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Preface

When we started planning the edition of the Proceedings of the International Congress
of Mathematicians 2006 (ICM2006), we considered the possibility of publishing only
an electronic version. However, it is pretty difficult to break traditions, particularly
for an activity like the ICM with an existence of more than a hundred years. Thus, we
finally decided to mimic the model that started in Berlin 98: to publish both, a printed
and an electronic version of the Proceedings. However, you may notice the influence
of living the Internet Era, where length of files is not really a big issue, by the number
of pages, altogether almost 4400, probably a record for the history of ICMs.

These Proceedings consist of three volumes. Volume I is divided into four parts.
The first one gathers the speeches at the opening ceremony including the presentation
of the Fields Medals, the Rolf Nevanlinna Prize and the newly awarded Gauss Prize
for Applications of Mathematics as well as the speeches at the closing ceremony. It
also contains information about the organization of the Congress, the committees,
sponsors and other collaborators. The second part contains the traditional laudationes
for the prizes, that is, an extensive presentation of the work of the awardees. The third
part is the main body of the volume and consists of the articles written by the plenary
lecturers of the Congress. One of the characteristics of this ICM has been the large
number of diverse activities accompanying day by day the program fixed by the IMU
Scientific Program Committee. In the fourth part of the volume, you can find articles
corresponding to some of them.

Volumes II and III were printed before the Congress and distributed to the partici-
pants in Madrid. They gather the articles written by the invited speakers in the different
scientific sections of the Congress.

The on-line version of these volumes is accessible at the address http://www.
icm2006.org/proceedings

We take this opportunity to express our thanks to the authors of the articles for
their effort in the preparation of excellent contributions. We also would like to express
our gratitude to the EMS Publishing House for the superb job in the edition of these
Proceedings and all the printed material of the ICM2006.

March 2007 Marta Sanz-Solé
Javier Soria

Juan Luis Varona

Joan Verdera
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Organization of the Congress

Manuel de Leon, President of the ICM2006

In 1998, the Real Sociedad Matemaética Espafiola, the Societat Catalana de Matema-
tiques, the Sociedad Espaiiola de Matemadtica Aplicada and the Sociedad de Estadis-
tica e Investigacion Operativa got together to reorganize the Spanish Committee of
Mathematics (CEMAT) representing Spain at the IMU. This Committee, which in-
cludes three other societies (the Federacién Espafiola de Sociedades de Profesores de
Matematicas, the Sociedad Espafiola de Investigacién en Educacion Matematica, and
the Sociedad Espaiola de Historia de las Ciencias y de las Técnicas), put forward the
Spanish candidacy to host the 25th International Congress of Mathematics in Madrid
in 2006, as well as the IMU General Assembly in Santiago de Compostela.

This bid was initially backed by the City of Madrid, the Autonomous Community
of Madrid, the Ministry of Education, Culture and Sport, the Ministry of Science and
Technology and the Ministry for Foreign Affairs. His Majesty King Juan Carlos I
also gave his support to the candidacy with a letter included in the dossier. In addi-
tion, backing was forthcoming from the universities in the region (the Universidad
Complutense de Madrid, the Universidad Auténoma de Madrid, and the Universidad
Carlos III de Madrid) with letters from their respective rectors, as well as from the
president of the Consejo Superior de Investigaciones Cientificas (CSIC). An associa-
tion was created to promote the candidacy, which brought together the support of all
the above-mentioned bodies and institutions. The candidacy was advocated by the
Spanish delegation headed by José Luis Ferndndez at the 24th General Assembly in
Shanghai, and was unanimously approved by vote. The invitation to come to Madrid
was formally made on behalf of Spain by Carles Casacuberta at the ICM2002 closing
ceremony in Beijing.

The association formed to present the candidacy was dissolved on its return from
China, and work began on the organization of the ICM2006 in Madrid and the General
Assembly in Santiago. To this end, the ICM2006 Madrid Association was set up,
independently of the CEMAT and the societies but in complete co-ordination with
all of them. The first president of this association was Carlos Andradas, who was
replaced in 2003 by Manuel de Leén. At the same time, an Organizing Committee
responsible for the General Assembly was set up at the Universidad de Santiago. This
Committee included the three universities in the region (Santiago de Compostela, La
Corufia and Vigo), and was headed by the dean of the Faculty of Mathematics, Juan
Manuel Viafio. Both bodies have worked in full co-ordination with each other in
recent years.

A further important point is that, although the ICM2006 was to be held in Madrid,
the organization of the congress was a joint effort across the whole country. In addition
to the General Assembly in Santiago, the Committee was composed of mathematicians
from all over Spain, a reflection of the country’s historical and cultural wealth and
variety. A consultation of the web page will reveal messages of welcome not only in
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English, but also Spanish, Catalan, Euskera and Galician; in other words, in all the
official languages of the Spanish state.

A major congress with a scope such as that of the ICM also requires strong financial
and logistic support from public administration bodies, and as such is subject to
political changes. This is precisely what occurred in the city and region of Madrid.
The change of government in Spain in 2004 brought about a restructuring of ministries,
and with it a corresponding change in our interlocutors, who became the Ministry of
Education and Science, the Ministry of Culture, and the Ministry of Foreign Affairs
and Cooperation. We are bound to state that the support shown by the previous
government for the organization of the ICM was taken up by its successor, both of
whom were fully aware of the unique importance of the event.

With regard to financial support, the ICM2006 Executive Committee worked ex-
tremely hard to achieve the following goals: 1) To secure the backing for the event
from institutions; firstly the Committee of Honour was proud to have His Majesty
the King as its president, with representatives of all the public authorities: the Prime
Minister, other ministers, the mayor of Madrid, the president of the Regional Govern-
ment, and the rectors and president of the CSIC; 2) To ensure solid public funding,
which came from the Ministry of Education and Science, the Community of Madrid,
Madrid City Hall and from the CSIC, and 3) To attract funding from the private sector,
which eventually fell short of initial expectations, and which except for organizations
such as the Vodafone Foundation, BSCH, the Areces and Enterasys Foundations, as
well as Spanish companies and those with their headquarters in Spain, are still a long
way from recognizing mathematics as a driving force in research, technological de-
velopment and innovation. We Spanish mathematicians have also learned that this
section on the road to understanding still remains to be covered.

The organization of an ICM requires an important logistical underpinning that
cannot be left to voluntary contributions. For that reason we chose a congress agency
with great experience in organizing major events, and one with enough flexibility
to adapt to our needs. This agency was Unicongress. With their team headed by
Paloma Herrero we worked hand in hand as though the ICM2006 were indeed a joint
venture, and together we shared the achievements and setbacks which, like all those
who have been involved in previous ICMs, we know are part of and parcel of this
difficult task. I am happy to say that our choice was the right one, and that the outcome
was satisfactory for all concerned. We also believe that for Unicongress, too, this was
anew experience, since any ICM amounts to much more than a conventional congress.

The ICM congress logo is something that remains in the mind for years to come.
It is not easy to devise a logo that embodies at once the essence of a country and
mathematics itself. After many attempts we settled on the one that has since become
familiar, and is inspired in the sunflower. One the one hand, the sunflower symbolizes
the Spain of sun and light already known to many; on the other, the number of its
spirals to right and left are elements of the Fibonacci sequence. The artistic creativity
of its devisers led to an image that resembles both a sunflower and the fractal nature of a
Romanesco cauliflower. This has given rise to different mathematical interpretations,
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and even to different reproductions of the original. The colours of the logo can be
fully appreciated on the congress website, where in the logo structure the different
themes are associated with the different colours.

The logo formed the basis for one of the official posters designed to promote the
ICM2006, together with four others based on well-known pieces of Spanish archi-
tecture with a mathematical content. These five posters were sent to mathematical
departments the world over and have been very well received internationally.

The target for the ICM2006 budget was 2 500 000 euros, including the attendance
fees and specific help from the IMU. The fees could not be set too high, otherwise
it would have prevented mathematicians from countries with economic difficulties
from attending the congress. Thus following the custom of previous ICMs, it was
set at 260 euros, which scarcely covered the expenses generated by each participant
in terms of proceedings, coffee, congress bag, materials, etc... As mentioned before,
most of the budget was provided by public sources and the fees. On-going work with
the General Secretariat of Scientific and Technological Policy enabled us to meet all
budget requirements without any final deficit. I would like to mention the outstanding
work carried out by the Treasurer, Alberto Ibort, and the vice-Treasurer, Miguel Angel
Rodriguez, thanks to whom the accounts for the ICM2006 remained always on an
even keel.

Every ICM is special in some respect, and ours was no exception. The Committee
wanted to emphasize three main branches or axes peculiar to the geo-strategic situation
of Spain in history and in the world, in particular in relation to Europe.

* The European axis, as a reflection of Spain’s position in Europe, symbolized
by holding the General Assembly in Santiago de Compostela, the destination
of pilgrims along the Road to Santiago, which acted as a channel for culture
and science in the Middle Ages.

* The Latin American axis, highlighting the existence of a cultural community
by means of which Spain wishes to further its links, including those concerned
with mathematics; and

* The Mediterranean axis, with Spain as a bridge between Africa, the Near East
and Europe, with the intention of increasing mathematical co-operation in this
sphere.

The venue for the congress deserves a section on its own. For a congress such as the
ICM, eminently scientific in character, but also with its relevance in social and media
terms, with the presentation of the most prestigious prizes awarded in mathematics,
an appropriate venue is a crucial factor. The Palacio Municipal de Congresos (PMC)
in Madrid is a striking building designed by Ricardo Bofill, one of the most highly
recognized Spanish architects on the international scene. This majestic building,
equipped with all the latest modern technology, provided everything we could have
wished for. But this did not come cheaply, and in fact accounted for a considerable
part of the budget. However, thanks to our collaboration with the Convention Bureau
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of Madrid, Madrid City Hall, and those in charge at the PMC itself, we were able to
secure the building as the venue for the congress. In retrospect, I believe our decision
to have been the correct one, and it is true to say that the ICM2006 would not have
been the same without these premises.

The opening ceremony is another vital part of any ICM. For several months, we
debated with the IMU Executive Committee, and in particular with its president,
Sir John Ball, about how the ceremony would be structured. The presence of His
Majesty the King at this opening ceremony on August 22nd was decisive for attaining
the impact desired, and we are grateful for the extraordinary co-operation extended
by the Royal Household from the very beginning. In spite of difficulties with the
agenda, to say nothing of the security measures required, everything was in place on
time for the event. Not only is financial support from public institutions necessary for
a congress of this nature, but also the physical presence of their representatives. In
this case, we the organizers would like to express our thanks to the Royal Household,
to Madrid City Hall, to the Community of Madrid and the Ministry of Education and
Science for all their support in both these respects. The opening ceremony was divided
into two parts; the first part consisted of a video produced by the organizers showing
the relation of mathematics with art and culture through the ICM2006 official posters.
There was also a musical performance by the Ara Malikian Trio that enjoyed great
success. The second part consisted of the official speeches and the presentation of the
prizes by His Majesty the King. We believe this was an emotive and attractive event
befitting the importance of the awards and the prize-winners themselves. Finally, His
Majesty the King delivered a speech pointing out the vital role played by mathematics
in education, knowledge and development. After his address, the King declared the
Madrid ICM2006 officially open. His Majesty also attended the cocktail reception
held after the opening ceremony, and delighted everyone with his cordiality and
friendly approachability.

After the opening ceremony, the congress unfolded according to plan. The quality
of the lectures was a concern of both the Programme Committee and the Local Pro-
gramme Committee, not only for their content, which was beyond all doubt, but also
for the presentations. Noga Alon’s work on behalf of the PC, and Marta Sanz-Solé’s
on behalf of the LPC, were both admirable, and I am sure I am not mistaken when I
say that the ICM2006 fully emulated previous ICMs in this respect. There is no doubt
that the technological facilities at the Palacio Municipal de Congresos did much to
ensure the quality of both invited talks and plenary lectures.

The scientific programme consisted of 20 plenary lectures and 169 invited talks
distributed over 20 sections, the same amount as at the ICM2002. With regard to the
open programme, the presentation of posters was encouraged by a competition with
prizes for the best entries, a measure whose purpose was to make the programme
more agreeable and digestible.

Steps are taken at every ICM to encourage the participation of mathematicians
from the more disadvantaged countries. Indeed, co-operation in development is a
priority of the IMU, as explicitly stated in the resolutions approved at the 25th General
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Assembly. On this occasion, the IMU and the ICM2006 established the following
five categories for financial support:

1. Young mathematicians from developing and economically disadvantaged coun-
tries.

2. Senior mathematicians from developing and economically disadvantaged coun-
tries.

3. Senior mathematicians from Latin America.
4. Senior mathematicians from Mediterranean developing countries.
5. Young Spanish mathematicians.

The IMU subsidized the travel expenses of 143 mathematicians selected for Pro-
grammes 1 and 2: 80 on Programme 1 and a further 63 on Programme 2, while
the Local Organizing Committee covered the registration fee, board and lodging in
Madrid for 131 of these 143 participants.

In accordance with the three axes previously described, the ICM2006 Organizing
Committee also managed to include Programmes 3, 4 and 5, covering the registra-
tion fee, board and lodging in Madrid for 178 mathematicians (Programme 3: 76;
Programme 4: 70; Programme 5: 32) and 43 airline tickets (Programme 3: 25; Pro-
gramme 4: 18). These five programmes were co-ordinated by C. Herbert Clemens,
Linda Geraci and Sharon Laurenti (IMU), and also by Marisa Fernandez (ICM2006).
This task was possible thanks to their efforts and dedication.

The specific funding was provided by the IMU Special Development Fund, the
Spanish Agency for International Cooperation (Ministry of Foreign Affairs and Coop-
eration), the Departments of Mathematics and Deans of the Faculties of Mathematics
of the Spanish Universities, and the Carolina Foundation, as well as by a large number
of Spanish and non-Spanish mathematical societies.

As regards co-operation, one of the activities undertaken prior to the ICM2006
was the “Mathematics for Peace and Development” School. During the week July
17th-23rd, young mathematicians from Arab countries (including Palestine), Latin
America, Europe and Israel attended eight courses given at the Universidad de Cérdoba
by prestigious mathematicians from different countries. The aim of the School was
to draw attention to mathematics as an effective means of contributing to the progress
of peoples, as well as its use as a universal language for mutual understanding among
different cultures. The choice of Cérdoba as the venue was the role of this city as
a symbol of the “Spain of the Three Cultures”, where Christians, Jews and Muslims
lived side by side in an example of tolerance and co-operation.

The Madrid ICM2006 was also complemented by 64 satellite conferences — a
record. 36 of them were held in Spain and constituted a demonstration of the orga-
nizational powers of Spanish mathematicians and their many international relations.
There was no specialized branch of mathematics that was not addressed in any of
the satellite conferences. Although at times these satellite conferences can draw
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attendance away from the ICM itself, in this case the number and quality of such con-
ferences more than made up for any shortfall and proved to be an excellent scientific
accompaniment.

Cultural and dissemination activities were other facets of the ICM that were ac-
corded fundamental importance. In consequence, an ambitious programme was drawn
up to cover two fronts: on the one hand, society in general, and on the other the
congress participants. Our aim was to draw attention to the role played by mathemat-
ics throughout the length and breadth of geography and history and in the culture of
humankind, as well as showing how mathematics is an essential part of life. Judging
by the results, and by the reactions to these cultural activities, which were praised in
King Juan Carlos’ opening speech and in the closing speech by the IMU president,
they were one of the outstanding successes of the congress. The responsibility for
this task fell to a team led by Antonio J. Durdn, in collaboration with Radl Ibéez,
Guillermo Curbera and Antonio Pérez-Sanz.

In relation with the ICM2006 in particular, and in the effort to bring mathematics
closer to society at large, the exhibition “The Life of Numbers” was expressly prepared
for the occasion, and was organized and financed by the Ministry of Culture and the
Spanish National Library. The exhibition was held in Madrid at the Spanish National
Library from June 7th to September 10th, and provided an account of the relation of
human beings with numbers from the first marks left by human hands in Palaeolithic
cave paintings to the Renaissance, a journey through Mesopotamia, Egypt, Greece,
Mesoamerica, Rome, India and the Middle Ages. On display at the exhibition were
Babylonian tablets, Roman coins, pre-Roman and Mayan manuscripts, an impres-
sive collection of Renaissance mercantile arithmetics, engravings by Leonardo da
Vinci and Durer, maps of the Earth and the Stars, all the exhibits coming from dif-
ferent Spanish institutions: the Museum of America and the National Archaeological
Museum, the Library of the Monasterio de El Escorial, the Capitular & Colombina
Library in Sevilla, the Universidad Complutense de Madrid Library, from Catalo-
nia, and of course from the Spanish National Library itself. The piece de résistance
was the Codex Vigilanus, a manuscript composed in 976 at the Monasterio de San
Martin de Albelda (La Rioja), currently conserved at the Monasterio de El Escorial.
This manuscript is the oldest written record of its kind in history and includes the
Hindu-Arabic numerals which are still the basis of our numbers today. A beautifully
illustrated edition of the book “The Life of Numbers” was published for the exhibition
with texts by Alberto Manguel, Georges Ifrah and Antonio J. Durdn (who was also
the curator of the exhibition).

Also with the general public in mind, three exhibitions were organized at the
Centro Cultural Conde Duque in Madrid, financed by the Ministry of Education and
Science and the Spanish Foundation for Science and Technology. Firstly, the already
well-known “Experiencing Mathematics”, an exhibition originating at the French
Centre des Sciences in Orledans and sponsored by UNESCO. This exhibition was
presented under the Spanish title of “;Por qué las Matemdticas?” (“Why Mathe-
matics?”’) and was open at the Conde Duque Cultural Centre from August 17th to
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October 20th (the curators being Ratl Ibafiez and Antonio Pérez Sanz). The sec-
ond exhibition, organized expressly for the occasion, concerned fractal art and went
under the title of “Fractal art: Beauty and Mathematics”. On display were works
by the twenty-eight finalists in an international competition expressly organized for
the ICM2006 in Madrid, with a jury of panellists headed by Benoit Mandelbrot.
Professor Mandelbrot gave a talk on “The Nature of Roughness in Mathematics,
Science, and Art” at the main congress venue, where a replicated version of this
exhibition could also be seen. Highly visual catalogues were published for both exhi-
bitions (the first included a notebook of activities for students). The third exhibition
was “Demoscene: Mathematics in Movement”, held in parallel at the Centro Cultural
Conde Duque and the congress venue, and consisted of a selection of computer-
aided animated films with live commentary by some of their creators. Desmocene is
a powerful source of mathematical algorithms for the creation of graphic and visual
effects, whose special digital effects are currently used in feature films and video
games.

The success of all these exhibitions, whose purpose was to stimulate interest about
mathematics in society at large, together with the celebration of the ICM2006 in itself,
can be measured by their repercussion in the media and by the large number of people
who came to visit them, to the extent that they frequently had to queue to enter. Those
in charge at the Spanish National Library and the Centro Cultural Conde Duque were
frankly surprised by the number of visitors, given the subject-matter of the respective
exhibitions.

The ICM2006 Executive Committee also mounted an extensive programme of
activities for the Congress participants themselves.

The most ambitious of these events was the exhibition entitled “The ICM through
History”, based on the history of the 25 ICMs held to date, from the first held in
Zurich in 1897 to the Madrid congress in 2006. The aim of the exhibition was to
provide a visual chronicle of all the ICMs, emphasizing their significance in terms
of human endeavour and using the activities of mathematicians at the ICMs as a
mirror in which history, culture, technology, fashion and changing attitudes were
reflected. Some 500 written and photographic documents provided a twin portrait
of the ICMs; on the one hand, a chronological review of the history of the ICM,
and on the other a transversal view through the social life of the congresses, the
graphic design for the congresses and the buildings where they have been held. The
physical and conceptual heart of the exhibition resided in the display of medals,
original reproductions of the Fields, Nevanlinna and Gauss awards provided by the
Royal Canadian Mint, the University of Helsinki and the Deutsche Mathematiker-
Vereinigung. Guillermo Curbera, the curator of the exhibition, was helped in his
task by many universities, libraries, archives, museums, mathematical societies and
individuals, enabling him to assemble an extraordinary collection of photographs and
documents, many of them never available to the public before. The exhibition was
entirely financed by the ICM2006 Executive Committee and has remained as an asset
of the Spanish mathematical societies.
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Another cultural activity that aroused much public and media attention was the
Japanese sculptor Keizo Ushio’s live sculpting of a square block of black granite
weighing various tonnes. From this he fashioned a torus which he split into two
curved sections to form a sculpture resembling the symbol for infinity. Ushio began
work in early August on the campus of the Consejo Superior de Investigaciones
Cientificas, from where he moved to the Congress venue on August 22nd. It was there
he completed the work in full view of congress participants and passers-by, producing
a sculpture that has attracted much attention, especially in Spain and Japan.

This programme of activities was complemented by others which, although not
organized directly by the Committee, were included in the general programme. One
of the most noteworthy was the exhibition based on classical mathematical texts under
the title of the “History of Mathematical Knowledge”, which was held at the “Marqués
de Valdecilla” Historical Library of the Universidad Complutense de Madrid between
June 28th and October 27th (with Ricardo Moreno as curator). Another was the
replicated version of the exhibition organized by the University of Vienna, with Karl
Sigmund and John Dawson as curators. This exhibition commemorated the centenary
of Kurt Godel and took place at the Botanical Garden of the Universidad Complutense
de Madrid from August 22nd to September 8th (with Capi Corrales Rodrigafiez as local
co-ordinator). Further exhibitions were: “Singularities”, mounted at the Congress
venue by professor Herwig Hauser (including a film show); a tribute to the musician
Francisco Guerrero (including a concert held at the venue), and the mathematical visit
to the Monasterio de El Escorial and its library (tickets for this event were sold out
six months before the Congress began).

Pride of place among the cultural events was the official gift presented to all
plenary lecturers and invited speakers by the Executive Committee in recognition
for their contribution to the Congress. This consisted of a facsimile edition of the
works of Archimedes, “On the Sphere and the Cylinder”, “On the Measurement of
the Circle” and “The Quadrature of the Parabola” (published jointly with the Real
Sociedad Matematica Espaiiola), in an annotated Spanish translation. This is a luxury
edition comprising two volumes presented in a box-set (333 x 230 mm). The first
volume is a facsimile book of a 16th century manuscript from the Library of El
Monasterio de El Escorial, a manuscript copied in Venice at the expense of Diego
Hurtado de Mendoza (Charles V’s ambassador at Venice from 1527 to 1547) from the
manuscript CCCV extant in the Marciana Library. The second volume contains the
annotated Spanish translation of those Archimedean works, and the following four
studies: (1) Greek Science: Towards a Critical Knowledge by Carlos Garcia Gual;
(2) Archimedes and His Manuscripts by Antonio J. Durdn (who was also in charge
of co-ordination of the edition); (3) Archimedes: A Legend of Wisdom, and (4) The
Mathematical Works of Archimedes, both by Pedro M. Gonzélez Urbaneja.

Many other special activities were organized, a list of which would be too long
to include in this introduction, although we may mention the scientific part of the
Emmy Noether Talk, given by Ivonne Choquet-Bruhat, the special talk on Poincaré’s
Conjecture by John Morgan, and the talk given by Benoit Mandelbrot. A joint scien-
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tific activity organized by the London Mathematical Society and the Real Sociedad
Matematica Espafiola was also held.

Several round table discussions were also held, among which were those organized
by the European Mathematical Society on August 23rd, “Should Mathematicians Care
about Communicating to Broad Audiences? Theory and Practice”, chaired by Jean
Pierre Bourguignon and with the participation of Bjorn Engquist, Marcus du Sautoy,
Alexei Sossinsky, Francois Tisseyre and Philippe Tondeur, and the ICM2006 Closing
Round Table on August 29th, “Are Pure and Applied Mathematics Drifting Apart?”,
chaired by John Ball and with the participation of Lennart Carleson, Ronald Coifman,
Yuri Manin, Helmut Neunzert and Peter Sarnak.

One of the most long-standing traditions in the history of the ICM is the edition of
a special commemorative stamp. On this occasion, the design for the stamp included
the congress logo and the first known written record of the Hindu-Arabic numbers
from the Codex Vigilanus, published in Spain in the 10th century, which is currently
conserved at the Library of the Monasterio de El Escorial on the outskirts of Madrid.

The volunteers are a collective who deserve a special mention. We also wanted this
group to be composed of representatives from all over Spain, and indeed volunteers
came forward from all the Spanish universities. Some 700 pre-graduate and pre-
doctoral grant students responded to our call, from which a total of 350 were selected.
These volunteers worked hard and enjoyed the experience to such an extent that they
were sad to see the ICM2006 come to a close, which in itself stands as a testimony
to the success of their efforts. We on the Organizing Committee are indebted to all of
them. They worked tirelessly for long hours without complaint, and I hope that many
of them will be able to participate in the ICM2010 as fully-fledged mathematicians.

Every ICM at its conclusion is obliged to present statistics providing an account
in numbers of all that took place. The final figure of participants reached 3,600, with
400 accompanying persons. The number of countries from which participants came
set an all-time record of 108. The number of exhibitors rose to 45. In the scientific
part of the congress there were 20 plenary lectures, 169 invited talks and some 1,000
short communications and posters.

There is no doubt that the most outstanding feature of this congress was the ex-
traordinary attention it received from the media. In this regard, some have attributed
this interest to the conspicuous absence of Grigory Perelman and his refusal to receive
the Fields Medal, but it must be said that one year before the start of the congress the
Organizing Committee set up a press office with the “Divulga” agency. Over the 20
weeks immediately prior to August 22nd, a weekly news bulletin providing informa-
tion about the contents of the coming ICM was published. At the same time, the ICM
public presentations and the most important parallel activities were programmed. Our
press team headed by Ignacio F. Bayo and Ménica Salomone also collaborated with
the IMU Executive Committee at an international level. Indeed, we sent letters to the
leading communications media in Spain and abroad inviting their representatives to
the opening ceremony. The combination of all these circumstances made the event a
media success. For ten days during the summer in Spain the ICM2006 was headline
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news, and international repercussion was likewise unprecedented. The lesson to be
learned from this is that we mathematicians must work hand in hand with journalists
and the media if we wish to emerge from the information ghetto.

Press work culminated in the publication of 7 issues of the “Daily News”, often
produced against the clock and in spite of permanent pressure on the press office
arising from the continuous avalanche of requests for information from the media
and its representatives. In addition, press conferences were organized on a daily
basis, which sometimes attracted audiences hitherto unconceivable in the world of
mathematics.

With regard to diffusion, it is also necessary to mention the series of programmes
produced by the UNED Educational Television and provided for the Organizing Com-
mittee. These programmes constitute documents of great educational value.

The Closing Ceremony was held on August 30th and featured the expressions of
gratitude and acknowledgement from the IMU president to the different committees,
my own to the committees who worked on the organization in Spain, the address by
the elected president of the IMU, Laszl6 Lovasz, and the invitation from the Indian
representative, Rajat Tandon, to attend the ICM2010 to be held in his country, in the
city of Hyderabad.

After every ICM there still remains work to be done. In addition to the thick
Volumes II and III forming part of the Proceedings, there is the first that the reader now
holds in his or her hands. The Publishing House of the European Mathematical Society
was charged with the publication of these proceedings, and the result has certainly
been impressive. This first volume is accompanied by a DVD with recordings of the
opening and closing ceremonies, as well as all the plenary lectures. We believe that it
provides an excellent complement to the text and an unforgettable record for all those
who shared with us those wonderful ten days in Madrid in August 2006.

This ICM2006 will have a long-lasting effect on Spanish mathematics. It has been
a collective effort that has brought us closer together and made us aware of belonging
to a national and international community. On a domestic level, it has also led to a
self-examination that has given rise to initiatives that are already under way to improve
research in the discipline. Furthermore, it has brought mathematics more to the social
forefront to an extent never before witnessed in Spain. This is a situation that we
must make the most of in the years to come. Moreover, the eyes of the international
mathematical collective were fixed on Spain this summer, a fact that will undoubtedly
further greater collaboration.

We hope to have fulfilled all the expectations placed in us by the IMU, and leave
the mathematical doors of our country open to the future.
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Opening ceremony

Sir John Ball, President of the International Mathematical Union

Your Majesty,

Sefior Ruiz Gallardén,
Sefiora Cabrera,

Sefiora Aguirre,

Professor Manuel de Leén,
Distinguished guests,
Ladies and gentlemen,

iBienvenidos al ICM dos mil seis! Welcome to ICM 2006, the 25th International
Congress of Mathematicians, and the first ICM to be held in Spain. We offer our
heartfelt thanks to the Spanish nation, so rich in history and culture, for its invitation
to Madrid.

We greatly appreciate that His Majesty King Juan Carlos is honouring mathematics
by His presence here today.

While celebrating this feast of mathematics, with the many talking-points that it
will provide, it is worth reflecting on the ways in which our community functions.

Mathematics is a profession of high standards and integrity. We freely discuss
our work with others without fear of it being stolen, and research is communicated
openly prior to formal publication. Editorial procedures are fair and proper, and work
gains its reputation through merit and not by how it is promoted. These are the norms
operated by the vast majority of mathematicians. The exceptions are rare, and they
are noticed.

Mathematics has a strong record of service, freely given. We see this in the
time and care spent in the refereeing of papers and other forms of peer review. We
see it in the running of mathematical societies and journals, in the provision of free
mathematical software and teaching resources, and in the various projects world-wide
to improve electronic access to the mathematical literature, old and new. We see it in
the nurturing of students beyond the call of duty.

This service is exemplified by the tremendous efforts made over the last four years
by Spanish mathematicians to bring this Congress to fruition. I propose that we for-
mally record our appreciation of their splendid work through electing by acclamation
the President of the Local Organizing Committee, Manuel de Ledn, as President of
this International Congress.

The Scientific Program of the Congress was in the capable hands of an international
Program Committee consisting of Noga Alon (Israel, Chair), Douglas Arnold (USA),
Joaquim Bruna (Spain), Kenji Fukaya (Japan), Nigel Hitchin (UK), Vaughan Jones
(USA), Pierre-Louis Lions (France), Gregory Margulis (USA), Richard Taylor (USA),
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S.R. Srinivasa Varadhan (USA), Claire Voisin (France), Enrique Zuazua (Spain). The
International Mathematical Union is most grateful to the members of this committee,
and to the many other mathematicians who served on the sectional panels, for their
work in putting together a fine program of lectures.

Mathematicians do not own mathematics. But among the many millions who use
mathematics daily they are distinguished by their constant search for deeper under-
standing based on an appreciation
of beauty, simplicity, structure and
the power of generalization. Yet
the lesson of past centuries is that
these vital elements in the develop-
ment of mathematics require con-
stant invigoration by new ques-
tions that come from the world
about us.

There is no object, large or
small, and almost no aspect of
human existence, to which math-
ematics cannot contribute under-
standing. In particular, the great
questions facing the planet, such as
how to model and manage the cli-
mate, pose profound mathematical
challenges. The need for an un-
derstanding of mathematics, of the
mathematical way of thinking, and
L of the role mathematics can play
MAT HEN IAINS in society, is no longer confined to
scientists and engineers, but is in-
creasingly important for those who
work in industry, finance, the so-
cial sciences, and in many other walks of life, and thus also for all involved in ed-
ucation, for the media, opinion-formers and politicians. As subjects become better
understood, they become more mathematical. Thus in the life sciences, for example,
we see a rapid increase in the use of mathematical models, a trend that promises to
profoundly influence medicine in the future.

In contemplating the importance of mathematics for the world, we see the impor-
tance of supporting the development of mathematics throughout the world. Mathe-
matical talent does not respect geographical boundaries, but the opportunities, work-
ing conditions and tradition necessary for such talent to flourish depend heavily on
geography, economic conditions and politics. Each country and region has its own
needs for science and mathematics, its own problems as regards its mathematical
development.
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Itis for these reasons that the IMU has made a special effort over the last four years
to increase its support for mathematicians in developing countries. It has established
an office for developing countries at the International Centre for Theoretical Physics
in Trieste, and has cooperated with ICTP and the Abel Fund in the founding of the
Ramanujan Prize for young mathematicians working in developing countries. At the
IMU General Assembly held in Santiago de Compostela last weekend, a new class
of Associate Membership was created to encourage more countries to join the Union.
The IMU has augmented its developing countries programmes, particularly in Africa,
helped by generous support from the following sponsors:

Niels Henrik Abel Memorial Fund (annual grant),

Nuffield Foundation and the Leverhulme Trust (linked grants to support math-
ematics in sub-Saharan Africa, in conjunction with the London Mathematical
Society and the African Mathematics Millennium Science Initiative),

David and Lucile Packard Foundation,
Andrew W. Mellon Foundation,
American Mathematical Society,
London Mathematical Society.

Other sponsors, including those of the ICM itself, have made it possible for some
400 mathematicians from developing and economically disadvantaged countries, par-
ticularly younger researchers, to attend this Congress:

ICM sponsors,
American Mathematical Society,

Mathematical Society of Japan,

USA Committee for Mathematics,
London Mathematical Society,

Het Wiskundig Genootschap Netherlands,
Italian Mathematical Union (UMI),
German Mathematical Society (DMV),
European Mathematical Society.

Despite these initiatives, a dramatic increase in both funding and scientific inter-
change is required to address the global imbalances in mathematical education and
research. In sharing mathematical knowledge and experience with those who work
around the world, it is the whole mathematical community that benefits, and we make
our own contribution to peace and stability through the binding together of peoples
by a common language independent of politics, religion and culture.

I wish you all a rewarding and exciting Congress.
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Manuel de Ledn, President of the ICM2006 Organizing Committee

Your Majesty,

President of the Community of Madrid,
Minister of Education and Science,
Mayor of Madrid,

Professors John Ball and Phillip Griffiths,
Dear Colleagues, ladies and gentlemen,

On behalf of the Organizing Committee I would like to welcome you all to the
ICM2006, and in particular to this opening ceremony.

First of all, I want to express our gratitude to the King Juan Carlos for His contin-
uous support.

iMuchas gracias, Majestad!

The ICM is a congress of great importance. Every four years, mathematicians
from all over the world meet to celebrate mathematics, to inform each other of our
latest results, to honour the
most outstanding achieve-
ments during this period, to
debate the present and fu-
ture state of the discipline,
to discuss how best to trans-
fer new knowledge, and to
bring mathematics closer to
society and to improve pub-
lic appreciation.

We Spanish mathemati-
cians feel very honoured to
have been entrusted by the
IMU with the organization
of this ICM. The constant
support of the IMU Execu-
tive Committee and its president, Professor John Ball, has been essential for this
task.

Furthermore, an event of this magnitude requires a great financial commitment,
which on this occasion in Madrid has amounted to approximately two and a half
million euros. Much of this funding has been provided by the Ministry of Education
and Science, the Ministry of Foreign Affairs, the Ministry of Culture, the Community
and the City of Madrid, and many others that you can see listed below; we are grateful
for that support.

In addition to the scientific activities, an interesting series of round-table discus-
sions has been organized, as well as an extensive programme of cultural and parallel
activities. The fact that the entire process of registration and communication has been
carried out electronically is also worthy of mention. Both this opening ceremony




Opening ceremony 29

and all the plenary lectures will be transmitted online throughout the world, and the
congress records will be available on the website. This is areflection of the importance
of mathematics in today’s Information Society.

The logo deserves a special mention because it is an essential part of every ICM,
and on this occasion in Madrid it is the basis on which we have built the image of the
Congress. It depicts a sunflower consisting of optimum growth mathematics and the
golden mean representing a Spain of sunlight and optimism.

Our wish and our aim is for this ICM2006 to provide a platform for making the
presence of mathematics felt in society, a process in which the media must inevitably
play its part. To this end, the ICM2006 set up a Press Office that has worked together
with the IMU to issue a weekly bulletin in English and Spanish aimed at both the
media and the public at large.

Allow me also to explain how Spain has prepared itself for this day. Ten years ago,
Spanish mathematicians set about reorganizing the social structure of our community,
and in particular the Committee that liaises with the International Mathematical Union.
At the same time, we began working on the organization of the World Mathematical
Year in Spain. This collective project has had one important consequence: Spanish
mathematicians came to the realization that we are a community, a community which,
perhaps more than any other scientific discipline in this country, has subjected its
strengths and weaknesses to an ongoing process of examination.

We have learned that mathematical research in Spain has made great progress
in recent years. We now need to raise the standard of quality and encourage the
interdisciplinary nature of mathematics, and are presently taking steps to achieve
these aims.

We all agree on the vital role of mathematics in education, but it still remains to
convince everyone of its equally important role as key technology for development.
The new schemes for mathematical research currently being set up in Spain will un-
doubtedly help to increase qualitative and quantitatively the presence of Mathematics
in science, technology and innovation. For a country like ours, this is the basis for a
prosperous future.

The celebration of the ICM2006 in Madrid constitutes a landmark on this road.
It also underlines our sense of belonging to an international community to whose
organization and activities we are eager to make a contribution, continuing the process
of internationalization that is already under way in Spain.

On behalf of the Organizing Committee, I would like to thank all the participants
for coming to Madrid, some of them from very distant places, and I apologize if at
any time we have been unable to meet all their demands. We would like you to know
that in these coming days we are about to share, we are at your complete disposal.

Welcome to the ICM2006, welcome to Madrid! We wish you a successful con-
ference and a very pleasant stay. Thank you all very much!
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Alberto Ruiz Gallardon, Mayor of Madrid
Your Majesty,

Under the auspices of the Crown, and in keeping with the scientific and cultural
progress that this Institution has enabled in Spain, Madrid bears today the honour and
the responsibility of being the world capital of mathematical science. This has been
made possible by the International Mathematical Union’s choice of our city to host
its twenty-fifth Congress, responding not only to the efforts made by Madrid City
Council during its candidacy for the most prestigious mathematical event of our age,
but also to the very nature of the capital of Spain as a crossroads of knowledge.

Over the next few days, the Congress promoters will witness this city’s unques-
tionable capability regarding the organisation of significant events, with international
impact, in the fields of science, culture, sports or economics. Madrid’s excellent
infrastructures for the stag-
ing of fairs and exhibi-
tions and the wide range
of services it offers are
factors which explain the
city’s increasingly consoli-
dated position at the fore-
front in terms of the host-
ing of conferences and con-
gresses. However, the hos-
pitality of the inhabitants of
Madrid — on whose behalf I
take this opportunity to ex-
tend a warm welcome to the participants of the Congress — and their interest in the
intellectual progress of this century, are elements that have proved even more decisive
in choosing Madrid for a gathering of the brightest minds of our age.

Madrid’s long-standing relationship with mathematics can be traced back to at
least 1582, when Phillip II founded the Royal Academy of Mathematics. Madrid
also provided the stage upon which Agustin de Pedrayes, one of Spain’s most cele-
brated mathematicians, who achieved fame in the International Congress of 1799 in
Paris via his crucial contribution to the creation of the decimal metric system, car-
ried out his professional activity between the 18th and 19th centuries. Nevertheless,
Madrid’s confidence in the success of this Congress is focused more on the future
than on the past.

In a world where political systems appear faced with terrible challenges, where
technology is hampered by uncompromising materialism, where the humanities seem
overwhelmed by the challenge of providing an answer, you, as mathematicians, have
the great privilege of speaking a different and eternally youthful language, wherein
conjectures can be tested or refuted, whilst the language itself remains untainted by
despair and its universality undiminished by disagreement. Laymen have difficulty
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understanding the terms of the debate centred around Fermat’s Last Theorem or those
used to describe the essential humility of the mathematical possibilities surrounding
Godel’s Theorem. Nevertheless, we believe that certain equations are as beautiful as
the Iliad, as stated by the philosopher Edgar Quinet, and therefore we can find motives
for consolation and hope. Indeed, beyond the specific applications of mathematical
science, this discipline provides proof that the human need for understanding and for
creativity remain intact. In these turbulent and yet complacent times, the inherent
difficulty of mathematics — where, in the words of Plato, beauty and truth coincide —
constitutes an intellectual stimulus, an invitation to better ourselves and a bastion
of purity. The thinker George Steiner quoted Kepler to explain this phenomenon:
“amidst massacres [and war], the laws of elliptical motion belong to no man and to
no principality”.

Therefore, Sire, perhaps it is not only mathematicians who need to come closer to
society, by descending to the details of everyday life and explaining the usefulness of
their science to the people, but it is all of us who are obliged to make the ethical and
aesthetical effort to reach the same level of excellence, rigour and beauty that they
inhabit.

In this two-fold hope and trust, it is a great pleasure for me to welcome the world’s
best mathematicians to Madrid.

Mercedes Cabrera, Minister for Education and Science

Your Majesty,

When the International Mathematical Union chose the City of Madrid to host the
25th International Congress of Mathematicians and for the presentation of the pres-
tigious Fields Medals, the Spanish Government Ministry of Education and Science
understood that it had to
give its full support to the
Organizing Committee of
the event. In this way, our
support for the Congress be-
came an important part of
the Scientific Policy Pro-
gramme of Complementary
Measures.

Given that more than
8,000 Spanish mathemati-
cians are represented at the
International Mathematical
Union, we feel that at this
time and together with them all the citizens of Spain are likewise represented, since
we recognize the importance of mathematics in the development of thought, in the
shaping and management of reality, and in the progress of Culture.
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This Congress will serve to pave the way to new avenues of research, and to the
exchange of new advances and opinions among all the different fields of knowledge,
whether related directly or indirectly with mathematics. Furthermore, it will assist in
advising public bodies, the Ministry of Education and Science among them, on the
means of support it should adopt in the future.

We therefore celebrate this meeting as a great event of concern to everyone, and
with our best wishes for its success we greet the members of the International Math-
ematical Union; the Organizing Committee of the Congress; the scientists who will
be honoured for their achievements, and all the participants, especially all our guests
from abroad.

We do not know what some of the pioneers in the history of mathematical re-
search in Spain would have said if they had known about the congress we inaugurate
today.

However, we know what we, as scientists, teachers or holders of public office,
are obliged to offer both for them and for society in the matter of teaching and
research. For them, in recognition and in tribute to their work and their memory;
for society at large, because it is the proper task of public bodies, and in particular
of the Ministry I represent, to make scientific achievement and discovery available to
all in the interests of progress. That is why the Spanish Ministry of Education and
Science is currently developing different projects in support of research in the fields
of Mathematical Science.

As a basic policy, it is our aim to improve the role of mathematics in Education.
To that end, the restructuring of the Spanish educational system as laid out in the
new Organic Law of Education will enable us establish specific areas in which the
acquisition of logic-mathematical skills and the development of mathematical learning
at school level will accorded the status of basic abilities.

It is also our aim to pursue a new teaching methodology, encouraging practi-
cal experience in the classroom and furthering ongoing teacher training to meet our
educational goals.

With regard to the situation of research in our country, Spain occupies the 9th po-
sition in the world in terms of scientific production in mathematics. This constitutes
a considerable improvement over the last twenty-five years, and we expect the plans
that are now being developed to improve this performance even further, by consol-
idating quality research teams and strengthening relations with researchers working
on projects in other fields connected with technological innovation and development.

To achieve these goals, the National Programme for Mathematics has been set
up within the framework of the R+D+I National Plan. In addition, the Consolider
Mathematica Programme is being carried out as part of the broader Consolider Ingenio
2010, which will enable us to fund research work by top level groups in the field of
Mathematics. In fact, the Consolider Mathematica programme has been chosen by
the relevant Scientific Committee as a worthy recipient of immediate support.

We trust that these and other complementary measures, aimed at the training and
mobility of research personnel and the creation of research institutions, will strengthen
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Mathematical Science, both at an international level and in the Spanish System of
Science, Technology and Business.

But today we are also here to celebrate the presentation of the Fields Medals and
the Nevanlinna and Gauss Prizes. The Ministry of Education and Science of the
Spanish Government congratulates the award-winners and expresses its gratitude for
their generous contribution to society through Science. They are an example to us
all, and especially to the many young people who are laying the foundations for their
future professional careers.

Finally, I would like to express our gratitude to the members of Executive Com-
mittee of the Congress for all their efforts, and to all those involved in the organization
of the many accompanying events and activities, as well as the scientists who by their
work will enrich discussion and extend common understanding.

Your Majesty, we are aware of Your interest in seeing Spain occupy an important
place in the society of knowledge and in the International Scientific Community, and
of Your wish that all citizens acquire a solid education and training in preparation
for the modern world. The Ministry of Education and Science is currently working
on numerous schemes and projects to achieve this aim. If we are successful, we will
have fulfilled one of the main purposes of our existence. Support for this International
Congress of Mathematicians constitutes a further step along this road.

Many thanks and welcome to you all.

Esperanza Aguirre, President of the Community of Madrid
Your Majesty,

It is an honour and a source of great satisfaction for Madrid to welcome from
today over 4,000 of the best mathematicians from all over the world who have
gathered here to share their
latest studies and discov-
eries, to explain the state
of their researches, and to
reward the most outstand-
ing achievements of their
colleagues with the Fields
Medals and the Rolf Nevan-
linna and Carl Friedrich
Gauss Prizes.

In the 19th century,
the German mathematician
Gustav Jacobi stated that
those who devoted themselves to study and research in Mathematics did so above
all to “honour the human spirit”". This is how it has always been since the origins
of mathematical thought, and the greatest achievements in this Science figure among
the finest creations of humanity as a whole.
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This is a good opportunity to recall that mathematical thought dates back to clas-
sical Greece, and lies at the source of all Western thought and civilization. From these
brilliant beginnings, the essence of mathematical thought has consisted in finding an
exact formulation for what we see, what we experience and what we perceive. That
is why, whether we realize it or not, we are all descendants of Pythagoras.

To these words of greeting and welcome to Madrid I would also like to add
my sincere congratulations to all the Congress participants for their efforts, for their
researches, and for the knowledge they impart to their students, initiating them into the
mysteries of their science. The intrinsic difficulties of their studies sometimes deprive
them of recognition by society at large. That is why, with my congratulations, I would
like to encourage them to continue with their fine work.

In the mid-19th century, the leading Spanish mathematician of the period, José
Echegaray, stated that unfortunately there were few Spaniards of world status in
mathematical research at that time. Happily today that is no longer the case, and the
presence of the most outstanding mathematicians here in Madrid is the best demon-
stration of what I mean. I am sure that the celebration of this Congress in Madrid will
act as a stimulus to all those young people in Spain who have discovered the pleasures
of studying mathematics, and have begun to appreciate the beauty of its reasoning
and its proofs. I likewise trust that the choice of Madrid as host city for this Congress
will also be a source of pride and encouragement for all the Faculties of Mathematics
at Madrid Universities.

With my very best wishes for the success of the Congress, and for the personal
future and professional scientific career of all those concerned, I once again most
cordially welcome you all to Madrid.

Many thanks.

Presentation of the new IMU logo by Phillip Griffiths, Secretary of IMU

The International Mathematical Union (IMU) has adopted a new logo. It was the win-
ner of an international open competition announced by the IMU in 2004 that attracted
over 80 submissions. The final selection was made by the Executive Committee of
IMU.

The logo was designed by John Sullivan, Professor of Mathematical Visualization
at the Technical University of Berlin (TU Berlin) and at the DFG Research Center
MATHEON, and adjunct professor at the University of Illinois, Urbana (UIUC), with
help from Prof. Nancy Wrinkle of Northeastern Illinois University.

The logo design is based on the Borromean rings, a famous topological link of
three components. The rings have the surprising property that if any one component
is removed, the other two can fall apart (while all three together remain linked). This
so-called Brunnian property has led the rings to be used over many centuries in many
cultures as a symbol of interconnectedness, or of strength in unity.

Although the Borromean rings are most often drawn as if made from three round
circles, such a construction is mathematically impossible.
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The IMU logo instead uses the tight shape of the Borromean rings, as would be
obtained by tying them in rope pulled as tight as possible. Mathematically, this is the
length-minimizing configuration of the link subject to the constraint that unit-diameter
tubes around the three components stay disjoint. This problem and its solution are
described in the paper Criticality for the Gehring Link Problem by J. Cantarella, J. Fu,
R. Kusner, J. Sullivan, N. Wrinkle, Geometry and Topology 10 (2006), pp. 2055-2115,
also available at arXiv.org/math/0402212.

Although this critical configuration is quite close to one made of convex and
concave circular arcs, its actual geometry is surprisingly intricate. Each component is
planar and piecewise smooth, with the shapes of many of the 14 pieces described by
elliptic integrals. The improvement over the similar piecewise circular configuration
leads to a savings of length of less than one tenth of one percent!

(The paper cited above first noticed a similar surprise in the simple clasp: one
rope attached to the floor clasped around another attached to the ceiling. There as
well, the minimizing shapes for the ropes are quite complicated, leaving a small gap
between the thick tubes right at the tip.)

The tight configuration of the Borromean rings has pyritohedral symmetry (3*2
in the Conway/Thurston orbifold notation), and the IMU logo uses a view along a
three-fold axis of rotation symmetry. Instead of the thick tubes, which would touch
one another all along their lengths, thinner tubes are drawn, allowing a better view of
the link.

Sullivan says the new logo “represents the interconnectedness not only of the
various fields of mathematics, but also of the mathematical community around the
world.” Together with Charles Gunn of TU Berlin, he has made a 5-minute computer-
graphics video The Borromean Rings: a new logo for the IMU that was shown at the
ICM opening ceremony.
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Presentation of the Fields Medals by John Ball, Chairman of the Fields Medal
Committee

The 2006 Fields Medal Committee consisted of:

— Enrico Arbarello (Italy)

— John Ball (UK, Chair)

— Jeff Cheeger (USA)

— Donald Dawson (Canada)

— Gerhard Huisken (Germany)
— Curtis McMullen (USA)

— Alexey Parshin (Russia)

— Tom Spencer (USA)

— Michele Vergne (France)

The instructions to the Committee are: to choose at least two, with a strong
preference for four, Fields Medallists, to have regard in its choice to representing a
diversity of mathematical fields, and to respect the age limit that a candidate’s 40th
birthday must not occur before January 1st of the year of the Congress at which the
Fields Medals are awarded.

The Committee was privileged to consider a number of remarkable young mathe-
maticians. Although the choice was a difficult one, the Committee was unanimous in
selecting four medallists whose wonderful work demonstrates the breadth and rich-
ness of the subject. I will announce the names of the winners in alphabetical order.

A Fields Medal is awarded to Andrei Okounkov, of the Department of Mathemat-
ics, Princeton University, for his contributions bridging probability, representation
theory and algebraic geometry.

A Fields Medal is awarded to Grigory Perelman, of St Petersburg, for his contri-
butions to geometry and his revolutionary insights into the analytical and geometric
structure of the Ricci flow. Iregret that Dr. Perelman has declined to accept the medal.

A Fields Medal is awarded to Terence Tao, of the Department of Mathematics,
University of California at Los Angeles (UCLA), for his contributions to partial dif-
ferential equations, combinatorics, harmonic analysis and additive number theory.

A Fields Medal is awarded to Wendelin Werner, of the Laboratoire de Mathéma-
tiques, Université Paris-Sud, for his contributions to the development of stochastic
Loewner evolution, the geometry of two-dimensional Brownian motion, and confor-
mal field theory.
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Presentation of the Nevanlinna Prize by Margaret H. Wright, Chair of the 2006
Nevanlinna Prize Committee

It is a privilege to announce the winner of the 2006 Rolf Nevanlinna Prize, which
is awarded by the International Mathematical Union for outstanding contributions in
mathematical aspects of information sciences.

The Nevanlinna Prize was first awarded in 1982. A requirement is that the winner’s
40th birthday must occur on or after January 1 of the year in which the award is made.

The members of the 2006 Nevanlinna Prize Committee are:
— Samson Abramsky (United Kingdom)

— Franco Brezzi (Italy)

— Gert-Martin Greuel (Germany)

— Johan Hastad (Sweden)

— Margaret Wright, Chair (United States).

The International Mathematical Union awards the 2006 Nevanlinna Prize to Pro-
fessor Jon M. Kleinberg of the Computer Science Department, Cornell University,
Ithaca, New York, USA. Professor Kleinberg’s date of birth is October 1971.

The Nevanlinna Prize citation for Jon Kleinberg is:
For deep, creative and insightful contributions to the mathematical theory of the
global information environment, including

the influential “hubs and authorities” algorithm;

methods for discovering short chains in large social networks;

techniques for modeling, identifying and analyzing bursts in data streams;
theoretical models of community growth in social networks; and

contributions to the mathematical theory of clustering.

Jon Kleinberg’s combination of mathematical ability, superb taste in interesting
problems, breadth of interests and sense of strategy is both dazzling and unmatched.
His work has had a fundamental impact on the effectiveness of today’s most ad-
vanced Web search engines, and his mathematical insights have had applications to
Internet routing, data mining, discrete optimization, and the sociology of the World
Wide Web.

Presentation of the Gauss Prize by Martin Grotschel, Chair of the Gauss Prize
Committee

Today we celebrate the first award of the Carl Friedrich Gauss Prize for applications
of mathematics. Since this is a new IMU distinction, it is appropriate to say a few
words about the scope of the prize in the beginning.
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The Gauss Prize is awarded jointly by the Deutsche Mathematiker- Vereinigung
(DMYV, the German Mathematical Society) and the International Mathematical Union
(IMU), and is administered by the DMV. The prize consists of a medal and a monetary
award (currently EUR 10,000). The source of the prize fund is a small surplus from
the International Congress of Mathematicians (ICM’98) held in Berlin eight years
ago.

The statutes stipulate that the Gauss Prize is awarded for outstanding mathemat-
ical contributions that have found significant practical applications outside of math-
ematics, or for achievements that made the application of mathematical methods to
areas outside of mathematics possible in an innovative way, e.g., via new modelling
techniques or the design and implementation of algorithms. In a nutshell, the Carl
Friedrich Gauss Prize is given for the impact the work of the prize winner has had in
practice.

Since the practical usefulness of mathematical results is often not immediately
visible, and as their applicability and importance for practice may only be realized
after a long time lag — in contrast to the Fields Medal and the Rolf Nevanlinna Prize
—no age limit restricts the choice of a prize winner.

Scientific awards gain reputation through the choice of outstanding winners. The
Fields Medal, e.g., is a prime example for this fact. The Gauss Prize jury hopes to mark
the beginning of a similar tradition today by presenting an awardee whose research
has influenced the world at large and whose contributions are highly respected by the
mathematical community.

Why has the prize been given Gauss’ name? Carl Friedrich Gauss (1777-1855) was
one of the greatest mathematicians of all time. Gauss combined scientific theory and
practice like no other before him or since. His Disquisitiones Arithmeticae, published
in 1801, stand to this day as a true masterpiece of scientific investigation. In the
same year, Gauss gained fame in wider circles for his prediction, using very few
observations, of when and where the asteroid Ceres would next appear. The method
of least squares, developed by Gauss as an aid in his mapping of the state of Hannover,
is still an indispensable tool for analyzing data. His sextant is pictured on the last series
of the German 10-Mark bills, honoring his considerable contributions to surveying.

On the front side of the bill, one also finds a bell curve, which is the graphical rep-
resentation of the Gaussian normal distribution in probability. Together with Wilhelm
Weber, Gauss invented the first electric telegraph. In recognition of his contributions
to the theory of electromagnetism, the international unit of magnetic induction is the
gauss. These few examples show that the impact of Gauss’ mathematics can be ex-
perienced every day everywhere. With this new prize, IMU and DMV would like the
world to recognize the importance of mathematics for our society; and Carl Friedrich
Gauss is a prime example for the role mathematicians can play in this respect.

The medal, designed by Jan Arnold, that comes along with the award is displayed
below. It shows on the front a familiar Gauss portrait dissolved into a linear pattern,
the least squares method as well as the discovery of Ceres’ orbit are symbolized on
the back.
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Following the prize statutes, the IMU Executive Committee appointed a Gauss
Prize Committee for the 2006 award. The members were Bob Bixby, Martin Grétschel
(chair), Frank den Hollander, Stéphane Mallat, and Ian Sloan. The establishment of
the Gauss Prize was announced on April 30, 2002, Gauss’ 225th birthday, and at the
same time, nominations were invited. About thirty highly deserving mathematicians
from all over the world were suggested for this prize by colleagues from pure and
applied mathematics.

And now, I would like to announce the winner and read the citation.

The International Mathematical Union and the Deutsche Mathematiker-Vereini-
gung jointly award the Carl Friedrich Gauss Prize for Applications of Mathematics to
Professor Kiyosi Itd for laying the foundations of the theory of stochastic differential
equations and stochastic analysis. Itd’s work has emerged as one of the major math-
ematical innovations of the 20th century and has found a wide range of applications
outside of mathematics. It calculus has become a key tool in areas such as engi-
neering (e.g., filtering, stability, and control in the presence of noise), physics (e.g.,
turbulence and conformal field theory), and biology (e.g., population dynamics). It is
at present of particular importance in economics and finance with option pricing as a
prime example.

The document is signed by John Ball, President of IMU, and Giinter M. Ziegler,
President of DM V.

A side remark, at this moment in time, a new application-oriented research insti-
tute called Quantitative Products Laboratory, is being founded in Berlin. It will be
sponsored by a big German bank donating at least three million Euros annually. This
new institute would not have been founded without the foundations laid by Kiyosi It6.

The details of 1t6’s work will be explained tomorrow, August 23, in the Gauss
Prize lecture presented by Hans Follmer.

Kiyosi It6 was born in Japan in 1915. He received his Doctor of Science degree
from the Imperial University in Tokyo and is now professor emeritus at Kyoto Uni-
versity. He has honorary doctoral degrees from Université Paris VI, ETH Ziirich, and
the University of Warwick. It6 is a member of the Académie des Sciences, France,
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the Japan Academy, and the National Academy of Sciences, USA, to mention just a
few of his many honors and distinctions.

For health reasons, Kiyosi Itd is unfortunately unable to be present at today’s
award ceremony.

