models.
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If the inner parameters {w?} are also allowed to change, then this becomes a (gen-
eralized) two-layer neural network model. For this reason, the random feature model can
be considered as a simplified two-layer neural network model in which the inner parame-
ters are frozen at some random initial value. This connection has proven to be important for
understanding the two-layer neural network model.

We are interested in identifying the function class and the functional I'(-) for this
model. To this end, consider the reproducing kernel Hilbert space (RKHS) [2] induced by
the kernel k(x, x’) = Eyp~n,[¢ (x; w)¢ (x’; w)]. Denote by H}, this RKHS. Then for any
f € Hy, there exists a(-) € L?(mg) such that

1) = [ awx: widnow) (32)
and
£, = [ @ @)dnow) (33)
Theorem 1 (Direct Approximation Theorem). For any f* € Hy, let
7@ = [ @ @gxiw)dnow), (3.4)
Then we have )
112,

Ewol| fu(:a* (W) = f*[7, <

where a*(W %) = (a*(wY),...,a*(w?))T.

m

Theorem 2 (Inverse Approximation Theorem). Let (w?);’io be a realization of the sequence

of i.i.d. random samples drawn from my. Let * be a continuous function on X = [0, 1]¢.

Assume that there exists a constant C and a sequence (a; );-”;0 satisfying sup; |aj| < C, such

that
lim li:a'qf)(x'w(-’) = f*(x) (3.5)
m—>00 M — J ’ J ) .
forall x € X. Then with probability 1, there exists a function a*(-) : Q + R such that
1@ = [ @@ sw)dmw)

Moreover, ||a*|leo < C.

This pair of direct and inverse theorems are not exactly converses of each other since
different norms (L2 and L) are used. But they do tell us that the associated RKHS is the
appropriate function space to study in connection with the random feature model. These
results are not new, but it seems difficult to identify the origin of these results.
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3.4. Approximation theory for two-layer neural networks
We will restrict our attention to the case when ReLLU is used as the activation func-
tion. The hypothesis space for two-layer neural networks is defined by

Hon = {fm(x) = %Zaja(wfx)}
J

A good candidate for the associated function space for this model is the Barron space [30,33]
(see also [s,7,35,68]). To define the Barron space, consider functions f : X = [0, l]d — R
of the following form:

f(x) = Laa(wa)p(da,dw) = Ep[ao(wa)], x €X,

where @ = R! x R*! and p is a probability distribution on 2. The “Barron norm” is
defined by

. 1/
I1£l5, = inf (B,[a” fwlf])"".

where Py :={p: f(x) =E,lac(wTx)]}.Let B, = {f € C°: [ fll8, <oc}. Functions in

B, are called Barron functions. As was shown in [33], we actually have | - | g, = || - || 8, for
any 1 < p < g < oo. Hence, we will use | - || g and 8 denote the Barron norm and Barron
space.

One immediate question is: What kinds of function are Barron functions? In this
direction, a general result is given by:

Theorem 3 ([se]). Let y>(f) = [pa |l ||%|f~(a))|da) < 00, where f is the Fourier transform
of f, then f can be represented as

f(x) =/;2aa(wa)p(da,dw).

Moreover, || f |8 < 2y2(f) + 2[V f(O)[ls +2[f(0)].

Remark 4. One should note the difference between the Barron norm and the quantities
like Y, which were originally introduced by Barron [7]. The Barron norm is defined using a
probabilistic setting. The quantity y,( f) and the like are defined using the Fourier transform
which is related to the regularity property of f. We believe that the probabilistic setup is the
right direction to go and this is partly confirmed by subsequent results on continuous ResNets
(see below) and multilayer neural networks. To avoid further confusion, we propose to call
quantities y, and the like Barron’s spectral norm. For further results in this direction, as well
as some interesting analysis on the relationship between these spaces, we refer to [88, 89].

An interesting structural theorem about Barron functions is proved in [35].

Theorem 5. Let f be in Barron space. Then f =Y i, f; where f;i € C1(X \ V;) where
V; is a k-dimensional affine subspace of X for some 0 < k <d — 1.

As an immediate corollary, we see that the distance to the unit sphere is not a Barron
function.
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The claim that Barron space is the natural space associated with two-layer networks
is justified by the following series of results [3e].