The IMU President, John Ball, will personally take the Gauss Medal to Kyoto
after this meeting and present it to Professor Itd in a special ceremony!. I am very
happy to be able to announce that the Itd family has decided to send a representative
to Madrid. Kiyosi Itd’s youngest daughter, Junko Itd, who is professor and chair of
linguistics at the University of California in Santa Cruz, is here to accept the Gauss
Prize on behalf of her father.

1Photograph by Armin Mester. It shows John Ball and Kiyosi It6 on September 14, 2007 in Kyoto during the
presentation of the Gauss Medal.
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His Majesty the King of Spain, Juan Carlos

I am greatly pleased to preside over the opening of this Twenty-Fifth International
Congress of Mathematicians, an outstanding scientific event which, in addition to
its tradition of over a century, enjoys unquestionable prestige and significance on a
global scale.

I extend my greetings to all the participants, my warm welcome to Spain to those
from other countries, and my most heartfelt congratulations to the organizers of this
Congress in Madrid.

You will understand that it is a very special pleasure for me that this Congress,
which has brought together nearly four thousand scientists from over one hundred
countries, is being held for
the first time in our country.

Therefore, I wish to con-
vey my greatest recogni-
tion and appreciation to the
Spanish mathematical com-
munity, whose well-deserved
prestige, proven effort and
cohesion, have made Spain —
and more specifically Madrid
— the focus of attention of
the international mathemati-
cal community this year.

This Congress enables
us to learn about the main
progress made by research in
this discipline, and to high-
light and promote in our re-
spective societies the enor-
mous importance of Mathematics. Importance because it is a basic instrument to
understand the world, because it constitutes an unquestionable pillar of education,
and because it is an indispensable tool to ensure progress for the benefit of Humanity.

Galileo told us that the world is written in mathematical language; to understand
it, nothing can rival this discipline that has brought us together today in Madrid.

Improved understanding of the world we live in, by using the universality of
Mathematics, is, in addition, a task which reinforces cooperation between diverse
countries, societies and cultures.

It is equally evident that the high value of Mathematics in education requires our
attention and dedication.

Mathematics is rightly considered the key technology. This is stated in the Decla-
ration made public in 2000 by the International Mathematical Union and UNESCO,
on the occasion of the World Mathematical Year.
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We depend on, and we will increasingly depend on, the indispensable foundation
that research, technology and innovation constitute for the future of our economic
development and our social well-being.

For this reason, we must promote mathematical development as an essential ele-
ment for progress that will enable sustainable development for all Humanity.

The business world must also join, with increasing efforts, a discipline which has
been essential to our development, as it is, for example, the basic foundation to achieve
the Information Society we currently enjoy.

Spain has been making a particular effort, and will continue to do so in the future,
to promote its technological development.

Projects such as the Ingenio 2010 Programme are aimed at such a goal. We
are pleased to see that Spanish mathematicians have not missed the opportunity to
participate in such an ambitious R+D+I programme.

But this Congress also includes other aspects that I would like to highlight. With
108 countries represented, the largest number in its history, it aims to achieve universal
representation and participation.

This has been made possible thanks to grant programmes for the participation
of mathematicians from economically disadvantaged countries, following a long-
standing tradition of the International Mathematical Union to which Spainis especially
sensitive.

Furthermore, this Congress has made an enormous effort to bring Mathematics
closer to society, striving to make it more wide-spread and well-known in public
opinion.

All of this is being done through exhibitions, various cultural events and by rein-
forcing its presence in the media.

This effort to make Mathematics more well-known is particularly significant, as
it is fundamental to encourage new scientific vocations all over the world.

In addition, these Congresses enable the mathematical community to award, ev-
ery four years, and with well-deserved solemnity, its most highly prized and valued
distinctions.

I am referring to the Fields Medal, the Rolf Nevanlinna Prize and the Carl Friedrich
Gauss Prize, all of which are indisputably prestigious awards which have just been
granted to this year’s winners.

The Fields Medal has been awarded for 70 years to mathematicians under the
age of 40 for outstanding achievement in the basic aspects of the discipline; the Rolf
Nevanlinna Prize has been awarded since 1982 for the best mathematical contributions
to the Information Society; and the Carl Friedrich Gauss Prize, awarded for the first
time this year in Madrid, aims to honour outstanding achievement in contributing to
improve our everyday lives.

I extend my most enthusiastic congratulations to all this year’s winners.

Their work, professional career and scientific merits, as well as their contribution
to our societies’ development and well-being, deserve everyone’s recognition and con-
stitute an example and encouragement for the whole of the international mathematical
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community.

To conclude, I would like to reiterate my most sincere support for the significant
work done by the International Mathematical Union. I wish you every success for the
next Congress to be held in India, just as I trust this one in Madrid will be successful.

I declare open the 25th International Congress of Mathematicians of 2006.

Thank you very much.

The King of Spain, Juan Carlos. On his left, Jon Kleinberg and Terence Tao;
on his right Andrei Okounkov and Wendelin Werner.
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The closing ceremony was held on Wednesday, August 30, starting at 18:00 in Audi-
torium A of the Palacio Municipal de Congresos de Madrid.

Sir John Ball, President of the International Mathematical Union
Welcome to the Closing Ceremony of ICM 2006!

You just saw alonger version of the video that was shown at the Opening Ceremony,
concerning the new IMU logo, designed by John Sullivan.

It has been a marvellous International Congress, and we begin by a retrospective
look at some of the highlights.

(Showing of video montage of scenes from the ICM.)

Before saying a few words about this Congress, I want to go back to before King
Juan Carlos opened ICM 2006, and present a brief report about the IMU General
Assembly held in Santiago de Compostela on 19 and 20 August. This was a very
successful meeting, which owed much to the care and consideration of the local
organizing committee in Santiago chaired by Juan Viafio.

The General Assembly voted to make various changes to the Statutes and the
Procedures for Election of IMU. In particular a new independent Nominating Com-
mittee structure for the construction of slates for elections was approved. In future
the Executive Committee of the International Commission on Mathematical Instruc-
tion, concerned with mathematics education, will be elected by the ICMI General
Assembly rather than the IMU General Assembly. The number of members-at-large
on the IMU Executive Committee is increased from five to six, and a new category
of Associate Membership of IMU, with no dues, no votes and limited duration, was
introduced to encourage full membership.

Turning to the elections themselves, the new Executive Committee of IMU to
serve for the period 2007-2010 will be:

President. Laszl6 Lovadsz (Hungary)

Secretary. Martin Grotschel (Germany)

Vice Presidents. Zhiming Ma (China), Claudio Procesi (Italy)
Members at Large. Salah Baouendi (USA), Manuel de Ledn (Spain),

Ragni Piene (Norway), Cheryl Praeger (Australia), Victor Vassiliev (Russia),
Marcelo Viana (Brazil)

I would like to pay tribute to the work of this committee, and especially to
the retiring members: Phillip Griffiths, who has completed two terms as Secretary
of IMU, Jean-Michel Bismut (Vice-President), Masaki Kashiwara (Vice-President),
Jacob Palis (Past-President and Past Secretary of IMU), and M. S. Raghunathan.
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And we also will say farewell to Linda Geraci, who has served admirably as the IMU
Administrator.

The membership of the Commission on Development and Exchanges, concerned
with developing countries, for 2007-2010 will be:

President. S.G. Dani (India)
Secretary. Gérard Gonzélez-Sprinberg (France)

Members at Large. Graciela Boente (Argentina), Paulo Cordaro (Brazil),
Jean-Pierre Gossez (Belgium), Mary Teuw Niane (Sénégal),
Marta Sanz-Sol€ (Spain), Jiping Zhang (China)

CDE will be unified with the recently formed Developing Countries Strategy
Group (DCSG) to form a new IMU Commission for Developing Countries which
will both consider strategy and administer the IMU grants programmes. I would like
to thank the members of CDE and in particular Herb Clemens, the outgoing CDE
Secretary and the Chair of DCSG, for their excellent work, in which they have been
ably assisted by the Developing Countries Administrator Sharon Laurenti.

The new Executive Committee of ICMI for 2007-2009 will be:

President. Michele Artigue (France)
Secretary-General. Bernard Hodgson (Canada)
Vice Presidents. Jill Adler (South Africa), Bill Barton (New Zealand)

Members at Large. Maria Bartolini Bussi (Italy),
Jaime Carvalho e Silva (Portugal), Celia Hoyles (UK), S. Kumaresan (India),
Alexei Semenov (Russia)

The fact that this Executive Committee will hold office for three rather than four
years is related to the transition process towards the new electoral system for ICMI.

The General Assembly also elected two members to the International Commission
for the History of Mathematics, Christian Houzel (France) and Peter Neumann (UK).

Although it is appointed rather than elected, I want to show you the membership
of the Commiittee for Electronic Information and Communication (CEIC) for the next
two years:

Chair. Jonathan Borwein (Canada)

Members at Large. Michael Doob (Canada), David Eisenbud (USA),
John Ewing (USA), Ulf Rehmann (Germany), Alf van der Poorten (Australia)
and one member from the IMU Executive Committee.

This is one of IMU’s most important committees. Examples of its fine work are
the new Electronic and Federated World Directories of Mathematicians. If you have
not used these important resources you can learn about them on the IMU webpages.
IMU is very grateful to this committee and in particular to its Chair Jonathan Borwein.

An important discussion in Santiago concerned IMU’s finances. As well as a 5%
increase in dues for each of the next 4 years, an increase in the number of units paid
by the generally wealthier countries in groups IV and V was agreed. These increases,
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though painful, are essential to pay for IMU’s increased activities, especially with
respect to developing countries.

A further important discussion concerned a new set of guidelines for the scientific
programme of future ICMs. This is a quite lengthy and detailed document, that after
revision will be made available on the IMU webpages. The new guidelines begin with
a description of the purpose of the ICM:

Every ICM should reflect the current activity of mathematics in the world, present
the best work being carried out in all mathematical subfields and different regions of
the world, and thus point to the future of mathematics. The invited speakers at an
ICM should be mathematicians of the highest quality who are able to present current
research to a broad mathematical audience.

I think that this is an important statement which should help future Program Com-
mittees in the difficult job of choosing a geographically balanced list of speakers of
the highest quality.

The General Assembly passed 11 resolutions. I want to show you the four reso-
lutions over which there was some discussion. Resolution 8 concerned mathematical
education:

The General Assembly of the IMU reaffirms the importance of the issues treated
by ICMI (the International Commission on Mathematical Instruction). It recognizes
the importance of continuing and strengthening the relationship of IMU with ICMI
and urges the increased involvement of research mathematicians in mathematical
education at all levels.

Resolution 9 concerns CEIC:

With the ultimate goal of creating an enduring network of digital mathematical
literature, the General Assembly of the IMU endorses the new version of the “Best
practices” document of its Committee on Electronic Information and Communication
(CEIC), posted June 2005 at http://www.ceic.math.ca, as well as the March 2005 draft
of “Digital Mathematical Library: a vision for the Future”.

The digital mathematical library is a very important project that we need to do as
much as we can to further.

Resolution 10 concerns the freedom of movement of scientists and mathemati-
cians:

The General Assembly of the IMU continues to endorse the principle of univer-
sality expressed in the International Council for Science (ICSU) ARTICLE 5 of the
STATUTES, as adopted by the 1998 General Assembly, and endorses the additional
ICSU Statement on the Universality of Science (2004). Notwithstanding heightened
tensions, security concerns, etc., the General Assembly urges free exchange of scien-
tific ideas and free circulation of scientists and mathematicians across international
borders. The IMU opposes efforts by governments to restrict contacts, interactions,
access and travel in the world mathematical community, particularly when such re-
strictions penalize individual mathematicians for the actions of governments.



48 Closing ceremony

Resolution 7 concerns the finances of IMU:

The General Assembly recommends that the incoming Executive Committee of
the IMU studies the establishment of stable administrative structure and funding
mechanisms, including possible fund-raising, for the support of the expanding IMU
activities, and report to the 2010 General Assembly with concrete proposals.

Finally, the General Assembly decided that the location of ICM2010 will be
Hyderabad in India.

If you want to learn more about IMU, you can consult the IMU webpages, where
a detailed report of the General Assembly will appear, and read the new electronic
newsletter IMU-Net. Mireille Chaleyat-Maurel has done a splendid job in the pro-
duction of the newsletter — can we express our thanks to her.

The planning and bringing together of the many elements that make up the In-
ternational Congress is a daunting undertaking. In several respects, such as online
internet transmission of the plenary lectures and the management of relations with
the media, of which I will have more to say in a moment, ICM 2006 has set standards
for the future. In addition, the local organizing committee complemented the scien-
tific programme with a tapestry of interesting events and exhibitions, expressing the
richness of mathematics through discourse, history and art.

To all those who have lived the Congress over the last few years, and to those who
have helped during the Congress itself, together making it such a great occasion, we
say that your hard work has really been worth it, and how very much it is appreciated
by all who have spent these days in Madrid.

In his closing address, Manuel de Leén will give us the opportunity to recognize
the many individuals who have contributed to the success of this Congress. But with
his permission I want to say a few words about the ICM and the media. This was
a cooperative effort between IMU and the ICM Press Office. The Congress turned
out to be a remarkable news story, and it was remarkably told. I wish to thank Allyn
Jackson and Christof Poeppe, who wrote the initial press releases for the prizes,
Marcus du Sautoy, who gave invaluable advice, and through articles and interviews
contributed greatly to generating media interest, and Anne-Marie Astad for making
available distribution lists developed for the Abel Prize. But no praise is too great
for the accomplishments of the ICM Press Office itself, which consisted of Monica
Salomone and Ignacio Fernandez Bayo of DIVULGA, supported by the splendid
team that you see listed in a section of this volume. The result of their untiring and
professional work was unprecedented national and international press coverage of the
Congress and of mathematics.

Let me end by saying that it has been a great privilege to serve as President of
IMU, and to work with my colleagues on the Executive Committee and with the Local
Organizing Committee of the Congress. The IMU is very fortunate to have Laszlé
Lovaész as its next President. I wish him every success for his term of office, and thank
you all for your participation in the Congress.

I now invite Laszl6 Lovasz to address the Congress.
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Laszlé Lovasz, Elected President of the International Mathematical Union
Ladies and gentlemen,

Let me start with joining John Ball in expressing my sincere thanks and most heart-
felt congratulations to the Organizers of the Congress. They have done a tremendous
job, and we all benefited from this a lot: not only the participants, but also those
colleagues and students to whom we go back and to whom we’ll communicate what
we have learned here.

I would also like to extend these thanks and congratulations to the Program Com-
mittee and the Executive Committee, who also worked very hard over the last 4 years.
In particular, I express my thanks to John Ball for his devout, selfless, and I must say,
very successful job he did as the President of IMU. It will very difficult to measure
up to his work; one fact that helps me face this task is that as Past President, he’ll
be a member of the Executive Committee, and I'll count on his advice and help. I'd
also extend these thanks to the retiring members of the Executive Committee: Vice
Presidents Jean-Michel Bismut and Masaki Kashiwara, Secretary Phillip Griffiths,
Madabusi Raghunathan and Past President Jacob Palis. To those members of the
Executive Committee who stayed on to serve a second term, Vice president Zhi-Ming
Ma, Secretary Martin Grotschel, Ragni Piene and Victor Vassiliev, I am thankful for
their willingness to do so, and I am looking forward to working with them.

I also want to express my thanks to the speakers. To be invited to the Congress
is a great honor but also a great responsibility. Some areas are easier to talk about to
a general mathematical audience than others; but I feel that all our speakers made a
great afford to convey the main ideas and results to us.

Let me add a few more personal thoughts. When one arrives at a Congress,
one cannot feel but overwhelmed by the number of people and by the variety of
mathematics that is presented here. One could walk the corridors for minutes without
seeing a familiar face, and one could browse the abstracts long before seeing a topic
that one, say, did research in. This is so even for a senior person who attended many
previous Congresses, and obviously a young person who has not been to previous
Congresses must feel this even more.

It is perhaps because of this feeling that people repeatedly bring up the idea of
abandoning these International Congresses. I feel this would be a serious mistake. I
talked to scientists working in other fields, and they expressed their envy for the fact
that we have a meeting where the best mathematicians tell to all of us what are the
main problems, trends, or paradigms of their fields; where we honor the recipients of
major prizes, and hear and discuss their work; where we have panel discussions and
also corridor discussions about important issues facing our science or our community.

I hope that now, 9 days after the opening, all participants, in particular our young
colleagues, go home with a feeling that mathematics is a vibrant, live, beautiful and
fruitful science, and this will help them in their research, teaching and popularization
of mathematics. And I hope that you’ll come back to the next congress. See you at
ICM 2010!
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Manuel de Ledn, President of the ICM2006 Organizing Committee
Dear colleagues,

Ten days ago in this same auditorium, we opened the 25th International Congress
of Mathematicians. Since then we have been meeting here in this impressive Palacio
Municipal de Congresos. We hope that this time together has been fruitful, and that
you have met old friends and made new ones.

The best way of knowing if an ICM has been successful is if the participants are
sorry to depart. If that is the case, then remember that it is not “Goodbye” but “See
you soon!”, because the great mathematical family will continue to meet at other
congresses all over the World, and in four years time we will all be together again in
Hyderabad, India, to enjoy the hospitality of our Indian friends.

No ICM would be possible without the effort of many people, and now is the
moment to acknowledge them.

First, those in the different committees:

— Local Program Committee

— Satellite conferences

— Web

— Grants

— Cultural activities

— Social activities

— Infrastructure and logistics

— Publications

The efforts of the Secretariat, under the direction of our General Secretary José
Luis Gonzdlez-Llavona, has been fundamental. I hope they will forgive us for any
moments of impatience or bad moods during the run-up to the Congress.

The work of our congress agency, UNICONGRESS, has also been essential. We
have worked together through thick and thin, but the final result has made it all
worthwhile. Our thanks to them, to all our suppliers, and to all the staff at the Palacio
Municipal de Congresos.

I believe that if one thing stands out in this ICM2006, it is the extraordinary
coverage provided by the press, and for that we have mainly to thank our friends at
DIVULGA, led by Ignacio F. Bayo and Ménica Salomone. Their example is one to
be followed, to continue the effort of putting mathematics across to the people.

Another crucial help was provided by our over 350 volunteers. Their patient and
enthusiasm have contributed to do this ICM unforgettable for all of us. Thank you
very much to all of you!

Finally, we express our thanks to all the participants for taking the trouble to come
to Madrid in such difficult times, to set this great example of tolerance and peaceful
co-existence. Thanks to all of you. Have a safe journey home, and see you again in
India in 2010!

See you all soon!

jHasta pronto!
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Rajat Tandon, University of Hyderabad, India

Sir John Ball,

Professor Lovasz,
Professor Manuel de Léon,
Ladies and gentleman,

Let me first take this opportunity to express my appreciation of the innumerable
number of people who have worked so tirelessly for this Congress in Madrid. Let
me say ‘Gracias’ to our Spanish hosts and the local organizing committee under
the chairmanship of Prof. Manuel de Léon whose monumental effort has ensured
the unqualified success of this ICM. I say ‘Gracias’ to the hundreds of volunteers
who have been so gracious in rendering their assistance to us. And finally I thank the
various committees of the IMU who have presented us with such a strong and exciting
academic programme. We recognize that we have our work cut out for us if we are
to emulate the success of this Congress in Hyderabad.

We in India feel very privileged to have the honour of hosting the next International
Congress of Mathematicians. It gives us enormous pleasure to invite the mathematical
community from all six continents to Hyderabad for the ICM 2010, to be held from
the 19th to the 27th of August.

Hyderabad, like Madrid, is a wonderful composition of the old and the new. This
city, founded more than 400 years ago, houses teeming bazaars, old jewelry and fine
craftsmen, old forts and mausoleums. Cosmopolitan in its population you find people
of all faiths living and learning together here.
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Two hundred years ago this city expanded to the twin cities of Hyderabad and
Secunderabad with the addition of a cantonment area and today greater Hyderabad
is a conglomeration of three cities in one with the modern Cyberabad area which is
second only to Bangalore as the information technology heart of India. Here you find
not only large research and development centres of the top Indian IT companies like
the Tata Consultancy Services or Infosys but also the large multinationals like IBM,
Microsoft and Google.

This is the charm of Hyderabad — whilst you will find computer scientists at
an international institute of information technology grapple with the intricacies of
P = NP, you will also find the finest pearl craftsmen in the world — their craft
inherited from their forefathers over hundreds of years. Hyderabad is known as the
pearl capital of India and perhaps of the world.

The organizing committee for the ICM 2010 will be pushing for several satellite
conferences in different parts of India — north, south, east and west. So those who
wish to visit the Taj Mahal or the Pink city of Jaipur or the temples of Mahabalipuram
will always be able to find a satellite conference of their choice near the place they
want to visit. We are urging other South Asian countries to hold satellite conferences
as well.

It will be our pleasure to host a meeting of the General Assembly of the IMU in
Bangalore on the 16th and 17th of August just prior to the ICM.

I urge all delegates here to let it be known to the mathematical community of
their countries that an open and democratic India, the home of Ramanujan, with a
vibrant community of scholars of its own warmly welcomes them all and urges them
to mix mathematics with pleasure and flavour the traditional hospitality of India in
the August of 2010. We assure you that it will be a memorable experience.

CONGRESO INTERNACIONAL DE
MATEMATICOS MADRID 2006

CORREOS .

ESPANA

The granite sculpture created by Keizo Ushio — a beautiful infinity, and the special stamp
of the Congress.
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The work of Andrei Okounkov

Giovanni Felder

Andrei Okounkov’s initial area of research is group representation theory, with par-
ticular emphasis on combinatorial and asymptotic aspects. He used this subject as
a starting point to obtain spectacular results in many different areas of mathematics
and mathematical physics, from complex and real algebraic geometry to statistical
mechanics, dynamical systems, probability theory and topological string theory. The
research of Okounkov has its roots in very basic notions such as partitions, which form
a recurrent theme in his work. A partition A of a natural number 7 is a non-increasing
sequence of integers A1 > Ay > --- > 0 adding up to n. Partitions are a basic combi-
natorial notion at the heart of the representation theory. Okounkov started his career
in this field in Moscow where he worked with G. Olshanski, through whom he came
in contact with A. Vershik and his school in St. Petersburg, in particular S. Kerov. The
research programme of these mathematicians, to which Okounkov made substantial
contributions, has at its core the idea that partitions and other notions of representa-
tion theory should be considered as random objects with respect to natural probability
measures. This idea was further developed by Okounkov, who showed that, together
with insights from geometry and ideas of high energy physics, it can be applied to the
most diverse areas of mathematics.

This is an account of some of the highlights mostly of his recent research.

I am grateful to Enrico Arbarello for explanations and for providing me with very
useful notes on Okounkov’s work in algebraic geometry and its context.

1. Gromov—Witten invariants

The context of several results of Okounkov and collaborators is the theory of Gromov—
Witten (GW) invariants. This section is a short account of this theory. GW invariants
originate from classical questions of enumerative geometry, such as: how many ra-
tional curves of degree d in the plane go through 3d — 1 points in general position?
A completely new point of view on this kind of problems appeared at the end of the
eighties, when string theorists, working on the idea that space-time is the product
of four-dimensional Minkowski space with a Ricci-flat compact complex three-fold,
came up with a prediction for the number of rational curves of given degree in the
quintic x15 + -+ xg = 0 in CP*. Roughly speaking, physics gives predictions for
differential equations obeyed by generating functions of numbers of curves. Solving
these equations in power series gives recursion relations for the numbers. In particular
a recursion relation of Kontsevich gave a complete answer to the above question on
rational curves in the plane.
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In general, Gromov—Witten theory deals with intersection numbers on moduli
spaces of maps from curves to complex manifolds. Let V be a nonsingular projec-
tive variety over the complex numbers. Following Kontsevich, the compact moduli
space M ¢.n(V, B) (a Deligne-Mumford stack) of stable maps of class § € Hy(V) is
the space of isomorphism classes of data (C, p1, ..., pn, f) where C is a complex
projective connected nodal curve of genus g with n marked smooth points p1, ..., p,
and f: C — V isastable map such that [ f(C)] = . Stable means that if f maps an
irreducible component to a point then this component should have a finite automor-
phism group. For each j = 1, ..., n two natural sets of cohomology classes can be
defined on these moduli space: 1) pull-backs ev;f‘a e H*(M ¢.n(V, B)) of cohomology
classesa € H*(V) on the target V by the evaluationmapev;: (C, p1, ..., pu, f) >

f(pj); 2) the powers of the first Chern class ¥; = ¢i(L;) € HZ(IVIg,n(V, B)) of the
line bundle L; whose fiber at (C, p1, ..., pu, f) is the cotangent space TI;“jC to C
at pj. The Gromov-Witten invariants of V are the intersection numbers

(Th, (1) .. Tg, (an)>,¥,g = / l_[l//;(JeV;O[j.
Mgn(V,B)
If all k; are zero and the «; are Poincaré duals of subvarieties, the Gromov—Witten
invariants have the interpretation of counting the number of curves intersecting these
subvarieties. As indicated by Kontsevich, to define the integral one needs to con-
struct a virtual fundamental class, a homology class of degree equal to the “expected
dimension”

virdim M, ,(V, B) = —B - Ky + (g — )3 —dim V) +n, (1)

where Ky is the canonical class of V. This class was constructed in works of Behrend—
Fantechi and Li-Tian.

The theory of Gromov—Witten invariants is already non-trivial and deep in the
case where V is a point. In this case 1\7[g’n = _g,n({pt}) is the Deligne-Mumford
moduli space of stable curves of genus g with n marked points. Witten conjectured
and Kontsevich proved that the generating function

) n
1
— pt
F(to,t1,...) = Eol’l' E (Thky -+ - Thy ) g | |1tkj,
n= j=

" kit +ky,=3g—3+n

involving simultaneously all genera and numbers of marked points, obeys an infinite
set of partial differential equations (it is a tau-function of the Korteweg—de Vries
integrable hierarchy obeying the “string equation”) which are sufficient to compute
all the intersection numbers explicitly. One way to write the equations is as Virasoro
conditions

Le(e®)=0, k=-1,0,1,2...,

for certain differential operators Lj of order at most 2 obeying the commutation
relations [L;, Ly] = (j — k)L; 1 of the Lie algebra of polynomial vector fields.
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Before Okounkov few results were available for general projective varieties V
and they were mostly restricted to genus g = 0 Gromov—Witten invariants (quantum
cohomology). For our purpose the conjecture of Eguchi, Hori and Xiong is rele-
vant here. Again, Gromov—Witten invariants of V can be encoded into a generating
function Fy depending on variables #; , where a labels a basis of the cohomology
of V. Eguchi, Hori and Xiong extended Witten’s definition of the differential oper-
ators L; and conjectured that Fyy obeys the Virasoro conditions Ly (efV) = 0 with
these operators.

2. Gromov—-Witten invariants of curves

In a remarkable series of papers ([10], [11], [12]), Okounkov and Pandharipande
give an exhaustive description of the Gromov—Witten invariants of curves. They
prove the Eguchi—Hori—Xiong conjecture for general projective curves V, give explicit
descriptions in the case of genus 0 and 1, show that the generating function for V = P!
is a tau-function of the Toda hierarchy and consider also in this case the C* -equivariant
theory, which is shown to be governed by the 2D-Toda hierarchy. They also show
that GW invariants of V = P! are unexpectedly simple and more basic than the GW
invariants of a point, in the sense that the latter can be obtained as a limit, giving thus
a more transparent proof of Kontsevich’s theorem.

A key ingredient is the Gromov—Witten/Hurwitz correspondence relating GW in-
variants of a curve V to Hurwitz numbers, the numbers of branched covering of V
with given ramification type at given points. A basic beautiful formula of Okounkov
and Pandharipande is the formula for the stationary GW invariants of a curve V of
genus g(V), namely those for the Poincaré dual w of a point:

dim A \>722M) ()
) Phi+1\A) Q)

(0, @) - Ty @3 v = ( |
1 [V].g l)Z::d d! o (kl + 1)|

The (finite!) summation is over all partitions A of the degree d and dim A is the
dimension of the corresponding irreducible representation of S;. The genus g of
the domain is fixed by the condition that the cohomological degree of the integrand
is equal to the dimension of the virtual fundamental class. It is convenient here to
include also stable maps with possibly disconnected domains and this is indicated by
the bullet. The functions py(A) on partitions are described below.

Hurwitz numbers can be computed combinatorially and are given in terms of
representation theory of the symmetric group by an explicit formula of Burnside. If
the covering map at the ith point looks like z — z%*!, i.e., if the monodromy at the
ith point is a cycle of length k; + 1, the formula is

dim A\ 272V 2
Hdv(k1+1,...,kn+1)zz< ) [T+

d!
Ix=d i=1
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Thus in this case the GW/Hurwitz correspondence is given by the substitution rule
Jr+1(A) = pr+1(A)/(k + 1)!. The functions f and py are basic examples of shifted
symmetric functions, a theory initiated by Kerov and Olshanski, and the results of
Okounkov and Pandharipande offer a geometric realization of this theory. A shifted

symmetric polynomial of n variables A1, ..., A, is a polynomial invariant under the
action of the symmetric group given by permuting A; — j. A shifted symmetric
function is a function of infinitely many variables A1, A3 .. ., restricting for each n to

a shifted symmetric polynomial of n variables if all but the first n variables are set
to zero. Shifted symmetric functions form an algebra A* = Q[p1, p2,...] freely
generated by the regularized shifted power sums, appearing in the GW invariants:

PO = (0= +3) = (=i +3)) +a=2"e-h
J

The second term and the Riemann zeta value “cancel out” in the spirit of Ramanujan’s
second letter to Hardy: 1+2+3+... = — % The shifted symmetric functions fi (1)
appearing in the Hurwitz numbers are central characters of the symmetric groups S, :
f1 = |A| = >_ 4, and the sum of the elements of the conjugacy class of a cycle of
length £ > 2 in the symmetric group S, is a central element acting as f (1) times the
identity in the irreducible representation corresponding to A. The functions p; and
[k are two natural shifted versions of Newton power sums.

In the case of genus g(V) = 0, 1, Okounkov and Pandharipande reformulate (2)
in terms of expectation values and traces in fermionic Fock spaces and get more
explicit descriptions and recursion relations. In particular if V = FE is an elliptic
curve the generating function of GW invariants reduces to the formula of Bloch and
Okounkov [1] for the character of the infinite wedge projective representation of the
algebra of polynomial differential operators, which is expressed in terms of Jacobi
theta functions. As a corollary, one obtains that

> N )., (@)
d

belongs to the ring Q[ E2, E4, E¢] of quasimodular forms.

A shown by Eskin and Okounkov [2], one can use quasimodularity to compute the
asymptotics as d — oo of the number of connected ramified degree d coverings of a
torus with given monodromy at the ramification points. By a theorem of Kontsevich—
Zorich and Eskin—Mazur, this asymptotics gives the volume of the moduli space of
holomorphic differentials on a curve with given orders of zeros, which is in turn
related to the dynamics of billiards in rational polygons. Eskin and Okounkov give
explicit formulae for these volumes and prove in particular the Kontsevich—Zorich
conjecture that they belong to 7 ~28Q for curves of genus g.
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3. Donaldson-Thomas invariants

As is clear from the dimension formula (1) the case of three-dimensional varieties V
plays a very special role. In this case, which in the Calabi—Yau case Ky = 0is the orig-
inal context studied in string theory, it is possible to define invariants counting curves
by describing curves by equations rather than in parametric form. Curves in V of
genus g and class 8 € H,(V) given by equations are parametrized by Grothendieck’s
Hilbert schemes Hilb(V; 8, x) of subschemes of V with given Hilbert polynomial of
degree 1. The invariants 8, x = 2 — g are encoded in the coefficients of the Hilbert
polynomial. R. Thomas constructed a virtual fundamental class of Hilb(V; 8, x) for
three-folds V of dimension —8 - Ky, the same as the dimension of M ¢,0(V, B). Thus
one can define Donaldson—-Thomas (DT) invariants as intersection numbers on this
Hilbert scheme. There is no direct geometric relation between Hilb(V; B, x) and
M ¢,0(V, B), and indeed the (conjectural) relation between Gromov—Witten invariants
and Donaldson-Thomas invariants is quite subtle. In its simplest form, it relates
the GW invariants |’ s, (V.5) [Tev#yi to the DT invariants inlb(V; ) [Tca(yi). The

class ¢p(y) is the coefficient of y € H*(V) in the Kiinneth decomposition of the
second Chern class of the ideal sheaf of the universal family V C Hilb(V; 8, x) x V.

The conjecture of Maulik, Nekrasov, Okounkov and Pandharipande [6], [7], in-
spired by ideas of string theory [14] states that suitably normalized generating func-
tions Zgy, (v; u) g, Zp7 (v q) g are essentially related by a coordinate transformation:

(=) Zoy s v W =q P Z e s e g, ifg = —€™, B #0.

Here d = —B - Ky is the virtual dimension. Moreover these authors conjecture that
there Z7,;(v: q)p is a rational function of g. This has the important consequence
that all (infinitely many) GW invariants are determined in principle by finitely many
DT invariants. Versions of these conjectures are proven for local curves and the total
space of the canonical bundle of a toric surface. The GW/DT correspondence can be
viewed as a far-reaching generalization of formula (2), to which it reduces in the case
where V is the product of a curve with C2.

4. Other uses of partitions

Here is a short account of other results of Okounkov based on the occurrence of
partitions.

One early result of Okounkov [9] is his first proof of the Baik—Deift—Johansson
conjecture (two further different proofs followed, one by Borodin, Okounkov and
Olshanski and one by Johansson). This conjecture states that, as n — oo, the joint
distribution of the first few rows of a random partition of n with the Plancherel measure
P()) = (dim A)?/|A|!, natural from representation theory, is the same, after proper
shift and rescaling, as the distribution of the first few eigenvalues of a Gaussian random
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hermitian matrix of size n. The proof involves comparing random surfaces given by
Feynman diagrams and by ramified coverings and contains many ideas that anticipate
Okounkov’s later work on Gromov—Witten invariants.

Random partitions also play a key role in the work [8] of Nekrasov and Okounkov
on N = 2 supersymmetric gauge theory in four dimensions. Seiberg and Witten
gave a formula for the effective “prepotential”, postulating a duality with a theory
of monopoles. The Seiberg—Witten formula is given in terms of periods on a family
of algebraic curves, closely connected with classical integrable systems. Nekrasov
showed how to rigorously define the prepotential of the gauge theory as a regularized
instanton sum given by a localization integral on the moduli space of antiselfdual
connections on R*. Nekrasov and Okounkov show that this localization integral can
be written in terms of a measure on partitions with periodic potential and identify the
Seiberg—Witten prepotential with the surface tension of the limit shape.

Partitions of n also label (C*)2-invariant ideals of codimension n in C[x, y] and
thus appear in localization integrals on the Hilbert scheme of points in the plane. Ok-
ounkov and Pandharipande [13] describe the ring structure of the equivariant quantum
cohomology (genus zero GW invariants) of this Hilbert scheme in terms of a time-
dependent version of the Calogero—Moser operator from integrable systems.

5. Dimers

Dimers are a much studied classical subject in statistical mechanics and graph com-
binatorics. Recent spectacular progress in this subject is due to the discovery by
Okounkov and collaborators of a close connection of planar dimer models with real
algebraic geometry.

A dimer configuration (or perfect matching) on a bipartite graph G is a subset
of the set of edges of G meeting every vertex exactly once. For example if G is a
square grid we may visualize a dimer configuration as a tiling of a checkerboard by
dominoes. In statistical mechanics one assigns positive weights (Boltzmann weights)
to edges of G and defines the weight of a dimer configuration as the product of the
weights of its edges. The basic tool is the Kasteleyn matrix of G, which is up to
certain signs the weighted adjacency matrix of G. For finite G Kasteleyn proved that
the partition function (i.e., the sum of the weights of all dimer configurations) is the
absolute value of the determinant of the Kasteleyn matrix.

Kenyon, Okounkov and Sheffield consider a doubly periodic bipartite graph G
embedded in the plane with doubly periodic weights. For each natural number n
one then has a probability measure on dimer configurations on G, = G/nZ? and
statistical mechanics of dimers is essentially the study of the asymptotics of these
probability measures in the thermodynamic limitn — oo. One key observation is the
Kasteleyn matrix on G| can be twisted by a character (z, w) € (C*)? of Z? and thus
one defines the spectral curve as the zero set P(z, w) = 0 of the determinant of the
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twisted Kasteleyn matrix P(z, w) = det K (z, w). This determinant is a polynomial
in z+!, wt! with real coefficients and thus defines a real plane curve.

The main observation of Kenyon, Okounkov and Sheffield [3] is that the spec-
tral curve belongs to the very special class of (simple) Harnack curves, which were
studied in the 19th century and have reappeared recently in real algebraic geome-
try. Kenyon, Okounkov and Sheffield show that in the thermodynamic limit, three
different phases (called gaseous, liquid and frozen) arise. These phases are character-
ized by qualitatively different long-distance behaviour of pair correlation functions.
One can see these phases by varying two real parameters (Bj, By) ( the “magnetic
field”) in the weights, so that the spectral curve varies by rescaling the variables.
The regions in the (B1, By)-plane corresponding to different phases are described in
terms of the amoeba of the spectral curve, namely the image of the curve by the map
Log: (z, w) +— (log|z|, log|w]|). The amoeba of a curve is a closed subset of the
plane which looks a bit like the microorganism with the same name. The amoeba
itself corresponds to the liquid phase, the bounded components of its complement to
the gaseous phase and the unbounded components to the frozen phase. This in-
sight has a lot of consequences for the statistics of dimer models and lead Okounkov
and collaborators to beautiful results on interfaces with various boundary conditions
(31, [5].

Such a precise and complete description of phase diagrams and shapes of interfaces
is unprecedented in statistical mechanics.

6. Random surfaces

One useful interpretation of dimers is as models for random surfaces in three-dimen-
sional space. In the simplest case one considers a model for a melting or dissolving
cubic crystal in which at a corner some atoms are missing (see figure).

A melting crystal corner (left) and the relation between tilings and dimers (right).

Viewing the corner from the (1,1,1) direction one sees a tiling of the plane by 60°
rhombi, which is the same as a dimer configuration on a honeycomb lattice (each tile
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covers one dimer of the dimer configuration). In this simple model one gives the same
probability for every configuration with given missing volume. If one lets the size
of the cubes go to zero keeping the missing volume fixed, the probability measure
concentrates on an a surface, the limit shape. More generally, every planar dimer
model can be rephrased as a random surface model and limit shapes for more general
crystal corner geometries can be defined. Kenyon, Okounkov and Sheffield show
that the limit shape is given by the graph of (minus) the Ronkin function R(x, y) =
Qmi)~2 flz|=|w|=1 log(P(e*z, e?w))dzdw/zw of the spectral curve (in the case of
the honeycomb lattice with equal weights, P(z, w) = z + w + 1). This function is
affine on the complement of the amoeba and strictly convex on the amoeba. So the
connected components of the complement of the amoeba are the projections of the
facets of the melting crystal.

In addition to this surprising connection with real algebraic geometry, random
surfaces of this type are essential in the GW/DT correspondence, see Section 3, as
they arise in localization integrals for DT invariants of toric varieties.

7. The moduli space of Harnack curves

The notions used by Okounkov and collaborators in their study of dimer models arose
in an independent recent development in real algebraic geometry. Their result bring
a new probabilistic point of view in this classical subject.

In real algebraic geometry, unsurmountable difficulties already appear when one
consider curves. The basic open question is the first part of Hilbert’s 16th problem:
what are the possible topological types of a smooth curve in the plane given by a
polynomial equation P(z, w) = 0 of degree d? Topological types up to degree 7
are known but very few general results are available. In a recent development in real
algebraic geometry in the context of toric varieties the class of Harnack curves plays
an important role and can be characterized in many equivalent way. In one definition,
due to Mikhalkin, a Harnack curve is a curve such that the map to its amoeba is
2:1 over the interior, except at possible nodal points; equivalently, by a theorem of
Mikhalkin and Rullgérd, a Harnack curve is a curve whose amoeba has area equal
to the area of the Newton polygon of the polynomial P. These equivalent properties
determine the topological type completely.

Kenyon and Okounkov prove [4] that every Harnack curve is the spectral curve of
some dimer model. They obtain an explicit parametrization of the moduli space of
Harnack curves with fixed Newton polygon by weights of dimer models, and deduce
in particular that the moduli spaces are connected.
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8. Concluding remarks

Andrei Okounkov is a highly creative mathematician with both an exceptional breadth
and a sense of unity of mathematics, allowing him to use and develop, with perfect
ease, techniques and ideas from all branches of mathematics to reach his research
objectives. His results not only settle important questions and open new avenues
of research in several fields of mathematics, but they have the distinctive feature of
mathematics of the very best quality: they give simple complete answers to important
natural questions, they reveal hidden structures and new connections between math-
ematical objects and they involve new ideas and techniques with wide applicability.
Moreover, in addition to obtaining several results of this quality representing sig-
nificant progress in different fields, Okounokov is able to create the ground, made of
visions, intuitive ideas and techniques, where new mathematics appears. A striking
example for this concerns the relation to physics: many important developments in
mathematics of the last few decades have been inspired by high energy physics, whose
intuition is based on notions often inaccessible to mathematics. Okounkov’s way of
proceeding is to develop a mathematical intuition alternative to the intuition of high
energy physics, allowing him and his collaborators to go beyond the mere verification
of predictions of physicists. Thus, for example, in approaching the topological vertex
of string theory, instead of stacks of D-branes and low energy effective actions we find
mathematically more familiar notions such as localization and asymptotics of prob-
ability measures. As a consequence, the scope of Okounkov’s research programme
goes beyond the context suggested by physics: for example the Maulik—Nekrasov—
Okounkov—Pandharipande conjecture is formulated (and proved in many cases) in a
setting which is much more general than the Calabi—Yau case arising in string theory.
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The work of Grigory Perelman

John Lott

Grigory Perelman has been awarded the Fields Medal for his contributions to geom-
etry and his revolutionary insights into the analytical and geometric structure of the
Ricci flow.

Perelman was born in 1966 and received his doctorate from St. Petersburg State
University. He quickly became renowned for his work in Riemannian geometry and
Alexandrov geometry, the latter being a form of Riemannian geometry for metric
spaces. Some of Perelman’s results in Alexandrov geometry are summarized in his
1994 ICM talk [20]. We state one of his results in Riemannian geometry. In a short
and striking article, Perelman proved the so-called Soul Conjecture.

Soul Conjecture (conjectured by Cheeger—Gromoll [2] in 1972, proved by Perelman
[19] in 1994). Let M be a complete connected noncompact Riemannian manifold
with nonnegative sectional curvatures. If there is a point where all of the sectional
curvatures are positive then M is diffeomorphic to Euclidean space.

In the 1990s, Perelman shifted the focus of his research to the Ricci flow and its
applications to the geometrization of three-dimensional manifolds. In three preprints
[21], [22], [23] posted on the arXiv in 2002-2003, Perelman presented proofs of the
Poincaré conjecture and the geometrization conjecture.

The Poincaré conjecture dates back to 1904 [24]. The version stated by Poincaré
is equivalent to the following.

Poincaré conjecture. A simply-connected closed (= compact boundaryless) smooth
3-dimensional manifold is diffeomorphic to the 3-sphere.

Thurston’s geometrization conjecture is a far-reaching generalization of the Poin-
caré conjecture. It says that any closed orientable 3-dimensional manifold can be
canonically cut along 2-spheres and 2-tori into “geometric pieces” [27]. There are
various equivalent ways to state the conjecture. We give the version that is used in
Perelman’s work.

Geometrization conjecture. If M is a connected closed orientable 3-dimensional
manifold then there is a connected sum decomposition M = M| # M # --- # My
such that each M; contains a 3-dimensional compact submanifold-with-boundary
G, C M; with the following properties:

1. G; is a graph manifold.

2. The boundary of G;, if nonempty, consists of 2-tori that are incompressible in M;.
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3. M; —G; admits a complete finite-volume Riemannian metric of constant negative
curvature.

In the statement of the geometrization conjecture, G; is allowed to be ¥ or M;. (For
example, if M = §3 then we cantake M| = G| = S°.) The geometrization conjecture
implies the Poincaré conjecture. Thurston proved that the geometrization conjecture
holds for Haken 3-manifolds [27]. Background information on the Poincaré and
geometrization conjectures is in [17].

Perelman’s papers have been scrutinized in various seminars around the world.
At the time of this writing, the work is still being examined. Detailed expositions of
Perelman’s work have appeared in [1], [16], [18].

1. The Ricci flow approach to geometrization

Perelman’s approach to the geometrization conjecture is along the lines of the Ricci
flow strategy developed by Richard Hamilton. In order to put Perelman’s results in
context, we give a brief summary of some of the earlier work. A 1995 survey of the
field is in [12].

If M is a manifold and {g(¢)} is a smooth one-parameter family of Riemannian
metrics on M then the Ricci flow equation is

dg

i —2Ric. (1)

It describes the time evolution of the Riemannian metric. The right-hand side of the
equation involves the Ricci tensor Ric of g(¢). We will write (M, g(-)) for a Ricci
flow solution.

Ricci flow was introduced by Hamilton in 1982 in order to prove the following
landmark theorem.

Positive Ricci curvature ([7]). Any connected closed 3-manifold M that admits a
Riemannian metric of positive Ricci curvature also admits a Riemannian metric of
constant positive sectional curvature.

A connected closed 3-dimensional Riemannian manifold with constant positive
sectional curvature is isometric, up to scaling, to the quotient of the standard round
3-sphere by a finite group that acts freely and isometrically on S°. In particular,
if M is simply-connected and admits a Riemannian metric of positive Ricci curvature
then M is diffeomorphic to S°. The idea of the proof of the theorem is to run the
Ricci flow, starting with the initial metric g(0) of positive Ricci curvature. The Ricci
flow will go singular at some finite time 7', caused by the shrinking of M to a point.
As time approaches T, if one continually rescales M to have constant volume then
the rescaled sectional curvatures become closer and closer to being constant on M.
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In the limit, one obtains a Riemannian metric on M with constant positive sectional
curvature.

Based on Hamilton’s result, Hamilton and S.-T. Yau developed a program to attack
the Poincaré conjecture using Ricci flow. The basic idea was to put an arbitrary initial
Riemannian metric on the closed 3-manifold, run the Ricci flow and analyze the
evolution of the metric.

Profound results about Ricci flow were obtained over the years by Hamilton and
others. Among these results are the Hamilton—DeTurck work on the existence and
uniqueness of Ricci flow solutions [6], [7], Hamilton’s maximum principle for Ricci
flow solutions [8], the Hamilton—Chow analysis of Ricci flow on surfaces [4], [9],
Shi’s local derivative estimates [25], Hamilton’s differential Harnack inequality for
Ricci flow solutions with nonnegative curvature operator [10], Hamilton’s compact-
ness theorem for Ricci flow solutions [11] and the Hamilton—Ivey curvature pinching
estimate for three-dimensional Ricci flow solutions [12, Theorem 24.4],[15]. We state
one more milestone result of Hamilton, from 1999.

Nonsingular flows ([14]). Suppose that the normalized Ricci flow on a connected
closed orientable 3-manifold M has a smooth solution that exists for all positive time
and has uniformly bounded sectional curvatures. Then M satisfies the geometrization
conjecture.

The normalized Ricci flow is a variant of the Ricci flow in which the volume
is kept constant. The above result clearly showed that Ricci flow was a promising
approach to the geometrization conjecture. The remaining issues were to remove the
assumption that the Ricci flow solution is smooth for all positive time, and the a priori
bound on the sectional curvature.

Regarding the smoothness issue, many 3-dimensional solutions of the Ricci flow
equation (1) encounter a singularity within a finite time. One example of a singularity
is a standard neckpinch, in which a cross-sectional 2-sphere {0} x S in a topological
neck ((—1, 1) x §?) C M shrinks to a point in a finite time. Hamilton introduced
the idea of performing a surgery on a neckpinch [13]. At some time, one removes
a neighborhood (—c, ¢) x S? of the shrinking 2-sphere and glues three-dimensional
balls onto the ensuing boundary 2-spheres {—c} x 2 and {c} x S?. After the surgery
operation the topology of the manifold has changed, but in a controllable way, since
the presurgery manifold can be recovered from the postsurgery manifold by connected
sums. One then lets the postsurgery manifold evolve by Ricci flow. If one encounters
another neckpinch singularity then one performs a new surgery, lets the new manifold
evolve, etc.

One basic issue was to show that if the Ricci flow on a closed 3-manifold M
encounters a singularity then an entire connected component disappears or there are
nearby 2-spheres on which to do surgery. To attack this, Hamilton initiated a blowup
analysis for Ricci flow [12, Section 16]. It is known that singularities arise from
curvature blowups [7]. That is, if a Ricci flow solution exists on a maximal time
interval [0, T'), with T < oo, then lim,_, - sup, ), | Riem(x, ¢)| = oo, where Riem
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denotes the sectional curvatures. Suppose that {(x;, 7;)}72 is a sequence of spacetime
points with lim;_, , | Riem(x;, #;)| = oo. In order to understand the geometry of
the Ricci flow solution as one approaches the singularity time, one would like to
spatially expand around (x;, ¢;) by a factor of | Riem(x;, ti)l% and take a convergent
subsequence of the ensuing geometries asi — oco. In fact, if one also expands the time
coordinate by | Riem(x;, #;)| then one can consider taking a subsequence of rescaled
Ricci flow solutions, that converges to a limit Ricci flow solution (Mo, goo(-))-

Hamilton’s compactness theorem [11] gives sufficient conditions to extract a con-
vergent subsequence. Roughly speaking, on the rescaled solutions one needs uniform
curvature bounds on balls and a uniform lower bound on the injectivity radius at
(xi, t;). One can get the needed curvature bounds by carefully choosing the blowup
points (x;, t;). However, before Perelman’s work, the needed injectivity radius bound
was not available in full generality.

If the blowup limit (Moo, g00(+)) exists then it is a nonflat ancient solution, mean-
ing that it is defined for r € (—o0, 0]. The manifold M, may be compact or noncom-
pact. In the three-dimensional case, Hamilton—Ivey pinching implies that for each
t € (—oo, 0], the time-f slice (M, goo(?)) has nonnegative sectional curvature. Thus
the possible blowup limits are very special. Hamilton gave detailed analyses of var-
ious singularity models [12, Section 26]. One troublesome possibility, the so-called
R X cigar soliton ancient solution, could not be excluded. If this particular solution
occurred in a blowup limit then it would be problematic for the surgery program, as
there would be no evident 2-spheres along which to do surgery. Hamilton conjectured
[12, Section 26] that the R x cigar soliton solution could be excluded by means of a
suitable generalization of the “little loop lemma” [12, Section 15].

In addition, there was the issue of showing that any point of high curvature in the
original Ricci flow solution on [0, T') has a neighborhood that is indeed modeled by
a blowup limit.

2. No local collapsing theorem

Perelman’s first breakthrough in Ricci flow, the no local collapsing theorem, removed
two major stumbling blocks in the program to prove the geometrization of three-
dimensional manifolds using Ricci flow. It allows one to take blowup limits of finite
time singularities and it shows that the R x cigar soliton solution cannot arise as a
blowup limit.

No local collapsing theorem ([21]). Let M be a closed n-dimensional manifold. If
(M, g(+)) is a given Ricci flow solution that exists on a time interval [0, T), with
T < oo, then for any p > 0 there is a number k > 0 with the following property.
Suppose that r € (0, p) and let B;(x, r) be a metric r-ball in a time-t slice. If the
sectional curvatures on B;(x, r) are bounded in absolute value by r% then the volume
of By (x, r) is bounded below by kr".
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Perelman expresses the conclusion of the no local collapsing theorem by saying
that the Ricci flow solution is “k-noncollapsed at scales less than p”. The theorem
says that after rescaling the metric ball to have radius one, if the sectional curvatures
of the rescaled ball are bounded in absolute value by one then the volume of the
rescaled ball is bounded below by «. This lower bound on the volume is a form of
noncollapsing. The theorem is scale-invariant, except for the condition that r should
be less than the scale p.

Perelman proves his no local collapsing theorem using new monotonic quantities
for Ricci flows, which he calls the ‘W-functional and the reduced volume V. Expres-
sions that are time-nondecreasing under the Ricci flow, loosely known as entropies,
were known to be potentially useful tools; for example, such an entropy was used
in the two-dimensional case in [9]. However, no relevant entropies were previously
known in higher dimensions. Perelman’s entropy functionals arise from a new and
profound understanding of the underlying structure of the Ricci flow equation. The
method of proof of the no local collapsing theorem is to show that a local collapsing
contradicts the monotonicity of the entropy.

The significance of the no local collapsing theorem is that under a curvature as-
sumption, it implies a lower bound on the injectivity radius at x, using [3]. This is
what one needs in order to extract blowup limits. Any blowup limit (Mo, goo(?))
will be a nonflat ancient solution which, from the no local collapsing theorem, is k-
noncollapsed at all scales. If such an ancient solution additionally has nonnegative cur-
vature operator and bounded curvature (which will be the case for three-dimensional
blowup limits) then Perelman calls it a k-solution.

Hereafter we assume that M is an orientable three-dimensional manifold. Perel-
man gives the following classification of x-solutions.

Three-dimensional «-solutions ([21], [22]). Any three-dimensional orientable -
solution (Moo, 800 (+)) falls into one of the following types:

() (Mo, 8c0(+)) is a finite isometric quotient of the round shrinking 3-sphere.
(b) My is diffeomorphic to S3 or RP3.
(©) (Moo, goo(+)) is the standard shrinking R x S2 or its Zp-quotient R Xz, S2.

(d) My is diffeomorphic to R3 and, after rescaling, each time slice is asymptoti-
cally necklike at infinity.

In particular, Perelman shows that the R x cigar soliton ancient solution cannot
arise as a blowup limit (as there is no « > 0 for which it is x-noncollapsed at all
scales), thereby realizing Hamilton’s conjecture.

Perelman’s main use of x-solutions is to model the high-curvature regions of a
Ricci flow solution. By means of a sophisticated version of the blowup analysis, he
proves the following result, which we state in a qualitative form.

Canonical neighborhoods ([21]). Given T < oo, if (M, g(-)) is a nonsingular Ricci
flow on a closed orientable 3-manifold M that is defined fort € [0, T') then any region
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of high scalar curvature is modeled, after rescaling, by the corresponding region in
a three-dimensional k -solution.

Perelman’s first Ricci flow paper [21] concludes by showing that if the Ricci flow
on a closed orientable 3-manifold M has a smooth solution that exists for all positive
time then M satisfies the geometrization conjecture. There is no a priori curvature
assumption. The proof of this result uses the long-time analysis described in Section 4.

3. Ricci flow with surgery

Perelman’s second Ricci flow paper [22] is a technical tour de force. He constructs a
surgery algorithm to handle Ricci flow singularities. There are several issues involved
in setting up a surgery algorithm. The most basic issue is to know that if the Ricci
flow encounters a singularity then a connected component disappears or there are
2-spheres along which one can perform surgery, with control on the topology of
the excised regions. This is an issue about the geometry of the Ricci flow near
a singularity. For the first singularity time, it is handled by the above canonical
neighborhood theorem. A second issue is to perform the surgery so as to not ruin
the Hamilton—Ivey pinching condition on the curvature. A third issue is to show that
surgery times do not accumulate. If surgery times accumulate then one may never
get to a sufficiently large time to draw any topological conclusions.

Hereafter we consider a Ricci flow (M, g(-)) on a connected closed oriented 3-
manifold. With T being the first singularity time (if there is one), Perelman defines
2 to be the points in M where the scalar curvature R stays bounded up to time 7', i.e.
M—-Q={xeM : lim_7r- R(x,t) = oco}. Here Q is an open subset of M. The
next result gives the topology of M if the scalar curvature blows up everywhere.

Components that go extinct ([22]). If 2 = 0 then M is diffeomorphic to a finite
isometric quotient S3 ) T of the round 3-sphere, to S' x § orto S! X7, S? =RP3#
RP3.

Now suppose that the scalar curvature blows up somewhere but not everywhere,
i.e. Q # . Perelman’s surgery procedure involves going up to the singularity time T
and then trimming off horns. More precisely, there is a limiting time-7 metric g on €2,
with scalar curvature function R. For a small number p > 0, the part of  where the
scalar curvature is not too big is 2, = {x € Q : R(x) < p~ %}, a compact subset
of M. The connected components of € can be divided into those that intersect €2,
and those that do not. The connected components of €2 that do not intersect €2, have
uniformly large scalar curvature and are discarded. Using the canonical neighborhood
theorem, Perelman shows that if a connected component of €2 intersects €2, then it
has a finite number of ends, each being a so-called “e-horn”. The latter statement
means that the scalar curvature goes to infinity as one exits the end, and in addition if x
is a point in the g-horn then after expanding the metric to make the scalar curvature



72 John Lott

at x equal to one, there is a neighborhood of x in 2 that is geometrically close to a
cylinder (—e~!, e71) x §2. (Here ¢ is a fixed small number.) The surgery procedure
consists of cutting each such ¢-horn along one of these cross-sectional 2-spheres and
gluing in a 3-ball.

If one does the surgery in this way then one has control on how the topology
changes. Indeed, the presurgery manifold is recovered from the postsurgery manifold
by taking connected sums of components, along with some possible additional con-
nected sums with a finite number of S' x §2 or RP3 factors. (The S' x §? factors
come from surgeries that do not disconnect M. The RP? factors can arise from con-
nected components of €2 that were thrown away.) One can guarantee that the surgery
preserves the Hamilton—Ivey curvature pinching condition by carefully prescribing
the geometric way that the 3-ball is glued, following [13].

One can then run the Ricci flow, starting from the postsurgery manifold, up to
the next singularity time 7" (if there is one). However, if one wants to do surgery at
time 7" then one must find the 2-spheres along which to cut. The main problem is that
the earlier surgeries could invalidate the conclusion of the canonical neighborhood
theorem on [0, T"). The proof of the canonical neighborhood theorem in turn relied
on the no local collapsing theorem.

One ingredient of Perelman’s resolution of this problem is to perform surgery
sufficiently far down in the -horns. Ineffect, there is a self-improvement phenomenon
as one goes down the horn. Perelman shows that for any § > 0, if a point x is in an
&-horn as before, and is sufficiently deep within the horn, then after rescaling to make
the scalar curvature at x equal to one, there is a neighborhood of x that is geometrically
close to a cylinder (—8~!,87!) x S2. Hence one can ensure that the surgeries are
done within cylinders that are very long relative to the cross-section. This turns out
to be a key to extending the no local collapsing theorem to the case when there are
intervening surgeries within the time interval. To summarize, Perelman proves the
following technically difficult theorem.

Surgery algorithm ([22]). The surgery parameters can be chosen so that there is a
well-defined Ricci-flow-with-surgery.

The statement means that the Ricci-flow-with-surgery exists for all time. (It is
not excluded that at some finite time the remaining manifold becomes the empty
set.) Perelman’s proof is quite intricate and uses an induction on the time interval. In
addition, for a given induction step, i.e. on a given time interval, he uses a contradiction
argument to show that the surgery parameters can be chosen so as to ensure that
versions of the no local collapsing theorem and the canonical neighborhood theorem
hold on the time interval, despite possible intervening surgeries.

Volume considerations show that only a finite number of surgeries occur on a
finite time interval; any surgery within the time interval removes a definite amount of
volume, but there is only so much volume available for removal.
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4. Long-time behavior

Once one has the Ricci-flow-with-surgery, in order to obtain topological information
about the original manifold one needs to analyze the long-time behavior. One special
case is when there is a finite extinction time, i.e. the manifold in the Ricci-flow-with-
surgery becomes the empty set at some finite time. Using his characterization of
components that go extinct and analyzing the topology change caused by surgeries,
Perelman gives the possible topology of a manifold whose Ricci flow has a finite
extinction time.

Finite extinction time ([22]). If a Ricci-flow-with-surgery starting from M has a
finite extinction time then M is diffeomorphic to a connected sum of finite isometric
quotients of the round S* and copies of S' x §.

In his third Ricci flow paper [23], Perelman goes further and uses minimal disk
arguments to give a condition that ensures a finite extinction time; see also [5].

No aspherical factors ([23]). If the Kneser—Milnor prime decomposition of M does
not have any aspherical factors then a Ricci-flow-with-surgery starting with any initial
Riemannian metric on M has a finite extinction time.

When put together, the above two steps give the topological possibilities for a
connected closed orientable 3-manifold M whose prime decomposition does not have
any aspherical factors. In particular, if M is simply-connected then the above two
steps say that M is diffeomorphic to a connected sum of 3-spheres, and hence is
diffeomorphic to the 3-sphere.

In the general case when the Ricci-flow-with-surgery may not have a finite extinc-
tion time, the goal is to show that as time goes on, one sees the desired decomposition
of the geometrization conjecture. There could be an infinite number of total surgeries.
At the time of this writing it is not known whether this actually happens. Perelman
had the insight that one can draw topological conclusions nevertheless.

Let M, be a connected component of the time-f manifold. (If# is a surgery time then
we consider the postsurgery manifold.) If M; admitted any metric with nonnegative
scalar curvature then it would be flat or the corresponding Ricci flow would have
finite extinction time, in which case the topology is understood. So we can assume
that M; carries no metric with nonnegative scalar curvature. Consider hereafter the
metric g(f) = % g(t) on M;. Perelman defines the “thick” part of M; as follows. Given
x € M,,lettheintrinsic scale p(x, t) be the radius p such thatinf (. ,) Riem = —,o’z,
where Riem is the sectional curvature of g(z). For any w > 0, the w-thick part of
M; is given by M (w, 1) = {x € M, : vol(B(x, p(x,1))) > wo(x, )3}, Tt is not
excluded that M+ (w, ) =@ or MT(w, t) = M;.

By definition, one has a lower curvature bound on the ball B(x, p(x, t)). Perelman
shows by a subtle argument that for large 7, if x is in the w-thick part M ' (w, t) then
B(x, p(x, t)) actually has an effective upper curvature bound. Adapting arguments
from [13], he then shows that forany w > 0, as time goes on, M+ (w, t) approaches the
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w-thick part of a hyperbolic manifold whose cuspidal tori, if any, are incompressible
in M;. On the other hand, if w is small and x is not in the w-thick part then the ball
B(x, p(x, t)) has a lower curvature bound and a relatively small volume compared to
p(x, 1)3. From Perelman’s earlier work in collapsing theory, he knew that 3-manifolds
which are locally volume collapsed, with respect to a lower curvature bound, are graph
manifolds. Putting this together, Perelman is able to achieve the remarkable feat of
realizing the hyperbolic/graph dichotomy, without making any a priori curvature
assumptions.

Hyperbolic pieces ([22]). Given the Ricci-flow-with-surgery, there are a finite col-
lection {(H;, xi)}f?=1 of complete pointed finite-volume Riemannian 3-manifolds of

constant sectional curvature —%, a decreasing function o(t) tending to zero and a

Sfamily of maps f;: Ule B(xi, %) — M; such that for large t,

1. f; is a(t)-close to being an isometry.
2. The image of f; contains M (a(t), t).

3. The image under f; of a cuspidal torus of {Hi}f: | is incompressible in M;.

That is, for large ¢, the o (¢)-thick part of M; is well approximated by the corre-
sponding subset of Uf:l H;. The remainder of M; is highly collapsed with respect
to a local lower curvature bound.

Graph manifold pieces ([22], [26]). Let Y; be the truncation of Ule H; obtained
by removing horoballs at distance approximately #([) from the basepoints x;. Then

for large t, M; — f;(Y}) is a graph manifold.

The above two steps, along with the fact that the components that go extinct are
graph manifolds, and the fact that presurgery manifolds can be reconstructed from
postsurgery manifolds via connected sums, imply the geometrization conjecture.

Grigory Perelman has revolutionized the fields of geometry and topology. His
work on Ricci flow is a spectacular achievement in geometric analysis. Perelman’s
papers show profound originality and enormous technical skill. We will certainly be
exploring Perelman’s ideas for many years to come.
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The work of Terence Tao

Charles Fefferman

Mathematics at the highest level has several flavors. On seeing it, one might say:
(A) What amazing technical power!
(B) What a grand synthesis!
(C) How could anyone not have seen this before?
(D) Where on earth did this come from?

The work of Terence Tao encompasses all of the above. One cannot hope to
capture its extraordinary range in a few pages. My goal here is simply to exhibit a
few contributions by Tao and his collaborators, sufficient to produce all the reactions
(A). .. (D). I shall discuss the Kakeya problem, nonlinear Schrédinger equations and
arithmetic progressions of primes.

Let me start with a vignette from Tao’s work on the Kakeya problem, a beautiful
and fundamental question at the intersection of geometry and combinatorics. I shall
state the problem, comment briefly on its significance and history, and then single out
my own personal favorite result, by Nets Katz and Tao.

The original Kakeya problem was to determine the least possible area of a plane
region inside which a needle of length 1 can be turned a full 360 degrees. Besicovitch
and P4al showed that the area can be taken arbitrarily small.

In its modern form, the Kakeya problem is to estimate the fractal dimension of a
“Besicovitch set” E C R”, i.e., a set containing line segments of length 1 in all
directions.

There are several relevant notions of “fractal dimension”. Here, let us use the
Minkowski dimension, defined in terms of coverings of E by small balls of a fixed
radius 6. The Minkowski dimension is the infimum of all 8 such that, for small §,
E can be covered by §# balls of radius 5. We want to prove that any Besicovitch
set £ C R" has Minkowski dimension at least (n), with §(n) as large as possible.
(Perhaps B(n) = n.)

Regarding the central importance of this problem, perhaps it is enough to say that
it is intimately connected with the multiplier problem for Fourier transforms, and
with the restriction of Fourier transforms to hypersurfaces; these in turn are closely
connected with non-linear PDE via Strichartz estimates and their variants. There are
also connections with other hard, interesting problems in combinatorics.

Let me sketch some of the history of the problem over the last 30 years. The basic
result of the 1970s is that 8(2) = 2. (This is due to Davies, and is closely related
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to the early work of A. Cérdoba. See [7], [8].) In the 1980s, Drury [9] showed that
B(n) = % for n > 3. (See also Christ et al [4].)

Then, about 1990, J. Bourgain and, shortly afterwards, T. Wolff discovered that
Besicovitch sets of small fractal dimension have geometric structure (they contain
“bouquets” and “hairbrushes”). During the 1990s, Bourgain also discovered a con-
nection between the Kakeya problem and Gowers” work on the Balog—Szemerédi
theorem from combinatorics. These insights led to small, hard-won improvements in
the value of B(n). The work looks deep and forbidding. See [1], [2], [24].

The connection with Gowers’ work arises in the following result. (We write #(5)
for the number of elements of a set S.)

Deep Theorem (Bourgain, using ideas from Gowers’ improvement of Balog—Sze-
merédi). Let A, B be subsets of an abelian group, and let G C A x B. Assume that
#(A), #(B), and#{a+b : (a,b) € G} areatmost N. Then#{a—b : (a,b) € G} <
CN?> Y13, for a universal constant C.

The point is that one improves on the trivial bound N2. From the Deep Theorem,
one quickly obtains aresult on §(n) by slicing the set E with three parallel hyperplanes
H, H', H', with H” halfway between H and H'.

Enter Nets Katz and Terence Tao, who proved the following result in 1999.

Little Lemma. Under the assumptions of the Deep Theorem, we have #{a — b :
(a,b) € G} < CN2_1/6, for a universal constant C.

Note that the Little Lemma is strictly sharper than the Deep Theorem, Nevertheless,
its proof takes only a few pages, and can be understood by a bright high-school
student. After reading the proof, one has not the faintest clue where the idea came
from (see (D)).

The Little Lemma and its refinements led to the estimate S(n) > 4"%3 for the
Kakeya problem, which at the time was the best result known for n > 8. In high
dimensions, the high-school accessible paper [18] went further than all the deep,
forbidding work that came before it. Since then, there has been further progress, with
Nets Katz, Izabella Laba, and Terence Tao playing a leading rdle. The subject still
looks deep and forbidding. In particular, regarding (A), let me refer the reader to the
tour-de-force [17] by these authors.

Unfortunately, the complete solution to the Kakeya problem still seems far away.

Next, I shall discuss “interaction Morawetz estimates”. This simple idea, with
profound consequences for PDE, was discovered by the “I-Team”: J. Colliander,
M. Keel, G. Staffilani, H. Takaoka, and Terence Tao. Let me start with the 3D non-
linear Schrodinger equation (NLS):

idu + Ayu==+ul” 'u, u(x,0) =up(x) given, (1)

where u is a complex-valued function of (x, ) € R?® x R, and p > 1 is given.
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This equation is important in physics and engineering. For instance, it describes
the propagation of light in a fiber-optic cable. The behavior of solutions of (1) de-
pends strongly on the & sign and on the value of p. In particular, the minus sign is
“focussing”, and we may expect solutions of (1) to develop singularities; while the
plus sign is “defocussing”, and we expect solutions of (1) to spread out over large
regions of space, as t —> Fo0. In the defocussing case, the non-linear term in (1)
should eventually become negligibly small, and the solution of (1) ought to behave
like a solution of the (linear) free Schrodinger equation (i9; + Ay)u = 0. From now
on, we restrict attention to the defocussing case.

We note two obvious conserved quantities for (1): the “mass” fR3 |u(x, t)|2dx,
and the energy,

1

1
E = Ef |Veu(x, 0))?dx + 1 / lu(x, )P dx.
R3 R3

How can we prove that solutions of (1) spread out for large time? A fundamental
tool is the Morawetz estimate. C. Morawetz first discovered this wonderful, simple
idea for the non-linear Klein—Gordon equation. Let me describe it here for cubic 3D
NLS, i.e., for equation (1) with p = 3. There, the Morawetz estimate asserts that

T
lu(x, 1)[*
//—dxdth swp | AU 1) sy @
e |x| 0<t<T
R

for any 7 > 0 and any solution of (1).

The good news is that (2) instantly shows that ¥ must eventually become small
in any given bounded region of space. (If not, then the left-hand side of (2) grows
linearly in T as T — oo, while the right-hand side of (2) remains bounded, thanks
to conservation of mass and energy.)

The bad news is that (2) does not rule out a scenario in which u(x, t) remains
concentrated near a moving center x = xo(#). The trouble is that the weight function
ﬁ is concentrated near x = 0, whereas u( -, t) may be concentrated somewhere else.

The I-Team found an amazingly simple and straightforward way to overcome the
bad news. Let me sketch the idea, starting with the classic proof of (2). To derive (2),
we start with the quantity

Mo (1) :Im/ﬁ(x,t) : [i .V, u(x,t)] dx. 3)
R3

|x|

On one hand, My(#) is controlled by the right-hand side of (2), when 0 <¢ < T. On
the other hand, a computation using (1) shows that

d d O
EMO(t):4n2|u(0,t)|2+2/|Vgu(x,t)|2—x+ %dx, (4)

x|
R3 R3

where Vg denotes the angular part of the gradient.
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The Morawetz estimate (2) follows at once.
The I-Team simply replaced M (¢) by a weighted average of translates,

M) =f My(t) lu(y, )|* dy,
Rfa

where
X =Yy
lx — ¥

My(1) :Im/ﬁ(x,t) : [ .V, u(x,t)] dx.
R3

This puts the greatest weight on those y € R> where u(y, t) lives — an eminently
sensible idea.

Starting with M () and proceeding more or less as in the proof of the Morawetz
estimate, one obtains easily the

Interaction Morawetz Estimate.

T
//Iu(x,t)l“dxdrsc Il 0) 1723y - sup | (=AD" u( 1) 172 s,
0 3 0<t<T

&)

Again, the right-hand side is bounded for large 7', thanks to conservation of mass
and energy. This time however, the left-hand side grows linearly in 7', even if our
solution is concentrated in a moving ball. The I-Team has overcome the bad news.
They made it look effortless. Why did no one think of it before? (See (C).)

Observe that the right-hand side of (5) is much weaker than the energy; we need
only half an x-derivative, as opposed to a full gradient. The original purpose of the
interaction Morawetz estimate was to derive global existence for cubic defocussing 3D
NLS in Sobolev spaces in which the energy may be infinite. That is a big achievement
(see [6]), but I will not discuss it further here, except to point out that the proof involves
additional ideas and formidable work.

Instead, let me say a few words about the defocussing quintic 3D NLS, i.e., the
case p = 5 of equation (1). This equation is particularly natural and deep, because it
is critical for the energy. One knows that finite-energy initial data lead to solutions for
a short time, and that small-energy initial data lead to global solutions. The challenge
is to prove global existence for initial data with large, finite energy.

To appreciate the difficulty of the problem, we have only to turn to the tour-de-force
[3] by J. Bourgain, solving the problem in the radially symmetric case. The general
case is an order of magnitude harder; a singularity can form only at the origin in the
radial case, but it may form anywhere in the general case. The I-Team settled the
general case using a version of the interaction Morawetz estimate for quintic NLS
(with cutoffs, which unfortunately greatly complicate the analysis). This is natural,
since in a sense one must overcome the same bad news as before. Their result [5] is
as follows.
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Theorem. Take p = 5 in the defocussing case in (1). Then, for any finite-energy
initial data ug, there is a global solution u(x, t) of NLS. If ug belongs to H® with
s > 1, thenu( -, t) also belongs to H® for all t. Moreover, there exist solutions uy of
the free Schrodinger equation, such that

/Wx(u(x,r) s, )P dx
R?

tends to zero as t tends to Loo.

I will not try to describe their proof, except to say that they use an interaction
Morawetz estimate with cutoffs, along with ideas from Bourgain [3], especially the
“induction on energy”’, as well as other ideas that I cannot begin to describe here. The
details are highly formidable; see (A).

We come now to Tao’s great joint paper ([16]; see also Green [15]) with Ben Green,
in which they prove the following result. Here again, #(S) denotes the number of
elements of a set S.

Theorem GT. There exist arbitrarily long arithmetic progressions of primes. More
precisely, given k > 3, there exist constants c(k) > 0 and No(k) > 1, such that for
any N > Ny(k), we have #{k-term arithmetic progressions among the primes less

c(k)N?
than N} > (log N)F*

The lower bound here agrees in order of magnitude with a natural guess. (Green
and Tao are currently working on a more precise result, with an optimal c(k).)

To convey something of the range and depth of the ideas in the proof, let me start
with the classic theorem of Szemerédi on sets of positive density. Here, Zy denotes
the cyclic group of order N.

Theorem Sz 1. Given k and &, we have for large enough N that any subset E C Zy
with #(E) > 8 - N contains an arithmetic progression of length k.

Szemerédi’s theorem also gives a lower bound for the number of k-term progres-
sions in E. (See [23].) It is convenient to speak of functions f rather than sets E.
(One obtains Theorem Sz 1 from Theorem Sz 2 below, simply by taking f to be the
indicator function of E.) Thus, Szemerédi’s theorem may be rephrased as follows.

Theorem Sz 2. Givenk, &, the following holds for large enough N. Let f: Zy — R,
with 0 < f(x) < 1 for all x, and with

(1) Avyiezy f(x) > 4.

Then

2) Avy ey (fX) - fx+71) ... f(x + (k= Dr)} = c(k, 8) > 0, where c(k, 6)
depends only on k, § (and not on N or f).
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(In (1), (2) and similar formulas, “Av” denotes the mean.)

In Theorems Sz 1 and 2, § stays fixed as N grows. If instead we could take
8 ~ 1/log N, then the Green—Tao theorem would follow. However, such an im-
provement of Theorems Sz 1, 2 seems utterly out of reach, and may be false.

There are three very different proofs of Theorems Sz 1, 2; they are due to Szemerédi
[21], Furstenberg [10], and Gowers [14]. Without doing justice to the remarkable ideas
in these arguments, let me just say that Szemerédi used combinatorics, Furstenberg
used ergodic theory, and Gowers used (non-linear) Fourier analysis. It is hard to
see anything in common in these three proofs. In a sense, the Green-Tao paper
synthesizes them all, by quoting Theorem Sz 2 and using ideas that go back to the
proofs of Furstenberg and Gowers. See (B).

Green and Tao prove a powerful extension of Theorem Sz 2, in which the hypoth-
esis0 < f(x) < lisreplacedby 0 < f(x) < v(x) for a suitable non-negative weight
function v(x). The function v(x) is assumed to satisfy three conditions, which we
describe crudely here.

* Avyezy vi(x) = 1.
e We assume an upper bound on the quantity
m
AVE=(x,....x,) € (Zx)' { [TvxiGn }
i=1
for certain affine functions A1, ..., Ay (Zy) — Zp.
e Forany hy, ..., hy, € Zy, we assume that
Avgezy 0+ 1) v +hn)} <Y Tnhi — hy),
i#]
for a function 7,,: Zy —> R that satisfies
Avpezy {Tm(W)?} < C(m, q)
for any q.

Such a function v(x) is called a “pseudo-random measure” by Green and Tao. Their
extension of Szemerédi’s theorem is as follows.

Theorem GTS (Green—Tao-Szemerédi). Let k,5 > 0, suppose N is large enough
and let v be a pseudo-random measure. Let f: Zny — R, with 0 < f(x) < v(x),
and with Avyez,y f(x) > 6.

Then Avy,ezy (f(X)- fx4+7r)... f(x+(k—=Dr)} > ck,8) > 0, where
c(k, 8) depends on k, 8, but not on N or f.
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The point is that there are pseudo-random measures v(x) that are large on sparse
subsets of Zy (e.g., the primes up to N). We will return to this point.

Let me say a few words about the proof of Theorem GTS, and then afterwards
describe how it applies to the primes.

It is in the proof of Theorem GTS that Szemerédi’s theorem is combined with
ideas from Furstenberg and Gowers.

Green and Tao break up the function f into a “uniform” and an “anti-uniform”
part, f = fu + fy.

They expand out Avy yezy{f(x) - f(x +7)... f(x + (k — 1)r)} into a sum of
terms

(3) Avx,ezy {fox) - fitx +r)... fi—1(x + (k — 1)r)}, where each f; is either
fuor fyr.

The terms (3) that contain any factor fy are o(1), thanks to ideas that go back to
Gowers’ proof.

This leaves us with the term (3) in which each f; is f;;1. Let us call this the
“critical term”.

To control that term, Green and Tao partition Zy into subsets Ey, Ea, ..., E4,
and then define a function f,;1 on Zy by averaging f,;1 over each E,. Green and
Tao then prove that

(4) replacing f;;1 by f_‘UJ_ makes a difference o(1) in the critical term,
and moreover,
(5) 0 < fyr < land Avyez,, fyo(x) > 8.

Consequently, the classic Szemerédi theorem (Theorem Sz 2) applies to f_‘UL,
completing the proof of the Green—Tao—Szemerédi theorem.

The proof of (4) and (5) is based on ideas that go back to Furstenberg’s proof of
Szemerédi’s theorem.

Once the Green—Tao—Szemerédi theorem is established, one can take f(x) = logx
for x prime, f(x) = 0 otherwise. If we can find a pseudo-random measure v such
that

(6) 0< f(x) <v(x)forall x,

then Theorem GTS applies, and it yields arbitrarily long arithmetic progressions of
primes as in Theorem GT. A first guess for v(x) is the standard Von Mangoldt function
A(x) = log p for x = pk, p prime; A(x) = 0 otherwise. A may indeed be a pseudo-
random measure, but that would be very hard to prove. Fortunately, another function
v can be seen to be a pseudo-random measure satisfying (6), thanks to important work
of Goldston—Y1ildirim [11], [12], [13], using not-so-hard analytic number theory.

Thus, in the end, a great theorem on the prime numbers is proven without hard
analytic number theory. The difficulty lies elsewhere.
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I have repeatedly used the phrase “tour-de-force”; I promise that I am not exag-
gerating.

There are additional first-rate achievements by Tao that I have not mentioned at
all. For instance, he has set forth a program [22] for proving the global existence
and regularity of wave maps, by using the heat flow for harmonic maps. This has
an excellent chance to work, and it may well have important applications in general
relativity. I should also mention Tao’s joint work with Knutson [19] on the saturation
conjecture in representation theory. It is most unusual for an analyst to solve an
outstanding problem in algebra.

Tao seems to be getting stronger year by year. It is hard to imagine what can
top the work he has already done, but we await Tao’s future contributions with eager
anticipation.
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The work of Wendelin Werner

Charles M. Newman*

1. Introduction

It is my great pleasure to briefly report on some of Wendelin Werner’s research ac-
complishments that have led to his being awarded a Fields Medal at this International
Congress of Mathematicians of 2006. There are a number of aspects of Werner’s
work that add to my pleasure in this event. One is that he was trained as a probabilist,
receiving his Ph.D. in 1993 under the supervision of Jean-Francois Le Gall in Paris
with a dissertation concerning planar Brownian Motion — which, as we shall see,
plays a major role in his later work as well. Until now, Probability Theory had not
been represented among Fields Medals and so I am enormously pleased to be here to
witness a change in that history.

I myself was originally trained, not in Probability Theory, but in Mathematical
Physics. Werner’s work, together with his collaborators such as Greg Lawler, Oded
Schramm and Stas Smirnov, involves applications of Probablity and Conformal Map-
ping Theory to fundamental issues in Statistical Physics, as we shall discuss. A
second source of pleasure is my belief that this, together with other work of recent
years, represents a watershed in the interaction between Mathematics and Physics
generally. Namely, mathematicians such as Werner are not only providing rigorous
proofs of already existing claims in the Physics literature, but beyond that are provid-
ing quite new conceptual understanding of basic phenomena — in this case, a direct
geometric picture of the intrinsically random structure of physical systems at their
critical points (at least in two dimensions). One simple but important example is
percolation — see Figure 1.

Permit me a somewhat more personal remark as director of the Courant Insti-
tute for the past four years. We have a scientific viewpoint, as did our predecessor
institute in Gottingen — namely, that an important goal should be the elimination of ar-
tificial distinctions between the Mathematical Sciences and their applications in other
Sciences — I believe Wendelin Werner’s work brilliantly lives up to that philosophy.

Yet a third source of pleasure concerns the collaborative nature of much of Werner’s
work. Beautiful and productive mathematics can be the result of many different
personal workstyles. But the highly interactive style, of which Werner, together with
Lawler, Schramm and his other collaborators, is a leading exemplar, appeals to many
of us as simultaneously good for the soul while leading to work stronger than the sum
of its parts. Itis a promising sign to see Fields Medals awarded for this style of work.

*Research partially supported by the U.S. NSF under grants DMS-01-04278 and DMS-0606696.

Proceedings of the International Congress
of Mathematicians, Madrid, Spain, 2006
© 2007 European Mathematical Society
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Figure 1. Finite portion of a (site) percolation configuration on the triangular lattice. Each
hexagon represents a site and is assigned one of two colors. In the critical percolation model,
colors are assigned randomly with equal probability. The cluster interfaces are indicated by
heavy lines.

2. Brownian paths and intersection exponents

The area of Probability Theory which most strongly interacts with Statistical Physics
is that involving stochastic processes with nontrivial spatial structure. This area,
which also interacts with Finance, Communication Theory, Theoretical Computer
Science and other fields, has long combined interesting applications with first-class
Mathematics. Recent developments however have raised the perceived mathematical
status of the best work from “merely” first-class to outstanding. Let me mention two
pieces of Werner’s work from 1998-2000. These are not only of intrinsic significance,
but also were precursors to the breakthroughs about to happen in the understanding
of two-dimensional critical systems with (natural) conformal invariance. (There were
of course other significant precursors, such as Aizenman’s path approach to scaling
limits — see, e.g., [1], [2] — and Kenyon’s work on loop-erased walks and domino
tilings — see, e.g., [13].)

The first of these two pieces of work is a 1998 paper of Bélint Téth and Werner [36].
The motivation was to construct a continuum version of Téth’s earlier lattice “true
self-repelling walk™ and this led to a quite beautiful mathematical structure (an ex-
tended version of a mostly unpublished and nearly forgotten construction done almost
20 years earlier by Arratia) of coalescing and “reflecting” one-dimensional Brownian
paths, running forward and backward in time and filling up all of two-dimensional
space-time. There is a (random) plane-filling curve within this structure that is anal-
ogous to one that arises in scaling limits of uniformly random spanning trees and was
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one of Schramm’s motivations in his 2000 paper introducing SLE [33]. SLE is an
acronym for what was originally called the Stochastic Loewner Evolution and is now
often called the Schramm-Loewner Evolution; more about SLE shortly.

The second piece of work consists of two papers with Lawler in 1999 and 2000
involving planar Brownian intersection exponents [25], [26]. In the second of these,
it was shown that the same set of exponents must occur providing only that certain
locality and conformal invariance properties are valid. This was a key idea which,
combined with the introduction of SLE for the analysis of two-dimensional critical
phenomena, led to a remarkable series of three papers in 2001-2002 by Lawler,
Schramm and Werner [17], [18], [20] which yielded a whole series of intersection
exponents.

Forexample, let W (z), W2(t), ... beindependent planar Brownian motions start-
ing from distinct points at t = 0. Then the probability that the random curve segments
w0, 1), ..., W'([0, t]) are all disjoint is t~énto) ag ¢t — oo for some constant &,.

Theorem 1 ([18]). The intersection exponents ¢,, for n > 2, are given by

4n? — 1

b=~ ey

This formula had been conjectured earlier by Duplantier and Kwon [12] and de-
rived later by Duplantier [11] in a nonrigorous calculation based on two-dimensional
quantum gravity. Despite the simplicity of the formula, prior to the introduction of
SLE-based methods, its derivation by conventional stochastic calculus techniques
appeared to be quite out of reach.

3. Conformal probability theory

The period from 2001 until the present has seen an explosion of interest in and appli-
cations of the SLE approach. To discuss this, we first give a very brief introduction
to SLE; some good general references are [32], [38], [16]. For, say, a Jordan do-
main D in the complex plane with distinct points a, b on its boundary 9D, and «
a positive parameter, (chordal) SLE with parameter «, denoted SLE,, is a certain
random continuous path (a curve, modulo monotonic reparametrization) in the clo-
sure D, starting at a and ending at b. When k < 4, SLE, is (with probability one)
a simple path that only touches dD at a and b. Loewner, in work dating back to
the 1920s [28], studied the evolution from a to b of nonrandom curves in terms of a
real-valued “driving function.” By conformally mapping D to the upper half plane
H and suitably reparametrizing, one obtains (for say x < 4) a simple curve y (¢) in H
for t € (0, co0) and conformal mappings g; from H\y ([0, ¢]) to H with g; satisfying
Loewner’s evolution equation,

2

. 2
8i(2) —U@) @

0:8(z) =
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with driving function U (t) = g;(y (t)). SLE, corresponds to the choice of U(¢) as
the random function B(xt) where B is standard one-dimensional Brownian motion.
When k > 4, some modifications are necessary, but (2) remains valid —even for « > 8
when the curves become plane-filling.

Now back to the SLE-based advances of the recent past. Many of these concern or
were motivated by (nonrigorous) results in the Statistical Physics literature about two-
dimensional critical phenomena. Critical points of physical systems typically happen
at very specific values of physical parameters, such as where the vapor pressure
curve in a liquid/gas system ends. Critical systems have many remarkable properties,
such as random fluctuations that normally are observable only on microscopic scales
manifesting themselves macroscopically. A related feature is that many quantities
at or approaching the critical point have power law behavior, with the non-integer
powers, known as critical exponents (as well as other macroscopic features, such
as the scaling limits we will discuss later), believed to satisfy “universality”, i.e.,
microscopically distinct models in the same spatial dimension should have the same
exponents at their respective critical points. Two-dimensional critical systems turn
out to have an additional remarkable property, which is at the heart of both the SLE
approach and its predecessors in the physics literature — that is conformal invariance
on the macroscopic scale.

As in the case of Brownian intersection exponents, many of the SLE-based results
in two dimensions were rigorous proofs of exponent values that had been derived
earlier by nonrigorous arguments — primarily those of what is known in the Physics
literature as “Conformal Field Theory”, which dates back to the work of Polyakov
and collaborators in the 1970s and 1980s [31], [4], [5] —see also [10], [30], [9]. Other
results were brand new. I'll discuss a few of these in more detail, but, as noted before,
what is particularly exciting is that the SLE-based approach is not solely a rigorization
of what already had existed in the physics literature but also a conceptually quite
complementary approach to that of Conformal Field Theory. Werner in particular has
emphasized the need to understand that complementary relationship; this has led, e.g.,
to a focus on the “restriction property”, as in his paper about the conformally invariant
measure on self-avoiding loops [39]. That paper is one example of a burgeoning
interest in extending the original SLE focus on random curves to the case of random
loops, but still with conformal invariance properties, both in the specific case of
percolation scaling limits [6], [7] and in the more general contexts of Brownian “loop
soups” [27], [37] and Conformal Loop Ensembles as currently being studied by Scott
Sheffield and Werner.

Next are some more examples of the results obtained in the last six years or so.

4. Brownian frontier

Let W(¢) be a planar Brownian motion. The complement in the plane of the curve
segment W ([0, #]) is a countable union of open sets, one of which is infinite; the
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boundary of that infinite component is called the Brownian frontier. As a consequence
of deep relations that planar Brownian motion and its intersection exponents have with
SLEg and its exponents (see [19], [23]), Lawler, Schramm and Werner obtained the
following, proving a celebrated conjecture of Mandelbrot [29].

Theorem 2 ([21]). The Hausdorff dimension of the planar Brownian frontier is 4/3.

5. Loop-erased walks

A different set of results are stated somewhat informally in the next theorem. They
concern loop-erased random walks and related random objects on lattices. Unlike
the percolation case discussed next, these results about continuum scaling limits, in
which the lattice scale shrinks to zero, are not restricted to a particular lattice.

Theorem 3 ([24]). Let D be (say) a Jordan domain in the plane; then the scaling
limits of loop-erased random walk, the uniformly random spanning tree and the related
lattice-filling curve in D are, respectively, (radial) SLE,, a continuum “SLEj-based
tree” and the plane-filling (chordal) SLEg.

Scaling limits of lattice models are among the most interesting and often the most
difficult results. To do them well requires the successful combination of concepts and
techniques from three different areas: conformal geometry (as in the classical Lowner
evolutions where the driving function is nonrandom), stochastic analysis (since for
SLE the driving function is a Brownian motion), and the probability theory of lattice
models (e.g., random walks or percolation or Ising models or ...). The work of Werner
combines all three ingredients admirably well.

6. Percolation

Before closing, let me discuss one more example which demonstrates how these three
areas can interact — scaling limits of two-dimensional critical percolation. The physics
community knew (nonrigorously) the exponent values and even some geometric in-
formation in the form of specific formulas for scaling limits of crossing probabilities
between boundary segments of domains. These formulas were derived by Cardy [9]
following Aizenman’s conjecture that they should be conformally invariant —see [15].
But there was little understanding of the scaling limit geometry of objects like cluster
“interfaces” — see Figure 1.

In [33], Schramm argued that the limit of one particular interface, the “exploration
path,” should be SLE¢. Smirnov, for the triangular lattice, then proved [34] that (A)
the crossing probabilities do converge to the conformally invariant Cardy formulas,
sketched an argument as to how that could lead to (B) convergence of the whole
exploration path to SLE¢ and argued further that one should be able to extend these
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results to (C) a “full scaling limit” for the family of “interface loops” of all clusters.
In [35], Smirnov and Werner then proved certain percolation exponents, using explo-
ration path convergence (B), while in [22], Lawler, Schramm and Werner combined
the full scaling limit (C) with percolation arguments to prove another exponent value
that is stated below.

Convergence in (B) and (C) can be proved by using a considerable amount of
lattice percolation machinery [6], [7], [8] — including results of Kesten, Sidoravicius
and Zhang [14] about six-fold crossings of annuli and of Aizenman, Duplantier and
Aharony [3] about narrow “fjords.” Then the percolation exponent results of Werner
and coauthors apply and provide another excellent example of how the combination of
the three ingredients mentioned above work together — e.g., the next theorem proves
a prediction of den Nijs and Nienhuis [10], [30].

Theorem 4 ([22]). In critical site percolation on the triangular lattice,

_ R—5/48+0(1)

Prob [cluster of origin has diameter > R] asR—o00. (3

7. Conclusion

I close with some comments about continuum models of Probability Theory and their
relation to other areas of Mathematics which are exemplified by the work of Wen-
delin Werner. Traditionally, a major focus of Probability Theory, and especially so
in France, has been on continuum objects such as Brownian Motion and Stochas-
tic Calculus, with SLE and related processes as the latest continuum objects in the
pantheon. Those of us raised in a different setting, such as Statistical Mechanics,
sometimes regard lattice models as more “real” or “physical.” But this is a narrow
view. It is only the continuum models which possess extra properties, like confor-
mal invariance in the two-dimensional setting, that relate Probability Theory to other
well-developed areas of Mathematics. Such relations and interactions have become
of increasing importance in recent years and will continue to do so. Even if one is
primarily interested in the original lattice models, it is quite clear that their properties,
such as critical exponents and critical universality, cannot be understood without a
deep analysis of the continuum models that arise in the scaling limit. Thanks to the
work of Wendelin Werner, his collaborators, and others, one might say that now we
are all “continuistas.”
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The work of Jon Kleinberg

John Hopcroft

Introduction

Jon Kleinberg’s research has helped lay the theoretical foundations for the information
age. He has developed the theory that underlies search engines, collaborative filtering,
organizing and extracting information from sources such as the World Wide Web,
news streams, and the large data collections that are becoming available in astronomy,
bioinformatics and many other areas. The following is a brief overview of five of his
major contributions.

Hubs and authorities

In the 1960s library science developed the vector space model for representing doc-
uments [13]. The vector space model is constructed by sorting all words in the
vocabulary of some corpus of documents and forming a vector space model where
each dimension corresponds to one word of the vocabulary. A document is repre-
sented as a vector where the value of each coordinate is the number of times the word
associated with that dimension appears in the document. Two documents are likely to
be on a related topic if the angle between their vector representations is small. Early
search engines relied on the vector space model to find web pages that were close to
a query. Jon’s work on hubs and authorities recognized that the link structure of the
web provided additional information to aid in tasks such as search. His work on hubs
and authorities addressed the problem of how, out of the millions of documents on
the World Wide Web (WWW), you can select a small number in response to a query.
Prior to 1997 search engines selected documents based on the vector space model or a
variant of it. Jon’s work on hubs and authorities [5] laid the foundation to rank pages
based on links as opposed to word content. He introduced the notion of an authority
as an important page on a topic and a hub as a page that has links to many authorities.
Mathematically, an authority is a page pointed to by many hubs and a hub is a page
that points to many authorities. For the concepts of hubs and authorities to be useful,
one needs to develop the mathematics to identify hubs and authorities; that is, to break
the cycle in the definition.

The World Wide Web can be represented as a directed graph where nodes corre-
spond to web pages and directed edges represent links from one page to another. Let
A be the adjacency matrix for the underlying web graph. Jon did a text based search
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to find, say, the 200 most relevant web pages for a query based on word content. This
set might not contain the most important web sites since, as he points out, the words
“search engine” did not appear on the sites of the popular search engines in 1997,
such as Alta Vista or Excite. Similarly there were over a million web sites containing
the word “Harvard” but the site www.harvard.edu was not the site that contained the
term “Harvard” most often. Thus, he expanded the set by adding web sites reached by
either in or out links from the 200 sites. To avoid adding thousands of additional web
sites when one of the web pages was extremely popular, he restricted each page in the
set to add at most fifty additional pages to the original set. In the process of adding
web pages, he ignored links to pages within the same domain name as these tended
to be navigational links such as “top of page”. In the resulting sub graph, which was
now likely to contain most of the important relevant pages, he assigned weights to
pages and then iteratively adjusted the weights. Actually, each page was assigned two
weights, a hub weight and an authority weight. The hub weights were updated by
replacing the weight of each hub with the sum of the weights of the authorities that it
points to. Next the weights of the authorities were updated by replacing the weight
of each authority with the sum of the hub weights pointing to it. The hub weights and
the authority weights were then normalized so that the sum of the squares of each set
of weights equaled one. This iterative technique converges so that the hub weights
are the coordinates of the major eigenvector of AAT and the authority weights are
the coordinates of the major eigenvector of A7 A. Thus, the eigenvectors of AAT and
AT A rank the pages as hubs and authorities. This work allowed a global analysis of
the full WWW link structure to be replaced by a much more local method of analysis
on a small focused sub graph.

This work is closely related to the work of Brin and Page [2] that lead to Google.
Brin and Page did a random walk on the underlying graph of the WWW and computed
the stationary probability of the walk. Since the directed graph has some nodes with
no out degree, they had to resolve the problem of losing probability when a walk
reached a node with no out going edges. Actually, they had to solve the more general
problem of the probability ending up on sub graphs with no out going edges, leaving
the other nodes with zero probability. The way this was resolved was that at each step
the walk would jump with some small probability ¢ to a node selected uniformly at
random and with probability 1 — ¢ take a step of the random walk to an adjacent node.

Kleinberg’s research on hubs and authorities has influenced the way that all major
search engines rank pages today. It has also spawned an industry creating ways to
help organizations get their web pages to the top of lists produced by search engines
to various queries. Today there is a broad field of research in universities based on
this work.
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Small worlds

We are all familiar with the notion of “six degrees of separation”, the notion that any
two people in the world are connected by a short string of acquaintances. Stanley
Milgram [12] in the sixties carried out experiments in which a letter would be given
to an individual in a state such as Nebraska with instructions to get the letter to an
individual in Massachusetts by mailing it to a friend known on a first name basis. The
friend would be given the same instructions. The length of the path from Nebraska
to Massachusetts would typically be between five and six steps.

Milgram’s experiments on this inter-personal connectivity lead to a substantial
research effort in the social sciences focused on the interconnections in social net-
works. From 1967 to 1999 this work was primarily concerned with the structure of
relationships and the existence of short paths in social networks. Although the fact
that individuals have the ability to actually find the short paths as was demonstrated by
Milgram’s original experiment, there was no work on understanding how individuals
actually found the short paths or what conditions were necessary for them to do so.

In 1998 Watts and Strogatz [ 14] refined the concept of a small world, giving precise
definitions and simple models. Their work captured the intuitive notion of a reference
frame, such as the geographical location where people live or their occupation. In
this reference frame, an individual is more likely to know the neighbor next door than
a person in a different state. Most people know their neighbors but they also know
some people who are far removed. The relationships between individuals and their
neighbors were referred to as short links, and the few friends or relatives far away that
the individuals knew were referred to as long-range links.

One simple model developed by Watts and Strogatz was a circular ring of nodes
where each node was connected to its nearest neighbors clockwise and counterclock-
wise around the circle, as well as to a few randomly selected nodes that were far away.
Watts and Strogatz proved that any pair of nodes is, with high probability, connected
by a short path, thus justifying the terminology “small world”.

Jon [6] raised the issue of how you find these short paths in a social network without
creating a map of the entire social world. That is, how do you find a path using only
local information? He assumed a rectangular grid with nodes connected to their four
nearest neighbors, along with one random long range connection from each node.
As the distance increased the probability of a long range random link connecting two
nodes decreased. Jon’s model captured the concept of a reference frame with different
scales of resolution: neighbor, same block, same city, or same country. Jon showed
that when the decrease in probability was quadratic with distance, then there exists
an efficient (polynomial time) algorithm for finding a short path. If the probability
decreases slower or faster, he proved the surprising result that no efficient algorithm,
using only local information, could exist for finding a short path even though a short
path may exist.

In Jon’s model the probability of a long range edge between nodes x and y de-
creased as dist(x, y)~" where dist(x, y) is the grid distance between nodes x and y.
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For r = 0, the probability of a long range contact is independent of distance. In this
case, the average length of such a contact is fairly long, but the long range contacts are
independent of the geometry of the grid and there is no effective way to use them in
finding short paths even though short paths exist. As r increases, the average length of
the random long range contacts decreases but their structure starts to become useful
in finding short paths. At r = 2 these two phenomena are balanced and one can find
short paths efficiently using only local knowledge. For r > 2 the average length of
the random long-range contact continues to decrease. Although short paths may still
exist, there is no polynomial time algorithm using only local information for finding
them. When r equals infinity, no long-range contacts exist and hence no short paths.
What is surprising is that for »r < 2 or for r > 2, no efficient algorithm using only
local information exists for finding short paths.

Theorem 1. Let G be a random graph consisting of an n x n grid plus an additional
edge from each vertex u to some random vertex v where the probability of the edge
(u, v) is inversely proportional to dist(u, v)". Here dist(u, v) is the grid distance
between vertices u and v. For r = 2, there is a decentralized algorithm so that
the expected time to find a path from some start vertex s to a destination vertex t is
O (log?n).

Proof. At each step the algorithm selects the edge from its current location that gets
it closest to its destination. The algorithm is said to be in phase j when the lattice
distance from the current vertex to the destination ¢ is in the interval (27, 2711).
Thus, there are at most log n phases. We will now prove that the expected time the
algorithm remains in each phase is at most log n steps and, hence, the time to find a
path is O (log® n).

For a fixed vertex u the probability that the long-distance edge from u goes to v is

d(u, v)~2
Zw;ﬁu d(u’ w)_2 .

We wish to get an upper bound on the denominator so as to get a lower bound on
the probability of an edge of distance d(u, v). Since the set of vertices at distance i
from u forms a diamond centered at u with sides of length i, there are 4i vertices at
distance i from vertex u, unless u is close to a boundary in which case there are fewer.
Thus

2n—2 1 2n—2 1
_2 . _ -
> d, w) 524172_421“
w#u i=1 i=1
For large n there exists a constant ¢ such that

Z d(u, w)_2 <cilnn.
w#u
It follows that there exists a constant ¢, such that each vertex that is within distance

2/ of u has probability of at least 0221;_2nj of being the long distance contact of u.
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The current step ends phase j of the algorithm if the vertex reached is within
distance 2/ of the destination ¢. In the plane, the number of vertices at distance i from
a given vertex grows linearly with i. Thus, the number of vertices within distance 2/
of the destination ¢ is at least

2 2727 +2) 5

di= 0¥

i=1 2
Since the current location is within distance 2/7! of r and since there are at least
2271 yertices within distance 2/ of 7, there are at least 22/ 1 vertices within distance
241 4 27 < 27%2 of the current location. Each of these Vertices that are within
distance 2/ +2 of the current location has probability of at least 7 of being the

In(n )22]+
long-distance contact.

At least 277!
vertices

If one of the 22/~ vertices that are within distance 2/ of 7 and within distance
27+2 of the current location is the long-distance contact of u, it will be u’s closest
neighbor to . Thus, phase j ends with probability at least

C222j -1 .
In(n)22/+4  8ln(n)’
We now bound by log n the total time spent in step j. For j < loglogn the current

vertex is distance at most logn from the destination ¢. Thus, even taking only local
edges suffices. For j > loglogn, let x; be the number of steps spent in phase j. Then

E(xj) =) iProb(x; = ).

i=1

Since
1Prob(x; = 1) +2Prob(x; =2) + --- = Prob(x; > 1) + Prob(x; >2) 4+ ---
we get
o0 .
) i—1 1 8Inn
E(x,)_ZProb(x, > i) <Z<1 — ) - - .
i—1 i=1 81In(n) 1= (1= g69) €2

Thus, the total number of steps is O (log? n). O
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Even more surprising than the above result that states there exists an efficient
local algorithm for finding short paths when the exponent r equals two, were Jon’s
additional results proving no such algorithms exist when the exponent r was either
greater than two or less than two.

This research on finding paths in small worlds has found applications outside the
social sciences in such areas as peer-to-peer file sharing systems. It turns out that
many real sets of data have the needed quadratic decrease in probability distribution.
For example, an on-line community where you measure distance between individuals
by the distance between their zip codes, often has this distribution after distances are
corrected for the highly nonuniform population density of the U.S. [11].

Bursts

In order to understand a stream of information, one may organize it by topic, time,
or some other parameter. In many data streams a topic suddenly appears with high
frequency and then dies out. The burst of activity provides a structure that can be
used to identify information in the data stream. Jon’s work [7] on bursts developed
the mathematics to organize a data stream by bursts of activity. If one is watching a
news stream and the word Katrina suddenly appears, even if one does not understand
English, one recognizes that an event has taken place somewhere in the world. The
question is how do you automatically detect the sudden increase in frequency of a
word and distinguish the increase from a statistical fluctuation? Jon developed a
model in which bursts can be efficiently detected in a statistically meaningful manner.

A simple model for generating a sequence of events is to randomly generate
the events according to a distribution where the gap x between events satisfies the
distribution p(x) = ae™**. Thus, the arrival rate of events is « and the expected
value of the gap between events is é A more sophisticated model has a set of states
and state transitions. Associated with each state is an event arrival rate.

In Jon’s model there is an infinite number of states qo, ¢1, ..., €ach having an event

arrival rate. State g is the base state and has the base event rate é. Each state ¢; has a

rate o; = L5’ where s is a scaling parameter. In state g; there are two transitions, one

to the state ¢g;11 with higher event rate and one to g;_; with lower event rate. There
is a cost associated with each transition to a higher event rate state. Given a sequence
of events, one finds the state sequence that most closely matches the gaps with the
smallest number of state transitions.

Jon applied the methodology to several data streams demonstrating that his method-
ology could robustly and efficiently identify bursts and thereby provide a technique
to organize the underlying content of the data streams. The data streams consisted of
his own email, the papers that appeared in the professional conferences, FOCS and
STOC, and finally the U.S. State of the Union Addresses from 1790 to 2002. The
burst analysis of Jon’s email indicated bursts in traffic when conference or proposal
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deadlines neared. The burst analysis of words in papers in the FOCS and STOC
conferences demonstrated that the technique finds words that suddenly increased in
frequency rather then finding words of high frequency over time. Most of the words
indicate the emergence or sudden increase in the importance of a technical area, al-
though some of the bursts correspond to word usage, such as the word “how” which
appeared in a number of titles in the 1982 to 1988 period. The burst analysis of the
U.S. State of the Union Addresses covered a 200 year time period from 1790 to 2002
and considered each word. Adjusting the scale parameter s produced short bursts
of 5-10 years or longer bursts covering several decades. The bursts corresponded
to national events up through 1970 at which time the frequency of bursts increased
dramatically.

Table 1. Bursts in word usage in U.S. State of the Union Addresses.

energy 1812-1814 | rebellion | 1861-1871 | Korea 1951-1954
bank 1833-1836 | veterans | 1925-1931 | Vietnam | 1951-1954
California | 1848-1852 | wartime | 1941-1947 | inflation | 1971-1980
slavery 1857-1860 | atomic 1947-1959 | oil 1974-1981

This work on bursts demonstrated that one could use the temporal structure of
data streams, such as email, click streams, or search engine queries, to organize the
material as well as its content. Organizing data streams around the bursts which occur,
provides us with another tool for organizing material in the information age.

Nearest neighbor

Many problems in information retrieval and clustering involve the nearest neighbor
problem in a high dimensional space. A good survey of important work in this area can
be found in [3]. An important algorithmic question is how to preprocess n points in d-
dimensions so that given a query vector, one can find its closest neighbor. Animportant
version of this problem is the e-approximation nearest neighbor problem. Given a
set P of vectors in d-dimensional space and a query vector x, the e-approximation
nearest neighbor problem is to find a vector y in P such that for any z in P

dist(x, y) < (1 + ¢) dist(x, z).

Prior to Jon’s work on nearest neighbor search in high dimensions [4], there was
much research on this problem. Early work asked how one could preprocess P so
as to be able to efficiently find the nearest neighbor to a query vector x. Most of
the previous papers required query time exponential in the dimension d. Thus, if
the dimension of the space was larger than logn, there was no method faster than
the brute force algorithm that uses time O (dn). Jon developed an algorithm for the
g-approximation nearest neighbor problem that improved on the brute force algorithm



104 John Hopcroft

for all values of d. Jon’s work lead to an O ((d log2 d)(d 4 logn)) time algorithm for
the problem [4].

The basic idea is to project the set of points P onto random lines through the
origin. If a point x is closer than a point y to the query g, then with probability greater
than % the projection of x will be closer than the projection of y to the projection
of the query ¢g. Thus, with a sufficient number of projections, the probability that x
is closer to the query than y in a majority of the projections, will be true with high
probability. If

(I +¢e)dist(x, g) < dist(y, g),

then the test will fail for a majority of projections only if a majority of the lines onto
which P is projected come from an exceptional set. Using a VC-dimension argument,
Jon showed that the probability of more than half the lines lying in an exceptional set
is vanishingly small.

Collaborative filtering

An important problem in the information age is to target a response to a person based
on a small amount of information. For example, if a customer orders an item from a
network store, the store may want to send him or her an advertisement based on that
order. Similarly, a search engine may want to target an ad to a customer based on a
query. In the case of a purchase, if for every potential item one knew the probability
that the customer would buy the item, they might target an ad for the item of highest
probability. However, in the case where there are possibly hundreds of thousands of
items, how does one learn the probability of a customer purchasing each item based
on the purchase of two or three items? If the only structure of the problem is the
matrix of probabilities of customers and items, there is probably little one could do.
However, if the items fall into a small number of categories and the mechanism with
which a customer buys an item is that he or she first chooses a category and then having
chosen a category chooses an item, one could use the structure to help in estimating the
probabilities of purchasing the various items. Suppose the customer/item probability
matrix is the product of a customer/category matrix times a category/item matrix.
Then one can acquire information about the category/item matrix from purchases of
all customers, not just the purchases of one customer.

Let A be the probability matrix of customers versus items. Then A = PW where
P is the probability matrix of customers versus categories and W is the probability
matrix of items given a specific category. Note that the rank of A is at most the number
of categories.

item category item

customer( A ) = customer( P ) = category< w )



The work of Jon Kleinberg 105

Suppose we know W the matrix of probabilities of items given the categories. Let
u be a row of A, the vector of probabilities with which a customer selects items. Let
i be an estimate of u obtained from s samples. That is, the ith component of the
vector u is % times the number of times the customer selected the ith item out of s
selections. The question is, how close will & be to u? Observe that u is in the range
of W and that & most likely is not. Thus, projecting & onto the range of W might
improve the approximation. The question is what projection should be used? The
obvious projection is to project orthogonally but this is not the only possibility.

Recall that we know W. Let W’ be a generalized pseudo inverse of W. For u in
the range of W (a linear combination of the columns of W) WW’'u = u. However,
for x not in the range of W, W W'x is obviously not x but some vector in the range
of W.

range W

Applying WW' to u — u we get
WW @ —u)=WWi—u.

We need to bound how far the projection W W' can be from u. What we would like
is for each component of W W’u to be within ¢ of the corresponding component of
u with high probability. Then, recommending the item corresponding to the largest
component would be the optimal recommendation.

If the maximum element of WW’ is B, then how large can any component of
W W't —u be? Stated another way, how large can v(& — u) be for any vector v where
every element of v is bounded by some constant B? Write

where #; is the indicator vector for the ith selection. Then v’ & = % Zle vl a;. The
terms in the summation are independent random variables since the selections are
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independent. The variance of the product of an element of v times an element of u;
is at most (g)z, and hence the variance of v” # is at most BTz. (Elements of u; have
value 0 or % and the maximum of v is B.) Hence, by Chebyshev’s inequality, the
probability that v” @ will differ from its expected value by more than ¢ is bounded.

. B?
Prob(|vTu - vTul < —.
e2s

The above result tells us that v & will be close to its expected value of v’ u
provided no element of v is excessively large. Thus, in projecting & onto the space of
W we want to use a projection W W’ where W' is selected so that it has no excessively
large element.

This led Jon and his colleague Mark Sandler [8] to use linear programming to
find a pseudo inverse in which the maximum element was bounded by % where [ =
min ), =1 [|Wx/||1. This lead to a collaborative filtering algorithm that recommends
an item whose probability of being purchased by the customer is within an € of the
highest probability item with high probability. What is so important about this work
is that it can be viewed as the start of a theory based on the 1-norm. Although much
of the theory of approximation is based on the 2-norm and in fact approximating a
matrix A by a low rank matrix Ax one can prove that the Frobenius norm of the error
matrix is minimized by techniques based on the 2-norm, the error is not uniformly
distributed. Furthermore, the error is strongly influenced by outliers. Use of the
1-norm is a promising approach to these problems.

Closing remarks

This brief summary covers five important research thrusts that are representative of
Kleinberg’s work. His web page contains many other exciting results of which I will
mention three. First is his early work with Eva Tardos [9] on network routing and the
disjoint paths problem. They developed a constant-factor approximation algorithm
for the maximum disjoint paths problem in the two-dimensional grid graph. Given a
designated set of terminal node pairs, one wants to connect as many pairs as possible
by paths that are disjoint. Their algorithm extends to a larger class of graphs that
generalizes the grid.

Second is his early work with Borodin, Ragahavan, Sudan and Williamson [1] on
the worst-case analysis of packet-routing networks. This work presents a framework
for analyzing the stability of packet-routing networks in a worst-case model without
probabilistic assumptions. Here one assumes packets are injected into the network,
limited only by simple deterministic rate bounds, and then shows that certain standard
protocols guarantee queues remain bounded forever while other standard protocols
do not.
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Third is his work with Eva Tardos on classification with pairwise relationships
[10]. This paper gives an algorithm for classification in the following setting: We are
given a set of objects (e.g. web pages) to classify, each into one of k different types,
and we have both local information about each object, as well as link information
specifying that certain pairs of objects are likely to have similar types. For example,
in classifying web pages by topic (or into some other categories), one may have
an estimate for each page in isolation, and also know that pairs of pages joined by
hyperlinks are more likely to be about similar topics.

Conclusions

Jon’s work has laid a foundation for the science base necessary to support the infor-
mation age. Not only is the work foundational mathematically but it has contributed
to the economic growth of industries.
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On Kiyosi Ito’s work and its impact

Hans Follmer

About a week before the start of the International Congress, an anonymous participant
in a weblog discussion of potential candidates for the Fields medals voiced his concern
that there might be a bias against applied mathematics and went on to write: “I am
hoping that the Gauss prize will correct this obvious problem and they will pick
someone really wonderful like Kiyosi Ito of Ito Calculus fame”. Indeed this has
happened: The

Gauss Prize 2006 for Applications of Mathematics

A«

has been awarded to Kiyosi Itd “for laying the foundations of the theory of stochas-
tic differential equations and stochastic analysis”. However, in his message to the
Congress Kiyosi Itd says that he considers himself a pure mathematician, and while
he was delighted to receive this honor, he was also surprised to be awarded a prize for
applications of mathematics. So why is the Gauss prize so appropriate in his case, and
why was this anonymous discussant who obviously cares about applied mathematics
so enthusiastic?

The statutes of the Gauss prize say that it is “fo be awarded for

o outstanding mathematical contributions that have found significant applica-
tions outside of mathematics, or

e achievements that made the application of mathematical methods to areas out-
side of mathematics possible in an innovative way”.

My aim is to show why, on both accounts, Kiyosi Itd is such a natural choice.

Kiyosi Itd was born in 1915. The following photo was taken in 1942 when he was
working in the Statistical Bureau of the Japanese Government:
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At this time he had just achieved a major breakthrough in the theory of Markov
processes. The results first appeared in 1942 in a mimeographed paper “Differential
equations determining a Markov process” written in Japanese (Zenkoku Sizyo Sugaku
Danwakai-si). English versions and further extensions of these initial results were
published between 1944 and 1951 in Japan; see [24]. These papers laid the foundations
of the field which later became known as stochastic analysis. A systematic account
appeared in the Memoirs of the American Mathematical Society in 1951 under the title
“On stochastic differential equations” [23], thanks to J. L. Doob who immediately
recognized the importance of [t6’s work.