Theorem 6 (Direct Approximation Theorem). Forany f € B and m € N7, there exists a
two-layer neural network fr, with m neurons {(a;, w;)} such that

[PAIF:
T

If = fullLzcpy <

Theorem 7 (Inverse Approximation Theorem). Let

m m
def 1 T 1 +
Ne = — ago(w, x): — arl||lw <C,meNT}.
c {m];k(k)m];|k|” kll <

Let ™ be a continuous function. Assume there exist a constant C and a sequence of functions
{fm} C Nc such that
Jm(x) = f*(x)

forall x € X, then there exists a probability distribution p* on Q such that
7*@) = [ a0 x)p"(da. dw),
forall x € X. Moreover, || f*||la < C.

3.5. Approximation theory for residual neural networks
Consider a residual network model

zo(x) = Vx,
zi1(x) = z;(x) + %Ula o(Wizi(x)), 1=0,1,....L—1,
f(x.0) =a-zp(x),

where x € RY is the input, V € RP*d D >d W, e R™P U e RP*™ o € RP and we

use © :={V,Uy,..., UL, W;,..., Wr,a} to denote all the parameters to be learned from
data. Without loss of generality, we will fix V to be
1
y=| 4 . (3.6)
0(p—ayxd

To look for the appropriate associated function space, let us consider the following flow-
based representation of functions (see next section):

z(x,0) = Vx,
Z(x,t) = IE(U’W)NMUG(WZ(x, t)),
Fadoy () = az(x,1).
For p > 1, consider the following linear ODEs associated with the representation above:
Np(0) =e,
Np(6) = (E,, ((UIIW))") 7 N, (@),
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where e is a column vector with every component equal to 1, |A| and A? are elementwise
operations for the matrix A and a positive number g. The following function spaces and
“norms” were introduced in [33].

Definition 8. Let f be a function that satisfies f = f, 1,,} for a pair of («, {p;}). Define

1 1Dy @toyy = lel” Np(1) (3.7

to be the O, norm of f with respect to the pair («, {p;}), where |«| is a vector obtained from
o by taking elementwise absolute values. We define

Illo, =, _inf | " N (1) (3.8)

=Ja{ps}

to be the Dy, norm of f, and let D, = {f : || f |0, < 00}

Definition 9. Let f be a function that satisfies f = f, (,,} for a pair of («, {p;}). Define

115, @ oy = el Np(D) + [ Np(D)]; = D 3.9)
to be the :ljp norm of f with respect to the pair («, {p;}). We define
Iflg = inf |e|"Ny(1) + [ Ny(D)], = D (3.10)
v = e

to be the Jép norm of f. The space 351, is defined as the set of functions that admit the
representation f (,,) with finite O, norm.

These two kinds of “norms” appear to be similar but different. These function spaces
were introduced in [33] and are named flow-induced function spaces.

For the approximation theorems, we will make use of the following “Lipschitz con-
tinuity” condition for {p; }.

Definition 10. Given a family of probability distributions {p;, ¢ € [0, 1]}, the “Lipschitz
coefficient” of {p,}, denoted by Lipy, , is defined as the infimum of all the numbers that

satisfy
|]E,,,U0(Wz) — ]EpSUG(Wz)| < Lipy,,31t — slz| (3.11)
and
oUWy = (oUW, | < Lipgoyle = s1. (3.12)
for any ¢, s € [0, 1], where | - ||1,1 is the sum of the absolute values of all the entries in a

matrix. The “Lipschitz norm” of {p;} is defined as

“{pf}HLip = ||EPO|U||W|H1,1 + Lipgy,)- (3.13)

Finally, we define a discrete “path norm” for residual networks.

Definition 11. For a residual network defined by (3.6) with parameters ® = {«, U;, W}, =
0,1,..., L — 1}, we define the /; path norm of ® to be

L
1
1llp = |a|T1'[(1 " ZIUIIIWzl)e- (3.14)
=1
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With the definitions above, we are ready to state the direct and inverse approximation
theorems in the flow-induced function spaces [33].