What was the breakthrough all about? A Markov process is usually described in
terms of the transition probabilities P;(x, A) which specify, for each state x and any
time ¢t > 0, the probability of finding the process at time ¢ in some subset A of the
state space, given that x is the initial state at time 0. These transition probabilities
should satisfy the Chapman—Kolmogorov equations

Pt-l—x(x’A)=/Pt(x7dy)Ps(Y9 A).

For the purpose of this exposition we limit the discussion to the special case of a dif-
fusion process with state space RY. A fundamental extension theorem of Kolmogorov
guarantees, for each initial state x, the existence of a probability measure P, on the
space of continuous paths

Q = C([0, 00), RY)

such that the conditional probabilities governing future positions are given by the
transition probabilities, i.e.,

Px[Xt—l—s € A|$’t] = Ps(Xtv A)-

Here we use the notation X;(w) = w(t) for w € 2, and F; denotes the o-field
generated by the path behavior up to time 7. In analytical terms, the infinitesimal
structure of the Markov process is described by the infinitesimal generator

-1

£L = ltijg ; (1)
In the diffusion case, this operator takes the form
1< 52 4 )
L= l-,,Zzl aij () g ¥ ;b"()‘)a_x,- 2

with a state-dependent diffusion matrix a = (g;;) and a state-dependent drift vector
b = (b;), and for any smooth function f the function u defined by u(x, t) := P; f (x)
satisfies Kolmogorov’s backward equation

du=dLu onR? x (0, 00). (3)
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Itd’s aim was to reach a deeper understanding of the dynamics by describing the
infinitesimal structure of the process in probabilistic terms. His basic idea was to

i) identify the “tangents” of the process, and to
ii) (re-) construct the process pathwise from its tangents.

At the level of stochastic processes, the role of “straight lines” is taken by processes
whose increments are independent and identically distributed over time intervals of
the same length. Such processes are named in honor of Paul Lévy. Kiyosi Itd had
already investigated in depth the pathwise behavior of Lévy processes by proving
what is now known as the Lévy-It6 decomposition [21]. In the continuous case and
in dimension d = 1, the prototype of such a Lévy process is a Brownian motion with
constant drift, whose increments have a Gaussian distribution with mean and variance
proportional to the length of the time interval. This process had been introduced
in 1900 by Louis Bachelier as a model for the price fluctuation on the Paris stock
market, five years before Albert Einstein used the same model in connection with the
heat equation. A standard Brownian motion, which starts in 0 and whose increments
have zero mean and variance equal to the length of the time interval, is also named
in honor of Norbert Wiener who in 1923 gave the first rigorous construction, and
the corresponding measure on the space of continuous paths is usually called Wiener
measure. An explicit construction of a Wiener process with time interval [0, 1] can
be obtained as follows: Take a sequence of independent Gaussian random variables
Y1, Y, ... withmean O and variance 1, defined on some probability space (2, £, P),
and some orthonormal basis (¢,),=12,... in L?[0, 1]. Then the random series

o t
Wi (@) =Y Yu() / ¢n(s) ds
n=1 0
is uniformly convergent and thus defines a continuous curve, P-almost surely. Wiener
had studied the special case of a trigonometric basis, and Lévy had simplified the com-
putations by using the Haar functions. But the definitive proof that the construction
works in full generality was given by It6 and Nisio [32] in 1968.

In the case of a diffusion it is therefore natural to say that a “tangent” of the
Markov process in a state x should be an affine function of the Wiener process with
coefficients depending on that state. Thus Itd was led to describe the infinitesimal
behavior of the diffusion by a “stochastic differential equation” of the form

dX; =0 (X)) dW; + b(X;)dt. 4)

In d dimensions, the Wiener process is of the form W = (Wl, R Wd) with d in-
dependent standard Brownian motions, and o (x) is a matrix such that o x)ol(x) =
a(x). The second part of the program now consisted in solving the stochastic differ-
ential equation, i.e., constructing the trajectories of the Markov process in the form

t

X, (@) = x + / o (X (@) dWy (@) + / b(X, (@) ds. )
0 0
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At this point a major difficulty arose. Wiener et al. had shown that the typical path of
a Wiener process is continuous but nowhere differentiable. In particular, a Brownian
path is not of bounded variation and thus cannot be used as an integrator in the
Lebesgue—Stieltjes sense. In order to make sense out of equation (5) it was thus
necessary to introduce what is now known as the theory of “stochastic integration”.

In their introduction to the Selected Papers [24] of Kiyosi Itd, D. Stroock and
S.R.S. Varadhan write: “Everyone who is likely to pick up this book has at least heard
that there is a subject called the theory of stochastic integration and that K. It0 is the
Lebesgue of this branch of integration theory (Paley and Wiener were its Riemann)”.
Wiener and Paley had in fact made a first step, using integration by parts to define the
integral

t !
/ EsxdWs =& W, — / Wy d&
0 0

for deterministic integrands of bounded variation, and then using isometry to pass
to deterministic integrands in L2[0, ]. But this “Wiener integral” is no help for
the problem at hand, since the integrand & = o (X;) is neither deterministic nor of
bounded variation. In a decisive step, It6 succeeded in giving a construction of much
wider scope. Roughly speaking, he showed that the stochastic integral

t
/0 EdWs ~ Y &, (Wi, — W) (6)

can be defined as a limit of non-anticipating Riemann sums for a wide class of stochas-
tic integrands £ = (&;). These sums are non-anticipating in two ways. First, the
integrand is evaluated at the beginning of each time interval. Secondly, the values &;
only depend on the past observations of the Brownian path up to time ¢ and not on its
future behavior. To carry out the construction, Kiyosi Itd used the isometry

([em)]-o{ 4]

This is clearly satisfied for simple non-anticipating integrands which are piecewise
constant along a fixed partition of the time axis. The appropriate class of general
integrands and the corresponding stochastic integrals are obtained by taking L>-limits
on both sides. In particular the It6 integral has zero expectation, since this property
obviously holds for the non-anticipating Riemann sums in (6).

Once Kiyosi It6 had introduced the stochastic integral in this way, it was clear how
to define a solution of the stochastic differential equation in rigorous terms. In order
to prove the existence of the solution, Itd used a stochastic version of the method of
successive approximation, having first clarified the dynamic properties of stochastic
integrals viewed as stochastic processes with time parameter ¢.

In order to complete his program, It6 had to verify that his solution of the stochas-
tic differential equation indeed yields a pathwise construction of the given Markov
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process. To do so, Itd invented a new calculus for smooth functions observed along
the highly non-smooth paths of a diffusion. In particular he proved what is now known
as It6’s formula. In fact there are nowadays many practioners who may not know or
may not care about Lebesgue and Riemann, but who do know and do care about It6’s
formula.

In 1987 Kiyosi Itd received the Wolf Prize in Mathematics. The laudatio states
that “he has given us a full understanding of the infinitesimal development of Markov
sample paths. This may be viewed as Newton’s law in the stochastic realm, providing
a direct translation between the governing partial differential equation and the un-
derlying probabilistic mechanism. Its main ingredient is the differential and integral
calculus of functions of Brownian motion. The resulting theory is a cornerstone of
modern probability, both pure and applied”. The reference to Newton stresses the
fundamental character of It0’s contribution to the theory of Markov processes. Let us
also mention Leibniz in order to emphasize the fundamental importance of 1t6’s work
from another point of view. In fact [td’s approach can be seen as a natural extension of
Leibniz’s algorithmic formulation of the differential calculus. In a manuscript written
in 1675 Leibniz argues that the whole differential calculus can be developed out of
the basic product rule

d(XY)=XdY +YdX, (7)

and he writes: “Quod theorema sane memorabile omnibus curvis commune est”. In
particular, this implies the rule d X? = 2Xd X and, more generally,

df (X) = f'(X)dX ®)

for a smooth function f observed along the curve X. Since the 19th century we
know, of course, that these rules are not “common to all (continuous) curves”, since
a continuous curve does not have to be differentiable. But it was Kiyosi It6 who
discovered how these rules can be modified in such a way that they generate a highly
efficient calculus for the non-differentiable trajectories of a diffusion process. In Itd’s
calculus, the classical rule dX? = 2Xd X is replaced by

dX? =2XdX + d(X),

where
(X) =lim Y (X, = Xp)? ©)

t;€Dn
1 <t

denotes the quadratic variation (along dyadic partitions) of the path up to time ¢. Lévy
had shown that a typical path of the Wiener process has quadratic variation (W), = ¢.
Itd proved that the solution of the stochastic differential equation (4) for d = 1 admits
a quadratic variation of the form

t
(X) = / o?(X;) ds. (10)
0
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He then went on to show that the behavior of a function f € C? observed along the
paths of the solution is described by the rule

1
df(X)=f/(X)dX+§f”(X)d<X), (1)

which is now known as It6’s formula. Note that a continuous curve of bounded
variation has quadratic variation 0, and so Itd6’s formula may indeed be viewed as an
extension of the classical differentiation rule (8).
More generally, the classical product rule (7) becomes a special case of It6’s
product rule
d(XY)=XdY +YdX +d(X,Y),

where (X, Y) denotes the quadratic covariation of X and Y, defined in analogy to (9)
or, equivalently, by polarization:

1
(X.¥) = (X +T) —(X) — (YD)

For a smooth function f on R? x [0, co) and a continuous curve X = (X!, ..., X9)
such that the quadratic covariations (X*, X/} exist, the d-dimensional version of Itd’s
formula takes the form

d
df (X, 1) = Vo f(X,1)dX + fi(X, 1) dt + % Y fun (X nd(X X7). (12)
ij=1

Let us now come back to the original task of identifying the solution of the stochastic
differential equation (4) as a pathwise construction of the original Markov process.
In a first step, 1td showed that the solution is indeed a Markov process. Moreover he
proved that the solution has quadratic covariations of the form

(X, X7 = /0 Y 01k (X5)oj k(X)) ds.
k

Thus 1t6’s formula for a smooth function observed along the paths of the solution
reduces to

df(X,t)=fo(X,t)a(X)dW+(oC+%)f(X,t)dt, (13)

where oL is given by (2). In order to show that £ is indeed the infinitesimal generator
of the Markovian solution process, it is now enough to take a smooth function on R?
and to use Itd’s formula in order to write

t

t
Ex[f(Xy) — f(Xo)] = Ex[/(‘) Vi f(X5)o (X)) dWs +/0 L f(Xy) ds:|-
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Recalling that the It6 integral appearing on the right-hand side has zero expectation,
dividing by ¢ and passing to the limit, we see that the infinitesimal generator associated
to the transition probabilities of the Markovian solution process as in (1) coincides
with the partial differential operator £ defined by (2). With a similar application of
1td’s formula, Kiyosi Itd also showed that the solution of the stochastic differential
equation satisfies Kolmogorov’s backward equation (3).

This concludes our sketch of It6’s construction of Markov processes as solutions of
a corresponding stochastic differential equation. Let us emphasize, however, that we
have outlined the argument only in the special case of a time-homogeneous diffusion
process. In fact, Kiyosi Itd himself succeeded immediately in solving the problem
in full generality, including time-inhomogeneous Markov processes with jumps and
making full use of his previous analysis of general Lévy processes. For a comprehen-
sive view of the general picture we refer to D. Stroock’s book Markov Processes from
K. Ito’s Perspective [46] and, of course, to Kiyosi [t0’s original publications [24].

At this point let us make a brief digression to mention a parallel approach to
the construction of diffusion processes which was discovered by Wolfgang Doeblin.
Born in Berlin in 1915, son of the prominent Jewish writer Alfred D&blin who took
his family into exile in 1933, he studied mathematics in Paris and published results
on Markov chains which became famous in the fifties. It was much less known,
however, that he had also worked on the probabilistic foundation of Kolmogorov’s
equation. In February 1940, while serving in the French army and shortly before he
took his life rather than surrender himself to the German troops, Wolfgang Doeblin
sent a manuscript to the Academy of Sciences in Paris as a pli cacheté. This sealed
envelope was finally opened in May 2000. The manuscript contains a representation
of the paths of the diffusion process where the stochastic integral on the right hand side
of equation (5) is replaced by a time change of Brownian motion. While Doeblin’s
approach does not involve the theory of stochastic integration which was developed by
Kiyosi Itd and which is crucial for the applications described below, it does provide an
alternative solution to the pathwise construction problem, and it anticipates important
developments in martingale theory related to the idea of a random time change; see
Bru and Yor [4] for a detailed account of the human and scientific aspects of this
startling discovery.

Over the last 50 years the impact of Itd’s breakthrough has been immense, both
within mathematics and over a wide range of applications in other areas. Within
mathematics, this process took some time to gain momentum, at least in the West. On
receiving Itd’s manuscript On stochastic differential equations, J. L. Doob immedi-
ately recognized its importance and made sure that it was published in the Memoirs of
the AMS in 1951. Moreover, in his book on Stochastic processes [9] which appeared
in 1953, Doob devoted a whole chapter to It6’s construction of stochastic integrals
and showed that it carries over without any major change from Brownian motion to
general martingales. But when Kiyosi It6 came to Princeton in 1954, at that time a
stronghold of probability theory with William Feller as the central figure, his new ap-
proach to diffusion theory did not attract much attention. Feller was mainly interested
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in the general structure of one-dimensional diffusions with local generator

_d d
T dmds’

motivated by his intuition that a “one-dimensional diffusion traveler makes a trip in
accordance with the road map indicated by the scale function s and with the speed
indicated by the measure m”’; see [30]. Together with Henry McKean, at that time a
graduate student of Feller, Kiyosi It6 started to work on a probabilistic construction
of these general diffusions in terms of Lévy’s local time. This program was carried
out in complete generality in their joint book Diffusion Processes and Their Sample
Paths [31], a major landmark in the development of probability theory in the sixties.
At that time I was a graduate student at the University of Erlangen, and when a group
of us organized an informal seminar on the book of It6 and McKean we found it
very hard to read. But then we were delighted to discover that It6’s own Lectures
on Stochastic Processes [25] given at the Tata Institute were much more accessible;
see also [26] and [27]. This impression was fully confirmed when Professor [t6 came
to Erlangen in the summer of 1968: We thoroughly enjoyed the stimulating style of
his lectures as illustrated by the following photo (even though it was taken ten years
later at Cornell University), and also his gentle and encouraging way of talking to the
graduate students.

1

Ironically, however, neither stochastic integrals nor stochastic differential equations
were mentioned anywhere in the book, in the Tata lecture notes, or in his talks in
Erlangen.

The situation began to change in the sixties, first in the East and then in the
West. G. Maruyama [40] and I. V. Girsanov [19] used stochastic integrals in order
to describe the transformation of Wiener measure induced by an additional drift.
First systematic expositions of stochastic integration and of stochastic differential
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equations appeared in E. B. Dynkin’s monograph [10] on Markov processes and,
following earlier work of 1. I. Gihman [16], [17] where some results of Itd had been
found independently, in Gihman and Skorohod [18]. Kunita and Watanabe [34]
clarified the geometry of spaces of martingales in terms of stochastic integrals. In
the West, H. P. McKean published his book Stochastic Integrals [41] (dedicated to
K.It6) in 1969, and P. A. Meyer, C. Dellacherie, C. Doléans-Dade, J. Jacod and M. Yor
started their systematic development of stochastic integration theory in the general
framework of semimartingales; see, e.g. [8]. As a result, stochastic analysis emerged
as one of the dominating themes of probability theory in the seventies. At the same
time it began to interact increasingly with other mathematical fields. For example,
J. Eells, K. D. Elworthy, P. Malliavin and others explored the idea of stochastic parallel
transport presented by Kiyosi Itd at the ICM in Stockholm [28] and began to shape the
new field of stochastic differential geometry; see, e.g., [12] and [13]. Connections to
statistics, in particular to estimation and filtering problems for stochastic processes,
were developed by R. S. Liptser and A. N. Shiryaev [35].

Infinite-dimensional extensions of stochastic analysis began to unfold in the eight-
ies. Measure-valued diffusions and “superprocesses’ arising as scaling limits of large
systems of branching particles became an important area of research where the tech-
niques of It6 calculus were crucial; see, e.g., [6], and [14]. Stochastic differential
equations were studied in various infinite-dimensional settings, see, e.g., [1] and [5].
With his lectures Foundations of Stochastic Differential Equations in Infinite Dimen-
sional Spaces [29], given at ETH Zurich and at Louisiana State University in 1983, 1td
himself made significant contributions to this development. In fact, in his foreword
to [24] Kiyosi It6 says that “it became my habit to observe even finite-dimensional
facts from the infinite-dimensional viewpoint”. Paul Malliavin developed the stochas-
tic analysis of an infinite-dimensional Ornstein—Uhlenbeck process and showed that
this approach provides powerful new tools in order to obtain regularity results for the
distributions of functionals of the solutions of stochastic differential equations [37].
His ideas led to what is now known as the Malliavin calculus, a highly sophisticated
methodology with a growing range of applications which emerged in the eighties and
nineties as one of the most important advances of stochastic analysis; see, e.g., [38]
and [42].

While the impact of It6’s ideas within mathematics took some time to become
really felt, their importance was recognized early on in several areas outside of math-
ematics. [ will briefly mention some of them in anecdotical form before I describe one
case study in more detail, namely the application of [t6’s calculus in finance. Already
in the sixties engineers discovered that It0’s calculus provides the right concepts and
tools for analyzing the stability of dynamical systems perturbed by noise and to deal
with problems of filtering and control. When I was an instructor at MIT in 1969/70,
stochastic analysis did not appear in any course offered in the Department of Math-
ematics. But I counted 4 courses in electrical engineering and 2 in aeronautics and
astronautics in which stochastic differential equations played a role. The first sys-
tematic exposition in Germany was the book Stochastische Differentialgleichungen
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[2] by Ludwig Arnold, with the motion of satellites as a prime example. It was based
on seminars and lectures at the Technical University Stuttgart which he was urged to
give by his colleagues in engineering. In the seventies the relevance of Itd’s work was
also recognized in physics and in particular in quantum field theory. When I came to
ETH Zurich in 1977, Barry Simon gave a series of lectures for Swiss physicists on
path integral techniques which included the construction of 1t6’s integral for Brow-
nian motion, an introduction to stochastic calculus, and applications to Schrédinger
operators with magnetic fields; see chapter V in [45]. When Kiyosi Itd6 was awarded
a honorary degree by ETH Zurich in 1987, this was in fact due to a joint initiative
of mathematicians and physicists. In another important development, the methods of
1t6’s calculus were crucial in analyzing scaling limits of models in population genet-
ics in terms of measure-valued diffusions; see, e.g., [44] and the chapter on genetic
models in [15], and [14].

I will now describe the application of It6’s calculus in finance which began around
1970 and which has transformed the field in a spectacular manner, in parallel with the
explosive growth of markets for financial derivatives. Consider the price fluctuation
of some liquid financial asset, modeled as a stochastic process S = (S;)o</<7 On
some probability space (€2, ¥, P) with filtration (¥7)o<;<7. Usually S is assumed to
be the solution of some stochastic differential equation (4), and then the volatility of
the price fluctuation as measured by the quadratic variation process (X) is governed
by the state-dependent diffusion coefficient o (x) as described in equation (10). The
best-known case is geometric Brownian motion, where the coefficients are of the form
o(x) = ox and b(x) = bx. This is known as the Black—Scholes model, and we will
return to this special case below. In general, the choice of a specific model involves
statistical and econometric considerations. But it also has theoretical aspects which
are related to the idea of market efficiency.

In its strong form, market efficiency requires that at each time ¢ the available
information and the market’s expectations are immediately “priced in”. Assuming a
constant interest rate r, this means that the discounted price process X = (X;)o</<T
defined by X; = S; exp(—rt) satisfies the condition

E[X15|F1] = X:.

In other words, the discounted price process is assumed to be a martingale under the
given probability measure P, and in this case P is called a martingale measure with
respect to the given price process. In this strong form market efficiency has a drastic
consequence: There is no way to generate a systematic gain by using a dynamic
trading strategy. This follows from Itd’s theory of the stochastic integral, applied to a
general martingale instead of Brownian motion. Indeed, a trading strategy specifies
the amount &; of the underlying asset to be held at any time ¢. It is then natural to say
that the resulting net gain at the final time 7 is given by It0’s stochastic integral

T
Vr = / &dX, ~ ZE’I’ (Xt — X1).
0 i
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Note in fact that the non-anticipating construction of the It6 integral matches exactly
the economic condition that each investment decision is based on the available in-
formation and is made before the future price increment is known. But if X is a
martingale under the given probability measure P, as it is required by market effi-
ciency in its strong form, then the stochastic integral inherits this property. Thus the
expectation of the net gain under P is indeed given by

E[Vvr]=0.

There is a much more flexible notion of market efficiency, also known as the
“absence of arbitrage opportunities”. Here the existence of a trading strategy with
positive expected net gain is no longer excluded. But it is assumed that there is no
such profit opportunity without some downside risk, i.e.,

E[Vr] > 0= P[V7 <0] #0.

As shown by Harrison and Kreps [20], and then in much greater generality by Delbaen
and Schachermayer [7], this relaxed notion of market efficiency is equivalent to the
condition that the measure P, although it may not be a martingale measure itself, does
admit an equivalent martingale measure P* ~ P.

Equivalent martingale measures provide the key to the problem of pricing and
hedging financial derivatives. Such derivatives, also known as contingent claims, are
financial contracts based on the underlying price process. The resulting discounted
outcome can be described as a nonnegative random variable H on the probability
space (2, ¥, P). The simplest example is a European call-option with maturity 7,
where H = (X7 — ¢)™ only depends on the value of the stock price at the final
time 7. A more exotic example is the look-back option given by the maximal stock
price observed up to time 7.

For simple diffusion models such as the Black—Scholes model the equivalent
martingale measure P* is in fact unique, and in this case the financial market model
is called complete. In such a complete situation any contingent claim H admits a
unique arbitrage-free price, and this price is given by the expectation E*[H] under
the martingale measure P*. As shown by Jacod and Yor in the eighties, uniqueness
of the equivalent martingale measure P* is indeed equivalent to the fact that each
contingent claim H admits a representation as a stochastic integral of the underlying
price process:

T
H = E*[H] —l—/ & dX;. (14)
0

This result may in fact be viewed as an extension of a fundamental theorem of It on
the representation of functionals of Brownian motion as stochastic integrals. For a
simple diffusion model it is actually a direct consequence of Itd’s formula, as we will
see below. In financial terms, the representation (14) means that the contingent claim
H admits a perfect replication by means of a dynamic trading strategy, starting with
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the initial capital E*[H]. But this implies that the correct price is given by the initial
capital, since otherwise there would be an obvious arbitrage opportunity.

In the financial context, the crucial insight that arbitrage-free prices of derivatives
should be computed as expectations under an equivalent martingale measure goes
back to Black and Scholes [3]. They considered the problem of pricing a European
call-option of geometric Brownian motion and realized that the key to the solution
is provided by It6’s formula. More generally, suppose that the price fluctuation is
modeled by a stochastic differential equation (4) and that the contingent claim is of
the form H = h(X7) with some continuous function 4. Note first that we can rewrite
1t6’s formula (13) as

df (X, 1) = Vi f(X, 1) dX + (£* + %)f(x, 1) dt

in terms of the operator L* = £ — bV,.. Thus the contingent claim can be written as

T
H=f(x,0)—i—/ Vif(Xs, t)dX, (15)
0

if the function f on R? x [0, T'] is chosen to be a solution of the partial differential
equation

<£* + %)f =0 (16)

with terminal condition f (-, T) = h. The representation (15) shows that the contin-
gent claim admits a perfect replication, or a perfect hedge, by means of the strategy
& = Vi f(Xy, t). Therefore its arbitrage-free price is given by E*[H] = f(x,0). In
the same way, the arbitrage-free price at any time ¢ is given by the value f(X;, t). Thus
1td’s formula provides an explicit method of computing the hedging strategy and the
arbitrage-free price which involves the associated partial differential equation (16).

This approach can be extended to arbitrarily exotic derivatives. Indeed, applying
the preceding argument stepwise to products of the form H = [[ ;(X;,) and using
an approximation of general derivatives by such finitely based functionals, one ob-
tains the crucial representation (14) of a general contingent claim H as a stochastic
integral of the underlying diffusion process. While this approach clarifies the pic-
ture from a conceptual point of view, the explicit computation of the price and the
hedging strategy usually becomes a major challenge when moving beyond the simple
case of a call option. At this stage additional methods of numerical analysis and
of stochastic analysis may be needed. In particular, the Malliavin calculus and the
analysis of “cubature on Wiener space” developed by T. Lyons have started to play an
important role in this context; see, e.g., Malliavin and Thalmaier [39] and Lyons and
Victoir [36].

New conceptual problems arise as soon as the financial market model becomes
incomplete, i.e., if the martingale measure P* is no longer unique. This happens
if, for example, the driving Brownian motion in (4) is replaced by a general Lévy
process as in Itd’s original work, or if volatility becomes stochastic in the sense that
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the diffusion coefficient o is replaced by a stochastic process. The issue of pricing and
hedging financial derivatives in such an incomplete setting has led to new optimization
problems and has opened new connections to convex analysis and to microeconomic
theory. It has also become the source of new directions in martingale theory. In
particular it has led to new variants of some fundamental decomposition theorems
such as the Kunita—Watanabe decomposition and the Doob—Meyer decomposition,
and it has motivated the systematic development of the theory of backward stochastic
differential equations; see, e.g., [33] and [11]. In all these ramifications, however,
Itd’s stochastic analysis continues to provide the crucial concepts and tools.

In the beginning we recalled the statutes of the Gauss prize. We can now see
more clearly why each and every one of their requirements is so well met by Kiyosi
1td’s contributions. In the first place, these contributions are outstanding and in fact
of fundamental importance from a strictly mathematical point of view. Secondly,
they have found significant applications outside of mathematics as illustrated by the
preceding case study: There is no doubt that the field of quantitative finance has been
thoroughly transformed by the basic insights provided by It&’s calculus, both on a
conceptual and on a computational level. Finally, this transformation of the field has
paved the way to the innovative application of a wide range of mathematical methods,
not only from stochastic analysis but also, following in their wake, methods from
PDE’s, convex analysis, statistics, and numerical analysis.

In their introduction to [24] quoted above, Stroock and Varadhan say that Kiyosi
It6 “has molded the way in which we all think about stochastic processes”. When
this was written, “we all” referred to a rather small group of specialists. Over the
last three decades this group has increased dramatically, both within and beyond the
boundaries of mathematics. And I am sure that there is overwhelming agreement with
the anonymous weblog discussant that the Gauss prize has been awarded to “someone
really wonderful”.
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Universality for mathematical and physical systems

Percy Deift*

Abstract. All physical systems in equilibrium obey the laws of thermodynamics. In other
words, whatever the precise nature of the interaction between the atoms and molecules at the
microscopic level, at the macroscopic level, physical systems exhibit universal behavior in the
sense that they are all governed by the same laws and formulae of thermodynamics. In this paper
we describe some recent history of universality ideas in physics starting with Wigner’s model
for the scattering of neutrons off large nuclei and show how these ideas have led mathematicians
to investigate universal behavior for a variety of mathematical systems. This is true not only for
systems which have a physical origin, but also for systems which arise in a purely mathematical
context such as the Riemann hypothesis, and a version of the card game solitaire called patience
sorting.
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1. Introduction

All physical systems in equilibrium obey the laws of thermodynamics. The first law
asserts the conservation of energy. The second law has a variety of formulations, one
of which is the following: Suppose that in a work cycle a heat engine extracts Q
units of heat from a heat reservoir at temperature 77, performs W units of work, and
then exhausts the remaining Q> = Q1 — W units of heat to a heat sink at temperature
T, <Ty. Letn = % denote the efficiency of the conversion of heat into work. Then
the second law tells us there is a maximal efficiency nmax = (71 — T2)/ T1, depending
only on 77 and 73, so that for all heat engines, and all work cycles,

1 = Nmax- (D

Nature is so set up that we just cannot do any better.

On the other hand, it is a very old thought, going back at least to Democritus and
the Greeks, that matter, all matter, is built out of tiny constituents — atoms — obeying
their own laws of interaction. The juxtaposition of these two points of view, the
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macroscopic world of tangible objects and the microscopic world of atoms, presents a
fundamental, difficult and long-standing challenge to scientists; namely, how does one
derive the macroscopic laws of thermodynamics from the microscopic laws of atoms?
The special, salient feature of this challenge is that the same laws of thermodynamics
should emerge no matter what the details of the atomic interaction. In other words, on
the macroscopic scale, physical systems should exhibit universality'. Indeed, it is the
very emergence of universal behavior for macroscopic systems that makes possible
the existence of physical laws.

This kind of thinking, however, is not common in the world of mathematics.
Mathematicians tend to think of their problems as sui generis, each with its own
special, distinguishing features. Two problems are regarded as “the same” only if
some isomorphism, explicit or otherwise, can be constructed between them. In recent
years, however, universality in the above sense of macroscopic physics has started to
emerge in a wide variety of mathematical problems, and the goal of this paper is to
illustrate some of these developments. As we will see, there are problems from diverse
areas, often with no discernible, mechanistic connections, all of which behave, on the
appropriate scale, in precisely the same way. The list of such problems is varied,
long and growing, and points to the emergence of what one might call “macroscopic
mathematics.”

A precedent for the kind of results that we are going to describe is given by the
celebrated central limit theorem of probability theory, where one considers indepen-
dent, identically distributed variables {x,},>1. The central limit theorem tells us that
if we center and scale the variables, x, — y, = (x, — E(x4))/+/V(x,), then

n t 2 d
lim Prob (M < z) - / L @)
n—o0 ﬁ — 00 27T

We see here explicitly that the Gaussian distribution on the right-hand side of (2) is
universal, independent of the distribution for the x,’s. The proof of the central limit
theorem for independent coin flips, Prob(x, = +1) = Prob(x, = —1) = %, goes
back to de Moivre and Laplace in the 18th century. Of course (2) is only one of many
similar universality-type results now known in probability theory.

The outline of the paper is as follows: In Section 2 we will introduce and discuss
some models from random matrix theory (RMT). Various distributions associated
with these models will play the same role in the problems that we discuss later on
in the paper as the Gaussian does in (2). As noted above, thermodynamics reflects
universality for all macroscopic systems, but there are also many universality sub-
classes which describe the behavior of physical systems in restricted situations. For
example, many fluids, such as water and vinegar, obey the Navier—Stokes equation,
but a variety of heavy oils obey the lubrication equations. In the same way we will see

'In physics, the term “universality” is usually used in the more limited context of scaling laws for critical
phenomena. In this paper we use the term “universality” more broadly in the spirit of the preceding discussion.
We trust this will cause no confusion.
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that certain mathematical problems are described by so-called Unitary Ensembles of
random matrices, and others by so-called Orthogonal or Symplectic Ensembles. In
Section 3, we present a variety of problems from different areas of mathematics, and
in Section 4 we show how these problems are described by random matrix models
from Section 2. In the final Section 5 we discuss briefly some of the mathematical
methods that are used to prove the results in Section 4. Here combinatorial identities,
Riemann—Hilbert problems (RHP’s) and the nonlinear steepest descent method of
[DeiZho], as well as the classical steepest descent method, play a key role. We end
the section with some speculations, suggesting how to place the results of Sections 3
and 4 in a broader mathematical framework.

2. Random matrix models

There are many ensembles of random matrices that are of interest, and we refer the
reader to the classic text of Mehta [Meh] for more information (see also [Deil]). In
this paper we will consider almost exclusively (see, however, (54) et seq. below) only
three kinds of ensembles:

(a) Orthogonal Ensembles (OE’s) consisting of N x N real symmetric matrices
M,M=M=MT.

(b) Unitary Ensembles (UE’s) consisting of N x N Hermitian matrices M,
M = M*.
(c) Symplectic Ensembles (SE’s) consisting of 2N x 2N Hermitian, self-dual

matrices M = M* = JMTJT, where J is the standard 2N x 2N block
diagonal symplectic matrix, J = diag(r, 7,...,7), T = (_0l (1))

For reasons that will soon become clear, OE’s, UE’s and SE’s are labeled by a pa-
rameter 8, where § = 1,2 or 4, respectively. In all three cases the ensembles are
equipped with probability distributions of the form

1
Py p(M)dsgM = Z—e‘“(VNfﬁ("“) dgM 3)
N’ﬂ

where Vy g is a real-valued function on R such that Vy g(x) — o0 sufficiently
rapidly as |x| — 00, Zy, g is a normalization coefficient, and dg M denotes Lebesgue
measure on the algebraically independent entries of M. For example, in the orthogonal
case,dg_1M = nlfjfka dM;jy, where M = (M) (see, e.g. [Meh]). The notation
“orthogonal”, “unitary”, and “symplectic” refers to the fact that the above ensem-
bles with associated distributions (3) are invariant under conjugation M — SMS~!,
where S is orthogonal, unitary, or unitary-symplectic (i.e., S € USp(2N) = {S :
§S* =1, SIST = J}) respectively. When VN pg(x) = x2, one has the so-called
Gaussian Orthogonal Ensemble (GOE), the Gaussian Unitary Ensemble (GUE), and
the Gaussian Symplectic Ensemble (GSE), for § = 1, 2 or 4, respectively.
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The distributions (3) in turn give rise to distributions on the eigenvalues A; <
A <---0of M,

) 1
Pypr)dVa = s—e T a0 T a —af diy - diy (4
ZN.p 1<i<j<N

where Z N.p 1s again a normalization coefficient, and ng = 1if 8 = lor2and ny = 2
(this is because the eigenvalues for 8 = 4 double up). The labeling of OE’s, UE’s, and
SE’s by B = 1, 2 and 4 is now clear. In all three cases, we see that the random matrix
ensembles give rise to random particle systems {11, A2, ...} with repulsion built in:
the probability that two eigenvalues are close together is small and vanishes like a
power of the distance between them. This is an essential feature of random matrix
ensembles, in contrast to random Poisson particle systems, say, where the particles
may bunch together or exhibit large gaps.

Loosely speaking, we say that a system is modeled by random matrix theory
(RMT) if it behaves statistically like the eigenvalues of a “large” OE, UE,...matrix.
In analyzing such systems there is something known as the standard procedure:
Suppose we wish to compare some statistical quantities {ax} in the neighborhood
of some point A with the eigenvalues {A;} of some matrix in the neighborhood of
some energy E, say, in the bulk of the spectrum. Then we always center and scale
the a;’s and the A;’s,

ax = dx = Yalag — A),  hk = A =y — E) (%)
so that
E(#{&k’s per unit interval}) = ]E(#{Xk’s per unit interval}) =1. (6)

For energies E at the edge of the spectrum, the above procedure must be modified
slightly (see below).

This procedure can be viewed as follows: A scientist wishes to investigate some
statistical phenomenon. What s’he has at hand is a microscope and a handbook of
matrix ensembles. The data {a;} are embedded on a slide which can be inserted
into the microscope. The only freedom that the scientist has is to center the slide,
ay — ai — A, and then adjust the focus ay — A — ay = y,(ar — A) so that on average
one data point aj appears per unit length on the slide. At that point the scientist takes
out his’r handbook, and then tries to match the statistics of the a;’s with those of the
eigenvalues of some ensemble. If the fitis good, the scientist then says that the system
is well-modeled by RMT.

It is a remarkable fact, going back to the work of Gaudin and Mehta, and later
Dyson, in the 1960s, that the key statistics for OE’s, UE’s, and SE’s can be computed
in closed form. This is true not only for finite NV, but also for various scaling limits as
N — 0. For GOE, GUE, and GSE we refer the reader to [Meh]. Here the Hermite
polynomials, which are orthogonal with respect to the weight e dx on R, play
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a critical role, and the scaling limits as N — oo follow from the known, classical
asymptotics of the Hermite polynomials. For UE’s with general potentials Vy g—»,
the techniques described in [Meh] for GUE go through for finite N, the role of the
Hermite polynomials now being played by the polynomials orthogonal with respect
to the weight e~ VN.A=2) dx on R (see, e.g. [Deil]). For general Vy g—>, however,
the asymptotic behavior of these polynomials as N — oo does not follow from
classical estimates. In order to overcome this obstacle, the authors in [DKMVZ1]
and [DKMVZ2] (see also [Deil] for a pedagogical presentation) used the Riemann—
Hilbert steepest-descent method introduced by Deift and Zhou [DeiZho], and further
developed with Venakides [DVZ], to compute the asymptotics as N — oo of the
orthogonal polynomials for a very general class of analytic weights. In view of the
preceding comments, the scaling limits of the key statistics for UE’s then follow for
such weights (see also [Blelts] for the special case Vy g—2(x) = N (x* — 1x?)). For
another approach to UE universality, see [PasSch]. For OE’s and SE’s with classical
weights, such as Laguerre, Jacobi, etc., for which the asymptotics of the associated
orthogonal polynomials are known, the GOE and GSE methods in [Meh] apply (see
the introductions to [DeiGiol] and [DeiGio2] for a historical discussion). For general
V., B = 1 or 4, new techniques are needed, and these were introduced, for finite N,
by Tracy and Widom in [TraWid2] and [Wid]. In [DeiGiol] and [DeiGio2], the
authors use the results in [TraWid2] and [Wid], together with the asymptotic estimates
in [DKMVZ2], to compute the large N limits of the key statistics for OE’s and SE’s
with general polynomial weights Vy g(x) = KomX 2™ 4 oo ko > 0.

It turns out that not only can the statistics for OE’s, UE’s and SE’s be computed
explicitly, but in the large N limit the behavior of these systems is universal in the
sense described above, as conjectured earlier by Dyson, Mehta, Wigner, and many
others. It works like this: Consider N x N matrices M in a UE with potential Vy ».
Let K denote the finite rank operator with kernel

N-—1
Ky, y) =Y 9j®)gi(), x yeR (7)
j=0
where :
@j(x) = pj(x)e"2W2 - j >0 (8)
and _
pix)=yix) +---, j=0,y >0 )

are the orthonormal polynomials with respect to the weight e~ V¥.2() gx,

/ i) pr(x)e” V2 dx =8, j k> 0.
R

Then the m-point correlation functions

N! A
(N —m)!
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can be expressed in terms of Ky as follows:

R A1y ...y Am) = det(Kn (Ai, 47)) (10)

1<i,j<m "

A simple computation for the 1-point and 2-point functions, Rj(A) and Ry (A1, A2),
shows that

E(#{x; € B}) :f Ri(V) dx (11)
B

for any Borel set B C R, and
E(#{ordered pairs (i, j), i # j : (A, Aj)) € A}) = // Ry(A1, M) dridry  (12)
A

for any Borel set A C R2.

It follows in particular from (11) that, for an energy E, Ri(E) = Ky(E, E)
is the density of the expected number of eigenvalues in a neighborhood of E, and
hence, by the standard procedure, one should take the scaling factor y, in (5) to be
Kn(E, E). For energies E in the bulk of the spectrum, one finds for a broad class of
potentials Vi 2 (see [DKMVZI1] and [DKMVZ2]) that, in the scaling limit dictated
by Ky (E, E), Ky (A, \') takes on a universal form

. X y
1 —— Ky | E JE =K — 13
N Kn(E. E) N( T kvE B " T Kn(E, E)) AR
where x, y € R and K is the so-called sine-kernel,
sin(wu)
Koo(u) = . (14)
Tu

Inserting this information into (10) we see that the scaling limit for R,, is universal
for each m > 2, and in particular for m = 2, we have for x, y € R

. X y
lim —— Ry <E + E+ )
N—>00 (KN(E,E))2 Ky(E,E) Ky(E,E)

_ K (0) Koo(x —y)
= det (Koo<x ) Keo(0) ) (15)

_1 (sinn(x — y))2
rx—y) )
For a Borel set B C R, letng =#{A; : A; € B} and let

Vg =E(ng — Eng))’ (16)

denote the number variance in B. A simple computation again shows that

2
\: =/ Rl(x)dx—{—// Rr(x, y)dxdy — (/ Rl(x)dx> .
B BxB B
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For an energy E in the bulk of the spectrum as above, set

S N
B =|E — ,E , 0.
n(s) ( 2Kn(E.E) T 2Kn(E, E>) =

For such B, Vp is the number variance for an interval about E of scaled size s.
Recalling that Ky (E, E) = R{(E), and using (15), we find as N — oo

) 1 s 1 — cosu 25 [ [sinu\>
lim Vg, = — —du+ — du. 17
N—oo = Jo u T Jrs u

For large s, the right-hand side has the form (see [Meh])
1 1
— (log@rs) +y +1) + 0= (18)
w2 s
where y is Euler’s constant.
For 6 > 0, the so-called gap probability

Gn200) = Prob(M : M has no eigenvalues in (E — 0, E + 9)) (19)
is given by (see [Meh], and also [Deil])
GN’Z(Q) = det(l — KN rL2(E—9,E+9)) (20)

where Ky [12(g_g g+o) denotes the operator with kernel (7) acting on L*(E — 6,
E + 0). In the bulk scaling limit, we find

) X
Nh—I>noo GN’Z <m) = det(l — Koo [LZ(E—Q,E-F@))’ x € R. (21)
In terms of the scaled eigenvalues Xj = Ky(E, E) - (Aj — E), this means that for
x>0

lim Prob(M : Xj ¢ (—x,x), 1 <j < N)=det(l — Kool12(_y.p)). (22)
N—o0 ’
Now consider a point E, say E = 0, where Ky(E, E) = Ky(0,0) — o0 as
N — oo. This is true, in particular, if

Va(x) = kpx®™ 4o kp >0, m>1, (23)

and so for Vy 2(x) = x2 (GUE). For such Vy 2’s, we have K (0, 0) ~ Nl_ﬁ (see
[DKMVZ1]). Let tp; > 0 be such that

IN

tN > 00, —— —>
Kn(0,0)

0. (24)
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Then

N

A tN W
N=E Aj —_— Kn(, A)ydr ~ 2t . 25
({| l_KN(OO)}> [ kG~ 2 o 5)

t
S )

For a < b, define the Borel set Ay C R? by

b
<x—y< ————and |x|, |y] (26)

N
an={on: K (0.0 < Faim)

a
Kn(0,0)
Then we have by (12) and (15), as N — oo,

7E(#{ordered pairs (i, j), i # j : (A, Aj) € AN})

1
== // Ry(A1, A2) drydis

N JJay

1 t

:T// 2R2( S )dsdt

N JJs.0:a<s—t<b,Isl.lt1<tn} (K n (0, 0)) Kn(0,0)" Ky(0,0)

. N2
N_// (1_<M>>M
(s t):a<s—t<b, |s|,|t|<tn)} (s —1)
2[AN (1 3 (Slnnr> ) i
N a Tr
b sinmr\2

~ |- ( ) dr, by (25).

a Tr

Thus, if A i = Kn(0,0)A; are, again, the scaled eigenvalues, then for ¢y as in (24)

1 - - . .
lim —E(#{ordered pairs (i, j),i #j : a <A —Aj < b, [Al, |Aj] < tN})

N—oo N
b : 2
sin
=/‘Q_( r))w
a wr
Another quantity of interest is the spacing distribution of the eigenvalues A <

Ay < .- < Ay of arandom N x N matrix as N — oo. More precisely, for s > 0,
we want to compute

(27)

E(#{IEJSN—IZ)\.]'_H—)\]'ES}>
N

as N becomes large. If we again restrict our attention to eigenvalues in a neighborhood
of abulk energy E = 0, say, then the eigenvalue spacing distribution exhibits universal
behavior for UE’s as N — oo. We have in particular the following result of Gaudin
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(see [Meh], and also [Deil]): With ¢y, N and Xj = Kn(0,0)x; as above,

lim E<#{1§J'EN—1 : AjJ:1 —Aj < s, I)»jlle})

N—oo N
= Nlim Prob(at least one eigenvalue x ;in (0, s] | eigenvalue at 0) (28)
—> 00
N
= / p(u)du
0
where
d2
P = - (det(1 — Kool 120.0))) - (29)

At the upper spectral edge E = Apax, one again finds universal behavior for UE’s
with potentials Vy 7, in particular, of the form (23) above. For such Vi »’s there exist

constants zﬁ), sj(\%) such that for ¢ € R (see [DeiGio2] and the notes therein)

2

. . Amax — N
NII_I)HOO Prob(M : Sl(v—z) < t) = det(l — A [LZ(I,OO))’ (30)

Here « is the so-called Airy operator with kernel

_Ai()AI(y) — AT’ (x)Ai(y)
= x _ y b

Ax, y) 3

where Ai(x) is the classical Airy function. For GUE, where Vy 2(x) = x2, one has

zﬁ) = /2N and s,(\%) = 2_%N -3 (see Forrester [For1] and the seminal work of Tracy
and Widom [TraWidl1]).

It turns out that det(l — Ko rLZ(—x,x)) in (21) and det(l — A [Lz(,,oo)) can be
expressed in terms of solutions of the Painlevé V and Painlevé I1 equations respectively.
The first is a celebrated result of Jimbo, Miwa, Mori, and Sato [JMMS], and the second
is an equally celebrated result of Tracy and Widom [TraWid1]. In particular for edge
scaling we find

@
A —
lim Prob(M P TICIN < z) = Fys(t) (32)
N—>oo s
N
where - R
Fpoa(t) = det(1 — A 2 o)) = €~ Ji G700 @1ds (33)

and u(s) is the (unique, global) Hastings—McLeod solution of the Painlevé II equation
u”(s) = 2u>(s) + su(s) (34)

such that
u(s) ~ Ai(s) ass — +oo. (35)
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F(t) = Fp—>(t) is called the Tracy—Widom distribution for B = 2.

Finally we note that for OE’s and SE’s there are analogs for all the above results
(10)—(35), and again one finds universality in the scaling limits as N — oo for
potentials Vi g, B = 1, 4, of the form (23) above (see [DeiGiol] and [DeiGio2] and

the historical notes therein). We note, in particular, the following results: for Vv g as

above, B = 1 or 4, there exist constants Zg\,}s)’ sl(\}s) such that

(B)
Amax (M) —
lim Prob M : Aman (M) = 2y <t]|=Fg@) (36)
N—o00 S](\/?)
where 1
= 1 oo
Fi(t) = (Fa(n)2e2 7 u)ds a7
and o -
L e ST ds o o3 [T uis)ds
Fy(1) = (F2(n)? - _ (38)

with F,(¢) and u(s) as above. Fi(t) and Fy4(¢t) are called the Tracy—Widom distribu-
tions for B = 1 and 4 respectively.

3. The problems

In this section we consider seven problems. The first is from physics and is included
for historical reasons that will become clear in Section 4 below; the remaining six
problems are from mathematics/mathematical physics.

Problem 1. Consider the scattering of neutrons off a heavy nucleus, say uranium U%38.
The scattering cross-section is plotted as a function of the energy E of the incoming
neutrons, and one obtains a jagged graph (see [Por] and [Meh]) with many hundreds
of sharp peaks E; < E» < --- and valleys E| < E} < ---. If E ~ E; for some j,
the neutron is strongly repelled from the nucleus, and if £ ~ E ]’ for some j, then
the neutron sails through the nucleus, essentially unimpeded. The E;’s are called
scattering resonances. The challenge faced by physicists in the late 40s and early 50s
was to develop an effective model to describe these resonances. One could of course
write down a Schrédinger-type equation for the scattering system, but because of the
high dimensionality of the problem there is clearly no hope of solving the equation
for the E;’s either analytically or numerically. However, as more experiments were
done on heavy nuclei, each with hundreds of E;’s, a consensus began to emerge that
the “correct” theory of resonances was statistical, and here Wigner led the way. Any
effective theory would have to incorporate two essential features present in the data,
viz.

(i) modulo certain natural symmetry considerations, all nuclei in the same sym-
metry class exhibited universal behavior;
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(ii) in all cases, the E;’s exhibited repulsion, or, more precisely, the probability
that two E;’s would be close together was small.

Question 1. What theory did Wigner propose for the E;’s?

Problem 2. Here we consider the work of H. Montgomery [Mon] in the early 1970s
on the zeros of the Riemann zeta function ¢ (s). Assuming the Riemann hypothesis,
Montgomery rescaled the imaginary parts y; < y» < --- of the (nontrivial) zeros

{5 +iy}of ¢(s),

. yjlogy;
P>y = = 39
Yi >V . (39)
to have mean spacing 1 as T — oo, i.e.
#{j=>1:yp9,<T
fim TUzlin=Th
T—00 T
For any a < b, he then computed the two-point correlation function for the y;’s
#{ordered pairs (ji1, j2), j1 #j2 : 1 < j1, o <N, pj, — V), € (a,b)}
and showed, modulo certain technical restrictions, that
1
R(a,b) = lim —#{ordered pairs (i, j2), J o
(a, b) Jim { pairs (j1, j2), J1 # J2 40)

1 5]17]2 SN’ )’2/1 _)7]2 € (avb)}
exists and is given by a certain explicit formula.
Question 2. What formula did Montgomery obtain for R(a, b)?

Problem 3. Consider the solitaire card game known as patience sorting (see [AldDia]
and [Mal]). The game is played with N cards, numbered 1, 2, ..., N for convenience.
The deck is shuffled and the first card is placed face up on the table in front of the
dealer. If the next card is smaller than the card on the table, it is placed face up on
top of the card; if it is bigger, the card is placed face up to the right of the first card,
making a new pile. If the third card in the pile is smaller than one of the cards on
the table, it is placed on top of that card; if it is smaller than both cards, it is placed
as far to the left as possible. If it is bigger than both cards, it is placed face up to
the right of the pile(s), making a new pile. One continues in this fashion until all the
cards are dealt out. Let gy denote the number of piles obtained. Clearly gx depends
on the particular shuffle 7 € Sy, the symmetric group on N numbers, and we write
gn = gn ().

For example, if N = 6 and m = 341562, where 3 is the top card, 4 is the next
card and so on, then patience sorting proceeds as follows:

1 1 1
3 3 4 3 4 3 45 3456

W =
&~ N
(9,
(@)

and ge () = 4.
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Question 3. Equip Sy with the uniform distribution. If each card is of unit size, how
big a table does one typically need to play patience sorting with N cards? Or, more
precisely, how does

Dn.N = Prob(n 1gn(m) < n) 41

behave as N — oo, n < N?

Problem 4. The city of Cuernavaca in Mexico (population about 500,000) has an
extensive bus system, but there is no municipal transit authority to control the city
transport. In particular there is no timetable, which gives rise to Poisson-like phe-
nomena, with bunching and long waits between buses. Typically, the buses are owned
by drivers as individual entrepreneurs, and all too often a bus arrives at a stop just as
another bus is loading up. The driver then has to move on to the next stop to find his
fares. In order to remedy the situation the drivers in Cuernavaca came up with a novel
solution: they introduced “recorders” at specific locations along the bus routes in the
city. The recorders kept track of when buses passed their locations, and then sold
this information to the next driver, who could then speed up or slow down in order
to optimize the distance to the preceding bus. The upshot of this ingenious scheme
is that the drivers do not lose out on fares and the citizens of Cuernavaca now have a
reliable and regular bus service. In the late 1990s two Czech physicists with interest in
transportation problems, M. Krbalek and P. Seba, heard about the buses in Cuernavaca
and went down to Mexico to investigate. For about a month they studied the statistics
of bus arrivals on Line 4 close to the city center. In particular, they studied the bus
spacing distribution, and also the bus number variance measuring the fluctuations of
the total number of buses arriving at a fixed location during a time interval 7. Their
findings are reported in [KrbSeb].

Question 4. What did Krbélek and Seba learn about the statistics of the bus system
in Cuernavaca?

Problem 5. In his investigation of wetting and melting phenomena in [Fis], Fisher
introduced various “vicious” walker models. Here we will consider the so-called
random turns vicious walker model. In this model, the walks take place on the integer
lattice Z and initially the walkers are located at 0, 1, 2, .... The rules for a walk are
as follows:

(a) at each tick of the clock, precisely one walker makes a step to the left;

(b) no two walkers can occupy the same site (hence “vicious walkers”).

For example, consider the following walk from time = 0 to time t = 4: At¢ =0,
clearly only the walker at O can move. Attime ¢ = 1, either the walker at —1 or at +1
can move, and so on. Let dy be the distance traveled by the walker starting from O.
In the above example, ds = 2. For any time N, there are clearly only a finite number
of possible walks of duration t = N. Suppose that all such walks are equally likely.

Question 5. How does dy behave statistically as N — co?
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X . X X - X X t=4
X X X X X t=3
X X X X X t=
X - X X X X t=1
X X X X X t =

-4 -3 -2 -1 0 1 2 3 4
Figure 1. Random turns walk.
Problem 6. Consider tilings {7'} of the tilted square T),, = {(x, y) : |x|+]|y| <n+1}

in R? by horizontal and vertical dominos of length 2 and width 1. For example, for
n = 3 we have the tiling T of Figure 2. For each tiling the dominos must lie strictly

Figure 2. Aztec diamond for n = 3.

within T,,. The tilings T are called Aztec diamonds because the boundary of T in
{(x,y) : y > 0}, say, has the shape of a Mexican pyramid. It is a nontrivial theorem

nn+
2

(see [EKLP]) that for any n, the number of domino tilings of T, is 2 1). Assume

that all tilings are equally likely.

Question 6. What does a typical tiling look like as n — 00?

Finally we have

Problem 7. How long does it take to board an airplane? We consider the random
boarding strategy in [BBSSS] under the following simplifying assumptions:

(a) there is only 1 seat per row;
(b) the passengers are very thin compared to the distance between seats;

(c) the passengers move very quickly between seats. The main delay in boarding
is the time — one unit — that it takes for the passengers to organize their luggage
and seat themselves once they arrive at their assigned seats.
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For the full problem with more than one seat per row, passengers who are not “very
thin”, etc., see [BBSSS], and also the discussion of the boarding problem in Section 4
below.

The passengers enter the airplane through a door in front and the seats are numbered

1,2,..., N, with seat 1 closest to the door. How does boarding proceed? Consider,
for example, the case N = 6. There are 6 passengers, each with a seating card
1,2, ..., 6. Atthe call to board, the passengers line up randomly at the gate. Suppose

for definitiveness that the order in the line is given by
m: 341562 (42)

with 3 nearest the gate. Now 3 can proceed to his’r seat, but 4 is blocked and must
wait behind 3 while s’he puts his’r bag up into the overhead bin. However, at the
same time, 1 can proceed to his’r seat, but 5, 6, and 2 are blocked. At the end of one
unit of time, 3 and 1 sit down, and 4 and 2 can proceed to their seats, but 5 and 6 are
blocked behind 4. After one more unit of time 4 and 2 sit down, and 5 can proceed
to his’r seat, but 6 is blocked. At the end of one more unit of time 5 sits down, and
finally 6 can move to his’r seat. Thus for 7 as above, it takes 4 units of time to board.
Let by = by () denote the boarding time for any m € Sy, and assume that the 7’s
are uniformly distributed.

Question 7. How does by () behave statistically as N — 00?

4. Solutions and explanations

As indicated in the Introduction, the remarkable fact of the matter is that all seven
problems in Section 3 are modeled by RMT.

Problem 1 (Neutron scattering). At some point in the mid-1950s, in a striking devel-
opment, Wigner suggested that the statistics of the neutron scattering resonances was
governed by GOE? (and hence, by universality [DeiGiol], by all OE’s). And indeed,
if one scales real scattering data for a variety of nuclei according to the standard pro-
cedure and then evaluates, in particular, the nearest neighbor distribution, one finds
remarkable agreement with the OE analog of the spacing distribution (28), (29).

It is interesting, and informative, to trace the development of ideas that led Wigner
to his suggestion (see [Wigl], [Wig2], [Wig3]; all three papers are reproduced in
[Por]). In these papers, Wigner is guided by the fact that any model for the reso-
nances would have to satisfy the constraints of universality and repulsion, (i) and (ii)
respectively, in the description of Problem 1. In [Wig2] he recalls a paper that he had
written with von Neumann in 1929 in which they showed, in particular, that in the
W-dimensional space of real n X n symmetric matrices, the matrices with double

2Here we must restrict the data to scattering for situations where the nuclear forces are time-reversal invariant.
If not, the statistics of the scattering resonances should be governed by GUE.



Universality for mathematical and physical systems 139

eigenvalues form a set of codimension 2. For example, if a 2 x 2 real symmetric
matrix has double eigenvalues, then it must be a multiple of the identity and hence
it lies in a set of dimension 1 in R3. It follows that if one equips the space of real,
symmetric matrices with a probability measure with a smooth density, the probability
of a matrix M having equal eigenvalues would be zero and the eigenvalues A1, ..., A,
of M would comprise a random set with repulsion built in. So Wigner had a model,
or more precisely, a class of models, which satisfied constraint (ii). But why choose
GOE? This is where the universality constraint (i) comes into play. We quote from
[Wig3]3: “Let me say only one more word. It is very likely that the curve in Figure 1
is a universal function. In other words, it doesn’t depend on the details of the model
with which you are working. There is one particular model in which the probability
of the energy levels can be written down exactly. I mentioned this distribution already
in Gatlinburg. It is called the Wishart distribution. Consider a set....” So in this way
Wigner introduced GOE into theoretical physics: It provided a model with repul-
sion (and time-reversal) built in. Furthermore, the energy level distribution could be
computed explicitly. By universality, it should do the trick!

As remarkable as these developments were, even the most prophetic observer
could not have predicted that, a few years down the line, these developments would
make themselves felt within pure mathematics.

Problem 2 (Riemann zeta function). Soon after completing his work on the scaling
limit (40) of the two-point correlation function for the zeros of zeta, Montgomery
was visiting the Institute for Advanced Study in Princeton and it was suggested that
he show his result to Dyson. What happened is a celebrated, and oft repeated, story
in the lore of the Institute: before Montgomery could describe his hard won result to
Dyson, Dyson took out a pen, wrote down a formula, and asked Montgomery “And

did you get this?”
b sin(mrr) 2
R(a. b) = / - dr 43)
a

Tr

Montgomery was stunned: this was exactly the formula he had obtained. Dyson
explained: “If the zeros of the zeta function behaved like the eigenvalues of a random
GUE matrix, then (43) would be exactly the formula for the two-point correlation
function!” (See (27) above.)

More precisely, what Montgomery actually proved was that

) 1 B B sinrry2
g o S rG-m= o (- () ) e

I<i#j<N

for any rapidly decaying function f whose Fourier transform f (&) is supported in the
interval |§| < 2. Of course, if one could prove (44) for all smooth, rapidly decaying
functions, one would recover the full result (43). Nevertheless, in an impressive series

3In the quotation that follows, “Figure 1” portrays a level spacing distribution, the “Wishart distribution” is
the statisticians’ name for GOE, and “Gatlinburg” is [Wig1].
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of numerical computations starting in the 1980s, Odlyzko verified (43) to extraordi-
nary accuracy (see [Odl1], [OdI2], and the references therein). In his computations,
Odlyzko also considered GUE behavior for other statistics for the y;’s, such as the
nearest neighbor spacing, verifying in particular the relationship
)
lim l#{lfij—l:)7]‘+1—)7j§s}=/ pw)du, s >0, 45)
N—oo N 0

(cf. (28), (29)) to high accuracy.

The relationship between the zeros of the zeta function and random matrix theory
first discovered by Montgomery has been taken up with great virtuosity by many
researchers in analytic number theory, with Rudnick and Sarnak [RudSar], and then
Katz and Sarnak [KatSar], leading the way. GUE behavior for the zeros of quite
general automorphic L-functions over Q, as well as for a wide class of zeta and
L-functions over finite fields, has now been established (modulo technicalities as
in (44) above in the number field case). Another major development has been the
discovery of a relationship between random polynomials whose roots are given by
the eigenvalues of a matrix from some random ensemble, and the moments of the
L-functions on the critical line Re z = % (see [KeaSnal], [KeaSna2]). The discovery
of Montgomery/Odlyzko counts as one of the major developments in analytic number
theory in many, many years.

Problem 3 (Patience sorting). In 1999 Baik, Deift and Johansson [BDJ1] proved the
following result for gx (;r), the number of piles obtained in patience sorting starting

from a shuffle = of N cards. Let XN = qNN-lz/GV N . Then
lim Prob <t)=F(t 46
Nl T (XN = ) 2(1) (46)

where F> is the Tracy—Widom distribution (32), (33) for § = 2. Thus the number
of piles, suitably centered and scaled, behaves statistically like the largest eigenvalue
of a GUE matrix. In addition, the authors proved convergence of moments. For any
m=1,2,...,
lim E(xy) =E(x™) (47)
N—o0

where x is any random variable with distribution F>. In particular, for m = 1, 2 one
obtains

. E(gn) —2v/N
and 5
. Vign)
A}gnooN—ljZ :/thsz(t)— (/thFz(t)) . (49)

Numerical evaluation shows that the constants on the right-hand side of (48) and (49)
are given by —1.7711 and 0.8132, respectively. Thus, as N — oo,

E(gn) ~ 2v/N — 1.7711 - N'/6
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so that for a deck of N = 52 cards, one needs a table of size about 12 units on average
to play the game.

Patience sorting is closely related to the problem of longest increasing subse-
quences for permutations m € Sy. Recall that we say that 7w (i), ..., w(ix) is an
increasing subsequence in 7 of length k if i] < ip < -+ <ipand (i) < (i) <

- < w(ix). Let ly(m) be the length of the longest increasing subsequence in 7.
For example, if N = 6 and m = 341562 we see that 3456 is a longest increasing
subsequence for 7 and hence lg(;r) = 4. Comparing with the introduction to Ques-
tion 3, we see that /(1) = ge(r). This is no accident: for any m € Sy, we always
have Iy () = gy () (see, e.g. [AldDia]), and hence we learn from (46) that the
length [y of the longest increasing subsequence behaves statistically like the largest
eigenvalue of a GUE matrix as N — oo. The relation /(7)) = gy () and (48) imply

in particular that

E(yn)

lim — 5 = 2. (50)

N—oco N
The claim that the limit in (50) exists, and equals 2, is known as “Ulam’s problem”
and has a long history (see [BDJ1]). In another direction, uniform distribution on
Sy pushes forward under the Robinson—Schensted correspondence (see, e.g. [Sag])
to so-called Plancherel measure on Young diagrams of size N. Young diagrams are
parameterized by partitions u = N, {t = (®1, U2, .., 1) = KU1 = U = -0 >
wr =1, 25:1 i = N}, where p; is the number of boxes in the ith row, and it turns
out that under the correspondence we have

Prob(m : Iy(7) <n) =Prob(u =N : puj <n). (51)

Consequently, the number of boxes in the first row of Plancherel-random Young
diagrams behaves statistically, as N — oo, like the largest eigenvalue of a GUE
matrix. In [BDJ1] the authors conjectured that the number of boxes in the first X rows
of a Young diagram should behave statistically as N — oo like the top k eigenvalues
AN = AN—1 = -+ > AN—i+1 of a GUE matrix. This conjecture was proved for
the 2" row in [BDJ2]. For general k, the conjecture was proved, with convergence
in joint distribution, in three separate papers in rapid succession ([Oko], [BOO],
[Johl]), using very different methods. The proof in [Oko] relies on an interplay
between maps on surfaces and ramified coverings of the sphere; the proof in [BOO]
is based on the analysis of specific characters on S(c0), the infinite symmetric group
defined as the inductive limit of the finite symmetric groups Sy under the embeddings
Sy < Sny+1; and the proof in [Joh1] utilizes certain discrete orthogonal polynomial
ensembles arising in combinatorial probability.

One can consider the statistics of [ (;r) for m restricted to certain distinguished
subsets of Sy (see [BaiRail]). Amongst the many results in [BaiRail] re}ating com-
binatorics and random matrix theory, we mention the following. Let SE\I,“V) ={r e
Syt = id} be the set of involutions in Sy . Then, under the Robinson—-Schensted
correspondence, uniform distribution on S](\l,nv) pushes forward to a new measure on
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Young diagrams, different from the Plancherel measure. Denote this measure by
Prob™) and in place of (51) we have

Prob(r € S : Iy(w) <n) =Prob™) (- N : uy <n).

In [BaiRail] the authors show that

: IN — 2/ N
lim Prob(n € Sg,nv) : N7 =< x)
N—o0 N

ui —23/N ) (52)
-~ <y

NI/G —

= lim Prob®™ (M N

N—o0

= Fp=1(x)
and for the second row of u

lim_Prop(™ (M N ’”N# < x) = Fp_y(). (53)
Here Fg—1 and Fpg—4 are the Tracy—Widom distributions for the largest eigenvalue of
the GOE and GSE ensemble, respectively (see (36), (37), (38)). Thus all three of the
basic ensembles 8 = 1,2 and 4 show up in the analysis of the (general) increasing
subsequence problem.

A problem which is closely related to the longest increasing subsequence problem
is the random word problem. In [TraWid4] the authors consider words {w} of length N
in an alphabet of k letters, i.e. maps w: {1,2,..., N} — {1,2,...,k}. One says
that w(iy), ..., w(ij) is a weakly increasing subsequence in w of length j if
i1 < iy < < ijand w(i)) < w@i) < -+ < w(ij). Let Iy (@) denote the
length of the longest weakly increasing subsequence in w. Assuming that all words
are equally likely, Tracy and Widom in [TraWid4] proved that

wk
! - XN
lim Prob<a) : & < s)

o v (54)

k
= )/kf e_Zi=1xi2 l_[ (xi — xj)zdxl .. 'dxkfl

I<i<j<k
where
Ly ={(x1,....x) : maxj<i<px; <5, x1+ -+ x = 0} (55)
and
k21
V2 k
Vi = —. (56)
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It is easy to see that the right-hand side of (54) is just the distribution function for the
largest eigenvalue of a k x k GUE matrix conditioned to have trace zero.
Consider the representation of the number 7, say, in any basis b,

7 =0.a1aa3... x b1, q€Z. (57)

It has long been believed that in some natural asymptotic sense the digits aj, aa,
as,... are independent and identically distributed, with uniform distribution on
{0, 1,...,b — 1}. In an attempt to formalize this notion, E. Borel (1909) introduced
the idea of normality (see [Wag]): A real number x is normal if for any base b, any
m > 1, and any m-string s,

lim #{occurrences of s in the first n base-b digits of x}

n—00 n

=b"". (58)

While it is known that non-normal numbers form a set of Lebesgue measure zero, and
all numerical evidence confirms (58) to high order, no explicit examples of normal
numbers are known.

Relation (54) suggests a new way to test for asymptotic randomness, as follows.
Consider the first L N base-b digits ajay . . . ap y of a given number x, where L and N
are “large”. Partition these digits into L words ; = a(j—1)n41..-4ajN, 1 < j < L,
each of length N. For each w; compute l;\v,k (wj). Then if the digits {a;} of x are
asymptotically random, we could expect thatas L, N — oo, the empirical distribution

wk N
.WUW%—E<S}

2N
b

1
—ﬂlgng
L

is close to the conditional GUE distribution on the right-hand side of (54). Preliminary
calculations in [DeiWit] for x = 7 and b = 2 show that for L, N “large” the empirical
distribution is indeed close to the right-hand side of (54) with high accuracy. The work
is in progress.

Problem 4 (Bus problem in Cuernavaca). Krbalek and Seba found that both the bus
spacing distribution and the number variance are well modeled by GUE, (28), (29) and
(17) respectively (see Figures 2 and 3 in [KrbSeb]). In order to provide a plausible
explanation of the observations in [KrbSeb], the authors in [BBDS] introduced a
microscopic model for the bus line that leads simply and directly to GUE.

The main features of the bus system in Cuernavaca are

(a) the stop-start nature of the motion of the buses;
(b) the “repulsion” of the buses due to the presence of recorders.
To capture these features, the authors in [BBDS] introduced a model for the buses

consisting of n(= # of buses) independent, rate 1 Poisson processes moving from the
bus depot at time ¢ = 0 to the final terminus at time 7, and conditioned not to intersect
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for 0 <t < T. The authors then showed that at any observation point x along the
route of length N > n, the probability distribution for the (rescaled) arrival times of

the buses, yj = =& — 1 € [=1,1],1 < j < n, is given by

n
const. [ Jw,(v) [T i—yp)?dyi---adw (59)
j=1 1<i<j<n
where
w,()=1+y)* A -V _1<y<1. (60)

Formula (59) is precisely the eigenvalue distribution for the so-called Jacobi Unitary
Ensemble (cf. (4) with e="V20) = (y) = weight for Jacobi polynomials on
[—1, 1]). In the appropriate scaling limit, GUE then emerges by universality. The
authors also compute the distributions of the positions x1, . .., x, of the buses at any
time 7 € (0, T'). Again the statistics of the x;’s are described by a Unitary Ensemble,
but now w, is (59) is replaced by the weight for the Krawtchouk polynomials: by
universality, GUE again emerges in the appropriate scaling limit.

In an intriguing recent paper, Abul-Magd [Abu] noted that drivers have a tendency
“to park their cars near to each other and at the same time keep a distance sufficient
for manoeuvring.” He then analyzed data measuring the gaps between parked cars
on four streets in central London and showed quite remarkably that the gap size
distribution was well represented by the spacing distribution (28), (29) of GUE. It is
an interesting challenge to develop a microscopic model for the parking problem in
[Abu], analogous to the model for the bus problem in [BBDS].

Problem 5 (Random turns vicious walker model). In [BaiRai2] the authors proved
that, as N — oo, dy, the distance traveled by the walker starting from 0, behaves
statistically like the largest eigenvalue of a GOE matrix. More precisely, they showed

that
(dN —2J/N )
6

lim Prob( =77 <1) = Fi(0) (61)

N—o0 1/

where Fj is given by (37). In a variant of this model, [For3], the walkers again start
at 0, 1, 2,..., and move to the left for a time N; thereafter they must move to the
right, returning to their initial positions 0, 1, 2,...at time 2N. Let d;v denote the
maximum excursion of the walker starting from 0. Then Forrester shows that d,
behaves statistically like the largest eigenvalue of a GUE matrix,
/
lim Prob(M
N—o00 N

< t> = F(1) (62)

where F3 is given by (33).

The proofs of (61) and (62) rely on the observation of Forrester in [For3] that, in the
first case, the set of walks is in one-to-one correspondence with the set ¥ (1) of standard
Young tableaux of size N (see [Sag]), whereas in the second case, the variant model,
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the set of walks is in one-to-one correspondence with the set Y @ of pairs (P, Q)
of standard Young tableaux of size N with the same shape, sh(P) = sh(Q). In
both cases, dy and d}, equal the number of boxes in the first row of the corresponding
standard Young tableaux. Uniform measure on ¥ ® (resp Y1) gives rise to Plancherel
measure (resp. Prob ™)) on Young diagrams of size N, and the proof of (62) then
follows from (46), (51), and the proof of (61) follows from (52).

In [Bai], Baik proved the analogue of (61), (62) for the so-called lock step vicious
walker introduced in [Fis]. The proof in [Bai] relies in part on an observation of
Guttmann et al. in [GOV], which preceded [For3], that the set of path configurations
for the lock step model is in one-to-one correspondence with the set of semi-standard
Young tableaux (see [Sag]).

Problem 6 (Aztec diamond). After scaling by n + 1, Jockush et al., [JPS], considered
the tiling problem with dominos of size # X # in the tilted square Tg = {(u, v) :
lu| + |v| < 1}. Asn — oo, they found that the inscribed circle Co = {(u, v) :
u> + % = %}, which they called the arctic circle, plays a remarkable role. In the
four regions of Ty outside Cyp, which they call the polar regions and label N, E, S,
W clockwise from the top, the typical tiling is frozen, with all the dominoes in N
and S horizontal, and all the dominos in E and W vertical. In the region inside Cy,
which they call the temperate zone, the tiling is random. (See, for example, http://
www.math.wisc.edu/~propp/tiling, where a tiling with n = 50 is displayed.)

But more is true. In [Johl], [Joh2], Johansson considered fluctuations of the
boundary of the temperate zone about the circle Cy. More precisely, for —1 < a < 1,
a # 0, let

s va

’

) <a+¢21_7’ a_¢21_7>, (o yo) = <a_¢21_7 a+¢21_7>

denote the two points of intersection of the line u + v = « with Cy = u?>+0v* = %}.
Then for fixed o, Johansson showed that the fluctuations of the boundary of the tem-
perate zone along the line u + v = & about the points (x., y}) and (x,, y;) were
described by the Tracy—Widom distribution F> (see [Joh2], equation (2.72), for a
precise statement). Johansson proceeds by expressing the fluctuations in terms of
the Krawtchouk ensemble (cf. Problem 4), which he then evaluates asymptotically as
n — 0o. Such an analysis is possible because the associated Krawtchouk polynomials
have an integral representation which can be evaluated asymptotically using the clas-
sical method of steepest descent. In [CLP], the authors considered tilings of hexagons
of size n by unit rhombi and proved an arctic circle theorem for the tilings as n — oo
as in the case of the Aztec diamond. In [Johl1], [Joh2], Johansson again expressed the
fluctuations of the arctic circle for the hexagons in terms of a random particle ensem-
ble, but now using the Hahn polynomials rather than the Krawtchouk polynomials.
The Hahn polynomials, however, do not have a convenient integral representation and
their asymptotics cannot be evaluated by classical means. This obstacle was overcome
by Baik et al., [BKMM], who extended the Riemann—Hilbert/steepest descent method
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in [DKMVZ1] and [DKMVZ2] to a general class of discrete orthogonal polynomials.
In this way they were able to compute the asymptotics of the Hahn polynomials and
verify F»-behavior for the fluctuations of the temperate zone, as in the case of the
Aztec diamond.

Problem 7 (Airline boarding). In [BBSSS] the authors show that by (), the board-
ing time for N passengers subject to the protocol (a)(b)(c) in Problem 7, behaves
statistically like the largest eigenvalue of a GUE matrix,

lim Prob
N—o0

(bN;/—,z/Q/N < z> = Fy(1). (63)

The proof of (63) in [BBSSS] relies on the description of the Robinson—Schensted
correspondence in terms of Viennot diagrams (see [Sag]). We illustrate the situation
with the permutation 7 : 341562 in S (cf. Problem 3 and (42)). We say that a
point (x’, y') lies in the shadow of a point (x, y) in the plane if x’ > x and y’ > y.
Plot 7 as a graph (1, 3), (2,4), ..., (6,2) in the first quadrant of R2. Consider all
the points in the graph which are not in the shadow of any other point: in our case
(1, 3) and (3, 1). The first shadow line L is the boundary of the combined shadows
of these two points (see Figure 3). To form the second shadow line L,, one removes
the points (1, 3), (3, 1) on L1, and repeats the procedure, etc. Eventually one obtains
kn () = k shadow lines L1, ..., Ly for some integer k. In our example k = 4, which
we note is precisely lg(), the length of the longest increasing subsequence for 7.
This is no accident: for any w € Sy, we always have ky () = Iy (r) (see [Sag]).

6 L,
5 Ly
4
3
2 2
1 L

Figure 3. Shadow lines for 7 : 341562 in Sg.
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The beautiful fact is that each shadow line describes a step in the boarding process.
Indeed, noting the y-values of the L;’s, we observe that

L, <«— 3and] are seated
L, <«— 4and?2 are seated
L3 <«— 5Sisseated

Ly <«— 6isseated

Thus by () = ky(w) = Iy(r) = gn(7), and (63) follows from (46). In the
language of physics, if we rotate the Viennot diagram for 7 counterclockwise by 45°,
we see that the shadow region of a point on the graph is simply the forward light cone
based at that point (speed of light = 1). In other words, for appropriate coordinates
a, b we are dealing with the Lorentzian metric ds> = dadb. In order to incorporate
more realistic features into their boarding model, such as the number of seats per row,
average amount of aisle length occupied by a passenger, etc., the authors in [BBSSS]
observe that it is enough simply to replace ds> = dadb by a more general Lorentzian
metric ds> = 4D?p(a, b)(dadb+ka(a, b)da?) for appropriate parameters/functions
D, p, k and « (see [BBSSS], equation (1)). Thus the basic phenomenon of blocking
in the airline boarding problem is modeled in the general case by the forward light
cone of some Lorentzian metric.

Problems 1 and 2 above, as opposed to 3—7, are purely deterministic and yet it
seems that they are well described by a random model, RMT. At first blush, this might
seem counterintuitive, but there is a long history of the description of deterministic
systems by random models. After all, the throw of a (fair) 6-sided die through the air
is completely described by Newton’s laws: Nevertheless, there is no doubt that the
right way to describe the outcome is probabilistic, with a one in six chance for each
side. With this example in mind, we may say that Wigner was looking for the right
stochastic model to describe the neutron scattering “die”.

Problems 1-7 above are just a few of the many examples now known of mathe-
matical/physical systems which exhibit random matrix type universal behavior. Other
systems, from many different areas, can be found for example in [Meh] and the re-
views [TraWid3], [For2], and [FerPra]. A particularly fruitful development has been
the discovery of connections between random matrix theory and stochastic growth
models in the KPZ class ([PraSpo], [FerPra]), and between random matrix theory and
equilibrium crystals with short range interactions ([CerKen], [FerSpo], [OkoRes],
[FerPraSpo]). In addition, for applications to principal component analysis in statis-
tics in situations where the number of variables is comparable to the sample size, see
[John] and [BBP] and the references therein. For a relatively recent review of the
extensive application of RMT to quantum transport, see [Bee].

Returning to Wigner’s introduction of random matrix theory into theoretical
physics, we note that GOE is of course a mathematical model far removed from
the laboratory of neutrons colliding with nuclei. Nevertheless, Wigner posited that
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these two worlds were related: With hindsight, we recognize Wigner’s insight as
heralding the emergence of a scientific commonality far across the borders of physics
and mathematics.

5. Comments and speculations

As is clear from the text, many different kinds of mathematics are needed to analyze
Problems 3-7. These include

¢ combinatorial identities,

* Riemann-Hilbert methods,

* Painlevé theory,

¢ theory of Riemann surfaces,

* representation theory,

* classical and Riemann—Hilbert steepest descent methods
and, most importantly,

* random matrix theory.

The relevant combinatorial identities are often obtained by analyzing random particle
systems conditioned not to intersect, as in Problem 4. The Riemann—Hilbert steepest
descent method has its origins in the theory of integrable systems, as in [DeiZho].
There is no space in this article to describe the implementation of any of the above
techniques in any detail. Instead, we refer the reader to [Dei2], which is addressed to
a general mathematical audience, for a description of the proof of (46) in particular,
using Gessel’s formula in combinatorics [Ges], together with the Riemann—Hilbert
steepest descent method. For Problem 2 the proofs are based on combinatorial facts
and random matrix theory, together with techniques from the theory of L-functions,
over Q and also (in [KatSar]) over finite fields.

Universality as described in this article poses a challenge to probability theory
per se. The central limit theorem (2) above has three components: a statistical compo-
nent (take independent, identically distributed random variables, centered and scaled),
an algebraic component (add the variables), and an analytic component (take the limit
in distribution as n — o0). The outcome of this procedure is then universal — the
Gaussian distribution. The challenge to probabilists is to describe an analogous purely
probabilistic procedure whose outcome is Fp, or F3, etc. The main difficulty is to
identify the algebraic component, call it operation X. Given X, if one takes i.i.d.’s,
suitably centered and scaled, performs operation X on them, and then takes the limit in
distribution, the outcome should be Fi, or F», etc. Interesting progress has been made
recently (see [BodMar] and [BaiSui]) on identifying X for F>. For a different ap-
proach to the results in [BodMar] and [BaiSui], see [Sui], where the author uses a very
interesting generalized version of the Lindeberg principle due to Chatterjee [Chal],
[Cha2].
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Our final comment/speculation is on the space D, say, of probability distributions.
A priori, D is just a set without any “topography”. But we know at least one interesting
point on D, the Gaussian distribution F,,. By the central limit theorem, F lies
in a “valley”, and nearby distributions are drawn towards it. What we seem to be
learning is that there are other interesting distributions, like F; or F, etc., which also
lie in “valleys” and draw nearby distributions in towards them. This suggests that
we equip D with some natural topological and Riemannian structure, and study the
properties of D as a manifold per se.
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Kihler manifolds and transcendental techniques
in algebraic geometry

Jean-Pierre Demailly

Abstract. Our goal is to survey some of the main advances which took place recently in the study
of the geometry of projective or compact Kihler manifolds: very efficient new transcendental
techniques, a better understanding of the geometric structure of cones of positive cohomology
classes and of the deformation theory of Kéhler manifolds, new results around the invariance of
plurigenera and in the minimal model program.
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Ampere equation, Lelong number, Chern connection, curvature, Bochner—Kodaira technique,
Kodaira embedding theorem, Kéhler cone, ample divisor, nef divisor, pseudo-effective cone,
Neron—Severi group, L? estimates, vanishing theorem, Ohsawa—Takegoshi extension theorem,
pluricanonical ring, invariance of plurigenera.

1. Introduction

Modern algebraic geometry is one the most intricate crossroads between various
branches of mathematics: commutative algebra, complex analysis, global analysis on
manifolds, partial differential equations, differential topology, symplectic geometry,
number theory.... This interplay has already been strongly emphasized by historical
precursors, including Hodge, Kodaira, Hirzebruch and Grauert. Of course, there have
been also fruitful efforts to establish purely algebraic foundations of the major results
of algebraic geometry, and many prominent mathematicians such as Grothendieck,
Deligne and Mumford stand out among the founders of this trend. The present con-
tribution stands closer to the above mentioned wider approach; its goal is to explain
some recent applications of local and global complex analytic methods to the study
of projective algebraic varieties.

A unifying theme is the concept of positivity: ample line bundles are characterized
by the positivity of their curvature in the complex geometric setting (Kodaira [35]).
Projective manifolds thus appear as a subclass of the class of compact Kidhler mani-
folds, and their cohomological properties can be derived from the study of harmonic
forms on Ké&hler manifolds (Hodge theory). In this vein, another central concept is
the concept of positive current, which was introduced by P. Lelong during the 50s.
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By carefully studying the singularities and the intersection theory of such currents,
we derive precise structure theorems for the Kéhler cone and for the cone of effective
divisors of arbitrary projective varieties ([5], [18]).

L? estimates for solutions of d equations are another crucial technique for proving
vanishing theorems for the cohomology of holomorphic vector bundles or sheaves.
A combination of the Bochner—Kodaira differential geometric estimate with PDE
techniques of Kohn, Hérmander and Andreotti—Vesentini led in the 60s to powerful
existence theorems for d-equations in hermitian vector bundles of positive curvature.
A more recent and equally decisive outcome is the L? extension theorem by Ohsawa
and Takegoshi [48] in 1987. Among applications, we have various forms of approx-
imation theorems (closed positive (1, 1)-currents can be approximated by algebraic
divisors, and their singularities can be approximated by algebraic singularities). In
the analytic setting, this turns out to be the key for the study of adjunction theory (gen-
eration properties of adjoint linear systems Ky + L, pluricanonical embeddings...).
As an illustration, we present a recent proof, adapted from work by Y. T. Siu [58],
[59], S. Takayama [62] and M. Pdun [52], of the deformation invariance of plurigenera
ho(X,, mK x,), for an arbitrary projective family (X,) of algebraic varieties.

2. Basic concepts and results of complex geometry

This section mostly contains only well-known definitions and results. However, we
want to fix the notation and describe in detail our starting point.

2.1. Forms, currents, Kihler metrics. Let X be a compact complex manifold and
n = dimg¢ X. In any local holomorphic coordinate system z = (z1, . .., 2,), a differ-
ential formu of type (p, g¢) canbe writtenasasumu(z) = Z|J|=p,\K|=q ujg () dzyn
dzk extended to all increasing multi-indices J, K of length p, ¢, with the usual no-
tation dzj = dzj; A --- A dzj,. We are especially interested in positive currents of
type (p, p)

2 _
T =i? Z Tik(2)dzy ANdzk.
[J|=IK|=p

Recall that a current is a differential form with distribution coefficients, and that a
current is said to be positive if the distribution ) A;Ax Tk is a positive real measure

for all complex numbers A; (which implies Tx; = T;k, hence T = T). The
coefficients 7k are then complex measures — and the diagonal ones T ; are positive
(real) measures.

A current is said to be closed if dT = 0 in the sense of distributions. Important
examples of closed positive (p, p)-currents are currents of integration over codimen-
sion p analytic cycles [A] = ) ¢;[A;] where the current [A;] is defined by duality
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as

([Aj],u) = / UjA;

Aj

forevery (n— p, n— p) testform u on X. Another important example of (1, 1)-current
is the Hessian form 7' = i3d¢ of a plurisubharmonic function on an open set 2 C X
(plurisubharmonic functions are upper semi-continuous functions satisfying the mean
value inequality on complex analytic disc; they are characterized by positivity of
iy 82<p/8zj 0z dzj N dzy). A Kdhler metric on X is a positive definite hermitian
(1, 1)-form

w(z) =i Z wjk(z)dzj ANdz  suchthatdw =0,

1<j.k<n

with smooth coefficients. The manifold X is said to be Kdhler if it possesses at
least one Kéhler metric w. It is clear that every complex analytic and locally closed
submanifold X C Pg is Kihler (the restriction of the Fubini—Study metric wrs =
# log(zo|® + |z11% + - - + |zn|?) to X is a Kihler metric). Especially projective
algebraic varieties are Kihler.

2.2. Cohomology of compact Kihler manifolds. To every d-closed complex val-
ued k-form or current « (resp. to every d-closed complex valued (p, g)-form or
current «) is associated its De Rham (resp. Dolbeault) cohomology class

{a} € HPT9(X,C) (resp. HP9(X, C)).

This definition hides a nontrivial result, namely the fact that all cohomology groups
involved (De Rham, Dolbeault, .. .) can be defined either in terms of smooth forms
or in terms of currents. In fact, if we consider the associated complexes of sheaves,
forms and currents both provide acyclic resolutions of the same sheaf (locally constant
functions, resp. holomorphic sections). One of the main results of Hodge theory,
historically obtained by W. V. D. Hodge through the theory of harmonic forms, is the
following fundamental

Theorem 2.1. Let (X, w) be a compact Kdhler manifold. Then there is a canonical
isomorphism
HYx,0)= @ H"(X.0),
p+q=k
where each group HP1(X, C) can be viewed as the space of (p, q)-forms o which
are harmonic with respect to w, i.e. Aya = 0.

Now observe thatevery analyticcycle A = ) 1;A; of codimension p with integral
coefficients defines a cohomology class

{[A]} € HPP(X,C) N H?P(X, Z)/{torsion} C HP*P (X, C) N H* (X, Q)
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where H?P (X, 7)) /{torsion} C H?P(X,Q) C H?P(X, C) denotes the image of inte-
gral classes in complex cohomology. When X is a projective algebraic manifold, this
observation leads to the following statement, known as the Hodge conjecture (which
was to become one of the famous seven Millenium problems of the Clay Mathematics
Institute).

Conjecture 2.2. Let X be a projective algebraic manifold. Then the space of “Hodge
classes” HP'P(X, C)N H?*P (X, Q) of type (p, p) is generated by classes of algebraic
cycles of codimension p with Q-coefficients.

At present not much is known to support the positive direction of the Hodge
conjecture, not even the case of abelian varieties (i.e. projective algebraic complex
tori X = C/A) — which is the reason why several experts believe that the conjecture
could eventually lead to a counterexample. There are however a number of cases
where the cohomology algebra can be explicitly computed in terms of the geometry,
and which do satisfy the conjecture: flag manifolds (Schubert cycles generate the
cohomology ring), moduli spaces of stable or parabolic bundles over a general curve
(I. Biswas and M. S. Narasimhan [2]).

In the Kihler case the conjecture is trivially wrong as shown by a general complex
torus possessing a line bundle with indefinite curvature. Moreover, by a recent result
of C. Voisin [66], even a considerably weakened form of the conjecture —adding Chern
classes of arbitrary coherent analytic sheaves to the pool of potential generators — is
false for non projective complex tori:

Theorem 2.3 (C. Voisin [66]). There exists a 4-dimensional complex torus X which
possesses a non trivial Hodge class of degree 4, such that every coherent analytic
sheaf ¥ on X satisfies co(F) = 0.

The idea is to show the existence of a 4-dimensional complex torus X = C*/A
which does not contain any analytic subset of positive dimension, and such that the
Hodge classes of degree 4 are perpendicular to "2 for a suitable choice of the Kihler
metric w. The lattice A is explicitly found via a number theoretic construction of Weil
based on the number field Q[i], also considered by S. Zucker [70]. The theorem of
existence of Hermitian Yang—Mills connections for stable bundles combined with
Liibke’s inequality then implies ¢ (¥ ) = 0 for every coherent sheaf ¥ on the torus.

2.3. Fundamental L existence theorems. Let X bea complex manifold and (E, h)
a hermitian holomorphic vector bundle of rank r over X. If Ejy >~ U x C" is a local
holomorphic trivialization, the hermitian product can be written as (1, v) = ‘uH (z)v
where H (z) is the hermitian matric of & and u, v € E;. It is well known that there
exists a unique “Chern connection” D = D0 4+ D01 such that D! = § and such
that D is compatible with the hermitian metric; in the given trivialization we have
D'y = 9u+T10 Ay where I'0 = H—19H, and its curvature operator Of j = D?
is the smooth section ofAl’lT; ®Hom(E, E) givenby Of j, = A(H '9H). IfE is
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of rank » = 1, then it is customary to write H(z) = e~%@ and the curvature tensor
then takes the simple expression O j = dd¢. In that case the first Chern class of E
is the cohomology class ¢ (E) = {%@E,h} e H'1(X, C), which is also an integral
class in H*(X, 7)).

In case (X, w) is a Kidhler manifold, the bundles A”9Ty ® E are equipped with
the hermitian metric induced by A”*9w ® h, and we have a Hilbert space of global L?
sections over X by integrating with respect to the Kéhler volume form dV,, = " /n!.
If A, B are differential operators acting on L? space of sections (in general, they
are just closed and densely defined operators), we denote by A* the formal adjoint
of A, and by [A, B] = AB — (—1)degA deg BB A the usual commutator bracket of
operators. The fundamental operator A, of Kdhler geometry is the adjoint of the
wedge multiplication operator u — w A u.

In this context we have the following fundamental existence theorems for 9-
equations, which is the culmination of several decades of work by Bochner [3], Koda-
ira [35], Kohn [37], Andreotti—Vesentini [1], Hormander [25], Skoda [60], Ohsawa—
Takegoshi [48] (and many others). The proofs always proceed through differential
geometric inequalities relating the Laplace—Beltrami operators with the curvature
(Bochner—Kodaira identities and inequalities). The most basic result is the L? exis-
tence theorem for solutions of d-equations.

Theorem 2.4 ([1], see also [10]). Let (X, w) be a Kihler manifold which is “com-
plete” in the sense that it possesses a geodesically complete Kiihler metric @. Let E be
a hermitian holomorphic vector bundle of rank r over X, and assume that the curva-
ture operator AZ”‘;Z’Q) = [iOF n, Aw] is positive definite everywhere on AP 1Ty @ E,
g > 1. Then for any form g € L*(X, AP Ty ® E) satisfying g = 0 and
Jx((ARS )7'g. 8)dVi, < +oo, there exists f € L*(X, AP17'T} ® E) such that
of =g and
[ ireav. < [ ags e gav.
X X

Itis thus of crucial importance to study conditions under which the operator A’E%’ ©

is positive definite. An easier case is when FE is a line bundle. Then we denote by

y1(z) < -+ < yu(2) the eigenvalues of the real (1, 1)-form i ®g ;(z) with respect to
the metric w(z) at each point. A straightforward calculation shows that

(At = > (Xw= D vkl

IJ1=p.|K|=q keK jebs
In particular, for (n, ¢)-forms the negative sum — ) jeCy vj disappears and we have
(AR )= 4yl (ARG ) wuw) < Gr+ 4y ul

provided the line bundle (E, k) has positive definite curvature. Therefore d-equations
can be solved for all L? (n, g)-forms with ¢ > 1, and this is the major reason



158 Jean-Pierre Demailly

why vanishing results for H? cohomology groups are usually obtained for sections
of the “adjoint line bundle” E = Kx ® E, where Ky = A"Ty = QF is the
“canonical bundle” of X, rather than for E itself. Especially, if X is compact (or
weakly pseudoconvex)andi®f ; > 0,then H4(X, Kx®FE) = Oforg > 1(Kodaira),
and more generally H”9(X, E) = 0 for p + ¢ > n + 1 (Kodaira—Nakano, take
w =i®F j, in which case y; = 1 forall jand } g vk — D jecs ¥j = P +4 — ).

As shown in [10], Theorem 2.4 still holds true in that case when 4 is a singular
hermitian metric, i.e. a metric whose weights ¢ are arbitrary locally integrable func-
tions, provided that the curvature is (E, k) is positive in the sense of currents (i.e., the
weights ¢ are strictly plurisubharmonic). This implies the well-known Nadel vanish-
ing theorem ([42], [12], [15]), a generalization of the Kawamata—Viehweg vanishing
theorem [28], [65].

Theorem 2.5 (Nadel). Let (X, w) be a compact (or weakly pseudoconvex) Kdhler
manifold, and (L, h) a singular hermitian line bundle such that ©, , > ew for some
e >0. Then HI(X,Kx @ L ® I(h)) = 0 for q > 1, where I(h) is the multiplier
ideal sheaf of h, namely the sheaf of germs of holomorphic functions f on X such
that | f|?e~? is locally integrable with respect to the local weights h = e™%.

It is well known that Theorems 2.4 and 2.5, more specifically its “singular hermi-
tian” version, imply almost all other fundamental vanishing or existence theorems of
algebraic geometry, as well as their analytic counterparts in the framework of Stein
manifolds (general solution of the Levi problem by Grauert), see e.g. Demailly [16]
for a recent account. In particular, one gets as a consequence the Kodaira embedding
theorem [35].

Theorem 2.6. Let X be a compact complex n-dimensional manifold. Then the fol-
lowing properties are equivalent.

(i) X can be embedded in some projective space Pg as a closed analytic submani-
fold (and such a submanifold is automatically algebraic by Chow’s theorem).

(1) X carries a hermitian holomorphic line bundle (L, h) with positive definite

smooth curvature formi®p, j, > 0.

(iii) X possesses a Hodge metric, i.e., a Kdhler metric w such that {w} € H (X, 7).
If property (ii) holds true, then for m > mg > 1 the multiple L®™ is very ample,
namely we have an embedding given by the linear system V. = H°(X, L®™) of
sections,

®rem: X — P(VY), z—> H,={ce€V; o) =0CV,
and L®" ~ @7 o O (1) is the pull-back of the canonical bundle on P (V™).

Another fundamental existence theorem is the L>-extension result by Ohsawa—
Takegoshi [48]. Many different versions and generalizations have been given in
recent years [43], [44], [45], [46], [47]. Here is another one, due to Manivel [40],
which is slightly less general but simpler to state.
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Theorem 2.7 (Ohsawa—Takegoshi [48], Manivel [40]). Let X be a compact or weakly
pseudoconvex n-dimensional complex manifold equipped with a Kihler metric w, let L
(resp. E) be a hermitian holomorphic line bundle (resp. a hermitian holomorphic
vector bundle of rank r over X), and s a global holomorphic section of E. Assume
that s is generically transverse to the zero section, and let

Y={xeX; s(x):O,Ards(x);éO}, p=dimY =n—r.

Moreover, assume that the (1, 1)-formi® (L) +r i 99 log |s |2 is semipositive and that
there is a continuous function o > 1 such that the following two inequalities hold
everywhere on X:

_1{i®(E)s, s}

(i) iO(L) +riddlogls|* > o R
N

(i) [s] = e™.

Then for every holomorphic section f over Y of the adjoint line bundle L=Kx®L
(restrictedto Y), such that fY |f|2|A’(ds)|_2d V., < +o00, there exists a holomorphic

extension F of f over X, with values in L, such that

|F|? / | fI?
— - dV <C ——dVy,,
/X|s|2r<—log|s|>2 Yo =2 L ar@spt e

where C, is a numerical constant depending only on r.

The proof actually shows that the extension theorem holds true as well for d-closed
(0, g)-forms with values in L, of which the stated theorem is the special case g = 0.

There are several other important L? existence theorems. One of them is Skoda’s
criterion for the surjectivity of holomorphic bundle morphisms — more concretely, a
Bezout type division theorem for holomorphic function. It can be derived either from
Theorem 2.4 on d-equations through sharp curvature calculations (this is Skoda’s
original approach in [60]), or as a consequence of the above extension theorem 2.7
(see Ohsawa [46]).

2.4. Positive cones. We now introduce some further basic objects of projective or
Kihler geometry, namely cones of positive cohomology classes.

Definition 2.8. Let X be a compact Kihler manifold and H'-! (X, R) the space of
real (1, 1) cohomology classes.

(i) The Kdihler cone is the set X c H"“'(X,R) of cohomology classes {w} of
Kihler forms. This is clearly an open convex cone.

(ii) The pseudo-effective cone is the set & C H"!(X, R) of cohomology classes
{T} of closed positive currents of type (1, 1). This is a closed convex cone
(as follows from the weak compactness property of bounded sets of positive
measures or currents).



160 Jean-Pierre Demailly

It follows from this definition that X C &. In general the inclusion is strict.
To see this, it is enough to observe that a Kdhler class {«} satisfies fY a? > 0 for
every p-dimensional analytic set. On the other hand, if X is the surface obtained by
blowing-up P2 in one point, then the exceptional divisor E ~ P! has a cohomology
class {«} such that onz = E? = —1, hence {«} ¢ X, although {a} = {[E]} € §.

In case X is projective it is interesting to consider also the algebraic analogues
of our “transcendental cones” K and &, which consist of suitable integral divisor
classes. Since the cohomology classes of such divisors live in H*(X, Z), we are led
to introduce the Neron—Severi lattice and the associated Neron—Severi space:

NS(X) := H"'(X,R) N (H*(X, Z)/{torsion}),
NSr(X) := NS(X) ®z R.

All classes of real divisors D = ZCij, ¢j € R, lie by definition in NSr(X).
Notice that the integral lattice H 2(X, 7)/{torsion} need not hit at all the subspace
H"!(X,R) Cc H%(X,R) in the Hodge decomposition, hence in general the Picard
number, defined as

p(X) = rankz NS(X) = dimg NSr(X),

satisfies p(X) < h'! = dimg H1 (X, R), but the equality can be strict (actually,
it is well known that a generic complex torus X = C"/A satisfies p(X) = 0 and
k! = n?). In order to deal with the case of algebraic varieties we introduce

HKNns = K NNSr(X), &ns = & NNSr(X).

A very important fact is that the “Neron—Severi part” of any of the open or closed

transcendental cones X, &, X, €° is algebraic, i.e. can be characterized in simple
algebraic terms.

Theorem 2.9. Let X be a projective manifold. Then

(i) &ns is the closure of the cone generated by classes of effective divisors, i.e.
divisors D = )" ¢;jDj, ¢cj € Ry.

(i) JKNs is the open cone generated by classes of ample (or very ample) divisors A
(recallthat a divisor A is said to be very ample if the linear system H*(X, O (A))
provides an embedding of X in projective space).

(iif) The interior &g is the cone generated by classes of big divisors, namely divisors
D such that h°(X, O (kD)) > c k%™ X for k large.

(iv) The closed cone KXns consists of the closure of the cone generated by nef
divisors D (or nef line bundles L), namely effective integral divisors D such
that D - C > 0 for every curve C.
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By extension, we will say that X is the cone of nef (1, 1)-cohomology classes
(even though they are not necessarily integral).

Sketch of proof (see also [13] for more details). If we denote by Ky the open
cone generated by ample divisors, resp. by &, the closure of the cone generated
by effective divisors, we have K C Kns, €ag C éns, and clearly the interesting
part lies in the converse inclusions. The inclusion Kns C Kag is equivalent to the
Kodaira embedding theorem: if arational class {«} is in JC, then some multiple of {or}
is the first Chern class of a hermitian line bundle L whose curvature form is Kéhler.
Therefore L is ample and {a} € Kqg; property (ii) follows.

Similarly, if we take a rational class {a} € Eyg, then we still have {@ — ew} € Eyg
by subtracting a small multiple ew of a Kéhler class, hence « — ew = T > 0 for
some positive current 7. Therefore some multiple {myc} is the first Chern class of a
hermitian line bundle (L, &) with curvature current 7 :

OLp = —zLiaélogh — mo(T + £w) > mosw.
T

Theorem 2.4 on L? estimates for d-equations then shows that large multiples L®*
admit a large number of sections, hence L®* can be represented by a big divisor.
This implies (iii) and also that &g C &ag. Therefore Ens C Eag by passing to the
closure; (i) follows. The statement (iv) about nef divisors follows e.g. from Klaiman
[34] and Hartshorne [24], since every nef divisor is a limit of a sequence of ample
rational divisors. O

As a natural extrapolation of the algebraic situation, we say that J is the cone of
nef (1, 1)-cohomology classes (even though these classes are not necessarily integral).
Property 2.9 (i) also explains the terminology used for the pseudo-effective cone.

2.5. Approximation of currents and Zariski decomposition. Let X be compact
Kihler manifold and let @ € &° be in the interior of the pseudo-effective cone. In
analogy with the algebraic context, such a class « is called “big”, and it can then be
represented by a Kdhler current T, i.e. a closed positive (1, 1)-current T such that
T > Sw for some smooth hermitian metric w and a constant § < 1. Notice that
the latter definition of a Kihler current makes sense even if X is an arbitrary (non
necessarily Kéhler) compact complex manifold.

Theorem 2.10 (Demailly [14], Boucksom [4], 3.1.24). If T is a Kdhler current on
a compact complex manifold X, then one can write T = lim T, for a sequence of
Kdhler currents T,y in the same cohomology class as T, which have logarithmic poles
and coefficients in %Z. This means that there are modifications [y : X, — X such
that

,Uv:nTm = [En]+ Bm

where E, is an effective Q-divisor on X, with coefficients in H%Z (Ey, is the “fixed
part” and By, a closed semi-positive form, the “movable part”).
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Proof. We just recall the main idea and refer to [14] for details. Locally we can write
T = i99¢ for some strictly plurisubharmonic potential ¢ on X. The approximating
potentials ¢, of ¢ are defined as

1
on(@) = - log; 8o ()|

where (g¢.») is a Hilbert basis of the space # (2, mg) of holomorphic functions
which are L? with respect to the weight e=2""¢. The Ohsawa-Takegoshi L? extension
theorem 2.7 (applied to extension from a single isolated point) implies that there are
enough such holomorphic functions, and thus ¢,, > ¢ — C/m. On the other hand
¢ = limy,— + o0 ¢ by a Bergman kernel trick and by the mean value inequality.

The Hilbert basis (g¢, ) is also a family of local generators of the globally defined
multiplier ideal sheaf T(mT) = I (m¢). The modification p,, : X,;, — X is obtained
by blowing-up this ideal sheaf, so that

I (mT) = O(—mE,y)

for some effective Q-divisor E,, with normal crossings on )N(m Now we set T;,, =
i00@y and B, = ), T,y — [Ep]. Then B, = i00v,, where

1
2m

Y = logz lge.m © [Lm/h|2 locally on im
l

and £ is a generator of O (—mE,,), and we see that 8, is a smooth semi-positive form
on X,,. The construction can be made global by using a gluing technique, e.g. via
partitions of unity. O

Remark 2.11. The more familiar algebraic analogue would be to take o = c1(L)
with a big line bundle L and to blow-up the base locus of [mL|, m > 1, to get a
Q-divisor decomposition

wn L ~ Ey + Dy, E, effective, D,, free.

Such a blow-up is usually referred to as a “log resolution” of the linear system |mL|,
and we say that E,, + D,, is an approximate Zariski decomposition of L. We will
also use this terminology for Kéhler currents with logarithmic poles.

In the above construction B, is not just semi-positive, it is even positive definite
on tangent vectors which are not mapped to 0 by the differential d i, , in particular 8,
is positive definite outside the exceptional divisor. However, if E is the exceptional
divisor of the blow-up along a smooth centre ¥ C X, then @ (—E) is relatively ample
with respect to the blow-up map 7, hence the negative current —[ £] is cohomologous
to a smooth form 6 which is positive along the fibers of w. As a consequence,
we can slightly perturb the decomposition of & by increasing multiplicities in the
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NSg (X) /\

/1*210‘ = [Em] + ﬂm

components of E,, and adding recursively to 8,, small multiples ¢ 0 in such a way
that Em + Y &gk becomes a Kéhler metric on X m- This in turn implies that X m 18
Kéhler and we thus get the following characterization of the Fujiki class € of compact
complex manifolds which are bimeromorphic to Kéhler manifolds:

Corollary 2.12. A compact complex manifold is bimeromorphic to a Kéihler manifold
(or equivalently, dominated by a Kdihler manifold) if and only if it carries a Kdihler
current T.

3. Numerical characterization of the Kiihler cone

We describe here the main results obtained in Demailly—Paun [18]. The upshot is that
the Kéhler cone depends only on the intersection product of the cohomology ring,
the Hodge structure and the homology classes of analytic cycles. More precisely, we
have:

Theorem 3.1. Let X be a compact Kdhler manifold. Let P be the set of real (1, 1)
cohomology classes {«} which are numerically positive on analytic cycles, i.e. such
that fY af > 0forevery irreducible analytic set Y in X, p = dim Y. Then the Kdhler
cone K of X is one of the connected components of P.

Corollary 3.2. If X is projective algebraic, then KX = P.

These results (which are new even in the projective case) can be seen as a gen-
eralization of the well-known Nakai—Moishezon criterion. Recall that the Nakai—
Moishezon criterion provides a necessary and sufficient criterion for a line bundle to
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be ample: a line bundle L — X on a projective algebraic manifold X is ample if and
only if

Lp-Y:/cl(L)p>0,
Y

for every algebraic subset Y C X, p =dimY.

It turns out that the numerical conditions |, y @ > 0 also characterize arbitrary
transcendental Kihler classes when X is projective: this is precisely the meaning of
Corollary 3.2.

Example 3.3. The following example shows that the cone 4 need not be connected
(and that the components of J# need not be convex, either). Consider for instance a
complex torus X = C"/A. Itis well-known that a generic torus X does not possess any
analytic subset except finite subsets and X itself. In that case the numerical positivity
is expressed by the single condition [, " > 0. However, on a torus, (1, 1)-classes
are in one-to-one correspondence with constant hermitian forms & on C". Thus, for X
generic, & is the set of hermitian forms on C" such that det(«) > 0, and Theorem 3.1
just expresses the elementary result of linear algebra saying that the set X of positive
definite forms is one of the connected components of the open set J» = {det(e) > 0}
of hermitian forms of positive determinant (the other components, of course, are the
sets of forms of signature (p, q), p+¢g = n, g even; they are not convex when p > 0
and g > 0).

Sketch of proof of Theorem 3.1 and Corollary 3.2. As is well known, the singularities
of a closed positive current 7' can be measured by its Lelong numbers

o(T. x) = liminf — 2
z—x log|z — x|

where T = 7%8590 near x. A fundamental theorem of Siu [56] states that the Lelong
sublevel sets E.(T) := {x € X; v(T, x) > c} are analytic sets for every ¢ > 0O (this
fact can nowadays be derived in a rather straightforward manner from the approxi-
mation theorem 2.10). The crucial steps of the proof of Theorem 3.1 are contained in
the following statements.

Proposition 3.4 (Pdun [49], [50]). Let X be a compact complex manifold (or more
generally a compact complex space). Then

(i) The cohomology class of a closed positive (1, 1)-current {T'} is nef if and only
if the restriction (T'},z is nef for every irreducible component Z in any of the
Lelong sublevel sets E.(T).

(i) The cohomology class of a Kdhler current {T} is a Kdhler class (i.e. the class
of a smooth Kdhler form) if and only if the restriction {T}z is a Kdihler class
for every irreducible component Z in any of the Lelong sublevel sets E.(T).
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The proof of Proposition 3.4 is not extremely hard if we take for granted the fact
that Kidhler currents can be approximated by Kéhler currents with logarithmic poles,
a fact which was proved in Demailly [14] (see also Theorem 2.10 below). The main
point then consists in an induction on dimension and a standard gluing procedure: if
T =0+ %85(/) where ¢ is smooth on X \ Z and has —oo poles along Z, then we
can remove the poles of ¢ by replacing ¢ with max (¢, ¥ — C), provided i is smooth
and defined near Z and C is a large constant. O

The next (and more substantial step) consists of the following result which is
reminiscent of the Grauert—Riemenschneider conjecture (Siu [57], Demailly [11]).

Theorem 3.5 (Demailly—Paun [18]). Let X be a compact Kihler manifold and let {«}
be a nef class (i.e. {a} € X). Assume that fx o' > 0. Then {a} contains a Kiihler
current T, in other words {a} € §°.

Proof. The basic argument is to prove that for every irreducible analytic set Y C X of
codimension p, the class {«}” contains a closed positive (p, p)-current ® such that
® > §[Y] for some § > 0. We check this by observing that & + cw is a Kéhler class,
hence by the Calabi—Yau theorem Yau [69] the Monge—Ampere equation

(a +8w+188¢8 = fe

can be solved with an arbitrary right-hand side f; > 0 such that

/fs=Ce=/((¥+8w)".
X X

However, by our assumption that f x @ > 0, the constant C; is bounded away from 0.
We use this fact in order to concentrate a fixed amount of volume of the volume form
fe inan e-tubular neighborhood of Y. We then show that the sequence of (p, p)-forms
(a+ew+idd¢, )P converges weakly to the desired current © (this part relies heavily
on the theory of currents). The second and final part uses a “diagonal trick”: apply
the result just proved to

X=XxX, Y=dagonalCX, &=pria+pra

It is then clear that & is nef on X and that f S@)* > 0. It follows by the above
that the class {@}" contains a Kihler current ® such that ® > 8[Y ] for some § > 0.
Therefore the push-forward

T := (pr)«(® A prj w)

is numerically equivalent to a multiple of « and dominates §w, and we see that 7" is a
Kihler current. O

End of proof of Theorem 3.1. Clearly the open cone X is contained in &, hence in
order to show that X is one of the connected components of &, we need only show
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that X is closed in 2, i.e. that X NP C K. Pick aclass {&} € K N . In particular
{a} is nef and satisfies fx a" > 0. By Theorem 3.5 we conclude that {o} contains a
Kihler current T. However, an induction on dimension using the assumption f y of
for all analytic subsets Y (we also use resolution of singularities for Y at this step)
shows that the restriction {a}y is the class of a Kihler current on Y. We conclude
that {«r} is a Kéhler class by 3.4 (ii), therefore {«} € K, as desired. O

The projective case 3.2 is a consequence of the following variant of Theorem 3.1.

Corollary 3.6. Let X be a compact Kihler manifold. A (1, 1) cohomology class
{a} on X is Kdhler if and only if there exists a Kdhler metric w on X such that
fY o AwP~ > 0 forall irreducible analytic sets Y andallk = 1,2, ..., p =dim Y.

Proof. The assumption clearly implies that

/(a+tw)”>0
Y

for all ¥ € R4, hence the half-line ¢ + (R )w is entirely contained in the cone &
of numerically positive classes. Since a + fow is Kéhler for 79 large, we conclude
that the half-line in entirely contained in the connected component X', and therefore
ae XK. O

In the projective case we can take w = c¢1(H) for a given very ample divisor H,
and the condition [, of A w?~* > 0 is equivalent to fYﬂHlﬂ---ﬂHp_k ok > 0 for a
suitable complete intersection ¥ N Hy N --- N H, 4, H; € |H|. This shows that
algebraic cycles are sufficient to test the Kihler property, and the special case 3.2
follows. On the other hand, we can pass to the limit in 3.6 by replacing « by @ + cw,
and in this way we get also a characterization of nef classes.

Corollary 3.7. Let X be a compact Kihler manifold. A (1, 1) cohomology class {a}
on X is nefifand only if there exists a Kdhler metric w on X such that fY akAwPF >0
for all irreducible analytic sets Y and allk = 1,2, ..., p =dimY.

By a formal convexity argument one can derive from 3.6 or 3.7 the following
interesting consequence about the dual of the cone K.

Theorem 3.8. Let X be a compact Kihler manifold. A (1, 1) cohomology class {a}
on X is nef if and only for every irreducible analytic set Y in X, p = dim X and
every Kdhler metric w on X we have fY a A wP~l > 0. In other words, the dual of

the nef cone X is the closed convex cone in Hﬂg_]’"_l (X) generated by cohomology
classes of currents of the form [Y]1 A wP~V in H*~1"=1(X, R), where Y runs over the
collection of irreducible analytic subsets of X and {w} over the set of Kdihler classes
of X. O
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4. Deformations of compact Kihler manifolds

If S is an analytic space, recall that a deformation of compact complex manifolds is a
proper holomorphic map 7 : X0 — S such that the fibers are smooth and such that X
is locally the product of the base by a neighborhood of any point in any fiber (with
being the first projection of such a local decomposition). For any ¢ € S, we denote
by X; = 7~ 1(t) the fiber over ¢.

Since compact Kéhler manifolds share many common features with projective
algebraic manifolds — e.g. good Hodge theoretic properties — rather strong properties
are expected for their deformation theory. Kodaira showed in the 60s that every
Kihler surface X is a limit by deformation of algebraic surfaces, namely there exists
a deformation X — S such that X = X, for some 1y, and X, is projective algebraic
for a sequence t,, — fy. It was therefore a natural — and long-standing — question
whether a similar property holds in higher dimensions. C. Voisin showed in a series
of recent papers that the general answer is negative, and in fact there exist rigid non
projective compact Kihler manifolds.

Theorem 4.1 (recent results by C. Voisin). (i) In any dimension > 4, there exist
compact Kdhler manifolds which do not have the homotopy type (or even the homology
ring) of a complex projective manifold ([67]).

(i1) In any dimension > 8, there exist compact Kdihler manifolds X such that no
compact bimeromorphic model X' of X has the homotopy type of a complex projective
manifold ([68]).

The example in (i) is obtained by selecting a complex torus 7" of dimension > 2
possessing a linear endomorphism ¢ which has non real eigenvalues (pairwise distinct
and non conjugate). Then X is obtained by blowing-up the finite set of pairwise inter-
section points of the four subsets 7" x {0}, {0} x T', A = diagonal, G, = graph of ¢,
and then their strict transforms in the first stage blow-up. By using rather elementary
considerations of Hodge theory, this provides an example of a rigid Kihler variety
which does not have the homotopy type of a projective variety. The example in (ii) is
obtained via the Poincaré bundle on 7' x T; we refer to [67] and [68] for details. O

Another fundamental fact proved by Kodaira and Spencer [36] is the observation
that the Kihler property is open with respect to deformation: if X;, is Kéhler for
some fp € S, then the nearby fibers X, (for # in a metric topology neighborhood of 7y
in §) is also Kéhler. The proof consists in showing that the desired Kéhler metrics are
solutions of a suitably chosen 4-th order elliptic differential operator for which there
is no jump of the kernel at #y. However, the numerous known examples leave hopes
for a much stronger openness property.

Conjecture 4.2. Let XX — S be a deformation with irreducible base space S such
that some fiber X, is Kahler. Then there should exist a finite (or possibly countable)
union of analytic strata S, C S, S, # S, such that
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(i) X, is Kihler forz € S~ JS,,
(ii) X, is bimeromorphic to a Kihler manifold for 7 € | J S,.