Theorem 12 (Direct Approximation Theorem). Let f € Dy, 8 € (0, 1). Assume there exists
a constant lo such that, for any & > 0, there exists (&, {p;}) that satisfies [ = fo(p, and
”f”:bl(a,{p,)) < ||f||°131 + & [[{ps}ILip < lo. Then there exists an Lo, depending polynomi-
ally on D, m, ly, and ||f||:51, such that for any L > Ly, there exists an L-layer residual
network fi(-; ®) that satisfies

2
A1,

| f - GO < = (3.15)

and
1©llp <91 fllg,- (3.16)

Theorem 13 (Inverse Approximation Theorem). Let f* be a function defined on X =
[0, 1]9. Assume that there exists a sequence of residual networks { fr (:; ©1)}7% such that
|f*(x)— fo(x;0)| > 0as L — oo for all x € X. Assume further that the parameters
in{ fL(- ©)}92 | are (entrywise) bounded by cq. Then, we have [* € Doo and || [ * || 9, <
M(Cg;&. Moreover, if there exists a constant ¢y such that || fi||o, < c1 holds for any
L > 0, then we have | f*| o, < c1.

A natural question is how big the flow-induced norms are compared with the Barron
norm. In this direction, we have [33]

Theorem 14. For any function f € B, and D > d + 2, m > 1, we have f € Dy and

1flls, =21/ 1s. (3.17)

In this sense, going from two-layer neural networks to ResNets is like variance
reduction in Monte Carlo methods.

3.6. The generalization gap

The second main issue in theoretical machine learning is the difference between
training and test accuracy, in other words, the difference between the empirical and popula-
tion risk. Estimating the difference between these two quantities is complicated by the fact
that the parameters obtained from the training process are highly correlated with the data.
There are many ways to bypass this difficulty. The simplest idea is to use the trivial bound

|R() = Ru(H)] = sup [R() = Ru(F)| = sup |1(g) — Lu(g)
fedn fedny

, (3.18)

where f € H, is the function in the hypothesis space obtained from training, g = (f —
f*)2. One of the most effective ways of estimating the right-hand side is to use the notion
of Rademacher complexity.
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Definition 15. Let J be a set of functions, and S = (x1,x2,. .., x,) be a set of data points.
The Rademacher complexity of # with respect to S is defined as

1 n
Rads(#) = ~E¢| sup > &h(x;) |. (3.19)
n hed ;=
where {§;}7_, are i.i.d. random variables taking values £1 with equal probability.

Rademacher complexity is useful since it bounds the quantity of interest,
suppege | 1(h) — I, (h)|, from above and below.

Theorem 16 ([86, THEOREM 26.5]). For any § € (0, 1), with probability at least 1 — § over the
random samples S = (x1,...,X,), we have

1 < log(2/68
sup [E[h(6)] ~ = > h(x)| = 2Rads () + sup e | 25,
hek n hede n

l 1 log(2/6)
sup |Ex|h(x)|—— ) h(x;)| > = Radgs(H) — sup ||/]| —,
hedt [h)] "; l 2 ekt 2n

Roughly speaking, Rademacher complexity quantifies the degree to which functions
in the hypothesis space can approximate random noise on a given dataset. The larger the
hypothesis space, the larger the Rademacher complexity.

As example, if J is the unit ball in the space of continuous functions, then we
obviously have Radg (#) = O(1). If if F# is the unit ball in the space of Lipschitz continuous
functions, then it can be shown that [96]

Radg(#) = O(n~"%).

This signals another potential source of CoD, namely that the training sample size needed
grows exponentially as d grows.

Fortunately, for the function spaces we identified earlier, their Rademacher com-
plexity has roughly the optimal scaling. For Barron space, we have

Theorem 17 ([6]). Let Fp ={f € B.||flla < Q}andlet S = (x1,...,x,). Then we have

21n(2d
Rads(Fp) <20 L
n
The n~1/2 scaling at the right-hand side is consistent with the Monte Carlo scaling
that one would expect at a first sight.
The Rademacher complexity estimate is only established for a family of modified
flow-induced function norms || - || P, (note the factor 2 in the definition below). It is not clear

at this stage whether this is only a technical issue.
Let

171, =, inf Jl"Np(1) + [8p (], = D+ o} |y (3.20)

=Ja{pt
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where ]\71, () is given by
N,(0) = 2e,
Nyp() = 2(E,, (U[W ") Ky (o).
Denote by 13 the space of functions with finite Jép norm. Then, we have