A crucial step in analyzing the conjecture is to describe the behaviour of the Kidhler
cone of X; as t approaches the “bad strata”. This question is now fully understood
thanks to the following result which is a direct corollary of our characterization of the
Kihler cone (Theorem 3.1). As a consequence, a “collapse” of the Kéhler cone could
only come from a degeneration of the Hodge decomposition, the behaviour of which
is complex analytic thanks to the Frolicher spectral sequence.

Theorem 4.3 (Demailly—Pdun [18]). Let m: X — S be a deformation of compact
Kdhler manifolds over an irreducible base S. Then there exists a countable union
S" = U Sy of analytic subsets S, C S, such that the Kdihler cones X; C H“(X,,C)
of the fibers X; = n~'(t) are invariant over S~ S’ under parallel transport with
respect to the (1, 1)-projection V! of the Gauss—Manin connection V in the decom-
position of
V20 0
V= x VLI *
0 x V02

on the Hodge bundle H> = H>° @ H"' @ HO2.

Sketch of proof. The result is local on the base, hence we may assume that S is con-
tractible. Then the family is differentiably trivial, the Hodge bundle t — H 2 (X;, 0
is the trivial bundle and ¢t —> H?(X,, Z) is a trivial lattice. We use the existence of
a relative cycle space C?(X/S) C CP(X) which consists of all cycles contained in
the fibres of w: X — S. Itis equipped with a canonical holomorphic projection

T, CP(X/S) — S.

We then define the S,’s to be the images in S of those connected components of
C?(X/S) which do not project onto S. By the fact that the projection is proper
on each component, we infer that S, is an analytic subset of S. The definition of
the S),’s implies that the cohomology classes induced by the analytic cycles {[Z]},
Z C X, remain exactly the same for all 7 € S~ §’. This result implies in its turn that
the conditions defining the numerically positive cones #; remain the same, except
for the fact that the spaces H'!(X,,R) ¢ H?(X,,R) vary along with the Hodge
decomposition. At this point, a standard calculation implies that the #; are invariant
by parallel transport under V!'"!. Moreover, the connected component K; C %
cannot jump from one component to the other thanks to the already mentioned results
by Kodaira—Spencer [36]. This concludes the proof. O

Theorem 4.3 was essentially already known in the cases of complex surfaces (i.e. in
dimension 2), thanks to the work of N. Buchdahl [6], [7] and A. Lamari [38], [39].

Shortly after the original [18] manuscript appeared in April 2001, Daniel Huy-
brechts [27] informed us that Theorem 3.1 can be used to calculate the Kihler cone of
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a very general hyperkihler manifold: the Kihler cone is then equal to a suitable con-
nected component of the positive cone defined by the Beauville-Bogomolov quadratic
form. In the case of an arbitrary hyperkihler manifold, S. Boucksom [Bou02] later
showed that a (1, 1) class {«} is Kdhler if and only if it lies in the positive part of the
Beauville-Bogomolov quadratic cone and moreover |, ¢ @ > O for all rational curves
C C X (see also Huybrechts [26]).

5. Positive cones in H"~1""~1(X) and Serre duality

5.1. Basic definitions. Inaway which will be shown to be dual to the case of divisors
and positive (1, 1)-currents, we consider in Hﬂg_l’"_l(X ) the cone N generated by
classes of positive currents T of type (n — 1, n — 1) (i.e., of bidimension (1, 1)). In
the projective case we also consider the intersection of A with the space Nj(X)
generated by integral (n — 1, n — 1)-classes (by the hard Lefschetz theorem, N1 (X)
is just the dual of N Sg(X)).

Definition 5.1. Let X be a compact Kahler manifold.

(i) We define N to be the (closed) convex cone in H{é—l’"_l(X ) generated by
classes of positive currents 7 of type (n — 1, n — 1) (i.e., of bidimension (1, 1)).

(i1)) We define the cone M C H{é—l’"_l (X) of “movable classes” to be the closure
of the convex cone generated by classes of currents of the form

/L*(CNUI ZANRRIVAN 5n—l)

where : X — X isan arbitrary modification (one could just restrict oneself
to compositions of blow-ups with smooth centers), and the @; are Kéhler forms
on X. Clearly M C N.

(iii) Correspondingly, we introduce the intersections
Ms =N NNi(X), Mns=MNNi(X)
in the space generated by integral bidimension (1, 1)-classes

Ni(X) := (HE" N (X) 0 H?"72(X, Z)/{torsion}) ®z R.

(iv) If X is projective we define NE(X) to be the convex cone generated by all
effective curves. Clearly NE(X) C Mns.
(v) If X is projective we say that C is a “strongly movable” curve if

C:M*(Zl m"'mAVn—l)

for suitable very ample divisors A j on X, where u: X — X is a modifica-
tion. We let SME(X) be the convex cone generated by all strongly movable
(effective) curves. Clearly SME(X) C MNs.
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(vi) We say that C is a movable curve if C = Cy, is a member of an analytic family
(C)tes such that |, g C; = X and, as such, is a reduced irreducible 1-cycle.
We let ME(X) be the convex cone generated by all movable (effective) curves.

The upshot of this definition lies in the following easy observation.

Proposition 5.2. Let X be a compact Kihler manifold. Consider the Poincaré duality
pairing

HY ' (X, R) x HI7V" N (X)) — R, (a,ﬂ)r—>/a/\,3.
X

Then the duality pairing takes nonnegative values
(i) for all pairs (o, B) € K x N,
(1) for all pairs (a, B) € & x M,

(iii) for all pairs (a, B) where « € & and f = [C;] € ME(X) is the class of a
movable curve.

Proof. (i) is obvious. In order to prove (ii), we may assume that 8 = Ue(@L Ao A
@y,—1) for some modification u: X — X, where o = {T'} is the class of a positive
(1, 1)-current on X and Zf)j are Kéhler forms on X. Then

/a/\ﬂ:/ T/\;L*(al/\---/\an_l):/,u*T/\&l/\---/\cT)n_l20.
X X X

Here we have used the fact that a closed positive (1, 1)-current 7" always has a pull-
back p*T, which follows from the fact that if T = i9d¢ locally for some plurisub-
harmonic function in X, we can set u*7 = i85((p o). For (iii) we suppose o = {T'}
and B = {[C,]}. Then we take an open covering (U;) on X such that T = i85<pj with
suitable plurisubharmonic functions ¢; on U;. If we select a smooth partition of unity
> 0; = 1 subordinate to (U;), we then get

/Ol/\ﬂ=/ Tct=Z/ jS85<pj|c,zo.
X G 7 Jany;

For this to make sense, it should be noticed that 7|c, is a well defined closed positive
(1, 1)-current (i.e. measure) on C; for almost every ¢ € S, in the sense of Lebesgue
measure. This is true only because (C;) covers X, thus ¢;c, is not identically —oo for
almost every ¢ € S. The equality in the last formula is then shown by a regularization
argument for 7', writing 7 = lim T} with Ty = & + 1991 and a decreasing sequence
of smooth almost plurisubharmonic potentials 1% | 1 such that the Levi forms have
a uniform lower bound {99y > —Cw (such a sequence exists by Demailly [14]).
Then, writing o« = iagvj for some smooth potential v; on U;, we have T = i8<’_9<pj on
U; with ¢; = v; + v, and this is the decreasing limit of the smooth approximations

@j.k = vj + Y onU;. Hence Ty c, — Tjc, for the weak topology of measures on C;.
O
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If C is a convex cone in a finite dimensional vector space E, we denote by CY
the dual cone, i.e. the set of linear forms u € E* which take nonnegative values
on all elements of C. By the Hahn—Banach theorem, we always have C¥¥ = C.
Proposition 5.2 leads to the natural question whether the cones (X, N) and (&, M)
are dual under Poincaré duality, according to the following schematic picture.

duality

et

NSg(X) HY(X,R) HE N x) Ni(X)

It is indeed well-known that the cone Jns of nef divisors is dual to the cone
Mns of effective curves if X is projective. The transcendental version X = N also
follows from our Theorem 3.8.

Theorem 5.3 (Demailly—Piun). If X is Kcihler, then the cones X C H" (X, R) and
N C H['é*l’"fl(X ) are dual by Poincaré duality, and N is the closed convex cone
generated by classes [Y] A wP~! where Y C X ranges over p-dimensional analytic
subsets, p = 1,2, ..., n, and w ranges over Kdhler forms.

Proof. Indeed, Proposition 5.2 shows that the dual cone X contains & which itself
contains the cone N’ of all classes of the form {[Y] A @w”~!}. The main result of
Demailly—Pdun [18] conversely shows that the dual of (W)Y is equal to X, so we
must have o

KV =N =N. O

The other duality statement & = M " will be investigated in the next sections.
5.2. Concept of volume and movable intersections. We start with the very impor-
tant concept of volume.

Definition 5.4. We define the volume, or movable self-intersection of a big class
a € &°tobe
Vol(a) = sup/N,B” >0
X

T ex



172 Jean-Pierre Demailly

where the supremum is taken over all Kéhler currents 7' € o with logarithmic poles,
and u*T = [E] + B with respect to some modification p: X — X.

By Fujita [21] and Demailly-Ein-Lazarsfeld [17], if L is a big line bundle, we
have
n

|
Vol(c (L)) = lim Dy = lim —h’(X,mL),

m——400 m

and in these terms we get the following statement.

Proposition 5.5. Let L be a big line bundle on the projective manifold X. Let ¢ > 0.
Then there exists a modification p: X, — X and a decomposition u*(L) = E + B
with E an effective Q-divisor and 8 a big and nef Q-divisor such that

Vol(L) — e < Vol(B) < Vol(L).

Itis very useful to observe that the supremum in Definition 5.4 is actually achieved
by a collection of currents whose singularities satisfy a filtering property. Namely, if
T\ =a+iddp; and Tr = o +i9d¢s are two Kihler currents with logarithmic poles
in the class of «, then

T=a+iddp, ¢=max(pr,¢2) (5.2)

is again a Kahler current with weaker singularities than 77 and 75. One could define
as well

- 1
T=o+iddy, ¢=o— log(e*™#1 + 292, (5.2)
m

where m = lecm(m, my) is the lowest common multiple of the denominators occur-
ring in 77, T>. Now, take a simultaneous log-resolution t,, : X m — X for which the
singularities of 77 and 75 are resolved as Q-divisors £ and E,. Then clearly the as-
sociated divisor in the decomposition uy, T = [E]+ B is given by E = min(E}, E»).

Theorem 5.6 (Boucksom [4]). Let X be a compact Kihler manifold. We denote here
by Hi’(f (X) the cone of cohomology classes of type (k, k) which have non-negative
intersection with all closed semi-positive smooth forms of bidegree (n — k,n — k).

(i) Foreachk =1, ..., n, there exists a canonical “movable intersection product”
k,k
Ex--x&—> Hy(X), (ar,....00) > (o1 a2 og—1 - )
such that Vol(a) = («"*) whenever a is a big class.

(i) The product is increasing, homogeneous of degree 1 and superadditive in each
argument, i.e.

It coincides with the ordinary intersection product when the o; € X are nef
classes.
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(iii) The movable intersection product satisfies the Teissier—Hovanskii inequalities

(1 a2 an) = (@D ()™ (with (o) = Vol(@))).

(iv) For k = 1, the above “product” reduces to a (non linear) projection operator
& —> &, oa-— ()

onto a certain convex subcone €| of & such that K C & C &. Moreover, there
is a “divisorial Zariski decomposition”

a={N@}+ ()

where N (@) is a uniquely defined effective divisor which is called the “negative
divisorial part” of a. The map o — N («) is homogeneous and subadditive,
and N(a) = 0 ifand only if a € 8.

(v) The components of N (a) always consist of divisors whose cohomology classes
are linearly independent, thus N (o) has at most p = ranky NS(X) components.

Proof. We refer to S. Boucksom’s thesis [4] for details. Boucksom’s treatment also
covers the case of compact non Kéhler manifolds, so it is fairly general. We only give
a very rough construction of the movable intersection product.

First assume that all classes «; are big, i.e. o € &°. We select Kihler currents
Tj n € a; with logarithmic poles and their approximate Zariski decompositions as in
Theorem 2.10. We can then find a simultaneous log-resolution p,, : X m — X such
that

IL*Tj,m = [Ej,m] + Bjm.
We consider the direct image current (i, «(B1,m A - - ABk.m) (Which is a closed positive
current of bidegree (k, k) on X). It turns out by rather elementary monotonicity
arguments based on the filtering property 5.2 that one can extract a weakly convergent
limit
(ar-az---og) = Hm 2 {(m)(Brm A Bom A+ A Brm)}
m——+00

and that the corresponding cohomology class in H**(X) is uniquely defined. Now,
the intersection product can be extended to the full closed cone & by monotonicity
again, namely by setting

(@ -az- o) =1im | (a1 +dw) - (a2 + w) - - - (ak + dw))
510

for arbitrary classes a; € &. O

Definition 5.7. For aclass o € H"!(X, R) we define the numerical dimension v(«)
to be v(a) = —oo if « is not pseudo-effective, and

v(a) =max{p e N; («?) #£0}, v(@)e{0,1,...,n}

if o is pseudo-effective.



174 Jean-Pierre Demailly

By the results of Demailly—Peternell [18], a class is big (« € &°) if and only if
v(a) = n. Classes of numerical dimension 0 can be described much more precisely,
again following Boucksom [4].

Theorem 5.8. Let X be a compact Kiihler manifold. Then the subset Do of irreducible
divisors D in X suchthat v(D) = Qis countable, and these divisors are rigid as well as
their multiples. If o € &€ is a pseudo-effective class of numerical dimension 0, then o
is numerically equivalent to an effective R-divisor D = Zje] AjDj, for some finite
subset (Dj)jecj C Do such that the cohomology classes { D;} are linearly independent
and some Aj > 0. If such a linear combination is of numerical dimension 0, then so
is any other linear combination of the same divisors. O

Using the litaka fibration it is immediate to see that x(X) < v(X) always holds
true, and from the currently known examples a natural expectation would be

Conjecture 5.9 (“generalized abundance conjecture”). For an arbitrary compact Kih-
ler manifold X, the Kodaira dimension should be equal to the numerical dimension:

K (X) = v(X) :=v(c1(Kx)).

This appears to be a fairly strong statement. In fact, itis not difficult to show that the
generalized abundance conjecture contains the C, ,, conjectures about additivity of
Kodaira dimension (since it is not very difficult to show that the numerical dimension
is additive with respect to fibrations). A few extreme cases are known.

Theorem 5.10. The generalized abundance conjecture is true at least in the cases
V(X)) =—00, v(X) =0, v(X) =n.

Proof. Infact v(X) = —oo means that Ky is not pseudo-effective, so no multiple of
K x can have sections and thus « (X) = —oo. In case v(X) = n, we have to show that
Kx is big (Kx € &°); this follows from [18] and from the solution of the Grauert—
Riemenschneider conjecture in the form proven in Demailly [11]. Remains the case
v(X) = 0. Then Theorem 5.8 gives Kx = ) X;D; for some effective divisor with
numerically independent components such that v(D;) = 0. It follows that the A; are
rational and therefore

Kx =) _1;Dj+F where; € Q",v(D)) =0and F € Pic’(X).
In that case Campana and Peternell [8] have shown that F is a torsion element of
Pic’(X), and so x (X) = 0.
5.3. The orthogonality estimate. The goal of this section is to show that, in an
appropriate sense, approximate Zariski decompositions are almost orthogonal.

Theorem 5.11. Let X be a projective manifold, and let o = {T'} € Eyg be a big class
represented by a Kdhler current T. Consider an approximate Zariski decomposition

/'L;1Tm = [Em]+ [Dnl.
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Then
(D"—l . Em)2 <20 (Ca))"(VOI(Ol) - D:ln)

m

where w = c1(H) is a Kdhler form and C > 0 is a constant such that +« is dominated
by Cw (i.e., Cw £ « is nef).

Proof. For every t € [0, 1] we have
Vol(a) = Vol(E,, + D,,) > Vol(tE,, + D,;,).
Now, by our choice of C, we can write E,, as a difference of two nef divisors:
En=p'a— Dy =), (a+ Co) — (Dy + Cu,w).
Lemma 5.12. For all nef R-divisors A, B we have
Vol(A — B) > A" —nA""'. B
as soon as the right-hand side is positive.

Proof. In case A and B are integral (Cartier) divisors, this is a consequence of the
holomorphic Morse inequalities (Demailly [16], 8.5). If A and B are Q-Cartier, we
conclude by the homogeneity of the volume. The general case of R-divisors follows by
approximation using the upper semi-continuity of the volume (Boucksom [4], 3.1.26).
In fact, we expect Lemma 5.12 to hold true also in the case of transcendental nef
cohomology classes — unfortunately the required generalization of Morse inequalities
is still missing at this point. O

End of proof of Theorem 5.11. In order to exploit the lower bound of the volume, we
write

tEq +Dy=A—B, A=Dy+tu,(@+Cw), B=1t(Dy+ Cu,w).

By our choice of the constant C, both A and B are nef. Lemma 5.12 and the binomial
formula imply

Vol(tEy, + Dp) > A" —nA""'. B
n
n
= D" +nt D'k (o + Cow) +Zt"< )D,’}fkw?n(cx + Cw)*

k=2 k
—nt DL (D, + Cutw)

n—1

n—1

—nt? Zz“( L )Dﬁ;“k-u;(a + Co)* - (D + Culyo).
k=1

Now we use the obvious inequalities

Dy < 11, (Cow),  pih (e + Cow) <215 (Cw), Dy + Cpfyo < 2 (Ca)
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in which all members are nef (and where the inequality < means that the difference
of classes is pseudo-effective). In this way we get

n—1
—1
Vol(tEp + D) = Djy +nt Dy ' - Eypy —nt® Y 28141 <" L )(Ca))”.
k=1

We will always take ¢ smaller than 1/10n so that the last summation is bounded by
4(n — 1)(1 + 1/5n)""2 < 4ne'/> < 5n. This implies

Vol(tE,, + Dy) = D" +nt D' . E,, — 502 (Cw)".
Now, the choice t = 73— (D! - E,))((Cw)™) ™! gives by substituting

1 (D1 Ep)?

% (Ca) < Vol(E,, + Dy,) — D}, < Vol(«) — D,

(and we have indeed r < ﬁ), whence Theorem 5.11. Of course, the constant 20 is
certainly not optimal. O

Corollary 5.13. Ifa € &Ns, then the divisorial Zariski decompositiona = N (o) + (o)
is such that (") - N(a) = 0.

Proof. By replacing « by o 4 8c1(H), one sees that it is sufficient to consider the
case where « is big. Then the orthogonality estimate implies

(Mm)*(D,’L_l) c(m) Em = D,’111_1 : (Mm)*(ﬂm)*Em
=< D,r:fl : Em

< C(Vol(a) — D")'/2,

Since (@"~1) = lim(um)« (DY), N(@) = lim(ptm )+ En and lim D, = Vol(a), we
get the desired conclusion in the limit. O

5.4. Proof of duality between &ns and Mpns. The main point is the following
characterization of pseudo-effective classes, proved in [5] (the “only if” part already
follows from 5.2 (iii)).

Theorem 5.14 (Boucksom-Demailly—Paun—Peternell [5])). If X is projective, then
a class a € NSr(X) is pseudo-effective if (and only if) it is in the dual cone of the
cone SME(X) of strongly movable curves.

In other words, a line bundle L is pseudo-effective if (and only if) L - C > 0 for
all movable curves, i.e., L - C > 0 for every very generic curve C (not contained in
a countable union of algebraic subvarieties). In fact, by definition of SME(X), it is
enough to consider only those curves C which are images of generic complete inter-
sections of very ample divisors on some variety X, under a modification p: X — X.
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By a standard blowing-up argument, it also follows that a line bundle L on a normal
Moishezon variety is pseudo-effective if and only if L - C > 0 for every movable
curve C. The Kihler analogue should be:

Conjecture 5.15. For an arbitrary compact Kahler manifold X, the cones & and M
are dual.

N

(Mns)”

NSg(X) HY (X, R) Ni(X)

Proof of Theorem 5.14 (see [5]). We want to show that Exs = SME(X)V. By 5.2 (iii)
we have in any case

&ns C (SME(X))".

If the inclusion is strict, there is an element & € d&xs on the boundary of &xs which
is in the interior of SME(X)".

Let w = c1(H) be an ample class. Since o« € 9&\s, the class o + dw is big for
every 6 > 0, and since o € ((SME(X))")° we still have @« — ew € (SME(X))" for
& > 0 small. Therefore

a-I'>ew-T (5.4)

for every movable curve I'. We are going to contradict (5.4). Since o 4 dw is big, we
have an approximate Zariski decomposition

ws(e + 8w) = Es + Ds.
We pick I' = (M),(D(’S’_l). By the Hovanskii—Teissier concavity inequality

w-T > (a)n)l/n(Dgl)(n—l)/n.
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On the other hand
_ n—1
@ T =a- (). (Dl

= puia - Df;“ < us(a +dw) - D(rsl—l
= (Es + Dy) - D§ ' = Dj + Dj ™' - Es.
By the orthogonality estimate, we find
a-T - Dy + (ZO(Cw)n(Vol(a +8w) — Dg))l/z
w-I' — (wn)l/n(Dgz)(n_])/n

(Vol(a + 8w) — D)/
(Dg)(nfh/n

< C/(Dg)l/n 4+ c’

However, since o € d6Ns, the class o cannot be big so
lim Dy = Vol(«) = 0.
§—0

We can also take Djs to approximate Vol(a + dw) in such a way that (Vol(« + dw) —
Dg)l/ 2 tends to 0 much faster than Dy . Notice that D§ > §"w", soin fact it is enough
to take

Vol(a + 8w) — D < 8%".

This is the desired contradiction by (5.4). O
As a corollary, we also get a solution of the “Hodge conjecture” for positive cones

of H"~1:»=1(X), namely positive integral classes are generated by the corresponding
cones of curves. This settles in the affirmative many of the conjectures made in [19].

Corollary 5.16. Let X be a projective manifold. Then
(1) Ms = NE(X),

(i) Mns = SME(X) = ME(X).

Proof. (1) is indeed (mostly) a standard result of algebraic geometry, a restatement of
the fact that the cone of effective curves NE(X) is dual to the cone Kns of nef divisors
(see e.g. [24]): clearly Mys D NE(X) = K\, and the other direction Nxs C K\
is a consequence of 5.2 (i).

(i1) It is obvious that SME(X) C ME(X) C Mns C (Ens)" (the latter inclusion
follows from 5.2 (iii)). Now Theorem 5.14 implies (6ns)” = SME(X), and (ii)
follows. O

Remark 5.17. If holomorphic Morse inequalities were known also in the Kéhler case,
we would infer by the same proof that “« not pseudo-effective” implies the existence
of a blow-up p: X — X and a Kihler metric @ on X such that « - u, (@)"~! < 0. In
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the special case when o = K is not pseudo-effective, we would expect the Kihler
manifold X to be covered by rational curves. The main trouble is that characteristic p
techniques are no longer available. On the other hand it is tempting to approach the
question via techniques of symplectic geometry:

Question 5.18. Let (M, w) be a compact real symplectic manifold. Fix an almost
complex structure J compatible with «, and for this structure assume that
c1(M) - "' > 0. Does it follow that M is covered by rational J -pseudoholomorphic
curves?

5.5. Applications and conjectures. The mostimportant special case of Theorem 5.14
is

Theorem 5.19. If X is a projective manifold and is not uniruled, then K is pseudo-
effective, i.e. Kx € éns.

Proof. If Kx ¢ Ens, Proposition 5.2 shows that there is a moving curve C; such that
Ky - C; < 0. The standard “bend-and-break” lemma of Mori then implies that there
is family I'; of rational curves with Kx - I'; < 0, so X is uniruled. O

Of course, if the “abundance conjecture” is correct, the fact that Ky is pseudo-
effective would imply «(X) > 0, and so every non uniruled variety should satisfy
k(X) = 0. This still seems beyond reach at the moment.

6. Plurigenera and the Minimal Model Program

In the case of algebraic surfaces, the Minimal Model Program (MMP) was already
initiated by Italian geometers at the turn of the XXth century, and was finally completed
by Zariski and Kodaira for all complex surfaces. The case of higher dimensions
(starting with dimension 3) is a major endeavor of modern times, revitalized by Mori
[41], Kawamata [29], [30], [31] and Shokurov [53], [54] among others (see also [33]
for a good survey).

The basic question is to prove that every birational class of non uniruled algebraic
varieties contains a “minimal” member X exhibiting mild singularities (“terminal
singularities’), where “minimal” is taken in the sense of avoiding unnecessary blow-
ups; minimality actually means that Ky is nef and not just pseudo-effective (pseudo-
effectivity follows in general from Theorem 5.19). This requires performing certain
birational transforms known as flips, and important questions are whether a) flips
are indeed possible (“existence of flips”), b) the process terminates (“termination of
flips”). Thanks to Kawamata [31] and Shokurov [53], [54], this has been proved in
dimension 3 at the end of the 80s. Very recently, C. Hacon and J. McKernan [23]
announced that flips exist in dimension #n, if one assumes that a slightly stronger
version of MMP (involving log pairs with real divisors) holds true in dimension n — 1.
As a consequence, the existence of flips obtained by Shokurov [55] in 2003 would
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be achieved in dimension 4 via a more systematic method. Strongly related to these
issues are the following fundamental questions.

(i) Finiteness of the canonical ring: is the canonical ring R = @ H %X, mKx)
of a variety of general type always finitely generated?
If true, Proj(R) of this graded ring R yields of course a “canonical model” in
the birational class of X.

(i1) Boundedness of pluricanonical embeddings: is there a bound r, depending
only on dimension dim X = n, such that the pluricanonical map ®,,x, of a
variety of general type yields a birational embedding in projective space for
m>r,?

(iii) Invariance of plurigenera: are plurigenera p,, = h°(X, mK x) always invariant
under deformation?

These questions involve taking “limits” of divisors as m — —+o00, and therefore
transcendental methods are a strong contender in the arena. Question (ii) was indeed
solved in the affirmative by H. Tsuji [63], [64] under the assumption that the MMP
program is solved, and in general by S. Takayama [61], and Ch. Hacon-J. McKer-
nan [22] by pursuing further Tsuji’s ideas. Question (iii) was completely settled by
Y. T. Siu ([58] in the case of varieties of general type, and [59] for arbitrary varieties).
Quite recently, M. Pdun gave a very elementary proof based merely on the Ohwawa—
Takegoshi extension theorem, that we briefly sketch below. Y. T. Siu’s work also gives
strong support for the hope that (i) can be solved by a suitable combination of the
L? existence theorems (Skoda’s division theorem being one of the main ingredients).
The following is a very slight extension of results by M. Pdun [52] and B. Claudon
[9], which are themselves based on the ideas of Y. T. Siu [59] and S. Takayama [62].

Theorem 6.1. Let m: X0 — A be a projective family over the unit disk, and let
(Lj, hj)o<j<m—1 be (singular) hermitian line bundles with semipositive curvature
currents i © Ljhj = 0 on X. Assume that

(i) the restriction of hj to the central fiber X is well defined (i.e. not identi-
cally +00);

(ii) additionally the multiplier ideal sheaf I (hj|x,) is trivial for 1 < j <m — 1.

Then any section o of O(mKx + Y Lj)x, ® I(hox,) over the central fiber X
extends to X.

We first state the technical version of the Ohsawa-Takegoshi L? extension theorem
needed for the proof, which is a special case of Theorem 2.7 (see also Siu [59]).

Lemma 6.2. Let 7: XX — A be as before and let (L, h) be a (singular) hermitian
line bundle with semipositive curvature current i®p , > 0 on X. Let w be a global
Kdihler metric on X, and dVyx, dVx, the respective induced volume elements on
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Xo and X. Assume that hyx, is well defined. Then any holomorphic section u of
O(Kx + L) ® I(h|x,) extends into a section u over X satisfying an L? estimate

~12 2
[ iuave < co [ v,
X Xo
where Co > 0 is some universal constant (independent of X, L, .. .).

Proof. We write hj = e~ % in terms of local plurisubharmonic weights. Fix an
auxiliary line bundle A (which will later be taken to be sufficiently ample), and define
inductively a sequence of line bundles F), by putting Fp = A and

Fp=F, 1+Kx+L, ifp=mg+r,0<r=<m-—1.
By construction we have F),,,, = F, + mKx + Z/’ L; and
Fo=A, F=A+Kx+Ly, ..., Fy=A+pKx+Li+---+Ly, 1 <p<m—1.

The game is to construct inductively families of sections, say (ﬁj(p )) j=1..Np> of F)
over X in such a way that

(a) for p =0,...,m — 1, F), is generated by its sections (ﬁj(p))j:lmNp;

(b) we have the m-periodicity relations Np4,, = N, and ﬁj(p ) is an extension of

(p) (r) r) . _ )

— ~q —
=oTu; i Hixee

over X for p = mq + r, where u; ,0<r<m-—1.

Property (a) can certainly be achieved by taking A ample enough so that Fy, ...,
F,—1 are generated by their sections, and by choosing the P appropriately for
p =0,...,m — 1. Now, by induction, we equip F,_; with the tautological metric
12/ X 1P~V ()%, and F, — Kx = Fp_1 + L, with that metric multiplied by
h, = e~ %, it is clear that these metrics have semipositive curvature currents (the
metric on F), itself if obtained by using a smooth Kihler metric @ on X). In this
setting, we apply the Ohsawa—Takegoshi theorem to the line bundle F, | + L, to

extend u ]p ) into a section 7" over X. By construction the pointwise norm of that
section in Fj,x, in a local trivialization of the bundles involved is the ratio
| (.U)|2
- J _(pr
(p—D
2 luy 2

up to some fixed smooth positive factor depending only on the metric induced by w
on K. However, by the induction relations, we have

Z |u(r)|2

e ¥ forp=mg+r,0<r <m-—1,
Z.|u(_P)|2 Y Z lu(,, 1) p q
e f A—

— | (=D .~ 0
Sl 0P X lu “P
1
Z(l (m— )

lo]?e™ forp=0 mod m.
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Since the sections (u(.r)) generate their line bundle, the ratios involved are positive
functions without zeroes and poles, hence smooth and bounded (possibly after shrink-
ing the base disc A, as is permitted). On the other hand, assumption (ii) and the
fact that o has coefficients in the multiplier ideal sheaf I (hqx,) tell us that e=%r,
1 <r < mand |o]?e % are locally integrable on X. It follows that there is a
constant C; > 0 such that

> lug 2
XOZ |M(P 1)

for all p > 1 (of course, the integral certainly involves finitely many trivializations
of the bundles involved, whereas the integrand expression is just local in each chart).
Inductively, the L? extension theorem produces sections P of F » over X such that

J
~(p) 2
Zj |uj |
~(p—1
XY, VP

_(Prde = Cl

e ¥ dV, < Cy=CyC.

The next idea is to extract the limits of p-th roots of these sections to get a singular
hermitian metricon mKx + ) L;. As the functions e~ are locally bounded below
(¢r being psh), the Holder inequality implies that

~ 1/p
[ (Zare)av, <c.
X

Jensen’s inequality together with well known facts of potential theory now show that
some subsequence of the sequence of plurisubharmonic functions + log Z |u(mq) 2

(which should be thought of as weights on the Q-line bundles 1 m (A+q (m Kx —|—Z Lj)))
converges almost everywhere to the weight v of a singular hermitian metric H with
semi-positive curvature on mKx + ) L;, in the form of an upper regularized limit

1 ~
¥(z) =limsup lim — log Z |u(mq”)(§)|

=z v—>+00 ¢, 7

On Xo we have

1
(mc/) : 2 2 2
li —1 = 1 —1 q . =1
 Jim p og E lu; q—lTooq og (o] Ej ;| ) =loglo|”,

hence ¥ (z) > log|o|? and |lo ||z < 1. We equip the bundle
=(m-DKx+ Y L;

with the metric y = H'=V/" ] h}./’", andmKx + Y Lj = Kx + G with the metric
w®y. Clearly y has a semipositive curvature current on X and in a local trivialization
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we have

1 1 1/m
2 2 2 —@j
o126, = CloPep(~ (1w + - 3 g) < (0P [T )
2

on X. Since |o|>¢™% and e, r > 0 are all locally integrable, we see that ||o logy
is also locally integrable on X by the Holder inequality. A new (and final) application
of the L? extension theorem to the hermitian line bundle (G, y) implies that o can be
extended to X. The theorem is proved. O

The special case of the theorem obtained by taking all bundles L; trivial tells us
in particular that any pluricanonical section o of m Ky over X extends to X.. By the
upper semi-continuity of  — h°%(X;, mK x, ), this implies

Corollary 6.3 (Siu [59]). For any projective family t — X; of algebraic varieties,
the plurigenera py,(X;) = ho(X,, mKx,) do not depend on t.

At the moment it should be observed that there are no purely algebraic proofs of
the invariance of plurigenera, though Y. Kawamata [32] has given an algebraic proof
in the case of varieties of general type.
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Optimal computation

Ronald A. DeVore*

Abstract. A large portion of computation is concerned with approximating a function u. Typ-
ically, there are many ways to proceed with such an approximation leading to a variety of
algorithms. We address the question of how we should evaluate such algorithms and compare
them. In particular, when can we say that a particular algorithm is optimal or near optimal? We
shall base our analysis on the approximation error that is achieved with a given (computational
or information) budget n. We shall see that the formulation of optimal algorithms depends to a
large extent on the context of the problem. For example, numerically approximating the solution
to a PDE is different from approximating a signal or image (for the purposes of compression).
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1. Introduction

A generic scientific problem is to approximate a function u. The problem takes
different forms depending on what we know about u. We describe five common
settings.

The Data Fitting Problem (DFP). We are given data A;(u), j = 1,2, ..., n, where
each A; is a linear functional. The problem is to approximate u the best we can from
this information. Often the A;(u)’s are point values of u or averages of u over certain
sets (called cells).

The Sensing Problem (SP). In this setting we may ask for the values A;(u), j =
I, ..., n, of any linear functionals A; applied to u . We are given a budget of n such
questions and we wish to determine what are the best questions to ask in order to
approximate u effectively. This problem differs from DFP because we can choose the
functionals to apply.

The Encoding Problem (EP). Here we have complete knowledge of u. We are given
a bit budget n and we wish to transmit as much information about u as possible while

*This paper was prepared while the author was visiting Electrical and Computer Engineering Department at
Rice University. The author thanks the participants of the Rice Compressed Sensing Seminar, especially Rich
Baraniuk and Mike Wakin, for valuable discussions on compresses sensing. He is also grateful to Carl de Boor,
Albert Cohen, Emmanuel Candes, Anna Gilbert, and Guergana Petrova for reading versions of this manuscript.
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using at most n bits. An encoder maps u into a bitstream and a decoder converts
the bitstream into a function which approximates u#. Both these maps are typically
nonlinear.

The Computation Problem (CP). We are only given the information that u is a solu-
tion to some (linear or nonlinear) equation A(u) = f. We have complete knowledge
of the operator A and any additional information (such as boundary or initial con-
ditions) that are sufficient to uniquely determine u. We are given a computational
budget n, say of floating point operations (flops), and we wish to approximate u as
efficiently as possible within this budget. This problem is related to numerically
inverting the operator A.

The Learning Problem (LP). We are givendataz; = (x;, y;) € X xY,i=1,...,n,
which are drawn independently with respect to some unknown probability measure
pon X x Y. We wish from this data to fit a function which best represents how
the response variable y is related to x. The best representation (in the sense of least
squares minimization) is given by the regression function f,(x) := E(y|x) with E
the expectation. Since we do not know p, we do not know f, The problem is to best
approximate f, from the given sample data.

These problems have a long history and still remain active and important research
areas. The first three of these problems are related to major areas of Approximation
Theory and Information Based Complexity and our presentation is framed by core
results in these disciplines. CP is the dominant area of Numerical Analysis and LP
is central to Nonparametric Statistics. The complexity of algorithms is also a major
topic in Theoretical Computer Science. The purpose of this lecture is not to give a
comprehensive accounting of the research in these areas. In fact, space will only allow
us to enter two of these topics (SP and LP) to any depth. Rather, we want to address
the question of how to evaluate the myriad of algorithms for numerically resolving
these problems and decide which of these is best. Namely, we ask “what are the ways
in which we can evaluate algorithms?”

2. Some common elements

There are some common features to these problems which we want to underscore. The
obvious starting point is that in each problem we want to approximate a function u.

2.1. Measuring performance. To measure the success of the approximation, we
need a way to measure error between the target function # and any candidate approx-
imation. For this, we use a norm || - ||. If u,, is our approximation to u, then the error
in this approximation is measured by

lu —unll. (2.1)

Thus, our problem is to make this error as small as possible within the given budget .
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The norm may be of our choosing (in which case we would want to have a theory
that applies to a variety of norms) or it may be dictated by the problem at hand. The
typical choices are the L, norms, 1 < p < 0o. Suppose that €2 is a domain in R4
where R? is the d dimensional Euclidean space. We define

(fqlg@)IPd)l/P, 1< p < oo,

esssup [g (), p = .
xeQ

lglz, @ = (2.2)

When studying the solutions to PDEs, norms involving derivatives of u are often
more appropriate. We shall delay a discussion of these norms till needed.

In numerical considerations, the norms (2.2) are replaced by discrete versions. If
x € RV, then

1/p
N 1P
(ZJ:] |x]| ) ) 0 < p < 00, (23)

lxlle, ==
max;—i.. n|Xj[, p=o0.

2.2. The form of algorithms: linear versus nonlinear. The numerical algorithms
we consider will by necessity be a form of approximation. To understand them, we
can use the analytical tools of approximation theory. This is a classical subject which
began with the work of Weierstrass, Bernstein, Chebyshev, and Kolmogorov. The
quantitative portion of approximation theory seeks to understand how different meth-
ods of approximation perform in terms of rates of convergence. If a certain method
of approximation is used in the construction of an algorithm then approximation the-
ory can tell us the optimal performance we could expect. Whether we reach that
performance or something less will be a rating of the algorithm.

Approximation theory has many chapters. We will partially unfold only one of
these with the aim of describing when numerical algorithms are optimal. To keep
the discussion as elementary as possible we will primarily focus on approximation
in Hilbert spaces where the theory is most transparent. For approximation in other
spaces, the reader should consult one of the major books [16], [31].

Let #¢ be a separable Hilbert space with inner product -, -) and its induced norm
I £l := (f, f)Y/?. The prototypical examples for # would be the space L,(£2) de-
fined in (2.2) and £; defined in (2.3). We shall consider various types of approximation
in #€ which will illustrate notions such as linear, nonlinear, and greedy approximation.
At the start, we will suppose that B := {g¢};2, is a complete orthonormal system
for # and use linear combinations of these basis vectors to approximate u. Later, we
shall consider more general settings where B is replaced by more general (redundant)
systems.

We begin with linear approximation in this setting. We consider the linear spaces
V. := span{gi};_,. These spaces are nested: V;, C V,41,n = 1,.... Each element
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f € J has a unique expansion
o
f=Y g a=alf)=(fa) k=12 (2.4)
k=1

For an important concrete example, the reader can have in mind the space # = L, (IT)
of 2w -periodic functions defined on R and the Fourier basis. Then (2.4) is just the
expansion of f into its Fourier series.

Given f € H the function Py, f := > ;_, cx(f) gk is the best approximation to f
from V,, and the error we incur in such an approximation is given by

o 1/2
EH) =11 =PDl=( X laHP) " n=12.... @5

k=n+1

We are in the wonderful situation of having an explicit formula for the error of ap-
proximation in terms of the coefficients cx (). We know that for any f € J¢ the right
side of (2.5) tends to zero as n tends to infinity. The faster the rate of decay, the better
we can approximate f and the nicer f is with respect to this basis.

To understand the performance of an approximation process, such as the one
described above, it is useful to introduce approximation classes which gather together
all functions which have a common approximation rate. For us, it will be sufficient
to consider the classes A", r > 0, consisting of all functions f that are approximated
with arate O (n~"). For example, in the case we are discussing A" := A" ((V,)) :=
A" ((Vy,), #) consists of all functions f € # such that

E,(f)<Mn™", n=12,.... (2.6)
The smallest M such that (2.6) holds is defined to be the norm on this space:

| flar == supn” En(f). 2.7)

n>1

Notice that these approximation spaces are also nested: A" C A" "ifr > r’. Givenan
f € # there will be a largest value of » = r(f, B) for which f € A" forall ¥’ < r.
We can think of this value of » as measuring the smoothness of f with respect to this
approximation process or what is the same thing, the smoothness of f with respect
to the basis {gk}.

For standard orthonormal systems, the approximation spaces A" often have an
equivalent characterization as classical smoothness spaces. For example, in the case
of the Fourier basis, +" is identical with the Besov space B’ (L2(IT)). This space is
slightly larger than the corresponding Sobolev space W’ (L (IT)). In the case that r is
an integer, W’ (L,(IT)) is the set of all f € L, (IT) whose r-th derivative £ is also in
L, (IT). We do not have the space here to go into the precise definitions of smoothness
spaces, but if the reader thinks of the smoothness order as simply corresponding to
the number of derivatives that will give the correct intuition.
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Observe that two elements are coming into play: the basis we select and the
ordering of that basis. A function f may have a faster convergent expansion with
respect to one basis B than another B’. That is r(f, B) > r(f, B). If we knew
this in advance the better basis would be preferable. Such knowledge is only present
through some additional analysis of the problem at hand, e.g. in the case of numerically
solving PDEs such information could be provided by a regularity theorem for the PDE.
The ordering of the basis functions also plays an important role. Reordering these
basis functions results in a different rate of decay for the approximation error and
therefore a different » (f, B). Such reordering is done in practice through nonlinear
approximation which we now discuss.

Approximation by the elements of V), is called linear approximation because the
approximants are taken from the linear space V,,. This is to be contrasted with the
following notion of n-term approximation. For each n > 1, we let X, denote the
set of all functions that can be expressed as a linear combination of n terms of the
orthonormal basis:

S=> ag. #A=<n, (2.8)
keA
where #A is the cardinality of A. We consider the approximation of f € # by the
elements of X, and define the error of such approximation by

on(f) =on(flge:= inf || f—=S|, n=1,2,.... 2.9)
Sex,

Notice that E,, is generally reserved for the error in linear approximation and o, for
the error in nonlinear approximation.

Another view of n-term approximation is that we approximate the function f
by the elements of a linear space W,, spanned by the elements of n basis functions.
However, it differs from linear approximation in that we allow the space W, to also
be chosen depending on f, that is, it is not fixed in advance as was the case for linear
approximation.

Itis very easy to describe the best approximant to f from X, and the resulting error
of approximation. Given f € J¢ we denote by (c;) the decreasing rearrangement
of the sequence (c; = ¢;(f)). Thus, |cf] is the k-th largest of the numbers |c;(f)],
Jj=1,2,.... Bachc} = ¢j (f) forsome ji. The choice of the mapping k + jy isnot
unique because of possible ties in the size of coefficient but the following discussion
is immune to such differences. A best approximation to f € # from %, is given by

n

S* =i (Hgi = D (g, Api=Ap(f) = {1l (210)
k=1 jen:

and the resulting error of approximation is

on(f)’ =Y ()’ = lei(NHI* (2.11)

k>n JEAS
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Indeed, if S = ZjeA ajgj is any element of %,, then

If=SIP= (cj—ap*+ Y ¢l 2.12)

jeA jeAc

where A€ is the complement of A. The second sum on the right side of (2.12) is
at least as large as Z,<>n(c,’(k)2 and so we attain the smallest error by taking a set
of indices A = A} (f) corresponding to the n largest coefficients and then taking
a; = Cj(f) fOI‘j € A.

Notice that the space X, is not linear. If we add two elements from X,, we
will generally need 2n terms to represent the sum. For this reason, n-term approxi-
mation is a form of nonlinear approximation. We can define approximation classes
A" ((Zy,), #) for this form of approximation by replacing E,, (f) by 0,,(f) in (2.6) and
(2.7). To distinguish between linear and nonlinear approximation we will sometimes
write A" (L) and A" (N L) for the two approximation classes thereby indicating that
the one corresponds to linear approximation and the other to nonlinear approximation.

It is easy to characterize when an f belongs to A" ((X,), #) in terms of the
coefficients ¢k (f). For this, recall that a sequence (ay) is said to be in the space w¢,,
(weak £)) if

#k : lak| = n} < MPn~"P (2.13)

and the smallest M for which (2.13) holds is called the weak £, norm (|| (ax)|| wgp) of
this sequence. An equivalent definition is that the decreasing rearrangement of (ay)
satisfies

laf) < MYPRYP k=1,2,.... (2.14)

A simple exercise proves that f € A" ((Z,), ) if and only if (cx(f)) € wl, with
1/p = r 4+ 1/2, and the norms | f |4 and ek (SN llwe, are equivalent (see [30]
or [16]). Notice that A" (L) C A" (NL) but the latter set is much larger. Indeed,
for linear approximation a function f € # will be approximated well only if its
coefficients decay rapidly with respect to the usual basis ordering but in nonlinear
approximation we can reorder the basis in any way we want. As an example, consider
again the Fourier basis. The space 4 !/>(N L) consists of all functions whose Fourier
coefficients are in wf;. A slightly stronger condition is that the Fourier coefficients
are in £ which means the Fourier series of f converges absolutely.

In n-term approximation, the n-dimensional space used in the approximation de-
pends on f. However, this space is restricted to be spanned by n terms of the given
orthonormal basis. If we are bold, we can seek even more approximation capability
by allowing the competition to come from more general collections of n-dimensional
spaces. However, we would soon see that opening the competition to be too large will
render the approximation process useless in computation since it would be impossible
to implement such a search numerically (this topic will be discussed in more detail in
Section 4).

There is a standard way to open up the possibilities of using more general families
in the approximation process. We say a collection of function D = {g}gep C H isa
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dictionaryif each g € D hasnormone (||g]| = 1). We define X, := X, (D) as the set
of all S that are a linear combination of at most n dictionary elements: S = ) geA Cg8
with #(A) < n. The n-term approximation error o, and the approximation classes
A" (D, F) are then defined accordingly. Notice that the elements in £ need not be
linearly independent, i.e., the dictionary allows for redundancy.

It is a bit surprising that meaningful theorems about 4" can be proved in this very
general setting. To find good n-term approximations, we cannot simply select indices
with large coefficients because of the possible redundancy in the dictionary. Rather,
we proceed by an important technique known as greedy approximation (sometimes
called matching pursuif). This is an iterative procedure which selects at each step
a best one-term approximation to the current residual. Given f € #, we initially
define fo := 0 and the residual ro := f — fo = f. Having defined the current
approximation f,_1 and its residual r,_; := f — f,_1 for some n > 1, we will
choose an element g, € O and update the approximation to f by including g, in the
n-term approximation. The usual way of proceeding is to choose g, as

gn = Argmax(r,_1, g), (2.15)
ged
although there are important variants of this strategy. Having chosen g, in this way,

there are different algorithms depending on how we proceed. In the Pure Greedy
Algorithm (PGA), we define

Su = fum1 +{fuz1, 8n)&n (2.16)

which yields the new residual 7, := f — f,. We can do better, but with more
computational cost, if we define

fni=Py f (2.17)

where V,, := span{gi,..., g»}. This procedure is called the Orthogonal Greedy
Algorithm (OGA). There is another important variant which is analogous to numerical
descent methods called Restricted Greedy Approximation(RGA). It defines

fo = o fa1 + Bugn (2.18)

where 0 < o, < 1 and 8, > 0. Typical choices for o, are | —1/n or 1 —2/n. There
are other variants in the RGA where the choice of g, is altered. The most general
procedure is to allow «, §, g to be arbitrary and choose «f,—1 + Sg that minimizes
the norm of the residual r = f — af,,—1 — Bg.

Greedy algorithms have been known for decades. Their numerical implementa-
tion and approximation properties were first championed in statistical settings ([42],
[4], [46]). The approximation properties have some analogy to those for nonlinear
approximation from a basis but are not as far reaching. To briefly describe some of
these results, let «£1 consist of all functions f € # such that

F="ceg Y legl < +oo. (2.19)

ged ged
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We can define a norm on this space by

|fley ==inf {3 ocplegl s [ =2 pen el (2.20)

Thus, the unit ball of £ is the convex closure of D U (—D).
If f € L1, then both the OGA and properly chosen RGA will satisfy

If = full < Colflen %, n=1,2,..., (2.21)

as was proved in [42] (see also [29]). The convergence rates for the PGA are more
subtle (see [29]) and its convergence rate on £ are not completely known. These
results show that £ C #!/? which is quite similar to our characterization of this
approximation class for nonlinear approximation when using a fixed orthonormal
basis.

One unsatisfactory point about (2.21) is that it does not give any information
about convergence rates when f is not in .£1. Using interpolation, one can introduce
function classes that guarantee approximation rates O(n~") when 0 < r < 1/2
(see [5]). Also, using (2.21), one can prove that for » > 1/2 a sufficient condition
for f to be in A’ (D, #) is that it has an expansion f = de@ cgg with (cg) € £,
p = (r + 1/2)~'. However, this condition is generally not sufficient to ensure the
convergence of the greedy algorithm at the corresponding rate n™".

Although greedy approximation is formulated in a very general context, any nu-
merical algorithm based on this notion will have to deal with finite dictionaries. The
size of the dictionary will play an important role in the number of computations needed
to execute the algorithm. Greedy approximation remains an active and important area
for numerical computation. A fairly up to date survey of greedy approximation is
found in [56]. We will touch on greedy approximation again in our discussion of the
Sensing Problem and the Learning Problem.

3. Optimality of algorithms

Our goal is to understand what is the optimal performance that we can ask from an
algorithm. Recall that in each of our problems, our task is to approximate a function u.
What differs in these problems is what we know in advance about # and how we can
access additional information about u.

Because of the diversity of problems we are discussing, we shall not give a precise
definition of an algorithm until a topic is discussed in more detail. Generically an
algorithm is a sequence A = (A,) of mappings. Here n is the parameter associated
to each of our problems, e.g., it is the number of computations allotted in the compu-
tation problem. The input for the mapping A, is different in each of our problems.
For example, in the data fitting problem it is values A;(u), j = 1,...,n, that are
given to us. The output of A, is an approximation u, to the target function u. To
study the performance of the algorithm, we typically consider what happens in this
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approximation as n — 0o. Such a theory will miss out on important but usually very
subtle questions about performance for small n.
We fix the space X and the norm || - || = || - || x in which to measure error. Then,
for any u,
E(u,A,) =|lu—u,ll, n=12,..., 3.1

measures how well the algorithm approximates u. It is tempting to define an optimal
algorithm to be a sequence (A}) such that

E(u,A,’:)ﬁiEfE(u,An), ueX, n=12,..., 3.2)

where the infimum is taken over all algorithms A,. However, such a definition is
meaningless, since to achieve such a performance the algorithm would typically in-
volve a search which is prohibitive from both a theoretical and numerical perspective.

Here is another important point. An algorithm only sees the given data. In
the Recovery Problem and Sensing Problem, A, will only act on the data A;(u),
Jj = 1,...,n. This means that many functions have the same approximation u,.
If AV is the null space consisting of all functions v such that A;(v) =0, j =1,...,n,
then all functions u + 1, n € N, have the same data and hence u, is a common
approximation to all of these functions. Since ||7|| can be arbitrarily large, we cannot
say anything about ||u — u, || being small without additional information about u.

There are two ways to come to a meaningful notion of optimality which we shall
describe: optimality on classes and instance-optimal. We begin with the first of
these which is often used in statistics, approximation theory and information based
complexity. Consider any compact set K C X. We define

E(K,Ay)) :=supEu,A,), n=1,2,..., 3.3)
uek

which measures the worst performance of A, on K. We shall say that (A}) is near
optimal on K with constant C = C(K) if

E(K,A:)SCiEfE(K,An), n=12,.... (3.4)

If C = 1 wesay (A}) is optimal on K. Usually, it is not possible to construct optimal
algorithms, so we shall mainly be concerned with near optimal algorithms, although
the size of the constant C is a relevant issue.

The deficiency of the above notion of optimality is that it depends on the choice of
the class K. An appropriate class for # may not be known to us. Thus, an algorithm
is to be preferred if it is near optimal for a large collection of classes K. We say that
an algorithm A is universal for the collection J, if the bound (3.4) holds for each
K € KX where the constant C = C(K) may depend on K .

There are two common ways to describe compact classes in a function space X.
The first is through some uniform smoothness of the elements. For example, the unit
ball K = U (Y) of a smoothness space Y of X is a typical way of obtaining a compact
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subset of X. We say that Y is compactly embedded in X if each finite ball in Y is a
compact subset of X.

The classical smoothness spaces are the Sobolev and Besov spaces. The Sobolev
space W¥(Ly) = W3 (L4(2)), 2 C R4, consists of all functions u which have
smoothness of order s in L,. In the case s = k is an integer and 1 < g < oo this
simply means that u and all its (weak) derivatives are in L. There are generalizations
of this definition to arbitrary s, g > 0. The Besov spaces B; (L) are also smoothness
spaces of order s in L, but they involve another parameter A which makes subtle
distinctions among these spaces. They are similar to but generally different from the
Sobolev spaces. The Sobolev embedding theorem describes the smoothness spaces
which are embedded in a space X = L,(2) provided the domain €2 has sufficient
smoothness (a C! smooth boundary is more than enough). This embedding theorem
has a simple geometrical interpretation. We identify each space W*(L,) (likewise
B3 (Lg)) with the point (1/g, s) in the upper right quadrant of R2. Given a value
p € (0,00], the line s = d/q — d/p is called the critical line for embedding into
L,(€2). Any Sobolev or Besov space corresponding to a point above this line is
compactly embedded into L, (£2). Any point on or below the line is not compactly
embedded into L, (£2). For example, if s > d/q, then the Sobolev space W* (L, (£2))
is compactly embedded into the space C(£2) of continuous functions on 2.

A second way to describe compact spaces is through approximation. For example,
suppose that X,, C X,n = 1,2, ..., is a sequence of linear spaces of dimension .
Then each of the approximation classes 4", r > 0, describes compact subsets of X:
any finite ball in A" (with the norm defined by (2.7)) gives a compact subset of X. In
the same way, the approximation classes A", r > 0, for standard methods of nonlinear
approximation also give compact subsets of X.

Given the wide range of compact sets in X, it would be too much to ask that an
algorithm be universal for the collection of all compact subsets of X. However, uni-
versality for large families would be reasonable. For example, if our approximation
takes placein X = L,(£2), we could ask that the algorithm be universal for the collec-
tion KX of all finite balls in all the Sobolev and Besov spaces with smoothness index
0 < s < § that compactly embed into X. Here S is arbitrary but fixed. This would
be a reasonable goal for an algorithm. There are approximation procedures that have
this property. Namely, the two nonlinear methods (i) n-term wavelet approximation
restricted to trees, and (ii) adaptive piecewise polynomial approximation described in
the following section have this property.

In many settings, it is more comfortable to consider optimality over classes de-
scribed by approximation. Suppose that we have some approximation procedure
(linear or nonlinear) in hand. Then, the set X := {B(A") : 0 < r < R} of all
finite balls of the A, is a collection of compact sets and we might ask the algorithm
to be universal on this collection. Notice that this collection depends very much on
the given approximation procedure, and in a sense the choice of this approximation
procedure is steering the form of the algorithms we are considering. Since most often,
algorithms are designed on the basis of some approximation procedure, finite balls in
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approximation classes are natural compact sets to consider.

In the setting of a specific approximation process, we can carry the notion of
optimality even further. If E, () denotes the error in approximating u by the approx-
imation procedure, then we say that the algorithm A = (A,)) is instance-optimal with
constant C > 0 if

E(,Ay) <CE,(u) forallu € X. (3.5)

In other words, the algorithm, in spite of having only partial knowledge about u,
approximates, up to a constant, as well as the best approximation. Instance-optimal
is a stronger notion than universality on approximation classes. Consider for example
n term approximation from a dictionary £. Then E, () on the right side of (3.5) is
the error o, (1) of n term approximation. Knowing that (3.5) is valid, we conclude
immediately that the algorithm is universal on the class of approximation spaces A’
r > 0. The choice of the dictionary plays a critical role in defining these notions of
optimality.

In summary, we have two possible ways to evaluate the performance of an algo-
rithm. The first is to test its behavior over classes which leads to the notion of optimal,
near optimal, and universal. If we consider algorithms based on a specific approxi-
mation process, then we can ask for the finer description of optimality described as
instance-optimal.

4. Two important examples

Before returning to our main subject of optimal computation, it will be useful to
have some concrete approximation processes in hand. We consider two examples of
approximation systems that are used frequently in computation and serve to illustrate
some basic principles.

4.1. Wavelet bases. A univariate wavelet is a function ¢ € L,(R) whose shifted
dilates _ .
Yia(x) =22y Qx —k), j.keZ, (4.1)

are a basis for L, (R). In the case that the functions (4.1) form a complete orthonormal
system we say that ¢ is an orthogonal wavelet. The simplest example is the Haar
orthogonal wavelet

H(x) :== x10,1/2) — X[1/2,1) 4.2)

where x 4 the indicator function of a set A. Although the Haar function was prominent
in harmonic analysis and probability, it was not heavily used in computation because
the function H is not very smooth and also the Haar system has limited approxima-
tion capacity. It was not until the late 1980s that it was discovered (Meyer [50] and
Daubechies [26]) that there are many wavelet functions ¥ and they can be constructed
to meet most numerical needs. The most popular wavelets are the compactly sup-
ported orthogonal wavelets of Daubechies [26] and the biorthogonal wavelet of Cohen
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and Daubechies [22]. They can be constructed from the framework of multiresolution
analysis as described by Mallat [48]. Wavelet bases are easily constructed for R¢ and
more generally for domains @ C R?. There are several books which give far reach-
ing discussions of wavelet decompositions (see e.g. [S1] for wavelets and harmonic
analysis, [27] for wavelet constructions, [49] for wavelets in signal processing, and
[16] for wavelets in numerical PDEs.).