Theorem 18 ([33]). Let DL = {f € D, 1/ llp, < Qbandlet S = (x1,.... xy). Then

we have
, 210g(2d
Radg (D2) < 18Q‘/£. 3.21)
n

3.7. A priori estimates of the population risk for regularized models
Our objective is to show that one can find accurate approximations of the target
function using a finite training sample. Ideally, we would like to have the following kind of

C(f*) n La(f™)

For appropriately regularized models, results of this kind have been established for the

results:

R(f) <

(3.22)

random feature model, the two-layer neural network model, and ResNets.
For the random feature model, consider the regularized model

llell

xn,k(a) J‘Q ( )+ \/_\/_

and define the regularized estimator
a, ; = argmin £, ) (a).
Theorem 19. Fix any A > 0. For any § € (0, 1), with probability 1 — §, we have

2(n/8
Rian) = oo 0z /0)| 115, + 02 )

L () log(1/8)\"*,
+W(Hf ”Jf’k+(¥) la*] o + log(Z/S)). (3.23)

Such results should be standard. But a complete proof seems to be only found in [34].
In the same way, for the two-layer neural network model, one can consider the reg-
ularized model

log(2d

£a(0) = Ru(0) + Ay ——||0]|p. b, = argmin £, (6),

where the path norm is defined by
1 m
181l = — > la 1w, 1.
j=1

and let §, = argmin £, (0).
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Theorem 20 ([30]). Assume f* : X +— [0, 1] € B. There exists an absolute constant C
such that if A > Cy then for any § > 0, with probability at least 1 — § over the choice of the
training set, we have

R(b,) < I/ IIB s Hﬂ\/logfd)_i_\/log(n/z?).

n

For ResNets, instead of the path norm (3.14), we have to consider a weighted path
norm

L
2
fotiwr = ol TT(1 + F10i191 ). (.24

which assigns larger weights to paths that pass through more nonlinearities. Consider the

min 4(9) = R(6) + 3410 wp | 2L, (3.25)

Theorem 21 ([29]). Let f* : X — [0, 1]. Assume that O isan optimal solution of the regu-
larized model (3.25). Let A > 4 + 2/[34/210g(2d)]. Then for any § € (0, 1), with probability

at least 1 — § over the random training samples, the population risk satisfies

2
2@ < s ||f|| (4”f||$+1)3(4“)\/\2/‘”3g(2d)+2+4,/w. (3.26)

One unsatisfactory aspect of this result is that it is proved for a Barron function, not

regularized model

functions in the flow-induced space.

3.8. The loss function and the loss landscape

The a priori estimates for the regularized models establish the existence of accurate
approximations to the target function in the hypothesis space. The next question is how to
find them. At this point, there is a vast amount of experience suggesting that one can find
accurate solutions using simple gradient-based algorithms, without any explicit regulariza-
tion, but the result may depend sensitively on the choice of the hyperparameters, such as the
network parameters, the initialization of the training algorithms, the learning rate, etc. Sen-
sitive dependence on the network parameters suggests that the landscape of the loss function
changes qualitatively as these parameters change.

At a first sight, it is quite surprising that simple gradient-based algorithms such as
the gradient descent can work at all. After all, the loss function, say the empirical risk, is a
nonconvex function of many variables with potentially very complicated landscape. In the
case of molecular structural optimization such as protein folding, gradient descent would
get stuck very quickly at a bad local minima. In the case of training neural network models,
one can often avoid this by tuning the hyperparameters in the training algorithm. Obviously,
this means that the landscape of the molecular structural optimization and the landscape
for training neural network models are qualitatively very different. Therefore one first issue
might be to understand how the landscape looks. In this direction, one important result is
that of Cooper who considered overparametrized neural networks with a smooth activation

933 MATHEMATICAL MACHINE LEARNING



function and characterized the structure of the set of global minima [17]. Cooper proved that
the locus of the global minima is generically (i.e., possibly after an arbitrarily small change
to the data set) a smooth (m — n)-dimensional submanifold of R” where m is the number
of free parameters in the neural network model and # is the training data size.

3.9. Training dynamics
Two-layer neural networks with mean-field scaling. ‘“Mean-field” is a notion in statistical
physics that describes a particular form of the interaction between particles. In the mean-field
situation, particles interact with each other only through a mean-field formed through the
collective effort of all the particles. The most elegant mean-field picture in machine learning
is found in the case of two-layer neural networks: If one views the neurons as interacting
particles, then these particles only interact with each other through the function represented
by the neural network, which is the mean-field in this case. This observation was first made in
[15,75,84,92]. By taking the hydrodynamic limit for the gradient flow of finite neuron systems,
these authors obtained a continuous integral differential equation that describes the evolution
of the probability measure for the weights associated with the neurons.

Given the two-layer neural network model

fnl) = - Y a0 (w]x),
J

let
I(ulvvum)zﬂ(fm)’ u] :(al’w])

Consider the gradient descent dynamics
du j
dr

Lemma 22. Let

=-mVy I(uy.....up). u;0)=uj, jelml (3.27)

1
pldu,t) = - ZSu,(t).
J

Then the gradient descent dynamics (3.27) can be expressed equivalently as
SR,

Sp
Equation (3.28) is the mean-field equation that describes the evolution of the prob-

dp=V(VV), V= (3.28)

ability distribution for the weights associated with each neuron. The lemma above simply
states that (3.28) is satisfied for the finite neuron system without the need to take the infinite
particle limit.

It is well known that (3.28) is the gradient flow of &R under the Wasserstein metric.
This brings the hope that the mathematical tools developed in the theory of optimal transport
can be brought to bear for the analysis of (3.28) [95]. In particular, we would like to use these
tools to study the qualitative behavior of the solutions of (3.28) as ¢ — co. Unfortunately,
straightforward application of the results from optimal transport theory requires that the risk
functional be displacement convex [74], a property that rarely holds in ML. As a result, less
than expected has been achieved using the optimal transport theory.
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The one important result, due originally to Chizat and Bach [15], is the following. We
will state the result for the population risk. Again we consider the ReLLU activation function.

Theorem 23 ([15,16,99]). Let {p;} be a solution of the Wasserstein gradient flow such that
e o is a probability distribution on the cone ® := {|a|* < |w|?}.
e Every open cone in ® has positive measure with respect to py.
Then the following are equivalent:
o The velocity potentials ‘ig—‘?(pt, -) converge to a unique limit as t — oo.
o R(p;) decays to the global infimum value as t — oo.

If either condition is met, the unique limit of R (p;) is zero. If py also converges in the Wasser-
stein metric, then the limit pso is a minimizer.

A few remarks are in order:

There are further technical conditions for the theorem to hold.

e Convergence of subsequences of %—f(pt, -) is guaranteed by compactness.

e The first assumption on pg is a smoothness assumption needed for the existence
of the gradient flow.

e The second assumption on pyg is called omnidirectionality. It ensures that p can
shift mass in any direction which reduces risk. The requirement that the support
of the initial distribution be sufficiently large seems to be confirmed by practical
experience.

Two-layer neural networks with conventional scaling. In practice, people often use the
scaling (instead of the mean-field scaling)

m
fn(x:a, W) = Zaja(wfx) =alo(Wx).
j=1
A popular initialization [48, 63] is as follows:
aj(0) ~ N (0, %), w;(0) ~N(0,1/d),
where B = 0 or 1//m. We define the Gram matrix K = (Kjj) € R™" as
1
Ki; = ;IEZ,,,N,,O [a(wai)o(waj)].

In this case, a lot is known in the so-called highly overparametrized regime. In this
part, for simplicity, we will assume that the domain of interest is the unit ball 4~ instead
of the unit cube.

There is both good and bad news. The good news is that one can prove exponential
convergence to global minima of the empirical risk.
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Theorem 24 ([21]). Let A, = Anin(K) and assume § = 0. For any § € (0, 1), assume that
m 2 n?X, 487 In(n?8~"). Then with probability at least 1 — 68, we have

Ra(a(t), W (1)) < e R, (a(0), W (0)). (3.29)

Now the bad news: the generalization property of the converged solution is no better
than that of the associated random feature model, defined by freezing {w;} = {w;(0)} and
only training {a; }.

The first piece of insight that the underlying dynamics in this regime is effectively
linear is given in [19]. Jacot et al. [53] termed the effective kernel the “neural tangent kernel”
and this terminology has got a lot of popularity. Later it was proved rigorously that in this
regime, the entire gradient descent path for the two-layer neural network model is uniformly
close to that of the associated random feature model [3,31].