We shall denote a wavelet basis by {y; },er. Inthe case of R? or domains 2 C R,
the index A depends on three parameters (j, k, ¢). The integer j gives the dyadic level
of the wavelet as in (4.1). The multi-integer k = (ky, ..., kg) locates the wavelet in
space (it is associated to the point 27/k). The index e corresponds to a vertex of the
unit cube [0, 1] and describes the gender of the wavelet. We can also think of the
wavelets as indexed on the pairs 1, e where I = 27/ (k + [0, 119 isa dyadic cube. In
this way, the wavelets are associated to a tree of dyadic cubes. This tree structure is
important in computation.

We will always suppose that the wavelets ¥, are compactly supported. Each
locally integrable function has a wavelet decomposition

F=Y 6= freVie (4.3)

rel 1,e)

The wavelet system is an unconditional basis for L, and many function spaces such
as the Sobolev and Besov spaces.

Let Q be a domain in R and {y; };cr be an orthogonal (or more generally a
biorthogonal) wavelet system for L,(€2). The nonlinear spaces X, and their corre-
sponding approximation spaces A" ((1,.), L2(£2)) were already introduced in §2.2.
These spaces are closely related to classical smoothness spaces. Consider for example
the space A" which as we know is identical with the space of functions whose wavelet
coefficients are weak £, with p = (r + 1 /2)~'. While this is not a Besov space, it
is closely related to the space B;,d (Lp) which is contained in +". This latter Besov
space is characterized by saying that the wavelet coefficients are in £,,.

General n-term wavelet approximation cannot be used directly in computational
algorithms because the largest wavelet coefficients could appear at any scale and it
is impossible to implement a search over all dyadic scales. There are two natural
ways to modify n-term approximation to make it numerically realizable. The first is
to simply restrict n-term approximation to dyadic levels < alogn where a > 0 is
a fixed parameter to be chosen depending on the problem at hand. Notice that the
number of wavelets living at these dyadic levels does not exceed 2441027 = Cpad,
The larger the choice of a then the more intensive will be the computation.

The second way to numerically implement the ideas of n-term approximation in
the wavelet setting is to take advantage of the tree structure of wavelet decompositions.
Given a dyadic cube I, its children are the 2¢ dyadic subcubes J C I of measure
274|1| and I is called the parent of these children. We say that T is a tree of dyadic
cubes if whenever J € T with |J| < 1, then its parent is also in 7. We define 77, to be
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the collection of all trees of cardinality < n. We define E,’l as the set of all functions

S=Y">" v, #T <n, (4.4)

I1€T ecEg

where E; = E'if |I| = 1 and E; = E otherwise. Replacing X, by X! in (2.9) leads
to o) and the approximation classes 4’ ((X!)). Tree approximation is only slightly
more restrictive than n-term approximation. For example, if B} (L) is a Besov space
that compactly embeds into L, then any function in this space is in #4* /d (=), Lgy).
This is the same approximation rate as is guaranteed by general n-term approximation
for this class.

4.2. Adaptive partitioning. Much of numerical PDEs is built on approximation by
piecewise polynomials on partitions of the domain €2. A partition IT of €2 is a finite
collection of sets C; (called cells),i =1, ..., N, whose interiors are pairwise disjoint
and union to 2. We have already met the partitions £; of the domain 2 = [0, 114
into dyadic cubes.

The typical way of generating partitions is through a refinement rule which tells
how a cell is to be subdivided. In the dyadic subdivision case, the cells are dyadic
cubes and if a cell [ in the partition is subdivided then it is replaced by the set C (/)
of its children.

There are many possible refinement strategies. For simplicity, we discuss only
the additional case when 2 is a polygonal domain in R? and the cells are triangles.
We begin with an initial triangulation ITp. If any triangle A is to be refined then its
children consist of a > 2 triangles which form a partition of A. We shall assume that
the refinement rule is the same for each triangle and thus a is a fixed constant. The
refinement rule induces an infinite tree T* (called the master tree) whose nodes are
the triangles that can arise through the refinement process.

The refinement level j of a node of T* is the smallest number of refinements
(starting from ITp) to create this node. We denote by T the proper subtree consisting
of all nodes with level < j and we denote by I; the partition corresponding to 7}
which is simply all A € 7; of refinement level j, i.e., the leaves of 7;. The partitions
IM;, j =0,1, ..., weobtain in this way are called uniform partitions. The cardinality
#(T1;) of T1; is a/#(ITp).

Another way of generating partitions is by refining some but not all cells. One
begins with the cells in 1y and decides whether to refine A € I (i.e. subdivide A).
If A is subdivided then it is removed from the partition and replaced by its children.
Continuing in this way, we obtain finite partitions which are not necessarily uniform.
They may have finer level of refinements in some regions than in others. Each such
partition IT can be identified with a finite subtree T = T (IT) of the master tree T*.
The cardinalities of IT and T (IT) are comparable.

Given a partition I, let us denote by &, (IT) the space of piecewise polynomials
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of degree k that are subordinate to I1. Each S € 4;I1) can be written

S=> Pix. (4.5)

Iell

where Pj is a polynomial of degree < k. The functions in 4§ (IT) are not continuous.
In many applications, one is interested in subspaces of §;(IT) obtained by imposing
some global smoothness conditions.

We fix k > 0 and some norm || - || = || - ||x where X is an L, or Sobolev space.
We consider two types of approximation. The first corresponds to uniform refinement
and gives the error

E,(u):=E,x(u):= inf Ju—-S|, n=0,1,.... (4.6)
Se8i(M,)
This is a form of linear approximation.

To describe an alternative to linear approximation, we let 5%, denote the set of all
partitions of size < n obtained by using successive refinements. Each partition in &,
corresponds to a finite tree 7' contained in the master tree. We define X, x as the union
of all the spaces 4 (IT), IT € &, and the approximation error o, (1) := oy i (1) as
usual (see (2.9)). This is a form of nonlinear approximation. Its advantage over fixed
partitions is that given u, we have the possibility to refine the partition only where u
is not smooth and keep it coarse where u is smooth. This means we should be able to
meet a given approximation tolerance with a fewer number of cells in the partition.
This is reflected in the following results. For either of the two refinement settings
we are describing, approximation from X,  is very similar to wavelet approximation
on trees. For example, if the approximation takes place in an L, space, then any
Besov or Sobolev classes of smoothness order s that compactly embeds into L, will
be contained in A*/¢((Z, 1), Ly) (see [8] and [32]).

In numerical implementations of nonlinear partitioning, we need a way to decide
when to refine a cell or not. An adaptive algorithm provides such a strategy typically
by using local error estimators that monitor the error e(/) between u and the current
approximation on a given cell /. Constructing good error estimators in the given
numerical setting is usually the main challenge in adaptive approximation.

5. The Sensing Problem

The Sensing Problem is a good illustration of the concepts of optimality that we
have introduced. We are given a budget of n questions we can ask about u. These
questions are required to take the form of asking for the values A1 (), ..., A, (1) of
linear functionals A, j = 1, ..., n. We want to choose these functionals to capture the
most information about u in the sense that from this information we can approximate u
well. The sensing problem is most prominent in signal processing. Analog signals
are time dependent functions. A sensor might sample the function through the linear
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functionals A;, j = 1,...,n, and record quantizations of these samples for later
processing.

We begin the discussion by assuming that the functions u we wish to sense come
from a space X = L,(2) with 2 C R? and 1 < p < oo and that we will measure
the error of approximation in the norm || - || := || - || x for this space. An algorithm
A = (A,) takes the following form. For eachn =1, 2, ..., we have an encoder ®,,
which assigns to u € X the vector

®,(u) = (W), ..., N(u) € R”, (5.1)

where the k;’, j =1,...,n,arefixed linear functionals on X. The mapping ®,: X —
R" is linear and the vector @, (u) is the information the sensor will extract about u.
Note that we allow these questions to change with n. Another possibility is to require
that these questions are progressive which means that for n + 1 we simply add one
additional question to our current set. We will also need a decoder A, which says how
to construct an approximation to # from this given data. Thus, A, will be a (possibly
nonlinear) mapping from R” back into X. Our approximation to « then takes the form

An(w) 1= Ap(Dy)), n=1,2,.... (5.2)

Given a vector y € R", the set of functions £ (y) = {u € X : ®,(u) = y} all
have the same sensing information and hence will all share the same approximation
A, (u) = Ay(y). If ug is any element of £ (y), then

Fy) =uo+ N, (5.3)

where N = N, := F(0) is the null space of ®,. The structure of this null space is
key to obtaining meaningful results.

We have emphasized that in comparing algorithms, we have two possible avenues
to take. The one was optimality over classes of functions, the other was instance-
optimal. If K is a compact subset of X and &, is an encoder then

An(y) ;= Argmin  sup |ju — il (5.4)
ueX ue¥F(y)nkK

is an optimal decoder for ®, on K. Notice that A,, is not a practical decoder, its only
purpose is to give a benchmark on how well ®,, is performing. This also leads to the
optimal algorithm on the class K which uses the encoder

®* := Argmin sup [lu — A, (P, ()| (5.5)
o, uek

together with the optimal decoder A,, associated to &7 and gives the optimal error

EX(K) = sup [lu — Ay (®fw))]. (5.6)

uek
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We have used the asterisk to distinguish E from the linear approximation error E,.

E;(K) is essentially related to the Gelfand n-width d"(K) of K (see [47], [54]
for the definition and properties of Gelfand widths). For example, if K = —K and
K + K C CoK, then d"(K) < E}(K) < Cod"(K). Gelfand widths of classical
classes of functions such as unit balls of Besov and Sobolev spaces are known. The
deepest results in this field are due to Kashin [44] who used probabilistic methods
to find optimal sensing functionals. In Kashin’s constructions, the problems are
discretized and the discrete problems are solved using certain random matrices. We
shall return to these ideas in a moment when we turn to discrete compressed sensing.

The usual models for signals are band-limited functions. A typical function class
consists of all functions u € L, whose Fourier transform vanishes outside of some
interval [-Am, Am] with A > 0 fixed. The famous Shannon sampling theorem says
that sampling the signal u at the points n/A contains enough information to exactly
recover u. The Shannon theory is the starting point for many Analog to Digital
encoders. However, these encoders are severely taxed when A is large. In this case,
one would like to make much fewer measurements. Since the Shannon sampling is
optimal for band-limited signals, improved performance will require the introduction
of new (realistic) model classes for signals. One model in this direction, that we will
utilize, is to assume that the signal can be approximated well using n terms of some
specified dictionary &£ of waveforms. For example, we can assume that u is in one
of the approximation classes A" ((2,), X) for n-term approximation by the elements
of H. We will consider the simplest model for this problem where & = B is an
orthogonal basis B. When this basis is the wavelet basis then we have seen that A" is
related to Besov smoothness, so the case of classical smoothness spaces is included
in these models.

The obvious way of approximating functions in these classes is to retain only the
largest terms in the basis expansion of u. However, this ostensibly requires examining
all of these coefficients or in other words, using as samples all of the expansion
coefficients. Later we would discard most or many of these coefficients to obtain an
efficient decomposition of u# using only a few terms. A central question in the Sensing
Problem is whether one could avoid taking such a large number of sensing samples
and still retain the ability to approximate u well. Of course, we have to deal with the
fact that we do not know which of these coefficients will be large. So the information
will have to, in some sense, tell us both the position of the large coefficients of u and
their numerical value as well.

5.1. Discrete compressed sensing. To numerically treat the sensing problem, we
have to make it finite — we cannot deal with infinite expansions or computations with
infinite length vectors. Discretization to finite dimensional problems is also used
to prove results for function spaces. We will therefore restrict our attention to the
following discrete sensing problem. We assume our signal is a vector x in RY where N
is large. We are given a budget of n linear measurements of x (the application of n
linear functionals to x) and we ask how well we can recover x from this information.



Optimal computation 203

The previously mentioned results of Kashin [44] show that using n randomly
generated functionals will carry almost as much information as knowing the positions
and values of the n largest coordinates of x. However, Kashin’s results were never
implemented into practical algorithms. It was not until the exciting results of Candes,
Romberg, and Tao [12] applied to tomography that the door was opened to view the
power of random sampling. This was followed by the fundamental papers [13, 15, 34]
which addressed how to build practical encoder/decoders and proved the first results
on their provable performance. There was a related development in the computer
science community which used random measurements to sketch large data sets which
we shall say a little more about later.

The discrete sensing problem can be described by an n x N matrix ®. Row i
of @ corresponds to a vector that represents the linear functional A;. Thus, sensing
with these linear functionals is the same as evaluating ® (x) = y. The vector y which
lives in the lower dimensional space R” represents the information we have about x.
We are interested in how well we can recover x from this information. As we have
noted, the exact way we recover x (or an approximation to x) from the information y
is a significant component of the problem. A decoder for @ is a (possibly nonlinear)
mapping A from R” to RY. Given y = ®(x), then A(y) is our approximation to x.

In analogy with the continuous case, we can use the £, norms, defined in (2.3),
to measure error. Then, the error associated to a particular algorithm A, built on a
matrix ¢ and a particular decoder A is given by

E(x,Ap)p = E(x, D, A)p = [lx — AP (X)), 6.7

The approximation on a class K of signals is defined as in (3.3). Let us denote by
E; (K, £,) the optimal error on K achievable by any sensing algorithm of order n (we
are suppressing the dependence on N). In keeping with the main theme of this paper,
let us mention the types of results we could ask of such a sensing/decoding strategy.
We denote by X the space of all k-sparse vectors in RY, i.e., vectors with support
< k. For any sequence space X, we denote by oy (x)x the error in approximating x
by the elements of ¥ in the norm || - || x.

I. Exact reconstruction of sparse signals. Given k, we could ask that
ADPx) =x, xe€X. (5.8)

We would measure the effectiveness of the algorithm by the largest value of k (de-
pending on n and N) for which (5.8) is true.

I1. Performance on classes K. We have introduced optimality and near optimality of
an algorithm on a class K in §3. We will restrict our attention to the following sets K :
the unit ball of the approximation space A" ((2g), £,); the unit ball of spaces ¢,
and weak £;. We recall that the norm on A" ((2¢), £,) is equivalent to the weak £,
norm, 1/t =r + 1/p. As we have noted earlier, the optimal performance of sensing
algorithms is determined by the Gelfand width of K. These widths are known for all
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of the above classes (see Chapter 14 of [47], especially (5.1) and Notes 10.1 of that
chapter). Since, the results are extensive, we mention only one result, for the case
p = 2, which will orient the reader. For the unit ball U (£1) of £; in RY, we have

Cy ming(,/ log(e#’ D) < E;(U(ty), £2) < Cyyf log(e#, (5.9

with absolute constants C1, Co» > 0. This is the result of Kashin improved (in the
logarithm) by Gluskin. The appearance of the logarithm in (5.9) is the (small) price
we pay in doing compressed sensing instead of sampling all coefficients and taking
the n largest. We can use theoretical results like (5.9) to gauge the performance of
any proposed algorithm.

ITI. Instance-optimal. Instead of asking for optimal performance on classes, we
could ask that the sensing/decoding performs as well as k-term approximation on
each x € RV, If || - | x is a norm on RY, we say the sensing encoder/decoder pair
®/ A is instance-optimal of order k if

E(x,®, A)x < Coor(x)x, xeRY, (5.10)

holds for a constant independent of N and n. Given N and n, we want the largest value
of k for which (5.10) holds. Since we are dealing with finite-dimensional spaces, the
role of the constant Cy is important.

In each case, some relevant issues are: (i) what are the properties of a matrix &
that guarantee optimal or near optimal performance, (ii) which decoders work with ®,
(iii) what is the computational complexity of the decoding - how many computations
are necessary to compute A(y) for a given y?

In [34], Donoho gave an algorithm which is optimal in the sense of I for p = 2
and for the unit ball of £, T < 1 (hence it is universal for these sets). His approach
had three main features. The first was to show that if a matrix & has three properties
(called CS1-3), then @ will be an optimal sensor for these classes. Secondly, he
showed through probabilistic arguments that such matrices ® exist. Finally, he showed
that £; minimization provides a near-optimal decoder for these classes. Independently
Candes and Tao ([14], [15]) developed a similar theory. One of the advantages of
their approach is that it is sufficient for ® to satisfy only a version of the CS1 property
and yet they obtain the same and in some cases improved results.

To describe the Candeés—Tao results, we introduce the following notation. Given
ann X N matrix @, andanyset T C {1, ..., N}, we denote by &7 the n x #(T') matrix
formed from these columns of ®. We also use similar notation for the restriction x7 of
a vector from R¥ to T. The matrix ® is said to have the restricted isometry property
for k if there is a 0 < §; < 1 such that

(A =3dllxrlle, = 1Prx7lley = (A48 lIxT ey (.11

holds for all T of cardinality k.
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Given the matrix ®, and any x € RY, the vector y = ®(x) represents our
information about x. As we have noted before, we need a decoding strategy for y.
Both Candés—Romberg—Tao and Donoho suggest taking the element x that minimizes
the £1 norm over all vectors which share the data y:

X = A(y) := Argmin ||z]l,. (5.12)
zeF ()

Numerically, the decoding can be performed through linear programming. From our
perspective, the main question is how well this encoding/decoding approximates x.
The main result of [13] is that if

83k + 3041 < 2, (5.13)

then
o (x)g,

vk
Under the same conditions on ® and k, the following variant of (5.14) was shown
in [18]

X —Xlle, = C (5.14)

lx —Xlle; < Cor(x)e,- (5.15)

By interpolation inequalities, we obtain for 1 < p < 2

or(x)e,
K=1/p

x —xlle, =C (5.16)
In all these inequalities, we can take C as an absolute constant once we have strict
inequality in (5.13).

Before interpreting these results, let us first address the question of whether we
have matrices @ that satisfy (5.13). This is where randomness enters the picture.
Consider an n x N matrix ¢ whose entries are independent realizations of the Gaussian
distribution with mean O and variance 1. Then, with high probability, the matrix
will satisfy (5.13) for any k < Con/log(N/n). Similar results hold if the Gaussian
distribution is replaced by a Bernoulli distribution taking the values £1 with equal
probability [2]. Here we have returned to Kashin who used such matrices in his
solution of the n-width problems. Thus, there are many matrices that satisfy (5.13)
and any of these can be used as sensing matrices. Unfortunately, this probabilistic
formulation does not give us a vehicle for putting our hands on one with absolute
certainty. This leads to the very intriguing question of concrete constructions of good
sensing matrices.

Let us now return to our three formulations of optimality.

Exact reproduction of k sparse signals (Case I). If we have a matrix @ that satisfies
(5.11) and (5.13) in hand then the above encoding/decoding strategy gives an optimal
solution to the Sensing Problem for the class of k-sparse signals: any signal with
support k will be exactly captured by A(P(x)). Indeed, in this case ox(x)¢, = 0
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and therefore this follows from (5.14). Thus, for any k < Cnlog(N/n), there is a
matrix @ and a decoder A given by (5.12) that is optimal for the class of k sparse
signals under this restriction on k. However, in this case the range of & is not optimal
(the logarithm can be eliminated) as can easily be seen and was pointed out in [3].
For any k, we can create a matrix ® of size 2k x N that has the exact reproduction
property of k sparse signals. For example, for k& = 1, any two linear functionals
ZlN: | g'x; with two distinct numbers ¢ will have enough information to recover a
one-sparse signal exactly.

The key to proving optimality of k-sparse signals is to prove that the null space N
of @ has no nonzero vector with support < 2k. This is an algebraic property of ®. Any
matrix with this property will solve the optimality for k-sparse vectors. Such matrices
are readily seen to exist. For any k and N > 2k, we can find a set Ay of N vectors in
R such that any 2k of them are linearly independent. The matrix ® whose columns
are the vectors in Ay will have the exact reproduction property. There are many
examples of such sets Ap. For example, if x; < xp < --- < xp are arbitrary real
numbers, then we can take the vectors v; € R" whose entries are x; _1, i=1,...,n,
which gives a van der Monde matrix. Such matrices are unfortunately very unstable
in computation and cannot be used for the other sensing problems.

Optimality for classes K (Case II). To go further and discuss what happens in the
case that x is not k-sparse, we assume first that p = 2, i.e., we measure error in £;.
From our discussion of the existence of matrices & that satisfy (5.11),(5.13), we see
that we can take k = Cn/log(N/n) in (5.14). Since ox(x)¢, < |lx|l¢,, we obtain
optimality on the class U (£1) (see (5.9)). The inequality (5.16) can be used to obtain
similar results for approximation in £,.

Instance-optimal (Case III). If | - || x is any norm on RY and ® is an n x N matrix, we
say @ has the null space property (NSP) for X of order k if foreachn € N = N (D),

Inllx < Collnrellx, #(T) =k, (5.17)

where T¢ is the complement of T in {1, ..., N} and where Cy > 1 is a fixed constant.
A sufficient condition for ® to have a decoder A such that the pair ®/A is instance-
optimal of order k is that A have the NSP for X of order 2k and a necessary condition
is that N have the NSP for X of order k (see [18]).

In view of (5.15), the probabilistic constructions give instance-optimal sensing for
X = {1 and k < Cn/log(N/n). On the other hand, it can be shown (see [18]) that
any matrix which has the null space property for k = 1 in £, will necessarily have
n>N/ CS rows. This means that in order to have instance-optimal for one sparse
vectors in £ requires the matrix & to have O (V) rows. Therefore, instance-optimal
is not a viable possibility for £;. For £,, 1 < p < 2, there are intermediate results
where the conditions on k relative to IV, n are less severe (see [18]).

One final note about the discrete compressed sensing problem. We have taken as
our signal classes the approximation spaces 4" which are defined by k-term approx-
imation using the canonical basis for R”. In actuality the probabilistic construction
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of sensing matrices works for sparsity measured by approximation using much more
general bases. All we need is that the matrix representation of ® with respect to the
new basis also have properties (5.11), (5.13). Thus, the choice of a random sensing
matrix ¢ will encode sparsity simultaneously in many (most) bases. However, the
decoding has to be done relative to the chosen basis. This is sometimes referred to
as a universal property of the randomly constructed matrices ® (see [2] for a more
precise discussion of universality).

5.2. Computational issues. Notice that in compressed sensing, we have reduced
greatly the number of samples n we need from the signal when compared with thresh-
olding techniques. However, this was at the cost of severely complicating the decoding
operator. The decoding by £; minimization generally requires polynomial in N ma-
chine operations which may be prohibitive in some settings when N is large. Issues
of this type are a major concern in Theoretical Computer Science (TCE) and some
of the work in TCE relates to the sensing problem. For example, there has been a
fairly long standing program in TCE , going back to the seminal work of Alon, Matias
and Szegedy [1], to efficiently sketch large data sets (see also Henzinger, Raghavan
and Rajaopalan [41]). The emphasis has been to treat streaming data with efficient
computation measured not only by the number of computations but also the space
required in algorithms. Streaming algorithms call for different encoders. The sensing
matrix ® needs to be constructed in a small amount of time. So their constructions
typically use less randomness and sometimes are possible using coding techniques
such Kerdoch codes or, more generally, Reed—Muller codes.

In some settings, the flavor of the results is also different. Rather than construct
one sensing matrix ®, one deals with a stochastic family ®(w) of n x N matrices
with w taking values in some probability space Q2. An algorithm proceeds as follows.
Given x, one takes a draw of an w € €2 according to the probability distribution on €2
(this draw is made independent of any knowledge of x). The information recorded
about x is then ® (w)x. Thereis adecoder A (w) which when applied to the information
@ (w)x produces the approximation x (w) := A(w) P (w).

Changing the problem by demanding only good approximation in probability
rather than with certainty allows for much improvement in numerical performance
of decoding in the algorithm (see [36], [37], [38]). For example, in some construc-
tions the decoding can be done using greedy algorithms with P (n log N) operations
where P is a polynomial. This is a distinct advantage over decoding by £; mini-
mization when 7 is small and N is large. Also, now the spectrum of positive results
also improves. For example, when calling for deterministic bounds on the error, we
saw that instance-optimal in £> is not possible (even for one-term sparsity) without
requiring n > coN. In this new setting, we can obtain instance-optimal performance
for k with high probability even in £; (see [18] and [24]).
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6. The learning problem

This problem differs from the Data Fitting Problem in that our measurements are
noisy. We shall assume that X = [0, 114 (for simplicity) and that Y C [-M, M].
This assumption implies that f, also takes values in [—M, M]. The measure p factors
as the product

dp(x,y) =dpx(x, y)dp(y|x) (6.1)

of the marginal px and the conditional p(y|x) measures.

Let Z := X x Y. Given the data z € Z", the problem is to find a good ap-
proximation f; to f,. We shall call a mapping E, that associates to each z € Z" a
function f, defined on X to be an estimator. By an algorithm, we shall mean a family
of estimators {E,};° ;. To evaluate the performance of estimators or algorithms, we
must first decide how to measure the error in the approximation of f, by f;. The
typical candidates to measure error are the L, (X, px) norms:

(fy le@IPdpx)?, 1< p < oo,

esssup |g(x)], p=o0.
xeX

lgllL,x.ox) = (6.2)

Other standard choices in the statistical literature correspond to taking measures other
than px in the L, norm, for instance the Lebesgue measure. We shall limit our
discussion to the Ly(X, px) norm which we shall simply denote by || - ||. This is
the most common and natural measurement for the error. Note that since we do not
know p, we do not know this norm precisely. However, this will not prevent us from
obtaining estimates relative to this norm.

The error || f; — f, || depends on z and therefore has a stochastic nature. As aresult,
it is generally not possible to say anything about this error for a fixed z. Instead, we
can look at behavior in probability as measured by

Pz Wfp— fzll >0}, n>0, (6.3)
or in expectation

By = £ = [ 16, = e, 64)

where the expectation is taken over all realizations z obtained for a fixed n and p" is
the n-fold tensor product of p.

We can define optimal, near optimal, and universal algorithms as in §3. The starting
point of course are the compactclasses K C Ly(X, px). Foreach such compactset K,
we have the set M (K) of all Borel measures p on Z such that f, € K. There are two
notions depending on whether we measure performance in expectation or probability.
We enter into a competition over all estimators E, : z — f; and define

en(K) :=inf sup Epn(llfp = fellLax.pox) (6.5)
" peM(K)
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and

AC,(K,n) =inf sup p"{z:|fp — fzll > n}. (6.6)
En pem(x)
As emphasized by Cucker and Smale [25] estimates in probability are to be preferred
since they automatically imply estimates in expectation (by integrating with respect
to dp™). However, for the sake of simplicity of this presentation, most of our remarks
will center around estimates in expectation.

Since we do not know the measure py, the compact subsets K of L, (X, px) are
also not completely known to us. One way around this is to consider only compact
subsets of C(X) since these will automatically be compact in Ly(X, px). Thus,
classical spaces such as Sobolev and Besov classes which embed compactly into
C(X) are candidates for our analysis. A second, more robust, approach, is to consider
the compact sets defined by an approximation process as described in §3.

The problem of understanding optimal performance on a compact set K C
L, (X, px) takes a different turn from the analysis in our other estimation problems
because the stochastic nature of the problem will prevent us from approximating f, to
accuracy comparable to best approximation on classes. This means that understanding
optimality requires the establishment of both lower and upper bounds on convergence
rates. There are standard techniques in statistics based on Kullback-Leibler informa-
tion and Fano inequalities for establishing such lower bounds. In [28] a lower bound
for the performance of an algorithm on K was established using a slight modification
of Kolmogorov entropy. This result can be used to show that whenever K is a finite
ball in a classical Besov or Sobolev class of smoothness order s which compactly
embed into C(X), then the optimal performance attainable by any algorithm is

en(K) > c(K)n 55, n=12,.... 6.7)

An algorithm (E,) is near optimal in expectation on the class K if for data z of
size n, the functions f; produced by the estimator E,, satisfy

Ep (I fp — fzI) = C(K)en(K), (6.8)

whenever f, € K. It is often the case that estimation algorithms may miss near
optimal performance because of a logn factor. We shall call such algorithms quasi-
optimal.

There are various techniques for establishing upper bounds comparable to the best
lower bounds. On a very theoretical level, there are the results of Birgé and Massart
[10] which use € nets for Kolmogorov entropy to establish upper bounds. While these
results do not lead to practical algorithms, they do show that optimal performance is
possible. Practical algorithms are constructed based on specific methods of linear or
nonlinear approximation. The book [40] gives an excellent accounting of the state
of the art in this regard (see Theorems 11.3 and 13.2). Let us point out the general
approach and indicate some of the nuances that arise.
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Suppose that we have chosen a sequence (X,,) of spaces X,, (linear or nonlinear
of dimension m) to be used for the approximation of f, from our given data z. How
should we define our approximation? Since all that we have available to us is the
data z, the natural choice for an approximation from X%,, is the minimizer of the
empirical risk

1 n
fox, = Argmin &(f). with &(f) = =) 0y = f@)* (69)
m J:l

In other words, f; x,, is the best approximation to (y; ;‘:1 from %, in the empirical
norm

1 n
2. 2
llgllz = -~ E 1 g (xj)I” (6.10)
J:

A key issue is how should we choose the dimension m. Choosing m too large
results in fitting the noise (to be avoided) while choosing m too small reduces the
approximation effectiveness. If we knew that f,, was in the approximation class

AS((Z), L2(X, px)) then a choice m ~ (@)?l+l would result in an algorithm
that is quasi-optimal on the class. However, we do not know s and so we need a
method to get around this. The common approach is what is called model selection.

Model selection automatically chooses a good value of m (depending on z) by
introducing a penalty term. For each m = 1,2, ..., n, we have the corresponding

function f; 5, defined by (6.9) and the empirical error
1 n
Epz o=~ 0 = fex, (). (6.11)
j=1

Notice that E,, ; is a computable quantity. In complexity regularization, one typically
chooses a value of m by

1
kmlogn] 6.12)

m* :=m*(z) := Argmin [Em’Z +
1<m<n n
with the parameter « to be chosen (it will govern the range of s that is allowed). Then,
one defines the estimator

fri= fos, .- (6.13)

Here is an important remark. One does not use f; directly as the estimator of f),
since it is difficult to give good estimates for its performance. The main difficulty
is that this function may be large even though we know that | f,| < M. Given this
knowledge about f), it makes sense to post-truncate fz and this turns out to be crucial
in practice. For this, we define the truncation operator

Ty (x) := min(|x|, M) sign(x) (6.14)
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for any real number x and define

fr = Tu(fz) (6.15)

as our estimator to f,.

One can show that under quite general conditions, the estimator (6.15) is quasi-
optimal on the approximation classes A°((X,,), L2(X, px)). The question arises as
to which approximation process (%,,) should be employed. We mention some of the
main issues in making this choice. First note that each approximation scheme has its
own approximation classes. Without any additional knowledge about f, there is from
the viewpoint of approximation rates no obvious preference of one approximation
process over another except that nonlinear methods are preferable to linear methods
since the resulting approximation classes for nonlinear methods are larger.

A major issue, especially in implementing nonlinear methods, is computational
cost. The larger the nonlinear process (e.g. the larger the dictionary in n-term approx-
imation), then the more computation needed for minimization in the model selection
(6.12). This factor is one of the major concerns in choosing the approximation scheme.
It is especially critical for high space dimension d. We mention a couple of methods
that can address these computational issues and relate to the methods of approximation
introduced in this lecture.

Suppose we use a dictionary D of size n? and employ model selection. This
would require examining all m dimensional subspaces formed by elements of the
dictionary foreachm = 1, 2, ..., n. While the number of computations can possibly
be reduced by using the fact that the data size is n, it will still involve solving O(2")
such least squares problems. This computation can be reduced considerably by using
greedy algorithms. Through such an algorithm, we can find, with the evaluation
of O(n*!) inner products, the greedy sequence vy, ..., v, of the dictionary that
provides near optimal empirical approximation with respect to the approximation
classes described in our discussion of greedy algorithms (see [5]). We can then do
model selection over the n subspaces V,,, := span{vy, ..., v,},m =1,...,n,to find
the approximation f,. Thus, the model selection is done over n, rather than O(2"),
subspaces, after the implementation of the greedy algorithm. The price we pay for
this increased efficiency is that the approximation classes for greedy algorithms are
in general smaller than those for m-term approximation. This means that in general
we may be losing approximation efficiency.

Another setting in which a model selection based on n-term approximation can
be improved is in the use of adaptive approximation as described in §4. Here, one
takes advantage of the tree structure of such adaptive methods. For a given data
set z of size n, one associates to each node of the master tree T* the empirical
least squares error on the cell associated to the node. There are fast algorithms
known as CART algorithms (see [33]) for assimilating the local errors and pruning the
master tree to implement model selection. Another alternative put forward in [6] is to
utilize empirical thresholding in a very similar fashion to wavelet tree approximation.
Another advantage of adaptive algorithms is that they can be implemented on-line.
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Adding one or several new data points does not require re-solving the entire empirical
minimization problem but only to do tree updates. Moreover, in some cases, the
analysis of adaptive algorithms can be made in probability.

7. Concluding remarks

Because of space limitations, we were only able to discuss the Sensing Problem and
the Learning Problem in any detail. We will make a few brief remarks to direct the
reader interested in some of the other problems.

The Data Fitting Problem is a special case of the optimal recovery problem. An
excellent resource for results on optimal recovery is the survey [52] and the articles
referenced in that survey. This problem, as well as aspects of the sensing problem, are
also treated in the wealthy literature in Information Based Complexity (see [57] and
[58] for a start) where the approach is very similar to our discussion of optimality.

The encoding problem is a main consideration in image processing and informa-
tion theory. Our approach of deterministic model classes is in contrast to the usual
stochastic models used in information theory. While stochastic models still dominate
this field, there are a growing number of treatments addressing the image compression
problem from the deterministic viewpoint. Optimal algorithms for Besov and Sobolev
classes for the encoding problem can be obtained by employing wavelet thresholding
and quantization (see [17]). More advanced methods of image compression model
images by approximation classes based on other forms of approximation such as
curvelets [11] and wedgeprints [55].

The computation problem is the most dominant area of numerical analysis. The
most advanced and satisfying theory appears in the solution of elliptic equations
with error measured in the energy norm. For model classes described by linear
approximation (for example, classical Finite Element Methods based on piecewise
polynomial approximations on fixed partitions), the Galerkin solutions relative to
these spaces provide optimal algorithms. Much less is known for nonlinear methods.
For model classes based on wavelet tree approximation, near optimal algorithms (in
terms of total number of computations) have been given in [19], [20], [21]. For
adaptive finite element methods, similar results have been given for simple model
problems (the Poisson problem) in [7] by building on the results in [35], [53].
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Symplectic field theory and its applications

Yakov Eliashberg*

Abstract. Symplectic field theory (SFT) attempts to approach the theory of holomorphic curves
in symplectic manifolds (also called Gromov-Witten theory) in the spirit of a topological field
theory. This naturally leads to new algebraic structures which seems to have interesting appli-
cations and connections not only in symplectic geometry but also in other areas of mathematics,
e.g. topology and integrable PDE. In this talk we sketch out the formal algebraic structure of
SFT and discuss some current work towards its applications.
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1. Formal algebraic structure of SFT

The project of SFT was initiated by A. Givental, H. Hofer and the author in [15]. Since
its inception, it has branched in different directions and now involves a large number
of authors working on the foundation and the different parts of the project. SFT is
closely related to the relative Gromov-Witten theory, see e.g. [21], [30], [35], [34],
[31], as well the work of Yu. Chekanov [11] and Fukaya—Oh—Ohta—Ono project [20].
Symplectic field theory can be viewed as a functor SFT from a geometric category
GEOMgpr of framed Hamiltonian structures and framed cobordisms between them to
an algebraic category ALGgpr of certain differential D-modules and Fourier integral
operators between them. We describe these categories in the next two sections.

1.1. The category ALGsrr. Roughly speaking, the objects in the category ALGgrr
are certain D-modules over a graded Weyl algebra with an operator H which satisfies
the “master equation” H o H = 0. Before listing the algebraic structures involved,
let us make a couple of general remarks. First, we will be dealing in this paper with
graded objects. To simplify the exposition we will usually mean by grading a Z/2-
grading, unless it is noted otherwise. Usually, with extra work it can be upgraded to
an integer grading. Second, we will systematically use C as the coefficient ring. In
some situations it has to be changed to a certain Novikov ring, see Remark 2.1 below.
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Given an integer vector d = (dy,...,dy) let us denote by CTy = C[T] a Z-
graded (super-)commutative algebra with complex coefficients, generated by graded
elements of an infinite N X oo matrix T = (4;),i = 1,...,N, j = 0,...; the
Z/2-grading of #;; coincides with the parity of d; foreach j > Oandi =1,..., N.

An object in the category ALGgrr is a collection of the following structures
01-05, which satisfy axioms AO1 and AO?2.

Ol.

02.

03.

0O4.

05.

A possibly infinite-dimensional space $ with a non-degenerate symmetric

bilinear form (-, -) and a fixed basis I". To simplify the notation we will assume

that there exists an involution y +— yp, y € I, such that (y,y’) = §;,/,
/

y.y €l

A Z-graded, possibly infinite-dimensional vector space V = @; V; over C,
called the phase space, with a degree 1 differentiald: V — V, such thatd 2=0
(e.g. a space of differential forms on a manifold with de Rham differential d).
Ford = (dy, ..., dy) we denote by V4 the space @fVVd,-.

An associative algebra W over C generated by graded elements py ,, gk, y,
y € I', k > 1, and an even graded element /i, with the following commutation
relations: all elements commute (in the graded sense) except that the (graded)
commutator [ px,y, qk,7] equals k7 forany y € I"and k > 1.

A completion W of W, called the Weyl algebra, which consists of formal
power series of i and p-variables with coefficients which are polynomials
of g-variables.

A smooth function H: V¢ — %W ® CTy4, which associates with any ©® =
(01, ...,0xn) € V¥ an odd (in fact, of degree 1 if the integer grading is used)
element H(®) € %W ® CTy, called the Hamiltonian. Here smoothness is
understood in the formal sense: all coefficients of the corresponding power
expansions are smooth.

Before formulating the axioms let us introduce some notation. Given two vec-

tors d = (di,...,dy) and d' = (dj,...,d),) we denote by d L d’ the vec-
tor (di,...,dy.,d|,...,dy,). Similarly, for ® = (61,...,6n) € V4 and @ =
0.....04) € V4 we write

OUEO =(O),....008.0].....00) Vi

We will also denote by #;; and #;,,i = 1,...,N,k=1,...,N', j,l = 1..., the
generators of the algebra CT,, ,/, and by w: CT, ;o — CTy the projection.
The following axioms should be satisfied:

AOl.

H(® L d®) o H(O L d®) = JH(O L dO), (1)
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where 3
3 = Zti o )
i,j J
is an odd differential on CT 4, 4, d = +1,...,dy+ 1.
Note that 92 = 0.

AO2.
H(®) =7 (H(®GUO0)), 3)

for ® € V4 and 0 € V¥,

Let us note an important corollary of the axioms. Suppose that d® = 0. Then we
have
H(®) c H(®) = 0. 4)

Hence, if d® = 0 then (W ® CTY, D(®)) is a differential Weyl algebra with a differ-
ential
D(O)(x) = [H(®),x], x e W®CT%.

More generally, for any ® € V4 we can define a differential Weyl algebra
(W ® CT™ DO Ude))
with a differential
D(® L d®)(x) = dx + [H(®), x], x e W CT
Let us also consider

* a space F of formal Fourier series

o0
Y Pee™ 4 Qe ™, 5)
k=1

where Py = {pk y}yer, Ok = {qk,y}yer, k = 1, ..., are ordered strings of

graded variables, indexed by elements of I"; the space F is canonically polarized,
i.e. split F = F. @ F_, where F (resp. F_) is formed by Fourier series with
only positive (resp. negative) coefficients;

* a space Fock which consists of formal series ) ;- fih*, where f are func-
tionals on the space F_ which can be expressed as polynomials of Fourier
coefficients gy, .

Note that the space Fock can be viewed as a D-module over %W. Indeed, the
quantization

pk,y — kh
qgk,y
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provides a representation of %W as the algebra of differential operators acting from
the left on elements of the space Fock. Given an element A € %W we will denote by
LA] the corresponding differential operator if we need to distinguish it from A.

For each ® with d® = 0 the equation (4) implies that the operator H(®) is a
differential on Fock ® CT,. Indeed, if we define

De = [H(®)]f, f €Fock®CTy,

then Dé =0.

Consider now two objects O, O~ € ALGgrr. We will label with & all the
structures associated with these objects. Morphisms O — O~ are formed by the
following structures:

* A graded space V=) ; Vj over C with a differential d: V — 'V, d*> =0, and
two grading-preserving restriction homomorphisms R*: V — V¥,

* A graded commutative algebra AT over C which consists of formal power series
of i and p™ -variables whose coefficients are polynomials of ¢ ~-variables. Note
that the Weyl algebra %W_ acts on AT on the left by quantizing

—

_ 0
pk,y — kh —, (6)
quy];

while the Weyl algebra W+ acts on AT on the right by quantizing

<«

0
+
q, ., — kh ——; @)
b opy 5

given an element D € %Wi we will denote by | D| and [ D] its quantizations
defined by formulas (6) and (7), respectively.

¢ A smooth function
Gd _ Lo+
V4 — EA_ ® CTy4

which associates with a string ® = (01, ...,0y) € V9 an even (of degree O in
the situation of Z-grading) element

1
®(0) = E‘D(@)(T’ g ,pt.h) e At ®CTy,

called the potential.

The following axioms should be satisfied:



Symplectic field theory and its applications 221

AM1.

LH*([\)*(@ Ll d@))Je‘I)((")I_Id(*)) + e<I>((~)|_|d(é)) [H+<R+(® L d@))'l — aed)((*‘))’
®)

where the linear differential operator 0 = Zi, jtij % is defined above in (2).
ij

AM2.
P(O) =7 (®(OULO)), )

where® € V4,0 €V € Vd/, and 7 is theprojectionAf@CTdud/ — Af®CTd.
An important partial case is when d® = 0. In this case the axioms imply
[H™(R™(©))]e®® + > O THH (R (©))] = 0. (10)
Note that @ defines for each ® a formal Fourier integral operator
®(©): Fock; ® CTy — Fock_ ® CTqg

by the formula

~ _ 1y@ - pt
SO (ST, q ) = (en* TP DT gt )|l (D
If d® = 0 then the equation (10) translates into the fact that
®(0): (Fock™ ® CTy, Dg+@)) — (Fock™ ® CTy, Dr-(@))

is a chain map.

Suppose now that we are given three objects g, @1 and 3, and morphisms
D1 Qg — O and ®1o: O — ;. Then their composition ®p: Qg — O3 is
defined as follows. First, we define the phase space V(y, as the fiber product

Vo2 = {(Bo1, 012); Oo1 € Vor, 012 € Viz, Ry (Bo1) = R, (012)}.

Given ®gr = (g1, O12) € ng we define an element

1 1
P02(B02) = —P02(©02)(T. 42. po. 1) € EAg

by the formula

o1 202(002) (T.q2.p0.h) _ (Le%mz«om(tqz,pl,h)Je%%l<(~>01><T,q1,po,h>)|
Lo, (00)(T B Ldg (©0)(T i " (12)
— (eﬁ 12{©12)(T\q2,p1, )|’eg 01(®01)(T.q1, po, ))'H

p1=0"
Note that the corresponding operator 502(602) is the composition:

D02(Oga) = P12(O12) 0 Doy (O12) : Focky ® CTy — Focky ® CT,.
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1.2. The category GEOMgrr. The exposition in this section is essentially taken
from Section 4.1 in [17]. A Hamiltonian structure is a pair (V, 2), where V is an
oriented manifold of dimension 2n — 1 endowed with a closed 2-form €2 of maximal
rank (= 2n — 2). The tangent line field £ = Ker Q is called the characteristic line
field. The field ¢ integrates to a 1-dimensional characteristic foliation of Q2. Note
that 2 defines a fiber-wise symplectic structure (and hence an orientation) on the
bundle 7V /£. Thus the line bundle ¢ is equipped with an orientation. We will call
characteristic any vector field R which generates ¢ and respects its orientation.

Any co-orientable hypersurface V in a symplectic manifold (W, Q) inherits a
Hamiltonian structure Q|V Conversely, any Hamiltonian structure (V, Q) embeds
as a hypersurface in a symplectic manifold (V x (—¢, ¢), ) where the form €2 can
be constructed as follows. Let A be any 1-form which is not vanishing on ¢, and s
the coordinate along the second factor. Then we set 2 = Q + d(sA). Note that
by Darboux’s theorem the Hamiltonian structure (V, 2) determines its symplectic
extension to a neighborhood of the hypersurface V.=V x 0 C V x (—¢, €) uniquely
up to a diffeomorphism fixed on V. We call (a germ along V of) the symplectic
structure € on V x (—e¢, &) the symplectic extension of (V, Q).

A Hamiltonian structure # = (V, 2) is called stable (see [24]) if its symplectic
extension can be realized by a form QonV x (—e, &) such that the Hamiltonian
structures induced on hypersurfaces V xs, s € (—¢, €), all have the same characteristic
line field £. It is easy to check (see [17]) that

Proposition 1.1. A Hamiltonian structure 3 = (V, Q) is stable if and only if there
exists a 1-form ) and a characteristic vector field R such that

AR)=1 and irdr=0. (13)

Note that in view of Cartan’s formula we have LgrA = d(A(R)) +igrdX, and hence
the second condition can be restated as invariance of A under the flow of R.
A framing of a stable Hamiltonian structure is a pair (A, J) where

e )\is asin (13); the form A automatically defines the hyperplane field & = {A =
0}, called a cut of the Hamiltonian structure, and the vector field R, called its
Reeb field;

e J is an almost complex structure on & (also called a CR-structure on V') com-
patible with the symplectic form €2.

Here are three major examples of stable framed Hamiltonian structures.

Example 1.2. (1) Contact forms. Let & be a contact structure on V, i.e. a completely
non-integrable tangent hyperplane field, and A a contact form for £,1i.e. £ = {A = 0}.
Let an almost complex structure J: & — & be compatible with d\|¢. Then #H =
(2 =d, 1, J) is a framed stable Hamiltonian structure on V with the cut &, and R
is the usual Reeb field of the contact form A. We say in this case that the Hamiltonian
structure # is of contact type.
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(2) Hamiltonian functions. Let (M, w) be a symplectic manifoldand H;: M — R,
t € S' =R/Z, a 1-periodic time-dependent Hamiltonian function. Set V = M x S',
Q = —w+ Hidt and A = dt. Let J be an almost complex structure on M compatible
with w. Then # = (V, 2, A, J) is a framed stable Hamiltonian structure. Its Reeb
vector field is given by R = % + sgrad H;, where sgrad H; is the Hamiltonian vector
field defined by H;. We say in this case that # is of Floer type.

(3) S'-bundles. Let (M, w) be a symplectic manifold and p: V — M any
S'-bundle over it. Set @ = p*w. Then Q is a stable Hamiltonian structure on V.
Indeed, one can choose any S'-connection form A as its framing. The corresponding
Reeb vector field R is the infinitesimal generator of the S _action, and the cut of &
is formed by the horizontal spaces of the connection. Let Jj; be an almost complex
structure on M compatible with w, and J be the pull-back of Jys to & via the pro-
jection V.— M. We say that a framed Hamiltonian structure # = (V, 2, A, J) is
of fibration type. Note that if the cohomology class [w] of the symplectic form is
integral, then one could take as V the corresponding pre-quantization space , i.e. the
principal S'-bundle p: V — M with the first Chern class [w]. In this case the lift
Q = p*w of the symplectic form is exact and one can choose A to be a primitive
of 2. Hence, in this case (V, @, A, J) is also of contact type.

All Hamiltonian structures which we consider in this paper will be assumed stable.

Framed Hamiltonian structures are objects in the category GEOMg g7, while mor-
phisms are framed symplectic cobordisms which we describe below.

A symplectic cobordism between two Hamiltonian structures #H = (Vy, Q4)
and #_ = (V_, Q_) is a symplectic manifold (W, ) such that oW =V, U (—V_)
and Q|y, = Q4. Note that “symplectic cobordism” is a partial order, and not an
equivalence relation, because it is not symmetric. A framed symplectic cobor-

—

dism between two framed Hamiltonian structures #4+ = (V4, Q4, A4, J+) and

;(’_ = (V_,Q_,A_, J_) is a cobordism (W, 2) between #, and F_ equipped

with an almost complex structure J which is compatible with €2, and such that
—

J(€1) = &1; here £ denotes the cut {A+ = 0} of the framed Hamiltonian #¢+. Mor-

phisms in the category GEOMgpr are multi-storied framed symplectic cobordisms,

i.e. sequences (Co,1, C12, ..., Ck—1,k) where Cj—1 j = (Wj_1,j, R2j—1,, Jj—1,j) is
—

a framed symplectic cobordism between framed Hamiltonian structures J¢; 1 and

N
Hj,j =1,..., k. Anassociative operation of composition of morphisms is defined
in an obvious way as concatenation of such sequences.

1.3. 2-categories. Both categories, GEOMgpr and ALGgrr, can be upgraded to
2-categories which are respected by the functor SFT.

On the geometric side, a 2-morphism is a fixed on the boundary homotopy of
symplectic cobordisms and their framings. More precisely, a 2-morphism is a pair
(25, J5), s € [0, 1], where €2; is a family of symplectic forms on a cobordism W
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such that Qglaw = Qolaw, Qs = dEy, Egxlaw = 0, s € [0, 1], and Js is a fixed
on oW deformation of almost complex structures compatible with €2;. The notion
of homotopy can be extended to morphisms represented by multi-storied cobordisms
via the process, called splitting or stretching the neck. We refer the reader to [15], [8]
for the precise definition.

Let us move now to the algebraic side of the story. Let ® @, @(: 9+ — 9~ be
two morphisms, where for ® € V4. We have

1 1
¥ (©) = Ecb(”(@)(T, g . pt.h) e EA“_L ®CTz, s=0,1.

A 2-morphism between ®© &1 is a function which associates with ® € V¢ a
family

1 1
K®(®) = EK(“)(G))(T, g, pt.h) e EAf ®CTg4, s €]0,1].

When d® = 0 then K® generates a homotopy &) = }—1.1<I>(5)(®)(T, q=,pt.h),
s € [0, 1], defined by the following differential equation:

d_q’(s) — oV

o (ILH™ ], K©1e®” + e [[H], K©]), se[0,1],  (14)

where we identify K ) with an operator of multiplication by K ) acting on the algebra
At ® CT4. More generally, for any © we define a homotopy ®*)(® LI d®) by the
equation
)

‘Z—q’( )(®|_|d®) = e ([1H 40, K©1e®” +e® [[H+9, K©)]), 5 €0, 1],

’ (15)
where the differential operator 9 = } jti J% is defined in (2). Let us point out
an important corollary of (14) and (15). Suppose that H¥ (R*(®)) = 0. Then any
homotopy leaves ®(®) unchanged.

The category ALGgpr and the functor SFT can be further significantly enriched.

As we explain below, the construction of our Hamiltonian H, potential ®, etc., is
based on the study of appropriate moduli spaces of holomorphic curves and their
compactifications. In fact, all these objects, as they are described above, are analogs
of the so-called descendent potential in the Gromov—Witten theory. A more systematic
use of the topology of the moduli spaces allows one to define further enrichments of
the theory (e.g. see the discussion of satellites in [15]).

1.4. Quasi-classical approximation. Let us consider the “quasi-classical” limit
(when i — 0) of the structures entering the definition of the category ALGgrr.
This leads to the category ALG% 7 Which is formed by the following structures. Let
us first describe the objects.
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¢ The Weyl algebra W is replaced by a graded Poisson algebra P over C which
is formed by power series in p-variables with polynomial coefficients in g-
variables. All variables Poisson commute except that the {py,,, gr 7} = k. It
is useful, in fact, to think about P as an algebra of functions on a symplectic
(super-)space S with coordinates py , and g, , and the symplectic form

1
Z zdpk,y AN qu,};.
yelk>1

e Given ©® € V¥, the element

o
1
H(®) = ZH(@(@)hg*l € EW ® CTy
§=0

is replaced by h(®) = H®(®) e P® CTy.

¢ Axiom AOI1 takes the form
1
E{h((@ud@),h(@ud@)}:8h(®ud®), (16)

where 0 is defined in (2).
In particular, if d® = 0 the we have

{h(®), h(©)} = 0. (17)

In the definition of a morphism we replace the algebra AT by a® formed by
formal power series in p T -variables with polynomials coefficients in ¢ ~-variables. An
element ®(©) = Y 22, ®®(0)1¢~! € AT ® CT4 reduces to ¢(©) = 0(O) €
al ® CTy. It is convenient to think about the function ¢(O) =¢(O)NT,q ,p") e
a’ ® CT, as a Lagrangian submanifold

1 1o
Ly (Se Y dai,ndply)e(s- Y dp, ndaiy).
yelt,k>1 yel—,k>1

or rather a family of Lagrangian submanifolds parameterized by T':

_ ¢ a¢
L :{ :k—, + :k—, GF,kZl} 18
¢ Pry 36]]:); di.y 3PZ]; 14 (18)

Axiom AM1 reduces to the following equation for ¢:
(RH(RT(OUA®)) +h (R™(OLIO))) |L¢ = 0¢(0O). (19)
In particular, when d® = 0 we have:

(R (R (©) +h™(R=(©)) [, =0. (20)
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Similarly, the composition rule (12) becomes the Legendre transform formula

— 1 1
¢oz(q(2),p(°))=(¢1z(q(2),p“))+¢01(q“),p(0))— >k 1(1;5,;1715,;)

L’
yelr® k>1
(21)
where o ”
01
Pr, = k- M »
_ v day 5
I B O)) do1
9k, = k- )
sV ‘91’1{.;

We denote here by ¢o1, ¢12 and ¢, the coefficient of A1 in the h-expansion of
®g;, P and Dy, respectively.

The “chain-homotopy” equation (14) takes (assuming d® = 0) the form of a
Hamilton—Jacobi equation:

de'®

105 o400y}

| Ly (22)
1.5. SFT and differential equations. We explain in this section that the axioms
of ALGgpr (e.g. equations (1), (8), (14)) associate with each object an infinite sys-
tem of commuting differential operators. In the quasi-classical approximation these
operators reduce to systems of Poisson commuting integrals. On the other hand, mor-
phisms provide (formal) solutions of evolution (Schrédinger) equations corresponding
to these operators. In the quasi-classical version ALGgFT morphisms provide solu-
tions to Hamilton—Jacobi equations corresponding to the hierarchies of the commuting
Hamiltonian functions.

Commuting differential operators. Consider an object in ALGgpr with the Hamil-
tonian H. Take ® € V¢ with d® = 0. Then H(®) € tW ® CTy satisfies the
equation H(®) o H(®) = 0 for all values of the parameter T = (#;;). Let us write
H(®) = G(T, h, g, p) and differentiate the identity G o G = 0 in T-variables. We

get
G
[_’ G} - 07
8t,'j
G 3G 3°G
PR + ) G = 07
0t;j Oty 0t;j 0ty

where the commutators are taken according to the sign rules in the graded world. The

first equation means that the elements G;; = % € %W ® CT4 commute with the
: g

(23)

Hamiltonian, while the second one says that they commute among themselves after
passing to homology of%W(X)CTd with the differential DA = [A, G], A € %W(X)CTd.
Moreover, in many interesting examples we have G|r—¢ = 0, and hence in this case

[Gijlr=0, GrilT=0]1 =0 (24)
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for all 7, j, k,[. Recall that elements of %W have a representation as differential
operators on the Fock space

Fock ® CTy = { 3 fk(T)hk}.

k>1

Hence, we get an infinite sequence of commuting differential operators |G;jlT—o]
acting on Fock ® CTg,.

Let us write G = Y o° G@ 781 and, respectively, G;; = 3 ¢ Gl(]g)hg_l, where

Ggf) € %P ® CT4. We also denote g := G© and 8ij = Gg.)). Then in the quasi-
classical approximation we get

{gijl7=0. grlT=0} =0, (25)

provided that g|7—¢ = 0. In other words, g,-J-|T=0 eP,i=1,...,N,j>0,are
Poisson commuting integrals.

Hence, the sequence of commuting differential operators G;j|r=o € %W is the
(deformation) quantization of Poisson commuting Hamiltonians g;;|T=o € P.

Morphisms in ALGgrr and evolution equations. Let us consider a morphism
between two objects, ®: Ot — @~. Let V be the phase space associated with the
morphism. For ® € Ve, d = (di,...,dyn), such that Ri(d®) = 0, we denote

GE(S, ¢%, p*, h) := HE(RE(O)),
&S, T,q, pT, h) = ®(OLIO),

where the variables S, T generate CTg e, ¢ = (d1 + 1,...,dy + 1).
Then according to (8) we have for ® = ®(S, T, q~, p*, i) that

Dy e
Y s —® = (LG7(S.q7. pT e + e [GT(S T pT M) (26)
ij Y

By differentiating both sides of (8) in variables s;; and then setting § = 0 we get

Proposition 1.3. Suppose that GF|g—g = 0. Then ®(S, T, q~, pT, h) satisfies the
system of commuting evolution equations

0d _
_(S’ T’q 7p-|-7h)
91 (27)
_ -t _ - ot - ot —
— ¢ 26.Tqp ’h)(LGijje(b(S’T’q PR L@ T p ’h)l—Giﬂ)’
where G5 i= 35=| i =1,....N, j 2 0.
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In the quasi-classical approximation the system (27) reduces to a system Hamilton—
Jacobi equations for the evolution of the corresponding Lagrangian submanifold under
the system of commuting Hamiltonian flows:

d
—¢(S, T.q7,p") = (g, p)+g&54" p)

28
i (28)

|L¢<&T,q—,p+>’

i=1,...,k j>0.