Theorem 25 ([31]). Let Wy = W (0). Denote by f,(-; @, Wy) the solution of the gradient
descent dynamics for the random feature model. Under the same setting as in Theorem 24,

we have

Sup. | fun(£:0 (1) W) — fn(: 1) Wo)| < T

xeSd-1

(3.30)

VIn(1/8))%2,!
T :

This can also be seen from the (72, n) hyperparameter space. Shown in Figure 3 are
the heat maps of the test errors under the conventional and mean-field scaling, respectively.
We see that the test error changes smoothly as m changes for the mean-field scaling. In
contrast, there is a clear “phase transition” in the heat map for the conventional scaling where
we see the coexistence of a good (darker region) phase with small test error and a bad (lighter

Test errors Test errors
-0.6
2.6 -1.2
-1.8
2.4
-2.4
< 30 =
S 22 g
g -36 o
2.0 —4:2
-4.8
1.8 -5.4
T T : T T T —-6.0 T T T T T T
20 25 30 35 40 45 2.0 2.5 3.0 3.5 4.0 4.5
log1o(m) logio(m)

FIGURE 3

How the network width affects the test error of gradient descent solutions. The test errors are given in logarithmic
scale. These experiments are conducted for the single-neuron target function with d = 20 and learning rate

n = 0.0005. The two dashed lines correspond to m = n/(d + 1) (left) and m = n (right), respectively. (Left)
Conventional scaling. (Right) Mean-field scaling. For more details, see [72].
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region) phase where the test error is much larger. This means that, in practice, one has to tune
the network parameters so that they fall into the good phase. For the details of this study, we
refer to [72].

From this, it is natural to speculate that the sensitive dependence of the performance
on the hyperparameters is a consequence of this kinds of phase transition. For two layer
neural networks, the phase diagram in the hyperparameter space is relatively simple. For
more complicated neural network models, the phase diagram should be more complicated
and tuning the parameters becomes a much harder task.

Hardness of training. In high dimensions, a “dynamic curse of dimensionality” may affect
gradient descent training if the target function is not in Barron space.

Theorem 26 ([100]). There exists [ * with Lipschitz constant and L°°-norm bounded by 1
such that the parameter measures {p;} defined by the 2-Wasserstein gradient flow of either
R or R satisfy
limsup[t” R(p;)] = oo
t—>00

forally > ﬁ.

What makes matters worse is that even for functions in the Barron space, a dynamic
CoD might also happen. Livni et al. [67] show that learning Barron functions is equivalent to
solving some well-known hard problems in cryptography. This means that learning Barron
functions is computationally as hard as breaking a cryptosystem. Such results are powerful
but abstract. In the following, we provide an explicit understanding from the perspective of
learning orthonormal classes, which is a reinterpretation of the results in [73,87].

Consider a subset of the Barron space over X = [0, 1]%: ¥ = { f = 2sinQrwT"):
Z?:l w; < d,w; € Ni}. Note that the following statements hold: (1) || > exp(d); (2)
(fw> fw) = Sww: B) || flla < Cd?, Vf € F. Statements (1) and (2) are quite obvious
and a proof can be found in [7]. Statement (3) directly follows from Theorem 3. Consider
learning the function in & using the parametric model %(-; ) that includes, but is not lim-
ited to, the two-layer neural network model. Let R/ (6) = Ex[(h(x;6) — f(x))?]. Notice
that Vo R/ (0) = 2B [(h(x;0) — f(x))Veh(x:6)] = C(0) —2(Vgh(-;0), f). Let v be the
uniform distribution over ¥ . Then,

var., (VRY (9)) < 4B ;o (Voh(:0). f) = % Y (Veh(:0), )
feF
_ 4B [Voh(x: 0)|2
B 7]

, (3.31)

where the last inequality uses the fact that the functions in ¥ are orthonormal.

Since |F | = exp(d), the variance of the gradient with respect to different target
function is exponentially small as d increases. This means that the gradient can barely dis-
tinguish different target functions. As a result, gradient-based optimizations algorithms are
unlikely to succeed.
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These hardness results suggest that the Barron space is likely to be too large for
studying the training of two-layer neural networks. It is an important open problem to identify
the right function space, in which the functions can be learned in polynomial time by two-
layer neural networks.