2. Construction of the functor SFT

2.1. Beginning of the construction. The description of the functor SFT which we
present here is very sketchy, and only gives a very general picture of the structures
involved in the construction. It also omits many very important points. In particular,
in order to actually define the functor SFT we need to restrict the geometric cate-
gory by imposing certain genericity constraints. The actual construction of SFT is a
large project which is currently well under way (e.g. see [8], [25]), but not yet fully
completed.

Let O = (V,Q, A, J) be an object in GEOMgfr, i.e. a framed Hamiltonian
structure, and R the corresponding Reeb field. Letus begin building the corresponding
object SFT(O) € ALGgpr.

Denote by & the space of simple periodic orbits of the Reeb field R. Generically,
periodic orbits are non-degenerate, i.e. the linearized Poincaré return map along each
orbit has no eigenvalues equal to 1. If this is the case, then the number of orbits in &
of bounded period is finite. We will assume either that R satisfies this non-degeneracy
assumption, or the so-called Morse—Bott condition (see [5] for the precise definition)
when periodic orbits are organized in submanifolds, and the flow of R satisfies a certain
non-degeneracy condition in the direction complementary to critical submanifolds.

Let H*(#) be the (de Rham) cohomology space of #. Choose a basis of T’
represented by a finite or countable system of differential forms on 4, such that the
matrix of the Poincaré pairing has in this basis the form §,, ; for a certain involution
y + y on I'. Of course, in the non-degenerate case the space J# is discrete, and
hence in this case there is a canonical basis of O-forms, dual to individual orbits. In
this case the involution y +— y is the identity map.

In the non-degenerate case each y can be identified with an orbit from &. We then
associate the variables p, ; and g, ; with the k-multiple cover of the orbit . Their
Z/2-grading is determined as follows. Let A, ; be the linearized Poincaré return map
for this k-multiple orbit. Then the variables p, ; and g, x are even or odd graded
depending on whether the Lefschetz number det(1 — Ay, ;) is positive or negative. If
some extra choices are made one can define the integral grading of the variables p,
and g, ; but we will not discuss it in this paper. With the graded variables p, ; and
gy i introduced, we can then define the Weyl algebra W and the space Fock.
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We will not discuss here the Morse—Bott case in full generality and only consider
its extreme case described above in Example 1.2 (3), when (V, @, A, J) is of fibration
type. All orbits of R are closed in this case and the space & of simple periodic orbits
coincides with M. There exists a basis I' of H*(M) = H*(P), and an involution
y — ¥ such that the Poincaré pairing in this basis is given by the matrix

v, v) =38y 5.

The Z/2-degrees of the variables p,, ; and g, i coincide in this case with the degree
of the corresponding cohomology classes y € H*(M). The phase space V associated
with SFT(Q) is the space of differential forms on V with the de Rham differential.

The main part of SFT(©), the Hamiltonian H, is defined in terms of moduli spaces
of certain holomorphic curves in the cylinder V x R with an almost complex structure,
still denoted by J, which is defined by the following conditions.

» J is invariant with respect to translations (x, ) — (x,t +c¢), (x,¢) € V x R;
i _ p.
hd Jm = R,

* the CR-structure induced on each slice V' x ¢ coincides with the given CR-
structure J.

H. Hofer (see [27]) was the first who studied holomorphic curves in almost complex
cylindrical manifolds of this type in his work on the Weinstein conjecture. He followed
the pioneering work of M. Gromov (see [23]) who essentially created the new field of
symplectic topology by introducing the technique of (pseudo-)holomorphic curves.
Before considering the general case we sketch the construction in the very special,
but already highly non-trivial case when V = S'.

2.2. The circle. Consider Example 1.2 (3) for the special case when M is the point.
Inthiscase V = S! = R/Zand R = %, s € R/Z. The complex structure J defined
on the cylinder C = S' x R at the end of the previous section coincides in this case
with the standard complex structure on the cylinder C = C/{z ~ z + 1}.

The space & consists of only one simple orbit, and hence I" is just a point. There-
fore, we have two infinite series of even variables pg, gx, kK = 1, ..., and the space F
is the space of “scalar” Fourier series u(x) = Z,fozl pre’* + 9 ikx The spaces F
and F_ are formal analogs of spaces of holomorphic functions in the unit disc and its
complement, which are equal to O at the origin or oo, respectively. The Weyl alge-
bra W is generated by even elements py, gx with k = 1, ..., and an even element 7,
and consists of formal power series

DY gral@n™p’,

n=0 1
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where g; ,(g) are polynomials, the second sum is taken over all infinite multi-indices
I = (i1, i2,...) with finitely many non-zero entries, and p! = pi'p?.... All
variables commute except that [ px, gx] = kh.

By quantizing | pi ] = kh% we represent elements of %W as linear differential

operators on the space Fock formed by power series ) ;- fxh*, whose coefficients
fi are functionals on the space F_ (of “equal to 0 at oo holomorphic functions u in
the complement of the unit disc”’) which can be expressed as polynomials of Fourier
coefficients of u.

Next, we describe the Hamiltonian H. Let (S, j) be a closed Riemann surface of
genus g and F: S — CP! a meromorphic function with 7, poles (x1, ..., x, ) and
r_ zeroes (yi, ..., yr_) of multiplicities ¢ = (c1,...,¢,) and b = (by, ..., b,_),
respectively. By identifying CP! \ {0, oo} with the cylinder

C=C/{z~z+1}=S'xR, S!'=R/zZ,
we can equivalently view the function F' as a map

F=(fia): S\ (fx1,....,x JU{y,....»_}) = C. (29)

With this interpretation we will call X = {xy, ..., x,, }and Y = {y1, ..., y,_} the sets
of positive and negative punctures, respectively. If z = e~”*i¢ is a local coordinate
on S near a puncture x; € X where p € (0, 00), ¢ € R/2nZ, then the map F near
this puncture can be written as

s = f(p,9),
t=a(p, ),
where f(p, p) —> % and 429 ¢;. In other words, at x; the map F is
p—00 p p—00

asymptotic to the ¢;-multiple circle S! = R/Z at o0 of the coordinate ¢. Similarly,
at a puncture y; € Y the map F' is asymptotic to the —b;-multiple circle § =R/ Z
at —oo of the coordinate ¢. For a fixed genus and fixed multiplicity vectors ¢ =
(c1,...,¢cry)and b = (by, ..., b,_) we denote by M, (C; c, b) the moduli space of
equivalency classes of meromorphic functions defined in (29). The integer vectors ¢
and b are called the positive and negative ramification data. We will also denote by
Mg 1 (C; c, b) a similar moduli space with k additional marked points (disjoint from
X and Y and each other) z1, ..., zx. The stability condition: g + 2k +ry +r_ > 3,
is required to be satisfied. Notice that we do not fix a conformal structure on the
surface and the configurations of punctures and marked points. Two maps are called
equivalent if they differ by a conformal map (S, j) — (S,, j') which preserves all
punctures and marked points. We will also consider the quotient M, (C; ¢, b) /R by
translations of C = S x R along the R-factor.

The moduli space M, «(C; ¢, b)/R can be compactified by adding stable holo-
morphic buildings, see [8]. A stable building of height 1 is a stable nodal holomorphic
curve in the sense of Kontsevich, i.e. an equivalency class of holomorphic maps defined
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on a possibly disconnected Riemann surface with certain pairs of marked points (called
special) required to be mapped to one point on C. The stability condition should be
satisfied for each connected component, and the source surface must become con-
nected after identifying points of each special pair. As above, the equivalence relation
identifies buildings which differ by translation of C along the R-factor. A stable build-
ing F of height [ > 1 is a collection of stable buildings Fi, ..., F; of height 1, with
the condition that the positive ramification data of the building F;,i = 1,...,/ — 1,
coincides with the negative ramification data of F; ;1. By definition, the negative
ramification data of F is the negative ramification data of F, and the positive rami-
fication data of Fj is the positive ramification data of F. The genus of F' is the genus
of the surface obtained by gluing for eachi = 1,...,/ — 1 the source surfaces of
buildings F; and Fj;; along their respective ends. The compactified moduli space
will be denoted by M_/Rg’k(C; ¢, b).
The evaluation map at the j-th marked points z; defines a map

evj: M/R, ;(C;c,b) > S' =R/Z.

To define the Hamiltonian H we need to pick a system of forms. For our case of S!
let us take ® = (6g = 1, 61 = ds). Then the corresponding algebra CT is generated
by elements of the matrix T = (#;;), i =0, 1, j > 0, with even variables #p; and odd
variables 71 ;.

As it is customary in Gromov—Witten theory, we define correlators

<T7 e ey T)g,k,c,b -

[ (Zweiooawoh) s (Lueieacn). @0

MRy 1 (Csc,b)

where Lj, j =1, ..., k,is a tautological line bundle over M_/Rg, «(C; ¢, b) which as-
sociates with each holomorphic curve (building) the cotangent line at the j-th marked
point z; A

Consider now the generating function H € %W ® CTq4,

. Z (T, ..., T)g,k,c,bhg—l b c (31)
= k) r)! e
€>0,k>0,b,d

where ¢ = qp, ... qp, , P¢ = Pe, Y 2

IThe integration in this and other similar formulas should be understood either in the sense of the virtual cycle
theory if one works in the algebro-geometric context, or literally but after an appropriate generic perturbation,
see [23], [39]. In fact, to achieve transversality one needs sometimes to perturb in a class of objects more general
than holomorphic curves. The relevant transversality theorem was first proven by K. Fukaya and K. Ono in [19]
in the context of Floer homology theory. Following their work the transversality issues in Gromov—Witten theory
were studied by several authors. H. Hofer, jointly with K. Wysocki and E. Zehnder, has recently developed a
new functional analytic theory of polyfolds, which provides the most suitable set-up for handling transversality
problems arising in SFT, see [25], [26]. One also needs to use coherent orientations of different moduli spaces,
as it is described in [15].
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The Hamiltonian H can be quite explicitly written in this case, thanks to the results
of A. Okounkov and R. Pandharipande, see [41].

First of all, it follows from the parity arguments that H|7,—o = 0, where we denote
T; = (t;j), j = 0,i =0, 1. Hence,

H=Y n;H +o() (32)
j=0

Let us introduce a new variable y and define a generating function for the sequence
of operators G; = H|7,—o:

GOy =) Gyl
0

Take u(x) = Z,fil pie fex +qre”! kx ¢ Fand denote by ¢ (x) the function determined
by equations

¢'(x) =u(x), $(0) =0.
In other words,
_ - Pk _ikx 9k —ikx
$(x) = z;(ke thomthr).

Let us also set # = A2. Then we have
! 2
i _byy_ iry
G(y)ul = —/"x HAEE) ) ) )
2w A2y2s(Ay)
0

where

ZSinh%
s(u) = .

Let us write explicitly a few first terms Gy:

2
1 2

Go=— | “ax:
0= orn o

0

27
6= [ “ax, (34)
"Zoan) &Y

0

27
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It is interesting to note that the genus 0 term of Gy, k > 0, i.e. the coefficient of Al

is equal to
2
1 k+2
P [t
2 ) (k+2)!
0

These are commuting integrals of the dispersionless KdV, or Burgers integrable hi-
erarchy, and hence the operators |Gy | acting on Fock, provides the deformation
quantization of this hierarchy.

2.3. Case of a general Hamiltonian structure. In order to define H for a general
Hamiltonian structure (V, 2, A, J) we consider moduli spaces of J-holomorphic
curves in the cylindrical almost complex manifold (W =V x R, J).

Notice that for our choice of J the cylinder y x R C W over a trajectory y of the
Reeb field R is always a J-holomorphic curve. Given a J-holomorphic map F of a
punctured disk D> \ 0 — W with the coordinate z = e 1%, we say that the map
F = (f, a) is asymptotically cylindrical over a periodic orbit y of the Reeb field R

at +o00 (resp. at —oo) if lim,_, oo a(z) = +00 (resp. = —0o0), and lim,_, o f(2) =
f ( + g—y‘f) where the map f: [0, T] — V parameterizes the trajectory y in such a

way that R is its velocity vector, and 7 is the period of y.

Let § = S, be acompact Riemann surface of genus g with a conformal structure j,
withr puncturesx = {x1, ..., x,, }, called positive, r_ punctures y = {y1, ..., yr_},
called negative, and also k marked points z1, . . ., Z, disjoint from each other and the
punctures.

Given two vectors ¢ = (c1, ..., ¢, ) and b = (by, ..., b,_) of positive integers
we consider moduli spaces Mg (W, J; ¢, b) of (j, J)-holomorphic curves

(Sg \ (xUy), j) — (W, J)

with k marked points z1, ..., zx, which are asymptotically cylindrical over a ¢;-
multiply covered periodic orbit from J# at the positive end at the puncture x;, and
asymptotically cylindrical over a (—b;)-multiply covered periodic orbit at the negative
end at the puncture y;. We will also consider the quotient M(W, J; ¢, b) /R of the
space Mg (W, J; c, b) by translations along the R-factor.

For our distinguished structure J, the holomorphic curve equation takes the form

ﬂodfo]—JOJT.Odf (35)

da=(f"))oj.
Notice that the second equation just means that the form f*X o j is exact on S and that
the function a is a primitive of the 1-form f*X o j. Thus the holomorphicity condition
for F' = (f, a) is essentially just a condition on its V-component f. If f satisfies the
first of the equations (35) and the form (f*)) o j is exact then the coordinate a can
be reconstructed uniquely up to an additive constant on each connected component
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of §. Therefore, an element F' € Mg (W, J; ¢, b) is uniquely determined by its
V-component f, which is a surface bounded by multiply covered orbits from .
Given « > 0, let us denote by Mg’ «(W, J, c, b) the subspace

Mgk (W, J,c,b)N { / Fro < oz}.

Sg

The quotient space M:f «(W, J, ¢, b) has a compactification M /]Rg,k(W, J,c,b) by
holomorphic buildings2 (see [8]), similar to the one considered above for the case
V = S'. We denote

MRy (W, J,c.b) = ] MR, (W, J,c.b)

a>0

and
MRy (W, D)= ] MRy (W, J,c,b)
k,c,b
k+ry+r_=m

The space M /R, ,, (W, J) may consists of different components,

MRy (W, J) = Ci.

Given F € C;, we denote by y; its symplectic area |, S, F*w, which depends only on
the component C;.

By using the notation M_/]Rg, (W, J) we put the punctures and the marked points
on the equal footing. Keeping up with this point of view, let us consider the disjoint

union
o
X = ]_[ P,
—00
where
P ifj £0,
Pj = . ] a
V ifj=0,

and supply each #;, j # 0, with an identical copy ') of the basis I' of H*(P).
Consider an evaluation map

ev=1(evy,...,evp): eM/]Rg’m(W, J)—> Xx---xX

m

which associates

2In the Morse-Bott case one also needs to add to the compactification the so-called generalized holomorphic
buildings, see [S] and [8].
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— with each marked point z; its value f(z;) € V = Py,

— with each positive puncture x; the corresponding periodic orbit in the 5 -copy
of &, where k = ¢; is its multiplicity,

— with each negative puncture y; the corresponding periodic orbit in the _-copy
of &, where k = b; is its multiplicity.

Choose a system of closed forms ® = (01, ..., 0y) and associate with it a matrix
T = (t;;) of graded variables. Consider the following formal expression (“general
cohomology class of X with descendents”)

n o ) x
Z=Y " 10! + Y3 ppav® +qyur Y,

i=1 j=0 k=1yerl

where y(j ) denotes the copyof y € I'in rv ), Jj # 0, and set

n [e.0] o0
evi Z=Y Y tijevi0i (ci(L) + DY) ppaevi y® +qyuevi y P,
i=1j=0 k=1yell

where the line bundles L; over M /Rg’m(W, J) have the same meaning as in Sec-
tion 2.2 above. Define the correlator

o0

— Mj *
<z,...,z>g—zzf/ev Z®- 82). (36)

where the sum is taken over all components of M/R, ,, (W, J).

Remark 2.1. Note that by introducing exponents z* in the definition of the correlators
we effectively extended the coefficient ring from C to a certain Novikov ring (of
Puiseux power series i a;jz'7). This was done to avoid infinities in (36). However,
it is not absolutely necessary to do that, and one can ignore these weights by setting
z = 1 in most of the cases. For instance, for Hamiltonian structures of contact type
there are always only finitely many terms in the sum which contribute in (36) to the
coefficient of a fixed monomial of ¢, p and 7 variables. But even in the most general
situation one can alternatively deal with this problem by requiring the string of forms
® to contain closed 2-forms which form a basis of H>(V) (this approach is similar
to the divisor equation in the Gromov—Witten theory).

Finally, we define the Hamiltonian

0 o

1

H©) =Y > —(Z.,....Z)h*"". 37)
g=0m=0 m! m
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Note that all terms of H have the same odd degree (and, in fact, degree 1 if the
grading is upgraded to Z from Z/2), because we integrate over the moduli spaces
quotiented by the R-action.

The “master equations” (1) and (16) follow from Stokes’ formula combined with
the description of the boundary of the corresponding moduli spaces.

All the other necessary constructions to build the functor SFT are done in the
same spirit. Consider, for instance, a framed cobordism (W, €2, J) which realizes a
morphism ®: O — (@~ between two framed Hamiltonian structures

OF = (vE, QF At Jh).

The phase space V associated with this cobordism is the space of differential forms
on W, and R* are the restriction homomorphisms to V.

Take ® € V¥ and associate with it the corresponding graded algebra CT,. To
define the potential ® € %AJ_“ ® CT,4 we attach to the cobordism cylindrical ends

corresponding to framed Hamiltonian structures O,
W= (V™ x (—00,0]) UW U (VT x [0, 0)),

and consider the compactified moduli space of holomorphic curves in W asymptot-
ically cylindrical to periodic orbits of the Reeb field R at the positive end, and the
orbits of R_ at the negative one. Then the correlators and the potential are defined
by the formulas similar to (36) and (37) with one very important difference: in this
situation there is no R-action on the moduli space, and hence the integrals should
be evaluated on the moduli space itself, rather than its quotient by the R-action, as
was done for the Hamiltonian. The implication of this is that the potential, unlike
the Hamiltonian, has an even degree (in fact, degree 0 if the grading is upgraded to Z
from Z/2). As in the case of the Hamiltonian, the structural equation (8) is a conse-
quence of Stokes’ formula and the description of the boundary of the corresponding
moduli space.

Note that if the symplectic manifold W is closed, i.e. it is a cobordism between
empty Hamiltonian structures, then the corresponding SFT-potential ®(®) € CTy is
just the descendent potential of the Gromov—Witten theory.

2.4. The 3-sphere. Let us consider here an example when V = §3, 1 is the standard
contact form whose Reeb field generates the Hopf fibration, J is the CR-structure
induced from C? on the round sphere. This is a pre-quantization space, so it fits into
both, the contact and the fibration cases in the sense of Example 1.2.

The manifold (W, J) can be equivalently described here either as C? \ 0, or the
total space of the canonical degree 1 complex line bundle L over CP! minus the
0-section. In the second interpretation a holomorphic curve from M (W, J, ¢, b) can
be viewed as a pair (h, /), where h: S, — CPlisa holomorphic curve, and i is a
meromorphic section of the induced complex line bundle #* L over S,. The punctures
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from x and y correspond to zeroes and poles of this section, respectively, while the
vectors ¢ and b appear as the multiplicities of zeroes and poles.

Take a basis of H*(CP') which consists of 10 = 1 and the harmonic form y, with
f(c p1 ¥2 = 1. The Poincaré duality involution acts as yp = y». Thus the Weyl algebra
W is generated by even graded variables pox = pyg.k> P2k = Py k> 0k = Gyg.k»> and
q2k = qy.k» k > 1. We organize them into formal Fourier series

o0 oo
ik —ik ik —ik
uo(x) =y poke™ + qore ™™, ua(x) =Y poe’™ + que ™™, u = (uo, u2).
i i

Let us choose a basis (8y = 1, 63) of H*(S3), where 63 is a harmonic 3-form with
/. ¢3 03 = 1, as the required string © of differential forms. The algebra CTy in this
case is generated by T = (Tp, T3), where T; = (), i = 0, 3; j > 0. The variables
to; are even, while #3; are odd.

As was shown in [15], the genus 0 part H® of the Hamiltonian H can be explicitly
reconstructed in terms of the genus 0 descendent Gromov—Witten potential of CP!
(in fact, this is a general phenomenon for all Hamiltonian structures of fibration type).
In particular, we get

2

1 f 2 ‘

Gy = > (—( o+ b;()(x)) + 6”2(")_”> dx, (38)
0

and the Hamiltonian equations for the Hamiltonian G can be written as

uo(x) = —idi(euz(x)—ix)’

x
39
. .dug 59
uz(x) = —i——(x),
dx
.. 2 ; . o
oriip = — dd7(e”2_”€), where the dot denotes the time derivative.

As was pointed out to me by B. Dubrovin, this is the continuous limit of the Toda
lattice. The other G; are Poisson commuting integrals of this integrable hierarchy.
Hence, if one were to explicitly write for this example the terms of the expansion of
the full Hamiltonian H (and not only of its genus 0 term H(?) then this would provide
the quantum commuting integrals for the quantization of the Toda system (39).3

Let us now use the Hamilton—Jacobi equation (28) to compute the genus 0 potential
of the round 4-ball B C C2. Take a 4-form 6 supported in Int B* with S =1
and set ® = {#}. Let T = (¢;), j > 0O be the corresponding string of even graded
variables. Take the genus 0 potential ®©(®) = »O(T, p) € P ® C[T], and
consider its restriction ¢ (¢, p) to the subspace T = {(¢, 0,0, ...)}. Note that ¢ (¢, p)

30ne can extract from the work [38] an explicit, though quite complicated recurrent procedure for writing
down the expansion of the full Hamiltonian H in terms of the descendent Gromov—Witten potential of CP I
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is, in fact, a certain relative genus 0 Gromov—Witten invariant. Coefficients in its
expansion in ¢ and p variables count the numbers of rational curves in CP? which
pass through a given number of fixed points and have a prescribed tangency pattern
to a fixed complex line C C CP2. According to (28) ¢(f, p) can be computed as a
solution of a Hamilton—Jacobi equation associated with the Hamiltonian flow (39).
Let E': F — F be the (formal, i.e. understood in terms of formal power series)
Hamiltonian flow defined by the equation (39). Take the Lagrangian subspace F; =
{(uy,0)} = {g = 0} C F and denote by L’ its image E'(F,) under the flow E’.
Then ¢ (¢, p) is the generating function for LD in the sense of (18), i.e.

LW = Ly = {qk,() = kﬂ, qk,2 = kﬂ, k> 1}.
OPk,2 9Pk,0

Let us switch to the (u_, u)-notation, i.e. write u_ for g and u for p, and apply

a standard symplectic-geometric procedure for computing the generating function in

terms of the Lagrangian submanifold which it defines. Let us define L; by an explicit

equation u_ = f'(uy) (i.e. exclude v from the parametric equations (u4,u_) =

E'(v,0), v € Fy). Then we have

2

1
¢0,u+)=-——L-/:/<f’@u+(xn,du+cw>dxd& (40)
0 0

21 dx

where (-, -) is a bilinear form on C2 with the matrix ((1) (1))

It is interesting to note that the value of the functional ¢ (¢, u ) at the point u =
(ze'*, 0), i.e. the function

1
gt,2) =¢(t,uy) = z/ f(tz’l)(sze"x) ds, 41)
0

where we write
o o0
—ik —ik
1= = (X foxe™ 3 frre™),
1 1

is the generating function

o o
g(t.2) =) Y Naw"z
d=1m=1
for the numbers Ny x of rational curves of degree d which pass through m points in
general position in the complex projective plane.* In order to get (41) from (40) one
needs to split CP? along a boundary of a tubular neighborhood of CP! ¢ CP? and
apply the gluing formula (21), see [15].

4As itis well known, the coefficients Ng i vanishunlessk = 3d—1,and wehave Ny = 1, Ny 5 =1, N3 g =
12, N4 11 = 620, .... Several recursion relations, beginning from the one discovered by M. Kontsevich in [32],
are known for computing the coefficients Ny .
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3. Invariants of contact manifolds and other applications of SFT

3.1. Invariants of contact manifolds. Defining invariants of contact manifolds was
one of the primary motivations for the SFT project.

Let (V, A, J) be a framed Hamiltonian structure of contact type. Choose a system
of closed forms ® = (61, ..., 6x) which represents a basis of the cohomology H*(V)
and consider the corresponding Hamiltonian

o0
H(®) =Y H¥(T,q. pyns~".
g=0

Consider the following SFT objects which can be associated with (V, A, J):
1. The Weyl differential algebra (W ® CT4, D), where

DA =[AH(®)], H(O)e %w ®CT,.

2. The space Fock ® CT4 with the differential®
Df = |H(®)|f, f € Fock® CTj.

3. The Poisson differential algebra (P ® CTy4, d) with the differential
dA = (A, HY(®)}, AeP®CT,.

4. The differential algebra (fock ® CT,4, 0) where Fock = fock[[#]] and the dif-
ferential 9 is defined as follows. Consider the expansion

HO@©) = > hiy(q. T)pry +o(p). (42)
yelk>1

Then we define 0gx,, = khy 5 (g, T) and extend 0 to the whole algebra using
the Leibnitz rule.

In all the above cases the corresponding homology, together with all the inherited al-
gebraic structures, is an invariant of the contact manifold (V, & = {A = 0}) (see [15]),
and thus independent of the choice of J, the contact form A, and the representatives 60;
of the corresponding cohomology classes of H*(V). Moreover, the homotopy types
of the corresponding differential algebras are also invariants of (V, &).

However, sometimes it is possible to define a simpler, easier computable contact
invariant. Let us restrict the discussion to the case when the set of forms ® is empty
or, equivalently, set 7 = 0. The differential © in Case 4 can be viewed as a vector
field 5

aq}c,y

Ag) =) ki y(9)
k.y

5The algebraic structure of (Fock ® CT4, D) can be described in terms of the BV oo-formalism, see [9].
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on the space with coordinates gy ,. Suppose there are constants ay , € C such that
0(a) = 0, where a = {ax ,}. Then one can define the linearized homology of the
algebra (fock, 0) at the point a. More precisely, following Yu. Chekanov [11] we
define an augmentation of the algebra (fock, 0) as a graded chain homomorphism
g: (fock, 9) — (C, 0). In other words, this means that 9(a) = 0 where a = {ax , =
h(qy )} and ay , = O unless ay , has grading 0. The linearized complex is defined
as

(fOdezl/fOdezz, de = ¢ 000 (rba_l)’ 43)

where fock,>,, denotes the ideal in fock generated by monomials of degree > m,
and the algebra homomorphism ¢, : fock — fock is defined on the generators g,
as the shift gx, > g, + ak,,. It turns out that if the algebra (fock, 0) admits a
unique augmentation for a certain choice of A and J, then for any other choice the
corresponding algebra admits an augmentation &, and the homology of the complex
(43) is independent of choices of A, J and ¢, and hence it is an invariant of the contact
structure &, see [11] and [7]. This homology, denoted C H,(V, &) is usually called
cylindrical contact homology because in all known cases when this homology is de-
fined, there exists a class of forms for which 0(0) = 0, and hence the differential of the
linearized complex (43) is determined by holomorphic cylinders. If the cylindrical
contact homology is defined then all the other algebraic structures described in ex-
amples 1-4 can be interpreted as certain (co-)homological operations on CH,(V, &).
Here are some examples when cylindrical contact homology is well defined and can
be computed:

a) Subcritical Stein-fillable contact manifolds. (V,§&) is called Stein fillable if
it appears as a strictly pseudo-convex boundary of a Stein domain W. The
subcriticality means that W has a homotopy type of a CW-complex of dimension
< dimc W. Under an additional assumption c1(§) = 0, M.-L. Yau (see [50])
proved that the cylindrical contact homology is well defined. She also computed
it in terms of H,(W). It seems likely that the condition ¢1(§) = 0 can be
removed.

b) Prequantization spaces. Cylindrical contact homology of a prequantization
space (V, &) of a symplectic manifold (M, w) is well defined and can be ex-
pressed through the homology H, (M), see [15] and [5]. Note that by juxtaposing
the computations in a) and b) one gets non-trivial restrictions on the topology of
symplectic manifolds with subcritical polarizations in the sense of [4] (e.g. com-
plex projective manifolds admitting a hyperplane section whose complement is
a subcritical Stein manifold).

c) Spaces of co-oriented contact manifolds. Given an oriented n-dimensional
closed M, the cylindrical contact homology of its unit cotangent bundle ST*M
is always well defined, and we have CH,(ST*M) = Hfl (A(M), M) where
Hf ' (A(M), M) is the equivariant homology of the free loop space modulo con-
stant loops. See [49], [43], [1], [9] for related results.
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d) Brieskorn varieties. 1. Ustilovsky (see [48]) computed contact homology of
certain Brieskorn spheres. His computation implied existence of infinitely many
non-isomorphic contact structures on spheres of dimension 4k + 1. F. Bourgeois
([5]) and O. van Koert ([33]) extended Ustilovsky’s computations to a large class
of other Brieskorn varieties.

e) Toroidal 3-manifolds. It was shown in [15] and [5] that cylindrical contact
homology distinguish all the contact structures on 73 (there are infinitely many
of them according to E. Giroux, see [22]). F. Bourgeois and V. Colin, see [6],
generalized this computation to toroidal (i.e. containing an incompressible torus)
irreducible 3-manifolds and as a consequence showed that such manifolds have
infinitely many non-isotopic (universally) tight contact structures. This result
should be contrasted with a theorem of V. Colin, E. Giroux and Ko Honda, see
[12], which states that atoroidal irreducible 3-manifolds may admit only finitely
many non-isotopic tight contact structures.

f) Exact triangle for Legendrian surgery. In [7] F. Bourgeois, T. Ekholm and
the author found an exact triangle which relates cylindrical contact homology
before and after surgery along a Legendrian sphere, and a certain cyclic complex
associated to the differential algebra of the Legendrian sphere, see discussion
of relative SFT in Section 3.3 below. This exact triangle is tightly related to
Seidel’s exact triangle describing an effect of a symplectic Dehn twist on Floer
homology, see [44] and [45].

F. Bourgeois computed in his dissertation [5] cylindrical contact homology for a
number of other interesting examples (e.g. for T*-invariant contact structures con-
structed by R. Lutz in [37] on some (2k + 1)-manifolds). Most recently, V. Colin
and K. Honda, see [28], announced a result that the cylindrical contact homology is
defined and not trivial for a large class of tight contact 3-manifolds. This theorem
implies the Weinstein conjecture (i.e. existence of periodic orbits of the Reeb flow) for
this class of contact 3-manifolds. It seems likely that cylindrical contact homology
is well defined at least for all Stein fillable, or maybe even more generally, symplec-
tically fillable contact manifolds. Note that the algebra (fock, 0) for symplectically
fillable contact manifolds always admits an augmentation (see [7]), which is unique
in all known cases for an appropriate choice of A and J.

3.2. Topological invariants via SFT. There are several canonical constructions
which associate with smooth manifolds and their submanifolds symplectic and con-
tact manifolds and their Lagrangian and Legendrian submanifolds. Here are a few
examples:

(1) Given a smooth closed n-manifold, one can associate with it its cotangent
bundle T*M with its canonical symplectic form w = dp A dg, or its unit
cotangent bundle (the space of co-oriented contact elements) ST*M with its
canonical contact structure £ given by the contact form pdq|s7+p;.
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(2) Givenasubmanifold K C M one can associate with K its Lagrangian conormal
bundle Lx C T*M, or its Legendrian lift Ax C T*M, formed by co-oriented
hyperplanes tangent to K.

(3) Here is another interesting variant of this construction. Let M be a compact
manifold with boundary N. Choose a metric on M and take a smooth function
p: M — R, which is positive on the interior of M and such that p(q) =
dist(qg, N) for ¢ € M close to the boundary N = oM. Let U C T*M be a
neighborhood of M in T*M defined by

U=1{(g., p) eT*M; |Ip|* < p(q)}.

Take the function H(q, p) = p(Vp(q)). Then d(pdg — dH) = w, and it
is straightforward to check that the form A = (pdg — dH)|3y is a contact
form. In other words, V = dU is a contact type hypersurface and the contact
manifold (V, ¢ = {* = 0}) depends only on the smooth manifold M, up to
an isotopic to the identity contactomorphism. Then N C V is a Legendrian
submanifold in V whose Legendrian isotopy class is another smooth invariant
of M.

(4) Moreover, note that the involution inv(p) = —p interacts well with all the
above structures. For instance, it induces an anti-symplectic involution of
T*M, a contact, co-orientation reversing involution of the space of co-oriented
contact elements ST*M and of the contact manifold V in (3). In that example
the Legendrian manifold N is the fixed point set of inv, while inv induces an
involution of the Lagrangian Lx and Legendrian A g in (2).

The author believes that all the above canonical symplectic and contact construc-
tions retain a lot of information about the differential topology of the manifold M, or
the pair (M, K). For instance, let ¥ be a homotopy n-sphere with an exotic smooth
structure.

Are the cotangent bundles T* X and T*S" symplectomorphic ?°

Are the spaces of contact elements ST*X and ST*S" contactomorphic?

Can any gauge-theoretic invariants of a 4-manifold M (and maybe even its smooth
type) be recovered from the symplectic and contact information about T*M and
ST*M?

Note that as smooth manifolds, 7*M and ST*M depend only on the (tangential)
homotopy type of M, and hence all the subtle differential-topological information
gets lost this way.

Recently M. Abouzaid and P. Seidel [2] developed a program for proving that
certain homotopy spheres do not admit Lagrangian embeddings into 7*S". This
would answer negatively to the first question for this class of homotopy spheres. In
the Legendrian version of example (2) one can try to use the differential algebra of

6This question I first heard 18 years ago from G. Mess.
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the Legendrian submanifold A g as a tool to detect topological invariants of the knot
K C M. L. Ng successfully used this construction for knots in R* and recovered
this way a wealth of invariants. For instance, he proved (see [40]) that even the
simplest linearized version of this algebra homology already encodes the Alexander
polynomial, and also, essentially, the so-called A-polynomial. In particular, this
linearized homology distinguishes the unknot — any knot which has the same Ng
invariant as the unknot is actually the unknot.

It is interesting to apply construction (4) to a 3- or 4-manifold whose boundary N
is a sphere, and then compute the equivariant homology of the differential algebra of
the Legendrian submanifold N C V. It seems plausible (and this is a current joint
project of T. Ekholm and the author) that the Z /2-equivariant homology of this algebra
carries non-trivial information about the differential topology of the manifold M.

3.3. Other SFT-related development. We briefly mention in this section some re-
cent development relating SFT with hot topics in topology.

Embedded contact homology. As it was already pointed out by M. Gromov in his
pioneering paper [23], the holomorphic curve technique is especially powerful in
4-dimensional symplectic topology, because the adjunction formula allows one to
control singularities and intersections of holomorphic curves by topological means.
The work of C. Taubes [46] emphasized further a special role played by holomorphic
curves in 4-dimensional topology. A current project of M. Hutchings, M. Sullivan
and C. Taubes attempts to define a contact homology theory in the spirit of SFT,
but based on embedded holomorphic curves, see [29] and [47] for partial results
in this direction. When fully completed, this theory is expected to provide a unified
approach to Ozsvath—Szabd homology theory for 3-manifolds ([42] and also [36]), and
to a (yet to be developed) theory of holomorphic curves in near-symplectic manifolds
(see [46]).

SFT and string topology. The relation between the topology of the loop space of a
manifold M and the Floer homology theory of its cotangent bundle T*M was first
revealed by C. Viterbo [49], and then further developed by D. Salamon and J. Weber
[43]. A. Abbondandolo and M. Schwartz [1]) related string topological operations
introduced by M. Chas and D. Sullivan [10] with cohomological operations in the
Floer homology of 7*M. Based on the fundamental study of Lagrangian intersection
Floer homology theory in [20], K. Fukaya [18] observed that the relation between
Chas—Sullivan string operations and the theory of holomorphic curves can be used to
obtain new restrictions on the topology of Lagrangian submanifolds. In an ongoing
project K. Cieliebak and J. Latchev [9] have further developed these ideas, and related
the BV -version of contact homology of ST*M, discussed above in Example 2 of
Section 3.1, with Chas—Sullivan string operations in the manifold M.

Relative SFT. Conjecturally, relative SFT is a functor defined on the geometric cate-
gory of pairs (V, A), where V is a contact manifold and A its Legendrian submani-
fold, with morphisms realized by pairs (W, L) of symplectic cobordisms W between
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contact manifolds and Lagrangian cobordisms L between Legendrian submanifolds.
The target algebraic category should consist of non-commutative analogs of struc-
tures considered in Section 1.1. However, in this full form the relative SFT-functor
has not yet been constructed. Yu.Chekanov (see also [16]) defined in [11] an as-
sociative differential algebra of a Legendrian link in the standard contact R3. This
algebra (already mentioned above in Section 3.2) is a relative analog of the differential
contact homology algebra in Example 4 of Section 3.1. Following a sketch in [16]
and [15], T. Ekholm, J. Etnyre and M. Sullivan (see [14]) constructed an analogue of
Chekanov’s algebra in a context of high-dimensional Legendrian submanifolds. Cur-
rently there are two promising approaches which may lead to the construction of the
full relative version of SFT. One is based on O. Cornea and F. Lalonde [13] theory of
cluster Floer homology, and the other one tries to exploit the discussed above relation
with string topology along the lines of [18], [20] and [9].

The author benefited a lot discussing the subject of this paper with many people.
He is very grateful to all his teachers, collaborators and critical listeners.
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Knots and dynamics

Etienne Ghys

Abstract. The trajectories of a vector field in 3-space can be very entangled; the flow can
swirl, spiral, create vortices etc. Periodic orbits define knots whose topology can sometimes be
very complicated. In this talk, I will survey some advances in the qualitative and quantitative
description of this kind of phenomenon. The first part will be devoted to vorticity, helicity, and
asymptotic cycles for flows. The second part will deal with various notions of rotation and spin
for surface diffeomorphisms. Finally, I will describe the important example of the geodesic
flow on the modular surface, where the linking between geodesics turns out to be related to
well-known arithmetical functions.

Mathematics Subject Classification (2000). Primary 37-02; Secondary 57-02.

Keywords. Low-dimensional dynamical systems, periodic orbits, knots and links.

1. Flows

1.1. Vorticity. Let us start with some historical motivation. Consider a perfect in-
compressible fluid moving inside some bounded domain M in 3-space, with no ex-
ternal forces. At time ¢, the velocity is described by a divergence free vector field v,
tangent to the boundary of M, which evolves in time according to the classical Euler
equation: D%vt (= %v; ~+ vy - Vy) is the (opposite) gradient —V p of the pressure p.
Denote by ¢’ the associated flow: the trajectory of a particle initially located at x € M
is the curve t — ¢'(x). The curl w; = V x v, is known as the vorticity vector field.
One of the earliest results in fluid dynamics is due to H. Helmholtz and W. Kelvin:

The vorticity w; is merely transported by the flow, i.e. at any time t, one has
wy = d¢t(w0)-

This is not difficult to prove: take a closed loop ¢ in M, and compute the time
derivative of the circulation of v; along the loop ¢; = ¢’(c).

D Dy, Ddc,
— v -dey | = — -dcy +vp -
Dt \ J, e \ Dt Dt

= % (=Vp-dci + v -duy)
Ct

vy |2
Ct 2
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When ¢ reduces to an infinitesimal loop, Stokes’ formula shows that d¢ ™' (w;) is
indeed constant in time.

A much more conceptual proof is due to V. Arnold who realized that Euler’s
equation can be seen as the geodesic flow on the infinite dimensional Lie group of
volume preserving diffeomorphisms of M, equipped with a natural right invariant
metric [3], [5], [55]. This right invariance implies a symmetry group for the equation,
which yields Helmoltz—Kelvin’s result as a special case of Noether’s general principle
that symmetries imply conservation laws.

If one can define quantities associated to divergence free vector fields, which are
invariant under conjugacies by volume preserving diffeomorphisms, these quantities
evaluated on the vorticity w; will therefore be constants of motion. In this talk, we
will discuss some of these invariants, of topological origin.

One consequence seemed remarkable to W. Kelvin. Suppose that at time 0, the
vector field vy possesses a vortex ring: a solid torus S' x D embedded in M in such
a way that wq is tangent to its boundary. Then, this ring will survive as a vortex
ring under time evolution, preserving the same topology. This stability of vortices
was the starting point of the (now forgotten) theory of “vortex atoms”, trying to
explain elementary “atoms” as vortex rings in ether. Even though this turned out
to be physically incorrect, it represents one of the first attempts to use topology in
physics. In any case, it motivated P. Tait to start a systematic study of knots, therefore
creating knot theory. See [26] for a fascinating historical survey of this great moment
of interaction between physics and mathematics.

A similar phenomenon appeared much more recently in magneto-hydrodynamics:
the dynamics of electrically conducting fluids (like a plasma). If one assumes that
the fluid is perfect and has no resistance (ideal MHD), the magnetic (divergence free)
vector field is merely transported by the flow of the fluid [21]. For instance, if two
periodic orbits of the magnetic field are linked at time ¢ = 0, these orbits will survive
for ever and remain linked. Again, an invariant of divergence free vector fields yields
conservation laws. See for instance [5], [15].

There are many wonderful examples of vector fields in 3-space whose phase
portraits exhibit a rich topology and which obviously deserve a topological study.
As a typical example, the Lorenz equation also originated from fluid dynamics:

dy_

28 . gz _ 2.67
S =8 -y -z =xy—2.67z.

dx
= 10 - 0); =

dt

It has been extensively analyzed since the 1980s, and is now a paradigm of a “ro-

bust” dynamical system (see in particular the papers of J. Guckenheimer and R. Wil-

liams [48], [90], and the book [83]). Note that this vector field is not volume preserv-
ing, but admits many invariant measures.

Measure preserving flows do not only arise from physical considerations. Consider

for instance a discrete subgroup I of PSL(2, R). The 3-manifold M = PSL(2,R) /T

can be endowed with a (Haar)-volume preserving flow ¢’ given by left translations
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Figure 1. The Lorenz attractor. Figure 2. Some periodic orbits [17].

by diagonal matrices

exp(?) 0
0 exp(—t) }°

The dynamics of this kind of flow has been widely investigated in particular because
of its strong links with number theory (see for instance [84], [68]). We will come
back to this key example in Section 3.

Finally, a huge source of examples of volume preserving vector fields comes from
the suspension procedure: any area preserving diffeomorphism f of a surface S
yields a volume preserving vector field on the 3-manifold obtained by gluing the
two boundary components of S x [0, 1] using f. We will discuss these examples in
Section 2.

1.2. Knots and periodic orbits. If a vector field in the 3-sphere or in a domain of
RR3 has a periodic orbit, this defines a knot whose topology can be used to describe the
dynamics. Starting from H. Poincaré one century ago, the quest for periodic orbits
has been rewarding!. Here is a sample of results.

As for the existence question, after a long search around Seifert’s conjecture,
K. Kuperberg constructed a jewel. There exists a nonsingular real analytic vector
field in the 3-sphere with no periodic orbit [59] (see also [44]). Note however that
such a vector field is highly nongeneric.

H. Hofer showed that the Reeb vector field of any contact form in the 3-sphere has
at least one periodic orbit [50]. H. Hofer, K. Wysocki and E. Zehnder even showed
that at least one of these orbits is unknotted [51].

In between these two cases, the volume preserving case seems difficult:

Does there exist a volume preserving real analytic nonsingular vector field in the
3-sphere with no periodic orbit?

G. Kuperberg constructed examples of C! nonsingular aperiodic volume preserv-
ing vector fields in the 3-sphere, but they are not C? [58]! K. Kuperberg’s examples
are analytic, but not volume preserving!

L«Elles se sont montrées la seule bréche par ot nous puissions pénétrer une place jusqu’ici réputée inabordable”
(H. Poincaré).
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In the opposite direction, there are vector fields in the 3-sphere with plenty of
periodic orbits. R. Ghrist constructed another jewel: an explicit real analytic vector
field in the 3-sphere whose periodic orbits represent all (isotopy classes of ) knots
and links! [41]. More recently, J. Etnyre and R. Ghrist even constructed an analytic
contact form whose Reeb vector field has the same property [28].

Some vector fields have many periodic orbits representing many knots, but not
all. J. Birman and R. Williams pioneered the subject and studied in great detail the
case of the Lorenz equation. The main tool is Birman—Williams’ template theory. In
Figure 3 (extracted from the original paper [17]), one sees a template: an embedding
of a branched surface T in R3, equipped with a semi-flow (¥');>0. The inverse
limit & of this semi-flow is the space of full orbits, i.e. curves c: R — X such that
Yl (c(s)) =c(s+1t)foralls € Rand¢ > 0. This is a compact space equipped with a
flow (l/f )(zer) and an equlvarlant projection  : P (le.o 1//’ Yl om). One
can embed the abstract space T in a small neighborhood of ¥ in R? in such a way
that 7~ ! (x) lies in a small neighborhood of x in R3 and that 1//’ is induced by some
smooth vector field in R3 preserving . Any orbit of W stays close to a full orbit
of the original semi-flow v!. This is the geometric Lorenz attractor which has been
shown recently to be conjugate to the original Lorenz attractor by W. Tucker [86].

N \
\ \ \ .

vooou | -.\/{)u/ V')
~ S
0
Figure 3. The Lorenz template. Figure 4. The Ghrist template.

In their seminal paper [17], J. Birman and R. Williams were able to reduce the
topological study of the knots and links which are present in the Lorenz vector field to a
combinatorial study on the template. For instance, all Lorenz knots are prime [91], are
fibered knots, and have non negative signature. Hence, Lorenz knots are numerous,
but very peculiar. See also [34], [52].

Amazingly, Ghrist’s original example of a vector field exhibiting all knots and
links in the 3-sphere is “almost” the same as the Lorenz template (Figure 4)! See the
beautiful book [42] for more information.

1.3. Asymptoticcycles. Considera vector field v on acompact manifold M, possibly
with boundary, preserving some probability measure u, and generating a flow ¢’. Al-
though there might be no periodic orbit, u-almost every point x is recurrent (Poincaré’s
recurrence theorem): there is a sequence ¢, — oo such that ¢™ (x) converges to x; the
long arc of trajectory from x to ¢’ (x) is therefore “almost closed”. Choose some aux-
iliary generic Riemannian metric on M and, for any point x and time 7, consider the
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closed loop k(T x) obtained by concatenation of the arc of trajectory from x to ¢! (x)
and some shortest geodesic from T (x) to x. Denote by [k(T, x)] € H{ (M, R) the
homology class of this loop. In the late 1950s, S. Schwartzman observed (in essence)
that the limit 8(¢; x) = lim7_, [k(T, x)]/T exists in the first homology group
Hi (M, R) for p-almost every point x, and that this limit is independent of the auxil-
iary metric used to close the arcs [82]. The average value §(¢p) = f v 3@ x)dpis
the Schwartzman asymptotic cycle of the flow. Proofs are variations around Birkhoff’s
ergodic theorem.

As in the classical ergodic theorem, the actual value of §(¢) can be computed as
a space average. For each point x, consider the trajectory y, from x to ¢'(x) as a
de Rham 1-current on M, whose boundary is the difference between a Dirac mass at
¢'(x) and a Dirac mass at x. The integral f a Vx dp(x) is a 1-cycle since the integral
of boundaries vanishes (thanks to the invariance of ©). The homology class of this
Schwartzman cycle is indeed equal to the above limit §(¢).

In other words, a measure preserving flow defines a canonical homology class
which can be considered as an “infinitely long knot”. Schwartzman’s point of view
has been greatly generalized by D. Sullivan and W. Thurston among others [85].

1.4. Helicity. A typical application of this kind of ideas has been carried out by
V. Arnold [4]. Suppose for simplicity that M is the 3-sphere, and that the measure
of periodic orbits is zero. Consider two distinct points x1, x2 in M, and two times
T1, T, > 0. The two closed loops k(71, x1) and k(T>, x3) are disjoint for almost every
choice of x1, x3, T1, T (at least if the metric is generic), and one can consider the
asymptotic behavior of their linking number link (k(T1, x1), k(T>, x2)) as T1 and T»
tend to infinity. Again, as a consequence of Birkhoff’s ergodic theorem, V. Arnold
proved that for p-almost every choice of x1, x2, the limit

1
link(x1, x2) = lim

link (k (T}, L k(T3,
nam T ink (k(T1, x1), k(T2, x2))

exists (see also [23], [36], [88]).
If w is a volume form, V. Arnold identified the integral

/ / link (x1, x2) dpt (1) di(x2)
MxM

that he called the asymptotic Hopfinvariant as the helicity, which had been introduced
previously by J.-J. Moreau [67] and K. Moffatt [62], [63], [64], [65], [66] and that
we now recall. Since ¢’ preserves a volume form ., the inner product i, i is a closed
2-form, hence can be written da for some 1-form «. The helicity Hel(v) is equal to
the integral of @ A da over M (which is easily seen to be independent of the choice
of the primitive «). Note the analogy with the usual definition of Hopf’s invariant for
maps from the 3-sphere to the 2-sphere. See also [87] for an interesting definition of
helicity in the spirit of Witten’s approach to Jones’ polynomial.
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The helicity Hel(v) defines a quadratic form on the Lie algebra of divergence free
vector fields, which is invariant under the adjoint action of smooth volume preserving
diffeomorphisms. V. Arnold suggests that Hel(v) is some “Killing form” for this Lie
algebra.

The main open question concerning helicity has been raised by V. Arnold [4]:

Suppose two smooth volume preserving flows are conjugate by some volume pre-
serving homeomorphism (which is orientation preserving). Does it follow that the
two flows have the same helicity?

The qualitative description of helicity as a limit of linking numbers suggests a
positive answer, but one should be cautious that a homeomorphism might entangle
the small geodesic arcs that were used to close the trajectories. However, we will
see in Section 2 that helicity is indeed a topological invariant for flows with a cross
section.

Similarly, V. Arnold asked for a definition of helicity for volume preserving topo-
logical flows: this problem seems to be wide open.

1.5. Digression: the Gordian space. For almost every point x, the curve k(7 x) is
a knot, i.e. has no double point. However, since we are using some auxiliary metric
to close the trajectory arc, this knot does depend on the metric. The idea behind the
previous constructions is that these knots are “approximately well defined” when T
tends to infinity. This suggests looking at the space of knots, as a rough metric space,
a la Gromov.

Denote by K the (countable) set of (isotopy classes of) knots in 3-space. There
is a natural Gordian distance dGordian ONn K that we now define. Given two knots
ko, k1: S' < R3, one considers homotopies (k;):c0,17: S! & R3? which connect
the two knots and are such that for each t € [0, 1], the curve k; is an immersion
with at most one double point, this double point being generic (the two local arcs
that intersect have distinct tangents at the intersection). Denote by D ((k;);c[0,1]) the
total number of double points of this family of curves. The Gordian distance between
the two knots ko and k; is the minimum of D((k;);¢[0,1]) for all such homotopies
connecting the knots.

The global geometry of this (discrete) metric space is quite intriguing and probably
very intricate. Note for instance that this space is not locally finite (an infinite number
of knots can be made trivial by allowing one crossing). We propose two kinds of
“dual” questions.

One could try to prove (or disprove) that a given metric space (E,d) can be
embedded quasi-isometrically in (KX, dGordian). Recall thatamapu: E — K isa
quasi-isometric embedding if there are constants C, C’ > 0 such that

C7ld(x, y) — C" < dGordian(u(x), u(y)) < Cd(x, y) + C’

for all x, y. For instance, we proved in [39] that every Euclidean space can be
embedded quasi-isometrically in (K, dGordian) and J. Marché showed that a countable
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tree such that every vertex has countable valency can also be quasi-isometrically
embedded [61].

Can one embed quasi-isometrically the Poincaré disk (or some higher rank sym-
metric space) in the Gordian space?

In a second approach, one could try to find maps I: (K, dgordian) — (E,d)
which are quasi-Lipschitz: d(I(x), I1(y)) < CdGordian(x, y) + C’ for some suitable
metric space (E, d). Any such invariant / would be a candidate for an adaptation to
vector fields since I (k(T, x)) would not be very sensitive to the choice of the auxiliary
Riemannian metric, and the ambiguity could disappear in the asymptotic behavior of
I (k(T, x)) as T tends to infinity. Very few examples of such invariants / seem to be
known. The most trivial one is of course the unknotting number, Gordian distance
to the unknot, but this invariant is hard to compute. Equally hard to compute is the
genus, i.e. the smallest genus of a Seifert surface. A very interesting (and easy to
compute) classical invariant is the signature of knots sign: X — Z which is 2-
Lipschitz for elementary reasons, as well as its twisted versions sign,,, associated to
complex numbers of modulus 1 (see [37], [38], [39], [53]).

In [37], we consider a measure preserving vector field v in a bounded domain M
of R3, and we prove that the limit sign(v; x) = limy_, o sign(k(T, x))/ T? exists for
almost every point x. Its average sign(v) = ||  Sign(v; x) dp(x) is the signature of
the vector field. When v is ergodic with respect to the invariant measure, this signature
coincides (surprisingly?) with (one half of) the helicity.

Some other “new” invariants have this Lipschitz property, like the T invariant of
P. Ozsvith and Z. Szabd, and the s invariant of J. Rasmussen. Do they lead to new
dynamical invariants for flows?

In a similar vein, it would be interesting to get some information on the rough
geometry of the space of (homeomorphism types of ) closed 3-manifolds where the
distance between two manifolds is defined as the minimum number of Morse surgeries
which are necessary to transform one into the other.

2. Diffeomorphisms of surfaces

Braids are useful to study knots and links mainly because they form a group. In the
same way, surface diffeomorphisms are useful to study flows, and also form a group,
so that we can use algebraic tools.

If f is a diffeomorphism of a surface S, its suspension is obtained by identifying
(x,0) and (f(x), 1) in the cylinder S x [0, 1]. The corresponding manifold Sy is
equipped with a flow and a cross section on which the first return map is precisely f.
If f preserves a measure or an area form, the suspension preserves a natural measure
or volume form. In this section, we describe many invariants measuring some kind
of twisting in surface diffeomorphisms.
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2.1. The Calabi homomorphism. Denote by G = Diff (DD, 9D, area) the group of
area preserving diffeomorphisms (say of class C*°) of the closed disk, which are the
identity near the boundary. E. Calabi defined a homomorphism

C: Diff(D, oD, area) — R

in the following way [19]. Choose a primitive « of the area form in the disk. For each
element f of G, the form f*«a — « is closed and is therefore the differential d H of a
unique function H on the disk which is zero near the boundary. Then C( f) is defined
as the integral of H.

There is an intuitive description of Calabi’s homomorphism whichis due to A. Fathi
(unpublished), expressing it as an “average amount of rotation”. The group G is
contractible. Choose some isotopy ( f;):c[0,1] connecting fo = id and f; = f. If
X1, x2 are distinct points in the disk, the argument of the nonzero vector f;(x1)— f;(x2)
in R%\ {(0, 0) } rotates by some angle Angle( f; x1, x2) when 7 goes from 0 to 1 (as a
unit for angles, we use the full turn). Itis easy to see that this definition is independent
of the chosen isotopy. It turns out that

C(f)= // _ Angle(f; x1, x2) dx1dx».
DxD

This interpretation enables a proof of topological invariance for Calabi’s invariant [36]:
If f and g are two elements of G which are conjugate by some area preserv-
ing homeomorphism /& of the disk, which is the identity near the boundary, then
C(f) =C(g).
Indeed, even though % is not assumed to be smooth, one can define the number
Angle(h; x1, x2), and it is obvious that

Angle(f; x1, x2) — Angle(g; h(x1), h(x2))
= Angle(h; x1, x2) — Angle(h; f(x1), f(x2)).

Note that Angle(h; —, —) is a continuous function on the complement of the diagonal
in D x D, and could be nonintegrable if 4 is not smooth (there could be an unbounded
local twist). However, the left hand side of the previous equality is bounded since f
and g are assumed to be smooth. As for the right hand side, it is easy to see that its
integral, which is defined, has to vanish (for instance approximating Angle(s; —, —)
by a sequence of bounded functions). Hence C(f) = C(g).

Observe that Calabi’s definition extends to more general symplectic manifolds
on which the symplectic form is exact. However, no analogous interpretation as an
average rotation is known.

The suspension of a diffeomorphism f in G defines a flow f on a solid torus
D x S!. If one embeds this solid torus in R in a standard way, one can compute
the helicity of the suspended flow. In [36], we proved that this helicity is equal to
(an explicit multiple of) Calabi’s invariant of f. (One has to be slightly careful with
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definitions in nonsimply connected manifolds, see [36]). This follows rather easily
from Fathi’s interpretation of Calabi’s invariant and Arnold’s interpretation of helicity.

As a consequence of the topological invariance of Calabi’s number, we get the
topological invariance of helicity for flows which are suspensions of area preserving
diffeomorphisms of the disk. This is a positive answer to a special case of V. Arnold’s
question mentioned above.

2.2. Some algebraic properties of diffeomorphism groups. The kernel of Calabi’s
homomorphism C is a simple group [8], [9]. However, the following fundamental
question remains open:

Is the group Homeo (D, DD, area) of area preserving homeomorphisms of the disk
which are the identity near the boundary a simple group?

One could try to extend Calabi’s homomorphism to this group of homeomor-
phisms, but the obvious idea of using the integral of Angle(h; —, —) does not work!
If one assumes some rather low regularity for the homeomorphisms, one can never-
theless use this idea, as in the quasi-conformal case [49].

Consider now a closed surface S, equipped with some area form w (say of total
area 1), and let Diff((S, w) denote the identity component of the group of smooth
(say of class C*°) diffeomorphis