3.10. Other results
Classification problems. A binary classification problem can be approached as a regression
problem with the additional knowledge that the target function only takes the values +1.
This a priori knowledge gives us different mathematical means, and we commonly choose to
interpret { f > 0} as { f &~ 1} and similarly for negative values. It is therefore not necessary
that f should take a particular value, but only that f have the correct sign (and possibly
be bounded away from zero). This is encoded in the common hinge loss and logistic loss
functions
log(1 + exp(—hy))

log2

s

zhinge(h» y) = maX{O? 1- hy}’ ZIOg(}L y) =

which primarily force alignment between the classifier # and the label y € {—1, 1}. Both the
hinge loss and the logistic loss differ from the £2-loss geometrically from the optimization
perspective: While the £2-loss vanishes at exactly one point, hinge-loss vanishes whenever
the classifier has the correct sign and magnitude > 1, whereas the logistic loss never vanishes.
The risk functional therefore has a much larger set of minimizers or none at all in typical
classification problems.

Another key difference is the fact that we are minimizing a surrogate loss. While
our goal is to minimize the measure of the misclassified set E(x, )~ [1{r(x)-y<0}], We use
convex loss functions £ which bound the zero—one loss function from above:

L(h,y) = Liny<oy-

The bounds on the true risk functional to minimize are therefore coarser by nature.

The nonexistence of minimizers for logistic loss has interesting implications from
the optimization perspective. It was shown in [16] that as the risk decays to zero along a
gradient flow trajectory, the geometry of a two-layer neural network adapts not only to correct
classification, but also a higher-order optimality condition (maximum margin classification),
where the “confidence” (or margin)

(x,yr)rélsrzlnt(u) hee)-y
becomes as large as possible. The notion of margin is easiest to interpret for linear classifiers,
where it corresponds to the distance to the decision boundary, and harder to interpret in
classes of nonlinear functions such as neural networks.

In multiclass classification, a similar philosophy holds, but the classifier has to align
with the vectors ey, ..., e corresponding to the k classes, rather than the directions £1.
The most popular loss functional in this case is the cross-entropy loss, which generalizes
the logistic loss. Just as the logistic loss, the cross-entropy loss function does not admit
minimizers either.
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The frequency principle. One of the most interesting observations for training dynamics is
the so-called “frequency principle”: During training, the low frequency components in the
target function tend to be recovered earlier than the high ones [1e3]. This is opposite to the
situation we usually see in numerical analysis, for example, the numerical solution of elliptic
PDE:s. It is well known that when using iterative algorithms to solve the algebraic equations
obtained from the numerical discretization of elliptic PDEs, it takes longer to remove the low
frequency errors than the high frequency errors. This is why multi-grid methods are useful
there. In ML, the opposite seems to be true.

The reason behind this is as follows. Roughly speaking, when solving PDEs, the high
frequency components correspond roughly to large eigenvalues of the underlying algebraic
system. As we have seen earlier, the training dynamics in machine learning is more like
solving some integral equation, therefore the high frequency components correspond roughly
to small eigenvalues. This should be an important avenue for understanding the training
dynamics.

Generative models. Generative models are ways of approximating probability distributions
using finite samples. One of the most well-known generative models is the generative adver-
sarial network, or GAN. Given a sample set S, the empirical distribution formed from S,
85, can be considered as an approximation to the underlying probability distribution. This
approximation is unsatisfactory since it cannot provide any new samples. However, it can
be shown, or at least argued, that without any explicit regularization, generative models will
always converge to the empirical distribution (see, for example, [39,104]). Therefore the merit
of a generative model must be that during training, it can produce better approximations to
the underlying probability distribution before ultimately converges to the empirical distribu-
tion. Theoretically, this means that one has to study the situation with “early stopping,” not
the ultimate convergence, and analyze whether the statement above really holds.

Results of this type have been proved for the so-called “bias potential” model [1e4].
However, it is fair to say that there are more open questions for the theoretical understanding
of generative models than for the case of supervised learning. One of the difficulty is that
generative models are not variational problems but rather game theory problems.

Machine learning of dynamical systems. Given a sample of time series, one 